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Abstract. This note is about certain locally complete families of Calabi–Yau varieties
constructed by Cynk and Hulek, and certain varieties constructed by Schreieder. We prove
that the cycle class map on the Chow ring of powers of these varieties admits a section,
and that these varieties admit a multiplicative self-dual Chow–Künneth decomposition. As
a consequence of both results, we prove that the subring of the Chow ring generated by
divisors, Chern classes, and intersections of two cycles of positive codimension injects into
cohomology, via the cycle class map. We also prove that the small diagonal of Schreieder
surfaces admits a decomposition similar to that of K3 surfaces. As a by-product of our
main result, we verify a conjecture of Voisin concerning zero-cycles on the self-product of
Cynk–Hulek Calabi–Yau varieties, and in the odd-dimensional case we verify a conjecture of
Voevodsky concerning smash-equivalence. Finally, in positive characteristic, we show that
the supersingular Cynk–Hulek Calabi–Yau varieties provide examples of Calabi–Yau varieties
with “degenerate” motive.

Introduction

In the course of a quest for Calabi–Yau varieties that are modular, Cynk and Hulek [7]
constructed certain Calabi–Yau varieties X of arbitrary dimension n over C. Their construc-
tion starts from a product of n complex elliptic curves E1, . . . , En. The Calabi–Yau variety
X is obtained by considering

E1 × · · · × En
p

��

X
f
// (E1 × · · · × En)/G := X̄

where G is a certain group of automorphisms (specifically G ∼= Zn−12 , or G ∼= Zn−13 and
E1 = · · · = En is an elliptic curve with an order-3 automorphism), and f is a crepant
resolution of singularities. We refer to Theorems 1.1 and 1.2 below for explicit definitions, and
to Propositions 4.3 and 4.4 together with the proof of Claim 4.8 for an explicit construction.

The difference between the two types of Cynk–Hulek varieties (G = Zn−12 , resp. G = Zn−13 )

is illustrated by their Hodge diamond. In the first case (i.e. G = Zn−12 ), the Hodge diamond
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looks like
1
∗
...

1 ∗ . . . . . . . . . ∗ 1
...
∗
1

(where ∗ means some unspecified number, and all empty entries are 0), whereas for the second
case (i.e. G = Zn−13 ), the Hodge diamond is

1
∗
...

1 0 . . . 0 ∗ 0 . . . 0 1
...
∗
1

Recently, Stefan Schreieder [29] generalized the construction of Cynk–Hulek in order to
solve some construction problems for Hodge numbers. His construction starts with the hy-
perelliptic curve C which is the smooth projectivization of the affine curve {y2 = x3

c − 1}
equipped with the action of a primitive 3c-th root of unity ζ acting as (x, y) 7→ (ζ · x, y). The
variety X is an explicit smooth projective birational model of Cn/G, where G is a certain
subgroup of (Z3c)

n isomorphic to (Z3c)
n−1 (see Proposition 4.5 and the proof of Claim 4.8).

The Hodge diamond of a Schreieder variety looks like

1
∗
...
...

0 . . . 0 g 0 . . . 0 ∗ 0 . . . 0 g 0 . . . 0
...
...
∗
1

where g = (3c − 1)/2 can occur at any desired place ha,b with a+ b = n.
From an arithmetic perspective, the construction of Schreieder has been used by Flapan

and Lang [11] to construct motives associated to certain algebraic Hecke characters, thereby
generalizing the modularity result of Cynk and Hulek [7].

The varieties of Cynk–Hulek and of Schreieder are thus both very special from a Hodge-
theoretic point of view and from an arithmetic point of view. The aim of this note is to
confirm that these varieties are also very special from a cycle-theoretic point of view.
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Let CHi(X) denote the Chow groups with rational coefficients, let CHi
num(X) denote the

subgroup of numerically trivial cycles, and let CH
i
(X) denote the quotient. Our main result

concerns the multiplicative structure of the Chow ring of X :

Theorem 1 (Theorem 4.1). Let X be either a Cynk–Hulek Calabi–Yau variety as in Theo-
rem 1.1 or 1.2, or a Schreieder variety as in Theorem 1.4. Then the Q-algebra epimorphism
CH∗(Xm)→ CH

∗
(Xm) admits a section whose image contains the Chern classes of Xm, for

all positive integers m.
Moreover, assuming n := dimX ≥ 2, the graded subalgebra R∗(X) ⊆ CH∗(X) generated by

divisors, Chern classes and by cycles that are the intersection of two cycles in X of positive
codimension injects into CH

∗
(X). In particular, for any k the image of the intersection map

CHi(X)⊗ CHk−i(X)→ CHk(X) (0 < i < k)

injects into cohomology.

Theorem 4.1 is similar to results in the Chow ring of K3 surfaces [3], and is closely related
to the conjectural “splitting property” of Beauville [4]. Presumably, the fact that Rn(X) =
Qcn(X) is true for any Calabi–Yau variety1 ; for instance, this was established for Calabi–
Yau complete intersections [37], [12]. On the other hand, the full statement of Theorem 4.1
is certainly not true for all Calabi–Yau varieties [4, Example 2.1.5] ; this behavior is peculiar
to the Cynk–Hulek Calabi–Yau varieties.

Somewhat surprisingly, the Schreieder varieties give examples in any dimension, and with
arbitrarily large geometric genus, for which the intersection product in the Chow ring is “as
degenerate as possible”. (This should be contrasted with the behavior of the surfaces S ⊂ P3

exhibited in [27], for which the rank of Im
(
CH1(S) ⊗ CH1(S) → CH2(S)

)
gets arbitrarily

large when the degree of S grows.) Schreieder surfaces of genus 1 are K3 surfaces while
Schreieder surfaces of higher genus are modular elliptic of Kodaira dimension 1 (see [10] and
Remark 1.5). For those, we obtain as a corollary the existence of a decomposition of the small
diagonal similar to that of K3 surfaces proved by Beauville and Voisin [3] :

Corollary 1. Let S be a Schreieder surface. Then there exists a point p ∈ S such that

(x, x, x)− (x, x, p)− (x, p, x)− (p, x, x)+(p, p, x)+(p, x, p)+(x, x, p) = 0 in CH4(S×S×S).

Here (x, x, x), (x, x, p), (x, p, p) are the classes of the images of S into S × S × S by the maps
x 7→ (x, x, x), x 7→ (x, x, p), x 7→ (x, p, p).

In order to show that the Q-algebra epimorphism CH∗(Xm)→ CH
∗
(Xm) of Theorem 4.1

admits a section, we prove that X satisfies a certain condition (?) (cf. Definition 2.6) which
was introduced in [14]. The “moreover” part of Theorem 4.1 is not a formal consequence of
the existence of a section, and is obtained, via Proposition 2.10, by computing the motive of
X and by establishing yet another result related to the splitting property (see §2.1 for the
notion of multiplicative Chow–Künneth decomposition) :

Theorem 2 (Theorem 4.2). Let X be either a Cynk–Hulek Calabi–Yau variety as in Theo-
rem 1.1 or 1.2, or a Schreieder variety as in Theorem 1.4. Then X admits a multiplicative
self-dual Chow–Künneth decomposition, in the sense of [31].

1This expectation is perhaps overly optimistic. Voisin [38, p. 101] writes more prudently : “It would be very
interesting to understand the class of Calabi–Yau varieties satisfying conclusions analogous to” Calabi–Yau
complete intersections. Bazhov [2] states (and proves in certain cases) a weaker version of this expectation,
only considering 0-cycles that are intersections of divisors.
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Other varieties admitting a multiplicative Chow–Künneth decomposition include abelian
varieties, hyperelliptic curves, Hilbert schemes of points of K3 surfaces and of abelian surfaces
[34], and generalized Kummer varieties [13]. Theorem 4.2 provides the first examples of
Calabi–Yau varieties of dimension > 2 with a multiplicative Chow–Künneth decomposition,
while Theorem 4.1 provides the first examples of Calabi–Yau varieties of dimension > 2 for
which the subalgebra of the Chow ring generated by divisors and the Chern classes injects
into cohomology via the cycle class map.

Along the way, we compute (Corollary 3.7) the Chow motive of certain finite quotients of
products of (hyper)elliptic curves (including the quotients considered in Theorems 1.1, 1.2
and 1.4), but also compute (Claim 4.9) the Chow motive of the Cynk–Hulek Calabi–Yau
varieties and of the Schreieder varieties. In Section 5, we offer three applications.

First, we use Corollary 3.7 to establish :

Theorem 3 (Theorem 5.3). Let X be a Cynk–Hulek Calabi–Yau variety of dimension n as
in Theorem 1.1 or 1.2. Then any a, a′ ∈ CHn

num(X) satisfy

a× a′ = (−1)n a′ × a in CH2n(X ×X) .

According to an old conjecture of Voisin ([36], cf. also Section 5.1 below), the statement
of Theorem 5.3 should hold for any Calabi–Yau variety. As far as we are aware, Theorem 5.3
gives the first examples of Calabi–Yau varieties of arbitrary dimension verifying Voisin’s con-
jecture.

Second, a consequence of Claim 4.9 concerns Voevodsky’s conjecture on smash-equivalence ;
we refer to [35] and Section 5.2 below for the definition and background of smash-equivalence.

Proposition (Proposition 5.8). Let X be either a Cynk–Hulek Calabi–Yau variety as in
Theorem 1.1 or 1.2, or a Schreieder variety as in Theorem 1.4. Assume that X is odd-
dimensional. Then smash-equivalence and numerical equivalence coincide for all CHi(X).

Finally, in a brief excursion to positive characteristic, we exhibit, as a consequence of
Claim 4.9, examples of Calabi–Yau varieties in characteristic ≥ 5 whose motive is “degener-
ate” :

Proposition (Proposition 5.9). Let k be an algebraically closed field of characteristic ≥ 5.
Let X be a Cynk–Hulek Calabi–Yau variety over k as in Theorem 1.1 or 1.2, where the elliptic
curves are assumed to be supersingular and X is even-dimensional. Then the Chow motive
of X is isomorphic to a direct sum of Lefschetz motives. Consequently, the cycle class map
to `-adic cohomology induces isomorphisms

CHi(X)Q`

∼=−→ H2i(X,Q`(i)) ∀i
(where ` is a prime different from char k).

Acknowledgments. Thanks to Julius Ross, for asking whether there exist Calabi–Yau
varieties of arbitrarily high dimension for which Voisin’s conjecture is known. His question
sparked this project.

1. The varieties of Cynk–Hulek and Schreieder

We denote Zn the cyclic group of order n. Given a smooth projective variety, we denote
Htr(X) its transcendental cohomology ; it is the orthogonal complement (with respect to the
choice of a polarization) of the subspace spanned by algebraic classes.
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1.1. The Cynk–Hulek construction.

