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Abstract. We introduce a new ascending filtration, that we call the co-radical filtration in
analogy with the basic theory of co-algebras, on the Chow groups of pointed smooth projective
varieties. In the case of zero-cycles on projective hyper-Kähler manifolds, we conjecture it agrees
with a filtration introduced by Voisin. This is established for moduli spaces of stable objects on
K3 surfaces, for generalized Kummer varieties and for the Fano variety of lines on a smooth cubic
fourfold. Our overall strategy is to view the birational motive of a smooth projective variety as a
co-algebra object with respect to the diagonal embedding and to show in the aforementioned cases
the existence of a so-called strict grading whose associated filtration agrees with the filtration of
Voisin. As results of independent interest, we upgrade to rational equivalence Voisin’s notion of
“surface decomposition” and use this to show that the birational motive of some projective hyper-
Kähler manifolds is determined, as a co-algebra object, by the birational motive of a surface.
We also relate our co-radical filtration on the Chow groups of abelian varieties to Beauville’s
eigenspace decomposition.

Introduction

For a smooth projective variety X over an algebraically closed field K, we denote

δ : X ↪→ X ×X
the diagonal embedding and we fix a zero-cycle o ∈ CH0(X) (necessarily of degree 1) such that
δ∗o = o × o ; for instance o is the class of a closed point. For α ∈ CHi(X) an i-dimensional
cycle class, we denote α×N := p∗1α · · · · · p∗Nα ∈ CHiN (X) the N -th exterior power of α. Recall
from [Voe95, Voi96] that if α is algebraically trivial (e.g., α is a 0-cycle of degree zero), then α is
smash-nilpotent, i.e., satisfies α×N = 0 in the Chow group with rational coefficients CHiN (XN )
for N large enough. The following cycle will play a prominent role in this work :

δ̄n−1 :=
n∏
i=1

p∗0,i(∆X −X × o) ∈ CHdimX(X ×Xn). (1)

Here, ∆X ∈ CHdimX(X × X) is the class of the diagonal and p0,i : X × Xn → X × X are the
projectors on the product of the first and (i + 1)-st factors. Such a cycle δ̄n−1 already appears
in [Voi15] and is shown [Voi15, Cor. 1.6 & Prop. 2.2] to vanish for n large enough. Its projection
to Xn is the so-called n-th modified diagonal cycle and, for any closed point x ∈ X, we have the
relation (Proposition 6.2)

δ̄n−1
∗ [x] = ([x]− o)×n in CH0(Xn). (2)

Inspired by the basic formalism of (graded) co-algebras, we call δ̄ := δ̄1 the reduced co-multiplication
cycle and δ̄n−1 the iterated reduced co-multiplication cycle ; it satisfies the formula

δ̄n = (δ̄ ⊗∆X ⊗ · · · ⊗∆X) ◦ δ̄n−1.

By the above, we obtain an exhaustive ascending filtration (that depends on the choice of o)

RkCH0(X) := ker
(
δ̄k∗ : CH0(X)→ CH0(Xk+1)

)
for k ≥ 0,

that we call the co-radical filtration (Definition 6.1). The aim of this work is to give evidence,
in case X is a hyper-Kähler variety equipped with its (conjectural) Beauville–Voisin 0-cycle, that
this filtration is meaningful both from a motivic and geometric point of view.
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0.1. On zero-cycles on hyper-Kähler varieties. By hyper-Kähler variety, we will mean a
projective hyper-Kähler manifold, or equivalently, a projective irreducible holomorphic symplectic
manifold.

0.1.1. Main result. — Given a hyper-Kähler variety X of dimension 2n, the Voisin filtration
SkCH0(X) is defined as the subgroup spanned by classes of points supported on a closed subvariety
Zk ⊂ X of dimension ≥ n− k all of whose points are rationally equivalent in X (see §7 for more
details). We give a new characterization of Voisin’s filtration S•, introduced in [Voi16], in certain
cases :

Theorem 1 (Theorem 7.3 and Remark 7.5). Let X be a hyper-Kähler variety and denote 2n its
dimension. Assume that X is one of the following :

(i) Hilbn(S), the Hilbert scheme of length-n closed subschemes on a K3 surface S [Bea83] ;
(ii) Mσ(v), a moduli space of stable objects on a K3 surface ;

(iii) Kn(A), the generalized Kummer variety associated to an abelian surface A [Bea83] ;
(iv) F (Y ), the Fano variety of lines on a smooth cubic fourfold Y [BD85] ;

Then there exists a point o ∈ X such that, for all k ≥ 0 and for all x ∈ X,

[x] ∈ SkCH0(X) ⇐⇒ ([x]− [o])×k+1 = 0 in CH0(Xk+1), (3)

or equivalently, such that

SkCH0(X) = RkCH0(X)

for all k ≥ 0.

Here, moduli spaces of stable objects on a K3 surface S are understood as moduli spaces of
objects in the derived category of coherent sheaves on S with given Mukai vector v that are stable
with respect to a v-generic Bridgeland stability condition σ ; see §3. Note that case (i) is a special
case of (ii) ; it will however be convenient for our exposition to distinguish them.

Since the first three families of hyper-Kähler varieties (i)-(ii)-(iii) are dense in moduli [MM17],
and since the latter (iv) forms a locally complete family in moduli, we are led to formulate :

Conjecture 1. Let X be a hyper-Kähler variety. Then there exists a point o ∈ X such that

[x] ∈ SkCH0(X) ⇐⇒ ([x]− [o])×k+1 = 0 in CH0(Xk+1),

for all k ≥ 0.

0.1.2. Some consequences. — In the special case k = 0, Conjecture 1 matches the expectation
that S0CH0(X) should be spanned by the class of a point o ∈ X. When this is the case we call o a
Beauville–Voisin point of X and its class [o] ∈ CH0(X) the Beauville–Voisin class. The existence
of such a Beauville–Voisin point was already established in cases (i), (ii), (iii), (iv) ; see [Voi16],
and [MZ20, SYZ20, LZ22] for case (ii).

In the special case k = 1 and X = F (Y ) is the Fano variety of lines on a smooth cubic fourfold,
we get thanks to the description [CMP19, Thm. 1.5] of S1CH0(F (Y )) that a point x ∈ F (Y )
satisfies ([x] − [o])×2 = 0 in CH0(F (Y )2) if and only if x is rationally equivalent to a 0-cycle
supported on a uniruled divisor.

In the special case k = n+ 1, since by definition Sn+1CH0(X) = 0, Conjecture 1 predicts that
([x]− [o])×n+1 = 0 in CH0(Xn+1) for all points x ∈ X. This bound is optimal in the sense that if
X is a hyper-Kähler variety of dimension 2n, then for all points o ∈ X there exists a point x ∈ X
such that ([x]− [o])×n 6= 0 in CH0(Xn). Observe indeed that, if σ is a non-zero symplectic form
on X, we have (∆X −X× [o])∗σ = σ, so that (δ̄n−1)∗(σ⊗· · ·⊗σ) = σn 6= 0 in H0(X,Ω2n

X ). If now
δ̄n−1
∗ [x] = ([x]− [o])×n = 0 for all x, then by Bloch–Srinivas [BS83] δ̄n−1 is supported on D×Xn

for some divisor D in X and so σn = 0, which is a contradiction.
Unconditionally, we have :
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Proposition 1. Let X be a hyper-Kähler variety and denote 2n its dimension. Assume that X
is one of (i), (ii), (iii), (iv) or one of the following :

(v) Z(Y ), a LLSvS eightfold [LLSvS17] ;
(vi) a Lagrangian fibration.

If [o] ∈ CH0(X) denotes the Beauville–Voisin class, then we have

([x]− [o])×n+1 = 0 in CH0(Xn+1),

for all points x ∈ X. In particular, for any points pi ∈ X and any ai ∈ Q, i = 1, . . . , l, we have( l∑
i=1

ai([pi]− [o])
)ln+1

= 0 in CH0(X ln+1)

Proposition 1 in cases (i), (ii), (iii), (iv) is a special instance of Theorem 1. In §6.3 we provide a
proof in those cases, as well as in case (v), by showing more generally that if the birational motive
of X admits a unital grading (see §0.2.2 below), then X satisfies the conclusion of the proposition
(this does not involve the Voisin filtration). From a more geometric perspective, Proposition 1
holds for any hyper-Kähler variety X of dimension 2n with a point o, that is generically covered
by n-dimensional abelian varieties all supporting a point rationally equivalent to o in X, i.e.,
for hyper-Kähler varieties X with a point o, with the property that there exists a non-empty
open subset V ⊆ X such that for all x ∈ V there exists an abelian variety A of dimension n, a
non-empty open subset U ⊆ A and a map f : U → X with f(U) containing both x and a point
rationally equivalent to o in X (this property is known to hold for hyper-Kähler varieties of type
(i), (iv), (v), and (vi) by Lin [Lin20]). Indeed, if x is a point on X, then x is rationally equivalent
to a 0-cycle supported on V and this follows from the observation, coming from (2), that

[x] =
∑
i

ai[xi] ∈ CH0(X) =⇒ ([x]− [o])×k =
∑
i

ai([xi]− [o])×k ∈ CH0(Xk) (4)

and from the following analogous result for abelian varieties :

Proposition 2 (Theorem A.7(d)). Let A be an abelian variety of dimension g over a field K.
Then the following exterior power vanishes

([x]− [0])×g+1 = 0 in CH0(Ag+1),

for all K-points x ∈ A(K).

Since we could not find a reference for Proposition 2, we provide a proof in §A.3 using the
fact, obtained by dualizing Künneman’s Theorem 3 below, that the (covariant) Chow motive of
X admits a unital grading with unit [0].

0.1.3. The case (ii) of moduli of stable objects on K3 surfaces. — Let S be a K3 surface and let
Mσ(v) be a moduli space of stable objects on S. Inspired by seminal work of O’Grady [O’G13],
Shen–Yin–Zhao [SYZ20] introduced the following ascending filtration on CH0(Mσ(v)) :

SSYZ
k CH0(Mσ(v)) := 〈 [E ]

∣∣ E ∈ Mσ(v) such that c2(E) ∈ SOG
k (S) 〉, (5)

where SOG
k (S) := {[x1] + · · · + [xk] + Z[oS ] ∈ CH0(S)

∣∣ xi ∈ S} is O’Grady’s ascending filtra-
tion [O’G13] on CH0(S) and where oS is the Beauville–Voisin point on S [BV04]. As noted in
[SYZ20, p. 182], the main result of [MZ20] provides a degree-1 zero-cycle o ∈ CH0(Mσ(v)) such
that SSYZ

0 CH0(Mσ(v)) is spanned by o.
Theorem 1 in case (ii) is obtained by combining the recent result of Li–Zhang [LZ22, Thm. 1.1]

establishing SSYZ
• CH0(Mσ(v)) = S•CH0(Mσ(v)) with the following :
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Theorem 2 (Theorem 7.4). Given an element E of Mσ(v) we have

[E ] ∈ SSYZ
k CH0(Mσ(v)) ⇐⇒ ([E ]− [o])×k+1 = 0 in CH0(Mσ(v)k+1), (6)

or, equivalently,

SSYZ
k CH0(X) = RkCH0(X)

for all k ≥ 0.

By [BFMS22] we further have the equivalence ([E ]− [o])×k+1 = 0 ⇐⇒ (c2(E)−λ[oS ])×k+1 = 0,
where λ := deg(c2(E)). As is noted in [O’G13, §5], if E ∈ Mσ(v) is such that c2(E) ∈ SOG

k (S), then
c2(E) − λ[oS ] is represented by a 0-cycle of degree 0 on a curve of geometric genus k and hence
(c2(E)−λ[oS ])×k+1 = 0 in CH0(Sk+1) by the nilpotence result of Voevodsky–Voisin [Voe95, Voi96].
Alternately, this can be deduced from Proposition 1 for S ; indeed, if c2(E)− λ[oS ] = [x1] + · · ·+
[xk] − k[oS ], then one deduces directly from ([xi] − [oS ])×2 = 0 that (c2(E) − λ[oS ])×k+1 = 0.
One concludes from (4) that [E ] ∈ SSYZ

k CH0(Mσ(v)) implies (c2(E) − λ[oS ])×k+1 = 0. Our main

contribution in case (ii) is thus the implication ([E ] − [o])×k+1 = 0 =⇒ [E ] ∈ SSYZ
k CH0(Mσ(v)) ;

this is proved in Theorem 7.4. Theorem 2 leaves however open the question [SYZ20, Ques. 3.2]
of whether [E ] ∈ SSYZ

k CH0(Mσ(v)) =⇒ c2(E) ∈ SOG
k (S).

0.1.4. The strategy of proof. — We start by outlining the geometric content of the proof of The-
orem 1 in case (iv). We write F for the Fano variety of lines on the smooth cubic fourfold Y .
Theorem 1 in case k = 0 is equivalent to the fact that S0CH0(F ) is spanned by the Beauville–
Voisin class [o] ; this is due to Voisin. Denote now ϕ : F 99K F Voisin’s rational map [Voi04] which
is defined as follows : for a general line l in Y there is a unique plane Πl in P5 tangent to Y along
l and not contained in Y and one sets ϕ(l) = l′ with l′ the line such that Y ∩ Πl = 2l + l′. The
Voisin filtration on CH0(F ) admits a splitting

CH0(F ) = CH0(F )(0) ⊕ CH0(F )(1) ⊕ CH0(F )(2), i.e., SkCH0(F ) = ⊕i≤kCH0(F )(i),

with CH0(F )(i) the eigenspace for the action of ϕ∗ with eigenvalue (−2)i ; see [Voi16, §4.2] and
[SV16, Thm. 21.9]. Since we are working over an algebraically closed field, the exterior product
map CH0(F ) ⊗ CH0(F ) −→ CH0(F × F ) is surjective (see §2.3). Denoting δ : F → F × F the
diagonal embedding, the basic observation is that, since δ ◦ϕ = (ϕ×ϕ)◦ δ and since (ϕ×ϕ)∗ acts
as multiplication by (−2)i+j on the image of CH0(F )(i) ⊗ CH0(F )(j) → CH0(F × F ), we have

δ∗CH0(F )(k) ⊆ im
( ⊕
i+j=k

CH0(F )(i) ⊗ CH0(F )(j) −→ CH0(F × F )
)
. (7)

Using the fact that CH0(F )(0) is spanned by the Beauville–Voisin class [o], we get by projecting
on both factors

δ̄∗CH0(F )(k) ⊆ im
( ⊕
i+j=k,i,j>0

CH0(F )(i) ⊗ CH0(F )(j) −→ CH0(F × F )
)
. (8)

Let us now investigate the case k = 1. Let x ∈ F be a point such that [x] ∈ S1CH0(F ).
Then [x]− [o] lies in CH0(F )(1). From (8) we immediately get that δ̄1

∗ [x] = ([x]− [o])×2 = 0 and

hence the inclusion S1CH0(F ) ⊆ ker(δ̄1
∗ : CH0(F ) → CH0(F × F )). For the converse inclusion,

let x be a point on F such that [x] /∈ S1CH0(F ). We write [x] = [x](0) + [x](1) + [x](2) for
the eigenspace decomposition of [x]. By assumption, we have [x](2) 6= 0 and we want to show

that δ̄1
∗ [x] = ([x] − [o])×2 6= 0. Since δ̄1

∗([x](i)) = 0 for i = 0, 1 by the above, we have to show

that δ̄1
∗([x](2)) 6= 0. For that purpose, it suffices to show that δ̄1

∗ is injective when restricted to
CH0(F )(2). This is established in the proof of Theorem 5.5 in case (iv), by showing the existence

of a correspondence µ ∈ CH4(F 2 × F ) such that µ ◦ δ̄1 acts by multiplication by 2 on CH0(F )(4).
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Finally in case k = 2, δ̄1
∗(CH0(F )(2)) lies in the image of CH0(F )(1)⊗CH0(F )(1) → CH0(F×F ),

due to (8). Since δ̄1 acts as zero on both CH0(F )(0) and CH0(F )(1), we see that δ̄2 := (δ̄1⊗ id)◦ δ̄1

acts as zero on CH0(F ).

The proofs of Theorem 1 and 2 essentially follow the above argument : first we construct
a splitting CH0(X) =

⊕
k CH0(X)(k) of the filtration of Voisin (resp. Shen–Yin–Zhao), with

CH0(X)(0) spanned by the Beauville–Voisin point, that satisfies (8). This already yields the

inclusion S• ⊆ R• (resp. SSYZ
• ⊆ R•). The reverse inclusion is then established by showing that

δ̄k−1
∗ is injective when restricted to CH0(F )(k).

These arguments have natural generalizations that are better expressed in the language of
birational motives : in each of the cases (i), (ii), (iii) and (iv), we show that the Voisin (resp.
Shen–Yin–Zhao) filtration admits a “motivic” splitting in the sense that it is induced by a grading
h◦(X) =

⊕
0≤k≤n h

◦(X)(k) on the birational motive of X. If this grading is a unital grading, i.e.,

if it is compatible with the diagonal embedding and is such that h◦(X)(0) is the unit motive, then
the induced grading CH0(X) =

⊕
k CH0(X)(k) satisfies (8). If in addition the grading is a strict

grading, i.e., if δ̄k−1 : h◦(X)(k) → (h◦(X)(1))
⊗k is split injective for all k, then δ̄k−1

∗ is injective
when restricted to CH0(X)(k), and we can conclude that S• = R•.

The structure of the proofs of Theorem 1 and 2 are then as follows : we start by constructing
in Theorem 4.5 unital gradings in cases (i), (ii), (iii) and (iv), then show that these are strict
gradings in Theorem 5.5, and finally check in the proof of Theorem 7.3 (resp. Theorem 7.4) that
the induced gradings on CH0 provide splittings to the filtration of Voisin (resp. Shen–Yin–Zhao).

0.2. Birational motives of hyper-Kähler varieties and the co-radical filtration. The
notions of unital grading and of strict grading mentioned above are related to the natural co-
algebra structure on the birational motive of X. We now proceed to explain how the strict
grading on the birational motive of X and the co-radical filtration on CH0(X) come into play.

0.2.1. Birational motives as co-algebra objects. — If X denotes a smooth projective variety over
a field K, the diagonal embedding δ : X ↪→ X ×K X and the structure map ε : X → SpecK
formally satisfy

• the co-unital law (id× ε) ◦ δ = id = (ε× id) ◦ δ : X → X ;
• the co-associative law (δ × id) ◦ δ = (id× δ) ◦ δ : X → X ×X ×X ;
• the co-commutativity law δ = τ ◦ δ : X → X × X, where τ : X × X → X × X is the

morphism permuting the two factors.

The contravariant action of δ and ε, together with the ⊗-structure on the category of Chow
motives, endows then the Chow motive of X with the structure of a commutative algebra object.
A famous result of Künnemann [Kün94], reviewed in Appendix A.3, is the following

Theorem 3 (Künnemann). Let A be an abelian variety over a field K. Then the Chow motive
h(A) (with rational coefficients) of A admits a canonical direct summand h1(A) and the induced
morphism

Sym∗ h1(A)
∼−→ h(A)

is an isomorphism of algebra objects.

Such an isomorphism endows naturally the algebra object h(A) with a grading. Of course, such
an isomorphism is a lift to rational equivalence of the well-known fact that the cohomology algebra
of an abelian variety is isomorphic to the symmetric power of its degree-1 cohomology group. (Note
that due to the fact that cup-product is graded-commutative, Sym2 dimA+1 H1(A) = 0).

