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ABSTRACT. For a smooth projective geometrically uniruled threefold defined over a perfect field we
show that there exists a canonical abelian variety over the field, namely the second algebraic rep-
resentative, whose rational Tate modules model canonically the third l-adic cohomology groups of
the variety for all primes l. In addition, there exists a rational correspondence inducing these iden-
tifications. In the case of a geometrically rationally chain connected variety, one obtains canonical
identifications between the integral Tate modules of the second algebraic representative and the third
l-adic cohomology groups of the variety, and if the variety is a geometrically stably rational three-
fold, these identifications are induced by an integral correspondence. Our overall strategy consists
in studying – for arbitrary smooth projective varieties – the image of the second l-adic Bloch map
restricted to the Tate module of algebraically trivial cycle classes in terms of the “correspondence
(co)niveau filtration”. This complements results with rational coefficients due to Suwa. In the appen-
dix, we review the construction of the Bloch map and its basic properties.

INTRODUCTION

0.1. Mazur’s question with Q`-coefficients. In the context of the generalized Hodge conjecture,
it is natural to ask the following question [Voi14, Que. 2.43] : Let X be a smooth complex projective
manifold, and let ν, i be natural numbers. Given a weight-i Hodge structure L ⊆ Hi(X, Q) such that the
Tate twist L(ν) is effective (i.e., Lp,q = 0 for p, q > ν), does there exist a complex projective manifold
Y and an inclusion of Hodge structures L(ν) ↪→ Hi−2ν(Y, Q) ? Essentially by definition, one can
rephrase this question, via the Hodge coniveau filtration N•H Hi(X, Q), as asking whether for a
given ν, there exists a smooth projective manifold Y such that Nν

H Hi(X, Q(ν)) ⊆ Hi−2ν(Y, Q).
The generalized Hodge conjecture predicts that the Hodge coniveau filtration coincides with the
so-called geometric coniveau filtration, N• Hi(X, Q) ; in this sense one can rephrase the question
in terms of the geometric coniveau filtration, and it is this version we will focus on in this paper.

As a motivating example for this work, consider the case where i = 2n− 1 is odd and where
ν = n. Setting J2n−1

a (X) to be the algebraic intermediate Jacobian, i.e., the image of the Abel–
Jacobi map AJ : An(X) → J2n−1(X) restricted to algebraically trivial cycles, it is well-known that
Nn−1 H2n−1(X, Q) = H1( Ĵ2n−1

a (X), Q) ' H1(J2n−1
a (X), Q), answering the question in the case of

the geometric coniveau filtration.

For smooth projective varieties over arbitrary fields, one can rephrase the Hodge theoretic ques-
tion above by replacing Betti cohomology with `-adic cohomology. Mazur [Maz14, Maz11] asked
the following :

Question 1 (Mazur’s question with Q`-coefficients). Let X be a smooth projective variety over a field K
with separable closure K. Given a natural number n, does there exist an abelian variety A/K such that for
all primes ` 6= char(K) there is an isomorphism of Galois modules

V`A '−−−→ Nn−1 H2n−1(XK, Q`(n)) ? (0.1)

The first- and second-named authors were partially supported by grants 637075 and 581058, respectively, from the
Simons Foundation.

1



In fact, one can pose an analogue of Mazur’s question for any Weil cohomology H(·). In positive
characteristic p, much of our work also extends to the case of cohomology H(−, Qp), which can be
recovered as the F-invariants of the crystalline cohomology. In this introduction, where possible,
we phrase statements uniformly in a prime l, although we remind the reader that, for example,
dim Hi(X, Qp) is typically smaller than dim Hi(X, Q`) ; we reserve ` for primes distinct from the
characteristic of the base field.

From the motivic perspective, it is natural to ask that the isomorphism (0.1) be induced by a
correspondence. Note that given the isomorphism (0.1), the Tate conjecture provides for each ` a
correspondence Γ` ∈ CHn(A×K X)⊗Q` inducing the isomorphism for that `. One might expect
to find a correspondence Γ with integral coefficients, and that it be independent of l :

Question 2 (Mazur’s motivic question with Ql-coefficients). Does there exist a correspondence Γ ∈
CHn(A×K X) inducing for all primes l the above isomorphisms (0.1) ?

Our first observation is that our results in [ACMV20] provide an affirmative answer to Ques-
tions 1 and 2 for any field K of characteristic zero, and for any n. Recall that in [ACMV20], it is
shown that the algebraic intermediate Jacobian J2n−1

a (XC) attached to a smooth projective vari-
ety X defined over K ⊆ C admits a distinguished model J2n−1

a,X/K over K in the sense that this model
makes the Abel–Jacobi map AJ : An(XC) → J2n−1

a (XC) restricted to algebraically trivial cycles an
Aut(C/K)-equivariant map.

Theorem 3 ([ACMV20, Thm. 2.1]). Let X be a smooth projective variety over a field K ⊆ C. Given a
natural number n, let J2n−1

a,X/K denote the distinguished model of the intermediate Jacobian J2n−1(XC). Then
there exists a correspondence Γ ∈ CHn(J2n−1

a,X/K ×K X) inducing for all primes ` an inclusion of Galois
modules

Γ∗ : V` J2n−1
a,X/K

� � // H2n−1(XK, Q`(n))

with image Nn−1 H2n−1(XK, Q`(n)).

Thus we turn next to Questions 1 and 2 in the case where K has positive characteristic. As a
first partial result, we establish in Proposition 6.1 a positive answer to Question 1 and 2 under the
further assumptions that K is perfect, 2n− 1 ≤ dX := dim X, and H2n−1(XK, Ql(n)) has geometric
coniveau n− 1 (this was established in [ACMV17, Thm. 2.1(d)] for K ⊆ C). While the condition
that H2n−1(XK, Ql(n)) have geometric coniveau n − 1 is in general quite restrictive, it does not
impose a condition for n = 1 or n = dX, and therefore Proposition 6.1 establishes an affirmative
answer to Mazur’s Questions 1 and 2 for n = 1, dX and K perfect (see Remark 6.2 for the case
n = dX). Thus, moving forward, we will essentially be focusing on the case n = 2 in positive
characteristic.

0.2. Mazur’s question with Q`-coefficients in positive characteristic. We focus now on Ques-
tion 1 in positive characteristic, and set aside the issue of the correspondence in Question 2. We
attempt to use algebraic representatives and the Bloch map as replacements for intermediate Jaco-
bians and Abel–Jacobi maps.

More precisely, recall that over an arbitrary field a replacement for J2n−1
a,X/K is the algebraic represen-

tative Abn
X/K. If it exists (as in the case n = 1, 2, dX), it comes with a Gal(K)-equivariant morphism

φn
XK/K : An(XK) −→ Abn

X/K(K),

where as in the case K = C we set

An(XK) := {α ∈ CHn(XK)
∣∣ α is algebraically trivial}.
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For n = 1, dX, the algebraic representative is the reduced Picard variety with the Abel–Jacobi
map, and the Albanese variety with the Albanese map, respectively. For the case n = 2, the ex-
istence was proved for smooth projective varieties over an algebraically closed field in [Mur85].
This was extended to smooth projective varieties defined over a perfect field (e.g., a finite field) in
[ACMV17], and to smooth projective varieties defined over any field in [ACMVb]. In characteris-
tic 0, this agrees with the distinguished model of J3

a (XC) of [ACMV20]. We refer to §3.2 for more
details.

At the same time, recall that for a smooth projective variety X over a field K with separable
closure K, and a prime l, Bloch [Blo79] in the case l 6= char(K) and later Gros–Suwa [GS88] in the
case l = char(K) defined a map

λn : CHn(XK)[l
∞] −→ H2n−1(XK, Ql/Zl(n)) (0.2)

on l-primary torsion, extending the Abel–Jacobi map on homologically trivial l-torsion cycle classes
(see (A.5)) in the case K = C. Suwa [Suw88] in the case l 6= char(K) and Gros–Suwa [GS88] in the
case l = char(K) then defined an l-adic Bloch map

Tlλ
n : Tl CHn(XK) −→ H2n−1(XK, Zl(n))τ (0.3)

by taking the Tate module of the Bloch map λn. Here the subscript τ indicates the quotient by the
torsion subgroup ; recall that a result of Gabber states that for a given X, the cohomology groups
are torsion-free for all but finitely many l. Tensoring by −⊗Zl Ql defines a map

Vlλ
n : Vl CHn(XK) −→ H2n−1(XK, Ql(n)).

In the appendix, we give a more direct construction of the `-adic Bloch map for primes ` 6=
char(K), following Bloch’s original construction, but taking an inverse limit rather than a direct
limit. We show these two constructions agree, and that the `-adic Bloch map agrees with the `-adic
Abel–Jacobi map in the case K = C, when one restricts to homologically trivial cycle classes. We
then review in §A.4 a few properties of the l-adic Bloch map that we use in the body of the paper.

It is well-known that one can use these maps to model H2n−1(XK, Ql(n)) for n = 1, dX via the
Picard and Albanese : in those cases, we have isomorphisms (see Propositions A.25 and A.26)

Vl(Pic0
X/Kred)

(Vlφ
1
XK/K

)−1

'
// Vl A1(XK) Vl CH1(XK)

Vlλ
1

'
// H1(XK, Ql(1))

Vl AlbX/K

(Vlφ
dX
XK/K

)−1

'
// Vl AdX (XK) Vl CHdX (XK)

Vlλ
dX

'
// H2dX−1(XK, Ql(dX)).

Therefore, we focus here on the cases n 6= 1, dX, and in particular, the case n = 2. While in positive
characteristic, the relationship between the Tate module of the algebraic representative and the
coniveau filtration is not known in general, a result of Suwa relates the coniveau filtration to the
image of the l-adic Bloch map (restricted to algebraically trivial cycles).

Proposition 4 (Suwa [Suw88, Prop. 5.2]). Let X be a smooth projective variety over a perfect field K and
let n be a natural number. For all prime numbers l, the image of the composition

Vl An(XK)
� � // Vl CHn(XK)

Vlλ
n
// H2n−1(XK, Ql(n)) (0.4)

is equal to Nn−1H2n−1(XK, Ql(n)).
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We refer to Proposition 2.1 for a more precise statement. As a minor technical point, we mention
that Suwa proves this result for a slightly different coniveau filtration, which we call the corre-
spondence coniveau filtration ; he shows this filtration agrees with the usual coniveau filtration in
characteristic 0, and we extend this result to perfect fields in Proposition 1.1.

Since Tlλ
2 is an inclusion (see Proposition A.27), as an immediate corollary of our results above,

and Suwa’s proposition, one obtains :

Corollary 5 (Modeling Ql-cohomology). Let X be a smooth projective variety over a perfect field K
and let l be a prime number. If Vlφ

2
XK/K : Vl A2(XK) → Vl Ab2

X/K is an isomorphism, e.g., if X is a
geometrically uniruled threefold (Proposition 3.8(3)), then the composition

Vl Ab2
X/K

(Vlφ
2
XK/K

)−1

'
// Vl A2(XK)

� � // Vl CH2(XK)
� � Vlλ

2
// H3(XK, Ql(2)) (0.5)

is an inclusion of Gal(K)-modules with image N1H3(XK, Ql(2)).

The assumption that Vlφ
2
XK/K be an isomorphism is implied (see Lemma 3.6) by the, possibly

vacuous, assumption that φ2
XK/K : A2(XK) → Ab2

X/K be an isomorphism on l-primary torsion. It
turns out that this assumption also plays a crucial role in our work [ACMVa], so we single it out :

Definition 6 (Standard assumption at l). Let X be a smooth projective variety over a field K and
let l be a prime number. We say that φ2

XK/K (or by abuse, X) satisfies the standard assumption at the
prime l if

φ2
XK/K[l

∞] : A2(XK)[l
∞]

'−−−→ Ab2
X/K[l∞] (0.6)

is an isomorphism. We say that φ2
XK/K (or by abuse X) satisfies the standard assumption if it

satisfies the standard assumption at l for all primes l.

In Proposition 3.8, we give sufficient conditions for the standard assumption to be satisfied ; in
particular, the standard assumption holds if char(K) = 0 [Mur85, Thm. 10.3] or if X is geometri-
cally rationally connected with K perfect. We are unaware of an example of a smooth projective
variety for which the standard assumption at a prime l fails.

We mention here that both Proposition 4 and Corollary 5 hold with Ql/Zl-coefficients so long as
one replaces the coniveau filtration (1.1) with the correspondence niveau filtration (1.4), thus pro-
viding an answer to Mazur’s Question 1 with Ql/Zl-coefficients and with the geometric coniveau
filtration N• replaced with the correspondence niveau filtration Ñ

•
.

As a final note, we mention that in principle, the technique used to prove Corollary 5 would
work for any n, assuming that there exists an algebraic representative in codimension-n, that
Vlφ

n
XK/K

is an isomorphism, and that Vlλ
n is an inclusion ; however, unlike the case n = 1, 2, dX, in

general, for n 6= 1, 2, dX, one does not expect these conditions to hold. Nevertheless, in the body
of the paper, we explain the general case, and indicate where special assumptions are needed.

0.3. Mazur’s question with Z`-coefficients. Next we consider Mazur’s question in the case of
Zl-coefficients (while acknowledging that, in positive characteristic p and with l = p, it might be
more natural to seek an isomorphism of F-crystals than an isomorphism of cohomology groups
H•(−, Zp)). To start with, as in the case of Ql-coefficients, it is well-known that one can model
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H2n−1(XK, Zl(n))τ for n = 1, dX via the Picard and Albanese : in those cases, we have isomor-
phisms (see Propositions A.25 and A.26)

Tl(Pic0
X/K)red

(Tlφ
1
XK/K

)−1

'
// Tl A1(XK) Tl CH1(XK)

Tlλ
1

'
// H1(XK, Zl(1))

Tl AlbX/K

(Tlφ
dX
XK/K

)−1

'
// Tl AdX (XK) Tl CHdX (XK)

Tlλ
dX

'
// H2dX−1(XK, Zl(dX))τ

Motivated by the discussion in §0.1 leading to Corollary 5, we proceed in a similar way, focusing
on the case n = 2. The starting point is again to assume that φ2

XK/K[l
∞] : A2(XK)[l

∞]→ Ab2
X/K[l∞]

is an isomorphism ; i.e., we assume the so-called standard assumption for n = 2 (Definition 6) ;
e.g., we assume char(K) = 0 or X is geometrically rationally chain connected.

By taking Tate modules one has (Lemma 3.6) that

Tlφ
2
XK/K : Tl A2(XK) −→ Tl Ab2

X/K (0.7)

is an isomorphism as well. Consequently, one can consider the composition

Tl Ab2
X/K

(Tlφ
2
XK/K

)−1

'
// Tl A2(XK)

� � // Tl CH2(XK)
� � Tlλ

2
// H3(XK, Zl(2))τ. (0.8)

That Tlλ
2 is an inclusion is reviewed in Proposition A.27. In Proposition 2.1, we show that

the image of the map Tlλ
2 : Tl A2(XK) → H3(XK, Zl(2))τ contains Ñ

n−1
H2n−1(XK, Zl(n))τ ;

here Ñ
•

is the correspondence niveau filtration defined in (1.4). Combined with Suwa’s Proposi-
tion 4 (together with Proposition 1.1 comparing Ñ

•
with N•), we find that the image contains

Ñ
n−1

H2n−1(XK, Zl(n))τ as a finite index subgroup. With the expectation that the standard as-
sumption should be true in general, we are thus led to ask :

Question 7 (Mazur’s question with Zl-coefficients). Let X be a smooth projective variety over a field K.
Does there exist an abelian variety A/K such that for almost all primes l there is an isomorphism of Galois
modules

Tl A
'−−−→ Ñ

n−1
H2n−1(XK, Zl(n))τ ? (0.9)

The main technical result of this paper is Theorem 4.2, a particular instance of which takes the
form below.

Theorem 8 (Image of the l-adic Bloch map). Let X be a smooth projective variety over a perfect field K.
Assume that φ2

XK/K[l
∞] : A2(XK)[l

∞]→ Ab2
X/K[l∞] is an isomorphism for all but finitely many primes l ;

i.e., X satisfies the standard assumption at all but finitely many primes l (Definition 6). Then, for all but
finitely many prime numbers l, the image of the composition

Tl A2(XK)
� � // Tl CH2(XK)

� � Tlλ
2
// H3(XK, Zl(2))τ

is equal to Ñ
1
H3(XK, Zl(2))τ.

We obtain the following immediate corollary providing a partial answer to Question 7 :

Corollary 9 (Modeling Zl-cohomology). Under the hypotheses of Theorem 8, the inclusion (0.8) induces
an isomorphism of Galois modules

Tl Ab2
X/K

'−−−→ Ñ
1
H3(XK, Zl(2))τ

for all but finitely many prime numbers l.
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Theorem 8 is proved in §4. In fact, we can control the primes for which Theorem 8 and Corol-
lary 9 might fail ; this is related to miniversal cycle classes, as well as decomposition of the diag-
onal (see Theorem 4.2). Moreover, in a way we make precise in Lemma 4.3 and Proposition 4.4,
to prove Theorem 8 and Corollary 9, if one knows the standard assumption holds for all varieties
over finite fields, then one does not need to assume the standard assumption for X.

We note again that in principle, the technique used to prove the Corollary 9 would work for
any n, assuming that there exists an algebraic representative in codimension n, that φn

XK/K
[l∞] is

an isomorphism, and that Tlλ
n is an inclusion ; but in general, for n 6= 1, 2, dX, one does not expect

these conditions to hold. Nevertheless, in the body of the paper, we explain the general case, and
indicate where special assumptions are needed.

0.4. Universal cycles and the image of the second l-adic Bloch map. Still under the standard
assumption that

φ2
XK/K[l

∞] : A2(XK)[l
∞]

'−−−→ Ab2
X/K[l∞]

is an isomorphism for all primes l, we show that a sufficient condition for the composition (0.8) to

have image equal to Ñ
1
H3(XK, Zl(2))τ for all l is provided by the existence of a so-called universal

cycle for φ2
XK/K ; see §3.3 for a definition. As before, we start by determining the image of the

second l-adic Bloch map under such conditions :

Theorem 10 (Universal cycles and the image of the second l-adic Bloch map). Let X be a smooth
projective variety over a perfect field K. Assume that X satisfies the standard assumption for all primes l.
If φ2

XK/K : A2(XK) → Ab2
X/K(K) admits a universal cycle, then for all prime numbers l the image of the

composition

Tl A2(XK)
� � // Tl CH2(XK)

� � Tlλ
2
// H3(XK, Zl(2))τ

is equal to Ñ
1
H3(XK, Zl(2))τ.

Theorem 10 is a particular instance of our main Theorem 4.2. As an immediate consequence,
we obtain :

Corollary 11 (Universal cycles and modeling Zl-cohomology). Under the hypotheses of Theorem 10,
the inclusion (0.8) induces for all prime numbers l an isomorphism of Galois modules

Tl Ab2
X/K

'−−−→ Ñ
1
H3(XK, Zl(2))τ.

