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Abstract. A de Rham–Betti class on a smooth projective variety X over an algebraic exten-
sion K of the rational numbers is a rational class in the Betti cohomology of the analytification
of X that descends to a class in the algebraic de Rham cohomology of X via the period comparison
isomorphism. The period conjecture of Grothendieck implies that de Rham–Betti classes should
be algebraic. We prove that any de Rham–Betti class on a product of elliptic curves is algebraic.
This is achieved by showing that the Tannakian torsor associated to a de Rham–Betti object is
connected, and by exploiting the analytic subgroup theorem of Wüstholz. In the case of products
of non-CM elliptic curves, we prove the stronger result that Q-de Rham–Betti classes are Q-linear
combinations of algebraic classes by showing that the period comparison isomorphism generates
the torsor of motivic periods. A key step consists in establishing a version of the analytic sub-
group theorem with Q-coefficients. Finally, building on results of Deligne and André regarding
the Kuga–Satake correspondence, we further show that any de Rham–Betti isometry between the
second cohomology groups of hyper-Kähler varieties, with second Betti number not 3, is Hodge.
As two applications we show that codimension-2 de Rham–Betti classes on hyper-Kähler varieties
of known deformation type are Hodge and we obtain a global de Rham–Betti Torelli theorem for
K3 surfaces over Q.

Introduction

De Rham–Betti classes. Let X be a smooth projective variety defined over a field K ⊆ C.
Serre’s GAGA and the analytic Poincaré lemma provide a canonical isomorphism

cnX : Hn
dR(X/K)⊗K C

'−→ Hn
B(Xan

C ,Q)⊗Q C, (1)

called the period comparison isomorphism, between the algebraic de Rham cohomology of XC and
the Betti cohomology with C-coefficients of the analytification Xan

C of XC. Writing as is usual

Q(k) =def (2πi)kQ ⊂ C, the de Rham–Betti cohomology of X is defined as the triple

Hn
dRB(X,Q(k)) =def

(
Hn

dR(X/K),Hn
B(Xan

C ,Q(k)), cnX
)
.

If Z denotes an algebraic cycle of codimension k on X, then its classes in de Rham cohomology
H2k

dR(X/K) and in Betti cohomology H2k
B (Xan

C ,Q(k)) are related, up to a sign, by

c2k
X

(
cldR(Z)⊗K 1C

)
= clB(Z)⊗Q 1C, (2)

see e.g., [BC16, Prop. 1.1]. A de Rham–Betti class in Hn
dRB(X,Q(k)), also called Grothendieck

class in loc. cit., is a pair (αB, αdR) with αB a class in Hn
B(Xan

C ,Q(k)) and αdR a class in Hn
dR(X/K)

whose complexifications correspond to one another under cX ; see Definitions 4.1 and 4.3. By (2)
the Betti class and the de Rham class of an algebraic cycle of codimension k define a de Rham–
Betti class in H2k

dRB(X,Q(k)). By Poincaré duality, a de Rham class ω ∈ Hn
dR(X/K) can be
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extended to a de Rham–Betti class in Hn
dRB(X,Q(k)) if and only if the complex periods

1

(2πi)k

∫
γ
ω

lie in K for every rational homology class γ ∈ Hn(Xan
C ,Q).

The Grothendieck Period Conjecture. The periods of X are the complex numbers∫
γ
ω, where γ ∈ HB

n (Xan
C ,Q), ω ∈ Hn

dR(X/K), n ∈ Z≥0.

These form a finite-dimensional K-vector subspace of C spanned by the coefficients of the period
matrix, that is, of the matrices of the period comparison isomorphisms cnX with respect to the
choice of a K-basis of Hn

dR(X/K) and of a Q-basis of Hn
B(Xan

C ,Q). Any algebraic cycle on a
power Xm of X induces a homogeneous polynomial relation of degree m among the coefficients
of the period matrix of X. In case K ⊆ Q, the Grothendieck period conjecture for X stipulates
that conversely any polynomial relation with K-coefficients among the periods should be in the
ideal generated by polynomials induced by algebraic cycles on some powers of X ; see [And04,
Conj. 7.5.2.1]. Using the Tannakian formalism, the Grothendieck Period Conjecture predicts that
the comparison isomorphism seen as a complex point of the torsor of motivic periods is dense, and
in particular [And04, Prop. 7.5.2.2] that the degree of transcendence over Q of the field generated
by the periods of X over Q is equal to the dimension of the conjectural motivic Galois group
of X, which if the Hodge conjecture holds, is equal to the dimension of the Mumford–Tate group
of XC. We refer to [And04, Ayo14, BC16] and to §§6.2-6.3 for more details.

As an illustration, suppose E is a smooth elliptic curve over Q given by the equation y3 =
x3 − ax− b, and fix a basis (γ1, γ2) of HB

1 (Ean
C ,Q). The Q-vector space H1

dR(E/Q) is spanned by

the global differential form ω = dx
y and the differential form of second kind η = xdx

y . The field of

periods of E is then generated by the four classical elliptic integrals

ω1 :=

∫
γ1

ω, ω2 :=

∫
γ2

ω, η1 :=

∫
γ1

η, η2 :=

∫
γ2

η.

Note that the field of periods contains π as ω1η2 − ω2η1 is a nonzero rational multiple of 2πi.
A classical result of Schneider [Sch37] from the 1930s establishes that the periods ω1 and ω2 are
transcendental and that they are Q-linear independent if and only if E does not have complex
multiplication. This was complemented almost 40 years later by Masser [Mas75] who showed
that the Q-span of 1, 2πi, ω1, ω2, η1, η2 has dimension 6 if E is without CM and has dimension 4
if E has CM. These results were then overhauled 10 years later by Wüstholz’ analytic subgroup
theorem [Wüs84] ; see e.g. [BW07, §6.2]. The motivic Galois group of an elliptic curve is well-
defined and coincides with its Mumford–Tate group ; it has dimension 4 if E is without CM and
it has dimension 2 if E has CM. The Grothendieck Period Conjecture therefore predicts that
the field of periods of E has transcendence degree over Q equal to 4 if E is without CM and
equal to 2 if E has CM. The best result in that direction is from the late 1970s and is due to
Chudnovsky [Chu80] who showed that the field of periods of an elliptic curve E has transcendence
degree at least 2 ; in particular the Grothendieck Period Conjecture is true for CM elliptic curves.
This is the only non-trivial example for which the Grothendieck period conjecture is known.

The Grothendieck Period Conjecture and the algebraicity of de Rham–Betti classes.
If X satisfies the Grothendieck Period Conjecture 6.6 and if X satisfies the standard conjectures,

then every de Rham–Betti class in Hj
dRB(X,Q(k)) is algebraic, that is, is the class of an algebraic

cycle ; see [And04, Prop. 7.5.2.2] and [BC16, Prop. 2.13]. In particular, in view of Chudnovsky’s
aforementioned theorem [Chu80], de Rham–Betti classes on powers of CM elliptic curves are
algebraic.
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On the other hand, it has been possible to establish the algebraicity of non-zero de Rham–
Betti classes in some cases without establishing the Grothendieck Period Conjecture. Here is an
exhaustive list : for de Rham–Betti classes in H2

dRB(X,Q(1)) for X an abelian variety [And04,
Bos13, BC16] as an application of Wüstholz’ analytic subgroup theorem [Wüs84] and, via the
Kuga–Satake correspondence of André [And96a], for X a hyper-Kähler variety [BC16] ; see The-
orem 7.4 and Proposition 9.1. Here a hyper-Kähler variety over K ⊆ C means a variety over K
whose base-change to C is projective, irreducible holomorphic symplectic and, deviating from the
usual definition, is such that its second Betti number satisfies b2 > 3. (This latter condition, which
holds for all known deformation families of hyper-Kähler varieties, ensures that the deformation
space of a hyper-Kähler variety is big enough and is crucial in André’s work [And96a].)

As a particular instance of the above, any de Rham–Betti class should be a Hodge class. Even
this latter expectation is wide open and we are not aware of any examples beyond the ones
mentioned above for which this expectation is met.

De Rham–Betti classes on products of elliptic curves. Our first result is the following ex-
tension of the consequence of Chudnovsky’s theorem concerned with the algebraicity of de Rham–
Betti classes on powers of CM elliptic curves.

Theorem 1. Let X be an abelian variety over an algebraic extension K of Q inside C and assume
either that XQ is isogenous to a product of elliptic curves over Q, or that XQ is isogenous to the

power of an abelian surface over Q with non-trivial endomorphism ring. Then :

(i) any de Rham–Betti class in H2k
dRB(X,Q(k)) is algebraic ;

(ii) any de Rham–Betti class in Hj
dRB(X,Q(k)) is zero for j 6= 2k.