Let now X be a hyper-Kähler variety of dimension 2n. A result of Bogomolov [Bog96] shows
that the natural map Sym≤n H2(X,Q) ↪→ H∗(X,Q) is injective. In addition, since H2k,0(X) = Cσk

for all 0 ≤ k ≤ n for some nowhere degenerate 2-form σ, the above natural map restricts to an
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isomorphism Sym≤n H2,0(X)
∼−→ H2∗,0(X) on the “birational part” of the cohomology ofX. Based

on Beauville’s splitting principle [Bea07], which roughly draws parallels between the intersection
theory on abelian varieties and that on hyper-Kähler varieties, we may ask whether the “birational
part” of the Chow motive of X is generated in degree 2. The correct framework for such a question
is Kahn and Sujatha’s pseudo-abelian ⊗-category of birational motives [KS16], the definition and
basic properties of which are recalled in §2. This is naturally a covariant theory, and in that setting
the diagonal embedding δ together with the structure map ε naturally endow the birational motive
h◦(X) of X with the structure of a co-commutative co-algebra structure. We may then phrase

Conjecture 2. Let X be a hyper-Kähler variety of dimension 2n. Then the birational motive
h◦(X) (with rational coefficients) admits a direct summand h◦(X)(1), called the primitive part,
such that the co-induced morphism

h◦(X)
∼−→ Sym≤n h◦(X)(1) (9)

is an isomorphism of co-algebra objects.

Such an isomorphism naturally endows the co-algebra object h◦(X) with a grading (see §1.2).
In Proposition 5.3, we show that this grading is cohomologically meaningful in the sense that
the transcendental cohomology of the direct summand h◦(X)(1) coincides with the transcendental
cohomology of X of degree 2. Moreover, we would in fact expect a direct summand h◦(X)(1),
with the property that (9) is an isomorphism, to be unique. Conjecture 2 is substantiated by the
following :

Theorem 4 (Theorem 5.5). Let X be one of the hyper-Kähler varieties (i), (ii), (iii) or (iv).
Then X satisfies the conclusion of Conjecture 2. In other words, denoting 2n = dimX, we have
a co-algebra grading

h◦(X) = h◦(X)(0) ⊕ · · · ⊕ h◦(X)(n)

such that the natural graded morphism

h◦(X)
∼−→ Sym≤n h◦(X)(1)

is an isomorphism of graded co-algebra objects.

Let us mention that we establish Theorem 4 in case (ii) by showing, as a result of independent
interest in Theorem 3.1, that the birational motive of a moduli space Mσ(v) of stable objects on
a K3 surface S is isomorphic as co-algebra object to the birational motive of Hilbn(S), where
2n = dim Mσ(v).

0.2.2. Unital gradings and strict gradings on birational motives. — Let X be a smooth projective
variety over K. Let us explain how the existence of a co-algebra isomorphism as in Theorem 4

h◦(X)
∼−→ Sym≤n h◦(X)(1)

has consequences for zero-cycles on X as in Theorems 1 and 2. We say that a grading

h◦(X) = h◦(X)(0) ⊕ · · · ⊕ h◦(X)(n) (10)

is a co-algebra grading if the restriction of the co-multiplication δ : h◦(X)→ h◦(X)⊗h◦(X) to the
summand h◦(X)(k) factors through

⊕
i+j=k h

◦(X)(i)⊗h◦(X)(j). In addition the grading is said to
be :

• unital if the restriction εi : h◦(X)(i) → 1 of the degree map is an isomorphism if i = 0 and
zero otherwise (see §1.2, Definition 4.2 and Proposition 5.3) ;
• strict if in addition the natural graded morphism h◦(X)→ Sym≤n h◦(X)(1) is split injec-

tive, or in other words if h◦(X) is co-generated by h◦(X)(1) (see §1.5).
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In particular, if a hyper-Kähler variety X fulfills the conclusion of Conjecture 2 then h◦(X) has
a strict grading. If (10) defines a unital grading on the birational motive of a smooth projective
variety X, we denote o : 1 → h◦(X) the morphism ε−1

0 : 1 → h◦(X)(0) ↪→ h◦(X) ; this defines a
degree-1 zero-cycle o ∈ CH0(X) such that δ∗o = o× o in CH0(X ×K X), i.e., o : 1→ h◦(X) is a
unit in the co-algebra sense (see §1.2). Note that the class of any K-point on X defines a unit in
CH0(X). We refer to Section 1 for a review of co-algebra objects in an abstract ⊗-category.

0.2.3. The co-radical filtration on zero-cycles. — Let us now fix a smooth projective variety X
over K equipped with a unit o ∈ CH0(X). In analogy to the elementary theory of co-algebras
(as exposed for instance in [Swe69]), we define (§1.6 and Definition 6.1) the co-radical filtration
R•CH0(X) associated to the unit o as :

RkCH0(X) := ker
(
δ̄k∗ : CH0(X)→ CH0(Xk+1)

)
for k ≥ 0,

where δ̄k := p̄⊗k+1 ◦ δk with δk the diagonal embedding X ↪→ Xk+1 and δ̄0 := p̄ := id − X × o
the projector with kernel o. Of course, this cycle δ̄k agrees with the one defined in (1) ; the
morphism δ̄ := δ̄1 is called the reduced co-multiplication, while δ̄k is called the k-th iterated
reduced co-multiplication. We note that, even when K is algebraically closed, RkCH0(X) need not
be generated by classes of points ; see Remark A.9. The equivalences (3) and (6) however show
that this is the case for hyper-Kähler varieties as in (i), (ii), (iii) and (iv).

0.2.4. The co-radical filtration and the conjectural Bloch–Beilinson filtration. — Assume now that
the birational motive of X, considered as a co-algebra object, admits a unital grading as in (10)
and let

GkCH0(X) := CH0

(
h◦(X)(0) ⊕ · · · ⊕ h◦(X)(k)

)
= CH0

(
h◦(X)(0)

)
⊕ · · · ⊕ CH0

(
h◦(X)(k)

)
be the associated ascending filtration. As explained in §6.4, the filtration G• is opposite to the
conjectural Bloch–Beilinson filtration F • in the sense that

GkCH0(X) ∩ F 2kCH0(X) = CH0(h◦(X)(k)).

The following formal result, which is a direct translation of Proposition 1.2 to the setting of
birational motives and whose proof is given in §6.2, provides the link between the ascending
filtration associated to a unital, resp. strict, grading and the co-radical filtration associated to the
unit o :

Proposition 3. Assume h◦(X) admits a unital grading as in (10). Then

GkCH0(X) ⊆ RkCH0(X).

In particular, CH0(X) = RnCH0(X) and hence ([x] − o)×n+1 = 0 in CH0(Xn+1) for all x ∈ X.
Moreover, if the unital grading (10) is strict, then

GkCH0(X) = RkCH0(X).

As a consequence, we see that if X is a hyper-Kähler variety whose birational motive admits a
strict grading (e.g., if Conjecture 2 holds for X), then the co-radical filtration is opposite to the
conjectural Bloch–Beilinson filtration F 2•CH0(X) and we have

RkCH0(X) ∩ F 2kCH0(X) = CH0(h◦(X)(k)).

Moreover, Proposition 3 reduces the proof of Theorem 1 (resp. Theorem 2) to showing that the
Voisin filtration S• (resp. the filtration SSYZ

• ) coincides with the filtration G• induced by a strict
grading.

0.3. Further results and remarks. We describe some motivation for this work, as well as
related results. These are not used in the proofs of Theorems 1, 2 and 4.
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0.3.1. Splitting of filtrations on the Chow group of zero-cycles. Beauville’s splitting principle [Bea07]
asserts that the conjectural Bloch–Beilinson filtration on the Chow ring of a hyper-Kähler vari-
ety X admits a splitting compatible with the ring structure, i.e. compatible with pull-back along
the diagonal embedding δ : X ↪→ X × X. Another motivation for this work was to make sense
of what it means for a filtration on the Chow group of zero-cycles to admit a splitting compat-
ible with the diagonal embedding. As explained in §2.3, the diagonal embedding map does not
provide a co-algebra structure on CH0(X) (which is the reason we work with birational motives),
but rather a map

δ∗ : CH0(X) −→ CH0(X ×K X).

As is explained above, assuming Conjecture 2, the co-radical filtration associated to a strict grading
on the birational motive of a hyper-Kähler variety is opposite to the conjectural Bloch–Beilinson
filtration and provides a splitting. We would like to spell out explicitly, by avoiding the use of
birational motives, or any mention of the conjectural Bloch–Beilinson filtration, what it means
for this splitting to be compatible with the diagonal embedding. For that purpose we introduce
in Appendix B the notion of δ-filtration and we conjecture, with evidence provided by (i), (ii),
(iii) and (iv), that, for every hyper-Kähler variety, there exists a unit o ∈ CH0(X) such that
the associated co-radical filtration is a split δ-filtration. In addition, in Conjecture 7.2, based on
the evidence provided by Theorem 1, we conjecture that the Voisin filtration coincides with the
co-radical filtration, and should hence also conjecturally be a split δ-filtration ; see Conjecture B.6.

0.3.2. The co-radical filtration for positive-dimensional cycles. The co-radical filtration can also
be naturally defined for positive-dimensional cycles on a smooth projective variety X equipped
with a unit o ∈ CH0(X) ; see Definition A.1. In §A.3 of Appendix A, we consider the case of
an abelian variety A, and we show in Theorem A.7 that the co-radical filtration defines a ring
filtration on CH∗(A) that is opposite to the candidate Bloch–Beilinson filtration of Beauville (21),
thereby establishing in particular Proposition 2. The key point is that the (contravariant) Chow
motive of A is generated in degree 1 (Theorem 3). On the other hand, since the cohomology
algebra of a hyper-Kähler variety is not generated in degree 2 in general, one does not expect
the co-radical filtration to be opposite to the Bloch–Beilinson filtration for positive-dimensional
cycles on hyper-Kähler varieties in general ; see Remark A.5.

0.3.3. Relation to work of Barros–Flapan–Marian–Silversmith. In independent work concerned
with tautological classes in the Chow groups of moduli spaces of stable sheaves on K3 surfaces,
Barros, Flapan, Marian and Silversmith have introduced in [BFMS22, §4] an ascending filtration
SBFMS
k CHi(Mσ(v)) (see (19) for the definition), which in Proposition A.6 is shown to coincide

with our co-radical filtration (Definition A.1) :

SBFMS
k CHi(Mσ(v)) = Ri+kCHi(Mσ(v)).

Regarding zero-cycles, the inclusion SSYZ
k CH0(Mσ(v)) ⊆ SBFMS

k CH0(Mσ(v)), together with the

implication [E ] ∈ SSYZ
k CH0(Mσ(v)) ⇒ ([E ] − [o])×k+1 = 0 of (6), is established in [BFMS22,

Lem. 3]. In Theorem 7.4, by exploiting the existence (Theorem 4) of a strict grading on the
birational motive h◦(Mσ(v)), we prove the reverse implication and thereby settle

SSYZ
k CH0(Mσ(v)) = RkCH0(Mσ(v)),

and henceforth the conjectured equality SSYZ
k CH0(Mσ(v)) = Ssmall

k CH0(Mσ(v)) of [BFMS22,
Rem. 5].

0.3.4. Motivic surface decomposability for hyper-Kähler varieties. Recently, Voisin [Voi18b] intro-
duced the cohomological notion of surface decomposability (see Definition C.1), conjectured that
every hyper-Kähler variety is surface decomposable and established this in a number of cases,
including (i), (iii), (iv) and (v). In Definition C.3, we introduce the notion of motivic surface
decomposition. This notion is concerned with zero-cycles and provides, in case the surfaces have
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vanishing irregularity, a refinement of Voisin’s notion which is concerned with global k-forms ;
see Proposition C.5. As such, our motivic surface decomposability can be thought of as a lift
to rational equivalence of Voisin’s cohomological surface decomposability. In Conjecture C.7,
we conjecture that every hyper-Kähler variety is motivically surface decomposable, and we es-
tablish in Theorem C.8 the conjecture in cases (i), (ii), (iii), (iv) and (v). In the language of
birational motives, Proposition 2.3 implies that, for a hyper-Kähler variety admitting a motivic
surface decomposition, the co-algebra structure on the birational motives of X is determined by
the co-algebra structure on the birational motives of surfaces. Precisely, we have for instance :

Theorem 5 (Theorem C.8 and Proposition 2.3). Let X be a smooth projective variety of dimen-
sion 2n that is birational to one of the hyper-Kähler varieties (i), (ii), (iii), (iv) or (v). Then
there exists a smooth projective surface B, a split injective morphism γ : h◦(X) → h◦(Bn) and a
split surjective morphism γ′ : h◦(Bn)→ h◦(X) such that

(a) γ′ ◦ γ = id : h◦(X)→ h◦(X).
(b) (γ′ ⊗ γ′) ◦ δBn ◦ γ = δX : h◦(X)→ h◦(X ×X).

Equivalently, in view of Lemma 2.1, there exists a smooth projective surface B, correspondences
γ, γ′ ∈ CH2n(X ×Bn) such that

(a) (γ′ ◦ γ)∗ = id : CH0(X)→ CH0(X) ;
(b) (γ′ ⊗ γ′)∗(δBn)∗γ∗ = (δX)∗ : CH0(X)→ CH0(X ×X).

As a corollary to Theorem C.8 and its proof, we obtain in Corollary C.11 the existence of a
surface decomposition in new cases, namely for moduli spaces of stable objects on K3 surfaces,
and we reduce the existence of a surface decomposition for moduli spaces of stable objects in the
Kuznetsov component of a cubic fourfold to a conjecture of Shen–Yin [SY20, Conj. 0.3]. We also
obtain surface decompositions in case (iv) for any surface with vanishing irregularity that is the
base of a uniruled divisor ; see Remark C.9.

0.4. Organization of the paper. In §1 we review the notion of co-algebra object in a ⊗-category
and introduce the notions of unital grading, strict grading, and co-radical filtration in this general
setting. In §2, we introduce the ⊗-category of birational motives due to Kahn–Sujatha, explain
how it can be viewed as a “⊗-enhancement of CH0”, and explain how the diagonal embedding
endows the birational motive of a variety with the structure of a co-algebra object. In §3 we
reformulate results of O’Grady, Marian, Shen, Yin and Zhao and show that the birational motive
of moduli spaces of stable objects on a K3 surface S is isomorphic as co-algebra object to the
birational motive of Hilbn(S). We then show in §4 that the birational motives of hyper-Kähler
varieties as in (i), (ii), (iii), (iv) can be endowed with a unital grading and in §5 that this unital
grading is in fact a strict grading, by establishing Theorem 4. In §6, we simply spell out the
abstract definition of co-radical filtration given in §1 in the case of varieties X equipped with a
unit o ∈ CH0(X) and prove Proposition 3. Finally in §7 we conclude in cases (i), (iii), (iv) (resp.
in case (ii)) that the filtration of Voisin (resp. Shen–Yin–Zhao) coincides with the co-radical
filtration, thereby establishing our main Theorems 1 and 2.

The paper concludes with three appendices, which are of independent interest and whose re-
sults are not used in the main body of this article : Appendix A discusses the co-radical filtration
for positive-dimensional cycles, in particular for abelian varieties, as well as its relation to mul-
tiplicative Chow–Künneth decompositions and modified diagonals, and Appendix B argues that
the filtration of Voisin should be a split δ-filtration. In Appendix C we introduce the notion of
motivic surface decomposition and establish Theorem 5.

0.5. Notation and Conventions. Given a field K, Ω denotes a universal domain containing K,
i.e., an algebraically closed field of infinite transcendence degree over its prime subfield. For a
smooth projective variety X over K, we denote δ : X ↪→ X ×K X the diagonal embedding
and ε : X → SpecK the structure morphism. In §§2.1, 2.2 and 2.3, Chow groups are with
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integral coefficients, unless explicitly stated otherwise. From §2.4 onwards, Chow groups will be
understood to be with rational coefficients.

0.6. Acknowledgements. Thanks to Lie Fu, Robert Laterveer and Mingmin Shen for useful
exchanges during a pleasant stay at the University of Amsterdam in February 2020. Thanks to
Giuseppe Ancona and Robert Laterveer for useful comments.

1. On co-algebra objects in a ⊗-category

In this section, we fix a commutative ring R and let C be a R-linear, symmetric monoidal
category with tensor unit 1 (a ⊗-category over R, in the language of [And04, §2.2.2]).

1.1. Co-algebra objects. A co-algebra object in C is an object M together with a co-unit mor-
phism ε : M → 1 and a co-multiplication morphism δ : M →M ⊗M satisfying the co-unit axiom
(id⊗ ε) ◦ δ = id = (ε⊗ id) ◦ δ and the co-associativity axiom (δ⊗ id) ◦ δ = (id⊗ δ) ◦ δ. It is called
co-commutative if moreover δ = cM,M ◦ δ is satisfied, where cM,M is the commutativity constraint

of the category C. We define inductively δk := (δ ⊗ id⊗ · · · ⊗ id) ◦ δk−1 : M →M⊗(k+1). A mor-
phism of co-algebra objects between two co-algebra objects M and N is a morphism φ : M → N
in C that preserves co-multiplication and co-unit. We note that co-algebra structures on objects
M and N of C induce naturally a co-algebra structure on the tensor product M ⊗ N , and that
a morphism φ : M → N of co-algebra objects induces naturally a morphism of co-algebra ob-
jects φ⊗n : M⊗n → N⊗n which is an isomorphism if φ is. Finally, if the co-algebra object M is
co-commutative, then the co-multiplication δ : M →M ⊗M is a morphism of co-algebras.

A unit for M is a non-zero morphism u : 1→M in C such that δ ◦ u = u⊗ u (which forces the
additional identity ε ◦ u = 1). Equivalently, a unit is a co-algebra morphism u : 1→M .

1.2. Unital graded co-algebra objects. Let (M, δ, ε) be a co-commutative co-algebra object
of C. A grading on the co-algebra objects M is a (finite) direct sum decomposition

M = M(0) ⊕M(1) ⊕ · · · ⊕M(n)

in C with respect to which both δ and ε are graded morphisms, where the unit object 1 is
understood to be of pure grade 0. In other words, the grading has the property that the restriction
of the co-unit

M :=
⊕

i>0M(i)
� � // M

ε // 1

is zero, and the restriction of the co-multiplication factors as

M(k)
� � //

**

M
δ // M ⊗M

⊕
i+j=kM(i) ⊗M(j).

?�

OO

Here we have followed the classical references [MM65, §2] and [Swe69, §11]. Furthermore, a graded
co-algebra object M = M(0) ⊕M(1) ⊕ · · · ⊕M(n) is said to be unital if the restriction of the co-
unit ε0 : M(0) → 1 is an isomorphism (in case M is a co-algebra, this corresponds to the notion
of connected (graded) co-algebra in [MM65, §2]) and of pointed irreducible graded co-algebra in
[Swe69]). The terminology is justified by the fact that the graded morphism

u : 1
(ε0)−1

∼
// M(0)

� � // M

defines a unit ; it is the unique graded unit morphism 1 → M . We then write (M, δ, ε, u) for a
unital graded co-algebra. The tensor product of two unital graded co-algebra objects equipped
with the obvious grading, co-multiplication, co-unit and unit is a unital graded co-algebra object.
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1.3. The reduced co-multiplication. Let M = (M, δ, ε) be a co-algebra object of C, equipped
with a unit u : 1→M . The reduced co-multiplication is defined to be

δ̄ := (δ − u⊗ idM − idM ⊗ u) ◦ p̄ : M →M ⊗M, (11)

where p̄ := idM − uε : M →M . We then define inductively δ̄k := (δ̄ ⊗ id⊗ · · · ⊗ id) ◦ δ̄k−1 : M →
M ⊗(k+1). This notion is particularly relevant in case M = (M, δ, ε, u) defines a unital graded
co-algebra object of C. In that case, p̄ is the graded projector on M , and δ̄ factors through M⊗M
and its restriction to M , which by abuse is still denoted δ̄, is given by

δ̄ := δ|M − u⊗ idM − idM ⊗ u : M →M ⊗M.