Due to the connection with universal cycles and decomposition of the diagonal (see Proposi-
tion 3.10), this is connected with the notion of rationality, as we discuss in the next section.

0.5. Decomposition of the diagonal and the image of the second l-adic Bloch map. We next turn
our focus to the case of smooth projective varieties X over a perfect field K with CH0(XK) ⊗Q

universally supported in dimension 2 (see Definition 3.1). It is well-known, via a decomposition
of the diagonal argument [BS83], that in this case we have N1H3(XK, Ql(2)) = H3(XK, Ql(2)), but
also that Vlφ

2
XK/K is an isomorphism (Proposition 3.8(3)), for all primes l. As a consequence, we see

that in this case (0.5) induces an isomorphism Vl Ab2
X/K ' H3(XK, Ql(2)). We show the following

result for cohomology with Zl-coefficients :

Theorem 12 (Decomposition of the diagonal and the image of the second l-adic Bloch map). Let
X be a smooth projective variety over a perfect field K of characteristic exponent p.
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(1) Assume CH0(XK)⊗Z
[ 1

N

]
is universally supported in dimension 2 for some N > 0, e.g. X is a

geometrically uniruled threefold. Then, for all primes ` - Np, the inclusion Ñ
1
H3(XK, Z`(2)) ⊆

H3(XK, Z`(2)) is an equality and the second `-adic Bloch map restricted to algebraically trivial
cycles

T` A2(XK)
� � // T` CH2(XK)

� � T`λ
2
// H3(XK, Z`(2))τ

is an isomorphism of Gal(K)-modules.
(2) Assume CH0(XK) ⊗Z

[ 1
N

]
is universally supported in dimension 1 for some N > 0, e.g. X is

a geometrically rationally chain connected. Then, for all primes l, the second l-adic Bloch map
restricted to algebraically trivial cycles

Tl A2(XK)
� � // Tl CH2(XK)

� � Tlλ
2
// H3(XK, Zl(2))τ

is an isomorphism of Gal(K)-modules. Moreover, for all primes ` - Np, H3(XK, Z`(2)) is torsion-
free.

A slight generalization of Theorem 12 that deals with the prime p in case resolution of singular-
ities holds over K in dimensions < dim X is proved in Proposition 5.2. See §3.1, and in particular
Remark 3.4, for the classical link between stable rationality, rational connectedness, and decom-
position of the diagonal.

Again, from Theorem 12 (combined with Proposition 3.8), we have the following corollary.

Corollary 13 (Decomposition of the diagonal and modeling Z`-cohomology). Let X be a smooth
projective variety over a perfect field K of characteristic exponent p.

(1) Assume CH0(XK)⊗Z
[ 1

N

]
is universally supported in dimension 2 for some N > 0, e.g. X is a

geometrically uniruled threefold. Then, for all primes ` - Np, T`φ
2
XK/K : T` A2(XK) −→ T` Ab2

X/K

is an isomorphism and the canonical inclusion (0.8) induces an isomorphism of Galois modules

T` Ab2
X/K

'−−−→ H3(XK, Z`(2))τ.

(2) Assume CH0(XK)⊗Q is universally supported in dimension 1, e.g. X is a geometrically rationally
chain connected. Then, for all primes l, Tlφ

2
XK/K : Tl A2(XK) −→ Tl Ab2

X/K is an isomorphism
and the canonical inclusion (0.8) induces an isomorphism of Galois modules

Tl Ab2
X/K

'−−−→ H3(XK, Zl(2))τ.

0.6. Stably rational vs. geometrically stably rational varieties over finite fields. We now turn to
the motivic question :

Question 14 (Mazur’s motivic question with Z`-coefficients). For which smooth projective varieties
X over a field K do there exist an abelian variety A/K and a correspondence Γ ∈ CH2(A×K X) such that
for all primes ` 6= char(K)

Γ∗ : T`A '−−−→ Ñ
1
H3(XK, Z`(2))τ

is an isomorphism of Gal(K)-modules ?

In other words, we turn now to the issue of addressing the existence of a correspondence
Γ ∈ CH2(Ab2

X/K ×KX) inducing the isomorphisms (0.9). As already mentioned, it is easy to estab-
lish a positive answer under the further assumption that 2n− 1 ≤ dim X and H2n−1(XK, Q`(n))
has geometric coniveau n − 1 ; see Proposition 6.1. In case X is a smooth projective geometri-
cally uniruled threefold, then Proposition 6.3 establishes more precisely the existence of a cor-
respondence Γ ∈ CH2(Ab2

X/K ×KX) ⊗ Q such that the induced morphism of Galois modules
7



Γ∗ : Vl Ab2
X/K

'−→ H3(XK, Ql(2)) coincides with the canonical map (0.5) and is an isomorphism
for all primes l.

On the other hand, due to the failure of the integral Tate conjecture over finite fields [Ant16,
Kam15, PY15], an isomorphism as in (0.9) might not be induced by some correspondence Γ ∈
CH2(Ab2

X/K ×KX). However, using the `-adic Bloch map, we provide a positive answer for the
third `-adic cohomology groups of smooth projective stably rational varieties over finite or alge-
braically closed fields, thereby addressing Question 14 :

Theorem 15 (Modeling Z`-cohomology via correspondences). Let X be a smooth projective stably
rational variety over a field K that is either finite or algebraically closed. Then there exists a correspondence
Γ ∈ CH2(Ab2

X/K ×KX) inducing for all primes ` 6= char K the isomorphisms (0.8)

Γ∗ : T` Ab2
X/K

'−−−→ H3(XK, Z`(2)) (0.10)

of Gal(K)-modules. Moreover, if char(K) = 0, the correspondence Γ induces an isomorphism

Γ∗ : H1(J3(XC), Z)
'−−−→ H3(XC, Z(2)). (0.11)

The proof of Theorem 15 is given in Theorem 6.4, via a decomposition of the diagonal argument.
There we also explain how the conclusion of Theorem 15 holds at l = p in case dim X ≤ 4, due to
the existence resolution of singularities in dimensions ≤ 3. There are two reasons for restricting
to algebraically closed fields or finite fields in Theorem 15. First, in order to use alterations, we
restrict to the case of perfect fields. Second, in order to obtain the existence of the universal line-
bundle, we use that K is finite or separably closed (see [ACMVb, §7.1.2]).

0.7. Notation and conventions. For a field K, we will denote by K a separable closure, and by
Ka an algebraic closure. If X is a scheme of finite type over a field K, we denote by CHi(X) its
Chow group of codimension-i cycle classes, and by Ai(X) ⊂ CHi(X) the subgroup consisting of
algebraically trivial cycle classes (see [Ful98, §10.3]). If X is pure-dimensional, we denote dX its
dimension. In case X is smooth over K, we still denote dX its dimension, which should be thought
of as a locally constant function on X. A variety over K is a separated geometrically reduced
scheme of finite type over K. The symbol l is allowed to denote an arbitrary prime, whereas `
is always assumed invertible in the base field K. The phrase “for almost all” means “for all but
finitely many”.

Let M be an abelian group, let l be a prime, and let ν be an integer. We denote :

Mtors := TorZ
1 (Q/Z, M) = the torsion subgroup of M ;

Mcotors := the quotient of M by its largest divisible subgroup ;
Mτ := M/Mtors = the quotient of M by its torsion subgroup.
M[lν] := TorZ

1 (Z/lνZ, M) = the lν-torsion subgroup of M ;
M[l∞] := lim−→ν

M[lν] = the l-primary torsion subgroup of M ;
Tl M := lim←−ν

M[lν] = HomZ(Ql/Zl , M) = the Tate module of M ;
Vl M := Tl M⊗Zl Ql .

In the definition of Tl M, the transition maps are given by the multiplication by l morphisms

M[lν+1]
·l→ M[lν] and the equality lim←−ν

M[lν] = HomZ(Ql/Zl , M) can be found, e.g., in [Mil06,
Prop. 0.19]. Note that Tl M = Tl(M[l∞]). Note also that for a Zl-module M, we have Mtors =

TorZl
1 (Ql/Zl , M).

We denote the l-adic valuation by vl , so that for a natural number r, we have r = ∏l lvl(r).
For a smooth projective variety X over an algebraically closed field K = Ka

= K, we denote
by Hi(XK, Z`) the `-adic homology. This will be primarily an indexing convention that is useful
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from the motivic perspective, since in the case where X is smooth and projective of pure dimen-
sion dX, the cap product with the fundamental class of X induces for all i (e.g., [Lau76, p.173]) an
isomorphism −∩ [X] : H2dX−i(XK, Z`(dX))

'→ Hi(XK, Z`).

1. ON VARIOUS NOTIONS OF CONIVEAU FILTRATIONS

Given a smooth projective variety X over a field K, one obtains coniveau filtrations on coho-
mology with various coefficients. In (1.1), (1.3) and (1.4) below we recall the definitions of the
(classical) geometric coniveau filtration N•, of the (less classical) correspondence coniveau filtra-
tion N′• and of the (still less classical) correspondence niveau filtration Ñ

•
.

Although the filtrations might not agree in general, in Proposition 1.1 below we recall that they
are related by

Ñ
• ⊆ N′• ⊆ N•,

where, over a perfect field K and with Q`-coefficients, the second inclusion is an equality while
the first is conjecturally an equality.

In this section, the ring of coefficients Λ denotes either Z, Q, Z/`rZ, Z`, Q`, or Q`/Z`. Co-
homology groups H•(−, Λ) are computed in the corresponding topology : e.g., H•(−, Z) is com-
puted in the analytic topology, while H•(−, Z/`rZ) is computed in the étale topology.

1.1. Recalling the geometric coniveau filtrations. Let X be a smooth projective variety over a
field K with separable closure K. We recall the ν-th piece of the geometric coniveau filtration

Nν Hi(XK, Λ) := ∑
Z⊂XK

im
(

Hi
Z(XK, Λ)→ Hi(XK, Λ)

)
(1.1)

= ∑
Z⊂XK

ker
(

Hi(XK, Λ)→ Hi(XK r Z, Λ)
)

(1.2)

where the sum runs through all Zariski closed subsets Z of XK of codimension ≥ ν. (The equiva-
lence of (1.1) and (1.2) comes from the long exact sequence of a pair.)

For our purpose, we will have to work with the following variant of the coniveau filtration. We
recall the ν-th piece of the correspondence coniveau filtration

N′νHi(XK, Λ) := ∑
Γ:Z`XK

im
(

Γ∗ : Hi−2ν(Z, Λ(−ν))→ Hi(XK, Λ)
)

, (1.3)

where the sum is over all smooth projective varieties Z over K and all correspondences Γ ∈
CHdX−ν(Z×K XK).

Let us also introduce a related filtration, which was considered in [FM94] and in [Via13]. The
ν-th piece of the correspondence niveau filtration is defined as

Ñ
ν
Hi(XK, Λ) := ∑

Γ:Z`XK

im
(

Γ∗ : Hi−2ν(Z, Λ(ν− i))→ Hi(XK, Λ)
)

, (1.4)

where the sum is over all smooth projective varieties Z over K and all correspondences Γ ∈
CHdX−ν(Z ×K XK). As we will see in the proof of Proposition 1.1 below, one may restrict the
sum in (1.4) to smooth projective varieties Z over K of pure dimension i− 2ν. Here, as outlined in
the Notation and Conventions §0.7, we use homology as a convenience ; for Z of pure dimension
dZ, we set Hi−2ν(Z, Λ(ν− i)) := H2dZ−(i−2ν)(Z, Λ(dZ − ν− i)).

By considering fields of definitions of Z (and Γ) that are finite Galois over K and by considering
Galois orbits, we note that in the definitions of all three filtrations above, we could have restricted
the sums to those Z (and Γ) defined over K.
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The above three filtrations admit the following already-known containment relation :

Proposition 1.1. Let X be a smooth projective variety over a field K. Suppose that Λ is one of Z/`rZ, Z`,
Q`, or Q`/Z` or that K = C and Λ is one of Z, Q or Q/Z. Then there are natural inclusions

Ñ
ν
Hi(XK, Λ) ⊆ N′νHi(XK, Λ) ⊆ Nν Hi(XK, Λ).

In case (ν, i) = (n, 2n) or (n− 1, 2n− 1), the first inclusion is an equality. Moreover, assuming Λ is either
Q` or Q, if K is perfect then the second inclusion is an equality, and if Grothendieck’s Lefschetz standard
conjecture holds then the first inclusion is an equality.

Proof. The containment Ñ
ν
Hi(XK, Λ) ⊆ N′ν Hi(XK, Λ) is explained in [Via13, §1.1] in the case

K ⊆ C and Λ = Q. The same argument applies here and we spell it out for the sake of complete-
ness. First, note that up to replacing Z with Z ×K Pn

K
, we can assume dim Z ≥ i − 2ν. Second,

if ι : Y ↪→ Z is a smooth linear intersection of Z of dimension i − 2ν, then the push-forward
ι∗ : Hi−2ν(Y, Λ) → Hi−2ν(Z, Λ) is surjective by the Lefschetz hyperplane theorem (e.g., [SGA72,
Exp. XIV, Cor. 3.3]), and the image of Γ∗ : Hi−2ν(Z, Λ(i− ν))→ Hi(XK, Λ) coincides thus with the
image of Γ∗ ◦ ι∗. Therefore, one may restrict the sum in (1.4) to those smooth projective varieties
Z over K of pure dimension i− 2ν. In particular, since Hi−2ν(Z, Λ) = Hi−2ν(Z, Λ(i− 2ν)) when
dim Z = i− 2ν, we get the asserted containment.

As outlined in the argument in [Via13, Prop. 1.1], a sufficient condition for the first inclusion
to be an equality is the following : if for all smooth projective varieties Z over K there exists a
smooth projective variety Z′ over K and a correspondence L ∈ CHi−2ν(Z′ ×K Z) inducing an iso-
morphism L∗ : Hi−2ν(Z′, Λ(i− ν))

'−→ Hi−2ν(Z, Λ(ν)), then the image of Γ∗ : Hi−2ν(Z, Λ(−ν))→
Hi(XK, Λ) coincides with the image of Γ∗ ◦ L∗ and it follows that the containment Ñ

ν
Hi(XK, Λ) ⊆

N′ν Hi(XK, Λ) is an equality. Now, in case (ν, i) = (n, 2n), the class of Z ×K Z induces an iso-
morphism H0(Z, Λ)

'→ H0(Z, Λ), while in case (ν, i) = (n − 1, 2n − 1), using the identification
of torsion line bundles and étale covers, the universal line bundle L on Pic0

Z/K ×KZ induces nat-
ural identifications H1(Pic0

Z/K, Z`) = H2g−1(Pic0
Z/K, Z`(g)) = T` Pic0

Z/K = H1(Z, Z`(1)). In case
Λ = Q or Q`, a correspondence L as above exists with Z′ = Z for all Z and all (ν, i) provided
Grothendieck’s standard conjecture holds.

We now turn to the containment N′νHi(XK, Λ) ⊆ Nν Hi(XK, Λ). Let Γ ∈ CHdX−ν(Z×K XK) be
a correspondence with Z a smooth projective variety over K. By refined intersection, the image of
Γ∗ is supported on the closed subscheme Z := pXK

(Γ) of dimension≤ dX− ν, where pXK
: Γ→ XK

is the natural projection. In other words, the composition

Hi−2ν(Z, Λ(−ν))
Γ∗ // Hi(XK, Λ) // Hi(XK r Z, Λ) (1.5)

vanishes, thereby giving the asserted containment.
For the statement of equality when Λ denotes Q or Q` and when K is perfect, since Jannsen

[Jan94] only asserts this for fields of characteristic 0, as de Jong’s results were not available at
the time, here we reproduce the argument of [Jan94, p.265–6] to show how the argument can
be extended to fields of positive characteristic. Consider a closed embedding ι : Z ↪→ XK with
dim Z = dX − ν and use the theory of alterations to produce a diagram

f : Z′ π // // Z �
� ι // XK
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with Z′ smooth of pure dimension dX− ν. We get a commutative diagram (using `-adic homology)

Hi−2ν(Z′, Q`(−ν)) //

'
��

f∗

**

Hi
Z(XK, Q`) //

��

Hi(XK, Q`)

'
��

H2dX−i(Z′, Q`(dX))
π∗ // H2dX−i(Z, Q`(dX))

ι∗ // H2dX−i(XK, Q`(dX))

and we then argue using weights (see [Jan90, §6]). To utilize weights, we must assume that K is
finitely generated over its prime field ; however, since all the varieties are of finite type, they are all
defined over a base field K′ ⊆ K that is finitely generated over its prime field, and we may work
over K′, and then base change to K. In other words, we may assume that K is finitely generated
over its prime field and that X, Z, Γ and π are defined over K. Now, since Hi(XK, Q`) is pure of
weight i, the image of ι∗ equals the image of Wi H2dX−i(ZK, Q`(dX)). On the other hand, it is shown
in [Jan90, Rem. 7.7] that H2dX−i(Z′K, Q`(dX)) surjects onto this space via π∗. �

1.2. p-adic coniveau filtrations. If char(K) = p > 0 and if K is perfect, we also allow Λ to vari-
ously denote Wn(K), W(K) or K(K), in which case H•(−, Λ) denotes a crystalline cohomology
group. (See §A.1.2 for our notations concerning p-adic cohomology theories in characteristic p.)
One defines

Nν Hi(XK, Λ) and N′ν Hi(XK, Λ)

exactly as in (1.1) (note that in this setting (1.2) is not well-behaved) and (1.3), respectively. Since
we will only need homology for smooth projective varieties X, we simply define Hi(X, Λ) =

H2dX−i(X, Λ(dX)). With this notation we then define the correspondence niveau filtration Ñ ex-
actly as in (1.4).

In contrast to the crystalline cohomology groups, the groups Hi(XK, Qp) no longer have a use-
ful theory of weights or Poincaré duality. Since Hi(XK, Zp) can be recovered as (Hi(X/W))F,
the suitably-defined F-invariants of Hi(X/W) [Gro85, §I.3], we simply define the p-adic coniveau
filtrations N = Ñ, N, N′ by

N νHi(XK, Zp) = (N νHi(X/W))F

N νHi(XK, Zp/pr) = (N νHi(X/Wr))
F

N νHi(XK, Qp/Zp) = lim−→N
νHi(XK, Zp/pr).

Then Proposition 1.1 holds in this context, too :

Proposition 1.1(bis). Let X be a smooth projective variety over a perfect field K. Suppose that Λ is one of
Z/lrZ, Zl , Ql , or Ql/Zl , or that char(K) > p and Λ is one of Wr(K), W(K) or K(K), or that K = C

and Λ is one of Z, Q or Q/Z. Then there are natural inclusions

Ñ
ν
Hi(XK, Λ) ⊆ N′νHi(XK, Λ) ⊆ Nν Hi(XK, Λ).

In case (ν, i) = (n, 2n) or (n− 1, 2n− 1), the first inclusion is an equality. If Λ is a field of characteristic
zero, then the second inclusion is an equality, and if in addition Grothendieck’s Lefschetz standard conjecture
holds, then the first inclusion is an equality.