Theorem 1.1 (Cynk–Hulek [7]). Let E1, . . . , En be elliptic curves. For any n ∈ N, let

G = {(m1, . . . ,mn) ∈ Zn2 : m1 + · · ·+mn = 0} ∼= Zn−12

act on E1×· · ·×En, where the generator of Z2 acts on Ei by the [−1]-involution. Then there
exists a crepant resolution

f : X → X̄ := (E1 × · · · × En)/G ,

and so X is a Calabi–Yau variety. Moreover, such Calabi–Yau varieties form a locally com-
plete family.

Proof. This is [7, Corollary 2.3]. In fact, the crepant resolution X can be constructed ex-
plicitly, inductively on the number of elliptic curves, cf. the proof of Proposition 4.3 below.
That such Calabi–Yau varieties form a locally complete family can be seen as follows : since
elliptic curves have a one-dimensional deformation family, X clearly fits into an n-dimensional
deformation family. On the other hand, Hn(X) is isomorphic to H1(E1)⊗ · · · ⊗H1(En) plus
possibly some algebraic classes, and in particular h1,n−1(X) = n ; see [7, Lemma 2.4] or Corol-
lary 3.7 below. By Serre duality H1(X, TX) ∼= Hn−1(X,Ω1

X) so that dimH1(X, TX) = n. �

In the case of elliptic curves with extra endomorphisms (precisely, automorphisms of or-
der 3), Cynk and Hulek construct examples of Calabi–Yau varieties with cohomology “as
simple as possible”.

Theorem 1.2 (Cynk–Hulek [7]). Let E be an elliptic curve with an order 3 automorphism ν.
For any n ∈ N, let

G = {(m1, . . . ,mn) ∈ Zn3 : m1 + · · ·+mn = 0} ∼= Zn−13

act on En by νmi on the i-th factor. There exists a crepant resolution

f : X → X̄ := En/G ,

and so X is a Calabi–Yau variety. Moreover, for n > 2, such Calabi–Yau varieties are rigid,
and their transcendental cohomology has Hodge numbers hp,qtr = 1 if {p, q} = {n, 0}, and
hp,qtr = 0 otherwise.

Proof. This is [7, Theorem 3.3] (the construction of X is also explained in [16, Section 5.3]).
In fact, the crepant resolution X can be constructed explicitly, inductively on the number of
elliptic curves, cf. the proof of Proposition 4.4 below.

Arguing as in the proof of Theorem 1.1, we see that such X is rigid because h1,n−1(X) = 0 ;
see [7, Theorem 3.3] or Corollary 3.7 below. �

Remark 1.3. The Cynk–Hulek varieties X of Theorem 1.2 are N1–maximal, in the sense of
[6] ; this means that dimHn

tr(X,Q) = 2.

1.2. The Schreieder construction. By using iterated resolutions of Z3-quotient singu-
larities, Schreieder generalizes (see however Remark 1.6) the Cynk–Hulek construction of
Theorem 1.2 and proves the following theorem.

Theorem 1.4 (Schreieder [29]). Let c be a positive integer, and let ζ be a primitive 3c-
th roof of unity. Let C be the smooth projective hyperelliptic curve obtained as the smooth
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projectivization of the affine curve {y2 = x3
c

+ 1}. Endow C with the action of Z3c given by
(x, y) 7→ (ζ · x, y). For any n ∈ N and any integers a, b ≥ 0 such that a > b and a+ b = n, let

Ga,b = {(m1, . . . ,mn) ∈ Zn3c : m1 + · · ·+ma −ma+1 −ma+b = 0} ∼= Zn−13

act on Cn by ζmi on the i-th factor. Then Cn/Ga,b admits a smooth projective model X
whose transcendental cohomology has Hodge numbers hp,qtr = (3c − 1)/2 if {p, q} = {a, b}, and
hp,qtr = 0 otherwise.

Schreieder provides in [29, §8] an explicit construction of X. The construction is inductive
on the number of factors C, and is recalled in §4.3. When referring to the “Schreieder
varieties”, we will mean those explicit models.

Remark 1.5. A Schreieder variety of dimension 2 is a K3 surface when c = 1 (these K3
surfaces have been intensively studied by Shioda–Inose [32]), and is an elliptic modular surface
of Kodaira dimension 1 for all c > 1 [10, Theorems 3.2 & 9.2]. These surfaces are very special :
they are ρ–maximal (in the sense of [5]) and have Mordell–Weil rank 0 [10, Corollary 6.1].

Remark 1.6. In case c = 1 and b = 0, the Schreieder variety XS (given by Theorem 1.4)
and the Cynk–Hulek variety XCH (given by Theorem 1.2) are both resolutions of the same
singular variety Cn/Gn,0. They share the same Hodge numbers hp,q for p 6= q, but they are (a
priori) different ; indeed, XCH is Calabi–Yau, whereas XS is only “numerically Calabi–Yau”.
The difference in the construction of XS and XCH is outlined in Remark 4.7.

2. Multiplicative Chow–Künneth decompositions and distinguished cycles

The aim of this section is to recall briefly the notions of multiplicative Chow–Künneth
decomposition, and of distinguished cycle on varieties with motive of abelian type. Combining
both notions, we reduce the proof of the main Theorem 4.1 to showing that the transcendental
cohomology H i

tr(X) is concentrated in degree i = dimX, and that the motive of X satisfies
a certain condition (?) (Definition 2.6) ; cf. Proposition 2.10 and the final Remark 2.11.

2.1. Multiplicative Chow–Künneth decompositions.

Definition 2.1 (Murre [26]). Let X be a smooth projective variety of dimension n. We say
that X has a Chow–Künneth decomposition if there exists a decomposition of the diagonal

∆X = π0X + π1X + · · ·+ π2nX in CHn(X ×X) ,

such that the πiX are mutually orthogonal idempotents and (πiX)∗H
∗(X) = H i(X). Given a

Chow–Künneth decomposition for X, we set

CHi(X)(j) := (π2i−jX )∗CHi(X).

The Chow–Künneth decomposition is said to be self-dual if

πiX = tπ2n−iX in CHn(X ×X) ∀i .
(Here tπ denotes the transpose of a cycle π.)

Remark 2.2. The existence of a Chow–Künneth decomposition for any smooth projective
variety is part of Murre’s conjectures [26]. It is expected that for any X with a Chow–Künneth
decomposition, one has

CHi(X)(j)
??
= 0 for j < 0 , CHi(X)(0) ∩ CHi

num(X)
??
= 0.

These are Murre’s conjectures B and D, respectively.
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Definition 2.3 (Definition 8.1 in [30]). Let X be a smooth projective variety of dimension
n. Let δX ∈ CH2n(X ×X ×X) be the class of the small diagonal

δX :=
{

(x, x, x) : x ∈ X
}
⊂ X ×X ×X .

A Chow–Künneth decomposition {πiX} of X is multiplicative if it satisfies

πkX ◦ δX ◦ (πiX ⊗ π
j
X) = 0 in CH2n(X ×X ×X) for all i+ j 6= k .

In that case,

CHi(X)(j) := (π2i−jX )∗CHi(X)

defines a bigraded ring structure on the Chow ring ; that is, the intersection product has the
property that

Im
(

CHi(X)(j) ⊗ CHi′(X)(j′)
·−→ CHi+i′(X)

)
⊆ CHi+i′(X)(j+j′) .

The property of having a multiplicative Chow–Künneth decomposition is severely restric-
tive, and is closely related to Beauville’s “(weak) splitting property” [4]. For more ample
discussion, and examples of varieties admitting a multiplicative Chow–Künneth decomposi-
tion, we refer to [30, Chapter 8], as well as [34], [31], [13].

2.2. Distinguished cycles on varieties with motive of abelian type. The following
crucial notion was introduced by O’Sullivan [28].

Definition 2.4 (Symmetrically distinguished cycles on abelian varieties [28]). Let A be an
abelian variety and α ∈ CH∗(A). For each integer m ≥ 0, denote by Vm(α) the Q-vector
subspace of CH∗(Am) generated by elements of the form

p∗(α
r1 × αr2 × · · · × αrn),

where n ≤ m, rj ≥ 0 are integers, and p : An → Am is a closed immersion with each
component An → A being either a projection or the composite of a projection with [−1] :
A→ A. Then α is symmetrically distinguished if for every m the restriction of the projection
CH∗(Am)→ CH

∗
(Am) to Vm(α) is injective.

The main result of [28] is :

Theorem 2.5 (O’Sullivan [28]). Let A be an abelian variety. Then DCH∗(A), the symmet-
rically distinguished cycles in CH∗(A), form a graded sub-Q-algebra that contains symmetric
divisors and that is stable under pull-backs and push-forwards along homomorphisms of abelian
varieties. Moreover the composition

DCH∗(A) ↪→ CH∗(A) � CH
∗
(A)

is an isomorphism of Q-algebras.

Let X be a smooth projective variety such that its Chow motive h(X) belongs to the strictly
full and thick subcategory of Chow motives generated by the motives of abelian varieties. We

say that X has motive of abelian type. A marking for X is an isomorphism φ : h(X)
'−→ M

of Chow motives with M a direct summand of a Chow motive of the form ⊕ih(Ai)(ni)
cut out by an idempotent matrix P ∈ End(⊕ih(Ai)(ni)) whose entries are symmetrically
distinguished cycles, where Ai is an abelian variety and ni is an integer (the Tate twist). We

refer to [14, Definition 3.1] for a precise definition. Given a marking φ : h(X)
'−→ M , we

define the subgroup of distinguished cycles of X, denoted DCH∗φ(X) to be the pre-image of
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DCH∗(M) := P∗
⊕

i DCH∗−ni(Ai) via the induced isomorphism φ∗ : CH∗(X)
'−→ CH∗(M).

Given another smooth projective variety Y with a marking ψ : h(Y )→ N , the tensor product
φ⊗ ψ : h(X × Y )→M ⊗N defines naturally a marking for X × Y . A morphism f : X → Y
will be said to be a distinguished morphism if its graph is distinguished with respect to the
product marking φ⊗ ψ.

The composition

DCH∗φ(X) ↪→ CH∗(X) � CH
∗
(X)

is clearly bijective. In other words, φ provides a section (as graded vector spaces) of the natural

projection CH∗(X) � CH
∗
(X). In [14], we found sufficient conditions on the marking φ for

DCH∗φ(X) to define a Q-subalgebra of CH∗(X) :

Definition 2.6 (Definition 3.7 in [14]). We say that the marking φ : h(X)
'−→ M satisfies

the condition (?) if the following two conditions are satisfied :

(?Mult) the small diagonal δX belongs to DCH∗φ⊗3(X3) ; that is, under the induced isomor-

phism φ⊗3∗ : CH∗(X3)
'−→ CH∗(M⊗3), the image of δX is symmetrically distinguished,

i.e. in DCH∗(M⊗3).
(?Chern) all Chern classes ci(X) belong to DCH∗φ(X) ;

If in addition X is equipped with the action of a finite group G, we say that the marking

φ : h(X)
'−→M satisfies (?G) if :

(?G) the graph gX of g : X → X belongs to DCH∗φ⊗2(X2) for all g ∈ G.