To see that δ̄ factors through M ⊗M , one uses the co-unit axiom, the fact that ε0 : M(0) → 1

is an isomorphism with inverse u and the fact that the co-multiplication δ is graded. One also
easily checks that δ̄ is graded and co-associative. It is perhaps useful to explicitly mention that
this gives that δ̄|M(1)

= 0 and that for k > 0 we have the factorization

δ̄|M(k)
: M(k)

//
(
M(1) ⊗M(k−1)

)
⊕
(
M(2) ⊗M(k−2)

)
⊕ · · · ⊕

(
M(k−1) ⊗M(1)

) � � // M ⊗M.

In particular, defining as above inductively

δ̄k := (δ̄ ⊗ id⊗ · · · ⊗ id) ◦ δ̄k−1 : M →M ⊗(k+1),

we have δ̄k|M(1)⊕···⊕M(k)
= 0 and hence δ̄n = 0. Finally δ̄k can be described as the composition

δ̄k : M �
� // M

δk // M⊗(k+1) // // M ⊗(k+1) ,

i.e., p̄⊗k+1 ◦ δk = δ̄k ◦ p̄ with the convention that δ̄0 = p̄.

1.4. Co-generation of co-algebra objects. Let N be an object of C. For all n ≥ 0, we define

T≤nN := 1⊕N ⊕N⊗2 ⊕ · · · ⊕N⊗n.

The canonical (iso)morphisms N⊗k → N⊗i⊗N⊗j for k = i+ j naturally endow the object T≤nN
with the structure of a unital graded co-algebra. We call it the n-truncated tensor co-algebra
on N . Given a co-algebra object M ∈ C and a morphism r : M → N in C, the induced morphism

T≤nr : M → T≤nN,

where T≤nr := ε+ r + r⊗2 ◦ δ + · · ·+ r⊗n ◦ δn−1, is a co-algebra morphism.
We say that M is co-generated by N if the induced co-algebra morphism T≤nr : M → T≤nN, is

split injective for some n > 0. (This definition is inspired from the case of connected co-algebras,
for which the co-free co-algebra generated by a sub-vector space N ⊆M coincides with the tensor
co-algebra TN .)

Finally, we note that if R contains Q and if C is pseudo-abelian, then δk−1 : M →M⊗k factors
through the symmetric power SymkM (which can be defined as the image of the idempotent
1
k!

∑
σ∈Sk σ : M⊗k → M⊗k with the symmetric group Sk acting on M⊗k by permuting the

factors), so that T≤nr : M → T≤nN factors through the n-truncated symmetric co-algebra
Sym≤nN .

1.5. Strictly graded co-algebra objects. Recall that, by definition [Swe69, p. 232], a pointed
irreducible graded co-algebra M is strictly graded if M(1) consists exactly of the primitive elements,
i.e., if M(1) = P (M) := {g ∈ M | δg = g ⊗ u + u ⊗ g}. In analogy, we say that a unital graded
co-algebra object M = M(0)⊕· · ·⊕M(n) of C is a strictly graded co-algebra object if the restriction
of the reduced co-multiplication

δ̄ : M(2) ⊕M(3) ⊕ · · · ⊕M(n) →M ⊗M
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is split injective, or equivalently, in view of the general fact that δ̄|M(1)
= 0, if M(1) is the kernel

of δ̄. In that case, we say that M(1) is the primitive part of M .

Proposition 1.1. A unital graded co-algebra object M = M(0)⊕ · · ·⊕M(n) of C is strictly graded
if and only if it is co-generated by M(1).

Proof. Note that the co-algebra morphism M → T≤nM(1) is graded. First it is clear that if either

the grading is strict or if M is co-generated by M(1), then δ̄ : M(2) →M(1)⊗M(1) is split injective.

So assume that δ̄ : M(2) →M(1) ⊗M(1) is split injective and consider for k ≥ 2 the composition

δ̄k : M(k+1)
δ̄ //

⊕k
i=1M(k+1−i) ⊗M(i)

// M(k) ⊗M(1)
δ̄k−1⊗id // M(1) ⊗ · · · ⊗M(1).

Assume that, for some k ≥ 2, δ̄k−1 : M(k) →M⊗k(1) is split injective ; then δ̄k : M(k+1) →M⊗k+1
(1) is

split injective if and only if δ̄ : M(k+1) →
⊕k

i=1M(k+1−i) ⊗M(i) is split injective (note that δ̄k−1

vanishes on M(j) for j < k ; see §1.3). The proposition therefore follows by induction. �

1.6. The co-radical filtration. Fix a ring homomorphism R → R′ and a covariant R-linear
functor C : C → R′ -mod, e.g., Hom(N,−) for any choice of object N ∈ C. Let M = (M, δ, ε) be a
co-algebra object of C equipped with a unit u : 1→ C. Using the reduced co-multiplication (11),
we introduce the co-radical filtration

Rk C(M) := ker
(
δ̄k : C(M)→ C(M⊗k+1)

)
.

In order to avoid confusion with the usual notion of co-radical filtration on co-algebras, we insist
that in our setting the co-multiplication on M does not endow the R′-module C(M) with the
structure of a co-algebra, unless C is a ⊗-functor.

Suppose now that M = (M, δ, ε, u) is a unital graded co-algebra object of C with grading given
by M = M(0) ⊕ · · · ⊕M(n). We then define the associated ascending filtration

Gk C(M) := C
(⊕
i≤k

M(i)

)
=
⊕
i≤k

C(M(i)).

Recall that, in the context of co-algebras, a pointed irreducible graded co-algebra M is strictly
graded if and only if the filtration G• defined by GkM := M(0) ⊕ · · · ⊕M(k) coincides with the
co-radical filtration on M [Swe69, Lem. 11.2.1]. The following proposition, which is a crucial
observation for our work, justifies calling the filtration R• above the co-radical filtration.

Proposition 1.2. If M = (M, δ, ε, u) is a unital graded co-algebra object of C, then we have for
all k the inclusion

Gk C(M) ⊆ Rk C(M)

with equality if the unital grading on M is strict.

Proof. The inclusion follows from the fact that δ̄k|M(i)
= 0 for 0 ≤ i ≤ k, which we already saw

in §1.3. Suppose now that the unital grading on M is strict. Consider an element α ∈ C(M) and
write

α = α0 + α1 + · · ·+ αn , αi ∈ C(M(i)).

Assume that α /∈ Gk C(M), or equivalently that αk′ 6= 0 for some k′ > k. Since the unital

grading on M is strict, we have δ̄k
′−1αk′ 6= 0 and hence δ̄kαk′ 6= 0. Now, since δ̄ is graded, the

elements δ̄kαl belong to C((M⊗k+1)(l)), where the grading on M⊗k+1 is the natural one. Since

M⊗k+1 =
⊕

l≥0(M⊗k+1)(l), we see that δ̄kαk′ 6= 0 implies δ̄kα 6= 0. We have thereby showed that

if α /∈ Gk C(M) then α /∈ Rk C(M). �
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2. Birational motives of varieties as co-algebra objects

2.1. The ⊗-category of pure birational motives. Let R be a commutative ring. Recall that
the (covariant) category Meff(K)R of effective Chow motives over K with R-coefficients can be
defined as the pseudo-abelian envelope of the category CSP(K)R of smooth projective varieties
over K with morphisms given by HomCSP(K)R(X,Y ) := CHdimY (X ×K Y )⊗R and composition
law given by the composition of correspondences. We write h(X) (or h(X)R when we want to
make explicit the ring of coefficients) for the Chow motive of X (i.e., for X seen as an object
of Meff(K)R), and given an idempotent correspondence p ∈ CHdimX(X ×K X) ⊗ R, we write
(X, p) or ph(X) for im(p). The unit motive is 1 := h(SpecK). The category Meff(K)R is a R-
linear ⊗-category, with ⊗-unit the unit motive and with tensor product given by (X, p)⊗ (Y, q) =
(X ×K Y, p⊗ q), where p⊗ q = p∗13p · p∗24q with pij being the projection morphism to the product
of the i-th and j-th factor of X × Y ×X × Y .

The diagonal ∆P1
K

of the projective line P1
K decomposes as a sum of two mutually orthogonal

idempotents ∆P1
K

= P1
K×{0}+{0}×P1

K in CH1(P1
K×KP1

K) yielding a direct sum decomposition

h(P1
K) = 1⊕ L, where L := (P1

K , {0} × P1
K) is by definition the Lefschetz motive.

The (covariant) categoryM(K)R of Chow motives over K with R-coefficients is then obtained
from Meff(K)R by inverting the ⊗-endofunctor − ⊗ L. The resulting category M(K)R is then
rigid and the functor Meff(K)R →M(K)R is fully faithful.

If instead of inverting the Lefschetz motive, one kills the Lefschetz motive in Meff(K)R, one
obtains the category M◦(K)R of pure birational (Chow) motives over K with R-coefficients,
which was introduced by Kahn–Sujatha [KS16]. Precisely (cf. [KS16, §2.2]), consider L the
ideal of Meff(K)R consisting of those morphisms which factor through some object of the form
P ⊗ L ; it is a ⊗-ideal called the Lefschetz ideal. The category M◦(K)R is then defined to be
the pseudo-abelian envelope of the quotientMeff(K)R/L ; it is a (non-rigid) R-linear ⊗-category.
(Note that conjecturally, the quotient Meff(K)R/L is already pseudo-abelian, so that it should
not be necessary to pass to the pseudo-abelian envelope; see [KS16, Prop. 4.4.1]). We write
h◦(X) (or h◦(X)R when we want to make explicit the ring of coefficients) for the birational
motive of X (i.e., for X seen as an object ofMeff(K)R), and given an idempotent correspondence
$ ∈ Hom(h◦(X)R, h

◦(X)R, we write (X,$) or $h◦(X) for im($).

Morphisms of birational motives have an explicit description, namely for X irreducible we have
(see [KS16]) :

Hom(h◦(X)R, h
◦(Y )R) := CH0(YK(X))⊗R = lim−→CHdimX(U ×K Y )⊗R, (12)

where the limit runs through all non-empty open subsets of X. Hence the birational motive of X
withR-coefficients can be roughly thought of as the collection {CH0(XL)⊗R

∣∣L/K is a field extension}
with morphisms that are “motivic”, i.e., induced by correspondences.

Furthermore, under the functor Meff(K)R →M◦(K)R, a morphism of effective Chow motives
γ : h(X)R → h(Y )R, that is, a correspondence in CHdimY (X × Y )⊗R, induces the morphism of
birational motives h◦(X) → h◦(Y ) given by restricting γ to the generic point of X. In addition,
a rational map f : X 99K Y induces a well-defined morphism f∗ : h◦(X) → h◦(Y ), obtained by
restricting to the generic point of X the graph of f |U , where U ⊆ X is a dense open subset over
which f is defined. We refer to [She16, §2] for further explicit calculations involving morphisms
of birational motives ; of particular relevance is the fact that a generically finite rational map
f : X 99K Y induces a well-defined morphism f∗ : h◦(Y )→ h◦(X).

In practice, with rational coefficients, morphisms of birational motives are the same as action of
correspondences on zero-cycles. The following lemma shows indeed that a morphism of birational
motives is uniquely determined by its action on zero-cycles, after base-changing to a sufficiently
large field.
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Lemma 2.1. Let X and Y be two smooth projective varieties over a field K and fix a universal
domain Ω containing K. Let γ and γ′ be two morphisms h(X) → h(Y ) of Chow motives. Then
the following two conditions are equivalent :

(a) γ∗ = γ′∗ : CH0(XΩ)⊗Q→ CH0(YΩ)⊗Q ;
(b) γ = γ′ : h◦(X)Q → h◦(Y )Q.

Proof. First, recall the fact that if γ ∈ Hom(h(X), h(Y )) := CHdimX(X×KY ), then the restriction
of γ to the generic point ηX of X, i.e., the image of γ under the map CHdimY (X ×K Y ) →
lim−→CHdimX(U ×K Y ) = CH0(YK(X)), coincides with (γK(X))∗[ηX ].

Assuming (b), we have by (12) and by Bloch–Srinivas [BS83] that a non-zero multiple of γ−γ′ is
supported on D×k Y for some divisor D ⊂ X. It follows that γ−γ′ acts as zero on CH0(XΩ)⊗Q.

Conversely, since the base change map CH∗(X) ⊗ Q → CH∗(XL) ⊗ Q is injective for all field
extensions L/K and all schemes X of finite type over K, it follows from (a) that γ−γ′ acts as zero
on the generic point of X. It follows that γ−γ′ induces the zero morphism h◦(X)Q → h◦(Y )Q. �

As a result of general interest, we have the following analogue of [Via17b, Thm. 3.18] concerned
with Chow motives :

Lemma 2.2. Let M◦ and N◦ in M◦(K)Q be two birational motives over a field K and fix a
universal domain Ω containing K. Let γ : M◦ → N◦ be a morphism and let (γΩ)∗ : CH0(M◦Ω)Q →
CH0(N◦Ω)Q be the induced morphism. Then :

(a) γ is split surjective if and only if (γΩ)∗ is surjective ;
(b) γ is an isomorphism if and only if (γΩ)∗ is bijective.

Proof. Item (b) follows from (a) and Lemma 2.1. The “only if” part of (a) is clear, so suppose
(γΩ)∗ is surjective. In that case, note that (γK(Y ))∗ is also surjective (e.g., [Via17b, Lem. 3.1]),
and denoting N◦ = (Y,$), there exists thus ρ ∈ CH0(M◦K(Y )) such that $ = (γK(Y ))∗ρ. On the

other hand (γK(Y ))∗ρ = γ ◦ ρ, so that ρ ◦$ provides a splitting to γ. �

2.2. The co-algebra structure on the birational motive of varieties. Let X be a smooth
projective variety over a field K. Recall that the pullback along the diagonal embedding δ :
X → X ×K X, together with the ⊗-structure on the contravariant category of Chow motives
(h(X × X) = h(X) ⊗ h(X)), provides a commutative algebra structure on the Chow motive
h(X) of X (e.g., [And04, Ex. 4.1.4.1.3] or [FV21, §2.1]), with unit induced by the structure
morphism ε : X → SpecK. Working covariantly instead, we have that the pushforward along
the diagonal embedding δ : X → X ×K X endows the covariant motive of X with the structure
of a co-commutative co-algebra object. Passing to the birational motive, we obtain that the
pushforward along the diagonal embedding δ : X → X ×K X, together with the ⊗-structure on
the category of birational motives (h◦(X ×K X) = h◦(X) ⊗ h◦(X)), provides a co-commutative
co-algebra structure on the birational motive h◦(X) of X, with co-unit morphism ε : h◦(X) → 1

(also called the degree morphism) induced by pushing forward along the structure morphism
ε : X → SpecK. It is indeed immediate to check that (id × ε) ◦ δ = id = (ε × id) ◦ δ : X → X,
(δ × id) ◦ δ = (id × δ) ◦ δ : X → X × X × X, as well as δ = τ ◦ δ : X → X × X, where
τ : X ×X → X ×X is the morphism permuting the two factors.

In the same way that the pullback along a morphism of smooth projective varieties provides
a morphism between their motives as algebra objects, a rational map f : X 99K Y induces a
morphism f∗ : h◦(X)→ h◦(Y ) as co-algebra objects. This follows immediately from the commu-
tativity of the diagram

X
δX //

f
��

X ×X

f×f
��

Y
δY // Y × Y.
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2.3. Co-algebra structure on birational motives and zero-cycles. Let X be a smooth
projective variety over a field K. The co-multiplication morphism δ : h◦(X) → h◦(X ×K X) =
h◦(X)⊗ h◦(X) does not endow CH0(X) = Hom(1, h◦(X)) with the structure of a co-algebra, but
only provides a map

δ∗ : CH0(X)→ CH0(X ×K X).

Indeed, given two schemes X and Y of finite type over K, the natural map given by exterior
product [Ful84, §1.10] :

CH0(X)⊗ CH0(Y )→ CH0(X ×K Y ), α⊗ β 7→ α× β. (13)

can fail to be injective or surjective, even with rational coefficients. In other words, the additive
functor M 7→ Hom(1,M) = CH0(M) from birational motives to abelian groups is not a ⊗-functor
— this explains why we work with birational motives rather than merely with zero-cycles.

To see that (13) is neither injective nor surjective in general, consider for example an elliptic
curve E over Q ; by the Mordell–Weil theorem it has finite rank, while its base-change to Q̄ has
infinite rank. We therefore see that there exists a finite field extension L/Q such that CH0(L)⊗
CH0(E) → CH0(EL) is not surjective, even with rational coefficients. Assume now that E has
a K-point p such that [p] − [0] is non-torsion in CH0(E), then ([p] − [0]) × ([p] − [0]) is zero in
CH0(E ×K E) (this is classical, but see also Theorem A.7 below for a generalization to abelian
varieties of any dimension), showing that CH0(E) ⊗ CH0(E) → CH0(E ×K E) is not injective,
even with rational coefficients. However, we note that if K is algebraically closed, then the
exterior product map (13) is surjective ; indeed, any zero-cycle γ ∈ CH0(X ×K Y ) is then a linear
combination of cycle classes of the form [x]× [y] for x ∈ X(K) and y ∈ Y (K).

2.4. Correspondences and co-algebra structures on birational motives. From now on,
our coefficient ring R will be the field of rational numbers Q and Chow groups (and motives) will
be understood to be with rational coefficients.

Let h◦(X) and h◦(Y ) be two birational motives of smooth projective varieties. Assume that
h◦(X) can be realized as a direct summand of h◦(Y ). The following proposition gives a criterion
for the co-algebra structure on h◦(X) to be determined by the co-algebra structure on h◦(Y ).

Proposition 2.3. Let X and Y be smooth projective varieties of same dimension d over a field K
and fix a universal domain Ω containing K. Assume that there exist a projective variety Γ of same
dimension d together with generically finite morphisms

Γ
φ //

ψ
��

X

Y

such that one of the following equivalent conditions holds :

(i) φ∗[p] = φ∗[q] in CH0(XΩ), for any two general points p and q in Γ(Ω) lying on the same
fiber of ψ.

(ii) φ∗ψ
∗ψ∗α = deg(ψ)φ∗α in CH0(XΩ), for any zero-cycle α ∈ CH0(ΓΩ).

Then

(a) γ := 1
deg φ ψ∗φ

∗ : h◦(X)→ h◦(Y ) is split injective ;

(b) γ′ := 1
degψ φ∗ψ

∗ : h◦(Y )→ h◦(X) is split surjective and γ′ ◦ γ = idh◦(X) ;

(c) the diagram

h◦(X)
δX //

γ

��

h◦(X)⊗ h◦(X)

h◦(Y )
δY // h◦(Y )⊗ h◦(Y )

γ′⊗γ′
OO
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commutes.

In particular, if in addition ψ∗[p] = ψ∗[q] in CH0(YΩ) for any two general points p and q in Γ(Ω)
lying on the same fiber of φ, then γ : h◦(X) → h◦(Y ) is an isomorphism of co-algebra objects
(with inverse γ′).