Proof. It only remains to prove the assertions for the various p-adic coefficients in characteris-
tic p > 0. If Λ = Wn(K), W(K) or K(K), the argument is identical ; the key point in the
case Λ = K(K) is that like étale cohomology, rigid cohomology has a good theory of weights
and Poincaré duality. (The second map in (1.5) simply needs to be replaced with Hi(X, Λ) →
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Hi(X, Λ)/Hi
Z(X, Λ), which makes sense in crystalline cohomology.) The results for Λ = Zp/pn,

Zp, Qp or Qp/Zp follow by taking F-invariants. �

2. THE IMAGE OF THE l-ADIC BLOCH MAP AND THE CONIVEAU FILTRATION

Again, for brevity, in this section, the ring of coefficients Λ denotes either Zl , Ql , or Ql/Zl .
The subscript τΛ on H•(−, Λ)τΛ indicates that when Λ = Zl , we take the quotient by the torsion
subgroup. For each of these Λ and for M = CHn(XK) or An(XK), we have the corresponding
groups MΛ : MZl := Tl M, MQl := Vl M and MQl/Zl := M[l∞].

We now consider the l-adic Bloch map constructed by Suwa [Suw88] in the case l 6= char(K)
and by Gros–Suwa [GS88] in the case l = char(K) ; see the appendix for a review of these maps,
especially §A.3.3 and §A.3.5. Our main result in this section extends a result of Suwa [Suw88,
Prop. 5.2], originally stated for Λ = Q` with ` 6= char(K), and gives a preliminary description of
the image of the l-adic Bloch map restricted to the Tate module of algebraically trivial cycles in
terms of the correspondence coniveau filtration (1.3) :

Proposition 2.1 ([Suw88, Prop. 5.2]). Let X be a smooth projective variety over a perfect field K, and let
l be a prime number. The image of the composition

An(XK)Λ
� � // CHn(XK)Λ

λn
// H2n−1(XK, Λ(n))τΛ (2.1)

contains Ñ
n−1

H2n−1(XK, Λ(n))τΛ , with equality if Λ = Ql/Zl or Ql . Recall that the subscript τΛ
indicates that when Λ = Zl , we take the quotient by the torsion subgroup.

Remark 2.2. Note that in the case where Λ = Ql/Zl , this implies that Ñ
n−1

H2n−1(XK, Ql/Zl(n)) ⊆
H2n−1(XK, Zl(n))⊗Zl Ql/Zl ⊆ H2n−1(XK, Ql/Zl(n)) ; see §A.5.

We split the proof of Proposition 2.1 in two, depending on whether the prime l is invertible in K.
Key to the proof is the following lemma of Suwa [Suw88, Lem. 3.2] originally stated for primes
l 6= char(K) ; see Remark 2.5 below, where we verify that Suwa’s argument works even when
l = char(K).

Lemma 2.3 ([Suw88, Lem. 3.2]). Let C be a smooth projective irreducible curve (resp. abelian variety)
over a field K and let Γ ∈ CHn(C×K X). Let α ∈ An(XK)[l

ν], and assume there exists β ∈ A0(CK) such
that Γ∗β = α. Then there exists γ ∈ A0(CK)[l

µ] for some µ ≥ ν such that λn(Γ∗γ) = λn(α). �

Example 2.4. In Lemma 2.3, it may be that one must take µ > ν. For instance, take X = C = E to
be an elliptic curve over K, let Γ = Γ f be the graph of the multiplication by ` map f : C → X, and
let α ∈ A1(XK)[`]. Then there does not exist γ ∈ A1(CK)[`] such that λ1(Γ∗γ) = λ1(α).

2.1. The image of the `-adic Bloch map. Here we review the argument of Suwa [Suw88] yielding
the proof of Proposition 2.1 in the case Λ = Q` and extend it to other rings of coefficients.

Proof of Proposition 2.1, prime-to-char(K). Suppose l = ` 6= char(K). Consider the diagram⊕
Γ:Z`XK

A0(Z)Λ

Γ∗

��

= //
⊕

Γ:Z`XK

CH0(Z)Λ

Γ∗

��

λ0

'
//
⊕

Γ:Z`XK

H1(Z, Λ)τΛ

Γ∗
��

An(XK)Λ
� � // CHn(XK)Λ

λn
// H2n−1(XK, Λ(n))τΛ

(2.2)

where the direct sums are over all smooth projective varieties Z over K and all correspondences

Γ ∈ CHn(Z×K XK). The image of the right vertical arrow is by definition Ñ
n−1

H2n−1(XK, Λ(n))τΛ .
12



We conclude from commutativity of the diagram that the image of the bottom row of (2.2) contains

Ñ
n−1

H2n−1(XK, Λ(n)).
We now show that the inclusion is an equality in case Λ = Q`/Z`. By Lemma 2.3, for any

α ∈ An(XK)[`
∞], there exists an element γ ∈ ⊕Γ:Z`X A0(ZK)[`

∞] such that λn(Γ∗γ) = λn(α). It
readily follows from a diagram chase that the image of the bottom row of (2.2) is contained in

Ñ
n−1

H2n−1(XK, Q`/Z`(n)).
Finally we show equality in the case Λ = Q`. Taking Tate modules in (2.2) with Q`/Z`-

coefficients, and using the previous case, we have that the image of the bottom row of (2.2) with

Z`-coefficients is T`Ñ
n−1

H2n−1(X, Q`/Z`(n)). Since H1(Z, Q`/Z`(1)) is a divisible group for any
smooth projective variety Z over K, and since an increasing chain of divisible abelian `-torsion sub-
groups of a finite corank abelian `-torsion group is stationary [Suw88, Lem. 1.2], then by adding
connected components to Z, one can conclude there exist a smooth projective curve Z over K and
a correspondence Γ ∈ CHn(Z×K XK) such that

Ñ
n−1

H2n−1(XK, Z`(n)) = im
(

Γ∗ : H1(Z, Z`(1))→ H2n−1(XK, Z`(n))
)

Ñ
n−1

H2n−1(XK, Q`/Z`(n)) = im
(

Γ∗ : H1(Z, Q`/Z`(1))→ H2n−1(XK, Q`/Z`(n))
)

.

Then the image of the bottom row of (2.2) with Z`-coefficients is

T`Ñ
n−1

H2n−1(X, Q`/Z`(n)) = T`Γ∗H1(Z, Q`/Z`)

⊇ Γ∗T`H1(Z, Q`/Z`)

= Γ∗H1(Z, Z`)

= Ñ
n−1

H2n−1(XK, Z`(n))τ.

From Lemma A.16, the inclusion above has torsion cokernel. This gives the assertion with Q`-
coefficients. �

2.2. The image of the p-adic Bloch map. Now let K be a perfect field of characteristic p > 0. Here
we secure Proposition 2.1 for p-adic cohomology groups.

Remark 2.5. Lemma 2.3 ([Suw88, Lem. 3.2]) holds as well for p-power torsion. The proof is essen-
tially identical. Briefly, suppose K is finite ; then A1(CK) = Pic0

C/K(K) is a torsion group. Write
the order of β as pm M with M relatively prime to p, and choose N with NM ≡ 1 mod pν. Then
γ := NMβ has order pm, and Γ∗γ = NMα = α. To account for arbitrary K, we may assume that
K is the perfection of a field K0 which is finitely generated over Fp, and then spread out the data
X, Γ, C, α and β to an irreducible scheme S of finite type over Fp, with function field K0 ; let k be
the algebraic closure of Fp in K0. Consider the finite flat group scheme G := Pic0

C/S[p
ν] → S, and

let Q ∈ S be a closed point. Because the residue field of Q is finite, possibly after base-change by
a finite extension of k, there exists some γQ ∈ GQ(k) = A1(CQ) such that ΓQ,∗γQ = αQ. Possibly
after replacing S with an open neighborhood of Q, there exists a finite surjective T → S such that
GT → T admits a section γ ∈ G(T) passing through some pre-image of γQ in GQ ×S T [Gro66,
14.5.10] ; the generic fiber of γ is the sought-for class.

Proof of Proposition 2.1, char(K)-torsion. The assertion of the inclusion in Proposition 2.1 with Λ =
Qp/Zp (for arbitrary n) follows immediately from diagram (2.2). For the opposite inclusion, the
argument is identical. For the inclusion of Proposition 2.1 with Zp-coefficients, one uses dia-
gram (2.2) with Λ = W, and the fact that taking F-invariants commutes with push-forward
[Gro85, Cor. I.3.2.7]. Tensoring with Qp gives the inclusion with Qp-coefficients. One then ar-
gues identically that the inclusion with Zp-coefficients has torsion quotient. Indeed, taking Tate
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modules of (2.2) with Qp/Zp-coefficients, one sees that the image of the bottom row of (2.2)

with Zp-coefficients is Ñ
n−1

H2n−1(XK, Qp/Zp(n)). As before, since H1(Z, Qp/Zp(1)) is a divis-
ible group for any smooth projective variety Z over K, and since an increasing chain of divisi-
ble abelian p-torsion subgroups of a finite corank abelian p-torsion group is stationary [Suw88,
Lem. 1.2], then by adding connected components to Z, one can conclude there is a smooth surface
Z/K, possibly disconnected but of finite type, equipped with a morphism f : Z → XK such that

f∗H1(Z, Qp/Zp(1)) = Ñ
n−1

H2n−1(XK, Qp/Zp(n)) and f∗H1(Z/W(1)) = Ñ
n−1

H2n−1(XK/W(n)).
We then have

TpÑ
n−1

H2n−1(XK, Qp/Zp(n)) = Tp f∗H1(Z, Qp/Zp(1))

⊇ f∗TpH1(Z, Qp/Zp(1))

= f∗H1(Z, Zp(1))

= f∗(H1(Z/W(1))F)

= ( f∗H1(Z/W(1)))F by [Gro85, Cor. I.3.2.7]

= (Ñ
n−1

H2n−1(XK/W(n)))F = Ñ
n−1

H2n−1(XK, Zp(n))τ.

Since the inclusion has torsion cokernel (see Lemma A.16 and Remark A.20), we are done. �

3. DECOMPOSITION OF THE DIAGONAL, ALGEBRAIC REPRESENTATIVES, AND MINIVERSAL
CYCLES

In [ACMVa] we consider decomposition of the diagonal and algebraic representatives in detail.
These ideas also come into play in the proofs of Theorems 8, 12 and 15, and so we review these
notions in this section. We refer the reader to [ACMVa] for more details.

3.1. Decomposition of the diagonal. The aim of this subsection is to fix the notation for decom-
position of the diagonal, and to recall the existence of decompositions of the diagonal for various
flavors of rational varieties.

Let K be a field and let ` be a prime not equal to char K. Let R be a commutative ring, let X
be a smooth projective variety over a field K and let W1 and W2 be two closed subschemes of X
not containing any component of X . A cycle class Z ∈ CHdX (X ×K X) ⊗Z R is said to admit a
decomposition of type (W1, W2) if

Z = Z1 + Z2 ∈ CHdX (X×K X)⊗Z R,

where Z1 ∈ CHdX (X ×K X) ⊗Z R is supported on W1 ×K X and Z2 ∈ CHdX (X ×K X) ⊗Z R is
supported on X×K W2. If Z = ∆X and if one can choose W2 with dim W2 = 0, we simply say that
∆X ∈ CHd(X×K X)⊗ R has a Chow decomposition.

Definition 3.1 (Universal support of CH0⊗R). Let X be a smooth projective variety over a field K.
We say that CH0(X)⊗ R is universally supported in dimension d if there exists a closed subscheme
W2 ⊆ X of dimension ≤ d such that CH0(X)⊗ R is universally supported on W2, i.e., if the push-
forward map CH0((W2)L)⊗Z R→ CH0(XL)⊗Z R is surjective for all field extensions L/K.

The following proposition is classical and goes back to Bloch and Srinivas [BS83], and relates
decomposition of the diagonal to the universal support of CH0 :

Proposition 3.2 (Bloch–Srinivas [BS83]). The diagonal ∆X ∈ CHdX (X×K X)⊗Z R of a smooth projec-
tive variety X over K admits a decomposition of type (W1, W2) if and only if CH0(X)⊗Z R is universally
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supported on W2. In particular, taking R = Z, the diagonal ∆X ∈ CHdX (X×K X) of a smooth projective,
stably rational, variety X admits an decomposition of type (W1, P) for any choice of K-point P ∈ X(K). �

Remark 3.3. The existence of a K-point on a stably rational variety over K is ensured by the Lang–
Nishimura theorem [Nis55] ; see [RY00, Prop. A.6] for a modern treatment.

Remark 3.4 (Varieties admitting decompositions of the diagonal). Let X and Y be smooth projective
varieties over K of respective dimension dY ≤ dX. If X and Y are stably rationally equivalent, i.e., if
there exists a nonnegative integer n such that Y×K Pn

K is birational to X×K P
n+dX−dY
K , then CH0(X)

is universally supported in dimension dY. In particular, if X is stably rational, then CH0(X) is
universally supported in dimension 0, and in fact on a point by the Lang–Nishimura theorem.
Moreover, if X is only assumed to be geometrically rationally chain connected, then CH0(X)⊗Z Q

is universally supported in dimension 0 (see e.g. [ACMVa, Rem. 2.8]).

Notation 3.5 (Decomposition of the diagonal and alterations). Let X be a pure-dimensional smooth
projective variety over a perfect field K of characteristic exponent p. Suppose we have a cycle class
Z1 + Z2 in CHdX (X×K X) with Z1 supported on W1 ×K X and Z2 supported on X×K W2 with W1
and W2 two closed subschemes of X not containing any component of X such that dim W1 ≤ n1

and dim W2 ≤ n2. By [Tem17], there exist alterations W̃1 → W1 and W̃2 → W2 of degree some
power of p such that W̃1 and W̃2 are smooth projective over K. The cycle classes Z1 and Z2, seen
as self-correspondences on X, factor up to inverting p through W̃1 and W̃2, respectively. Precisely,
there exists a nonnegative integer e such that

peZ1 = r1 ◦ s1 and peZ2 = r2 ◦ s2 in CHdX (X×K X)

for some s1 ∈ CHdX (X×K W̃1), r1 ∈ CHdX (W̃1 ×K X), s2 ∈ CHdX (X×K W̃2) and r2 ∈ CHdX (W̃2 ×K

X). Note that by replacing each component of W̃1 and W̃2 with a product with projective space
of an appropriate dimension, we may assume that W̃1 and W̃2 are of pure dimension n1 and n2,
respectively. We refer to [ACMVa, §3.1] for more details. Since resolution of singularities exists for
threefolds over a perfect field [CP09], if each dim Wi ≤ 3, then we may take e = 0.

3.2. Surjective regular homomorphisms and algebraic representatives. The aim of this subsec-
tion is to fix notation for algebraic representatives. We start by reviewing the definition of an
algebraic representative (i.e., [Mur85, Def. 1.6.1] or [Sam60, 2.5]). Let X be a smooth projective
variety over a perfect field K and let n be a nonnegative integer. For a smooth separated scheme T
of finite type over K, we define A n

X/K(T) to be the abelian group consisting of those cycle classes
Z ∈ CHn(T ×K X) such that for every t ∈ T(K) the Gysin fiber Zt is algebraically trivial. For
Z ∈ A n

XK/K
(T) denote by wZ : T(K)→ An(XK) the map defined by wZ(t) = Zt.

Given an abelian variety A/K, a regular homomorphism (in codimension n)

φ : An(XK)
// A(K)

is a homomorphism of groups such that for every Z ∈ A n
X/K(T) the composition

T(K)
wZ // An(XK)

φ
// A(K)

is induced by a morphism of varieties ψZ : TK → A. An algebraic representative (in codimension n)
is a regular homomorphism

φn
XK

: An(XK) −→ Abn
XK/K(K)

that is initial among all regular homomorphisms. For n = 1, an algebraic representative is given by
(Pic0

XK/K)red together with the Abel–Jacobi map. For n = dX, an algebraic representative is given
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by the Albanese variety and the Albanese map. For n = 2, it is a result of Murre [Mur85, Thm. A]
that there exists an algebraic representative for XK, which in the case K = C is the algebraic
intermediate Jacobian J3

a (X) ; i.e., the image of the Abel–Jacobi map restricted to algebraically
trivial cycle classes.

The main result of [ACMV17] (see also [ACMVb]) is that if there exists an algebraic repre-
sentative φn

XK
: An(XK) → Abn

XK/K(K), then Abn
XK/K admits a canonical model over K, denoted

Abn
XK/K, such that φn

XK
is Gal(K/K)-equivariant and such that for any Z ∈ A n

XK/K(T) the mor-
phism ψZK

: TK → AK descends to a morphism ψZ : T → A of K-schemes. In particular, the
algebraic representative Ab2

XK/K of [Mur85] admits a canonical model over K, denoted Ab2
XK/K.

In the case K ⊆ C, the abelian variety Ab2
X/K is the distinguished model J3

a,X/K of the algebraic
intermediate Jacobian, as defined in [ACMV20].

We include the following lemma for clarity ; we also note that it is clear from the definitions that
an algebraic representative φn

XK
: An(XK)→ Abn

XK/K(K) is a surjective regular homomorphism.

Lemma 3.6. Let φ : An(XK)→ A(K) be a surjective regular homomorphism.
(1) Let l be prime. Then :

(a) φ[l∞] : An(XK)[l
∞]→ A[l∞] is surjective.

(b) The following are equivalent :
(i) φ[l∞] : An(XK)[l

∞]→ A[l∞] is an isomorphism.
(ii) φ[l∞] : An(XK)[l

∞]→ A[l∞] is an inclusion.
(iii) φ[lν] : An(XK)[l

ν]→ A[lν] is an inclusion for all natural numbers ν.
(iv) φ[l] : An(XK)[l]→ A[l] is an inclusion.

(c) If any of the equivalent conditions in (1)(b) hold, then Tlφ : Tl An(XK) → Tl A is an isomor-
phism.

(2) There exists a natural number e (independent of l) such that for all natural numbers ν the image of
the map φ[lν+e] : An(XK)[l

ν+e]→ A[lν+e] contains A[lν] ⊆ A[lν+e].
(3) For all but finitely many primes l the map φ[lν] : An(XK)[l

ν]→ A[lν] is surjective.

Proof. (1)(a) is [ACMV20, Rem. 3.3]. (Even though it is only claimed there for K of characteristic
zero, the arguments of the references cited there are valid for arbitrary torsion in arbitrary charac-
teristic.) The equivalence of (1)(b)(i) and (1)(b)(ii) is obvious. To show the equivalence of (1)(b)(ii)
and (1)(b)(iii) we argue as follows. For a group G, there is an inclusion G[lν] ⊆ G[lν+1], so that in
our situation, we have An(XK)[l

ν] ⊆ An(XK)[l
∞] and A[lν] ⊆ A[l∞]. The equivalence of (1)(b)(ii)

and (1)(b)(iii) then follows by a diagram chase ; the equivalence of (1)(b)(iii) and (1)(b)(iv) is ele-
mentary. One obtains (1)(c) by applying the Tate module to the isomorphism (1)(b)(i). Item (3)
follows from Item (2), which in turn is [ACMV20, Rem. 3.3]. �

Remark 3.7. It is worth noting that if there exists a regular homomorphism φ : An(XK) → A(K)
such that φ[`∞] is injective, then there is an algebraic representative in codimension-n ; this follows
directly from Saito’s criterion ([Mur85, Prop. 2.1]).