Proposition 2.7 (Proposition 3.12 in [14]). If the marking φ : h(X)
'−→ M satisfies the

condition (?), then there is a section, as graded algebras, for the natural surjective morphism

CH∗(X)→ CH
∗
(X) such that all Chern classes of X are in the image of this section.

In other words, under (?), we have a graded Q-sub-algebra DCH∗φ(X) of the Chow ring

CH∗(X), which contains all the Chern classes of X and is mapped isomorphically to CH
∗
(X).

Elements of DCH∗φ(X) are called distinguished cycles.

We refer to [14] for example of varieties satisfying (?) ; for our purpose here, we mention
that these include abelian varieties, hyperelliptic curves (see Proposition 3.3), and varieties
with trivial Chow groups2. The property (?) is very flexible ; in [14, Section 4], it is shown that
this property is stable under product, projectivization of vector bundles, and blow-ups, under
certain conditions on some Chern classes. Those will be utilized in the proof of our main
theorems where the smooth models will be obtained by blowing up subvarieties with trivial
Chow groups inside a product of hyperelliptic curves, taking finite quotients and iterating ;
see the arguments in Section 4. For the record, let us write down explicitly one of the results
of [14] :

Proposition 2.8 (Propositions 4.5 and 4.8 in [14]). Let X be a smooth projective variety and

let i : Y ↪→ X be a closed smooth subvariety. Let X̃ be the blow-up of X along Y and let E

2A smooth projective variety X is said to have trivial Chow groups if the Chow groups of X base-changed
to a universal domain are finite-dimensional Q-vector spaces.
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be the exceptional divisor, so that we have a commutative diagram

E �
� j

//

p

��

X̃

τ
��

Y �
� i // X

If we have markings satisfying the condition (?) for X and Y such that i : Y ↪→ X is

distinguished, then E and X̃ have natural markings that satisfy (?) and are such that the
morphisms i, j, τ and p are all distinguished.

If in addition X is equipped with the action of a finite group G such that G · Y = Y and
such that the markings of X and Y satisfy (?G), then the natural markings of E and X̃ also
satisfy (?G). �

Theorem 4.1 and Theorem 4.2 are related by :

Proposition 2.9 (Proposition 6.1 in [14]). Let X be a smooth projective variety with a
marking φ that satisfies (?Mult). Then X has a self-dual multiplicative Chow–Künneth de-
composition, consisting of distinguished cycles in CH∗(X ×X), with the property that

DCH∗φ(X) ⊆ CH∗(X)(0)

(and equality holds for ∗ = 0, 1,dimX − 1,dimX). �

Thus if we have a smooth projective variety X with a marking φ that satisfies (?Mult), we
have a chain of homomorphisms

DCH∗φ(X) ↪→ CH∗(X)(0) ↪→ CH∗(X) � CH
∗
(X),

whose composition is an isomorphism, and where the left inclusion arrow is conjecturally an
isomorphism (by Murre’s conjecture D).

2.3. A crucial proposition. The following proposition is crucial to the proof of the second
part of Theorem 4.1.

Proposition 2.10. Let X be a smooth projective variety of dimension n ≥ 2 that admits a
marking satisfying the condition (?) of Definition 2.6. Assume that the cohomology of X is
spanned by algebraic classes in degree 6= n. Then the graded subalgebra R∗(X) ⊆ CH∗(X)
generated by divisors, Chern classes and by cycles that are the intersection of two cycles in
X of positive codimension injects into CH

∗
(X).

Proof. Fix a marking φ : h(X) → M that satisfies (?) ; in particular, X has motive of
abelian type. First we exploit the condition on the cohomology of X. This condition means
that H2i+1(X) = 0 for 2i + 1 6= n, and that the cycle class map CHi(X) → H2i(X) is
surjective for 2i 6= n. By using the nondegenerate cup-product pairing between H2i(X)
and H2n−2i(X), we obtain a Künneth decomposition of the diagonal ∆X = pnX +

∑
2i 6=n p

2i
X ∈

H2n(X×X), where the classes pjX are algebraic and such that the homological motives (X, p2iX)
are isomorphic to a direct sum of copies of the Lefschetz motive 1(−i) for 2i 6= n, and where
(pnX)∗H

∗(X) = Hn(X). By finite-dimensionality of the motive of X, this decomposition lifts
to a decomposition of the Chow motive of X :

(1) h(X) ' hn(X)⊕
⊕

1(∗),

where H∗(hn(X)) = Hn(X).
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By Proposition 2.7, it is enough to show that R∗(X) ⊆ DCH∗φ(X). Since we already know

that DCH∗φ(X) is a subalgebra of CH∗(X) that contains the Chern classes of X, it is enough

to show that DCH1
φ(X) = CH1(X) and that the intersection of any two cycles of positive

codimension belongs to DCH∗φ(X). That DCH1
φ(X) = CH1(X) is clear from the description

of the motive of X given in (1). By Proposition 2.9, X has a multiplicative self-dual Chow–
Künneth decomposition {πiX : 0 ≤ i ≤ 2n} that induces a bigrading on the Chow ring of
X with the property that DCH∗φ(X) ⊆ CH∗(X)(0). By finite-dimensionality of X, any two

Chow–Künneth decompositions of the motive of X are isomorphic ; therefore, by (1), the
bigrading on CH∗(X) has the form :

(2) CHi(X) = CHi(X)(0) ⊕ CHi(X)(2i−n).

By multiplicativity we have Im
(
CHi(X)(s) ⊗ CHj(X)(t) → CHi+j(X)

)
⊆ CHi+j(X)(s+t).

Combining the multiplicativity with (2), we find that, for 0 < i, j < n, we have

Im
(
CHi(X)⊗ CHj(X)→ CHi+j(X)

)
= Im

(
CHi(X)(0) ⊗ CHj(X)0 → CHi+j(X)

)
⊆ CHi+j(X)(0).

Now the motive (X,π2iX) is isomorphic to a direct sum of Lefschetz motives 1(−i) for all

i 6= n
2 , so that CHi(X)(0) maps isomorphically to CH

i
(X) for all i 6= n

2 . Since DCHi
φ(X)

maps isomorphically to CH
i
(X) for all i, we see that the inclusion DCHi

φ(X) ⊆ CHi(X)(0) is
an equality for all i 6= n

2 . This establishes that the intersection of any two cycles of positive
codimension belongs to DCH∗φ(X), and thereby finishes the proof of Proposition 2.10. �

Remark 2.11. In view of Proposition 2.7 (together with the fact that the property (?) is
stable under product by [14, Prop. 4.1]), Propositions 2.9 and 2.10, the proof of the main
Theorems 4.1 and 4.2 reduces to showing that the relevant varieties X satisfy the following
two properties :

(1) The cohomology of X is spanned by algebraic classes in degree 6= n ;
(2) X admits a marking that satisfies the condition (?).

3. The motive of X̄

3.1. Hyperelliptic curves. Let C be a smooth projective hyperelliptic curve of genus g ≥ 0,
that is, C comes equipped with a 2-to-1 morphism π : C → P1. This morphism induces an
involution on C which we call the hyperelliptic involution. By definition, the Weierstraß
points of C are the 2g+ 2 ramification points of the morphism π : C → P1, that is, the 2g+ 2
fixed points of the involution. An elliptic curve will be seen as a hyperelliptic curve via its
[−1]-involution. We have the following basic lemma.

Lemma 3.1. The fixed points for the hyperelliptic involution are pairwise rationally equiva-
lent, i.e., define the same class in CH0(C)Q.

Proof. Since π is flat of degree 2, we see that any two Weierstraß points P and Q of C
satisfy 2[P ] = 2[Q] ∈ CH0(C). Therefore the Weierstraß points on C define the same class in
CH0(C)Q. �

3.2. The hyperelliptic curves y2 = x2g+1 + D. Let g be a natural number and let D be
a non-zero rational number, and let Cg,D be the smooth projective model of the affine curve
Y = {y2 = x2g+1 + D}. When g > 1, the projective closure X of Y has a cusp at the point
∞, and the hyperelliptic curve Cg,D is its normalization. In particular Cg,D is obtained from
Y by adding one additional point at ∞.
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The curve Cg,D is endowed with the hyperelliptic involution σ which on the open subset Y
is given by (x, y) 7→ (x,−y). The fixed points for that action are called the Weierstraß points,

and are explicitly given by the 2g + 2 points {(ζ · |D|
1

2g+1 , 0) : ζ ∈ µ2g+1} ∪ {∞}.
The curve is also endowed with an action of µ2g+1, which on the open subset Y is given

by ζ · (x, y) = (ζ · x, y). Its fixed points are the points (0,
√
D), (0,−

√
D), and ∞. Note that

these points are defined over Q if D = 1.

Lemma 3.2. The fixed points for the hyperelliptic involution and for the µ2g+1-action are
pairwise rationally equivalent, i.e., define the same class in CH0(Cg,D)Q.

Proof. By Lemma 3.1, the fixed points for the hyperelliptic involution on Cg,D (which include
the ∞ point) define the same class in CH0(Cg,D)Q.

Consider the lines {y =
√
D}, {y = −

√
D} and {x = 0} in A2. These lines intersect the

curve Y in (2g+1)[(0,
√
D)], (2g+1)[(0,−

√
D)] and [(0,

√
D)]+ [(0,−

√
D)], respectively. We

deduce that these 3 cycles are rationally equivalent on Y . By excision, we see that the points
(0,
√
D), (0,−

√
D) and∞ define the same class in CH0(Cg,D)Q. (Note that in the case g = 1,

i.e., in the case where (Cg,D,∞) is an elliptic curve, the points (0,
√
D) and (0,−

√
D) are

3-torsion points.) �

3.3. Key proposition.

Proposition 3.3. Let C be a smooth projective curve equipped with the action of a finite
group H. Assume that (C,H) is either :

(i) a hyperelliptic curve equipped with its hyperelliptic involution ;
(ii) a hyperelliptic curve Cg,D as in subsection 3.2 equipped with the action of µ2g+1.

Then C has a marking that satisfies the condition (?) and (?H), with the additional property
that if P is a fixed point of H, then the embedding P ↪→ C is distinguished.