We refer to Theorem 7.12 for the case of products of elliptic curves, and to Theorem 7.15 for the
case of powers of abelian surfaces whose base-change to Q have non-trivial endomorphism ring.
In [And09, footnote 12], André mentions that Theorem 1 can be proved for powers of a non-CM
elliptic curve. Theorem 1 for products of elliptic curves is the analogue in the de Rham–Betti
setting of the following results.

(a) The Hodge conjecture holds for products of complex elliptic curves. Its proof essentially goes
back to Tate (unpublished) ; see [Gor99, §3] for a proof and further references.

(b) The Tate conjecture holds for products of elliptic curves over a finitely generated extension
of Q. This follows from the validity of the Mumford–Tate conjecture for products of elliptic
curves. The latter is established in [Lom16, Cor. 1.2] and builds on the validity of the
Mumford–Tate conjecture for elliptic curves due to Serre [Ser68].

(c) The Tate conjecture holds for products of elliptic curves over a finite field. This is due to
Spieß [Spi99].

Moreover, both the Hodge and the Mumford–Tate conjectures hold for simple abelian varieties
of prime dimension [Tan82]. In contrast to the case of Hodge classes and Tate classes, it is
a priori not known, for lack of a theory of weights in the de Rham–Betti setting, that for a

smooth projective variety X over Q the de Rham–Betti object Hj
dRB(X,Q(k)) does not support

any non-zero de Rham–Betti class for j 6= 2k. Theorem 1(ii) confirms that this is indeed the
case for products of elliptic curves. Beyond the case of powers of CM elliptic curves covered by
Chudnovsky’s theorem [Chu80], the only general results that were known so far in that direction
are the following :

(a) Any de Rham–Betti class in H0
dRB(X,Q(k)) is zero for k 6= 0 ; this is equivalent to the tran-

scendence of π.
(b) Any de Rham–Betti class in H1

dRB(X,Q(k)) is zero for any k ∈ Z ; this follows from Wüstholz’
analytic subgroup theorem (see Theorem 7.6, but also [BC16, Thms. 4.1 & 4.2] for the cases
k = 0 and k = 1).
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Tannakian formulation of the Grothendieck Period Conjecture. Let M be a smooth
projective variety over Q or more generally a André motive over Q as defined in §3. As outlined
in §6, there is a chain of inclusions

ZM ⊆ ΩM ⊆ ΩdRB
M ⊆ ΩAnd

M ⊆ IsoQ
(
HdR(M),HB(M)⊗Q

)
, where

(i) ZM is the Zariski closure of the comparison isomorphism cM : HdR(M)⊗QC
∼−→ HB(M)⊗QC

seen as a complex-valued point in the Q-torsor IsoQ
(
HdR(M),HB(M)⊗Q

)
,

(ii) ΩM is the smallest Q-subtorsor of IsoQ
(
HdR(M),HB(M)⊗Q

)
containing cM ,

(iii) ΩdRB
M is the torsor of periods of the de Rham–Betti realization of M ,

(iv) ΩAnd
M is the torsor of motivated periods of M .

With this notation, the Grothendieck Period Conjecture for a smooth projective variety X over Q
states that the inclusion ZX ⊆ ΩAnd

X is an equality and that motivated classes on powers of X
are algebraic.

The Q-subschemes ZM , ΩM and ΩdRB
M can in fact be defined for any de Rham–Betti object,

that is, for any triple (MdR,MB, cM ) consisting of a finite-dimensional Q-vector space MdR, a

finite-dimensional Q-vector space MB, and a C-linear isomorphism cM : MdR⊗QC
∼−→MB⊗QC.

A de Rham–Betti object will be said to be geometric if it is the de Rham–Betti realization of a
André motive over Q. In an effort to distinguish formal properties of de Rham–Betti objects with
properties of geometric de Rham–Betti objects, we will focus first in §4 and §5 exclusively on
general de Rham–Betti objects (with various fields of coefficients, both on the de Rham and the
Betti side), and only then in §6 outline which properties are expected, or have been established,
in the geometric setting. For instance, in Theorem 4.7, we show that the torsor of periods of
a de Rham–Betti object is connected, while in Theorem 7.11 we observe, as a consequence of
Wüstholz’ analytic subgroup theorem, that ΩdRB

X is a torsor under a reductive algebraic group

for X an abelian variety over Q. The latter does not hold for a general de Rham–Betti object
since not all de Rham–Betti objects are semi-simple, but is in fact expected to hold, by the
Grothendieck Period Conjecture, for the torsor of periods of any geometric de Rham–Betti object.
This dichotomy between general de Rham–Betti objects and geometric de Rham–Betti objects also
takes in this paper the following form : in §4 and §5 we will study the inclusions ZM ⊆ ΩM ⊆ ΩdRB

M
for a general de Rham–Betti object, while in §6 we will focus our attention on the inclusion
ΩdRB
M ⊆ ΩAnd

M for a André motive M . That the inclusion ΩdRB
M ⊆ ΩAnd

M is an equality is a special
case of the Grothendieck Period Conjecture that we will refer to as the motivated de Rham–Betti
conjecture :

Conjecture 1 (Conjecture 6.10 and Conjecture 6.13). Let M be a André motive over K ⊆ Q.

(i) We say M satisfies the motivated de Rham–Betti conjecture if the inclusion

ΩdRB
M ⊆ ΩAnd

M

is an equality.
(ii) We say M satisfies the motivated Q-de Rham–Betti conjecture if the inclusion

ΩM ⊆ ΩAnd
M

is an equality, that is, if the comparison isomorphism cM generates ΩAnd
M as a Q-torsor.

By Proposition 6.12, the inclusion ΩdRB
M ⊆ ΩAnd

M is an equality only if de Rham–Betti classes on
the tensor spaces M⊗n⊗(M∨)⊗m are motivated. This explains why the Grothendieck Period Con-
jecture implies the algebraicity of de Rham–Betti classes. The reason for calling Conjecture 1(ii)
the motivated Q-de Rham–Betti conjecture will become clear in the next paragraph.
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The proof of Theorem 1 uses this Tannakian formalism and follows this dichotomy ; it con-
sists in showing the stronger statement that the de Rham–Betti conjecture holds for XQ, that is,
that the torsor of periods of XQ agrees with its torsor of motivic periods. Crucial ingredients

include the connectedness of the torsor of periods (Theorem 4.7) and the following two conse-
quences (Theorem 7.11) of Wüstholz’ analytic subgroup theorem : the torsor of periods of an
abelian variety X is a torsor under a reductive group GdRB(X) ⊆ GL(HB(X)) and codimension-1
de Rham–Betti classes on abelian varieties are algebraic. A difficulty is that, in contrast to the
Hodge setting and the Mumford–Tate group, it is not known that GdRB(X) contains the scalar
matrices.

On Q-de Rham–Betti classes. A Q-de Rham–Betti class on a de Rham–Betti object M :=
(MdR,MB, cM ) consists of a pair αdR ∈MdR and αB ∈MB⊗QQ such that cM (αdR,C) = αB,C. It

is a priori not at all clear that Q-de Rham–Betti classes are Q-linear combinations of de Rham–
Betti classes. This indeed fails for certain non-geometric de Rham–Betti objects, see Example 5.3.
However the Grothendieck Period Conjecture predicts that Q-de Rham–Betti classes on geometric
de Rham–Betti objects are Q-linear combinations of algebraic classes (we say Q-algebraic) and
hence are Q-linear combinations of de Rham–Betti classes. We note that if Q-de Rham–Betti
classes on a André motive M areQ-linear combinations of motivated classes (we sayQ-motivated),
then de Rham–Betti classes on M are motivated ; see Lemma 6.17.

Coming back to the case of a general de Rham–Betti object M , we identify in Proposition 5.1
the torsor ΩM with the Tannakian torsor associated to the Q-de Rham–Betti object M ⊗Q =def

(MdR,MB ⊗Q Q, cM ) and show in Proposition 5.2 that, provided both M and M ⊗ Q are semi-

simple, it agrees with the torsor of periods ΩdRB
M if and only if Q-de Rham–Betti classes on tensor

spaces M⊗n ⊗ (M∨)⊗m are Q-linear combinations of de Rham–Betti classes.
It follows from Chudnovsky [Chu80] that we have the stronger statement that any Q-de Rham–

Betti class on the power of a CM elliptic curve E is Q-algebraic. We extend this result by showing

Theorem 2. Let X be an abelian variety over K ⊆ Q such that XQ is isogenous to a product of

non-CM elliptic curves. Then X satisfies the motivated Q-de Rham–Betti conjecture : the com-
parison isomorphism cX generates the torsor of motivated periods ΩAnd

X , that is, ΩX = ΩAnd
X .

In particular, for all integers j and k, any Q-de Rham–Betti class in Hj
dRB(X,Q(k)) is Q-

algebraic.