Proof. First we explain why assumptions (i) and (ii) are equivalent. Since ψ is generically finite
and by generic flatness, for p a general point on YΩ we have that ψ∗ψ∗[p] is a multiple of [p1] +
· · ·+[pn] where {p1, . . . , pn} = ψ−1ψ(p) and where n = deg(ψ). Assuming (i), we get φ∗ψ

∗ψ∗[p] =
deg(ψ)φ∗[p]. On the other hand, if p and q are two general points on the same fiber of ψ, we
have by proper pushforward ψ∗[p] = ψ∗[q]. Assuming (ii), we get deg(ψ)φ∗[p] = φ∗ψ

∗ψ∗[p] =
φ∗ψ

∗ψ∗[q] = deg(ψ)φ∗[q].
Let us now proceed to show that assumptions (i) and (ii) imply (a), (b) and (c). Items (a)

and (b) simply follow from (c) by projecting on the first factor ; or directly from (ii) and from the
projection formula :

φ∗ψ
∗ψ∗φ

∗ = deg(ψ)φ∗φ
∗ = deg(ψ) deg(φ) idh◦(X).

Item (c) follows from

(φ∗ψ
∗ ⊗ φ∗ψ∗) ◦ δY ◦ ψ∗φ∗ = (φ∗ψ

∗ ⊗ φ∗ψ∗) ◦ (ψ∗ ⊗ ψ∗) ◦ δΓ ◦ φ∗

= deg(ψ)2 (φ∗ ⊗ φ∗) ◦ δΓ ◦ φ∗

= deg(ψ)2 δX ◦ φ∗φ∗

= deg(ψ)2 deg(φ) δX .

Here, the second equality uses (ii), the last equality uses the projection formula, and the first and
third equalities use the compatibility of the co-algebra structure on birational motives of smooth
projective varieties and pushforwards along rational maps. �

Remark 2.4. We note that if π : Γ̃ → Γ is a birational morphism of projective varieties, e.g., a
desingularization, then the equivalent assumptions (i) and (ii) of Proposition 2.3 are satisfied for
φ ◦ π and ψ ◦ π if they are satisfied for φ and ψ.

2.5. The birational motive of finite quotient varieties. Let X be a smooth projective variety
over a field K and let G be a finite group acting on X. Due to the fact [Ful84, Ex. 1.7.6] that
CH∗(X/G) ⊗ Q = (CH∗(X) ⊗ Q)G and due to the fact that the formalism of correspondences
carries through with rational coefficients to finite quotients of smooth projective varieties, all the
formalism developed so far in this section carries through, so long as one works with rational
coefficients, to finite quotients of smooth projective varieties. This will prove important in our
examples, since we will take as a birational model for (i) the symmetric quotient S(n) := Sn/Sn

and as a birational model for (iii) a certain quotient An/Sn+1 (see the proof of Theorem C.8).

3. The birational motive of moduli spaces of objects on K3 surfaces

Let S be a K3 surface over a field K, let [o] be the numerical class of a point o ∈ S(K̄) and let
v = (v0, v2, v4) ∈ Z[S]⊕NS(S)⊕Z[o] be a primitive class with non-negative Mukai self-intersection

v2 := −v0v4 +v2v2−v4v0 ≥ 0. For a generic stability condition σ ∈ Stab†(S) with respect to v (see
[Bri08]), we denote Mσ(v) the moduli space of σ-stable objects, in the bounded derived category
Db(S) of coherent sheaves on S, with Mukai vector v ; Mσ(v) is a smooth projective hyper-Kähler
variety of dimension 2n = v2 + 2.

In the case of moduli spaces MH(v) of Gieseker-stable sheaves, with Mukai vector v, with respect
to a generic polarization H on the K3 surface S (which are special cases of moduli spaces of σ-
stable objects in Db(S)), Markman [Mar08, §3.4] has established that there exists an isomorphism
between the cohomology algebras of MH(v) and Hilbn(S) that in addition preserves the Hodge
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structures. Recently, Frei [Fre20] extended Markman’s result to positive characteristic, with `-adic
cohomology with its Galois structure, in place of singular cohomology with its Hodge structure.

Given the above and Beauville’s splitting principle, it is natural to ask whether the Chow
motives of Mσ(v) and Hilbn(S) are isomorphic as algebra objects. The following theorem gives
evidence by establishing the above in the context of birational motives.

Theorem 3.1. Let S be a K3 surface and let Mσ(v) be a moduli space of stable objects on S. If 2n
denotes the dimension of Mσ(v), then the birational Chow motives h◦(Mσ(v)) and h◦(Hilbn(S))
are isomorphic as co-algebra objects.

Proof. As in [SYZ20, §2.2], we consider the incidence

R := {(E , ξ) ∈ Mσ(v)×Hilbn(S)
∣∣ c2(E) = [Supp(ξ)] + c [oS ] in CH0(S)},

where Supp(ξ) is the support of ξ and c ∈ Z is a constant determined by the Mukai vector v,
and let pMσ(v) : R→ Mσ(v) and pHilbn(S) : R→ Hilbn(S) be the natural projections. By [MZ20],
all points on the same fiber of pMσ(v) have the same class in CH0(Hilbn(S)) and all points on
the same fiber of pHilbn(S) have the same class in CH0(Mσ(v)). Moreover by [SYZ20, Thm. 0.1]
pMσ(v) is dominant, while by the arguments in [O’G13, Prop. 1.3] pHilbn(S) is dominant ; in fact
there exists a component R0 ⊆ R that dominates both factors Mσ(v) and Hilbn(S). The varieties
Mσ(v) and Hilbn(S) have same dimension and, up to restricting to a linear section, we can further
assume that R0 is generically finite over both Mσ(v) and Hilbn(S). By applying Proposition 2.3,
we obtain an isomorphism of birational motives

h◦(Mσ(v))
∼−→ h◦(Hilbn(S)),

as co-algebra objects. �

4. Co-multiplicative birational Chow–Künneth decompositions

In this section, we start by recalling the notion of birational Chow–Künneth decomposition for
the birational motive h◦(X) of a smooth projective variety X. Such a decomposition is then said
to be co-multiplicative if it defines a unital grading on h◦(X) considered as a co-algebra object.
(In the next section, we will in fact see that in case X is a hyper-Kähler variety, then any unital
grading on h◦(X) is a co-multiplicative birational Chow–Künneth decomposition.) The main
result is Theorem 4.5 where we construct explicit such decompositions in case X is one of (i), (ii),
(iii) or (iv).

4.1. Birational Chow–Künneth decompositions. The following definitions are borrowed
from Shen [She16, §3]. Fix a Weil cohomology theory H• for smooth projective varieties de-
fined over K ; e.g., `-adic cohomology for ` 6= char(K), or Betti cohomology if K ⊆ C. For
a smooth projective variety X over K, we then define its transcendental cohomology to be the
quotient

Hk
tr(X) := Hk(X)/N1Hk(X),

where N• denotes the coniveau filtration :

NrHk(X) :=
∑
Z⊆X

ker
(

Hk(X)→ Hk(X \ Z)
)
,

where the sum is over all codimension-r closed subsets Z of X. Note that, e.g. by [ACMV21,
§1.1], the action of correspondences preserves the coniveau filtration. Note also that, due to the
Hard Lefschetz theorem, we have that Hk

tr(X) = 0 as soon as k > dimX. Now a morphism
γ ∈ Hom(h◦(X), h◦(Y )) = CH0(YK(X)) induces a homomorphism

γ∗ : Hk
tr(Y )→ Hk

tr(X),
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obtained by letting a lift of γ to CHdimX(X × Y ) act on Hk(Y ) ; this is well-defined since the
difference of any two lifts is a correspondence supported on D × Y for some divisor D ⊆ X and
hence sends Hk(Y ) into N1Hk(X). Therefore, given a birational motive $h◦(X), one may define
its transcendental cohomology H∗tr($h◦(X)) as $∗H∗tr(X). Note however that H∗tr does not define
a ⊗-functor from the category of birational motives to the category of graded vector spaces ; for
instance, if C is a smooth projective curve, then H1

tr(C)⊗H1
tr(C) ( H2

tr(C ×C) since H2
tr(C ×C)

does not contain the (1, 1)-component of the diagonal ∆C .

Definition 4.1 (Birational Chow–Künneth decomposition). Let X be a smooth projective variety
over a field K. A birational Chow–Künneth decomposition of h◦(X) is a decomposition

h◦(X) = h◦0(X)⊕ · · · ⊕ h◦d(X), with h◦i (X) = $X
i h◦(X) = (X,$X

i )

such that H∗tr(h
◦
i (X)) := ($X

i )∗Htr(X) = Hi
tr(X). In other words, a birational Chow–Künneth

decomposition is a collection {$X
0 , . . . , $

X
d } ⊂ End(h◦(X)) such that

(a) idh◦(X) = $X
0 + · · ·+$X

d ;

(b) $X
k ◦$X

k = $X
k for all k ;

(c) $X
i ◦$X

j = 0 for all i 6= j ;

(d) ($X
k )∗ : Hl

tr(X)→ Hl
tr(X) is the identity if k = l and is zero otherwise.

If X has a Chow–Künneth decomposition {π0
X , . . . , π

2 dimX
X } (in the sense of Murre [Mur93] ; see

Definition A.2), then $X
i := (π2 dimX−i

X )|k(X)×X defines a birational Chow–Künneth decomposi-
tion. In particular, in view of Murre’s conjecture [Mur93], a birational Chow–Künneth decompo-
sition is expected to exist for all smooth projective varieties. (Note that by general conjectures
we should have $X

i = 0 for all i > dimX). Moreover, the descending filtration F • on CH0(X)
defined by

F kCH0(X) := CH0

(
h◦k(X)⊕ · · · ⊕ h◦d(X)

)
(14)

is expected to be independent of the choice of a birational Chow–Künneth decomposition and
to coincide with the conjectural Bloch–Beilinson filtration ; see [Jan94, §5]. Finally, having a
birational Chow–Künneth decomposition is a stably birational invariant ; see [She16, Prop. 3.4].

4.2. Co-multiplicative birational Chow–Künneth decompositions.

Definition 4.2 (Co-multiplicative birational Chow–Künneth decomposition). Let X be a smooth
projective variety over a field K. A birational Chow–Künneth decomposition {$X

0 , . . . , $
X
d } of

h◦(X) is said to be co-multiplicative if the induced decomposition

h◦(X) = h◦0(X)⊕ · · · ⊕ h◦d(X), h◦k(X) := $X
k h◦(X)

defines a unital grading of the co-algebra object h◦(X).

Lemma 4.3. A birational Chow–Künneth decomposition {$X
0 , . . . , $

X
d } of h◦(X) is co-multiplicative

if and only if

(a) $X
0 = oK(X) for some zero-cycle o ∈ CH0(X), and

(b) ($X
i ⊗$X

j ) ◦ δX ◦$X
k = 0 for all k 6= i+ j.

Proof. We note that, due to the fact that the idempotents $X
k act as zero on H0(X) = H0

tr(X) for
k > 0, the degree map ε : h◦(X)→ 1 (which is induced by the structure morphism X → SpecK)
restricts to the zero map on h◦(X) :=

⊕
k>0 h

◦
k(X) for any choice of birational Chow–Künneth

decomposition. Therefore the birational Chow–Künneth decomposition {$X
0 , . . . , $

X
d } of h◦(X)

is co-multiplicative if and only if the degree morphism ε : h◦(X)→ 1 is such that ε0 : h◦0(X)
∼−→ 1
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is an isomorphism of co-algebra objects, and the induced grading is a co-algebra grading, i.e., for
all k the restriction of the co-multiplication

h◦k(X) ↪→ h◦(X) −→ h◦(X)⊗ h◦(X) factors through
⊕
i+j=k

h◦i (X)⊗ h◦j (X).

The latter is equivalent to (b). We note that ε0 : h◦0(X)
∼−→ 1 is an isomorphism of birational

motives if and only if $X
0 = oK(X) with o = ε−1

0 in Hom(1, h◦(X)) = CH0(X). In order to

conclude, we observe that $X
0 being an idempotent forces deg o = 1, and then that (b) forces

o : 1→ h◦(X) to be a unit, i.e., to be a co-algebra morphism. �

In terms of zero-cycles, and working with rational coefficients, Lemma 2.1 and Lemma 4.3 show
that a birational Chow–Künneth decomposition {$X

0 , . . . , $
X
d } is co-multiplicative if and only if

CH0(XΩ)(k) := ($X
k )∗CH0(XΩ) = Hom(1Ω, (XΩ, $

X
k ))

defines a grading on CH0(XΩ) with the property that

(a) CH0(XΩ)(0) = Qo for some zero-cycle o ∈ CH0(X) (necessarily of degree 1), and

(b) CH0(XΩ)(k) ↪→ CH0(XΩ)
δ→ CH0(XΩ ×Ω XΩ) factors through

im

( ⊕
k=i+j

CH0(XΩ)(i) ⊗ CH0(XΩ)(j) ↪→ CH0(XΩ)⊗ CH0(XΩ)→ CH0(XΩ ×Ω XΩ)

)
.

In Appendix B, we will say that this grading on CH0(XΩ), induced by a co-multiplicative birational
Chow–Künneth decomposition, is a δ-grading ; see Definition B.2 and Proposition B.3.

Having a co-multiplicative birational Chow–Künneth decomposition is a stable birational in-
variant among smooth projective varieties. In addition, it is stable under product ; indeed, if
{$X

i } and {$Y
j } denote co-multiplicative birational Chow–Künneth decompositions for smooth

projective varieties X and Y respectively, then it is straightforward to check that {$X×Y
k :=∑

k=i+j $
X
i ⊗$Y

j } defines a co-multiplicative birational Chow–Künneth decompositions for the
product X × Y .

Recall that a Chow–Künneth decomposition {π0
X , . . . , π

2 dimX
X } for X is multiplicative if the in-

duced decomposition h(X) = h0(X)⊕· · ·⊕h2 dimX(X), hk(X) := πkXh(X), defines an algebra grad-
ing ; see Definition A.2 for the definition and [FLV21b] for an overview. We note that if a smooth
projective variety X admits a multiplicative Chow–Künneth decomposition {π0

X , . . . , π
2 dimX
X } with

π2 dimX
X = X × o for some zero-cycle o ∈ CH0(X), then the birational Chow–Künneth decom-

position given by $X
i := (π2 dimX−i

X )|k(X)×X is co-multiplicative. For instance, the canonical
Chow–Künneth decomposition [DM91] of an abelian variety is multiplicative and thereby pro-
vides a co-multiplicative birational Chow–Künneth decomposition. In [SV16, Conj. 4], it is con-
jectured that all hyper-Kähler varieties admit a multiplicative Chow–Künneth decomposition ; in
particular, it implies

Conjecture 4.4 (Co-multiplicative birational Chow–Künneth decomposition for hyper-Kähler
varieties). Every hyper-Kähler variety admits a co-multiplicative birational Chow–Künneth de-
composition.

As for multiplicative Chow–Künneth decompositions, co-multiplicative birational Chow–Künneth
decompositions may not be unique in general : e.g. for abelian varieties, where any translate of a
co-multiplicative birational Chow–Künneth decomposition provides a co-multiplicative birational
Chow–Künneth decomposition. However, in the case of hyper-Kähler varieties, we would further
expect a co-multiplicative birational Chow–Künneth decomposition to be unique.
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Theorem 4.5. A smooth projective variety of dimension 2n birational to one of the hyper-Kähler
varieties (i), (ii), (iii) or (iv) admits a co-multiplicative birational Chow–Künneth decomposition
{$X

2i

∣∣ 0 ≤ i ≤ n}.

Proof. As explained above, the existence of a co-multiplicative birational Chow–Künneth decom-
position in cases (i) and (iii) follows directly from the existence of a multiplicative Chow–Künneth
decomposition which was previous established in [Via17a] in case (i) and in [FTV19] in case (iii).
Note however that these existence results are dependent on an unpublished result of Voisin [Voi15,
Thm. 5.12] ; see [NOY21] for an independent proof in case (i). Note also that the vanishing of
$2i+1
X and of $d

X for d > 2n requires some additional arguments. We therefore provide here a
direct proof of (i) and (iii), which also exemplifies the fact that birational Chow–Künneth decom-
positions are easier to construct and to deal with than usual Chow–Künneth decompositions.

Case (i). Let us first assume n = 1, and denote o any point lying on a rational curve on S.
Then we claim that {$S

0 := ηS × o,$S
2 := ∆S |ηS×S −$S

0 } defines a co-multiplicative birational
Chow–Künneth decomposition. With respect to this decomposition, we have

CH0(S)(0) = Q[o] and CH0(S)(2) = 〈 [p]− [o] | p ∈ S 〉.
In order to check that this decomposition is co-multiplicative, we have to prove that the cycle
(δS)∗([p]− [o]) = [(p, p)]− [(o, o)] belongs to

im
(

CH0(S)(0) ⊗ CH0(S)(2) ⊕ CH0(S)(2) ⊗ CH0(S)(0) −→ CH0(S × S)
)

for all points p ∈ S. In fact, for all points p ∈ S, we have

[(p, p)]− [(o, o)] =
(
[(o, p)]− [(o, o)]

)
+
(
[(p, o)]− [(o, o)]

)
in CH0(S × S),

which establishes the claim. This can be seen by applying the modified diagonal relation of
Beauville–Voisin [BV04] to [p] (which is itself equivalent to the fact that {π0

S = o × S, π4
S =

S × o, π2
S = ∆S − π0

S − π4
S} defines a multiplicative Chow–Künneth decomposition by [SV16,

Prop. 8.4]). More simply, this follows from the fact that K3 surfaces are swept out by elliptic
curves : take E a possibly singular elliptic curve in S passing through p, then by the Bogomolov–
Mumford theorem E intersects a rational curve in S, that is, E contains a point q rationally
equivalent to o in S. But then pushing forward the relation ([p]− [q], [p]− [q]) = 0 in CH0(E×E)
to CH0(S × S) yields the desired relation.

Now, the co-multiplicative birational Chow–Künneth decomposition {$S
0 , $

S
2 } provides the

co-multiplicative birational Chow–Künneth decomposition on Sn given by

$Sn

i =
∑

i1+···+in=i

$S
i1 ⊗ · · · ⊗$

S
in .

Its symmetrization provides then a co-multiplicative birational Chow–Künneth decomposition for
Hilbn(S).

Case (ii). This follows directly from (i) and Theorem 3.1.

Case (iii). The canonical Chow–Künneth decomposition of Deninger–Murre [DM91] for the

motive of an abelian variety B provide a Chow–Künneth decomposition with π2g
B = B × 0B

where g = dimB. Moreover, the idempotents defining this decomposition can be expressed as
rational polynomials of the multiplication-by-m map for integers m 6= −1, 0, 1 ; see e.g. (22) be-
low. As such, these provide a multiplicative Chow–Künneth decomposition. As in the proof of
Theorem C.8(iii), we have that Kn(A) is birational to An+1

0 /Sn+1. Identifying An+1
0 with An,

the transpositions (i, j) act by permuting the i-th and j-th factors of An for i, j ≤ n, while the
transposition (n, n + 1) acts as (x1, . . . , xn−1, xn) 7→ (x1, . . . , xn−1,−

∑
i xi). Consider now the

Deninger–Murre projectors for the abelian variety An, and observe that they are Sn+1-invariant
since the action of Sn+1 commutes with the multiplication-by-m maps on An. We therefore
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obtain a multiplicative Chow–Künneth decomposition for An/Sn+1 and thus a co-multiplicative

birational Chow–Künneth decomposition {$Kn(A)
i } for Kn(A). That this decomposition satisfies

$
Kn(A)
i = 0 for i odd and for i > 2n follows from the fact that ($

Kn(A)
i )∗CH0(Kn(A)) coin-

cides with Lin’s CH0(Kn(A))i of [Lin16] and that these vanish for i odd [Lin16, Thm. 1.4] (see
also [Via20, Thm. 4.3]) and for i > 2n.