Proof. By [14, Corollary 5.4], the embedding of a hyperelliptic curve inside its Jacobian
AJ : C → J(C), x 7→ OC(x − q), where q is a Weierstraß point, provides a marking for C
that satisfies (?). Moreover the embedding q ↪→ C is distinguished by construction. Since by
Lemma 3.2 all fixed points of H and all Weierstraß points are rationally equivalent, we see
that the embedding P ↪→ C is distinguished for any choice of fixed point P of H.

It remains to show that for any h ∈ H, the graph Γh ∈ CH1(C × C) is distinguished with
respect to the product marking AJ⊗AJ. Let P be a fixed point of H (which by Lemma 3.2
is rationally equivalent to any Weierstraß point) and consider the following Chow–Künneth
decomposition

π0C = P × C, π2C = C × P, and π1C = ∆C − π0C − π2C .
These are distinguished cycles in C × C and by Proposition 2.9 they define a multiplicative
Chow–Künneth decomposition such that DCH∗(C ×C) ⊆ CH∗(C ×C)(0). Since in codimen-
sion 1 the previous inclusion is an equality (see Proposition 2.9), we are reduced to showing
that Γh belongs to CH1(C×C)(0) with respect to the product Chow–Künneth decomposition
on the product C × C. That is, we are reduced to showing that

(π0C ⊗ π1C + π1C ⊗ π0C)∗Γh = 0 in CH1(C × C).

By orthogonality and symmetry, we are reduced to showing that

π1C ◦ Γh ◦ π2C = 0 in CH1(C × C).
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But Γh ◦π2C = C×h(P ) = C×P = π2C (since P is a fixed point of H). We can then conclude
by orthogonality of π1C and π2C . �

3.4. The motive of X̄. In this subsection we consider a projective variety of the form

X̄ = (C1 × · · · × Cn)/G,

where the Ci are hyperelliptic curves and G is a certain finite subgroup of automorphisms of
C1 × · · · × Cn. Specifically, we assume one of the following :

(a) Each Ci is a hyperelliptic curve equipped with the action of H ∼= Z2 induced by its
hyperelliptic involution, and

G = {(h1, . . . , hn) ∈ Hn : h1 + · · ·+ hn = 0}.

(b) Let g be a positive integer and let a, b ≥ 0 be integers such that n = a + b and a > b.
Each Ci is a hyperelliptic curve of genus g as in Subsection 3.2 equipped with the action
of H = µ2g+1 given by (x, y) 7→ (ζ · x, y), and

G = Ga,b = {(h1, . . . , hn) ∈ Hn : h1 + · · ·+ ha − ha+1 − · · · − ha+b = 0}.

Note that in case (a) if the curves are chosen to be elliptic curves endowed with the [−1]-
involution, then X̄ is the variety considered in Theorem 1.1, while in case (b) if the curves
are chosen to be elliptic curves with an order 3 automorphism, and one takes b = 0, then X̄
is the variety considered in Theorem 1.2.

The goal of this subsection is to determine the motive of X̄ ; this will be used later on
in Section 4. We also show how the formalism of distinguished cycles (and multiplicative
Chow–Künneth decomposition) works for X̄. This is done for the reader’s benefit, and is not
necessary for the results in Section 4.

In what follows, a hyperelliptic curve C is always endowed with the Chow–Künneth de-
composition given by

π0C := P × C, π2C = C × P, π1C = ∆C − π0C − π2C ,

where P is the class of a Weierstraß point. A product of hyperelliptic curves C1× · · · ×Cn is
endowed with the product Chow–Künneth decomposition

πk :=
∑

k=k1+···+kn

πk1C1
⊗ · · · ⊗ πknCn

.

In the case where C is an elliptic curve endowed with the [−1]-involution, note that the
0 element is a Weierstraß point, so that the above Chow–Künneth decomposition is the
Deninger–Murre decomposition [8]. By unicity of the Deninger–Murre decomposition [8,
Theorem 3.1], the above product Chow–Künneth decomposition for a product of elliptic
curves is the one of Deninger–Murre [8].

Since the variety X̄ is obtained as the quotient of the smooth projective variety C1×· · ·×Cn
by a finite group G, and since we are only concerned with algebraic cycles with rational
coefficients, the motive of X̄ identifies with the G-invariant part of the motive of C1×· · ·×Cn,
as algebra objects. In particular, the notion of multiplicative Chow–Künneth decomposition
and the condition (?Mult) make sense for X̄, so that Proposition 2.10 holds with the Chern
classes omitted. These are established for X̄ via the following proposition, which is the main
result of this section :
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Proposition 3.4. Let X̄ = (C1× · · · ×Cn)/G with C1, . . . , Cn and G as in (a) or (b) above.
Then the Q-subalgebra of CH∗(X̄) generated by CH1(X̄) and by the images of the intersection
products

CHk−l(X̄)⊗ CHl(X̄) → CHk(X̄) (0 < l < k)

injects into CH
∗
(X̄).

In the next section, this statement, together with the existence of a multiplicative Chow–
Künneth decomposition, will be extended from X̄ to the crepant resolution X for Calabi–Yau
varieties as in Theorems 1.1 and 1.2, and to the Schreieder resolution X for varieties as in
Theorem 1.4.

Note that Proposition 3.3 (together with [14, Remark 4.3 and Proposition 4.12]) establishes
the existence of a marking for X̄ that satisfies (?Mult). Therefore the proof of Proposition
3.4 reduces, thanks to Proposition 2.10 and Remark 2.11, to an explicit computation of the
Chow motive of X̄. This is achieved in Corollary 3.7. These computations will also be used
in Section 5.1 in order to establish Theorem 5.3. First, we start with a general lemma and a
general proposition.

Lemma 3.5. Let C be a smooth projective curve endowed with the action of a finite group H
such that C/H is rational. Then, choosing a degree-1 zero-cycle α on C that is H-invariant
(e.g. α = 1

|H|
∑

h∈H h
∗[P ] for any choice of point P ∈ C), and denoting π0C := α × C,

π2C := C × α and π1C := ∆C − π0C − π2C , we have

(3)
∑
h∈H

Γh ◦ π1C = 0 in CH1(C × C),

whereas

(4) Γh ◦ πjC = πjC in CH1(C × C), for j = 0 or 2, and for all h ∈ H.

In particular, if E is an elliptic curve and H is a non-trivial subgroup of the group of automor-
phisms, then

∑
h∈H Γh◦π1E = 0, where π1E is the Chow–Künneth projector of Deninger–Murre.

Proof. That Γh ◦ π0C = π0C and Γh ◦ π2C = π2C for all h ∈ H is clear. Let p : C → C/H be the
projection morphism. On the one hand, we have

tΓp ◦ Γp =
∑
h∈H

Γh.

On the other hand, since C/H is rational we have ∆C/H = π0C/H+π2C/H with π0C/H = β×C/H
and π2C/H = C/H × β for any choice of degree-1 zero cycle β on C/H. We also have

tΓp ◦ Γp = tΓp ◦ (π0C/H + π2C/H) ◦ Γp = (p× p)∗(π0C/H + π2C/H) = |H|(π0C + π2C).

We conclude by orthogonality of the Chow–Künneth projectors πiC . �

Proposition 3.6. Let C1, . . . , Cn be smooth projective curves endowed with the action of finite
abelian group H such that each Ci/H is rational. For integers a, b ≥ 0 such that a + b = n
and a > b, consider the group

G = Ga,b = {(h1, . . . , hn) ∈ Hn : h1 + · · ·+ ha − ha+1 − · · · − ha+b = 0H}
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together with its natural action on the product C1 × · · · × Cn and with the induced quotient
morphism p : C1 × · · · × Cn → (C1 × · · · × Cn)/G. Then we have the implication

0 < |{j : ij = 1}| < n ⇒ Γp ◦ (πi1C1
⊗ · · · ⊗ πinCn

) ◦ tΓp = 0.

In particular, the Chow motive of (C1×· · ·×Cn)/G decomposes into a direct sum of Lefschetz
motives and one copy of the motive T := (C1 × · · · × Cn, 1

|G|
∑

g∈G Γg ◦ (π1C1
⊗ · · · ⊗ π1Cn

)).

Proof. Let us write Π for πi1C1
⊗ · · · ⊗ πinCn

. The action of G commutes with Π, therefore
1
|G|Γp ◦Π ◦ tΓp is an idempotent, and it is zero if and only if∑

g∈G
Γg ◦Π = 0.

Assume that 0 < |{j : ij = 1}| < n. By symmetry, we may assume without loss of generality

that Π = π1C1
⊗ Π′ ⊗ πCn , where πCn = π0Cn

or π2Cn
, and Π′ = πi2C2

⊗ · · · ⊗ πin−1

Cn−1
. Then,

partitioning G by the first entry of its elements, we have∑
g∈G

Γg ◦Π =
∑

g′:=(h2,...,hn−1)∈Hn−2

(∑
h∈H

(Γh ◦ π1C1
)⊗ (Γ′g ◦Π′)⊗ πCn

)
= 0.

The first equality follows from (3) and the second equality follows from (4) of Lemma 3.5.

Now assume |{j : ij = 1}| = 0, i.e., Π = πi1C1
⊗ · · · ⊗ πinCn

with {i1, . . . , in} ⊆ {0, 2}. In that

case, we also have for all g ∈ G that Γg ◦ Π = Π, and thus
∑

g∈G Γg ◦ Π 6= 0. Moreover the

motive ((C1×· · ·×Cn)/G, 1
GΓp ◦Π◦ tΓp) is isomorphic to the Lefschetz motive 1(−k), where

k = |{j : ij = 2}|.
Finally, when considering |{j : ij = 1}| = n, one is left with the motive

((C1 × · · · × Cn)/G,
1

|G|
Γp ◦ (π1C1

× · · · × π1Cn
) ◦ tΓp) ,

which (under Γp) is isomorphic to

T := (C1 × · · · × Cn,
1

|G|
∑
g∈G

Γg ◦ (π1C1
⊗ · · · ⊗ π1Cn

)) .

�

Corollary 3.7. Let X̄ = (C1 × · · · × Cn)/G with C1, . . . , Cn and G as in (a) or (b) above.
Then the Chow motive of X̄ decomposes into a direct sum of Lefschetz motives and one copy
of the motive

T := (C1 × · · · × Cn,
1

|G|
∑
g∈G

Γg ◦ (π1C1
⊗ · · · ⊗ π1Cn

)) ∈Mrat .

In case (a), T := (C1 × · · · × Cn, π1C1
⊗ · · · ⊗ π1Cn

), and in case (b) the motive T is such that

Hj(T ) = 0 for j 6= n, and its transcendental cohomology has Hodge numbers

hp,n−ptr (T ) =

{
g for p ∈ {a, b} ;

0 for p 6= n
2 .
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Proof. By Proposition 3.6, we only need to compute T .
(a) Denote σi the non-trivial hyperelliptic involution of Ci. By Lemma 3.5, we have

σi ◦ π1Ci
= −π1Ci

.