We refer to Theorem 7.12(ii) for a slightly more general statement and to Theorem 7.15(ii)
for a similar statement for powers of certain abelian surfaces. While the Grothendieck Period
Conjecture remains open in these cases, we are able to prove that the complex comparison cX
generates the torsor of motivated periods. These provide the first examples, beyond the case of
varieties whose motive belongs to the Tannakian category generated by the motive of a single
CM elliptic curve E, for which it can be showed that Q-de Rham–Betti classes are Q-linear
combinations of de Rham–Betti classes. As a main ingredient we use the connectedness of ΩM

for a general de Rham–Betti object (Theorem 4.7 and Proposition 5.1) and an extension to Q-
coefficients of Wüstholz’ analytic subgroup theorem (Proposition 7.8), which implies that, for
any abelian variety A/Q, ΩA is a torsor under a reductive group and any codimension-1 Q-
de Rham–Betti class on A is Q-algebraic. The main new difficulty is that tori over Q can only be
distinguished by their rank ; in particular, we are not aware of a proof that ΩX = ΩAnd

X for a CM
elliptic curve X that does not employ Chudnovsky’s theorem.

De Rham–Betti isometries between hyper-Kähler varieties. Recall that the second coho-
mology group of hyper-Kähler varieties comes equipped with a canonical quadratic form called
the Beauville–Bogomolov form. In the case of K3 surfaces, this form coincides with the cup-
product pairing. If X is a hyper-Kähler variety over K, we denote T2

dRB(X,Q) its de Rham–Betti
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transcendental cohomology – it is the orthogonal complement to the subspace spanned by classes
of divisors – and T2

dRB(X,Q) its base-change to Q.

Theorem 3 (special instance of Theorem 9.5). Let X and X ′ be hyper-Kähler varieties over Q.
Any Q-de Rham–Betti isometry

T2
dRB(X,Q)

∼−→ T2
dRB(X ′,Q)

is Q-motivated, in particular a Q-linear combination of Hodge classes.

As an application, we obtain :

Theorem 4 (Global de Rham–Betti Torelli theorem for K3 surfaces over Q ; see Theorem 9.7).
Let S and S′ be two K3 surfaces over Q. If there is an integral de Rham–Betti class in H4

dRB(S×
S′,Z(2)) inducing an isometry

H2
dRB(S,Z)

∼−→ H2
dRB(S′,Z),

then S and S′ are isomorphic.

Our proof of Theorem 3 makes essential use of André’s theory of motivated cycles [And96b]
and André’s results regarding the Kuga–Satake construction [And96a]. Motivated cycles and
the category of André motives are reviewed in §3, while the Kuga–Satake correspondence is
reviewed in §8. We indeed show, via André’s Theorem 8.3 establishing that the Kuga–Satake
correspondence is motivated and defined over Q but also via Theorem 7.10 which is a consequence
of the Q-version of Wüstholz’ analytic subgroup theorem, that Q-de Rham–Betti isometries as in
Theorem 3 are Q-motivated and hence Q-linear combinations of (absolute) Hodge classes.

De Rham–Betti classes on hyper-Kähler varieties. Let X be a hyper-Kähler variety over Q.
The analytic subgroup theorem for abelian motives with Q–coefficients (in the form of Theo-
rem 7.10) together with the Kuga–Satake correspondence implies that Q-de Rham–Betti classes
in H2

dRB(X,Q(1)) are Q-algebraic ; see Proposition 9.1. A hyper-Kähler variety will be said to be
of known deformation type if its analytification is deformation equivalent to the Hilbert scheme of
points on a K3 surface, a generalized Kummer variety, or one of O’Grady’s two sporadic examples
(all of these do satisfy b2 > 3). Using Theorem 3, we obtain the following.

Theorem 5 (Proposition 9.8 and Theorem 9.9). Let X be a hyper-Kähler variety over Q and let
n ∈ Z>0. Then :

(i) any Q-de Rham–Betti class in H2
dRB(X,Q(1))⊗H2

dRB(X,Q(1)) is Q-motivated, in particular

a Q-linear combination of Hodge classes.

If in addition X is of known deformation type, then :

(ii) any Q-de Rham–Betti class in H4
dRB(X,Q(2)) is Q-motivated, in particular a Q-linear com-

bination of Hodge classes.

As a first consequence of Theorem 5(i), we obtain in Corollary 9.12 that, for any k ∈ Z,
any de Rham–Betti class in T2

dRB(X,Q(k)) is zero. Furthermore, building on Theorem 1 and its
proof, we can derive from Theorem 5 that Rham–Betti classes of any codimension on hyper-
Kähler varieties of large Picard rank are Hodge :

Theorem 6. Let X be a hyper-Kähler variety over Q of known deformation type. Denote by
ρc(X) the Picard corank of X, that is, ρc(X) =def h

1,1(Xan
C ) − ρ(X) where ρ(X) is the Picard

rank of X.

(i) If ρc(X) ≤ 1, then any Q-de Rham–Betti class in Hj
dRB(Xn,Q(k)) is Q-motivated, and hence

is a Q-linear combination of (absolute) Hodge classes.



AROUND THE DE RHAM–BETTI CONJECTURE 7

(ii) If ρc(X) = 2, then any de Rham–Betti class in Hj
dRB(Xn,Q(k)) is motivated, and hence is

(absolute) Hodge.

Theorem 6 follows (due to Propositions 6.12 and 6.16) from Theorem 9.15, where it is shown
that if ρc(X) = 2 (resp. if ρc(X) ≤ 1), then X satisfies the motivated version of the de Rham–
Betti conjecture (resp. the motivated version of the Q-de Rham–Betti conjecture). Moreover, we
also observe in Theorem 9.15 that the motivated version of the Grothendieck period conjecture
holds in case X is of maximal Picard rank.

Acknowledgments. Thanks to Joseph Ayoub for useful discussions in Zürich in November 2022.

1. Reductive groups and semi-simple representations

An algebraic group over a field K is a group scheme of finite type over K. Recall that a
connected algebraic group over a field K is said to be reductive if the unipotent radical Ru(GK)

of GK =def G×K K, which is the largest connected normal unipotent algebraic subgroup of GK ,
is trivial.

For the convenience of the reader, we recall the following well-known fact and, for lack of a
reference in the non-connected case, provide a proof.

Proposition 1.1. Assume char(K) = 0 and let G be an algebraic group over K. The following
statements are equivalent.

(a) The connected component G◦ of G is reductive.
(b) Every finite-dimensional representation of G◦ is semi-simple.
(c) Every finite-dimensional representation of G is semi-simple.
(d) Some faithful finite-dimensional representation of G is semi-simple.

Proof. In case G is connected, the Proposition is [Mil17, Thm. 22.42] ; in particular, loc. cit.
establishes (a)⇐⇒ (b). The equivalence (a)⇐⇒ (c) is [Mil17, Cor. 22.43] or [DM82, Rmk. 2.28].
The implication (c)⇒ (d) is obvious since any algebraic group admits a faithful finite-dimensional
representation [Mil17, Thm. 4.9]. For lack of a suitable reference, we now prove the implication
(d) ⇒ (a). Since a semi-simple representation of G remains semi-simple after base-change to a
separable extension [Mil17, Prop. 4.19], we may assume that K is algebraically closed. Let V be
a faithful semi-simple representation of G and write V =

⊕n
i=1 Vi with each Vi being a simple

representation of G. Let U =def Ru(G◦) ⊂ G◦ be the unipotent radical of G◦. Then, for each
g ∈ G(K), we see that gUg−1 ⊂ G◦ is again a connected normal unipotent subgroup of G◦. Since
U is the largest such subgroup, we get gUg−1 ⊆ U . This implies that U is a normal subgroup
of G. Hence V U

i ⊂ Vi is a sub-representation of G. Since U is unipotent, V U
i 6= 0, and by

simplicity of Vi we conclude that V U
i = Vi for each i. As a consequence, U acts trivially on V .

By faithfulness, we conclude that U is trivial and hence that G◦ is reductive. �

In this work, we will exclusively consider algebraic groups in characteristic zero. We will say
that an algebraic group G over K with char(K) = 0 is reductive if its connected component is,
that is, if it satisfies any of the equivalent conditions of Proposition 1.1.

2. Generalities on Tannakian categories

Our main references concerning Tannakian categories are [DM82, SR72], and [And04, §2.3] for
a quick overview.
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2.1. Tannakian categories. Let F be a field. Suppose that T is a rigid ⊗-category, that T
is abelian, and that EndT (1) = F . A fiber functor on T is an exact and faithful ⊗-functor
ω : T → VecK to the rigid ⊗-category VecK of finite-dimensional vector spaces over a finite field
extension K of F . If such a fiber functor exists, we say that T is a Tannakian category. Given a
Tannakian category T , equipped with a fiber functor ω, one can define its Tannakian fundamental
group Aut⊗ ω ; it is the affine group scheme over K such that for all field extensions K ′/K the
group (Aut⊗ ω)(K ′) is the automorphism group of the extended ⊗-functor ωK′ : T → VecK′ .