Case (iv). Let ϕ : F 99K F be Voisin’s rational self-map [Voi04]. It is known [AV08] that
ϕ∗σ = −2σ for σ a global two-form on F . It was shown in [SV16, Thm. 21.9] that the action
of ϕ∗ on CH0(F ) diagonalizes with eigenvalues 1, −2 and 4. The projectors for this eigenspace
decomposition are polynomials in ϕ∗ and define a birational Chow–Künneth decomposition for F .
In addition, we have π8

F = F × o, where o is the canonical zero-cycle on F of Voisin [Voi08]. Since
δF ◦ ϕ = (ϕ× ϕ) ◦ δF as rational maps F 99K F × F , this decomposition is co-multiplicative. �

Remark 4.6 (Explicit description in case (i)). With respect to the co-multiplicative birational
Chow–Künneth decomposition constructed in the proof of Theorem 4.5(i), we can describe explic-
itly the induced decomposition of CH0(Hilbn(S)), namely writing CH0(Hilbn(S))(2k) := CH0(h◦2k(Hilbn(S))),
we have

CH0(Hilbn(S))(2k) = 〈 (Z∗o)n−k ·
k∏
i=1

(Z∗xi − Z∗o)
∣∣ x1, . . . , xk ∈ S 〉,

where Z is the cycle class of the codimension-2 subset {(x, ξ)
∣∣x ∈ supp(ξ)} ⊂ S×Hilbn(S). Note

that, for any x1, . . . , xn ∈ S, the zero-cycle (Z∗x1) · · · (Z∗xn) is the class of any point with support∑
i xi ; sometimes we simply write it [x1, . . . , xn]. For the induced ascending filtration, we have

GkCH0(Hilbn(S)) := CH0

(
h◦0(Hilbn(S))⊕ · · · ⊕ h◦2k(Hilbn(S)

)
= 〈 [x1, . . . , xk, o, . . . , o]

∣∣ x1, . . . , xk ∈ S 〉.

Remark 4.7 (Explicit description in case (iv)). By [SV16], we have an explicit description of the
decomposition on CH0(F ) induced by the co-multiplicative birational Chow–Künneth decompo-
sition constructed in the proof of Theorem 4.5. Namely, writing CH0(F )(2k) = CH0(h◦2k(F )), we
have

CH0(F )(0) = Qo ;

CH0(F )(2) = 〈[l]− o
∣∣ l is a line of second type〉 ;

CH0(F )(4) = 〈[l1] + [l2] + [l3]− 3o
∣∣ (l1, l2, l3) is a triangle〉.

Here, we say that a line l is of second type if there exists a linear P3 inside P5 that is tangent to
the cubic fourfold Y along the line l ; and we say that (l1, l2, l3) forms a triangle if there exists a
linear P2 inside P5 such that Y ∩P2 = l1 ∪ l2 ∪ l3. Moreover, the above-defined co-multiplicative
birational Chow–Künneth decomposition is the decomposition induced by the Chow–Künneth
decomposition of the Chow motive h(F ) constructed in [FLV19, §A.2.1] under the ⊗-functor
sending effective motives to birational motives.

Remark 4.8 (Double EPW sextics). If X is a double EPW sextic, then its anti-symplectic
involution ι provides a birational Chow–Künneth decomposition. Indeed, let o ∈ CH0(X) denote
a ι-invariant degree-1 zero-cycle on X and define π8

X := X × o, and then define π6
X and π4

X

to be the projectors on the ι-invariant and ι-anti-invariant parts of (X,∆X − π8
X) respectively.

The restrictions $X
i := π8−i

X |k(X)×X of those projectors to h◦(X) then define a birational Chow–
Künneth decomposition and with respect to this decomposition we have

CH0(X)(0) = Qo, CH0(X)(2) = (CH0(X)hom)− and CH0(X)(4) = (CH0(X)hom)+,

where the subscript + indicates the ι-invariant part and the subscript − indicates the ι-anti-
invariant part of the subgroup of 0-cycles of degree zero. In case X is birational to the Hilbert
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square of a K3 surface, there exists a point o ∈ X such that this decomposition coincides by [LV21,
Thm. 3.6] with the one of (i), and is thus co-multiplicative. (In fact, still in case X is birational
to the Hilbert square of a K3 surface, Proposition 5.2 below shows that any two points o and o′

in X whose classes in CH0(X) are ι-invariant agree in CH0(X).)

5. Strict gradings on birational motives of hyper-Kähler varieties

The aim of this section is to establish that the unital gradings constructed in the proof of
Theorem 4.5 in cases (i), (ii), (iii) and (iv) define strict gradings as defined in §1.5 ; see Theorem 5.5.
In §5.1 below, we start with some general observations concerning co-generation properties of
birational motives of smooth projective varieties.

5.1. On the co-generation of the birational motive of a smooth projective variety. We
have the following general expectation coming from the Bloch–Beilinson philosophy :

Conjecture 5.1. Let X be a smooth projective variety and let i be a positive integer. Assume
that H∗tr(X) is generated by Hi

tr(X). Then there exists a birational idempotent $X
i ∈ End(h◦(X))

with ($X
i )∗H∗tr(X) = Hi

tr(X), and, for any choice of such an idempotent $X
i , the co-algebra object

h◦(X) is co-generated by h◦i (X) := (X,$X
i ), meaning that the morphism

h◦(X) // Sym∗ h◦i (X)

co-induced by the split surjection h◦(X)� h◦i (X) is split injective.

Very recently, Voisin conjectured [Voi20, Conj. 2.11] that two points x and y on a smooth
projective variety X with H∗tr(X) generated by H2

tr(X) are rationally equivalent if and only if they
have same class in CH0(X)/F 3

BBCH0(X). Here F 3
BBCH0(X) := ∩ ker(Γ∗ : CH0(X) → CH0(Σ)),

where the intersection runs through all smooth projective surfaces Σ and all correspondences Γ ∈
CH2(X×Σ), is an explicit candidate for the third step of the conjectural Bloch–Beilinson filtration.
Working instead with the filtration induced by a birational Chow–Künneth decomposition (which
conjecturally should give the conjectural Bloch–Beilinson filtration), we can relate our expectation
on co-generation (Conjecture 5.1) to Voisin’s expectation :

Proposition 5.2. Let X be a smooth projective variety. Let h◦$(X) := (X,$) be a direct sum-
mand of h◦(X) and assume that h◦(X) is co-generated by h◦$(X). If x and y are two points on
X, then

[x] = [y] in CH0(X) ⇐⇒ $∗[x] = $∗[y] in CH0(X).

Proof. First, we note that clearly [x] = [y] implies $∗[x] = $∗[y], irrespective of the co-generation
assumption. Under the morphism h◦(X) → Sym∗ h◦$(X), the class of a point x is mapped to
1+($)∗[x]+($⊗$)∗δ∗[x]+ · · ·+($⊗n)∗δ

n−1
∗ [x]+ · · · . Since δk∗ [x] = [x]×· · ·× [x] in CH0(Xk+1),

we find that

[x] 7→ 1 +$∗[x] +$∗[x]×$∗[x] + · · ·+$∗[x]× · · · ×$∗[x] + · · · .

Now, under the assumption that h◦(X) is co-generated by h◦$(X), the morphism h◦(X) →
Sym≤n h◦$(X) is split injective for some n > 0, and it is then apparent that $∗[x] = $∗[y]
implies [x] = [y] in CH0(X). �

The following proposition shows that, for smooth projective varieties with transcendental co-
homology generated in pure degree (e.g. hyper-Kähler varieties), the existence of a unital grading
on the birational motive of a smooth projective variety is equivalent to the existence of a co-
multiplicative birational Chow–Künneth decomposition :
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Proposition 5.3. Let X be a smooth projective variety with H∗tr(X) generated by Hi
tr(X) ; e.g.,

X a hyper-Kähler variety and i = 2, or X an abelian variety and i = 1. A decomposition
h◦(X) = h◦(X)(0) ⊕ · · · ⊕ h◦(X)(n) defines a unital grading on the co-algebra object h◦(X) if and
only if, setting h◦ki(X) := h◦(X)(k), the decomposition h◦(X) = h◦0(X) ⊕ h◦i (X) ⊕ · · · ⊕ h◦ni(X)
defines a co-multiplicative birational Chow–Künneth decomposition.

Proof. Clearly, we only need to check that if h◦(X) = h◦(X)(0) ⊕ · · · ⊕ h◦(X)(n) defines a unital
grading, then h◦(X) = h◦0(X)⊕ h◦i (X)⊕ · · · ⊕ h◦ni(X) with h◦ki(X) := h◦(X)(k) defines a birational
Chow–Künneth decomposition. Note that a unital grading on h◦(X) defines a unital grading on
the co-algebra H∗tr(X)∨, i.e., H∗tr(X)∨ is pointed irreducible and graded. By [Swe69, Lem. 11.2.1],
it is enough to check that Hi

tr(X)∨ consists exactly of the primitive elements of the pointed
irreducible co-algebra H∗tr(X)∨, i.e., that

Hi
tr(X)∨ = ker(δ̄∗ : H∗tr(X)∨ → H∗tr(X)∨ ⊗H∗tr(X)∨),

where δ̄ is the reduced co-multiplication associated to any choice of a degree-1 zero-cycle on X
(see §1.3 and (1)). The inclusion ⊆ is clear since δ̄∗ is graded. Regarding the converse inclusion,
still using that δ̄∗ is graded, it is enough to show that if τ∨ 6= 0 in Hki

tr (X)∨ for some k > 1, then
δ̄∗τ
∨ 6= 0. By the generation assumption, we may write τ =

∑
σ1∪· · ·∪σk for some σr in Hi

tr(X).
But then (δ∗τ

∨)(
∑

(σ1 ∪ · · · ∪ σk−1)× σk) = τ∨(δ∗(
∑

(σ1 ∪ · · · ∪ σk−1)× σk)) = τ∨(τ) = 1, where
the first equality comes from Poincaré duality. Hence, δ∗τ

∨ has a non-zero component of bi-degree
((k − 1)i, i), and it follows that δ̄∗τ

∨ 6= 0. �

5.2. On the co-generation of the birational motive of a hyper-Kähler variety. Let now
X be a hyper-Kähler variety of dimension 2n. Assuming the generalized Hodge conjecture for X,
the Hodge structures H2k

tr (X) are generated by σk for a generator σ of H0(X,Ω2
X) and we also

have H2k+1
tr (X) = 0 for all k. Thus, conjecturally, cup-product induces a surjection, with kernel

supported in codimension 1 :

Sym≤n H2
tr(X) // // H∗tr(X).

Combining Conjecture 4.4 with Conjecture 5.1, and taking into account that the kernel is sup-
ported in codimension 1, suggests the following (slight) strengthening of Conjecture 2 :

Conjecture 5.4. Let X be a hyper-Kähler variety of dimension 2n and assume h◦(X) admits a
co-multiplicative birational Chow–Künneth decomposition h◦(X) = h◦0(X)⊕ h◦2(X)⊕· · ·⊕ h◦2n(X).
Then this unital grading is a strict grading. More strongly, the graded co-algebra morphism

h◦(X)
∼ // Sym≤n h◦2(X)

co-induced by the graded split surjection h◦(X)� h◦2(X) is an isomorphism.

Theorem 5.5. The birational motives of the hyper-Kähler varieties (i), (ii), (iii) and (iv),
equipped with the co-multiplicative birational Chow–Künneth decomposition provided by Theo-
rem 4.5, satisfy the conclusion of Conjecture 5.4.

Proof. In the general situation where M = M(0) ⊕ · · · ⊕M(n) is a unital graded co-algebra object
in a ⊗-category C over a ring R, recall that the induced co-algebra morphism M → T ∗M(1) is

graded and that the composition M(k) ↪→ M → M⊗k → (M(1))
⊗k is nothing but the restriction

of δ̄k−1 to M(k) ; see §1. In addition, if R contains Q and if C is pseudo-abelian, then the resulting

graded morphism of co-algebra objects M → T≤nM(1) factors through Sym≤nM(1). Therefore,

in order to show that M → Sym≤nM(1) is an isomorphism of graded co-algebras, it is enough to

produce inverses to the morphisms δ̄k−1 : M(k) → SymkM(1) for all k > 1.
In the case of a hyper-Kähler variety X with a co-multiplicative birational Chow–Künneth

decomposition h◦(X) = h◦0(X) ⊕ h◦2(X) ⊕ · · · ⊕ h◦2n(X), it thus suffices to produce for all k > 1
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morphisms 1
k!µ

k : Symk h◦2(X)→ h◦2k(X) inverse to δ̄k−1 : h◦2k(X)→ Symk h◦2(X), or, equivalently

by Lemma 2.1, such that µk∗ ◦ δ̄k−1
∗ = k! id : CH0(X)(2k) → CH0(X)(2k) and δ̄k−1

∗ ◦ µk∗ = k! id :

CH0(Symk h◦2(X)) → CH0(Symk h◦2(X)). Here the correspondence δ̄k−1 is made explicit in (1).
(The reason for introducing the factor k! lies in (26) – this is also related to the notion of divided
power Hopf algebra, although δ and µ do not endow Sym≤n h◦2(X) with the structure of a bi-
algebra.)

Case (i). We take on the notation of Remark 4.6. We start by recalling that, defining
CH0(Hilbn(S))(2k) := CH0(h◦2k(Hilbn(S))), we have

CH0(Hilbn(S))(2k) = 〈 (Z∗o)n−k ·
k∏
i=1

(Z∗xi − Z∗o)
∣∣ x1, . . . , xk ∈ S 〉,

which in case k = 1 takes the simple form

CH0(Hilbn(S))(2) = 〈[x, o, . . . , o]− [o, o, . . . , o]
∣∣ x ∈ S〉.

We also note that the idempotent $2 cutting h◦2(Hilbn(S))) acts explicitly on CH0(Hilbn(S)) by

($2)∗[x1, . . . , xn] =

n∑
i=1

(
[xi, o, . . . , o]− [o, . . . , o]

)
.

On the one hand, we define

µk : h◦2(Hilbn(S))⊗k → h◦2k(Hilbn(S))

as the birational correspondence sending

a1 × · · · × ak 7→ (Z∗o)
n−k ·

k∏
i=1

Z∗ai,

where ai := [xi, o, . . . , o] − [o, o, . . . , o] ∈ CH0(Hilbn(S))(2). Clearly, µk is invariant under the
action of the symmetric group Sk and thereby provides a morphism

µk : Symk h◦2(Hilbn(S))→ h◦2k(Hilbn(S)).

On the other hand, we have δ̄k−1[x1, . . . , xn] = ([x1, . . . , xn]− [o, . . . , o])×k (see (15) below). Now
since δ̄k−1 maps h◦2k(Hilbn(S)) into the direct summand Symk h◦2(Hilbn(S)), we find that

δ̄k−1[x1, . . . , xk, o, . . . , o] =
(
($2)∗([x1, . . . , xk, o, . . . , o]− [o, . . . , o])

)×k
=
(
a1 + · · ·+ ak

)×k
=
∑
σ∈Sk

aσ(1) × · · · × aσ(k),

where again ai := [xi, o, . . . , o]− [o, . . . , o] and where the last equality is due to (ai)
×2 = 0 which

itself follows from the fact (see the proof of Theorem 4.5(i)) that ([xi] − o) × ([xi] − o) = 0 in
CH0(S × S). It is then apparent that 1

k!µ
k provides an inverse to δ̄k−1.

Case (ii) follows directly from case (i) and Theorem 3.1.

Case (iii). Recall from the proof of Theorem C.8 that the hyper-Kähler variety Kn(A) is
birational to An/Sn+1 so that it is enough to establish the theorem for An/Sn+1. First we note
that, for k ≤ n, cup-product

(δk−1)∗ : Symk H2(An/Sn+1) −→ H2k(An/Sn+1)

is a morphism of Hodge structures that is an isomorphism on the degree (2k, 0) part of the
Hodge decomposition. Second, after fixing a polarization on A, δk−1 is generically defined for
powers of A in the sense of [Via20, Def. 2.1]. In addition, by [Via20, Prop. 2.13], the orthogonal



ON THE BIRATIONAL MOTIVE OF HYPER-KÄHLER VARIETIES 25

projectors on the sub-Hodge structures of Symk H2(An/Sn+1) and H2k(An/Sn+1) generated by
forms of degree (2k, 0) are induced by generically defined cycles p and q respectively. Third,

since the Hard Lefschetz isomorphisms Hr(An)
∼−→ H4n−r(An) and their inverses are induced by

generically defined cycles for powers of A, we see (as in the proof of [Via20, Prop. 2.13]) that the
inverse of the isomorphism

q∗(δk−1)∗p∗ : p∗ Symk H2(An/Sn+1)
∼−→ q∗H2k(An/Sn+1)

is induced by a generically defined cycle. We may then conclude from [Via20, Thm. 1] that

δk−1 induces an isomorphism on zero-cycles CH0(h2k(A
n/Sn+1))

∼−→ CH0(Symk h2(An/Sn+1))
with inverse induced by a correspondence, where hi(A

n) := h4n−i(An) is the Deninger–Murre
Chow–Künneth decomposition of An. We then conclude from Lemma 2.1 that

δ̄k−1 : h◦2k(A
n/Sn+1)

δk−1

−→ Symk h◦(An/Sn+1)→ Symk h◦2(An/Sn+1)

is an isomorphism.

Case (iv). Let F := F (Y ) be the Fano variety of lines on a smooth cubic fourfold Y ⊆ P5. We
consider the self-dual Chow–Künneth decomposition h(F ) = h0(F )⊕· · ·⊕h8(F ) of [FLV19, §A.2.1]
(which yields the co-multiplicative birational Chow–Künneth decomposition of Theorem 4.5(iv),
see Remark 4.7) ; it is generically defined in the sense that the idempotents πi defining hi(F ) are
specializations of cycles on F ×B F , where F → B is the relative Fano variety of the universal
smooth cubic fourfold. The multiplication morphism δ∗ : Sym2 h2(F )→ h4(F ) is an isomorphism
by [FLV21a, Thm. 2.18(v)]. Dualizing, we obtain an isomorphism δ∗ : h4(F ) → Sym2 h6(F ), but
then δ̄ : h◦4(F ) → Sym2 h◦2(F ) is nothing but the image of δ∗ under the functor Meff →M◦ and
is thus an isomorphism.