Writing Π = π1C1
⊗ · · · ⊗ π1Cn

, we therefore have for all g ∈ G that g ◦ Π = Π, and thus∑
g∈G g ◦ Π = |G|Π 6= 0. In particular, we see that the motive ((C1 × · · · × Cn)/G, 1

|G|Γp ◦
(π1C1

⊗ · · · ⊗ π1Cn
) ◦ tΓp) is isomorphic to the motive (C1 × · · · × Cn, π1C1

⊗ · · · ⊗ π1Cn
).

(b) In case g = 1 and b = 0 (which is the set-up of Theorem 1.2), it is proven in [7, Theorem
3.3] that Hn(T ) has dimension 2 when n is odd, and that Hn

tr(T ) has dimension 2 when n is
even.

For the case g > 1, this is essentially done in Schreieder [29]. The proof goes as follows in
the case where each curve Ci is the curve Cg,1. A basis of H1,0(Cg,1) is given by the differential

forms ωi = xi−1

y dx, 1 ≤ i ≤ g, and for ζ ∈ µ2g+1 we have ζ∗ωi = ζiωi. The proof then consists

in understanding the invariants in H0,1(Cg,1)
⊗d ⊗H1,0(Cg,1)

⊗(n−d). Since this result will not
be used in this paper, let us only mention that this can be done combinatorially and was
essentially carried out by Schreieder in [29, Lemma 8]. �

Proof of Proposition 3.4. In view of Proposition 3.3 and Corollary 3.7, this is an immediate
consequence of Proposition 2.10 (with the Chern classes omitted). �

4. The motive of X

This section contains the proof of the main result of this note :

Theorem 4.1. Let X be either a Calabi–Yau variety as in Theorem 1.1 or 1.2, or the
Schreieder variety of Theorem 1.4. Then for all integers m ≥ 1 the Q-algebra epimorphisms
CH∗(Xm) → CH

∗
(Xm) admit a section whose image contains the (Chow-theoretic) Chern

classes of Xm. Moreover, assuming dimX ≥ 2, the graded subalgebra R∗(X) ⊆ CH∗(X)
generated by divisors, Chern classes and by cycles that are the intersection of two cycles in X
of positive codimension injects into CH

∗
(X).

We also establish the following :

Theorem 4.2. Let X be either a Cynk–Hulek Calabi–Yau variety of dimension n as in The-
orem 1.1 or 1.2, or a Schreieder variety as in Theorem 1.4. Then X admits a multiplicative
self-dual Chow–Künneth decomposition, in the sense of [31].

Before giving the proof of Theorems 4.1 and 4.2, we detail the inductive constructions of
Cynk–Hulek [7] and Schreieder [29]. This will allow us to prove the theorems, by applying the
reduction argument outlined in Remark 2.11. That is, the proof will consist in checking that
each step of the construction only changes algebraic classes in cohomology, and preserves the
condition (?) of Definition 2.6.

4.1. Z2-actions.

Proposition 4.3. Let Xi, i = 1, 2, be smooth projective varieties endowed with an action of
Hi = Z2. Assume that, for i = 1, 2, (Xi, Hi) enjoys the following properties :

(i) Xi has a marking that satisfies (?) and (?Hi) ;
(ii) the quotients Xi/Hi are smooth ;

(iii) Bi := FixXi(Hi) is a smooth divisor ;
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(iv) Bi has trivial Chow groups (in particular, Bi has a marking that satisfies (?)) ;
(v) The inclusion morphism Bi ↪→ Xi is distinguished with respect to the above markings.

Let Z be the blow-up of X1 × X2 along B1 × B2, and let B̃ be the exceptional divisor ; the
action of H1 ×H2 on X1 ×X2 naturally endows Z with an action of H1 ×H2. Let

G := {(h1, h2) ∈ H1 ×H2 : h1 + h2 = 0}.

Then the quotient variety X := Z/G is smooth and the pair (X,H) := (Z/G, (H1 ×H2)/G)

enjoys properties (i)–(v), with B̃ = FixX(H).

Proof. This is our take on the inductive construction of Cynk–Hulek [7, Propositions 2.1
and 2.2] (where the Xi are in addition assumed to be Calabi–Yau, and it is proven that the
resulting variety X := Z/G is again Calabi–Yau). As in loc. cit., the various varieties fit into
a commutative diagram

Z //

��

X1 ×X2

��

X := Z/G //

��

(X1 ×X2)/G

��

Y := Z/(H1 ×H2) // X1/H1 ×X2/H2 =: Y1 × Y2

(where we adhere to the notation of [7]). Here, horizontal arrows are blow-ups, and vertical
arrows are 2-to-1 morphisms. This (doubly !) explains why X is smooth. On the one hand,
X is the blow-up of the quotient (X1 ×X2)/G along the singular locus (which is isomorphic
to B1 × B2) consisting of A1 singularities. On the other hand, X is the double cover of the
smooth variety Y branched along the smooth divisor obtained by blowing up the smooth
image of B1×B2 in Y1× Y2. This also shows that the fixed loci FixZ(H1×H2) and FixZ(G)
(which coincide with the branch loci of the covers Z → Y , resp. Z → X) are isomorphic to

the exceptional divisor B̃ [7, Proof of Proposition 2.1].
Let us endow X1 ×X2 and B1 × B2 with the product markings ; these satisfy (?) by [14,

Prop. 4.1], the inclusion morphism B1×B2 ↪→ X1×X2 is distinguished by [14, Prop. 3.5], and
the pushforwards and pullbacks along the projection morphisms X1×X2 → Xi and B1×B2 →
Bi are distinguished. Moreover, the pair (X1 ×X2, H1 ×H2), where FixX1×X2(H1 ×H2) =
B1 ×B2, satisfies properties (i) and (v) by [14, Proposition 4.1] (and also [14, Remark 4.3]).

Since B̃ is a P1-bundle over B1 ×B2, property (iv) is satisfied.

Since B̃ = FixZ(H1 ×H2) = FixZ(G), it follows that (Z,H1 ×H2) satisfies (iii). Now this
is enough to ensure that (Z,H1 ×H2) satisfies properties (i)–(v) by [14, Proposition 4.8].

Consider now the quotient morphism Z → X = Z/G ; it is a Z2-covering branched along

the smooth divisor B̃ (which we view as a divisor on Z and X via the quotient morphism).

We have already seen that B̃ satisfies (?) ; and X satisfies (?) by [14, Prop. 4.12]. That the

inclusion morphism B̃ → X is distinguished follows from the fact that the inclusion morphism
B̃ → Z is distinguished and the fact that the quotient morphism Z → X is distinguished
[loc. cit.]. In order to conclude, it remains to see that X satisfies (?H). But then this again
follows from the fact that the quotient morphism Z → X is distinguished, together with the
fact that Z satisfies (?H1×H2). �
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4.2. Z3-actions. We take care of the inductive approach in order to treat the case of the
Cynk–Hulek Calabi–Yau varieties of Theorem 1.2. This is very similar to the arguments in
the next subsection, but we include detailed arguments here for the sake of readability.

Proposition 4.4. Let Xi, i = 1, 2, be smooth projective Calabi–Yau varieties endowed with
an action of Hi = Z3. Assume the following properties :

(i) The action of Hi on Xi does not preserve the canonical form of Xi ;
(ii) Xi has a marking that satisfies (?) and (?Hi) ;

(iii) B1 := FixX1(H1) is a smooth divisor, whereas B2 := FixX2(H2) is the disjoint union of
a smooth divisor B2,1 and a smooth codimension 2 subvariety B2,2 ;

(iv) Bi has trivial Chow groups (in particular, Bi has a marking that satisfies (?)) ;
(v) The inclusion morphism Bi ↪→ Xi is distinguished with respect to the above markings.

Let

G := {(h1, h2) ∈ H1 ×H2 : h1 + h2 = 0} .
Then there exists a crepant resolution of singularities

X → (X1 ×X2)/G ,

and an action of H = (H1×H2)/G ∼= Z3 on X (induced by the action of id×H2 on X1×X2),
such that the pair (X,H) satisfies the same assumptions as (X2, H2).

Proof. This is essentially the inductive argument of [7, Proposition 3.1], on which we have
additionally grafted condition (?). We briefly resume the construction of X given in [7,
Proposition 3.1] (retaining the notation of loc. cit.).

The quotient (X1×X2)/G has A2-singularities along a codimension 2 stratum W1 (isomor-
phic to B1×B2,1), plus other singularities along a codimension 3 stratum W2 (isomorphic to
B1 ×B2,2). A crepant resolution

X → (X1 ×X2)/G

is explicitly described in local coordinates in [7, Proof of Proposition 3.1]. Moreover, it is
checked in [7, Proof of Proposition 3.1] that (X,H) satisfies conditions (i) and (iii) (just as
(X2, H2)). Therefore it only remains to check that X also satisfies conditions (ii), (iv) and
(v).

As explained in loc. cit., the variety X can also be obtained as follows : Let Z1 be the
blow-up of X1 ×X2 along B1 ×B2. The action of

G := {(h1, h2) ∈ H1 ×H2 : h1 + h2 = 0}.
on X1×X2 naturally endows Z with an action of G. Let Z2 → Z1 be the blow-up with center
the codimension 2 part of FixZ1(G) (this center consists of two disjoint copies of W1, as can
be seen from [29, Lemma 18]). The action of G lifts to Z2, and we define

Z := Z2/G.

The crepant resolution X is now attained by performing a blow-down

b : Z → X,

where the exceptional divisor of b in Z corresponds to the strict transform of the exceptional
divisor of the first blow-up Z1 → X1×X2. The exceptional locus V ⊂ X of b is an isomorphic
copy of W1 (this exceptional locus V ∼= W1 corresponds to the intersection of the 2 irreducible
components of the exceptional divisor in X lying over the stratum W1).
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Once again, we endow X1 ×X2 and B1 ×B2 with the product markings. These markings
satisfy (?) by [14, Prop. 4.1], the inclusion morphism B1 × B2 ↪→ X1 × X2 is distinguished
by [14, Prop. 3.5], and the pushforwards and pullbacks along the projection morphisms X1×
X2 → Xi and B1×B2 → Bi are distinguished. Moreover, the pair (X1×X2, H1×H2), where
FixX1×X2(H1 ×H2) = B1 × B2, satisfies properties (ii), (iv) and (v) by [14, Prop. 4.1] (and
also [14, Rem 4.3], plus the fact that condition (iv) is stable under taking products). In view
of [14, Prop. 4.8], this implies that (Z1, H1 ×H2) and (Z1, G) satisfy (ii).