3.3. Miniversal cycles and miniversal cycles of minimal degree. Let X be a smooth projective
variety over a field K and let φ : An(XK) → A(K) be a regular homomorphism. A miniversal cycle
for φ is a cycle Z ∈ A n

XK/K(A) such that the homomorphism ψZ : A→ A is given by multiplication
by r for some natural number r, which we call the degree of the cycle. A miniversal cycle is called
universal if ψZ : A → A is given by the identity. In case φ is an algebraic representative for
codimension-n cycles on X, we call a universal cycle for φ a universal cycle in codimension-n
for X. Clearly there is a minimal r such that there exists a miniversal cycle of degree r ; taking
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linear combinations of miniversal cycles, one can see this minimum is achieved by the GCD of all
of the degrees of miniversal cycles.

If K is algebraically closed, it is a classical and crucial fact [Mur85, 1.6.2 & 1.6.3] that a miniver-
sal cycle exists if and only if φ is surjective ; this also holds without any restrictions on the field K
by [ACMVb, Lem. 4.7]. In particular, since an algebraic representative is always a surjective regu-
lar homomorphism [ACMVb, Prop. 5.1], it always admits a miniversal cycle. However, the exis-
tence of a universal cycle is restrictive. For example, both over the complex numbers [Voi15] and
over a field of characteristic at least three [ACMVa], the standard desingularization of the very
general double quartic solid with 7 nodes does not admit a universal cycle in codimension-2.

3.4. Decomposition of the diagonal and algebraic representatives. We now recall a result due
to [Mur85] and [BS83] :

Proposition 3.8 (Murre [Mur85], Bloch–Srinivas [BS83]). Let X be a smooth projective variety over a
perfect field K of characteristic exponent p.

(1) If char(K) = 0, then

φ2
XK
[`∞] : A2(XK)[`

∞] −→ Ab2
X/K[`

∞](K). (3.1)

is an isomorphism of Gal(K)-modules for all prime numbers `.
(2) Assume that the diagonal ∆XK

∈ CHdX (XK ×K XK)⊗Q admits a decomposition of type (W1, W2)
with dim W2 ≤ 1. Then

φ2
XK

: A2(XK) −→ Ab2
X/K(K)

is an isomorphism of Gal(K)-modules.
(3) Assume that the diagonal N∆XK

∈ CHdX (XK ×K XK) admits a decomposition of type (W1, W2)
with dim W2 ≤ 2 for some positive integer N. Then

Vlφ
2
XK

: Vl A2(XK) −→ VlAb2
X/K

is an isomorphism of Gal(K)-modules for all primes l, and

T`φ
2
XK

: T` A2(XK) −→ T`Ab2
X/K

is an isomorphism of Gal(K)-modules for all prime numbers ` not dividing Np.
(4) In the setting of (3), further assume that p ≥ 2, resolution of singularities holds in dimensions

< dX, and p - N. Then

Tpφ2
XK

: Tp A2(XK) −→ Tp Ab2
X/K

is an isomorphism of Gal(K)-modules.

Proof. First recall from [ACMV17] that φ2
XK

is Gal(K)-equivariant. Item (2) is [BS83, Thm. 1(i)],
while Item (1) reduces via [ACMV17] to the case K = C, which is covered by [Mur85, Thm. 10.3].

We now prove Item (3) and assume that char(K) = p > 0. With Notation 3.5, we have a
commutative diagram with composition of horizontal arrows being multiplication by Npe :

A2(XK)
r∗1⊕r∗2 //

φ2
X
��

A1(W̃1)⊕A2(W̃2)
s∗1+s∗2 //

φ1
W̃1
⊕φ2

W̃2
��

A2(XK)

φ2
X
��

Ab2
X/K(K) // Pic0

W̃1
(K)⊕AlbW̃2

(K) // Ab2
X/K(K).

(3.2)

where the bottom horizontal arrows are the K-homomorphisms induced by the universal property
of algebraic representatives. (Note that since dim W̃2 = 2 we have identified φ2

W̃2
with the Albanese
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map.) Since φ1 is an isomorphism and since the Albanese morphism is an isomorphism on torsion
by Rojtman [Blo79, GS88, Mil82], a simple diagram chase establishes that φ2

X : A2(XK)→ Ab2
X(K)

is an isomorphism on prime-to-Npe torsion. It follows that φ2
X is an isomorphism on l-primary

torsion for all primes l not dividing Npe. The statement about T`φ
2
XK

then ensues by passing to
the inverse limit. Alternately, since the middle vertical arrow is an isomorphism on torsion, it is
an isomorphism on Tate modules. By applying Tl to (3.2), and since Tl A2(XK) and TlAb2

X/K are
finite free Zl-modules (Tlλ

2 : Tl A2(XK) ↪→ TlAb2
X/K is injective, Proposition A.27), we directly

see that Tlφ
2
XK

is an isomorphism for l - Np and we also see, after tensoring with Ql that Vlφ
2
XK

is
an isomorphism for all primes l.

For (4), it suffices to observe that, if W1 and W2 admit resolutions of singularities (which is the
case if dX ≤ 4 by [CP09]), then we may take e = 0 above. �

Remark 3.9. By rigidity, the same results in Proposition 3.8 hold if the separable closure K is re-
placed with the algebraic closure Ka.

Proposition 3.10 (Decomposition of the diagonal and miniversal cycle classes). Let X be a smooth
projective variety over a field K that is either finite or algebraically closed, and let N be a natural number.
Assume that N∆XK

∈ CHdX (X ×K X) admits a decomposition of type (W1, W2) with dim W2 ≤ 1. Then
Ab2

X/K admits a miniversal cycle of degree peN for some nonnegative integer e that may be chosen to be
zero if dim X ≤ 4.

In particular, if dim X ≤ 4 and if CH0(X) is universally supported in dimension 1, then Ab2
X/K admits

a universal cycle.

Proof. Similarly to (3.2), we have with Notation 3.5 a commutative diagram with composition
of horizontal arrows being multiplication by Npe (where, due to resolution of singularities in
dimensions < 4, e can be chosen to be zero if dim X ≤ 4) :

A2(XK)
r∗1 //

φ2
X
��

A1(W̃1)
s∗1 //

φ1
W̃1
��

A2(XK)

φ2
X
��

Ab2
X/K(K)

r∗1 // Pic0
W̃1
(K)

s∗1 // Ab2
X/K(K),

where r∗1 : Ab2
X/K → (Pic0

W̃1/K
)red and s∗1 : (Pic0

W̃1/K
)red → Ab2

X/K denote the K-homomorphisms
induced by the correspondences r1 and s1. Since we are assuming K to be either finite or algebraic
closed, the Abel–Jacobi map φ1

W̃1
admits a universal divisor D̃ ∈ A 1

W̃1/K
((Pic0

W̃1/K
)red) (see, e.g.,

[ACMVb, §7.1]), meaning that the induced morphism

ψD̃ : (Pic0
W̃1/K

)red → (Pic0
W̃1/K

)red

is the identity. It is then clear that the homomorphism associated to the cycle class

Z := s∗1 ◦ D̃ ◦ r∗1 ∈ A n
X/K(Abn

X/K).

is given by Npe IdAb2
X/K

. �

4. MINIVERSAL CYCLES AND THE IMAGE OF THE SECOND l-ADIC BLOCH MAP

In this section, we prove our main Theorem 4.2. As an immediate consequence of the existence
of an algebraic representative for codimension-2 cycles (see §3.2), we obtain proofs of Theorem 8
and of Theorem 10. We start with a lemma that parallels Lemma 2.3.
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Lemma 4.1. Let X be a smooth projective variety over an algebraically closed field K = Ka
= K and let l

be a prime. Let φ : An(XK) → A(K), be a surjective regular homomorphism, and let Γ ∈ A n
X/K(A) be a

miniversal cycle of degree r. If
φ[l∞] : An(XK)[l

∞]→ A[l∞]

is an inclusion, then

lvl(r) · Tl An(XK) ⊆ im
(
Γ∗ : Tl A0(A)→ Tl An(XK)

)
,

where vl(r) is the l-adic valuation of r.

Proof. By the definition of a miniversal cycle and its degree, the composition

A(K) // A0(A)
Γ∗ // An(XK)

φ
// A(K)

is multiplication by r. Here, the map A(K) → A0(A) is the map of sets a 7→ [a]− [0]. Recall the
general fact about abelian varieties, due to Beauville, that the map of sets A(K) → A0(AK), a 7→
[a] − [0] is an isomorphism on torsion (see [ACMV20, Lem. 3.3] for references, and recall that
Beauville’s argument works for arbitrary torsion in arbitrary characteristic). Therefore, restricting
to l-primary torsion, we get a composition of homomorphisms

A[l∞] '
// A0(A)[l∞]

Γ∗ // An(XK)[l
∞]

φ[l∞]

'
// A[l∞]

which is given by multiplication by r. Here φ[l∞] is an isomorphism due to Lemma 3.6. Passing
to the inverse limit, we obtain a composition of homomorphisms

Tl A '
// Tl A0(A)

Γ∗ // Tl An(XK)
Tlφ

n

'
// Tl A

which is given by multiplication by r. It immediately follows that lvl(r)Tl An(XK) lies in the image
of Γ∗. �

Theorem 4.2. Let X be a smooth projective variety over an algebraically closed field K = Ka
= K and let

l be a prime. Let φ : An(XK) → A(K), be a surjective regular homomorphism, and let Γ ∈ A n
X/K(A) be a

miniversal cycle of minimal degree r (see §3.3). Then the morphisms

Tl A
Γ∗ // Tl An(XK)

Tlλ
n
// H2n−1(XK, Zl(n))τ

induce inclusions

im(Tlλ
n ◦ Γ∗) ⊆ Ñ

n−1
H2n−1(XK, Zl(n))τ ⊆ im(Tlλ

n).

Moreover, if φ[l∞] : An(XK)[l
∞]→ A[l∞] is an inclusion, then in addition we have

lvl(r) im(Tlλ
n) ⊆ im(Tlλ

n ◦ Γ∗).

In other words, if φ[l∞] is an inclusion, then im(Tlλ
n) is an extension of Ñ

n−1
H2n−1(XK, Zl(n))τ by a

finite l-primary torsion group killed by multiplication by lvl(r). In particular, if l does not divide r, then

Ñ
n−1

H2n−1(XK, Zl(n))τ = im(Tlλ
n).

Proof. The inclusion Ñ
n−1

H2n−1(XK, Zl(n))τ ⊆ im(Tlλ
n) is Proposition 2.1 (due to Suwa).
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Let us now show im(Tlλ
n ◦ Γ∗) ⊆ Ñ

n−1
H2n−1(XK, Zl(n))τ. For that purpose, consider the

commutative diagram

Tl A0(AK)

Γ∗
''

� � //
⊕

Γ′ :Z`X

Tl A0(ZK)

Γ′∗
��

= //
⊕

Γ′ :Z`X

Tl CH0(ZK)

Γ′∗
��

Tlλ0

'
//
⊕

Γ′ :Z`X

H1(ZK, Zl)τ

Γ′∗
��

Tl An(XK)
� � // Tl CHn(XK)

Tlλ
n
// H2n−1(XK, Zl(n))τ

(4.1)

where the direct sums run through all smooth projective varieties Z over K and all correspon-
dences Γ′ ∈ CHdX−n+1(Z ×K X). By definition, the image of the right vertical arrow consists of

Ñ
n−1

H2n−1(XK, Zl(n))τ, completing the proof via a diagram chase.
Finally, under the assumption that φ[l∞] : An(XK)[l

∞]→ A[l∞] is an isomorphism, the assertion
lvl(r) im(Tlλ

n) ⊆ im(Tlλ ◦ Γ∗) follows from Lemma 4.1. �

Proof of Theorems 8 and 10. Recall from §3.2 that an algebraic representative for codimension-2 cy-
cles φ2

XK
: A2(XK) → Ab2

XK/K(K) always exists. Both Theorems 8 and 10 are then a special case of
Theorem 4.2. �

Since an algebraic representative always exists for codimension-2 cycles (see §3.2), in order to
prove Theorem 4.2 unconditionally for the algebraic representative in codimension-2, it suffices to
show the standard assumption holds. The following lemma allows us to reduce to assuming the
standard assumption holds for varieties over finite fields :

Lemma 4.3 (Standard assumption and generization). Let S be the spectrum of a discrete valuation ring
with generic point η = Spec K and closed point ◦ = Spec κ. Let X/S be a smooth projective scheme, and
let Γ ∈ A 2

Xη/K(Ab2
Xη/K) be a miniversal cycle of minimal degree r. For all primes ` - r · char(K), if X◦

satisfies the standard assumption at ` (i.e., φ2
X◦/κ[`

∞] is an isomorphism), then Xη satisfies the standard
assumption at ` (i.e., φ2

Xη/K[`
∞] is an isomorphism).

Proof. By [ACMVb, Thm. 8.3] we have (Ab2
X/S)η ' Ab2

Xη/η . Let ΓX/S ∈ A2
X/S(Ab2

X/S) be a
miniversal cycle of minimal degree r induced by the one in the assumption of the lemma (see
[ACMVb, Lem. 4.7]). Its specialization induces a group homomorphism wΓX/S,◦ : Ab2

X/S(κ) →
A2(X◦,κ), and thus a homomorphism ψΓX/S,◦ : (Ab2

X/S)◦ → Ab2
X◦/◦.

On `-primary torsion, we have a commutative diagram

Ab2
X/S[`

∞](K) ' //

wΓX/S
��

(Ab2
X/S)◦[`

∞](κ)

wΓX/S ,◦
��

ψΓX/S ,◦

ww

A2(XK)[`
∞] �
�

// A2(X0)[`∞]� _

φ2
X◦/κ [`

∞]
��

Ab2
X◦/κ[`

∞](κ)

(4.2)

Both the top and bottom horizontal arrows are the specialization maps ; the fact that the special-
ization map on torsion cycle classes is injective in codimension 2 follows from the fact, due to
Merkurjev–Suslin [MS82] (see also Propositions A.27 and A.30), that the second Bloch map is an
inclusion. Choose a prime ` 6= char(K) relatively prime to r. Then wΓX/S and is injective, and by
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commutativity, this implies wΓX/S,◦ is injective. Then since we assume that φ2
X◦/κ[`

∞] is injective, it
follows that all arrows in (4.2) are injective.

We now complete diagram (4.2) by introducing a second copy of the isogeny ψΓX/S,◦ . Note that
the bottom square does not commute, and the outer rectangle fails to commute by a factor of r :

Ab2
X/S[`

∞](K) ' //

wΓX/S
��

(Ab2
X/S)◦[`

∞](κ)

wΓX/S ,◦
��

ψΓX/S ,◦

ww

A2(XK)[`
∞]

6�

� � //

φ2
Xη /K
��

A2(X0)[`∞]

φX◦/κ

��

(Ab2
X/S)[`

∞](K) //

'
��

Ab2
X◦/κ[`

∞](κ)

Ab2
X/S[`

∞](κ)

ψΓX/S ,◦

66

(4.3)

If ` - r, then the injectivity of φ2
X◦/κ implies the injectivity of φ2

Xη/K. �

Proposition 4.4. Assume that for any finite field F and any smooth projective variety Y of dimension d
over F we have that for all primes ` 6= char(F),

φ2
YF
[`∞] : A2(YF)[`

∞]→ Ab2
YF/F

(F)[`∞]

is an isomorphism ; i.e., assume the standard assumption holds for varieties of dimension d over finite fields.
Let X be a smooth projective variety of dimension d over an algebraically closed field K = Ka

= K, and
let Γ ∈ A 2

X/K(Ab2
XK/K) be a miniversal cycle of minimal degree r. Then for all primes ` - r · char(K), we

have

Ñ
1
H3(XK, Z`(1))τ = im(T`λ

2 : T` A2(XK) ↪→ H3(XK, Z`(2))τ).

Proof. By Proposition 3.8, we need only treat the case where K has characteristic p > 0. From
Theorem 4.2 we only need to establish that X satisfies the standard assumptions for ` - r · char(K).
Since X is of finite type over K, we may and do replace K with a field of finite transcendence de-
gree n over the prime field Fp. By spreading out and then taking successive hypersurface sections,
we may conclude from our hypothesis on finite fields and Lemma 4.3.

We provide details for the sake of completeness. Spread X to a smooth scheme over Spec R,
where R is a smooth Fp-algebra of Krull dimension n with Frac(R) = K. Let D ⊂ Spec(R) be a
prime divisor with generic point ηD. Then D defines a discrete valuation on K, whose valuation
ring RηD ⊃ R has residue field isomorphic to the function field of D. By iterating this construction
we obtain a sequence of ring surjections R = Rn � Rn−1 · · · � R0 where dim Rj = j, and for
j ≥ 1 the field Kj := Frac(Rj) admits a discrete valuation with valuation ring Sj ⊃ Rj and residue
field isomorphic to Kj−1. By hypothesis, X ×Spec R Spec R0 satsifies the standard assumption at `.
By repeated invocation of Lemma 4.3 for X ×Spec R Spec Sj with j = 1, 2, · · · , n, we find that XK
satisfies the standard assumption at `. �

5. DECOMPOSITION OF THE DIAGONAL AND THE IMAGE OF THE SECOND `-ADIC BLOCH MAP

The aim of this section is to establish Theorem 12. First, we have the following proposition that
extends [BW20, Prop. 2.3(ii)] to the ` = p case.
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Proposition 5.1 ([BW20, Prop. 2.3(ii)]). Let X be a smooth projective variety over a perfect field K.
Assume that N∆XK

∈ CHdX (XK ×K XK) admits a decomposition of type (W1, W2) with dim W2 ≤ 1.
Then, for all primes l, the second Bloch map

λ2 : A2(XK)[l
∞] −→ H3(XK, Zl(2))⊗Zl Ql/Zl

and the second l-adic Bloch map

Tlλ
2 : Tl A2(XK) −→ H3(XK, Zl(2))τ

are isomorphism of Gal(K)-modules.