Let us however give an alternate proof that determines the inverse of δ̄. For that purpose, we
consider the cycle L ∈ CH2(F × F ) of [SV16, Part 3] ; it is generically defined, its cohomology
class is the Beauville–Bogomolov–Fujiki form and its action on points l ∈ F (Y ) is given by
L∗l = [So]− [Sl], where Sl is the surface of lines meeting the line l. We claim that the morphism

1

2
µ : Sym2 h6(F )

1
2

Sym2 L
// Sym2 h2(F )

δ∗ // h4(F )

is an isomorphism of Chow motives, and that the inverse of the induced isomorphism

1

2
µ : Sym2 h◦2(F )

∼−→ h◦4(F )

on birational motives is nothing but the reduced co-multiplication δ̄ : h◦4(F ) → Sym2 h◦2(F ).
First, µ is indeed an isomorphism of Chow motives since as recalled above the morphism δ∗ :
Sym2 h2(F )→ h4(F ) is known to be an isomorphism, and since the morphism L : h6(F )→ h2(F )
is an isomorphism due to the fact that it is an isomorphism modulo homological equivalence
by [SV16, Prop. 1.3] (its inverse is given by 1

75L
3) combined with the generalized Franchetta

conjecture for F × F [FLV19, Thm. 1.10].
Second, we claim that µ satisfies µ ◦ δ̄ = 2 id on CH0(F )(4), which by Lemma 2.1 implies that δ̄

is the inverse of the isomorphism 1
2µ. Recall from [SV16, §20] that CH0(F )(4) is killed by L∗ and is

spanned by cycles of the form [l1] + [l2] + [l3]−3[o], where (l1, l2, l3) form a triangle, i.e., there is a
plane Π ⊂ P5 such that Π∩Y = l1+l2+l3. With

∑
i[Sli ] = 3[So] and δ̄∗[l] = [(l, l)]−[(l, o)]−[(o, l)]
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in mind, we now compute

µ ◦ δ̄([l1] + [l2] + [l3]− 3[o]) =
∑
i

([So]− [Sli ])
2

= 3[So]
2 − 2[So] ·

∑
i

[Sli ] +
(∑

i

[Sli ]
)2 − 2

∑
i<j

[Sli ] · [Slj ]

= 6[So]
2 − 2

∑
i<j

[Sli ] · [Slj ].

Now, by [SV16, Prop. 20.7(i)], we have [So]
2 = 5[o] and for a triangle (l1, l2, l3) we have [Sli ]·[Slj ] =

6[o] + [lk]− [li]− [lj ] for {i, j, k} = {1, 2, 3}. It follows that

µ ◦ δ̄([l1] + [l2] + [l3]− 3[o]) = 2([l1] + [l2] + [l3]− 3[o]),

as claimed. �

Remark 5.6. Theorem 5.5 and its proof echoes [SV16, Conj. 2], where it is conjectured that for
any hyper-Kähler variety X of dimension 2n there exists a canonical cycle L ∈ CH2X ×X) with
cohomology class the Beauville–Bogomolov–Fujiki form such that CH0(X) admits a grading

CH0(X) = CH0(X)(0) ⊕ CH0(X)(2) ⊕ · · · ⊕ CH0(X)(2n)

with CH0(X)(2k) = ln−k · (L∗CH0(X))·k, where l := δ∗L ∈ CH2(X).

6. The co-radical filtration on zero-cycles

In this section, we define explicitly the co-radical filtration on the Chow group of zero-cycles
on a smooth projective variety X equipped with a unit o ∈ CH0(X), and we prove Proposition 1
(in cases (i), (ii), (iii), (iv) and (v)) and Proposition 3 of the introduction. In addition, we discuss
why, in the case of hyper-Kähler varieties, the co-radical filtration is expected to be opposite to
the conjectural Bloch–Beilinson filtration.

6.1. The co-radical filtration. By considering the Q-linear ⊗-category of birational motives
(or of covariant effective motives), one defines as in §1.6 the co-radical filtration on CH0(X) =
Hom(1, h◦(X)) for all smooth projective varieties X equipped with a unit o : 1 → h◦(X). In
concrete terms, we have

Definition 6.1 (Co-radical filtration on CH0). Let X be a smooth projective variety over a
field K. Fix a zero-cycle o ∈ CH0(X) of degree 1 such that δ∗o = (o, o), i.e., a unit o : 1→ h◦(X)
of the co-algebra object h◦(X) in the category of birational motives. We define the ascending
co-radical filtration (associated to the unit o) R• on the Q-vector space CH0(X) by

RkCH0(X) := ker
(
δ̄k∗ : CH0(X)→ CH0(Xk+1)

)
.

Here, δ̄k is the iterated reduced co-multiplication defined in §1.3 : δ̄0 := id − oε, δ̄ = (δ − o ×
id − id × o) ◦ δ̄0 and δ̄k = (δ̄ ⊗ id ⊗ · · · ⊗ id) ◦ δ̄k−1 ; in our setting δ̄k is explicitly given by the
formula (1). We also define the ascending filtration on K-points of X :

Rk(X) := {x ∈ X(K)
∣∣ [x] ∈ RkCH0(X)}.

Note that the co-radical filtration R• depends on the choice of unit o ∈ CH0(X) since, e.g.,
R0CH0(X) = Qo, and that a priori we only have 〈[x]

∣∣ x ∈ Rk(X)〉 ⊆ RkCH0(X). Proposition 6.2
below gives an explicit description of Rk(X). It also shows that, in case K is algebraically closed,
due to the fact that any degree-0 zero-cycle is smash-nilpotent [Voe95, Voi96], the filtration R•(X)
is exhaustive, i.e., we have X(K) =

⋃
k≥0Rk(X) (and so CH0(X) =

⋃
k≥0RkCH0(X)). That

R•CH0(X) is exhaustive can also be seen from the vanishing of δ̄n for n large ; see §A.2.
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Proposition 6.2. Let X be a smooth projective variety over a field K and let o ∈ CH0(X) be a
unit. Let R• be the co-radical filtration associated to o. Then for all k we have

Rk(X) = {x ∈ X(K)
∣∣ ([x]− o)×k+1 = 0 in CH0(Xk+1)}.

Proof. The case k = 0 is clear. It is then enough to show that for the reduced co-multiplication δ̄
associated to the unit o : 1→ h◦(X), 1 7→ o (as in Definition 6.1), we have for all units x ∈ CH0(X)
and all integers k > 0,

δ̄k(x− o) = (x− o)×k+1. (15)

First we have δ̄(x− o) = (x, x)− (o, o)− (x− o, o)− (o, x− o) = (x− o, x− o). By induction, we
get

δ̄k+1(x− o) = (δ̄ ⊗ id⊗k)δ̄k(x− o) = (δ̄ ⊗ id⊗k)
(
(x− o)×k+1

)
= (δ̄(x− o), (x− o)×k)

= ((x− o)×2, (x− o)×k) = (x− o)×k+2,

thereby establishing (15). �

6.2. Proof of Proposition 3. This is an application of Proposition 1.2 : one considers the Q-
linear ⊗-category of birational motives (see §2.1), the functor C = Hom(1,−) and the object
M = h◦(X). �

6.3. Proof of Proposition 1 in cases (i), (ii), (iii), (iv) and (v). In those cases, the hyper-
Kähler varietyX admits a co-multiplicative birational Chow–Künneth decomposition, i.e., a unital
grading h◦(X) = h◦0(X) ⊕ · · · ⊕ h◦n(X). We can then conclude directly from Proposition 3 that
RnCH0(X) = CH0(X) and hence that X satisfies the conclusion of Proposition 1.

In case (v), we need the following basic fact. Suppose X is a smooth projective variety and
assume there is a dominant rational map π : Y1 × · · · × Ym 99K X, where Y1, . . . , Ym are smooth
projective varieties the birational motives of which admit unital gradings h◦(Yi) = h◦(Yi)(0) ⊕
· · · ⊕ h◦(Yi)(ni). Then there exists a unit o ∈ CH0(X) such that for all x ∈ X(K) we have

([x]− 0)×n+1 = 0 in CH0(Xn+1), where n = n1 + · · ·+ nm. Indeed, this follows at once from the
fact that the natural grading on h◦(Y1 × · · · × Ym) = h◦(Y1) ⊗ · · · ⊗ h◦(Ym) is a unital grading,
Proposition 3 and Proposition 6.2, and pushing forward along π.

The above in particular establishes Proposition 1 in the case (v) of LLSvS eightfolds. Indeed, if
Z is the LLSvS eightfold associated to a cubic fourfold Y , Voisin [Voi16, Prop. 4.8] has constructed
a dominant rational map ψ : F ×F 99K Z, where F is the Fano variety of lines on Y . We conclude
with Theorem 4.5 where a unital grading for h◦(F ) was constructed. �

6.4. The co-radical filtration and the conjectural Bloch–Beilinson filtration for hyper-
Kähler varieties. Since for a hyper-Kähler variety X the Hodge numbers hi,0(X) vanish for i
odd, the Bloch–Beilinson filtration, if it exists, satisfies F 2i−1CH0(X) = F 2iCH0(X) for all i. An
increasing filtration G• on CH0(X) is then said to be opposite to F 2• if the composition

GiCH0(X) ↪→ CH0(X)� CH0(X)/F 2i+2CH0(X)

is bijective. Now, since the conjectural Bloch–Beilinson filtration F •, if it exists, is induced by the
choice of any Chow–Künneth decomposition (see (14) and the ensuing discussion), we note from
Proposition 5.3 that the existence of a unital grading h◦(X) = h◦(X)(0) ⊕ · · · ⊕ h◦(X)(n) provides
an ascending filtration

GkCH0(X) := CH0

(
h◦(X)(0) ⊕ · · · ⊕ h◦(X)(k)

)
= CH0

(
h◦(X)(0)

)
⊕ · · · ⊕ CH0

(
h◦(X)(k)

)
opposite to the conjectural Bloch–Beilinson filtration. If the unital grading is in addition a strict
grading (and such strict gradings exist for hyper-Kähler varieties of type (i), (ii), (iii) or (iv) by
Theorem 5.5)), we get from Proposition 3 that the co-radical filtration R• on CH0(X) agrees with
G• and hence is opposite to the conjectural Bloch–Beilinson filtration F 2•. It is thus natural to
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conjecture that for all hyper-Kähler varieties, there exists a unit such that the associated co-radical
filtration is opposite to the conjectural Bloch–Beilinson filtration.

7. The filtrations of Voisin and Shen–Yin–Zhao and the co-radical filtration

Let X be a smooth projective variety over an algebraically closed field k. Given a closed point
x ∈ X, the orbit of x under rational equivalence

Ox := {x′ ∈ X(k)
∣∣ [x] = [x′] in CH0(X)}

is a countable union of closed algebraic subsets of X and we denote dimOx the maximal dimension
of these subvarieties. Although the following definition makes sense for any smooth projective
variety X, it is of particular relevance for hyper-Kähler varieties.

Definition 7.1 (Voisin filtration [Voi16]). Let X be a hyper-Kähler variety of dimension 2n. The
Voisin filtration S• is the increasing filtration on CH0(X) :

S0CH0(X) ⊆ S1CH0(X) ⊆ · · · ⊆ SnCH0(X) = CH0(X)

defined by

SkCH0(X) := 〈 [x]
∣∣ x ∈ Sk(X)〉,

where

Sk(X) := {x ∈ X
∣∣ dimOx ≥ n− k}.

We note that S−1(X) = ∅ (and consequently that S−1CH0(X) = 0) : indeed if f : Z → X is a
codimension-0 morphism with Z smooth projective such that the image of f∗ : CH0(Z)→ CH0(X)
is one-dimensional, then by Mumford’s theorem (or Bloch–Srinivas [BS83]) we find that f∗σ = 0,
where σ is a nowhere degenerate symplectic form on X, and hence that dimZ ≤ n ; see [Voi16,
Cor. 1.2].

In addition, by [Voi16, Lem. 3.10(ii)], if X contains a constant-cycle Lagrangian subvariety Z
which is connected and whose class is a linear combination of ln, ln−2ctr, . . . for some ample
divisor l, where ctr is the transcendental part of the Beauville–Bogomolov form (see [Voi16, §1.1]
for more details), then S0CH0(X) is spanned by the class of any point o on Z. In general, it is
expected that S0CH0(X) is spanned by the class of a point o and when this is the case we call o
a Beauville–Voisin point of X.

Conjecture 7.2. Let X be a hyper-Kähler variety. Then there exists a point o ∈ X such that for
all k ≥ 0

SkCH0(X) = RkCH0(X) = 〈 [x]
∣∣ ([x]− [o])×k+1 = 0 in CH0(Xk+1) 〉. (16)

We insist here that the right-hand side equality of (16) is a consequence of the left-hand side
equality. Indeed, since by definition SkCH0(X) is spanned by classes of points, it follows that
RkCH0(X) is also spanned by classes of points, hence the right-hand side equality in (16) by
Proposition 6.2. We may thus ask whether the property that RkCH0(X) is spanned by classes of
points is specific to hyper-Kähler varieties ? (See Remark A.9 for the case of abelian varieties.)
A related question, in the hyper-Kähler setting, is whether a point x ∈ X whose class belongs to
SkCH0(X) satisfies x ∈ Sk(X), i.e., dimOx ≥ n− k ? (Compare with the corresponding question
concerned with the Shen–Yin–Zhao filtration raised in [SYZ20, Ques. 3.2] ; see §0.1.3.)

The following theorem gives evidence for the above Conjecture 7.2.

Theorem 7.3. Let X be a smooth projective variety birational to one of the hyper-Kähler varieties
(i), (iii) or (iv). Then Conjecture 7.2 holds for X ; in particular, denoting o the class of a point
spanning S0CH0(X), for all x ∈ X we have

[x] ∈ SkCH0(X) ⇐⇒ ([x]− o)×k+1 = 0 in CH0(Xk+1).
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Proof. By Proposition 3, together with Theorem 5.5, in order to prove the theorem, it suffices to
show in each case that

Sk CH0(X) =
(⊕
i≤k

$X
2i

)
∗
CH0(X) ⊆ CH0(X),

where {$X
i } is the co-multiplicative birational Chow–Künneth decomposition from Theorem 4.5.

In case (i), this is [Voi16, Thm. 2.5] together with the explicit description of the co-multiplicative
birational Chow–Künneth decomposition in the proof of Theorem 4.5(i) ; in that case we simply

have, after identifying CH0(Hilbn(S)) with CH0(S(n)), that SkCH0(Hilbn(S)) is spanned by the
classes of points x1 + · · ·+ xk + (n− k)o.

The case (iii) is due to Lin [Lin16]. (Note that in this case our ($X
2i)∗CH0(X) coincides with

Lin’s CH0(X)2i.)
The case (iv) is [Voi16, Prop. 4.5] (together with the fact [SV16, Thm. 21.9] that in this case

our decomposition CH0(F ) into eigenspaces for the action of ϕ∗ (Theorem 4.5) coincides with the
Shen–Vial decomposition). �

In case (ii), one can formulate a version of Theorem 7.3 by replacing Voisin’s filtration S• with
the filtration (5) introduced by Shen–Yin–Zhao [SYZ20] :

Theorem 7.4. Let X be a smooth projective variety birational to a moduli space Mσ(v) of stable
objects on a K3 surface. Then, denoting o the degree-1 zero-cycle spanning SSYZ

0 CH0(Mσ(v)), we
have

SSYZ
k CH0(Mσ(v)) = RkCH0(Mσ(v)).

In particular, for all x ∈ X we have

[x] ∈ SSYZ
k CH0(Mσ(v)) ⇐⇒ ([x]− o)×k+1 = 0 in CH0(Mσ(v)k+1).

Proof. We note that the isomorphism (R0)∗ : h◦(Hilbn(S))
∼−→ h◦(Mσ(v)) of (the proof of) Theo-

rem 3.1 admits a multiple of (R0)∗ as its inverse and that the co-multiplicative birational Chow–
Künneth decomposition for h◦(Mσ(v)) is transported from that of h◦(Hilbn(S)) via R∗0 and (R0)∗.
On the other hand, the filtrations S• and SSYZ

• coincide on CH0(Hilbn(S)) ; see [SYZ20]. We
may then conclude from the fact that the covariant and contravariant action of R0 preserves the
filtration SSYZ

• . �

Remark 7.5 (Theorem 1 in case (ii)). Combined with the recent result of Li–Zhang [LZ22,
Thm. 1.1] proving SSYZ

• CH0(Mσ(v)) = S•CH0(Mσ(v)), Theorem 7.4 establishes Theorem 1 in
case (ii).

Appendix A. The co-radical filtration on positive-dimensional cycles

The aim of this appendix, the results of which are not used in the main body of the paper,
is to consider the co-radical filtration for (not necessarily zero-dimensional) cycles on a smooth
projective variety equipped with a unit o ∈ CH0(X). In §A.1 and §A.2, we parallel §4 and §5,
and explore the relations between on the one hand the co-radical filtration and on the other hand
the existence of a multiplicative Chow–Künneth decomposition and so-called modified diagonals.
In Proposition A.6, we then observe that our co-radical filtration agrees with a filtration inde-
pendently considered by Barros–Flapan–Marian–Silversmith [BFMS22, §4]. Finally, in §A.3, we
show that the co-radical filtration on the Chow ring of an abelian variety is a ring filtration that
is opposite to the candidate Bloch–Beilinson filtration of Beauville, thereby establishing Proposi-
tion 2.

We fix a smooth projective variety X of pure dimension d over a field K, equipped with a unit
o ∈ CH0(X).
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Definition A.1. For all i ≥ 0, we define on CHi(X) the increasing co-radical filtration :

RkCHi(X) := ker
(
δ̄k : CHi(X)→ CHi(X

k+1)
)

=: Rk Hom(1(i), h(X)) for k ≥ 0,

where the right-hand side term is nothing but the filtration of §1.6 for the covariant category
of Chow motives (and the functor C := Hom(1(i),−)). The correspondence δ̄k is made explicit
in (18) below. The co-radical filtration on the Chow groups of X graded by codimension is then
defined as :

RkCHi(X) := RkCHd−i(X).

A.1. Relation to multiplicative Chow–Künneth decompositions. Recall that the pullback
along the diagonal embedding δ : X ↪→ X ×K X, together with the pullback along the structure
morphism ε : X → SpecK, defines an algebra structure on the contravariant Chow motive h(X)
of X. The following definition mimics the classical definition of an (augmented) graded algebra.

Definition A.2 ([SV16, Def. 8.1]). A multiplicative Chow–Künneth decomposition on the con-
travariant Chow motive h(X) is a finite direct sum decomposition

h(X) := h0(X)⊕ · · · ⊕ h2d(X) (17)

such that

(a) it is a Chow–Künneth decomposition, i.e., H∗(hi(X)) = H i(X) for all i ≥ 0 ;
(b) it defines an algebra grading, i.e., δ∗ : hi(X)⊗ hj(X)→ h(X) factors through hi+j(X) for all

i, j ≥ 0.

If h(X) admits a multiplicative Chow–Künneth decomposition, then by [FV20, footnote 24] we
have canonical identifications hi(X)∨ = h2d−i(X)(d − i). Hence, if we assume in addition that
h0(X) ' 1, then, by dualizing, we obtain a unital grading on the covariant Chow motive of X,
seen as a co-algebra object. By taking the image in the category of birational motives, this induces
further a unital grading on the birational motive of X. We then denote o the associated graded
unit and the co-radical filtration R•CHi(X) is implicitly associated to o.

Given a Chow–Künneth decomposition as in (17), the decreasing filtration

F kCHi(X) :=
⊕
j≥k

CHi(X)(j), where CHi(X)(k) := CHi(h2i−k(X))

is conjecturally independent of the choice of a Chow–Künneth decomposition and is the Bloch–
Beilinson filtration [Jan94, §5]. We then define on CHi(X) the filtration

GkCHi(X) :=
⊕
j≤k

CHi(X)(j),

which is opposite to the conjectural Bloch–Beilinson filtration. Note that the filtration G• is a
ring filtration if the Chow–Künneth decomposition is multiplicative. We then have, by dualizing,
the analogue of Proposition 3 in the contravariant setting :

Proposition A.3. Assume the contravariant Chow motive h(X) admits a multiplicative Chow–
Künneth decomposition as in (17) with h0(X) ' 1. Define R′kCHi(X) := R2(d−i)+kCHi(X).
Then

GkCHi(X) ⊆ R′kCHi(X).