The codimension 2 part of FixZ1(G) consists of 2 disjoint copies of W1
∼= B1 × B2,1, and

so it has a marking satisfying (?). Let E1 ⊂ Z1 denote the exceptional divisor. The inclusion
of the 2 copies of W1 in Z1 is distinguished, because the inclusion morphism W1 → E1 is
distinguished (indeed, both W1 and E1 have trivial Chow groups), and the inclusion morphism
E1 → Z1 is also distinguished. Again applying [14, Prop. 4.8], and reasoning as before, this
implies that (Z2, H1 ×H2) and (Z2, G) in turn satisfy (ii), (iv) and (v).

The next step is to take the quotient Z2 → Z := Z2/G. Here, [14, Prop. 4.12] ensures
that Z has a marking satisfying (?) and that the quotient morphism Z2 → Z is distinguished.
This last fact, combined with the fact that (Z2, H1×H2) verifies (ii), ensures that (Z,H) also
verifies (ii). The fact that (Z2, H1×H2) verifies (v), plus the fact that the quotient morphism
Z2 → Z is distinguished, ensures that (Z,H) also verifies (v). Condition (iv) is satisfied for
(Z,H) since the fixed locus is dominated by the fixed locus of (Z2, G) which satisfied (iv).

The final step in the inductive process is the blow-down b from Z to X. Here, we know
that the exceptional divisor E ⊂ Z of b has a marking that verifies (?) and is such that the
inclusion is distinguished. Also, we know that the exceptional locus V ⊂ X (is isomorphic to
W1 and so) has trivial Chow groups, and thus verifies (?). We remark that the correspondence

tΓb ◦ Γb ∈ CHn(Z × Z)

is supported on ∆Z ∪ E ×V E (by refined intersection). The fiber product E ×V E is a
P1 × P1-bundle over V ; as such, it is smooth irreducible of dimension n and has trivial Chow
groups. The inclusion E×V E ⊂ E×E is distinguished (both sides have trivial Chow groups),
and the inclusion E × E ⊂ Z × Z is distinguished (as E ⊂ V is distinguished). Therefore,
E ×V E ⊂ Z × Z is distinguished, and so we may conclude that tΓb ◦ Γb is distinguished in
CHn(Z × Z).

Now, applying [14, Prop. 4.9], it follows that X has a marking that verifies (?Mult), and
such that the blow-up morphism b is distinguished. To show that the marking of X also
verifies (?Chern), one can reason as in the technical [31, Lemma 6.4], with DCH∗(−) instead
of CH∗(−)(0) (cf. also [14, Rem. 4.15], which deals with the same situation). Alternatively,
one can argue as follows : according to Porteous’ formula [15, Theorem 15.4], the difference

d := ci(Z)− b∗ci(X) ∈ CHi(Z)

can be expressed in terms of (push-forwards to Z of pullbacks to E of) Chern classes of V
and Chern classes of the normal bundle of V in X. But any cycle on E is distinguished (since
E has trivial Chow groups), and the inclusion morphism E → Z is distinguished, and hence
this difference d is distinguished. As the Chern classes ci(Z) are distinguished, this implies
that b∗ci(X) is distinguished. Since the morphism b is distinguished, this implies that

ci(X) = b∗b
∗ci(X) ∈ DCHi(X),

i.e., condition (?Chern) (and hence condition (?)) is verified for X.
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To finish the proof, we observe that the inclusion of (each copy of) W1 in the exceptional
divisor of Z1 → X1 × X2 is distinguished (since both W1 and the exceptional divisor have
trivial Chow groups). This implies that the same is true for the inclusion of (each copy of) W1

in the strict transform of this exceptional divisor in Z2. Since the inclusion of the exceptional
divisor in Z2 is distinguished, this implies that the inclusion of (each copy of) W1 in Z2 is
distinguished. Since the quotient morphism Z2 → Z and the blow-up b are distinguished, it
follows that the inclusion of V ∼= W1 in X is distinguished.

The fact that (Z,H) verifies (ii), plus the fact that b is distinguished, guarantees that
(X,H) verifies (ii). The fixed locus FixX(H) is the disjoint union of the codimension 2
component V , and a divisor (which is the isomorphic image in X of the exceptional divisor in
Z2 lying over the codimension 3 stratum W2 ⊂ X1 ×X2). In view of the above, this implies
that (X,H) verifies the conditions (ii), (iv) and (v), and so we are done. �

4.3. Z3c-actions. In this section, we want to show that the inductive approach of Schreieder
in [29, §8.2] can be strengthened to take into account the motivic structure and to keep track
of the condition (?). For clarity, we follow the notations of [29].

Precisely, for natural numbers a 6= b and c ≥ 0, let Sa,bc denote the family of pairs (X,φ),
consisting of a smooth projective complex variety X of dimension a+b and an automorphism
φ ∈ Aut(X) of order 3c, such that properties (i)–(v) below hold. Here ζ denotes a fixed
primitive 3c-th root of unity and g := (3c − 1)/2.

(i) The decomposition h(X) = T⊕h(X)〈φ〉 is such that ha,b(T ) = hb,a(T ) = g and hp,q(T ) =

0 for all other p 6= q, and such that the summand h(X)〈φ〉 (which is the φ-invariant part
of the motive of X) is isomorphic to a direct sum of Lefschetz motives

⊕
1(∗).

(ii) The action of φ on Ha,b(X) has eigenvalues ζ, . . . , ζg.

(iii) The set FixX(φ3
c−1

) can be covered by local holomorphic charts such that φ acts on
each coordinate function by multiplication with some power of ζ.

(iv) For 0 ≤ l ≤ c− 1, the motive of FixX(φ3
l
) is isomorphic to a sum of Lefschetz motives

and the action of φ on that motive is the identity.
(v) X has a marking that satisfies the condition (?) and the condition (?〈φ〉). Moreover, the

inclusion morphism FixX(φ3
l
) ↪→ X is distinguished for 0 ≤ l ≤ c− 1.

In condition (v), note that it makes sense to say that the inclusion morphism is distin-

guished : by (iv) the motive of FixX(φ3
l
) is isomorphic to a sum of Lefschetz motives, and in

particular it admits a marking that satisfies (?) (cf. [14, Prop. 5.2]).
Our condition (i) (resp. (iv)) is a motivic version of conditions (1) and (3) (resp. (5)) of

Schreieder. Our conditions (ii) and (iii) are exactly the conditions (2) and (4) of Schreieder.
The new feature is our condition (v).

As in [29, §8.2], we note that it follows from (iii) that FixX(φ3
l
) is smooth for all 0 ≤ l ≤

c− 1.
With this strengthened definition of Sa,bc (compared to that of [29]), we have the exact

same statement as [29, Proposition 19] :

Proposition 4.5. Let (X1, φ1) ∈ Sa1,b1c and (X2, φ2) ∈ Sa2,b2c . Then

(X1 ×X2)/〈φ1 × φ2〉

admits a smooth model X such that the automorphism id× φ2 on X1 ×X2 induces an auto-

morphism φ ∈ Aut(X) with (X,φ) ∈ Sa,bc , where a = a1 + a2 and b = b1 + b2.
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Precisely, the variety X is constructed inductively as follows. Consider the subgroup of
Aut(X) given by

G := 〈φ1 × id, id× φ2〉.

For each 1 ≤ i ≤ c, consider the element of order 3i in G given by ηi := (φ1 × φ2)
3c−i

,
generating a cyclic subgroup Gi := 〈ηi〉 ⊆ G. We obtain a filtration

0 = G0 ⊂ G1 ⊂ · · · ⊂ Gc = 〈φ1 × φ2〉,

such that each quotient Gi/Gi−1 is cyclic of order 3, generated by the image of ηi. We set

Y0 := X1 ×X2

equipped with the natural action of G. We define inductively

Yi = Y ′′i−1/〈ηi〉,
Y ′i = Blow up of Yi along FixYi(ηi+1),

Y ′′i = Blow up of Y ′i along FixY ′i (ηi+1).

Here the action of the group G carries at each step. Schreieder shows that each Yi is a smooth
model of Y0/Gi, so that the variety X of Proposition 4.5 is nothing but Yc equipped with the
action of G/Gc. To summarize, we have the following diagram :

(5) Y ′′c−1

}} ""

· · ·

}} ��

Y ′′1

~~   

Y ′′0

~~   

Yc Yc−1 Y2 Y1 Y0.

Each arrow to the right corresponds to the composition Y ′′i → Y ′i → Yi of two blow-ups along
fix loci (which turn out to be smooth), and each arrow to the left corresponds to a 3−1 cover,
branched along a smooth divisor ; see [29].

Proof of Proposition 4.5. Since there is no point in repeating Schreieder’s arguments in full,
we only indicate how to adapt his proof to show that the motivic statements and the condition
(v) carry through.

First, since our conditions (i)–(v) imply Schreieder’s conditions (1)–(5), we only need to
prove that X satisfies conditions (i), (iv) and (v). Concerning the latter two, they are con-
tained in the following strengthening of [29, Lemma 20] :

Lemma 4.6. Let Γ ⊆ G be a subgroup which is not contained in Gi. Then FixYi(Γ), FixY ′i (Γ)

and FixY ′′i (Γ) are smooth, their motives are isomorphic to direct sums of Lefschetz motives,
their G-actions restrict to actions on each irreducible component and the Gc-fixed part of
their motive is also fixed by G. Moreover, Yi, Y

′
i and Y ′′i are naturally equipped with markings

that satisfy (?) and (?G) with the additional property that the embeddings FixYi(Γ) ↪→ Yi,
FixY ′i (Γ) ↪→ Y ′i and FixY ′′i (Γ) ↪→ Y ′′i are distinguished.

Proof. We follow word-for-word the proof of [29, Lemma 20], which is by induction on i. The
motivic statement is obtained from Schreieder’s arguments simply by noting the following :

(a) the fixed locus of Γ on Y0 is described as the product of fixed loci on X1 and X2 ;
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(b) the irreducible components of the fixed locus of Γ on Y ′i are described either as projective
bundles over irreducible components of a fixed locus on Yi, or as strict transforms of
irreducible component of some fixed locus, which are themselves blow-ups of irreducible
components of some fixed locus along the irreducible component of some other fixed locus ;

(c) the irreducible components of the fixed locus of Γ on Y ′′i are described similarly as for
Y ′i ;

(d) the fixed locus of Γ on Yi+1 is described either as the isomorphic image of a fixed locus
on Y ′′i , or its irreducible components are quotients by 〈ηi〉 of irreducible components of
fixed loci on Y ′′i .