2.2. Tannakian subcategories. A Tannakian subcategory of a Tannakian category T is a full
subcategory T ′ of T , stable under ⊗ and duals, and such that any subquotient object in T of
an object in T ′ is in T ′. The restriction of a fiber functor ω : T → VecK to T ′ induces by
pull-back a faithfully flat homomorphism of K-group schemes Aut⊗(ω) → Aut⊗(ω|T ′). In case
X is an object of T , we denote 〈X〉 the Tannakian subcategory of T generated by X ; its objects
are the subquotients of “tensor spaces”

⊕
finiteX

⊗ni ⊗ (X∨)⊗mi .

2.3. Neutral Tannakian categories. If there exists a fiber functor ω with F = K, we say that
ω is neutral and that T is a neutral Tannakian category. Let (T , ω : T → VecF ) be a neutral
Tannakian category with Tannakian fundamental group G =def Aut⊗ ω. Then [DM82, Thm. 2.11]
the functor ω : T → RepF G to the category RepF G of finite-dimensional F -representations of G
defined by the fiber functor ω : T → VecF is an equivalence of categories. Moreover, by [DM82,
Prop. 2.20(b)], G is algebraic if and only if T is generated by one of its objects.

If φ : T ′ → T is an exact⊗-functor between neutral Tannakian categories and if ω : T → VecF
is a neutral fiber functor, then ω′ := ω ◦ φ defines a neutral fiber functor and we have an
induced homomorphism f = φ∗ : G = Aut⊗ ω → G′ = Aut⊗ ω′. Conversely, any homomorphism
f : G → G′ of affine group schemes over F gives rise to a ⊗-functor φ = f∗ : T ′ = RepF G

′ →
T = RepF G. By [DM82, Prop. 2.21], f is fully faithful (that is, an epimorphism) if and only if φ
is fully faithful and, for all objects M ′ of T ′, every subobject of φ(M ′) is the image of a subobject
of M ′ (this last condition is automatic if T is semi-simple) ; and f is a closed immersion (that
is, a monomorphism) if and only if every object M in T is the subquotient of the image of an
object N ′ in T ′.

Finally, for X an object of T , the Tannakian fundamental group GX =def Aut⊗(ω|〈X〉) is
a closed K-subgroup of GL(ω(X)), and [Wat79, §16.1] there exists a line L in a tensor space⊕

finite ω(X)⊗ni ⊗ (ω(X)∨)⊗mi such that GX is the stabilizer of L.

2.4. Connectedness of the Tannakian fundamental group in characteristic zero. In
characteristic zero, we have the following criterion for the connectedness of the Tannakian fun-
damental group of a neutral Tannakian category.

Proposition 2.1. Assume char(F ) = 0. Let T be a neutral Tannakian category with neutral
fiber functor ω : T → VecF . The following statements are equivalent.

(i) The Tannakian fundamental group G =def Aut⊗(ω) is connected.
(ii) For any object X of T , if its Tannakian fundamental group GX is finite, then it is trivial.

Proof. This is essentially the criterion in [DM82, Cor. 2.22]. In details, since char(F ) = 0, the
group G is connected if and only if there is no non-trivial epimorphism from G to a finite group
scheme. Thus, by [DM82, Prop. 2.21(a)] recalled above, G is connected if and only if T does
not have any Tannakian subcategory with non-trivial finite Tannakian fundamental group. By
[DM82, Prop. 2.20(b)], such a Tannakian subcategory is generated by an object X. �
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2.5. Semi-simple neutral Tannakian categories in characteristic zero. Assume char(F ) =
0. A neutral Tannakian category (T , ω) is semi-simple if and only if its Tannakian funda-
mental group G = Aut⊗ ω is pro-reductive, that is, an inverse limit of (not necessarily con-
nected) reductive groups ; see e.g., [And04, §2.3.2] and [DM82, Prop. 2.23 & Rmk. 2.28]. For
X an object of T , the Tannakian fundamental group GX =def Aut⊗(ω|〈X〉) is then a reductive
closed K-subgroup of GL(ω(X)), and [And04, §6.3.1] there exists a vector ` in a tensor space⊕

finite ω(X)⊗ni ⊗ (ω(X)∨)⊗mi such that GX is the stabilizer of `. In particular, GX is the closed
K-subgroup of GL(ω(X)) that fixes tensors of the form ω(f) for f ∈ HomT (1, X⊗n ⊗ (X∨)⊗m).

2.6. The Tannakian fundamental group of semi-simple objects in neutral Tannakian
categories in characteristic zero. Combined with Proposition 1.1, we can summarize the
above discussions into the following well-known proposition.

Proposition 2.2. Let X be an object of a neutral Tannakian category (T , ω : T → F ) with
char(F ) = 0. The following statements are equivalent.

(i) The Tannakian fundamental group GX =def Aut⊗(ω|〈X〉) is reductive.
(ii) The neutral Tannakian category (〈X〉, ω|〈X〉) is semi-simple.

(iii) The F -vector space ω(X) is a semi-simple representation of GX .
(iv) The object X is semi-simple in T .

If any of these statements is satisfied, GX is the closed subgroup of GL(ω(X)) that fixes elements
in ω

(
HomT (1,M)

)
inside HomF (F, ω(M)) for all tensor spaces M =

⊕
finiteX

⊗ni ⊗ (X∨)⊗mi.

Proof. Recall from §2.3 that ω|〈X〉 : 〈X〉 → RepFGX is an equivalence of categories. Note also
that an object X is semi-simple in T if and only if it is semi-simple in 〈X〉. The equivalence
of (iii) and (iv) (which in fact holds in any characteristic) is then clear. From the equivalence

ω|〈X〉 : 〈X〉
∼→ RepFGX it follows that the neutral Tannakian category 〈X〉 is semi-simple if and

only if all finite-dimensional representations of GX are semi-simple. Since ω(X) is a faithful
representation of GX , we get from Proposition 1.1 that the statements (i), (ii) and (iii) are
equivalent. �

3. Motivated cycles and André motives

3.1. Motivated cycles and André motives : definitions and properties. The notion of
motivated cycle was introduced by Yves André in [And96b]. Let K ⊆ C be a subfield of the
complex numbers and let X be a smooth projective variety over K. A motivated cycle on X is an
element in H2r

B (Xan
C ,Q(r)) of the form pX,∗(α · ∗Lβ), where Y is an arbitrary smooth projective

variety over K, α and β are algebraic cycles on X ×K Y , and ∗L is the (inverse of the) Lefschetz
isomorphism attached to any choice of polarizations on X and Y . As detailed in [And96b, §2], the
motivated cycles define a graded Q-subalgebra of

⊕
r H2r

B (Xan
C ,Q(r)) that contains the classes of

algebraic cycles and that is stable under pullbacks and pushforwards along morphisms of smooth
projective varieties. As such, one can define motivated correspondences and their compositions.
By replacing algebraic correspondences with motivated correspondences in the construction of
pure motives (as outlined in [And04, §4]), one obtains a pseudo-abelian rigid ⊗-category over Q.
From the fact that inverses to the Lefschetz isomorphisms are motivated, one obtains that the
Künneth projectors are motivated. This provides a grading on the above category and after
changing the commutativity constraint along the Koszul rule of signs we obtain the André category
of motives MAnd

K over K. Its objects have the form M = ph(X)(n) = (X, p, n), where X is a
smooth projective variety over K of dimension dX , p is a motivated idempotent correspondence

in H2dX
B ((X ×K X)an

C ,Q(dX)) and n is an integer. The unit object is 1 := h(SpecK) and with
the above formalism the space of motivated cycles on M is HomAnd(1,M).
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Theorem 3.1 (André [And96b, §4]). The category MAnd
K is graded Tannakian semi-simple over Q,

neutralized by the fiber functor given by the Betti cohomology realization functor

ωB : MAnd
K → VecQ, M := (X, p, n) 7→ H∗B(M) := p∗H

∗
B(Xan

C ,Q(n)).

The grading of an object M =
⊕

k∈ZM
k is such that H∗B(Mk) = Hk

B(M). We write

h(X) =
⊕

0≤k≤2dX

hk(X)

for the grading of the André motive of X. The various realization functors attached to Weil co-
homology theories provide other fiber functors. Under the `-adic realization functor ω` : MAnd

K →
VecQ`

, motivated cycles are invariant under the action of the Galois group Gal(K/K). Under

the de Rham realization functor ωdR : MAnd
K → VecK , motivated cycles are mapped to classes

lying in F 0 for the Hodge filtration. In addition these are compatible with the canonical compar-
ison isomorphisms, so that motivated cycles are absolute Hodge in the sense of Deligne [Del82]
(and in particular Hodge) and they are also de Rham–Betti (see Definition 4.3 below). Since the
Hodge conjecture is known for codimension-1 cycles (Lefschetz (1, 1)-theorem), we see that any
motivated cycle of codimension 1 on X is algebraic.