Proof. The following argument is due to Benoist–Wittenberg for l 6= char(K). We check that it
holds for l = char(K) as well. For X smooth and projective, we have a diagram with exact
row (A.27) :

CH2(XK)[l
∞]

� _

λ2

�� ))

0 // H3(XK, Zl(2))⊗Ql/Zl // H3(XK, Ql/Zl(2)) // H4(XK, Zl(2))

where the dashed arrow is, up to sign, the cycle class map ([CTSS83, Cor. 4], [GS88, Prop. III.1.16
and Prop. III.1.21]). Since algebraically trivial cycles are homologically trivial, it follows that the
image of A2(XK)[l

∞] under λ2 is contained in H3(XK, Zl)⊗Zl Ql/Zl ⊆ H3(XK, Ql/Zl). In partic-
ular, the cokernel of λ2 : A2(XK)[l

∞]→ H3(XK, Zl)⊗Zl Ql/Zl is divisible.
Now suppose N∆XK

∈ CHdX (XK ×K XK) admits a decomposition of type (W1, W2) with
dim W2 ≤ 1. With Notation 3.5 we obtain by the naturality of the Bloch map (Proposition A.23) a
commutative diagram

A2(XK)[l
∞]

r∗1 //

λ2

��

A1(W̃1)[l∞]
s∗1 //

' λ1

��

A2(XK)[l
∞]

λ2

��

H3(XK, Zl(2))⊗Ql/Zl
r∗1 // H1(W̃1, Zl(1))⊗Ql/Zl

s∗1 // H3(XK, Zl(2))⊗Ql/Zl .

(5.1)

Note there is no W̃2 term above for reasons of codimension. The middle vertical arrow in (5.1) is
an isomorphism by Proposition A.28, while the composition of the horizontal arrows in (5.1) is
multiplication by Npe. It follows that coker λ2 is torsion, annihilated by Npe, and consequently
that this cokernel is trivial, i.e., λ2 : A2(XK)[l

∞]→ H3(XK, Zl(2))⊗Zl Ql/Zl is an isomorphism.
Taking the Tate module of this isomorphism gives the result for the l-adic Bloch map, since

H3(XK, Zl) is a finitely generated Zl-module, and so it is elementary to check that there is an
identification Tl(H3(XK, Zl)⊗Zl Ql/Zl) ' H3(XK, Zl)τ. �

The following proposition establishes Theorem 12.

Proposition 5.2 (Theorem 12). Let X be a smooth projective variety over a perfect field K of characteristic
exponent p and let N be a natural number. Assume that N∆XK

∈ CHdX (XK ×K XK) admits a decomposi-
tion of type (W1, W2).

(1) Assume dim W2 ≤ 2. Suppose l is a prime such that l - N, and such that either l 6= char(K)
or resolution of singularities holds in dimensions < dX. Then the inclusion Ñ

1
H3(XK, Zl(2)) ⊆
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H3(XK, Zl(2)) is an equality, the inclusion Tl A2(XK) ↪→ Tl CH2(XK) is an equality, and the
second l-adic Bloch map

Tlλ
2 : Tl CH2(XK) −→ H3(XK, Zl(2))τ

is an isomorphism of Gal(K)-modules.
(2) Assume dim W2 ≤ 1. Let l be any prime. Then the inclusion Tl A2(XK) ↪→ Tl CH2(XK) is an

equality, and the second l-adic Bloch map

Tlλ
2 : Tl CH2(XK) −→ H3(XK, Zl(2))τ

is an isomorphism of Gal(K)-modules. Moreover, if l - N and if either l 6= char(K) or resolution
of singularities holds in dimensions < dX, then H3(XK, Zl) is torsion-free.

Proof. We first assume that l = ` 6= p. That T`λ
2 is a morphism of Gal(K)-modules is Proposi-

tion A.22 and that T`λ
2 is injective in general is Proposition A.27.

Concerning item (1), with Notation 3.5 we obtain by the naturality of the `-adic Bloch map
(Proposition A.23) a commutative diagram

T` A2(XK)
r∗1⊕r∗2 //

T`λ
2
X

��

T` A1(W̃1)⊕ T` A2(W̃2)
s∗1+s∗2 //

' T`λ
1
W̃1
⊕T`λ

2
W̃2

��

T` A2(XK)

T`λ
2
X

��

H3(XK, Z`(2))τ

r∗1⊕r∗2 // H1(W̃1, Z`(1))⊕ H3(W̃2, Z`(2))τ

s∗1+s∗2 // H3(XK, Z`(2))τ.

(5.2)

The middle vertical arrow in (5.2) is an isomorphism by Propositions A.25 and A.26, while the
composition of the horizontal arrows in (5.2) is multiplication by Npe. In particular, the latter
are bijective if ` does not divide Npe. A diagram chase then establishes the surjectivity of T`λ

2
X

restricted to algebraically trivial cycles, and hence the bijectivity of T` A2(XK) ↪→ T` CH2(XK) and
of T`λ

2 : T` CH2(XK) −→ H3(XK, Z`(2))τ. Finally, since the composition

H3(XK, Z`(2))
r∗1⊕r∗2 // H1(W̃1, Z`(1))⊕ H3(W̃2, Z`(2))

s∗1+s∗2 // H3(XK, Z`(2))

is multiplication by Npe and since dim W̃2 ≤ 2, we obtain from the equality Ñ
1
H3 = N′1 H3 of

Proposition 1.1, for ` - Npe, the inclusion H3(XK, Z`(2)) ⊆ Ñ
1
H3(XK, Z`(2)).

In case (2), by Proposition 5.1, it suffices to see that H3(XK, Z`(2)) is torsion-free for ` not di-
viding Npe. This follows simply from the factorization of the multiplication by Npe map as

H3(XK, Z`(2))
r∗1 // H1(W̃1, Z`(1))

s∗1 // H3(XK, Z`(2))

and the fact that H1(W̃1, Z`(1)) is torsion-free.
Now suppose l = char(K) = p > 0. Bearing in mind the properties of the p-adic Bloch map

summarized in §A.4, we see that the composition of the horizontal arrows in (5.2) is again mul-
tiplication by Npe. If resolution of singularities holds in dimension at most dX − 1, then we may
take e = 0. Under this hypothesis, if p - N, we again see that Tpλ2 is an isomorphism of Gal(K)-
modules. �

Remark 5.3. Note that Proposition 5.2(2), together with Theorem 4.2, implies that CH0(XK) ⊗
Q is universally supported in dimension 1, then the primes ` for which Ñ

1
H3(XK, Z`(2))τ ⊆

H3(XK, Z`(2))τ might fail to be an equality are the primes dividing the minimal degree of a
miniversal cycle. Due to Proposition 3.10, this is in this case a priori finer than the conclusion
of Proposition 5.2(1).
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6. MODELING COHOMOLOGY VIA CORRESPONDENCES

In this section, we prove Theorems 12 and 15. The starting point is that a geometrically ratio-
nally chain connected variety (resp. stably rational variety) has universally trivial Chow group of
zero-cycles with Q-coefficients (resp. Z-coefficients) ; see §3.1 and specifically Remark 3.4. We then
combine the existence of the `-adic Bloch map with the existence of an algebraic representative for
codimension-2 cycles to establish Proposition 5.2 (which implies Theorem 12) and the main The-
orem 6.4 (which implies Theorem 15). Along the way we establish related results concerning the
third `-adic cohomology group of uniruled threefolds (Proposition 6.1).

6.1. Modeling Q`-cohomology via correspondences. The aim of this section is to show Mazur’s
Questions 1 and 2, which are with Q`-coefficients, can be easily answered positively under some
assumption on the coniveau of H2n−1(XK, Q`(n)). The following Proposition extends [ACMV17,
Thm. 2.1(d)] in the positive characteristic case. Note that it applies to smooth projective geometri-
cally uniruled threefolds.

Proposition 6.1. Let X be a smooth projective variety over a perfect field K. Assume H2n−1(XK, Q`0(n)) =
Nn−1 H2n−1(XK, Q`0(n)) for some prime `0 6= char(K) and for some integer n such that 2n− 1 ≤ dX.
Then there exist an abelian variety A over K and a cycle class Γ ∈ CHn(A×K X) such that the induced
morphism

Γ∗ : Vl A // H2n−1(XK, Ql(n)) (6.1)

is an isomorphism of Gal(K)-modules for all primes l. (In particular, we have H2n−1(XK, Ql(n)) =

Nn−1 H2n−1(XK, Ql(n)).)
Moreover, if K has positive characteristic, then Γ induces an isomorphism of F-isocrystals

Γ∗ : H2dA−1(A/K)(dA) // H2n−1(X/K)(n) .

Proof. By Proposition 1.1, there is a smooth projective variety W over K of dimension dX − n + 1
and a K-morphism f : W → X inducing a surjection

f∗ : H1(WK, Q`0(1)) � H2n−1(XK, Q`0(n)).

Let ZWK
∈ CH1((Pic0

WK
)red ×K WK) be the universal divisor on WK ; it induces an isomorphism of

Z`0-modules T`0Pic0
WK
→ H1(WK, Z`0(1)). Let L/K be a finite field extension over which ZWK

is

defined. By pushing forward, we obtain a cycle ZW ∈ CH1((Pic0
W)red×K WK) inducing an isomor-

phism V`0Pic0
W → H1(WK, Q`0(1)) of Gal(K)-modules. Let us set B := (Pic0

W)red. Composing f∗
with ZW we obtain a correspondence γ ∈ CHn(B×K X) inducing a surjection

γ∗ : V`0 B � H2n−1(XK, Q`0(n))

of Gal(K)-modules. Consider now the cycle ∆∗(c1(OX(1))d−2n+1) ∈ CH2d−2n+1(X ×K X), where
∆ : X ↪→ X ×K X is the diagonal embedding. By the Hard Lefschetz Theorem, this cycle induces
an isomorphism L : H2n−1(XK, Q`0(n)) → H2d−2n+1(XK, Q`0(d− n + 1)) of Gal(K)-modules and
we obtain a homomorphism

V`0 B
γ∗
// // H2n−1(XK, Q`0(n))

L
'
// H2d−2n+1(XK, Q`0(d− n + 1)) �

� γ∗
// (V`0 B)∨

induced by the correspondence γ∗ ◦ L ◦ γ∗ ∈ CH1(B ×K B). In particular, the above homomor-
phism, which is Gal(K)-equivariant, is induced by a K-homomorphism ϕ : B→ B∨. It is clear that
ker γ∗ = ker ϕ∗. By Poincaré reducibility, there exist an abelian variety A and ψ ∈ Hom(A, B)⊗Q

such that γ∗ ◦ ψ∗ : V`0 A → H2n−1(XK, Q`0(n)) is an isomorphism. In addition, there exists an
idempotent θ ∈ Hom(B∨, B∨)⊗Q with image A such that θ ◦ ϕ = ϕ. Setting Γ = γ ◦ ψ, it follows
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from the independence of ` of the `-adic Betti numbers that Γ∗ : V`A → H2n−1(XK, Q`(n)) is an
isomorphism for all primes ` 6= char(K).

Now suppose char(K) = p > 0. Since Γ∗ ◦ Γ∗ : V`A → V`A is an isomorphism, this same cycle
induces an automorphism of the F-isocrystal H1(A/K) ([KM74], after a spread and specialization
argument to reduce to K finite). Because crystalline and `-adic Betti numbers coincide,

Γ∗ : H2dA−1(A/K)(dA) // H2n−1(X/K)(n)

is an isomorphism of crystals. Taking F-invariants shows that (6.1) holds for l = p, too. �

Remark 6.2 (2n− 1 > dX). We note that using the hard Lefschetz theorem, with the notation and
assumptions of Proposition 6.1, there also exists a cycle class Γ′ ∈ CHdX−n(A×K X) such that for
all primes l

Γ′∗ : Vl A // H2dX−2n+1(XK, Ql(dX − n + 1))

is an isomorphism of Gal(K)-modules.

In case n = 2 and under the assumption that Vlφ
2
XK

: Vl A2(XK) −→ VlAb2
X/K is an isomorphism

for all primes l, one can make Question 2 more precise and ask whether there exists a correspon-
dence Γ ∈ CH2(Ab2

X/K ×KX)⊗Q inducing for all primes l the canonical identifications (0.5). We
provide a positive answer for geometrically uniruled threefolds:

Proposition 6.3. Let X be a smooth projective variety over a perfect field K and assume CH0(XK)⊗Q is
universally supported in dimension 2, e.g. X is a geometrically uniruled threefold. (In particular, due to
Proposition 3.8, Vlφ

2
XK

: Vl A2(XK) −→ VlAb2
X/K is an isomorphism for all primes l.)

Then there exists a correspondence Γ ∈ CH2(Ab2
X/K ×KX)⊗Q inducing for all primes l the canonical

identifications (0.5)

Vl Ab2
X/K

'
Γ∗

22

(Vlφ
2
XK/K

)−1

'
// Vl A2(XK)

� � // Vl CH2(XK)
� � Vlλ

2
// H3(XK, Ql(2)).

Proof. First we note that the assumption that CH0(XK)⊗Q is universally supported in dimension
2 implies that im(Vlλ

2) = N1 H3(XK, Ql(2)) for all primes l. Together with Proposition 2.1, this
implies that Vlλ

2 is an isomorphism for all l, so that (0.5) is an isomorphism for all l. Second,
let Z ∈ CH2(Ab2

X/K ×KX) be a miniversal cycle and let r denote its degree. Then, by [ACMVa,
Cor. 11.8] with Ql-coefficients, we have that Z∗ = r · Vlλ

2 ◦ (Vlφ
2
XK/K)

−1 for all primes l, and it

follows that Γ = 1
r Z induces (0.5) for all primes l. �

6.2. Modeling Z`-cohomology via correspondences : Theorem 15. Combining Proposition 3.8
with Proposition 5.2, we see that, under the assumption that ∆XK

∈ CHdX (XK ×K XK) admits a
decomposition of type (W1, W2) with dim W2 ≤ 2, we obtain for all primes ` 6= char(K) canonical
isomorphisms

T`Ab2
X/K

(T`φ
2
XK

)−1

−−−−−→
'

T` A2(XK) −−−→' T` CH2(XK)
T`λ

2

−−−→
'

H3(XK, Z`(2))τ. (6.2)

Under the further assumption that dim W2 ≤ 1, H3(XK, Z`(2)) is torsion-free by Proposition 5.2
and the main result below establishes that the isomorphisms (6.2) are induced by a correspon-
dence defined over K. In view of Proposition 3.2 and Remark 3.4, the theorem below establishes
Theorem 15.
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Theorem 6.4 (Theorem 15). Let X be a smooth projective variety over a field K of characteristic expo-
nent p, which is assumed to be either finite or algebraically closed. Assume that there is a natural number N
such that N∆X ∈ CHdX (X×K X) admits a decomposition of type (W1, W2) with dim W2 ≤ 1. Then there
exists a correspondence Γ ∈ CH2(Ab2

X/K ×KX) inducing for all primes l not dividing Np isomorphisms

Γ∗ : Tl Ab2
X/K

'−−−→ H3(XK, Zl(2)) (6.3)

of Gal(K)-modules. If p ≥ 2, if p - N, and if resolution of singularities holds in dimensions < dX, then
(6.3) holds with l = p.

Finally, if char(K) = 0, the correspondence Γ induces an isomorphism

Γ∗ : H1((Ab2
X/K)C, Z)⊗Z

[ 1
N

] '−−−→ H3(XC, Z(2))⊗Z
[ 1

N

]
. (6.4)

Proof. First we focus on (6.3). With Notation 3.5, we have the diagram

A2(XK)
r∗1⊕r∗2 //

φ2
X
��

A1(W̃1)⊕A2(W̃2)
s∗1+s∗2 //

φ1
W̃1
⊕φ2

W̃2
��

A2(XK)

φ2
X
��

Ab2
X/K(K) // Pic0

W̃1
(K)⊕AlbW̃2

(K) // Ab2
X/K(K).

(6.5)

Assuming dim W2 ≤ 1, the diagram (6.5) takes the simpler form

A2(XK)
r∗1 //

φ2
X
��

A1(W̃1)
s∗1 //

φ1
W̃1

'
��

A2(XK)

φ2
X
��

Ab2
X/K(K)

g
// Pic0

W̃1
(K)

f
// Ab2

X/K(K)

where the composition of the horizontal arrows is multiplication by Npe. Note that the homomor-
phisms f and g are in fact induced by K-homomorphisms Ab2

X/K → (Pic0
W̃1
)red and (Pic0

W̃1
)red →

Ab2
X/K by [Mur85] in the case K algebraically closed and by the main result of [ACMV17] in the

case K perfect. By Proposition 5.2 with Proposition 3.8, we get for all ` not dividing Np a commu-
tative diagram

H3(XK, Z`(2))
r∗1 // H1(W̃1, Z`(1))

s∗1 // H3(XK, Z`(2))

T` A2(XK)
r∗1 //

T`λ
2'

OO

T` A1(W̃1)
s∗1 //

T`λ
1'

OO

T` A2(XK)

T`λ
2'

OO

T`Ab2
X/K

g∗
//

(T`φ
2
X)
−1'

OO

T` Pic0
W̃1

f∗
//

(T`φ
1
W̃1

)−1'

OO

T`Ab2
X/K

(T`φ
2
X)
−1'

OO

where the vertical arrows are isomorphisms and the composition of the horizontal arrows is mul-
tiplication by Npe.

Now, the condition that K be either finite or algebraically closed ensures that W̃1 admits a uni-
versal divisor ZW̃1

∈ CH1(W̃1 ×K (Pic0
W̃1
)red), meaning that the K-homomorphism (Pic0

W̃1
)red →

(Pic0
W̃1
)red induced by ZW̃1

is the identity. In addition, the homomorphism

T`λ
1 ◦ (T`φ

1
W̃1
)−1 : T` Pic0

W̃1
→ H1(W̃1, Z`(1))
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coincides with the action of ZW̃1
; this follows from Kummer theory, see e.g. [ACMVa, §11]. We

then define a codimension-2 cycle Z ∈ CH2(X ×K Ab2
X/K) as the composition ts1 ◦ tZW̃1

◦ g. By a
simple diagram chase, its induced action

Z∗ = s∗1 ◦ Z∗W̃1
◦ g∗ : T`Ab2

X/K → H3(XK, Z`(2))

is equal to Npe T`λ
2 ◦ (T`φ

2
X)
−1, which is an isomorphism.

If K has positive characteristic p > 0 and if resolution of singularities holds in dimension < dX,
then we may take e = 0. Consequently, under this hypothesis, the same argument shows that if
p - N, then (6.3) is an isomorphism for l = p, too.

Finally for the case K ⊆ C and (6.4), one uses essentially the same argument, but with the
canonical identification of the cohomology modulo torsion of a smooth complex projective variety
with the first homology of the intermediate Jacobian. �

7. THE IMAGE OF THE `-ADIC BLOCH MAP IN CHARACTERISTIC 0

In this section we show that we can model the third integral cohomology with an abelian va-
riety for any smooth projective variety liftable to a smooth projective rationally chain connected
variety in characteristic 0. We start with the following proposition, which essentially shows that
the strategy of the proof of [ACMV17, Thm. B] works with Z`-coefficients for rationally chain
connected varieties.

Proposition 7.1. Let X be a smooth projective variety over a field K ⊆ C such that N1 H3(XC, Q) =
H3(XC, Q) (e.g., X is geometrically rationally chain connected, or dim X = 3 and X is geometrically
uniruled). Then for any prime ` the morphisms

T`φ
2
XK/K : T` A2(XK)→ T` Ab2

X/K and T`λ
2 : T` A2(XK)→ H3(XK, Z`(2))τ

are isomorphisms, so that the composition

T` Ab2
XK/K

(T`φ
2
XK/K

)−1

// T` A2(XK)
T`λ

2
// H3(XK, Z`(2))τ (7.1)

is an isomorphism.