In all aforementioned descriptions, the property that the Chow groups are trivial is preserved.
We then note that the motive of a variety is a direct sum of Lefschetz motives if and only if
its Chow groups are finite-dimensional vector spaces if and only if the total cycle class map
CH∗(X)→ H∗(X) is an isomorphism ; see [17, 21, 33]. In particular, assuming Z is a smooth
projective variety with trivial Chow groups, if the Gc-invariant part of the cohomology of Z
is spanned by G-invariant algebraic cycles, then the Gc-invariant part of the motive of this
variety Z is isomorphic to a direct sum of G-invariant Lefschetz motives. Together with [29,
Lemma 20], this establishes the first part of the lemma.

Concerning the moreover part, we first recall that any smooth projective variety Z whose
motive is isomorphic to a direct sum of Lefschetz motives satisfies condition (?) (cf. [14,
Prop. 5.2]). In addition, since for any choice of marking we have DCH∗(Z×Z) = CH∗(Z×Z),
any action of a finite group G on Z satisfies the condition (?G).

By induction, assuming that FixYi(Γ) and Yi have a marking satisfying (?) and (?G) such
that FixYi(Γ) ↪→ Yi is distinguished, it only remains to show that the graphs of the embeddings
FixY ′i (Γ) ↪→ Y ′i , FixY ′′i (Γ) ↪→ Y ′′i and FixYi+1(Γ) ↪→ Yi+1 are distinguished for suitable choices

of markings satisfying (?) and (?G). In fact, we only need to show this component-wise for
the irreducible components of the fixed loci of Γ.

In case (a), which is the initial case, this is obvious (see [14, Prop. 3.5]).
In case (b) (and also case (c) which is similar), we have the following more precise de-

scription ([29, pp. 326–27]) of the irreducible components of the fixed locus of Γ on Y ′i . Let
P be an irreducible component of FixY ′i (Γ), and let Z be the image of P inside Yi. Then,

depending on whether Z is contained in FixYi(〈Γ, ηi+1〉) or not, one of the following occurs :

• Z is an irreducible component of FixYi(〈Γ, ηi+1〉) and P → Z is a projective sub-
bundle of the projective bundle E′i|Z → Z, where E′i is the exceptional divisor of the
blow-up Y ′i → Yi.
• Z is an irreducible component of FixYi(Γ) and P is the strict transform of Z in Y ′i ;

in particular P → Z is the blow-up along FixZ(ηi).

In the first case, we have the composition of inclusions P ↪→ E′i ↪→ Y ′i . The left inclusion
is distinguished because as we saw, both P and E′i have trivial Chow groups. As for the
right inclusion, Y ′i is the blow-up of Yi along FixYi(Γ), by induction Yi satisfies (?) and
(?G), and FixYi(Γ) has trivial Chow groups and has a suitable marking making the inclusion
FixYi(Γ) ↪→ Yi distinguished ; therefore by [14, Prop. 4.8] E′i and Y ′i have markings that satisfy
(?) and (?G) such that E′i ↪→ Y ′i is distinguished. In the second case, by arguing as in the
proof of [31, Prop. 3.4] (with CH∗(−)(0) replaced with DCH∗(−)) and using the fact that P
has trivial Chow groups, one can show that P ↪→ Y ′i is distinguished.

In case (d), finally, we have that π : Y ′′i → Yi+1 is a Z3-cyclic covering branched along the
smooth divisor FixY ′′i (ηi). That Y ′′i satisfies (?) and (?G), together with the fact proved above
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(case (c)) that FixY ′′i (ηi) ↪→ Y ′′i is distinguished, is enough to conclude that the quotient Yi+1

satisfies (?) and (?G) ; see [14, Prop. 4.12]. It remains to show that FixYi+1(ηi) ↪→ Yi+1 is
distinguished. By the projection formula, any generically finite morphism f : Z1 → Z2 of
degree d between smooth projective varieties induces a surjective morphism f∗ : h(Z1) →
h(Z2) with a section 1

df
∗ : h(Z2)→ h(Z1).

If in addition Z1 has a marking, then f is distinguished for the marking on Z2 induced
by that of Z1. Let P be an irreducible component of FixYi+1(Γ). We know that there is
an irreducible component Z of some fixed locus in Y ′′i such that π restricts to either an
isomorphism or a 3-to-1 morphism Z → P . By induction, Z has a marking such that the
inclusion Z ↪→ Y ′′i is distinguished. Endow P with the marking induced by that of Z ; in
particular f is distinguished. Then the inclusion P ↪→ Yi+1 is distinguished because it is the
composite of π, the inclusion Z ↪→ Y ′′i , and 1

deg f f
∗, all of which are distinguished.

The proof of Lemma 4.6 is complete. �

We have now established properties (ii)–(v) for X. With Lemma 4.6, we have in fact
showed that

h(X) ' h(Y0)
Gc ⊕

⊕
1(∗),

where the right hand side summand is fixed by the action of G. Since the motive of Y0 is
of abelian type (and hence finite-dimensional in the sense of Kimura), in order to establish
(i), it thus suffices to see that the Gc-invariant cohomology of Y0 is spanned by G-invariant
algebraic classes, by g linearly independent (a, b)-forms and their conjugates. This follows
from conditions (i) and (ii) for (X1, φ1) and for (X2, φ2), as in [29, pp. 329–30].

The proof of Proposition 4.5 is now complete. �

Remark 4.7. As mentioned before (Remark 1.6), the Cynk–Hulek variety XCH (given by
Theorem 1.2) and the Schreieder variety XS (given by the c = 1, b = 0 case of Theorem 1.4)
are not necessarily the same. The difference in their construction is clear from comparison
of subsections 4.2 and 4.3 : in the construction of XCH , there is at each step the blow-down
b : Z → X (in order to have a crepant resolution), whereas in the construction of XS the
varieties Z and X coincide.

4.4. Proof of the main Theorem 4.1. In view of Remark 2.11, Theorem 4.1 follows from
the following two claims :

Claim 4.8. Let X be the n-dimensional Calabi–Yau variety of Theorem 1.1 or 1.2, or a

Schreieder variety as in Theorem 1.4. Then X admits a marking φ : h(X)
'−→ M that

satisfies (?).

Claim 4.9. Let X be the n-dimensional Calabi–Yau variety of Theorem 1.1 or 1.2, or a
Schreieder variety as in Theorem 1.4. Then there is a decomposition

(6) h(X) = T ⊕
⊕

1(∗) in Mrat ,

where T is such that Hj(T ) = 0 for j 6= n, and T is isomorphic to a direct summand of the
Chow motive of E1×· · ·×En (if X is as in Theorem 1.1), resp. of En (for X as in Theorem
1.2), resp. of Cn (for X as in Theorem 1.4).

Proof of Claim 4.8. The Cynk–Hulek varieties of Theorem 1.1 (resp. Theorem 1.2) are con-
structed inductively using the process of Proposition 4.3 (resp. Proposition 4.4), by adding
an elliptic curve with [−1]-involution (resp. an elliptic curve with non-trivial Z3-action), at
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each step. Repeatedly applying Proposition 4.3 (resp. Proposition 4.4), we find that they
admit a marking satisfying (?).

Likewise, the Schreieder varieties are obtained inductively using Proposition 4.5, by adding
the hyperelliptic curve Cg,1 at each step. A repeated application of Proposition 4.5 establishes
Claim 4.8 for the Schreieder varieties. �

Proof of Claim 4.9. The Cynk–Hulek varieties of Theorem 1.1 are constructed inductively
using the process of Proposition 4.3, by adding at each step an elliptic curve E with [−1]-
involution. Note that the quotient E/[−1] is isomorphic to P1 and hence has Chow motive
isomorphic to 1⊕1(−1). In particular, the Chow motive of E is isomorphic to T⊕(1⊕1(−1)),
where [−1] acts trivially on the right-hand side summand. Therefore, in order to prove Claim
4.9 for the Cynk–Hulek varieties of Theorem 1.1, it is enough to remark that Proposition 4.3
continues to hold if one adds the property

(vi) the decomposition h(Xi) = Ti⊕h(Xi)
Hi is such that h(Xi)

Hi '
⊕

1(∗), and Hj(Ti) = 0
if j 6= dimXi.

Recall that X is the quotient by G ' Z2 of the blow-up Z of X1 ×X2 along B1 ×B2, where
Bi is the fixed locus of Hi acting on Xi and is assumed to have motive isomorphic to a direct
sum of Lefschetz motives. By the blow-up formula, we have

h(Z) ' h(X1)⊗ h(X2)⊕
(
h(B1)⊗ h(B2)⊕ h(B1)⊗ h(B2)(−1)

)
.

The right-hand side summand is fixed under the action of H1 × H2 and is isomorphic to
a direct sum of Lefschetz motives. Thus in order to conclude it is enough to note that
(T1 ⊗ h(X2)

H2)G = 0 (and similarly h(X1)
H1 ⊗ T2)G = 0) and the (H1 ×H2)-invariant part

of the motive h(X1) ⊗ h(X2) is a direct sum of Lefschetz motives ; this follows at once from

the assumption that THi
i = 0.

The proof of Claim 4.9 for the Schreieder varieties was already taken care of. Indeed, thanks

to Proposition 4.5 we know that Schreieder varieties X are in the class Sa,bc ; this entails in

particular (by definition of Sa,bc ) that the motive of X decomposes as

h(X) = T ⊕
⊕

1(∗) in Mrat ,

where T is such that Hj(T ) = 0 for all j 6= dimX. In fact, at the end of the proof of
Proposition 4.5), we constructed T as a direct summand of h(Y0)

Gc , and so T is indeed a
direct summand of the Chow motive of Cn.