3.2. The motivated Galois group and the Mumford–Tate group. Using the Tannakian
formalism, André makes the following

Definition 3.2 (Motivated Galois group). Given a André motive M over K, its motivated Galois
group GAnd(M) is the Tannakian fundamental group

GAnd(M) =def Aut⊗(ωB|〈M〉).

Since the neutral Tannakian category MAnd
K is semi-simple, the motivated Galois groupGAnd(M)

is reductive. In addition, GAnd(M) is the closed subgroup of GL(ωB(M)) that fixes motivated
classes inside tensor spaces

⊕
finiteM

⊗ni ⊗ (M∨)⊗mi .

Recall that a pure rational Hodge structure H consists of a finite-dimensional Q-vector space H

together with a decomposition H ⊗ C =
⊕

i,j H
i,j such that H i,j = Hj,i, where complex con-

jugation on H ⊗ C acts on the second factor. Equivalently, H is a finite-dimensional Q-vector
space equipped with a representation ρ : ResC/RGm,C → H ⊗R of the Deligne torus ; the pieces

H i,j then corresponding to the eigenspace for the character z−iz̄−j . The Mumford–Tate group
MT(H) of H is the smallest Q-subgroup of GL(H) that contains the image of the representa-
tion ρ. The category of pure Hodge structures naturally defines a neutral Tannakian category
HS with fiber functor the forgetful functor ω associating to H the underlying Q-vector space. A
Hodge class in H is an element of H that lies in H0,0 after base-change to C ; in other words, it
is an element of HomHS(Q, H), where Q is the trivial Hodge structure with grading concentrated
in bidegree (0, 0). The Mumford–Tate group of H can then be described as

MT(H) = Aut⊗(ω|〈H〉).

In case H is polarizable, 〈H〉 is semi-simple and hence MT(H) is reductive and is the closed
subgroup of GL(H) that fixes all Hodge classes in tensor spaces

⊕
finiteH

⊗ni ⊗ (H∨)⊗mj .

Since motivated cycles are Hodge, the Betti realization functor ωB : MAnd
K → VecQ factors

through ω : HS→ VecQ. Moreover the Hodge structure associated to a André motive is polariz-
able. It follows that for a André motive M we have an inclusion MT(M) ⊆ GAnd(M) of reductive
groups. For future reference, we then have

Proposition 3.3. The inclusion MT(M) ⊆ GAnd(M) is an equality if and only if Hodge classes
in tensor spaces

⊕
finiteM

⊗ni ⊗ (M∨)⊗mi are motivated.
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Proof. This follows at once from the facts that MT(M) is the closed subgroup of GL(ωB(M))
that fixes all Hodge classes in tensor spaces while GAnd(M) is the closed subgroup of GL(ωB(M))
that fixes all motivated cycles in tensor spaces. �

3.3. The case of abelian varieties. Deligne [Del82] famously proved that any Hodge cycle on
a complex abelian variety is absolute Hodge. André [And96b] established the following general-
ization :

Theorem 3.4 (André [And96b]). Let A be a complex abelian variety. Any Hodge cycle in
H2k(A,Q(k)) is motivated and MT(A) =def MT(h(A)) = GAnd(h(A)) =: GAnd(A). �

4. De Rham–Betti objects

In this section, we fix an algebraic closure Q of Q inside C and we let K be a subfield of Q.

4.1. The Tannakian category of de Rham–Betti objects : definition. The following defi-
nition will be mostly used in the special case where L = Q ; but see §5 for remarks on Q-de Rham–
Betti classes.

Definition 4.1 (De Rham–Betti objects [And04, §7.1.6]). Let L be another subfield of Q. The
category of L-de Rham–Betti objects over K is the (K ∩ L)-linear category CdRB,KdR,LB

whose
objects M are triples of the form

M = (MdR,MB, cM ),

where MdR is a finite-dimensional K-vector space, MB is a finite-dimensional L-vector space
and cM : MdR ⊗K C → MB ⊗L C is a C-linear isomorphism. A de Rham–Betti homomorphism
f ∈ HomdRB(M,N) between L-de Rham–Betti objects over K consists of a K-linear map fdR :
MdR → NdR together with an L-linear map fB : MB → NB such that the diagram

MdR ⊗K C
cM
��

fdR⊗K idC // NdR ⊗K C
cN
��

MB ⊗L C
fB⊗LidC // NB ⊗L C

commutes.
For any k ∈ Z, we denote 1(k) the object of CdRB,KdR,LB

defined by

1(k)dR := K, 1(k)B := (2πi)kL, and c1(k) : C→ C, z 7→ z

or equivalently by

1(k)dR := K, 1(k)B := L, and c1(k) : C→ C, z 7→ (2πi)−kz.

The category CdRB,KdR,LB
is then naturally an abelian rigid ⊗-category, with unit object 1 :=

1(0). The two natural forgetful functors

ωdR : CdRB,KdR,LB
→ VecK and ωB : CdRB,KdR,LB

→ VecL

define fiber functors, thereby endowing CdRB,KdR,LB
with the structure of a Tannakian category.

We note that the Tannakian category CdRB,KdR,LB
is not semi-simple, as can be seen from

considering the object

M :=
(
MdR = K2,MB = L2, cM

)
, with cM =

(
α β
0 γ

)
, degtrQQ(α, β, γ) = 3.
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Definition 4.2 (Base-change of de Rham–Betti objects). Given a L-de Rham–Betti object M =
(MdR,MB, cM ) over K, that is, an object M in CdRB,KdR,LB

, and given field extensions K ⊆ K ′ ⊆
Q and L ⊆ L′ ⊆ Q, we further denote

MK′ ⊗ L′ =def (MdR ⊗K K ′,MB ⊗L L′, cM )

the object in CdRB,K′dR,L
′
B

obtained from base-change of M .

We note that the base-change of a semi-simple object may fail to be semi-simple, as can be
seen from considering the de Rham–Betti object

M :=
(
MdR = Q

2
,MB = Q2, cM

)
, with cM =

(
α β
iα γ

)
, degtrQQ(α, β, γ) = 3.

and its base-change M ⊗ Q. Conversely, an object M whose base-change M ⊗ Q is semi-simple
may fail to be semi-simple, as can be seen from considering the de Rham–Betti object

M :=
(
MdR = Q

2
,MB = Q2, cM

)
, with cM =

(
1 iπ
0 π

)
.

In this work we will be interested in the following three cases :

(a) L = Q. In this case, the fiber functor ωB is neutral and we write CdRB,K for the Q-linear
neutral Tannakian category CdRB,KdR,QB

whose objects we call de Rham–Betti objects (the
field K will usually be clear from the context).

(b) K = Q and L = Q. This is a special instance of (a). We write CdRB for CdRB,QdR,QB
.

(c) K = Q and L = Q. In this case, both fiber functors ωB and ωdR are neutral and we write
CQ−dRB for the Q-linear neutral Tannakian category CdRB,QdR,QB

whose objects we call Q-

de Rham–Betti objects.

We discuss cases (b) and (c) below in a general context, while case (a) will be discussed in §6.2
in the context of de Rham–Betti objects associated to André motives.

4.2. The de Rham–Betti group and the torsor of periods. Let us consider the case (b) of
de Rham–Betti objects with K = Q and L = Q.

Definition 4.3 (De Rham–Betti classes [And04, §7.5.1]). Let M be a de Rham–Betti object.
A de Rham–Betti class on M is an element of HomCdRB,K

(1,M). Equivalently, if consists of an
element αB ∈MB such that there exists αdR ∈MdR with cM (αdR ⊗K 1C) = αB ⊗Q 1C.

Definition 4.4 (The de Rham–Betti group and the torsor of periods). The de Rham–Betti group
GdRB is the Tannakian fundamental group of the neutral Tannakian category CdRB, that is,

GdRB =def Aut⊗(ωB : CdRB → VecQ).

The torsor of periods is the Tannakian torsor

ΩdRB =def Iso⊗(ωdR, ωB ⊗Q) ;

it is a torsor under Aut⊗(ωB ⊗Q Q), which coincides with GdRB,Q =def GdRB ×Q Q by [DM82,

Rmk. 3.12].

For a de Rham–Betti object M ∈ CdRB, we denote

GdRB(M) =def Aut⊗(ωB|〈M〉) and ΩdRB
M =def Iso⊗(ωdR|〈M〉, ωB|〈M〉 ⊗Q).