Proof. The fact due to Murre that φ2
XK/K[`

∞] : A2(XK)[`
∞] → Ab2

X/K[`
∞] is an isomorphism was

explained in Proposition 3.8(1) ; now one simply applies Tate modules to get that T`φ
2
XK/K is an

isomorphism.
We now consider the Bloch map. The first observation is that φ2

XC/C
agrees with the Abel–

Jacobi map AJ : A2(XC) → J3
a (XC). Thus, applying Tate modules to the Abel–Jacobi map, we

have that T`φ
2
XC/C

= T`AJ, so that, by the above, T`AJ is an isomorphism. At the same time, the
assumption N1 H3(XC, Q) = H3(XC, Q) implies that the Abel–Jacobi map AJ : A2(XC)→ J3(XC)
to the full intermediate Jacobian is surjective (e.g., [Voi07, Thm. 12.22]) ; i.e., J3

a (XC) = J3(XC) =
H1,2(XC)/H3(XC, Z)τ. We conclude using the fact that T`AJ = T`λ

2 (see Remark A.19). �

Remark 7.2. Recall that for a smooth projective variety X the condition N1 H3(XC, Q) = H3(XC, Q)

is implied by the diagonal ∆XC
∈ CHdX (XC ×C XC)Q admitting a decomposition of type (W1, W2)

with dim W2 ≤ 2. The diagonal of XC has such a decomposition if X is geometrically rationally
chain connected, or dim X = 3 and X is geometrically uniruled, since in these cases CH0(XK)Q is
universally supported on a surface (see Proposition 3.2 and Remark 3.4).
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Remark 7.3. We note here that Proposition 7.1 strengthens Theorem 3 in the case n = 2 in that
it allows for Z`-coefficients ; on the other hand, Proposition 7.1 is weaker than Theorem 3 in the
sense that it does not provide a correspondence giving the isomorphism (7.1). Similarly, Proposi-
tion 7.1 strengthens Theorem 6.4 in the case char(K) = 0 in the sense that it gives isomorphisms
for all primes without assuming a decomposition of the diagonal with Z-coefficients, and it allows
for a weaker form of the decomposition (see the previous remark). For example, in characteristic
0, Theorem 6.4 implies (7.1) is an isomorphism for all primes if X is geometrically stably ratio-
nal, whereas Proposition 7.1 implies the same if X is just assumed to be geometrically rationally
chain connected (or even a geometrically uniruled threefold). On the other hand, Proposition 7.1
is weaker than Theorem 6.4 in the sense that it does not provide a correspondence giving the
isomorphism (7.1).

We now use Proposition 7.1 to prove the following result on varieties liftable to characteristic 0 :

Corollary 7.4. Let X◦ be a smooth projective variety over a field κ, and suppose that X◦ lifts to a smooth
projective variety Xη over a field K of characteristic 0 ; i.e., there is a DVR with spectrum S, generic point
η = Spec K with char(K) = 0, closed point ◦ = Spec κ, and a smooth projective scheme X/S, with special
fiber over ◦ equal to X◦, and generic fiber over η equal to Xη .

If N1 H3((Xη)C, Q) = H3((Xη)C, Q), e.g., if Xη is a geometrically rationally chain connected variety,
or a smooth geometrically uniruled threefold, then for any prime ` 6= char(κ) the morphism

T`λ
2 : T` A2(Xκ)→ H3(Xκ, Z`(2))τ

is an isomorphism.

Proof. We consider the diagram

T` A2(XK)
� � T`λ

2
//

��

H3(XK, Z`)τ

'
��

T` A2(Xκ)
� � T`λ

2
// H3(Xκ, Z`)τ

The vertical arrows are specialization maps. The result holds by commutativity and by Proposi-
tion 7.1. �

APPENDIX A. A REVIEW OF THE l-ADIC BLOCH MAP

The aim of this appendix is to review the original construction [Blo79] of the Bloch map on
`-primary torsion and show it in fact yields a direct construction of the `-adic Bloch map. We
also review Suwa’s construction [Suw88] of the `-adic Bloch map and show it coincides with our
direct construction. For future referencing purposes we list in §A.4 the properties of the `-adic
Bloch map that can be directly derived from the corresponding properties of the original Bloch
map via Suwa’s construction. In addition, the construction of Gros–Suwa [GS88] of the p-adic
Bloch map is briefly reviewed. Finally, we study the restriction of the Bloch map to the subgroup
of algebraically trivial cycles.

A.1. Conventions for `-adic and p-adic cohomology.

A.1.1. `-adic cohomology. We fix a variety X over a field K, and consider the étale cohomology
groups of XK := X×K K with values in prime-to-char(K) torsion sheaves. For each n, r, and ν, we
use the convention

Hn(XK, Z/`νZ(r)) := Hn
ét(XK, µµµ⊗r

`ν ),
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the étale cohomology of the étale sheaf µµµ`ν of `ν-roots of unity. Note that since étale cohomol-
ogy is invariant under purely inseparable extensions, we can replace K with Ka throughout this
subsection.

There are maps
Hn(XK, Z/`νZ(r))→ Hn(XK, Z/`ν+1Z(r))

induced from the natural map Z/`νZ ↪→ Z/`ν+1Z, [x] 7→ [`x], or more precisely, from the natural
map µµµ`ν ↪→ µµµ`ν+1 , ζ 7→ ζ`, as well as maps

Hn(XK, Z/`ν+1Z(r))→ Hn(XK, Z/`νZ(r))

induced from the natural quotient map Z/`ν+1Z � Z/`νZ, or more precisely the natural map
µµµ`ν+1 � µµµ`ν+1 /µµµ` ' µµµ`ν The `-adic cohomology groups of X are defined as follows :

Hn(XK, Z`(r)) := lim←−
ν

Hn(XK, Z/`νZ(r))

Hn(XK, Q`(r)) := Hn(XK, Z`(r))⊗Z`
Q`.

The cohomology groups of X with `-torsion coefficients are defined as follows :

Hn(XK, Q`/Z`(r)) := lim−→
ν

Hn(XK, Z/`νZ(r)).

We denote by

Z`(r) := lim←−µµµ⊗r
`ν

Q`(r) := Z`(r)⊗Z`
Q`

Q`/Z`(r) := lim−→µµµ⊗r
`ν

and we can obtain the various twists in cohomology as :

Hn(XK, Z`(r)) = Hn(XK, Z`)⊗Z`
Z`(r)

Hn(XK, Q`(r)) = Hn(XK, Q`)⊗Q`
Q`(r)

Hn(XK, Q`/Z`(r)) = Hn(XK, Q`/Z`)⊗Q`/Z`
Q`/Z`(r)

For the sake of completeness, we recall the following basic fact and its proof (see also e.g. [Mil80,
Ch. III, Rmk. 3.6(d)]) :

Proposition A.1. Viewing Q`/Z` as a torsion étale sheaf on X, there is a natural isomorphism

Hn
ét(XK, Q`/Z`)⊗Q`/Z`

Q`/Z`(r) = Hn(XK, Q`/Z`(r)) (:= lim−→
ν

Hn(XK, Z/`νZ(r))).

Proof. The Snake Lemma applied to

0 // Z`
·`ν
//

� _

��

Z`
//

� _

��

Z/`νZ //

��

0

0 // Q`
·`ν
// Q`

// 0 // 0

gives a short exact sequence of étale sheaves

0 // Z/`νZ // Q`/Z`
·`ν
// Q`/Z`

// 0.

The map on the left can be written explicitly as [x] 7→ [x/`ν], where we are viewing Z ⊆ Z` in the
natural way. This gives a long exact sequence in cohomology

· · · // Hn(XK, Z`/`νZ`) // Hn(XK, Q`/Z`)
·`ν
// Hn(XK, Q`/Z`) // · · · (A.1)
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In fact we have a diagram

0 // Z/`νZ //

��

Q`/Z`
·`ν
// Q`/Z`

//

·`
��

0

0 // Z/`ν+1Z // Q`/Z`
·`ν+1

// Q`/Z`
// 0

which is commutative since given [x] ∈ Z/`νZ we have [x/`ν] = [`x/`ν+1]. Taking direct limits
is exact, and so we obtain an exact sequence

· · · // 0 // lim−→
ν

Hn(XK, Z`/`νZ`) // Hn(XK, Q`/Z`) // 0 // · · · ,

thereby settling the proposition. �

A.1.2. p-adic cohomology. For K perfect of characteristic p > 0, let W(K) be the ring of Witt vectors
of K, with field of fractions K(K). For X/K, we adopt the standard notation [GS88, §I.3.1], [Mil86,
§1]

Hn(X, Z/pνZ(r)) := Hn−r
ét (X, WνΩr

X,log)

Hn(XK, Zp(r)) := lim←−
ν

Hn(XK, Z/pνZ(r))

Hn(XK, Qp(r)) := Hn(XK, Zp(r))⊗Zp Qp

Hn(XK, Qp/Zp(r)) := lim−→
ν

Hn(XK, Z/pνZ(r))

With these conventions, Hn
ét(XK, Qp(r)) := lim←−ν

Hn
ét(XK, µµµ⊗r

pν )⊗Zp Qp and Hn(X, Qp(r)) coincide
[Ill79, (5.2.1)], [Mil86, Prop. 1.15], but if n > 1 then the corresponding statement for integral coef-
ficients need not hold.

For X/K smooth and projective, we let Hn(X, W(K)(r)) := Hn
cris(X/W(K))(r) denote the crys-

talline cohomology group, and let Hn(X, K(K)(r)) := Hn(X, W(K)(r))⊗W(K) K(K). This group
may also be computed as the rigid cohomology group Hn

rig(X/K(K))(r). Note that if we set
Wν(K) := W(K)/pνW(K), then Hn(X, Wν(K)(r)) = Hn

cris(X/Wν(K)(r)).

A.2. The `-adic Bloch map. In [Blo79], Bloch constructed a map

λn : CHn(XKa)[`∞]→ H2n−1(XKa , Q`/Z`(n))

for smooth projective varieties over a field K. In this section, we review his construction, showing
how it also defines a map T`λ

n : T` CHn(XKa)→ H2n−1(XKa , Z`(n))τ on Tate modules.

A.2.1. The Abel–Jacobi map on torsion. We start by recalling the definition of the Abel–Jacobi map on
torsion. This is rather elementary from the definition of the Abel–Jacobi map, but gives some mo-
tivation for Bloch’s approach to his algebraic construction of the map, as well as some motivation
for our interest in what we call the `ν-Bloch maps (Definition A.2). We also explain in Remark A.19
that the `-adic Abel–Jacobi map (A.3) agrees with the `-adic Bloch map on homologically trivial
cycle classes.

For a complex projective variety X one has the Abel–Jacobi map

CHn(X)hom
AJ−→ J2n−1(X) = Fn\H2n−1(X, C)/H2n−1(X, Z)τ

from the group of homologically trivial cycle classes of codimension-n to the (2n − 1)-st inter-
mediate Jacobian J2n−1(X). Here, F• refers to the Hodge filtration on H2n−1(X, C) ; in the situ-
ation above and in terms of the Hodge decomposition we have FnH2n−1(X, C) = H2n−1,0(X) ⊕
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H2n−2,1(X)⊕ · · · ⊕ Hn,n−1(X). We can identify the torsion J2n−1(X)[`ν] as follows. For any com-
plex torus A = V/Λ, we have A[`ν] = 1

`ν Λ/Λ. If we consider the commutative diagram of short
exact sequences,

0 // Λ //

·`ν

��

ΛQ
//

·`ν'
��

ΛQ/Λ //

·`ν

��

0

0 // Λ // ΛQ
// ΛQ/Λ // · · ·

the snake lemma gives an identification A[`ν] = Λ/`νΛ. In our situation with A = J2n−1(X), we
have Λ = H2n−1(X, Z)τ. In other words, J2n−1(X)[`ν] = H2n−1(X, Z)τ/`νH2n−1(X, Z)τ. We then
consider the diagram

0 // H2n−1(X, Z)tors //

·`ν

��

H2n−1(X, Z) //

·`ν

��

H2n−1(X, Z)τ
//

·`ν

��

0

0 // H2n−1(X, Z)tors // H2n−1(X, Z) // H2n−1(X, Z)τ
// 0

For brevity, we denote δan
`ν = H2n−1(X,Z)tors

`ν H2n−1(X,Z)tors
the cokernel of the vertical map on the left. The snake

lemma, and the long exact sequence in cohomology associated to 0 → Z
·`ν

→ Z → Z/`νZ → 0,
together give a diagram

0 // δan
`ν

// H2n−1(X,Z)
`ν H2n−1(X,Z)

//

� _

��

H2n−1(X,Z)τ

`ν H2n−1(X,Z)τ

//

��

0

0 // δan
`ν

// H2n−1(X, Z/`νZ) // H2n−1(X, Z/`νZ)/δan
`ν

// 0

Thus we obtain maps

CHn(X)hom[`ν]
AJ[`ν]

// J2n−1(X)[`ν] // H2n−1(X, Z/`νZ)/δan
`ν . (A.2)

It is easy to see that for sufficiently large ν, we have δan
`ν = H2n−1(X, Z)` -tors, and via the isomor-

phism H2n−1(X, Z`) = H2n−1(X, Z)⊗Z Z`, we have that H2n−1(X, Z)` -tors = H2n−1(X, Z`)tors. It
follows that lim←− δan

`ν = H2n−1(X, Z`)tors.
We claim now that lim←−H2n−1(X, Z/`νZ)/δan

`ν = H2n−1(X, Z`)τ. For this we consider the short
exact sequence 0→ δan

`ν → H2n−1(X, Z/`νZ)→ H2n−1(X, Z/`νZ)/δan
`ν → 0, and use the fact that

since the δan
`ν are finite, we have lim←−

1 δan
`ν = 0.

Taking the inverse limit of the maps (A.2), we therefore obtain a map

T` CHn(X)hom
T`AJ

// T` J2n−1(X) // H2n−1(X, Z`)τ (A.3)

and then tensoring with −⊗Z`
Q`, we obtain a map

V` CHn(X)hom
V`AJ

// V` J2n−1(X) // H2n−1(X, Q`). (A.4)

The next claim is that lim−→ δan
`ν = 0. This also follows from the fact that for sufficiently large ν,

we have δan
`ν = H2n−1(X, Z)` -tors, since the latter group is finite, and is therefore killed by multi-

plication by `N for some sufficiently large N. As a consequence, taking the direct limit in (A.2) we
obtain a map
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CHn(X)hom[`∞]
AJ[`∞]

// J2n−1(X)[`∞] // H2n−1(X, Q`/Z`). (A.5)

A.2.2. Bloch’s preliminaries. The set-up in [Blo79] is from the paper [BO74]. It is described in
[Blo79] in the following way. One sets Hq(µµµ⊗n

`ν ) to be the Zariski sheaf on XKa associated to the
pre-sheaf U 7→ Hq

ét(U, µµµ⊗n
`ν ). In other words, this is the derived push-forward of the sheaf µµµ⊗n

`ν on
(XKa)ét via the morphism of sites π : (XKa)ét → (XKa)zar, from the étale site to the Zariski site :

Hq(µµµ⊗n
`ν ) := Rqπ∗µµµ

⊗n
`ν .

Consider the composition of morphisms of sites (XKa)ét → (XKa)zar → Spec Ka. The Leray spectral
sequence is

Ep,q
2 = Hp

zar(XKa , Hq(µµµ⊗n
`ν )) =⇒ Hp+q

ét (XKa , µµµ⊗n
`ν ).

The main tool is the existence of a particular flasque resolution of Hq(µµµ⊗n
`ν ) [Blo79, (1.3)],

0→ Hq(µµµ⊗n
`ν )→ F0 → F1 → · · · ,

which of course computes Hp
zar(XKa , Hq(µµµ⊗n

`ν )) in the p-th place. This resolution has two nice
properties. First, it turns out to be easy to read off from the resolution that

Hp
zar(XKa , Hq(µµµ⊗n

`ν )) = 0

for p > q, and consequently, from the shape of the spectral sequence, one obtains so-called bound-
ary maps for the spectral sequence [Blo79, Cor. 1.4]

Hn−1
zar (XKa , Hn(µµµ⊗n

`ν ))→ H2n−1
ét (XKa , µµµ⊗n

`ν ). (A.6)

Second, the precise description of the flasque resolution in [Blo79, (1.3)] shows that the group
Hn−1

zar (XKa , Hn(µµµ⊗n
`ν )) on the left in (A.6) is the cohomology of the complex [Blo79, Cor. 1.5]⊕

Wn−2⊆XKa

H2
Gal(Q(W), µµµ⊗2

`ν )→
⊕

Vn−1⊆XKa

Q(V)∗/Q(V)∗`
ν ∂`ν→

⊕
Tn⊆XKa

Z/`νZ,

where the sums are taken over irreducible subvarieties of the indicated codimensions, and Q(−)
indicates the function field. The map ∂`ν is obtained from the standard exact sequence below after
reduction modulo `ν : ⊕

Vn−1⊆XKa

Q(V)∗
∂→

⊕
Tn⊆XKa

Z→ CHn(XKa)→ 0, (A.7)

where ∂ sends a rational function and to its divisor of zeros and poles on V, and then one pushes
forward via the inclusion V ⊆ XKa to cycles on XKa .

In particular, we have surjections

ker ∂`ν � Hn−1
zar (XKa , Hn(µµµ⊗n

`ν )). (A.8)

A.2.3. The `ν-Bloch map. To get the construction started, we simply consider the commutative di-
agram of short exact sequences of groups [Blo79, (2.1)] :

0 //
⊕

Vn−1⊆XKa

Q(V)∗/Ka∗ (−)`ν

//

∂

��

⊕
Vn−1⊆XKa

Q(V)∗/Ka∗
//

∂

��

⊕
Vn−1⊆XKa

Q(V)∗/Q(V)∗`
ν
//

∂`ν

��

0

0 //
⊕

Tn⊆XKa

Z
`ν

//
⊕

Tn⊆XKa

Z //
⊕

Tn⊆XKa

Z/`νZ // 0

(A.9)
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The snake lemma yields via (A.7) the long exact sequence

0→ ker ∂
`ν

→ ker ∂→ ker ∂`ν → CHn(XKa)
`ν

→ CHn(XKa)→ CHn(XKa)/`ν CHn(XKa)→ 0.