Finally, to prove Claim 4.9 for the Cynk–Hulek varieties XCH of Theorem 1.2 we argue as
follows : the variety XCH is dominated by the Schreieder variety XS (of the same dimension,
and where c = 1 and b = 0 in the Schreieder construction). Thus, the truth of Claim 4.9 for
XS implies the truth of Claim 4.9 for XCH . �

4.5. Proof of Theorem 4.2. This is immediate : in view of Proposition 2.9, Theorem 4.2
follows from Claim 4.8. �

Remark 4.10. Alternatively, we could have established the existence of a self-dual multiplica-
tive Chow–Künneth decomposition for X as in Theorem 4.2 directly (i.e., without invoking
Proposition 2.9 ([14, Prop. 6.1]) by using the results of [31] instead of those of [14].
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4.6. Proof of Corollary 1. By Claim 4.8, we know that any Schreieder surface S has a
marking that satisfies (?). Since the cycle

(x, x, x)− (x, x, p)− (x, p, x)− (p, x, x) + (p, p, x) + (p, x, p) + (x, x, p)

is numerically trivial (this cycle is numerically trivial for any regular surface), it suffices to
show that there exists a point p in S such that each summand is distinguished. By definition
of (?Mult), the cycle (x, x, x) is distinguished. By [14, Lemma 3.8], the diagonal ∆S = (x, x)
is distinguished in S × S ; and it is clear that the fundamental class of S is distinguished in
S (see also [14, Remark 3.4]). Therefore it suffices to exhibit a point p that is distinguished
in S. The variety S is constructed using the diagram (5) starting from Y0 the product of two
hyperelliptic curves. Choose a fixed point p0 of G in Y0. By Proposition 3.3 and the fact that
(?) is stable under product, Y0 has a marking that satisfies (?) such that p0 is distinguished.
Now by inspection of the proof of Proposition 4.5, we see, by defining inductively pi as the
image of p′′i−1 under Y ′′i−1 → Yi, p

′
i as a point in the pre-image of pi under Y ′i → Yi, and p′′i as

a point in the pre-image of p′i under Y ′′i → Y ′i , that pc = p is a distinguished point in S = Yc.
Alternately, Corollary 1 is a consequence of Theorem 4.2 combined with [30, Proposi-

tion 8.14] and with the fact that there exists a point p in S that is distinguished. �

4.7. Final remarks. We remark that Theorems 4.1 and 4.2 hold also in the following two
situations. First in the Schreieder construction, we may add via Proposition 4.5 at each step,
instead of the hyperelliptic curve Cg,1, more generally the hyperelliptic curve Cg,D for any
non-zero rational number D. Second in the construction of a smooth model of the Cynk–
Hulek varieties of Theorem 1.1, one may add via Proposition 4.3 at each step a hyperelliptic
curve equipped with its hyperelliptic involution instead of an elliptic curve equipped with its
[−1]-involution.

5. Applications

5.1. Voisin’s conjecture. Voisin [36] has formulated the following intriguing conjecture,
which is a special instance of the Bloch–Beilinson conjectures.

Conjecture 5.1 (Voisin [36]). Let X be a smooth projective variety of dimension n, with
pg(X) := hn,0(X) = 1 and hj,0(X) = 0 for 0 < j < n. Then any two zero-cycles a, a′ ∈
CHn

num(X) satisfy

a× a′ = (−1)na′ × a in CH2n(X ×X) .

(Here, a×a′ is the exterior product (p1)
∗(a) · (p2)∗(a′) ∈ CH2n(X×X), where pj is projection

to the j-th factor.)

For background and motivation for Conjecture 5.1, cf. [38, Section 4.3.5.2]. Conjecture
5.1 has been proven in some scattered special cases [36], [22], [23], [24], [6], but is still widely
open for a general K3 surface.

Remark 5.2. Conjecture 5.1 can be thought of as a version of Bloch’s conjecture for motives.
Indeed, given X as in Conjecture 5.1, consider the Chow motive M defined as

M :=


∧2hn(X) := (X ×X, 12

∑
σ∈S2

sgn(σ)Γσ ◦ (πnX × πnX), 0) if n is even ,

Sym2hn(X) := (X ×X, 12
∑
σ∈S2

Γσ ◦ (πnX × πnX), 0) if n is odd .
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(Here, for hn(X) to make sense, we need to assume that X has a Chow–Künneth decomposi-
tion, in the sense of Definition 2.1). The condition on pg(X) implies that h2n,0(M) = 0, and
so M is a motive with

hj,0(M) = 0 ∀ j .
A motivic version of Bloch’s conjecture would then imply that

CH0(M) = 0 .

On the other hand, the condition on hj,0(X) conjecturally implies that CHn
num(X) = (πnX)∗CHn(X).

It follows that given two zero-cycles a, a′ ∈ CHn
num(X), one conjecturally has

a× a′ − (−1)na′ × a = (πnX × πnX)∗(a× a′)− (−1)nι∗(π
n
X × πnX)∗(a× a′) in CH0(M) = 0,

where ι is the non-trivial element of S2. This heuristically explains Conjecture 5.1.

We now prove Voisin’s conjecture for Cynk–Hulek Calabi–Yau varieties :

Theorem 5.3. Let X be a Calabi–Yau variety of dimension n as in Theorem 1.1 or 1.2.
Then Conjecture 5.1 is true for X: any a, a′ ∈ CHn

num(X) satisfy

a× a′ = (−1)n a′ × a in CH2n(X ×X) .

Proof. Consider morphisms

E1 × · · · × En
p
��

X
f

// X̄

as in Theorem 1.1 or 1.2. The Chow group of 0-cycles is a birational invariant amongst
varieties that are global quotients (this follows for instance from [15, Example 17.4.10]), and so
f∗ : CHn(X̄)→ CHn(X) is an isomorphism. Consequently, it suffices to prove Conjecture 5.1
for X̄. Using Corollary 3.7, we see that CHn

num(X̄) is contained in p∗CHn(E1 × · · ·En)(n).
Therefore, we are reduced to proving that a× a′ = (−1)na′ × a for all a, a′ ∈ CHn(E1 × · · · ×
En)(n) ; this is a special case of :

Proposition 5.4 (Voisin, Example 4.40 in [38]). Let B be an abelian variety of dimension
n. Let a, a′ ∈ CHn(B)(n). Then

a× a′ = (−1)n a′ × a in CH2n(B ×B).

This concludes the proof of the theorem. �

5.2. Voevodsky’s conjecture. In this paragraph, we give an application of our results to
Voevodsky’s conjecture on smash-equivalence.

Definition 5.5 (Voevodsky [35]). Let X be a smooth projective variety. A cycle a ∈ CHi(X)
is called smash-nilpotent if there exists m ∈ N such that

am := a× · · · × a︸ ︷︷ ︸
(m times)

= 0 in CHmi(X × · · · ×X) .

Two cycles a, a′ are called smash-equivalent if their difference a − a′ is smash-nilpotent.
We will write CHi

⊗(X) ⊆ CHi(X) for the subgroup of smash-nilpotent cycles.
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Conjecture 5.6 (Voevodsky [35]). Let X be a smooth projective variety. Then

CHi
num(X) ⊆ CHi

⊗(X) for all i .

Remark 5.7. It is known [1, Théorème 3.33] that Conjecture 5.6 for all smooth projective
varieties implies (and is strictly stronger than) Kimura’s conjecture “all smooth projective
varieties have finite-dimensional motive” [20].

Thanks to Claim 4.9, we can verify Voevodsky’s conjecture for odd-dimensional Cynk–
Hulek varieties and Schreieder varieties :

Proposition 5.8. Let X be a Cynk–Hulek Calabi–Yau variety as in Theorem 1.1 or 1.2, or
a Schreieder variety as in Theorem 1.4. Suppose the dimension n of X is odd. Then

CHi
num(X) ⊆ CHi

⊗(X) for all i.

Proof. According to Claim 4.9, we have a decomposition

h(X) = T ⊕
⊕

1(∗),

with Hj(T ) = 0 for j 6= n, and T isomorphic to a direct summand of h(C1× · · · ×Cn). Here,
the Ci are elliptic curves in case X is a Cynk–Hulek variety, and the hyperelliptic curves of
§3.2 in case X is a Schreieder variety.

By Kimura finite-dimensionality, T is isomorphic to a direct summand of the motive (C1×
· · · × Cn, πn, 0), where πn is any Chow–Künneth projector on the degree-n cohomology. But
the Chow motive (C1×· · ·×Cn, πn, 0) is oddly finite-dimensional (in the sense of [20]). Hence,
together with the fact that CHi

num(X) = CHi
num(T ), the corollary is implied by the fact that

CHi(M) ⊆ CHi
⊗(M) for all i and for all oddly finite-dimensional Chow motives M (this is

due to Kimura [20, Proposition 6.1], and is also used in [19]). �

5.3. Supersingularity. The construction of the Cynk–Hulek Calabi–Yau varieties also makes
sense in positive characteristic ≥ 5. In this final section, we present supersingular Calabi–Yau
varieties for which the motive behaves in stark contrast to the characteristic zero case :

Proposition 5.9. Let k be an algebraically closed field of characteristic ≥ 5. Let X be a
Calabi–Yau variety over k obtained as in Theorem 1.1 or 1.2, where the elliptic curves are
assumed to be supersingular. Assume X is even-dimensional. Then the Chow motive of X is
isomorphic to a direct sum of Lefschetz motives. Consequently, the cycle class map to `-adic
cohomology induces isomorphisms

CHi(X)Q`

∼=−→ H2i(X,Q`(i)) ∀i
(where ` is a prime different from char(k)).

Proof. First of all, we observe that the construction of the smooth projective Calabi–Yau
varieties of Cynk–Hulek carries over to characteristic ≥ 5. Using Claim 4.9, we have a
decomposition

h(X) = T ⊕
⊕

1(∗),

with Hj(T ) = 0 for j 6= n, and T isomorphic to a direct summand of h(E1 × · · · × En). By
Kimura finite-dimensionality, T is isomorphic to a direct summand of the motive (E1 × · · · ×
En, π

n, 0), where πn is any Chow–Künneth projector on the degree-n cohomology. Therefore,
by Kimura finite-dimensionality again, one is reduced to proving that (E1 × · · · × En, πn, 0)
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is isomorphic to a direct sum of Lefschetz motives when the elliptic curves E1, . . . , En are
supersingular.

Recall that there is only one isogeny class of supersingular elliptic curve ; let us denote it
by E. We endow E with its canonical Chow–Künneth decomposition, namely the one given
by hi(E) = (E, πiE , 0) with

π0E := 0E × E, π2E = E × 0E , π1E = ∆E − π0E − π2E .
Since E is supersingular, we have that End(h1(E)) = End(E) ⊗ Q is 4-dimensional. This
implies that

(7) h1(E)⊗ h1(E) ' 1(−1)⊕4.

Now πnEn can be chosen as follows :

πnEn =
∑

i1+···+in=n
πi1E ⊗ · · · ⊗ π

in
E .

But for i1 + · · · + in even, (En, πi1E ⊗ · · · ⊗ π
in
E , 0) = hi1(E) ⊗ · · · ⊗ hin(E) is isomorphic to

a direct sum of Lefschetz motives thanks to (7). Consequently, for n even, (En, πnEn , 0) is
isomorphic to a direct sum of Lefschetz motives, thereby establishing the proposition. �

Remark 5.10. In dimension n = 2, Proposition 5.9 follows from the general result that
supersingular K3 surfaces are unirational [25]. For the proof of Proposition 5.9, we could
alternatively have used the description of the Chow groups of supersingular abelian varieties
given by Fakhruddin [9]. Finally, in case the ground field k is finite, the fact that the cycle class

map to `-adic cohomology induces isomorphisms CHi(X)Q`

∼=−→ H2i(X,Q`(i)) for all i and
for all Cynk–Hulek Calabi–Yau varieties is true without the assumption of supersingularity
and also without the restriction on the parity of the dimension, as follows from [18] (but
beware that the Chow motive is then not necessarily isomorphic to a direct sum of Lefschetz
motives, even in the even-dimensional case).
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