Moreover, if h(X) is generated by h1(X), i.e., if the natural graded map Sym∗ h1(X) → h(X) is
split surjective, then equality holds and in particular R′•CH∗(X) is a ring filtration. �

In case h1(X) = 0, one has :
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Proposition A.4. Assume the contravariant Chow motive h(X) admits a multiplicative Chow–
Künneth decomposition as in (17) with h0(X) ' 1 and h1(X) = 0. Define R′′kCHi(X) :=

R(d−i)+kCHi(X). Then

G2k+1CHi(X) ⊆ R′′kCHi(X).

Moreover, if h(X) is generated by h2(X), i.e., if the natural graded map Sym∗ h2(X) → h(X) is
split surjective, then equality holds. If in addition h2i+1(X) = 0 for all i ≥ 0, then R′′•CH∗(X) is
a ring filtration. �

Remark A.5 (The case of hyper-Kähler varieties). In case X admits a multiplicative Chow–
Künneth decomposition h(X) = h0(X)⊕· · ·⊕h2d(X) with h0(X) ' 1 and with h1(X) = 0, which
conjecturally is the case for hyper-Kähler varieties [SV16, Conj. 4], then Proposition A.4 shows
that R′′•CHi(X) contains a filtration opposite to F 2•+1CHi(X), where F • is the conjectural Bloch–
Beilinson filtration, and equality holds if h(X) is generated as an algebra object by h2(X) ; e.g.,
if X = Hilb2(S) for a K3 surface S or if X = F (Y ) for a smooth cubic fourfold Y (see [FLV21a]).
Note however that the latter does not hold in general for hyper-Kähler varieties since, for instance,
Sym∗H2(X) → H∗(X) is not surjective if X is deformation-equivalent to Hilbn(S) for a K3
surface S and an integer n ≥ 3, or is deformation-equivalent to Kn(A) for an integer n ≥ 2
since H3(Kn(A)) 6= 0. Arguments similar to those in the proof of Proposition 5.3 show that if
H∗(X) is not generated by H2(X), then H∗(X) = H∗(X)∨ is not co-generated by H2(X), i.e.,
there exists a positive integer k such that δ̄k−1 : H2k(X) → Symk H2(X) is not injective. By
the general Bloch–Beilinson philosophy, there exists conjecturally an integer i such that δ̄k−1 is
non-zero on Gr2k−2i

F CHi(X) and so R′′•CHi(X) is conjecturally not opposite to F 2•+1CHi(X) –

it only contains strictly a filtration opposite to F 2•+1CHi(X).

A.2. Relation to modified diagonals. Let o : 1 → h(X) be a unit for the covariant Chow
motive of X seen as a co-algebra object. In other words, o is a zero-cycle in CH0(X) such that
δ∗o = o × o in CH0(X ×X). The iterated reduced co-multiplication δ̄n : h(X) → h(X)⊗n+1, as
defined in §1.3 in a general setting, satisfies

δ̄n =

n+1∏
i=1

p∗0,i(∆X −X × o) in CHdimX(X ×Xn+1). (18)

Here ∆X ∈ CHdimX(X × X) is the class of the diagonal and p0,i : X × Xn+1 → X × X is the
projector on the product of the first and (i+ 1)-st factors. One recognizes here the cycle denoted
Γ1,n+1(X, o) in [Voi15, (5)], the pushforward of which under the projection X × Xn+1 → Xn+1

is the so-called (n + 1)-th modified diagonal cycle Γn+1(X, o) ; see [Voi15, Lem. 2.1]. Restricting
to the generic point ηX of X, we obtain explicitly for the iterated reduced co-multiplication
(associated to the unit o) on the birational motive of X :

δ̄n =
n+1∏
i=1

p∗0,i(∆X |ηX×X − ηX × o) in Hom
(
h◦(X), h◦(X)⊗n+1

)
.

From [Voi15, Cor. 1.6 & Prop. 2.2], we have that δ̄n : h(X) → h(X)⊗n+1 vanishes for n large
enough. Recall from §1.3 that in the general setting where M = M(0)⊕· · ·⊕M(n) is a unital grading

on a co-algebra object M , then the iterated reduced co-multiplication δ̄n vanishes. Therefore, from
the discussion in §A.1, we see that if h(X) admits a multiplicative Chow–Künneth decomposition
with h0(X) ' 1, then δ̄2 dimX = 0 (and hence by pushforward Γ2 dimX+1(X, o) = 0) and δ̄dimX+1 =
0 (and hence by pushforward ΓdimX+1(X, o) = 0) in case h1(X) = 0. This recovers and gives a
more conceptual proof of [SV16, Prop. 8.12]. In particular, [SV16, Conj. 4] on the existence of a
multiplicative Chow–Künneth decomposition for hyper-Kähler varieties X implies the vanishing
of the modified diagonal Γ2n+1(X, o), which is a conjecture of O’Grady [O’G14].
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On the other hand, similar arguments show that if we have the weaker assumption that
the birational motive h◦(X) admits a co-multiplicative birational Chow–Künneth decomposi-

tion {$X
0 , . . . , $

X
d }, then δ̄d = 0 in Hom

(
h◦(X), h◦(X)⊗d+1

)
and, if h◦1(X) = 0, δ̄bd/2c = 0 in

Hom
(
h◦(X), h◦(X)⊗bd/2c+1

)
, or, equivalently by Lemma 2.1, ([x]− o)×d+1 = 0 in CH0(Xd+1) for

all x ∈ X and, if h◦1(X) = 0, ([x]− o)×bd/2c+1 = 0 in CH0(Xbd/2c+1) for all x ∈ X. The arguments
of Voisin [Voi15, §3] show that if for some k we have ([x]−o)×k+1 = 0 in CH0(Xk+1) for all points
x ∈ X, then the modified diagonal Γm(X, o) vanishes for all m ≥ (dimX+1)(k+1). In particular,
for the 2n-dimensional hyper-Kähler varieties considered in Proposition 1, we have Γm(X, o) = 0
for all m ≥ (2n+ 1)(n+ 1).

Focusing on moduli spaces of stable sheaves on K3 surfaces, Barros, Flapan, Marian and Sil-
versmith have independently introduced in [BFMS22, §4] the following ascending filtration on
CHi(Mσ(v)) :

SBFMS
k CHi(Mσ(v)) := {α ∈ CHi(Mσ(v))

∣∣ p∗0α · δ̄i+k = 0 in CHi(Mσ(v)×Mσ(v)i+k+1)}, (19)

where p0 : Mσ(v) ×Mσ(v)i+k+1 → Mσ(v) is the projection on the first factor. (Note that this
filtration is denoted S in [BFMS22] and that δ̄j = ∆0,1 · · ·∆0,j+1 by (18)). We note that the
filtration (19) can in fact be defined for any smooth projective variety X equipped with a unit
o ∈ CH0(X), and that we then have the obvious inclusion SBFMS

k CHi(X) ⊆ Ri+kCHi(X) for all
i ≥ 0 and all k ≥ −i. The above inclusion is in fact an equality :

Proposition A.6. We have SBFMS
k CHi(X) = Ri+kCHi(X).

Proof. I thank Alina Marian [Mar20] for mentioning the equality in the statement of the propo-
sition and for providing the following combinatorial argument. For ease of notation, we write
∆̄ := ∆X − X × o and ∆i,j (resp. ∆i,j) for the pull-back of ∆ (resp. ∆X) along the projection
Xn → X ×X on the product of the i-th and j-th factors. We also write αi for the pull-back of a
cycle α on X along the projection Xn → X on the i-th factor. For α ∈ CH∗(X), we show

δ̄k−1
∗ α = 0 in CH∗(X

k) ⇐⇒ α0 · δ̄k−1 = 0 in CH∗(X ×Xk),

where the left factor of X × Xk is the 0-th factor. The direction ⇐ is trivial. To see the other
direction, recall from (18) that δ̄k−1 = ∆0,1 ·∆0,2 · · ·∆0,k and consider the cycle

γ := α0 ·∆0,1 ·∆0,2 · · ·∆0,k+1 ∈ CH∗(X ×Xk+1).

We write γ in two different ways :

(1) γ = α1 ·∆0,1 ·∆1,2 · · ·∆1,k+1 (switch the indices 0 and 1 everywhere) ;

(2) γ = α0 ·∆0,1 ·∆0,2 · · ·∆0,k ·∆1,k+1 (switch 0 and 1 on the last factor only).

We now calculate π∗γ with π : X×Xk+1 → Xk+1 the projection on the last k+1 factors. From (1)
we have

π∗γ = α1 ·∆1,2 · · ·∆1,k+1,

while from (2) we first have γ = α0 ·∆0,1 ·∆0,2 · · ·∆0,k ·∆1,k+1 since o1 ·∆1,k+1 = 0, and then

π∗γ = π∗(α0 ·∆0,1 ·∆0,2 · · ·∆0,k) ·∆1,k+1,

where π∗(α0 ·∆0,1 ·∆0,2 · · ·∆0,k) is understood to be pulled back from Xk under the projection

Xk+1 → Xk on the first k factors. Clearly then, the vanishing of δ̄k−1
∗ α = π∗(α0·∆0,1·∆0,2 · · ·∆0,k)

implies the vanishing of α1 ·∆1,2 · · ·∆1,k+1 which is nothing but the cycle α0 · δ̄k−1 with a shift of
indices. �
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A.3. The co-radical filtration on the Chow ring of abelian varieties. The aim of this
paragraph is to spell out the analogues of the results of §4, §5 and §6 in the case of abelian
varieties. Let A be an abelian variety over a field K and denote g its dimension. Let [n] : A→ A
denote the multiplication by n morphism. Recall from [Bea86] that the Chow ring of an abelian
variety A admits a bigrading

CH∗(A) =
⊕

i−g≤j≤i
CHi(A)(j), (20)

where CHi(A)(j) := {α ∈ CHi(A)
∣∣ [n]∗α = n2i−jα for all n ∈ Z} and that

F kCH∗(A) :=
⊕
j≥k

CH∗(A)(j) (21)

is conjecturally the Bloch–Beilinson filtration (in particular, it is expected that CH∗(A)(j) = 0 for

all j < 0, or equivalently, F 0CH∗(A) = CH∗(A)).
Fix an integer n distinct from −1, 0, or 1. The Deninger–Murre [DM91] decomposition of the

(contravariant) Chow motive

h(A) = h0(A)⊕ · · · ⊕ h2g(A)

is a Chow–Künneth decomposition that can be obtained by considering the projectors on the
various eigenspaces for the multiplication by n morphism, i.e.,

πkA :=
∏

0≤i≤2g,i6=k

[n]∗ − ni

nk − ni
. (22)

With that description, it is clear that the Deninger–Murre decomposition provides a multiplicative
Chow–Künneth decomposition of h(A), and in particular a grading of h(A) considered as an
algebra object. It is also clear that CHi(A)(j) = CHi(h2i−j(A)), i.e., that the Deninger–Murre
decomposition lifts to h(A) the Beauville decomposition on CH∗(A).

The sum morphism Σ : A × A → A induces a map Σ∗ : h(A) ⊗ h(A) → h(A)(−g) called the
Pontryagin product and that we more commonly denote ∗. Künnemann [Kün94] showed that the
Deninger–Murre projectors can be alternately described as

πkA =
1

(2g − k)!

(
2g∑
n=1

(−1)n−1

n

(
idA −A× 0

)∗n)∗(2g−k)

. (23)

(In the above formula, the Pontryagin product is to be understood on A×A viewed as an abelian
scheme over A via the first projection.) With that description, Künnemann shows (see Theorem 3)
that the multiplication map

Sym∗ h1(A)
∼−→ h(A) (24)

is an isomorphism of graded algebra objects, with inverse given by the sum of the isomorphisms

1

k!
(Σk)∗ : hk(A)

∼−→ Symk h1(A),

where Σk : Ak → A is the sum homomorphism.

Dualizing (24) and passing to covariant Chow motives, and setting hk(A) := π2g−k
A h(A), one

obtains that co-multiplication induces an isomorphism of unital graded co-algebra objects

h(A)
∼−→ Sym∗ h1(A) (25)

with h(A) endowed with the unit 0 : 1→ h(A). Its inverse is given by the sum of the isomorphisms

1

k!
Σk
∗ : Symk h1(A)

∼−→ hk(A). (26)
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This isomorphism (25) in particular endows the (covariant) Chow motive h(A) with a strict grading
in the sense of §1.5. Note also as in §1.3 that, for k > 0 the degree-k part of the isomorphism (25)
is nothing but the iterated reduced co-multiplication δ̄k−1. We then have :

Theorem A.7. Let A be an abelian variety of dimension g over a field K. The co-radical
filtration R′kCHi(A) := R2(g−i)+kCHi(A), where R• is as in Definition A.1, relates to the Beauville
decomposition as follows :

R′kCHi(A) =

k⊕
j=i−g

CHi(A)(j). (27)

In particular,

(a) we have

0 = R′i−g−1CHi(A) ⊆ R′i−gCHi(A) ⊆ · · · ⊆ R′iCHi(A) = CHi(A),

and conjecturally R′−1CHi(A) = 0 ;

(b) the co-radical filtration R′• on CHi(A) is opposite to the filtration F • of (21) (which, conjec-
turally is the Bloch–Beilinson filtration) and we have

R′kCHi(A) ∩ F kCHi(A) = CHi(A)(k) ;

(c) the co-radical filtration R′• is an algebra filtration on CHi(A), i.e.,

R′kCHi(A) ·R′k′CHj(A) ⊆ R′k+k′CHi+j(A) ;

(d) every point x ∈ A satisfies

([x]− [0])×g+1 = 0 in CH0(Ag+1).

Proof. The identity (27) is the combination of Beauville’s decomposition (20), Theorem 3 and
Proposition A.3. Alternately, it is the combination of Beauville’s decomposition (20), the strict
grading of h(A) provided by (25) and Proposition 1.2. Items (a), (b) and (c) then follow from
the properties of the Beauville decomposition recalled above, and item (d) follows from (a) and
Proposition 6.2. �

Remark A.8. Alina Marian [Mar20] has informed us that the identity (27) can also be obtained
by using the coincidence (up to shift) of the co-radical filtration R• with the filtration SBFMS

•
defined in (19), and by considering the eigenspace decomposition of CH∗(A×Ak+1) for the action
of the map that acts as multiplication by N on the first factor A and as the identity on the second
factor Ak+1. (The latter is based on a discussion between Alina Marian and Qizheng Yin).

Remark A.9. In contrast to the case of hyper-Kähler varieties where it is expected (Conjec-
ture 7.2) that RkCH0(X) is spanned by classes of points, it is in general not true that RkCH0(A)
is spanned by classes of points for a complex abelian variety A. Voisin [Voi18a, Thm. 1.8]
has indeed showed that if A is a very general abelian variety of dimension g ≥ 2k − 1, then
the set Ak := {x ∈ A

∣∣ ([x] − [0])∗k = 0 in CH0(A)} is countable, and hence so is the subset

Rk−1A := {x ∈ A
∣∣ ([x]− [0])×k = 0 in CH0(Ak)}. However, by Theorem A.7, the set Rk−1A can-

not span Rk−1CH0(A) for k > 1 since the group CHg(A)(1) ' A(C) is not spanned by a countable
subset.

Appendix B. δ-filtrations

Let X be a hyper-Kähler variety. We saw that the Voisin filtration on CH0(X) is expected
to be induced by a strict grading on the birational motive of X, and as such admits a splitting
that is “compatible” with the diagonal embedding map. Our aim here is to provide, somewhat
artificially as we feel that the language of birational motives is the right language to use in that
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setting, a strong notion of splitting of an ascending filtration on CH0 that avoids the use of
birational motives.

B.1. δ-filtrations and δ-gradings. The following definitions are justified by Proposition B.3
below.

Definition B.1. Let X be a smooth projective variety over a field K and let F• be an ascending
filtration on CH0(X) with F−1CH0(X) = {0}. For all n > 1, we define the filtration F δ• on
CH0(Xn) :

F δkCH0(Xn) := im
( ⊕
i1+···+in=k

Fi1CH0(X)⊗ · · · ⊗ FinCH0(X)→ CH0(Xn)
)
.

Recall from §2.3 that if K is algebraically closed, then the exterior product map CH0(X) ⊗
CH0(Y ) → CH0(X ×K Y ) is surjective for all smooth projective varieties X and Y over K.
Therefore, if the filtration F•CH0(X) is exhaustive, then so is the induced filtration F δ•CH0(Xn)
for n > 0. We note however that if CH0(X) =

⊕
k≥0 CH0(X)(k) is a finite grading, i.e., a finite

direct sum decomposition, then

CH0(Xn)δ(k) := im
( ⊕
i1+···+in=k

CH0(X)(i1) ⊗ · · · ⊗ CH0(X)(in) → CH0(Xn)
)

(28)

need not define a grading on CH0(Xn) for n > 1, i.e., the pieces CH0(Xn)δ(k) for k ≥ 0 need not

be in a direct sum.

Definition B.2. Let X be a smooth projective variety and denote δn : X ↪→ Xn+1 the diagonal
embedding.
• A δ-filtration on CH0(X) is an exhaustive ascending filtration F• with F−1CH0(X) = {0} such
that

(a) ε∗ : F0CH0(X)→ Q is an isomorphism ;
(b) δn∗

(
FkCH0(X)

)
⊆ F δkCH0(Xn+1) for all k and n.

• A δ-grading on CH0(X) is a finite direct sum decomposition CH0(X) =
⊕

k≥0 CH0(X)(k) such
that

(a) ε∗ : CH0(X)(0) → Q is an isomorphism and ker(ε∗ : CH0(X)→ Q) =
⊕

k>0 CH0(X)(k) ;

(b) δn∗
(
CH0(X)(k)

)
⊆ CH0(Xn+1)δ(k) for all k and n ;

(c) CH0(Xn) =
⊕

k≥0 CH0(Xn)δ(k) for all n > 0.

In items (b) and (c) above, CH0(Xn)δ(k) is defined as in (28).

• A δ-grading is said to be strict if δ̄k∗ : CH0(X)(k+1) → CH0(Xk+1) is injective for all k ≥ 0,

where δ̄k = p̄⊗k+1 ◦ δk with δk : X ↪→ Xk+1 the diagonal embedding and p̄ = ∆X −X × o with o
the degree-1 generator of CH0(X)(0).
• The δ-filtration associated to a δ-grading is the filtration defined by

F δkCH0(Xn) :=
⊕
r≤k

CH0(Xn)δ(r).

• A δ-filtration is said to be split if it is the filtration associated to a δ-grading.

Proposition B.3. Let X be a smooth projective variety. If h◦(X) admits a unital grading (resp. a
strict grading) h◦(X) = h◦(X)(0)⊕ · · · ⊕ h◦(X)(n), then the associated grading on CH0(X) defined
by CH0(X)(k) := CH0(h◦(X)(k)) is a δ-grading (resp. a strict δ-grading).

Proof. This is clear. �
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B.2. δ-filtrations and the co-radical filtration. Let X be a smooth projective variety. Fix a
unit o ∈ CH0(X) and denote R• the associated co-radical filtration on CH0(X). Proposition B.4
below is a variant of Proposition 1.2 ; it shows that R• contains the maximal δ-filtration F•CH0(X)
such that F0CH0(X) = Qo, and that R• is itself a δ-filtration if CH0(X) admits a strict δ-grading
with CH0(X)(0) = Qo. (As already mentioned in §1.6, note the analogy with the fact [Swe69,
Lem. 11.2.1] that the filtration associated to a strict grading on a pointed irreducible co-algebra
is necessarily the co-radical filtration).