The comparison isomorphism cM : MdR ⊗Q C
∼−→ MB ⊗Q C defines a canonical complex-valued

point

cM ∈ ΩdRB
M (C).
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As an example, we have

GdRB(1(k)) =

{
{1}, if k = 0

Gm, if k 6= 0.

Indeed, GdRB(1(k)) is a Q-subgroup of Gm. Suppose it is finite, say of order n. Then GdRB(1(k))
acts trivially on (1(k)⊗n)B so that 1(nk) ' 1(k)⊗n ' 1 in the category of de Rham–Betti objects.
This implies that (2πi)nk lies in Q and hence that k = 0 by the transcendence of π. (Alternately,
we will show in Theorem 4.7 that GdRB is connected.) Conversely, it is clear that GdRB(1) = {1}.

From the general formalism of neutral Tannakian categories, for any object M ∈ CdRB, there
is a natural epimorphism GdRB � GdRB(M) and for any object X ∈ 〈M〉, the action of GdRB

on ωB(X) factors through GdRB(M). In particular, a class in M⊗nB ⊗ (M∨B )⊗m extends to a
de Rham–Betti class in M⊗n ⊗ (M∨)⊗m if and only if it is fixed by GdRB.

4.3. The Q-de Rham–Betti group and the Q-torsor of periods. Likewise in the context
of Q-de Rham–Betti objects as defined in (c), we have :

Definition 4.5 (Q-de Rham–Betti classes). Let M be a Q-de Rham–Betti object.
A Q-de Rham–Betti class on M is an element of HomC

Q−dRB
(1,M). Equivalently, if consists

of an element αB ∈MB such that there exists αdR ∈MdR with cM (αdR ⊗Q 1C) = αB ⊗Q 1C.

Definition 4.6 (The Q-de Rham–Betti group and the Q-de Rham–Betti torsor of periods). The
Q-de Rham–Betti group GQ−dRB is the Tannakian fundamental group of the neutral Tannakian

category CQ−dRB, that is,

GQ−dRB =def Aut⊗(ωB : CQ−dRB → VecQ).

The Q-de Rham–Betti torsor of periods is the Tannakian torsor

ΩQ−dRB =def Iso⊗(ωdR, ωB) ;

it is a torsor under GQ−dRB.

As above, we then denote for a Q-de Rham–Betti object M ∈ CQ−dRB,

GQ−dRB(M) =def Aut⊗(ωB|〈M〉) and ΩQ−dRB
M =def Iso⊗(ωdR|〈M〉, ωB|〈M〉).

The comparison isomorphism cM : MdR ⊗Q C
∼−→ MB ⊗Q C defines a canonical complex-valued

point

cM ∈ ΩQ−dRB
M (C).

A similar argument as above establishes

GQ−dRB(1(k)) =

{
{1}, if k = 0

Gm, if k 6= 0.

4.4. The torsor of periods is connected. The following observation is purely formal, in the
sense that it applies to any de Rham–Betti object (resp. to any Q-de Rham–Betti object) and not
only to those coming from geometry (that is, that are the realization of André motives ; see §6.1
below).
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Theorem 4.7 (Connectedness of GdRB, ΩdRB, GQ−dRB and ΩQ−dRB).

Both the de Rham–Betti group GdRB and the torsor of periods ΩdRB are connected. In partic-
ular, for any de Rham–Betti object M in CdRB, both GdRB(M) and ΩdRB

M are connected.

Similarly, both the Q-de Rham–Betti group GQ−dRB and the Q-de Rham–Betti torsor of peri-

ods ΩQ−dRB are connected. In particular, for any Q-de Rham–Betti object M in CQ−dRB, both

GQ−dRB(M) and ΩQ−dRB
M are connected.

Proof. It suffices to show that GdRB and GQ−dRB are connected. We show that GdRB is connected
– the case of GQ−dRB is similar. According to Proposition 2.1, it suffices to show that, for any

object M ∈ CdRB with finite de Rham–Betti group, GdRB(M) is trivial. Since the torsor of periods
ΩdRB
M of such an object M is then finite, the comparison isomorphism cM : MdR⊗QC→MB⊗QC

is defined over Q. Choosing a Q-basis (ei) of MB and letting (c−1
M (ei⊗Q1Q)) be the corresponding

Q-basis of MdR, we see that M ' 1⊕dimMB in CdRB. This implies GdRB(M) = GdRB(1) = 1. �

5. De Rham–Betti objects with Q-coefficients

Let M = (MdR,MB, cM ) be a de Rham–Betti object in CdRB =def CdRB,QdR,QB
. Its base-

change M ⊗ Q =def (MdR,MB ⊗Q Q, cM ) defines an object in the Q-linear Tannakian cate-

gory CQ−dRB =def CdRB,QdR,QB
consisting of Q-de Rham–Betti objects over Q, and we have, e.g.

from §2.3, closed embeddings ΩQ−dRB

M⊗Q ⊆ ΩdRB
M ⊆ IsoQ(MdR,MB ⊗Q) of Q-torsors. The compar-

ison isomorphism cM defines a canonical C-point in ΩQ−dRB

M⊗Q ; we denote ZM its Zariski closure

and ΩM ⊆ ΩQ−dRB

M⊗Q the smallest Q-torsor containing cM .

All in all, we have a chain of natural closed inclusions

ZM ⊆ ΩM ⊆ ΩQ−dRB

M⊗Q ⊆ ΩdRB
M . (3)

In this section, we show that the middle inclusion in (3) is an equality, while the left-most and
right-most inclusions cannot be expected to be equalities in general.

In fact, for a Q-de Rham–Betti object N = (NdR, NB, cN ), we also have a chain of natural
closed inclusions

ZN ⊆ ΩN ⊆ ΩQ−dRB
N ,

where ZN ⊆ ΩQ−dRB
N is the Zariski closure of cN and ΩN ⊆ ΩQ−dRB

N is the smallest Q-subtorsor
containing cN . We note that, for a de Rham–Betti object M , the complex-valued point cM
agrees with the complex-valued point cM⊗Q so that we have equalities ZM = ZM⊗Q of closed

Q-subschemes and ΩM = ΩM⊗Q of Q-subtorsors of IsoQ(MdR,MB ⊗Q).

5.1. On the inclusion ΩM ⊆ ΩQ−dRB

M⊗Q . The middle inclusion of (3) is an equality :

Proposition 5.1 (The inclusion ΩM ⊆ ΩQ−dRB

M⊗Q is an equality). For any Q-de Rham–Betti ob-

ject N ∈ CQ−dRB, we have

ΩN = ΩQ−dRB
N .

In particular, for any de Rham–Betti object M ∈ CdRB, we have ΩM = ΩQ−dRB

M⊗Q .
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Proof. From the inclusion ΩN ⊆ ΩQ−dRB
N , it follows that ΩN is a torsor under a Q-subgroup

G ⊆ GQ−dRB(N). The group G ⊆ GL(NB) is thus the stabilizer of a Q-line LB in some tensor

space
⊕

finiteN
⊗ni
B ⊗ N∨⊗mi

B . We will prove that GQ−dRB(N) stabilizes the line LB. This will

show that G = GQ−dRB(N) and finish the proof that the two torsors are equal. If we choose a

point x ∈ ΩN (Q), then cN ◦x−1 ∈ G(C). As G(C) stabilizes LB⊗C inside
⊕

finiteN
⊗ni
B ⊗N∨⊗mi

B ,
this means that

cN ◦ x−1(LB ⊗ C) = LB ⊗ C.

Since ΩN ⊆ IsoQ(NdR, NB), the line LdR := x−1(LB) ⊆
⊕

finiteN
⊗ni
dR ⊗N∨⊗mi

dR is defined over Q,

and cN (LdR ⊗ C) = LB ⊗ C. Hence (LdR, LB, cN |LdR⊗C) is a subobject of
⊕

finiteN
⊗ni ⊗N∨⊗mi

in CQ−dRB. We conclude that GQ−dRB(N) stabilizes LB. �

5.2. On the inclusion ΩQ−dRB

M⊗Q ⊆ ΩdRB
M . The inclusion ΩQ−dRB

M⊗Q ⊆ ΩdRB
M is an equality if and

only if the functor 〈M〉⊗Q→ 〈M ⊗Q〉 is an equivalence of Tannakian categories. This is related
to the question of whether Q-de Rham–Betti classes are Q-linear combinations of de Rham–Betti

classes, but also to the question of whether the Q-torsor ΩQ−dRB

M⊗Q is a torsor under a Q-group

defined over Q :

Proposition 5.2. Let M be a semi-simple de Rham–Betti object. The following statements are
equivalent.

(i) The comparison cM generates ΩdRB
M as a Q-torsor.