We obtain a diagram where the top row is a short exact sequence [Blo79, (2.2)] :

0 //

(
ker ∂

`ν ker ∂

)
//

ρ`ν

((

ker ∂`ν //

(A.8)
����

CHn(XKa)[`ν] // 0

Hn−1
zar (XKa , Hn(µµµ⊗n

`ν ))

(A.6)
��

H2n−1
ét (XKa , µµµ⊗n

`ν )

(A.10)

where ρ`ν is defined as the indicated composition in the diagram. In fact, we find it convenient to
define δ`ν to be the image of ρ`ν , to obtain the diagram :

0 //

(
ker ∂

`ν ker ∂

)
//

ρ`ν

((����

ker ∂`ν //

(A.8)
����

CHn(XKa)[`ν] //

��

0

Hn−1
zar (XKa , Hn(µµµ⊗n

`ν ))

(A.6)
��

0 // δ`ν // H2n−1
ét (XKa , µµµ⊗n

`ν ) // H2n−1
ét (XKa , µµµ⊗n

`ν )/δ`ν // 0

(A.11)

We now give a name to the vertical arrow on the right ; this map is used tacitly by Bloch in
many places, and it will be convenient for us to give this a name :

Definition A.2 (The `ν-Bloch map). The map

CHn(XKa)[`ν]
λn[`ν]−−−→ H2n−1

ét (XKa , µµµ⊗n
`ν )/δ`ν

which is the negative of the map defined from (A.11) is the `ν-Bloch map in codimension n.

Remark A.3. As explained on [Blo79, p.112], the choice of the negative sign is for compatibility, in
the case n = 1, with the natural map coming from the Kummer sequence, as in Proposition A.25.

A.2.4. Bloch’s Key Lemma. Consider as in [Blo79, (2.3)] the map

ρ : ker ∂ // H2n−1(XKa , Z`(n)) (A.12)

defined as the composition

ρ : ker ∂ −−−→ lim←− (ker ∂/`ν ker ∂)
lim←−ν

ρ`ν

−−−−→ H2n−1(XKa , Z`(n)).

The following lemma, whose proof uses the Weil conjectures (via specialization to finite fields), is
key to constructing the Bloch map on CHn(XKa)[`∞] and the `-adic Bloch map on T` CHn(XKa).

Lemma A.4 (Bloch’s Key Lemma [Blo79, Lem. 2.4]). The image of ρ is torsion. �

What is left tacit by Bloch, but is used in his construction of the Bloch map, is that Lemma A.4
implies :
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Lemma A.5. The image of the map

lim←− ρ`ν : lim←− (ker ∂/`ν ker ∂)→ H2n−1(XKa , Z`(n))

is torsion.

Proof. Since ker ∂ ⊆ lim←− (ker ∂/`ν ker ∂) is a dense subset, and the map lim←− ρ`ν on completions is
continuous, the image of lim←− (ker ∂/`ν ker ∂) (i.e., the image of lim←− ρ`ν ) is contained in the closure of
the image of ker ∂ (i.e., the image of ρ) ; the image of the closure of a set is contained in the closure
of the image. By Bloch’s Key Lemma A.4, the image of ρ is contained in Tors H2n−1

ét (XKa , Z`(n)).
Now use that Tors H2n−1

ét (XKa , Z`(n)) ⊆ H2n−1
ét (XKa , Z`(n)) is closed. Indeed, find N = `r which

kills the torsion ; multiplication by N is continuous, and the torsion is the inverse image of 0 under
this continuous map. �

A.2.5. The `-adic Bloch map. The `-adic Bloch map is defined using the inverse limit of (A.11). We
obtain a diagram

0 // lim←−

(
ker ∂

`ν ker ∂

)
//

lim←−ν
ρ`ν

))��

lim←− ker ∂`ν //

(A.8)

��

T` CHn(XKa) //

��

0

lim←−Hn−1
zar (XKa , Hn(µµµ⊗n

`ν ))

(A.6)
��

0 // lim←− δ`ν //

��

H2n−1(XKa , Z`(n)) //

��

H2n−1(XKa , Z`(n))/ lim←− δ`ν //

��

0

(lim←− δ`ν)τ
// H2n−1(XKa , Z`(n))τ

// H2n−1(XKa , Z`(n))τ/(lim←− δ`ν)τ
// 0

(A.13)
The top row remains short exact after taking the inverse limit, since lim←−

1 (ker ∂/`ν ker ∂) = 0. In-
deed, the system (ker ∂/`ν ker ∂) is clearly surjective, by virtue of the fact that the terms are defined
by quotients of an increasing chain of subgroups. The δ`ν , being contained in H2n−1

ét (XKa , µµµ⊗n
`ν ), are

finite, and thus the middle row, which is obtained as the inverse limit of the bottom row of (A.11),
remains a short exact sequence, as well. The bottom row is obtained from the middle row by
taking the quotient by torsion subgroups in the left and middle entries.

Lemma A.5 and the commutativity of the diagram (A.13) yield

(lim←− δ`ν)τ = 0, (A.14)

allowing us to define the `-adic Bloch map :

Definition A.6 (`-adic Bloch map). The map

T` CHn(XKa)
T`λ

n

−−−→ H2n−1(XKa , Z`(n))τ,

which is the negative of the map defined from (A.13) and Lemma A.5, is defined as the `-adic Bloch
map in codimension n.

Remark A.7 (`-adic Bloch map over the separable closure). Using the fact that étale cohomology
is invariant under purely inseparable extensions and the fact that the prime-to-char(K) torsion of
Chow groups is also invariant under purely inseparable extensions (see e.g., [ACMVb, Lem. 4.10]),
the `-adic Bloch map over the algebraic closure induces a well defined map T`λ

n : T` CHn(XK)→
H2n−1(XK, Z`(n))τ.
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A.2.6. The Bloch map. Bloch defines his map by considering the direct limit of (A.11) :

0 // lim−→

(
ker ∂

`ν ker ∂

)
//

lim−→ ρ`ν

((����

lim−→ ker ∂`ν //

(A.8)
����

CHn(XKa)[`∞] //

��

0

lim−→Hn−1
zar (XKa , Hn(µµµ⊗n

`ν ))

(A.6)
��

0 // lim−→ δ`ν // H2n−1(XKa , Q`/Z`(n)) // H2n−1(XKa , Q`/Z`(n))/ lim−→ δ`ν // 0

(A.15)

Bloch’s observation is that [Blo79, Lem. 2.4] implies the following :

Lemma A.8 ([Blo79, p.112]). The map

lim−→ ρ`ν : lim−→ (ker ∂/`ν ker ∂)→ H2n−1(XKa , Q`/Z`(n))

is the zero map.

Proof. To quote Bloch verbatim, the assertion follows from Lemma A.4 using the fact that the
image in H2n−1

ét (XKa , µµµ⊗n
`ν ) of the torsion in H2n−1(XKa , Z`(n)) is zero in H2n−1(XKa , Q`/Z`(n)).

In a little more detail, we consider the commutative diagram

lim←−

(
ker ∂

`ν ker ∂

)
//

lim←− ρ`ν

��

ker ∂

`ν ker ∂
//

ρ`ν

��

lim−→

(
ker ∂

`ν ker ∂

)
lim−→ ρ`ν

��

H2n−1
ét (XK, Z`(n)) = lim←−H2n−1

ét (XK, µµµ⊗n
`ν ) // H2n−1

ét (XK, µµµ⊗n
`ν ) // lim−→H2n−1

ét (XK, µµµ⊗n
`ν )

where the horizontal maps are the natural maps. To show the direct limit lim−→ ρ`ν is the zero map,
it suffices to show that for all ν, the image of ker ∂

`ν ker ∂ in lim−→H2n−1
ét (XK, µµµ⊗n

`ν ) is zero. To this end,
let α ∈ ker ∂

`ν ker ∂ . As we observed before, ker ∂
`ν ker ∂ forms a surjective system, so we may lift α to β ∈

lim←−
ker ∂

`ν ker ∂ , and then send β to γ ∈ H2n−1
ét (XK, Z`(n)). By Lemma A.5, γ is torsion. Now we use

that the image of torsion, under the composition in the bottom row, is zero.
Since this last assertion is not immediately obvious, we sketch a proof here. Let (α1, α2, . . . ) be

a torsion element of H2n−1
ét (XK, Z`), say of order `r. One can show that in order for (α1, α2, . . . )

to be a consistent system, and also be `r torsion, one must have a Z/`rZ summand of the group
H2n−1

ét (XK, Z/`νZ) for all sufficiently large ν, with αν ∈ Z/`rZ ⊆ H2n−1
ét (XK, Z/`νZ). Now

since `rαν = 0, by definition, this means that in the directed system for the direct limit the image
of αν in H2n−1

ét (XK, Z/`ν+rZ) is zero (at each step, we multiply by `). Thus the image of αν in
lim−→H2n−1

ét (XK, Z/`νZ) is zero. �

As a consequence of Lemma A.8, we can define the Bloch map ; we also refer to [CT93] where a
construction of the Bloch map is discussed and to the recent [Sch20, §10] where a construction of
the Bloch map that avoids Bloch–Ogus theory [BO74] is given.

Definition A.9 (Bloch map [Blo79, (2.7)]). The map

CHn(XKa)[`∞]
λn
−−−→ H2n−1(XKa , Q`/Z`(n)),

which is the negative of the map defined from (A.15) and Lemma A.8, is the Bloch map in codimen-
sion n. In some cases we will write λn[`∞] for clarity.
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Remark A.10 (Bloch map over the separable closure). As in Remark A.7, the `-adic Bloch map
induces a well defined map T`λ

n : T` CHn(XK)→ H2n−1(XK, Z`(n)).

Remark A.11 (Abel–Jacobi map on torsion). Bloch shows in [Blo79, Prop. 3.7] that for a complex
projective manifold X, the Bloch map (Definition A.9) agrees with the Abel–Jacobi map on homo-
logically trivial `-primary torsion (A.5). We explain below, in Remark A.19, that this implies that
the `-adic Bloch map (Definition A.6) agrees with the Abel–Jacobi map on homologically trivial
cycle classes (A.3).

A.3. Suwa’s construction of the l-adic Bloch map. In [Suw88], Suwa has given a construction
of the `-adic Bloch map by simply taking the Tate module associated to the standard Bloch map.
We review the construction here, and show it agrees with the construction given in §A.2. This
construction is quite convenient in may cases. Later Gros–Suwa [GS88] constructed an extension
of the Bloch map to p-torsion ; taking the Tate module gives a p-adic Bloch map. We review this
in §A.3.5.

A.3.1. Structure of abelian l-primary torsion groups. Let M be an abelian l-primary torsion group
for some prime number l. The set of divisible elements Mdiv forms a divisible abelian subgroup,
and since divisible abelian groups are injective, we see that M splits as a direct sum M = Mdiv ⊕
(M/Mdiv). It is a basic fact (e.g., [Fuc70, Ch. IV]) that every divisible abelian l-primary torsion
group is a direct sum of factors of the form Ql/Zl , so that M = (

⊕
Ql/Zl)⊕ (M/Mdiv). We say

that M has finite corank if there in an injective homomorphism M ↪→ (Ql/Zl)
r for some integer

r ≥ 0. It is elementary to show that the following are equivalent :
• M has finite corank.
• M[l] is finite.
• M ' (Ql/Zl)

r ⊕ A for some integer r ≥ 0 and some finite l-primary torsion group A.

A.3.2. `-adic cohomology from cohomology with torsion coefficients. In this subsection, we recall a cru-
cial point used in Suwa’s construction of the `-adic Bloch map (see Proposition A.13). We start
with a general statement about cohomology.

Proposition A.12. There is a natural long exact sequence

· · · −→ Hn−1(XK, Z`) −→ Hn−1(XK, Q`) −→ Hn−1(XK, Q`/Z`) −→ Hn(XK, Z`)−→ · · · (A.16)

In particular, if X is proper,
Hn(XK, Q`/Z`) ' (Q`/Z`)

r ⊕ A (A.17)
for some integer r and some finite `-primary torsion abelian group A.

Proof. Taking the inverse limit over µ of the long exact sequence associated to the short exact
sequence of étale sheaves

0 −−−→ Z/`µZ
`ν

−−−→ Z/`µ+νZ −−−→ Z/`νZ −−−→ 0 (A.18)

gives a long exact sequence

· · · // Hn(XK, Z`)
`ν
// Hn(XK, Z`) // Hn(XK, Z/`νZ) // Hn+1(XK, Z`) // · · ·

Taking the direct limit over ν of the system of long exact sequences

· · · // Hn(XK, Z`)
`ν
// Hn(XK, Z`) //

`
��

Hn(XK, Z/`νZ) //

`
��

Hn+1(XK, Z`) // · · ·

· · · // Hn(XK, Z`)
`ν+1
// Hn(XK, Z`) // Hn(XK, Z/`ν+1Z) // Hn+1(XK, Z`) // · · ·
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together with Proposition A.1 provides the desired long exact sequence (A.16). Alternately, this
can be obtained from the short exact sequence of sheaves 0 → Z` → Q` → Q`/Z` → 0 in the
pro-étale topology ; see [BS15].

The finiteness property (A.17) follows immediately from the finiteness property of Hn(XK, Z`)
when X is proper. More elementarily, the finiteness property (A.17) is a consequence of the
finiteness of Hn

ét(XK, Z/`Z) and the fact (§A.3.1) that any `-primary torsion abelian group M
such that M[`] is finite is isomorphic to (Q`/Z`)

r ⊕ A for some integer r and some finite abelian
group A. �

From the long exact sequence (A.1), we obtain a short exact sequence

0 // Hn−1(XK, Q`/Z`)/`ν // Hn(XK, Z`/`νZ`) // Hn(X.K, Q`/Z`)[`
ν] // 0. (A.19)

Now with the finiteness property (A.17) and the notation therein, (Q`/Z`)
r is the maximal di-

visible subgroup of Hn(XK, Q`/Z`), and A = Hn(XK, Q`/Z`)cotors. As Q`/Z` is divisible, the
`ν-torsion in Q`/Z` forms a surjective system. Thus, since A is finite, the associated lim←−

1 for the
direct sum vanishes, giving [Suw88, (2.6.2)] :

0 // lim←−
ν

(
Hn−1(XK, Q`/Z`)/`ν

)
// Hn(XK, Z`) // T`Hn(XK, Q`/Z`) // 0. (A.20)

Proposition A.13. Assume that X is a proper variety over a field K. Then the morphism Hn(XK, Z`) →
T`Hn(XK, Q`/Z`) from (A.20), obtained as the inverse limit of the morphisms Hn(XK, Z`/`νZ`) →
Hn(XK, Q`/Z`)[`

ν] from (A.19), factors through the quotient Hn(XK, Z`) → Hn(XK, Z`)τ, giving a
natural isomorphism :

Hn(XK, Z`)

((

// T`Hn(XK, Q`/Z`)

Hn(XK, Z`)τ

'
OO

(A.21)

Proof. It is a basic fact (e.g., [Mil06, Prop. 0.19]) that T`Hn(XK, Q`/Z`) is torsion-free. Thus, con-

sidering (A.20), we clearly have lim←−
ν

(
Hn−1(XK, Q`/Z`)/`ν

)
⊇ Tors Hn(XK, Z`).

As asserted in [Suw88, (2.6.3)], we claim we have equality, completing the proof. Specifically :

lim←−
ν

(
Hn−1(XK, Q`/Z`)/`ν

)
= Hn−1(XK, Q`/Z`)cotors (A.22)

= Tors Hn(XK, Q`/Z`). (A.23)

Here is an explanation of the claim from Michael Spieß. To prove (A.22), we start with (A.17), that
Hn−1(XK, Q`/Z`) = (Q`/Z`)

r ⊕ A, with A a finite `-primary torsion abelian group A. Then we
consider the short exact sequence

0→ `νHn−1(XK, Q`/Z`)→ Hn−1(XK, Q`/Z`)→ Hn−1(XK, Q`/Z`)/`ν → 0.

Its limit is

0→ lim←−
ν

`νHn−1(XK, Q`/Z`)→ Hn−1(XK, Q`/Z`)→ lim←−
ν

Hn−1(XK, Q`/Z`)/`ν → 0.

To see that this stays short exact in the limit, we argue as above. More precisely, as Q`/Z` is
divisible, `ν(Q`/Z`) forms a surjective system. We also have that `ν A = 0 for ν sufficiently
large. Thus the associated lim←−

1 for the direct sum vanishes. Now, the image of the inclusion is
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exactly (Q`/Z`)
r, so that lim←−Hn−1(XK, Q`/Z`)/`ν identifies with A, i.e., with the cotorsion. This

completes the proof of (A.22).
For (A.23), the long exact sequence

· · · → Hn−1(XK, Z`)→ Hn−1(XK, Q`)
i→ Hn−1(XK, Q`/Z`)→ Hn(XK, Z`)→Hn(XK, Q`)→ · · ·

of Proposition A.12 provides an identification

Tors Hn(XK, Z`) = Hn−1(XK, Q`/Z`)/ Im(i).

The image of i, being the image of a divisible group, is divisible in Hn−1(XK, Q`/Z`), and since
Tors Hn(XK, Z`) is finite, Im(i) must be the maximal divisible subgroup. This means that we have
Hn−1(XK, Q`/Z`)/ Im(i) = Hn−1(XK, Q`/Z`)cotors. �

Lemma A.14 (Functoriality of (A.21)). Let f : X → Y be a morphism of smooth proper varieties over K.
Then there are commutative diagrams :

Hn(XK, Z`(dY − dX))τ
' //

f∗
��

T`Hn(XK, Q`/Z`(dX − dY))

f∗
��

Hn(XK, Z`)τ
' // T`Hn(XK, Q`/Z`)

Hn+2(dX−dY)(YK, Z`)τ
' // T`Hn+2(dY−dX)(YK, Q`/Z`) Hn(YK, Z`)τ

' //

f ∗
OO

T`Hn(YK, Q`/Z`)

f ∗
OO

where the horizontal arrows are the isomorphisms from (A.21). More generally, given a correspondence
Γ : X ` Y, we obtain the corresponding commutative diagrams for Γ∗ and Γ∗.

Proof. The commutativity of the diagrams follows from the definitions. �

Example A.15. We note that while there are natural inclusions

f∗T`Hn(XK, Q`/Z`) ⊆ T` f∗Hn(XK, Q`/Z`), (A.24)

f ∗T`Hn(YK, Q`/Z`) ⊆ T` f ∗Hn(YK, Q`/Z`), (A.25)

these need not be equalities. For instance, consider the case where X = Y = E is an elliptic curve
over K, and f : X → Y is the multiplication by ` map. Then the containment f∗T`H1(XK, Q`/Z`) ⊆
T` f∗H1(XK, Q`/Z`) is the containment (`Z`)

2 ( (Z`)
2.

In accordance with the example above, the inclusions (A.24) and (A.25) have torsion co-kernels
in the case where n = 1 :

Lemma A.16. Let f : X → Y be a morphism of smooth proper varieties over K. Then we have isomor-
phisms

( f∗T`H1(XK, Q`/Z`))⊗Z`
Q`

'−→ T` f∗H1(XK, Q`/Z`)⊗Z`
Q`,

f ∗T`H1(YK, Q`/Z`)⊗Z`
Q`

'−→ T` f ∗H1(YK, Q`/Z`)⊗Z`
Q`.

More generally, given a correspondence Γ : X ` Y, we obtain the corresponding commutation relations for
Γ∗ and Γ∗.