Proposition B.4. Let X be a smooth projective variety and fix a unit o ∈ CH0(X). If F•CH0(X)
is a δ-filtration with F0CH0(X) = Qo, then

FkCH0(X) ⊆ RkCH0(X).

If in addition F• is the δ-filtration associated to a strict δ-grading CH0(X) =
⊕

k≥0 CH0(X)(k),
then for all k ≥ 0

FkCH0(X) = RkCH0(X).

Proof. Using the definition of a δ-grading, namely the property that the subspaces CH0(Xk+1)δ(l)
(as defined in (28)) of CH0(Xk+1) are in a direct sum for varying l, the proof is an easy adaptation
of the proof of Proposition 1.2 and is left to the interested reader. �

Combining Proposition B.3 and Proposition B.4, we see that Conjecture 2 implies :

Conjecture B.5. Let X be a hyper-Kähler variety. Then there exists a unit o ∈ CH0(X) such
that the associated co-radical filtration on CH0(X) is a split δ-filtration.

In particular, by Theorem 4, the hyper-Kähler varieties (i), (ii), (iii) and (iv) satisfy the above
conjecture.

B.3. Splitting of the Voisin filtration. Voisin [Voi16] conjectured that the filtration S• on the
Chow groups of zero-cycles on hyper-Kähler varieties is split in the sense that it is opposite to
the conjectural Bloch–Beilinson filtration F 2•. The following conjecture in particular provides an
alternate notion for the splitting of S• that does not depend on the existence of the conjectural
Bloch–Beilinson filtration :

Conjecture B.6. The Voisin filtration S• on the Chow group of zero-cycles on a hyper-Kähler
variety X is a split δ-filtration.

In fact, due to Conjecture 2 and Proposition B.3, we would expect S• to be the δ-filtration
associated to a strict δ-grading. If this is the case for a hyper-Kähler variety X, then we would
obtain by Proposition B.4 the coincidence of S• and of the co-radical filtration R• associated to the
class of the unit spanning S0CH0(X), in other words we would obtain the validity of Conjecture 7.2
for X. We note that even showing in general that the Voisin filtration S• is a δ-filtration is a
non-trivial matter.

Theorem B.7. Let X be one of the hyper-Kähler varieties (i), (iii) or (iv). Then Conjecture B.6
holds for X, i.e., the Voisin filtration S• on CH0(X) defines a split δ-filtration.

Proof. More strongly, the Voisin filtration S• is a δ-filtration associated to a strict δ-grading.
Indeed, it suffices by Proposition B.3 to show that S• coincides with the ascending filtration
induced by a strict grading on the birational motive h◦(X). This was established in the proof of
Theorem 7.3. �

Appendix C. Motivic surface decomposition

Our aim is to study a motivic version of Voisin’s surface decomposition conjecture for hyper-
Kähler varieties.
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C.1. Voisin’s surface decomposition. We recall the following notion due to Voisin :

Definition C.1 (Surface decomposition [Voi18b]). A projective manifold X of even dimension 2n
is said to be surface decomposable if there exist a projective smooth variety Γ, smooth projective
surfaces S1, . . . , Sn and generically finite morphisms

Γ
φ //

ψ
��

X

S1 × · · · × Sn

such that for any global 2-form σ ∈ H0(X,Ω2
X) there exist global 2-forms τi ∈ H0(Si,Ω

2
Si

) such
that

φ∗σ = ψ∗
(∑

i

p∗i τi
)
.

Here pi : S1 × · · · × Sn → Si denote the natural projections.

Based on the evidence provided by [Voi18b, Thm. 3.3] (which includes cases (i), (iv) and (v)),
Voisin formulated :

Conjecture C.2 (Voisin [Voi18b], Surface decomposability for hyper-Kähler varieties). Every
hyper-Kähler variety is surface decomposable.

C.2. Motivic surface decomposition. As will be spelled out in Proposition C.5 below, the
following notion lifts the notion of Voisin’s surface decomposition to rational equivalence.

Definition C.3 (Motivic surface decomposition). A smooth projective variety X of even dimen-
sion 2n over a field K is said to be motivically surface decomposable if there exist a projective
variety Γ, smooth projective surfaces S1, . . . , Sn and surjective morphisms

Γ
φ //

ψ
��

X

S1 × · · · × Sn
such that :

(i) φ∗[p] = φ∗[q] in CH0(XΩ), for any two general points p and q in Γ(Ω) lying on the same fiber
of ψ.

Remark C.4. Equivalently, up to taking a linear section of Γ, one can assume in Definition C.3
that φ and ψ are generically finite. In that case, (i) is equivalent to (see the proof of Proposi-
tion 2.3) :

(ii) φ∗ψ
∗ψ∗α = deg(ψ)φ∗α in CH0(XΩ), for any zero-cycle α ∈ CH0(ΓΩ).

In addition, as in Remark 2.4, if resolution of singularities holds over K, up to desingularizing Γ,
we may assume that Γ is smooth over K.

It is clear that the notion of motivic surface decomposability is stable under product and is a
birational invariant among smooth projective varieties. Moreover, Proposition 2.3(c) shows that
if X has a motivic surface decomposition as in Definition C.3, then the co-algebra structure on
h◦(X) is determined by the co-algebra structure on h◦(S1× · · ·×Sn) and hence by the co-algebra
structures on the birational motives h◦(Si), 1 ≤ i ≤ n. The following proposition shows that
the notion of “motivic surface decomposability”can be thought of as an analogue for rational
equivalence of Voisin’s notion of “surface decomposability” which is purely cohomological.
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Proposition C.5. Let X be a smooth projective complex variety of even dimension. If X admits
a motivic surface decomposition (Definition C.3) where the surfaces Si have vanishing irregularity,
then X is surface decomposable (Definition C.1).

Proof. As mentioned in Remark C.4, up to replacing Γ with a desingularization of a linear section,
we may assume that X has a motivic surface decomposition as in Definition C.3 with Γ smooth
over K of dimension 2n = dimX. By the Bloch–Srinivas argument [BS83], if φ∗ψ

∗ψ∗− deg(ψ)φ∗
acts trivially on zero-cycles, then its transpose ψ∗ψ∗φ

∗−deg(ψ)φ∗ acts trivially on global k-forms
for all k ≥ 0. In particular, it acts trivially on 2-forms. The latter is equivalent to saying that for
any global 2-form σ ∈ H0(X,Ω2

X) there exists a global 2-form τ ∈ H0(S1×· · ·×Sn,Ω2
S1×···×Sn) such

that φ∗σ = ψ∗τ . Indeed, one simply takes τ = 1
degψ ψ∗φ

∗σ. In case q(Si) = 0 for 1 ≤ i ≤ n, this is

further equivalent to the existence of global 2-forms τi ∈ H0(Si,Ω
2
Si

) such that φ∗σ = ψ∗(
∑

i p
∗
i τi),

where pi : S1 × · · · × Sn → Si are the natural projections, which is the original formulation of
Voisin [Voi18b] as laid out in Definition C.1. �

For the record, we have the following easy result.

Proposition C.6. Let X and Y be smooth projective varieties of same dimension d over a field K.
Assume either one of the following :

(i) there is a dominant rational map f : Y 99K X, or
(ii) there exist a projective variety Γ and surjective morphisms

Γ
φ //

ψ
��

X

Y

such that φ∗[p] = φ∗[q] in CH0(XΩ), for any two general points p and q in Γ(Ω) lying on the
same fiber of ψ.

If Y is motivically surface decomposable, then X is motivically surface decomposable.

Proof. More generally, suppose Y has the following property : there exist a smooth projective
variety Z of dimension d and a projective variety Γ′ with surjective morphisms φ′ : Γ′ → Y and
ψ′ : Γ′ → Z such that φ′∗[p] = φ′∗[q] in CH0(YΩ), for any two general points p and q in Γ′(Ω) lying
on the same fiber of ψ′.

In case (i), if π : Γ̃ → Γ′ denotes a resolution of f ◦ φ′ : Γ′ 99K X, then as in Remark 2.4 we

note that Φ := f ◦φ ◦π : Γ̃→ X and Ψ := ψ ◦π : Γ̃→ Z are such that Φ∗[p] = Φ∗[q] in CH0(XΩ),
for any two general points p and q in Γ(Ω) lying on the same fiber of Ψ.

In case (ii), we form the cartesian square

Γ×Y Γ′
φΓ //

ψΓ′
��

Γ

ψ
��

φ // X

Γ′
φ′ //

ψ′

��

Y

Z.

Since φΓ maps fibers of ψΓ′ to fibers of ψ, we have that Φ := φ ◦ φΓ and Ψ := ψ′ ◦ ψΓ′ are such
that Φ∗[p] = Φ∗[q] in CH0(XΩ), for any two general points p and q in (Γ ×Y Γ′)(Ω) lying on the
same fiber of Ψ. �

In view of Proposition C.5, we ask whether Voisin’s Conjecture C.2 admits an analogue modulo
rational equivalence :
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Conjecture C.7 (Motivic surface decomposability for hyper-Kähler varieties). Let X be a hyper-
Kähler variety of dimension 2n. Then X is motivically surface decomposable, in the sense of
Definition C.3.

The main result of this section provides evidence for Conjecture C.7 :

Theorem C.8. The hyper-Kähler varieties (i), (ii), (iii), (iv) and (v) are motivically surface
decomposable. Moreover, for a fixed hyper-Kähler variety as in (i), (ii), (iii), (iv) or (v), one may
choose the surfaces S1, . . . , Sn as in Definition C.3 to be the same.

Proof. Case (i). Obviously, Sn has a motivic surface decomposition, and we apply Proposition C.6
to the dominant rational map f : Sn 99K Hilbn(S) which is the composition of the quotient

morphism Sn → S(n) := Sn/Sn with the inverse of the (birational) Hilbert–Chow morphism

Hilbn(S)→ S(n).

Case (ii). This reduces to the case (i) via Proposition C.6. Indeed, as in the proof of Theo-
rem 3.1, we have generically finite and surjective morphisms

R0

pHilbn(S)

��

pMσ(v) // Mσ(v)

Hilbn(S),

such that all points on the same fiber of pHilbn(S) have same class in CH0(Mσ(v)).

Case (iii). Recall that the n-th generalized Kummer variety Kn(A) associated to an abelian
surface A is a fiber of the isotrivial fibration Hilbn+1(A)→ A that is the composite of the Hilbert–
Chow morphism Hilbn+1(A) → An+1/Sn+1 with the sum morphism Σ : An+1/Sn+1 → A. The
restriction of the Hilbert–Chow morphism provides a birational morphism from Kn(A) to the
variety An+1

0 /Sn+1, where An+1
0 is the fiber over 0 of the sum morphism Σ : An+1 → A and the

action of the symmetric group Sn+1 is the one induced from the action on An+1 permuting the
factors. We thereby obtain a dominant rational map An 99K Kn(A) and we may conclude with
Proposition C.6.

Case (iv). Let Y be a smooth cubic fourfold and let AY be its Kuznetsov component, i.e.,

AY := {E ∈ Db(Y )
∣∣ Ext∗Db(Y )(OY (i), E) for i = 0, 1, 2}.

In other words, we have a semi-orthogonal decomposition Db(Y ) = 〈AY ,OY ,OY (1),OY (2)〉.
Let D ⊂ F (Y ) be a uniruled divisor over a surface B,

D �
� j //

q

��

F (Y ).

B

Such a divisor is provided for instance by [CMP19] ; explicit examples are also given in [Voi04]

and [SY20, Lem. 1.8]. The rational map q induces an isomorphism q∗ : CH0(D)
∼−→ CH0(B),

and for k > 0 the embedding j induces a morphism j
(k)
∗ : CH0(B(k)) → CH0(F (Y )), where B(k)

denotes the k-th symmetric power of B. We consider now a moduli space M of stable objects on
AY and denote 2n its dimension. Following [SY20, §3.2], we consider the incidence

R := {(E , ξ) ∈M ×B(n)
∣∣ c3(E) = [P ]∗j

(n)
∗ [ξ] + c [l0] in CH1(Y )}

together with the two natural projections pM : R→M and pB(n) : R→ B(n). Here, P := {(l, y) ∈
F (Y )×Y : y ∈ l} is the cylinder correspondence and l0 is any line on Y with class 1

3 [c1(OY (1))]3.
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On the one hand, by [SY20, Prop. 3.4], two objects E1 and E2 satisfy [E1] = [E2] in CH0(M) if
and only if c3(E1) = c3(E2) in CH1(Y ) ; in particular, all points on the same fiber of pB(n) have
the same class in CH0(M). On the other hand, by [SY20, Prop. 3.5] (which holds for the base
of any uniruled divisor in F (Y )), assuming pM : R → M is dominant, there is a component

R0 ⊆ R such that both projections pM : R → M and pB(n) : R → B(n) restricted to R0 are
dominant and generically finite. Combining both facts above establishes that M is motivically
surface decomposable, provided pM : R→M is dominant.

In order to establish (iv), it thus suffices to obtain a modular interpretation M of F (Y ) and to
show that the corresponding map pM : R→M is dominant.

First, we recall how the Fano variety F (Y ) of lines on Y can be viewed as a moduli of stable
objects in AY . Let l be a line on Y . Denote Il the ideal sheaf of l in Y and consider the stability
condition on coherent sheaves on Y induced by the projective embedding Y ⊂ P5. Following
[MS12, §2.3], it was observed in [KM09] that the stable coherent sheaf Fl := ker(O⊕4

Y −→ Il(1))
belongs to AY . Moreover, in [KM09, Prop. 5.5], F (Y ) is identified with the connected component
of the moduli space of stable sheaves containing the objects Fl for any line l ⊂ Y . Now define

Pl := cone
(
ev∨ : Fl(−1) −→ RHom(Fl(−1),OY (−1))∨ ⊗OY (−1)

)
[−1].

The object Pl still belongs to AY , and in Db(Y ) we have a distinguished triangle

OY (−1)[1] // Pl // Il. (29)

Moreover, as explained in [MS12, §2.3], the Fano variety F (Y ) of lines on Y identifies with the
moduli space of the objects Pl ∈ AY . By [LPZ18, Thm. 1.1], the objects Pl are stable (with
respect to a Bridgeland stability condition) with Mukai vector λ1 +λ2 (with λ1 and λ2 as defined
e.g. in [LPZ18, §2.2]) and F (Y ) identifies with the moduli space M := Mσ(λ1 +λ2). Consequently,
the points of M are given by the stable objects Pl ∈ AY for varying l ∈ F (Y ).

Second, we conclude by showing that pM : R→M is dominant. For that purpose, it is sufficient
to show that for all lines l ⊂ Y , we have c3(Pl) ∈ SSY2 (Y ), where SSY• (Y ) is the ascending filtration
of Shen–Yin [SY20] on CH1(Y ) defined by

SSYk (Y ) := {[P ]∗j
(k)
∗ [ξ] +Z [l0] : ξ ∈ B(k)} ⊆ CH1(Y ).

(Note that SSY• does not depend on the choice of uniruled divisor by [SY20, Lem. 1.1].) Due
to (29), we have the following identity involving total Chern classes

c(Pl) = c(Il) · c(OY (−1))−1 in CH∗(Y ).

Since the ideal sheaf Il is supported on l, we have ci(Il) = 0 for i < 3. It follows that

c3(Pl) = c3(Il) + 3[l0] in CH3(Y ).

However, by [SY20, Thm. 0.4], we have c3(Il) ∈ SSY2 (Y ), and we conclude that c3(Pl) ∈ SSY2 (Y ),
as desired.

Case (v). Let Y be a smooth cubic fourfold not containing a plane, let F be its Fano variety of
lines and let Z be the associated LLSvS eightfold. By considering µ : F × F 99K Z the dominant
rational map of degree 6 constructed by Voisin [Voi16, Prop. 4.8], we obtain thanks to case (iv)
and Proposition C.6 a motivic surface decomposition for Z. �

Remark C.9. We note that, for any surface B obtained as the (desingularization of the) base of
a uniruled divisor on the Fano variety F (Y ) of lines on a smooth cubic fourfold Y , we obtain a
motivic surface decomposition for F (Y ) in terms of B ×B. In particular, by Proposition C.5, we
obtain a surface decomposition in cases (iv) and (v) for any surface B with vanishing irregularity
obtained as the (desingularization of the) base of a uniruled divisor on F (Y ). This should be
compared to [Voi18b, Thm. 3.3(1)], where the surface involved in the surface decompositions
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of (iv) and (v) is the surface B = Σ2 of lines of second type on Y (whose irregularity vanishes by
[GK20, Thm. D]).

Remark C.10 (Moduli spaces of stable objects on AY ). Let M be a moduli space of stable
objects on AY and let 2n be its dimension. The proof of Theorem C.8(iv) shows that M is
motivically surface decomposable if pM : R → M is dominant, or equivalently if for any object
E ∈M we have c3(E) ∈ SSYn (Y ). The latter is precisely [SY20, Conj. 0.3].

As an application of the above, we can complete the list of [Voi18b, Thm. 3.3] :

Corollary C.11. (a) Moduli of stable objects on K3 surfaces are surface decomposable.
(b) Let M be a moduli of stable objects on the Kuznetsov component AY of a smooth cubic four-

fold Y . If M satisfies [SY20, Conj. 0.3], then M admits a surface decomposition and the
surfaces involved can be chosen to be pairwise equal and to be equal to any surface B with
vanishing irregularity obtained as the base of a uniruled divisor on the Fano variety F (Y ).

Proof. Case (a) is the combination of Theorem C.8(ii) (where a motivic surface decomposition is
obtained in terms of a K3 surface) and Proposition C.5. Case (b) was outlined in Remark C.10
(see also Remark C.9). �
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[FLV21b] , Multiplicative Chow-Künneth decompositions and varieties of cohomological K3 type, Ann. Mat.
Pura Appl. (4) 200 (2021), no. 5, 2085–2126.

[Fre20] Sarah Frei, Moduli spaces of sheaves on K3 surfaces and Galois representations, Selecta Math. (N.S.)
26 (2020), no. 1, Art. 6, 16.



42 CHARLES VIAL

[FTV19] Lie Fu, Zhiyu Tian, and Charles Vial, Motivic hyper-Kähler resolution conjecture, I: generalized Kummer
varieties, Geom. Topol. 23 (2019), no. 1, 427–492.

[Ful84] William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in
Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984.

[FV20] Lie Fu and Charles Vial, Distinguished cycles on varieties with motive of Abelian type and the section
property, J. Algebraic Geom. 29 (2020), no. 1, 53–107.

[FV21] , A motivic global Torelli theorem for isogenous K3 surfaces, Adv. Math. 383 (2021), Paper No.
107674, 44.

[GK20] Frank Gounelas and Alexis Kouvidakis, Geometry of lines on a cubic fourfold, 2020.
[Jan94] Uwe Jannsen, Motivic sheaves and filtrations on Chow groups, Motives (Seattle, WA, 1991), Proc.

Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 245–302.
[KM09] A. Kuznetsov and D. Markushevich, Symplectic structures on moduli spaces of sheaves via the Atiyah

class, J. Geom. Phys. 59 (2009), no. 7, 843–860.
[KS16] Bruno Kahn and Ramdorai Sujatha, Birational motives I: Pure birational motives, Ann. K-Theory 1

(2016), no. 4, 379–440.
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