(ii) The inclusion ΩQ−dRB

M⊗Q ⊆ ΩdRB
M is an equality.

(iii) M ⊗ Q is a semi-simple Q-de Rham–Betti object and, for any N ∈ 〈M〉, any Q-de Rham–
Betti class in N ⊗Q is a Q-linear combinations of de Rham–Betti classes in N .

(iv) GQ−dRB(M ⊗Q) is reductive and defines a Q-subgroup of GdRB(M).

Proof. The equivalence (i) ⇐⇒ (ii) holds by Proposition 5.1 and by definition of ΩM , whether
or not M is assumed to be semi-simple. If M is semi-simple, the de Rham–Betti group GdRB(M)

is reductive by Proposition 1.1. By definition, the torsor ΩQ−dRB

M⊗Q is included in the intersection

of the torsors Ωα whose Q-points are given by

Ωα(Q) = {f ∈ IsoQ(MdR,MB ⊗Q Q) | f(αdR) = αB},

for α running through the Q-de Rham–Betti classes in the Q-base change of the various tensor
spaces M⊗n⊗(M∨)⊗m, and this inclusion is an equality if M⊗Q is semi-simple as a Q-de Rham–
Betti object. On the other hand, by the semi-simplicity of M , the torsor ΩdRB

M is the intersection
of the torsors Ωα for α running through the de Rham–Betti classes in the various tensor spaces
M⊗n⊗ (M∨)⊗m. This establishes the equivalence of (ii) and (iii). The implication (ii)⇒ (iv) is
clear ; indeed (ii) is equivalent to the inclusion GQ−dRB(M ⊗Q) ⊆ GdRB(M)Q being an equality.

Finally, assume both groups GQ−dRB(M ⊗ Q) and GdRB(M) are reductive and assume that

GQ−dRB(M ⊗ Q) = GQ where G ⊆ GdRB(M) is a Q-subgroup. Then, for any element α in a

tensor space of M such that α is G-invariant, the class α ⊗ Q, being GQ-invariant, defines a Q-

de Rham–Betti class. In particular α is a de Rham–Betti class and hence is GdRB(M)-invariant.
Therefore the reductive groups G and GdRB(M) share the same invariants and thus coincide.
This establishes the implication (iv)⇒ (ii). �
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Example 5.3 (The inclusion ΩQ−dRB

M⊗Q ⊆ ΩdRB
M can be strict). Consider the de Rham–Betti object

M :=
(
MdR = Q

2
,MB = Q2, cM

)
, with cM =

(
π a
bπ c

)
, a, b, c ∈ Q, c− ab 6= 0.

For a general choice of a, b and c in Q, we have M ⊗ Q ∼= 1(−1) ⊕ 1, while M is simple and
in particular does not have any nonzero de Rham–Betti class. In view of Proposition 5.2, the

inclusion ΩQ−dRB

M⊗Q ⊆ ΩdRB
M is then strict. (In relation to [BC16, Rmk. 2.6], one also notes that

the Zariski closure ZM of cM is a torsor under GdRB(MQ) = Gm,Q but that the latter does not

descend to a subgroup of GL2 over Q.)

5.3. On the inclusion ZM ⊆ ΩM . For an object N ∈ CQ−dRB, the comparison isomorphism

cN : NdR ⊗Q C
'−→ NB ⊗Q C defines a Q-bilinear map, called the period pairing,∫

: N∨B ⊗Q NdR → C, γ ⊗ ω 7→
∫
γ
ω =def γC(cN (ωC)).

Fixing γ ∈ N∨B and ω ∈ NdR we thereby get Q-linear maps∫
γ

: NdR → C, ω 7→ γC(cN (ωC)) and

∫
ω : N∨B → C, γ 7→ γC(cN (ωC)).

Definition 5.4. For γ ∈ N∨B we define the annihilator Ann(γ) =def ker
∫
γ ⊆ NdR. Similarly, for

ω ∈ NdR we define Ann(ω) =def ker
∫
ω ⊆ N∨B .

The following proposition gives criteria for the inclusion ZN ⊆ ΩN to be an equality. (Criteria
similar to (iii) and (iv) appear in [Hör21, HW22]). We leave it to the reader to state and prove a
similar statement for the inclusion ZM ⊆ ΩdRB

M to be an equality for a de Rham–Betti object M .

Proposition 5.5. Let M ∈ CQ−dRB. The following statements are equivalent :

(i) ZM ⊆ IsoQ(MdR,MB) is a torsor ;

(ii) ZM = ΩM ;
(iii) For every N ∈ 〈M〉 ⊂ CQ−dRB and every ω ∈ NdR, there exists a short exact sequence

0→ N ′ → N → N ′′ → 0

in CQ−dRB such that ω ∈ N ′dR and Ann(ω) = (N ′′B)∨ ;

(iv) For every N ∈ 〈M〉 ⊂ CQ−dRB and every γ ∈ N∨B , there exists a short exact sequence

0→ N ′ → N → N ′′ → 0

in CQ−dRB such that γ ∈ (N ′′B)∨ and Ann(γ) = N ′dR.

Proof. The equivalence (i) ⇐⇒ (ii) follows from the definition of ΩM . We first introduce another
condition (ii′) which is equivalent to (ii). The direct sum of the period pairings associated to all
objects N ∈ 〈M〉 provides a pairing

p :
⊕

N∈〈M〉

N∨B ⊗NdR → C.

We define the ring of periods P(M) ⊆ C of M to be the image of p. Note that GQ−dRB(M)

naturally acts on all N∨B and hence on
⊕

N∈〈M〉N
∨
B ⊗NdR.

Claim. Statement (ii) is equivalent to the assertion

(ii’) ker(p) ⊆
⊕

N∈〈M〉N
∨
B ⊗NdR is stable under the action of GQ−dRB(M).
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Proof of Claim. By Proposition 5.1, the torsor ΩM = ΩQ−dRB
M is the Tannakian torsor for 〈M〉.

It then follows from the construction (cf. [DM82, proof of Thm. 3.2]) that ΩM = SpecR is the
spectrum of an algebra R which fits into the diagram⊕

N∈〈M〉N
∨
B ⊗NdR

// //

p )) ))

R

����
P(M) ⊂ C.

Note that ZM = SpecP(M). Since ΩM is a torsor under GQ−dRB(M), the equality ZM = ΩM

holds exactly if the action of GQ−dRB(M) on
⊕

N∈〈M〉N
∨
B ⊗ NdR passes down to an action

of GQ−dRB(M) on the quotient P(M). This is equivalent to saying that the kernel ker(p) ⊆⊕
N∈〈M〉N

∨
B ⊗NdR is stable under GQ−dRB(M). �

We prove the equivalence (ii′) ⇐⇒ (iii). Suppose (ii)′ holds true and let ω ∈ NdR. Note that
γ ∈ Ann(ω) if and only if γ⊗ω ∈ ker(p). It follows that Ann(ω) ⊆ N∨B is stable under the action
of GQ−dRB(M) and is therefore the realization of a subobject in CQ−dRB. The dual object gives

the desired N ′′. Conversely, suppose that (iii) is true. An element of
⊕

N∈〈M〉N
∨
B ⊗NdR is given

by a collection (
∑mN

i=1 γi,N ⊗ ωi,N )N , where only finitely many N1, ..., Nn contribute. Consider
the object

Ñ :=
n⊕
k=1

N
⊕mNk
k ∈ CQ−dRB.

Let ω := (ω1,Nk
, ..., ωmNk

,Nk
)k ∈ ÑdR. Then (

∑mN
i=1 γi,N ⊗ ωi,N )N lies in ker(p) if and only if

γ := (γ1,Nk
, ..., γmNk

,Nk
)k ∈ Ñ∨B lies in Ann(ω). Since Ann(ω) is stable under GQ−dRB(M) by

assumption, we see that ker(p) is stable under GQ−dRB(M).
The situation is symmetric in the fiber functors ωdR and ωB, and therefore a similar proof

shows (ii′) ⇐⇒ (iv). �

Example 5.6 (The inclusion ZM ⊆ ΩM can be strict). The object

M :=
(
MdR = Q

2
,MB = Q2, cM

)
, with cM =

(
α β
a γ

)
, degtrQQ(α, β, γ) = 3, a ∈ Q \ {0}

defines a simple de Rham–Betti object such that ZM is not a torsor. Indeed, dimZM = 3 and
ΩM is a torsor under a connected and reductive subgroup of GL2,Q of dimension ≥ 3 and hence
must be a torsor under GL2,Q.

6. The Grothendieck period conjecture

In this section, we fix an algebraic closure Q of Q inside C and we let K be a subfield of Q.