Proof. We will establish the first isomorphism regarding the push-forward. The second is sim-
ilar, as are the cases of correspondences. From (A.24), we only need to show that the mor-
phism is surjective. We consider the morphism f∗ : H1(XK, Q`/Z`) → f∗H1(XK, Q`/Z`) ⊆
H1+2(dY−dX)(YK, Z`/Q`). Then, using that H1(XK, Q`/Z`) is divisible (it is the cohomology of
the abelian variety Pic0

X/K), and that the image of a divisible group is divisible, we apply [Suw88,
Lem. 1.4] that given a surjective homomorphism φ : M → N of divisible abelian `-primary tor-
sion groups, with N of finite corank, the associated map T`φ⊗ 1 : T`M⊗Z`

Q` → T`N ⊗Z`
Q` is

surjective. �
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A.3.3. Suwa’s `-adic Bloch map.

Definition A.17 (Suwa’s `-adic Bloch map [Suw88, (2.6.5)]). Assume X is a smooth projective
variety over K and ` is a prime not equal to char K. The `-adic Bloch map for codimension-n cycles
is the map

T` CHn(XK)
T`λ

n

−−−→ H2n−1(XK, Z`(n))τ

obtained by applying T` to the Bloch map λn : CHn(XK)[`
∞] → H2n−1(XK, Q`/Z`(n)) and mak-

ing the identification T`Hn(XK, Q`/Z`) = Hn(XK, Z`)τ from Proposition A.13.

A.3.4. The `-adic Bloch map and Suwa’s construction. Here we show that Suwa’s construction of the
`-adic Bloch map agrees with the direct construction.

Proposition A.18. Let X be a smooth projective variety over K. Then the `-adic Bloch maps of Defini-
tion A.17 and Definition A.6 coincide.

Proof. We first observe that we have the following commutative diagram

CHn(XK)[`
ν]

λn[`ν]
//

��

))

H2n−1(XK, Z/`νZ)/δ`ν

��

vv

(CHn(XK) [`
∞])[`ν]

(λn[`∞])[`ν]
//

� _

��

H2n−1(XK, Q`/Z`)[`
ν]

� _

��

CHn(XK)[`
∞]

λn[`∞]
// H2n−1(XK, Q`/Z`)

The bottom arrow, λn[`∞] = λn is the Bloch map (Definition A.9), and the bottom square describes
the map induced on the `ν-torsion for the Bloch map. In any case, the bottom square in the diagram
is commutative by definition. The top map in the diagram is the `ν-Bloch map (Definition A.2).
The vertical arrows from the top row to the bottom row are the canonical morphisms from the
definition of a direct limit. Thus the outer square is commutative. It is only left to describe the
vertical arrows from the top to the middle row. These are defined by the fact that CHn(XK)[`

ν]
and Hi(XK, Z/`νZ)/δ`ν are `ν-torsion groups, so that the images of the vertical arrows from the
top row to the bottom row are contained in the `ν-torsion.

Taking the inverse limit in the top square, we obtain a commutative diagram

T` CHn(XK)
T`(λ

n[`ν])
// Hi(XK, Z`)τ

��

T` CHn(XK)
T`(λ

n[`∞])
// T`Hi(XK, Q`/Z`)

where the top row is the definition of `-adic Bloch map from Definition A.6, while the bottom
row is Suwa’s definition of the `-adic Bloch map (Definition A.17). The only thing to check is that
the vertical arrow in the diagram is the canonical isomorphism from Proposition A.13. But this is
clear from the construction of this isomorphism in Proposition A.13 via the limit of the maps on
the finite levels. �

Remark A.19 (`-adic Abel–Jacobi map). The same argument as in the proof of Proposition A.18
shows that for a complex projective manifold X, the `-adic Abel–Jacobi map T`AJ (A.3) is equal
to the Tate module of the Abel–Jacobi map on torsion AJ[`∞] (A.5) ; i.e., T`AJ = T`(AJ[`∞]). Now
using the fact that the Bloch map (Definition A.9) agrees with the Abel–Jacobi map on homolog-
ically trivial `-primary torsion (A.5) ([Blo79, Prop. 3.7], Remark A.11), it follows that the `-adic
Bloch map T`λ

2 (Definition A.6) agrees with the `-adic Abel–Jacobi map T`AJ on homologically
trivial cycle classes (A.3).
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A.3.5. Gross–Suwa’s p-adic Bloch map. Now suppose that K is a perfect field of characteristic p > 0,
and recall the notation concerning p-adic cohomology groups. With these conventions, Gros and
Suwa have secured p-adic versions of the results reviewed above. So, Proposition A.1 holds by
definition ; the proof of Proposition A.12 is valid at p, provided one replaces (A.18) with the exact
sequence of étale sheaves

0 // WµΩr
X,log

// Wµ+νΩr
X,log

// WνΩr
X,log

// 0

(see also [GS88, Prop. I.4.18] for (A.17)). Gros and Suwa construct a group homomorphism λn =
λn

p : CHn(X)[p∞] → H2n−1(X, Qp/Zp(n)) [GS88, Def. III.1.25], and, as in Definition A.17, by
applying the Tate module obtain a map

Tp CHn(XK)
Tpλn

// H2n−1(XK, Zp(n))τ.

Remark A.20. Moreover, Lemma A.14 holds for p-adic coefficients, as well. Finally, Lemma A.16
holds with Qp/Zp-coefficients since, as we have seen, H1(XK, Qp/Zp) is p-divisible of finite
corank.

A.4. Properties of the Bloch maps. In this section we fix a field K. The aim of this section consists
simply, for future reference, in restating known results due to Bloch [Blo79] concerning the usual
Bloch map λn : CHn(XK)[l

∞] → H2n−1(XK, Q`/Zl(n)) in the setting of the l-adic Bloch map
Tlλ

n : T` CHn(XK) → H2n−1(XK, Zl(n))τ, as well as the finite level Bloch maps. All statements
for the l-adic Bloch map are direct consequences of the fact that Tlλ

n is simply obtained from λn

by applying the Tate module functor. Alternatively for ` 6= char(K), using the direct definition of
the `-adic Bloch map via the `ν-Bloch maps, the proofs in [Blo79] carry over directly. In fact, the
proofs in [Blo79] regarding the Bloch map go directly through the corresponding assertions about
the `ν-Bloch maps.

Proposition A.21 (Flat pull back and proper push forward). The Bloch map, the l-adic Bloch, and for
all primes ` 6= char(K), the `ν-Bloch maps, are functorial for flat pull back and proper push forward.

Proof. The case of the Bloch map is [Blo79, Prop. 3.3] for ` 6= char(K) and [GS88, III. Prop. 2.3]
in the p-adic case. The proposition for the l-adic Bloch map can be obtained simply obtained by
applying Tl to the case of the Bloch map. For the `ν-Bloch maps, this follows directly from the
proof of [Blo79, Prop. 3.3]. �

Proposition A.22 (Bloch maps and Galois-equivariance). The Bloch map, the l-adic Bloch map, and
for ` 6= char(K), the `ν-Bloch maps, are Aut(K/K)-equivariant.

Proof. Fix ` 6= char(K). Let L/K be a finite Galois extension, and let X/K be a smooth projec-
tive variety. Then for each σ ∈ Gal(L/K), applying the previous proposition to the morphisms
σ : XL → XL given by the Galois descent data, shows that each of the various Bloch maps is
Gal(L/K)-equivariant. The general case follows by passing to the limit over all finite Galois ex-
tensions. For the p-adic case, this is [GS88, III. Prop. 2.1]. �

Proposition A.23 (Bloch maps and correspondences). The Bloch map, l-adic Bloch map, and for all
primes ` 6= char(K), the `ν-Bloch maps, are compatible with the action of correspondences. Precisely, in
the case of the l-adic Bloch map, let X and Y be smooth projective varieties over K and let Γ be a cycle on
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X×K Y of codimension dim Y + n−m. Then the following natural diagram

Tl CHm(YK)

Tlλ
m

��

Γ∗ // Tl CHn(XK)

Tlλ
n

��

H2m−1(YK, Zl(m))τ
Γ∗ // H2n−1(XK, Zl(n))τ

is commutative.

Proof. The case of the Bloch map is [Blo79, Prop. 3.5] for ` 6= char(K) and [GS88, III. Prop. 2.9]
for the p-adic case. The proposition for the l-adic Bloch map is simply obtained by applying Tl to
the case of the Bloch map. For the `ν-Bloch maps, this follows directly from the proof of [Blo79,
Prop. 3.5]. �

Proposition A.24 (Bloch maps and specialization). The Bloch map, `-adic Bloch map, and `ν-Bloch
maps are compatible with specialization. Precisely, in the case of the `-adic Bloch map, given a local ring
R with fraction field K and residue field K0, and a smooth projective morphism X → Spec R with generic
fiber X and special fiber X0, the following diagram

T` CHn(X)

T`λ
n

��

// T` CHn(X0)

T`λ
n

��

H2n−1(X, Z`(n))τ
' // H2n−1(X0, Z`(n))τ

is commutative for ` prime to char(X0). Here, X and X0 denote the base-changes of X and X0 to K and K0,
respectively. The top horizontal arrow is obtained by applying T` to the specialization map (e.g., [Ful98,
Ex. 20.3.5]), while the bottom horizontal arrow is obtained from smooth proper base-change.

Proof. The case of the Bloch map is [Blo79, Prop. 3.8]. The proposition in the case of the `-adic
Bloch map is simply obtained by applying T` to the case of the Bloch map. For the `ν-Bloch maps,
this follows directly from the proof of [Blo79, Prop. 3.8]. �

Proposition A.25 (Bloch maps and Kummer sequence). Let X be a smooth projective variety over K.
The l-adic Bloch map

Tlλ
1 : Tl CH1(XK)→ H1(XK, Zl(1))

is the natural isomorphism arising from the Kummer sequence

0 −−−→ Z/lνZ(1) −−−→ Gm
lν

−−−→ Gm −−−→ 0

and the identification CH1(XK) = H1(XK, Gm).

Proof. The case of the Bloch map is [Blo79, Prop. 3.6] in the case ` 6= char(K) and [GS88, III. Prop. 3.1,
Cor. 3.2] in the p-adic case. The proposition is simply obtained by applying Tl to the case of the
Bloch map, and noting that H1(XK, Zl(1)) is torsion-free. �

Proposition A.26 (Bloch maps and Albanese morphism, Roitman’s theorem). Let X be a smooth
projective variety of dimension d over K ; if l = char(K), assume K is perfect. Then the following diagram

Tl CHd(XK)
Tlλ

d
//

alb
((

H2d−1(XK, Zl(d))τ

Tl AlbX
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is commutative, where alb is obtained by applying Tl to the map CHd(XK) → AlbX(K) mapping a zero
cycle on XK to the sum of the corresponding points on the Albanese. Moreover, Tlλ

d is an isomorphism.

Proof. The case of the Bloch map is [Blo79, Prop. 3.9] for ` 6= char(K) and [GS88, III. Prop. 3.14,
Cor. 3.17] in the p-adic case. The commutativity of the diagram is simply obtained by applying Tl

to the case of the Bloch map. Finally, that alb : Tl CHd(XK) → Tl AlbX is an isomorphism is due
to Roitman [Blo79, Thm. 4.1]. Note that in loc. cit. it is stated that alb : CHd(XK) → AlbX(K) is an
isomorphism on torsion for K algebraically closed ; this implies the needed fact that CHd(XK) →
AlbX(K) is an isomorphism on prime-to-char(K) torsion for K separably closed. Indeed, this fol-
lows from the general fact that the prime-to-char(K) torsion in the Chow group of a scheme of
finite type over K is invariant under purely inseparable extensions (see e.g., [ACMVb, Lem. 4.10]),
and the fact that the prime-to-char(K) torsion of an abelian variety is invariant under extension of
separably closed fields. �

Finally, we have the following l-adic analogue of a result of due to Merkurjev–Suslin [MS82].

Proposition A.27 (Injectivity of the second Bloch map). Let X be a smooth projective variety over K ;
if l = char(K), assume K is perfect. The second l-adic Bloch map

Tlλ
2 : Tl CH2(XK) −→ H3(XK, Zl(2))τ

is injective, as are the second `ν-Bloch maps λ2[`ν] : CH2(XK)[`
ν]→ H3(XK, µµµ⊗2

`ν )/δ`ν for ` 6= char(K).

Proof. The injectivity of the Bloch map λ2 in the case ` 6= char(K) is due to Merkurjev–Suslin
[MS82] ; see also [Mur85, Prop. 9.2] and [CTR85, Prop. 3.1 and Rmk. 3.2]. For the p-adic case this
is [GS88, III. Prop. 3.4]. The injectivity of the second l-adic Bloch map follows via applying Tl to
the Bloch map.

For ` 6= char(K), the fact that the second `ν-Bloch maps are injective is [Mur85, Prop. 6.1].
Indeed, we consider diagram (A.11). Using K-theoretic techniques, Murre showed that (A.11) can
be factored as follows [Mur85, Rem. 6.3] :

0 //

(
ker ∂

`ν ker ∂

)
//

����

ker ∂`ν //

����

CHn(XKa)[`ν] // 0

0 // ker αν
//

����

Hn−1
zar (XKa ,Kn/`ν)

αν //

βν∼=
��

CHn(XKa)[`ν] //

−λn[`ν]

��

0

Hn−1
zar (XKa , Hn(µµµ⊗n

`ν ))

γν

��

0 // δ`ν // H2n−1
ét (XKa , µµµ⊗n

`ν ) // H2n−1
ét (XKa , µµµ⊗n

`ν )/δ`ν // 0

(A.26)

HereKn is the sheaf on XKa associated to the pre-sheaf that assigns to each Zariski open subset U ⊆
XKa the algebraic K-group Kn(OXKa (U)) (see e.g., [Mur85, §4.1]). The maps αν and βν are defined
in [Mur85, Rem. 6.3], and the map γν is Murre’s notation for the map defined in (A.6). The fact
that βν is an isomorphism is explained in [Mur85, Rem. 6.3] using [MS82], and this isomorphism
then defines the top vertical map in the center of (A.26). The fact that the top right square of
the diagram is commutative comes from the construction of αν in [Mur85, Rem. 6.3] ; in fact, the
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commutativity of (A.26) is tacitly asserted in [Mur85], so that the construction of the Bloch map
given there agrees with that given in [Blo79]. The rest of (A.26) can be established via a diagram
chase.

The key point in the case n = 2 is that Murre shows in [Mur85, Prop. 6.1, Cor. 5.4(c)] that γν

is an inclusion. Applying the snake lemma to the bottom half of (A.26) shows that the second
`ν-Bloch maps are injective. Note that taking the direct limit of the injective `ν-Bloch maps gives
Murre’s proof that λ2 is injective, while taking the inverse limit gives another proof that T`λ

2 is
injective. �

A.5. Restriction of the Bloch map to algebraically trivial cycle classes. Let X be a smooth pro-
jective variety over a field K. From (A.16), we have a diagram with exact row (see e.g., [GS88,
(3.33)] for the p-adic case)

CHn(XK)[l
∞]

λn

�� ))

0 // H2n−1(XK, Zl(n))⊗Zl Ql/Zl // H2n−1(XK, Ql/Zl(n)) // H2n(XK, Zl(n))

(A.27)

where the dashed arrow is, up to sign, the cycle class map ([CTSS83, Cor. 4], [GS88, Prop. III.1.16
and Prop. III.1.21]). Since algebraically trivial cycles are homologically trivial, it follows that the
image of An(XK)[l

∞] under λn is contained in H2n−1(XK, Zl(n))⊗Zl Ql/Zl ⊆ H2n−1(XK, Ql/Zl(n)).
In other words, when we restrict the Bloch map to algebraically trivial cycle classes we obtain a
map

λn : An(XK)[l
∞] −→ H2n−1(XK, Zl(n))⊗Zl Ql/Zl ⊆ H2n−1(XK, Ql/Zl(n)). (A.28)

Proposition A.28 (Codimension-1). Let X be a smooth projective variety over K ; if l = char(K), assume
K is perfect. The Bloch map (A.28)

λ1 : A1(XK)[l
∞] −→ H1(XK, Zl(1))⊗Zl Ql/Zl

is an isomorphism, and taking Tate modules yields an isomorphism

Tlλ
1 : Tl A1(XK) −→ H1(XK, Zl(1)).

Proof. This follows from Proposition A.25. Indeed, we start with the fact that CH1(XK)/ A1(XK) '
PicX/K(K)/ Pic0

X/K(K) = NS(XK) is a finitely generated Z-module. From this we can conclude
that Tl A1(XK) = Tl CH1(XK). This gives the result for Tlλ

1. Then from the identification A1(XK) =

Pic0
X/K(K), the torsion and Tate modules are free of the same rank, and so we have A1(XK)[l

∞] =

Tl A1(XK)⊗Zl Ql/Zl . This gives the result for the Bloch map.
�

Proposition A.29 (Bloch maps and Albanese morphisms, Roitman’s theorem). Let X be a smooth
projective variety of dimension d over K. Then the following diagram

Ad(XK)[l
∞]

λd
//

alb
--

H2d−1(XK, Zl(d))⊗Zl Ql/Zl
� � // H2d−1(XK, Ql/Zl(d))

AlbX[l∞]

(A.29)

is commutative, where alb is obtained by restricting to Ad(XK) the map CHd(XK) → AlbX(K) mapping
a zero cycle on XK to the sum of the corresponding points on the Albanese. Moreover, λd, as well as the
inclusion H2d−1(XK, Zl(d))⊗Zl Ql/Zl ↪→ H2d−1(XK, Ql/Zl(d)), are isomorphisms.
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Taking Tate modules, we obtain a commutative diagram

Tl Ad(XK)
Tlλ

d
//

alb
((

H2d−1(XK, Zl(d))τ

Tl AlbX

Moreover, Tlλ
d is an isomorphism.

Proof. This just follows from Proposition A.26 and the fact that Ad(XK)[l
∞] = CHd(XK)[l

∞]. In-
deed, the commutativity of (A.29) follows from this and the discussion above. Then Proposi-
tion A.26 and the fact that Ad(XK)[l

∞] = CHd(XK)[l
∞] implies that the composition of the top

row is an isomorphism. This forces λd to be an isomorphism. The result for Tate modules follows
immediately. �

Finally, we have the following l-adic analogue of a result due to Merkurjev–Suslin [MS82].

Proposition A.30 (Injectivity of the second Bloch map). Let X be a smooth projective variety over K.
The second Bloch map

λ2 : A2(XK)[l
∞] −→ H3(XK, Zl(2))⊗Zl Ql/Zl ,

the second l-adic Bloch map

Tlλ
2 : Tl A2(XK) −→ H3(XK, Zl(2))τ,

and for all primes ` 6= char(K), the second `ν-Bloch maps λ2[`ν] : A2(XK)[`
ν] → H3(XK, µµµ⊗2

`ν )/δ`ν , are
injective.

Proof. This just follows from Proposition A.27 and from the inclusion of A2(XK) ⊆ CH2(XK). �
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