6.1. The de Rham–Betti realization of André motives. To a smooth projective variety X
defined over K, one associates its de Rham–Betti cohomology groups

Hn
dRB(X,Q(k)) =def

(
Hn

dR(X/K),Hn
B(Xan

C ,Q(k)), cX
)
,

where cX : Hn
dR(X/K)⊗K C

'−→ Hn
B(Xan

C ,Q)⊗Q C is Grothendieck’s period comparison isomor-
phism (1). These are objects in CdRB,K =def CdRB,KdR,QB

.
Recall from §3 that the Betti and de Rham realizations of motivated cycle classes are compatible

with the comparison isomorphisms and therefore that motivated cycle classes are de Rham–Betti.
As such, there is a well-defined faithful realization functor

ρdRB : MAnd
K → CdRB,K , M = (X, p, n) 7→ (p∗H

∗
dR(X/K), p∗H

∗
B(Xan

C ,Q(n)), p∗ ◦ cX ◦ p∗),
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and we may speak of de Rham–Betti classes on a André motive M . Note that the composition
of the fiber functors ωdR : CdRB,K → VecK and ωB : CdRB,K → VecQ with the de Rham–Betti

realization functor ρdRB : MAnd
K → CdRB,K from the category of André motives over K provide

the fiber functors abusively also denoted ωB and ωdR defined in §3.
Conversely, de Rham–Betti classes are conjectured to be algebraic [And04, Conj. 7.5.1.1]. A

weaker form of this expectation is the following

Conjecture 6.1. The realization functor ρdRB : MAnd
K → CdRB,K is full. In other words,

de Rham–Betti classes are motivated.

We note in particular that the conjecture implies that de Rham–Betti classes should be Hodge
classes, and even absolute Hodge classes (in the sense of Deligne [Del82]). The following easy
lemma reduces Conjecture 6.1 to the case K = Q :

Lemma 6.2. Let M be a André motive over K ⊆ Q and let MQ be its base-change to Q. If every
de Rham–Betti class on MQ is motivated, then every de Rham–Betti class on M is motivated.

Proof. Recall from [And96b, Scolie p.17] that the Galois group Gal(Q/K) acts naturally on the
space of motivated cycles on MQ and factors through a finite quotient ; moreover, the space of

motivated cycles on M is exactly the space of Gal(Q/K)-invariant motivated cycles on MQ.
By assumption, we have an isomorphism

HomAnd(1,MQ)
'−→ HomdRB(1,H∗dRB(MQ)). (4)

This isomorphism gives rise to a Galois action on the right-hand side which is induced from that
on the left. Explicitly, the Galois action on the de Rham component of HdRB(MQ) is the usual
Galois action on the algebraic de Rham cohomology. Hence the Galois invariants on the right-
hand side are exactly the de Rham–Betti classes in H∗dRB(MQ) defined over K. The result then

follows by taking Galois invariants on both sides of the isomorphism (4). �

6.2. The Grothendieck period conjecture : Tannakian formulation. We give an overview
of [And04, §7.5] and [BC16, §2.2.2] regarding the Grothendieck period conjecture. First, let us
define the torsor of periods for case (a) of §4.1.

Definition 6.3 (the de Rham–Betti group and the torsor of periods). The de Rham–Betti group
GdRB(M) of a de Rham–Betti object M ∈ CdRB,K = CdRB,KdR,QB

is the Tannakian fundamental
group

GdRB(M) =def Aut⊗(ωB|〈M〉).
The torsor of periods ΩdRB

M of a de Rham–Betti object M ∈ CdRB,K = CdRB,KdR,QB
is

ΩdRB
M =def Iso⊗(ωdR|〈M〉, ωB|〈M〉 ⊗Q K) ;

it is aK-torsor under Aut⊗(ωB|〈M〉⊗QK), which coincides withGdRB(M)K by [DM82, Rmk. 3.12].

By definition, the torsor of periods ΩdRB
M is included in the intersection of the Ωα, where Ωα is

the torsor whose Q-points are given by

Ωα(Q) = {f ∈ IsoQ(MdR ⊗K Q,MB ⊗Q Q) | f(αdR ⊗K 1Q) = αB ⊗Q 1Q},

for α running through the de Rham–Betti classes in the various tensor spaces M⊗n⊗(M∨)⊗m. In
case the Tannakian subcategory 〈M〉 is semi-simple (or, equivalently, if GdRB(M) is reductive),
then the above inclusion is an equality and one recovers in this case the definition of the torsor
of periods ΩdRB

M in terms of invariants given in [BC16, Def. 2.4].

Let nowM be a André motive defined overK. By definition, its de Rham–Betti group GdRB(M)
is the de Rham–Betti group of its de Rham–Betti realization ρdRB(M), and its torsor of periods
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ΩdRB
M is the torsor of periods of its de Rham–Betti realization ρdRB(M). On the other hand, we

have

Definition 6.4 (Torsor of motivated periods). The torsor of motivated periods ΩAnd
M of a André

motive M ∈ MAnd
K is

ΩAnd
M =def Iso⊗(ωdR|〈M〉, ωB|〈M〉 ⊗Q K) ;

it is a torsor under GAnd(M)K .

Since the neutral Tannakian category of André motives is semi-simple, the torsor of motivated
periods has the following description in terms of invariants : it is the intersection of the Ωα as
above, where α runs through the motivated classes on tensor spaces M⊗n ⊗ (M∨)⊗m. This
description coincides with [BC16, Def. 2.9(3)].

Restricting the intersection to those Ωα with α algebraic classes yields the notion of torsor
of motivic periods. A homological motive M over K is an object of the form M = (X, p, n)
with X smooth projective over K of dimension dX , p an idempotent in im(CHdX (X × X) →
HB((X ×X)an

C ,Q)) and n an integer.

Definition 6.5 (Torsor of motivic periods). The torsor of motivic periods Ωmot
M of a homological

motive M is defined as the intersection of the Ωα as above, where α runs through the algebraic
classes on tensor spaces M⊗n ⊗ (M∨)⊗m.

We note that this torsor has a Tannakian description in case X satisfies Grothendieck’s stan-
dard conjectures ; see [And04, §7.5.2].

From the general theory of neutral Tannakian categories exposed in §2.3, or more simply, from
the descriptions above, we have closed immersions ΩdRB

M ⊆ ΩAnd
M for M a André motive and

ΩAnd
M ⊆ Ωmot

M for M a homological motive. It is also clear that, for a de Rham–Betti object M ,

the period comparison isomorphism cM : MdR⊗KC→MB⊗QC defines a complex point of ΩdRB
M ,

so that the Zariski closure ZM of cM inside the K-scheme Iso(MdR,MB⊗K) is contained in ΩdRB
M .

We denote ΩM the smallest K-subtorsor of IsoK(MdR,MB ⊗ K) containing cM ; we say ΩM is
the K-subtorsor generated by cM .

Conjecture 6.6 (Grothendieck Period Conjecture [Gro66]).

(i) Let M be a André motive over K. We say M satisfies the motivated version of Grothendieck’s
period conjecture if the inclusions

ZM ⊆ ΩM ⊆ ΩdRB
M ⊆ ΩAnd

M

are equalities.
(ii) Let M be a homological motive over Q. We say M satisfies Grothendieck’s period conjecture

if the inclusions
ZM ⊆ ΩM ⊆ ΩdRB

M ⊆ ΩAnd
M ⊆ Ωmot

M

are equalities.

Note that Conjecture 6.6 predicts that ΩAnd
M is connected for a André motive M over K and

that GAnd(M) is connected in case K = Q ; the latter is also predicted by the Hodge conjecture
(or more simply from the conjecture that Hodge classes are motivated) since then GAnd(M)
coincides with the Mumford–Tate group MT(M), but is unknown in general.

Example 6.7 (Torsor of periods of Artin motives). Let K ⊆ F ⊆ Q be a finite extension
of K and consider the Artin motive M := h(SpecF ) over K. In that case all three K-torsors
introduced above agree and we have ΩM = ΩAnd

M = Ωmot
M = SpecF g as K-torsors under the

constant group scheme Gal(F g/K), where F g denotes the Galois closure of F inside Q. Moreover
cM ∈ ΩM (C) = HomK(F,C) is the canonical element. As such, M satisfies the Grothendieck
Period Conjecture.
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6.3. The Grothendieck Period Conjecture : Transcendence of periods. For the con-
venience of the reader, let us relate the Grothendieck Period Conjecture as is formulated in
Conjecture 6.6 to a perhaps more common formulation in terms of degree of transcendence of the
field of periods.

Let M be a André motive over K and fix a K-basis of its de Rham cohomology HdR(M) and
a Q-basis of its Betti cohomology HB(M). The matrix of periods of M is the invertible complex
matrix representing the comparison isomorphism cM : HdR(M) ⊗K C −→ HB(M) ⊗Q C in the
above bases. The field, abusively denoted K(cM ), generated by the entries of the period matrix
does not depend on the choice of the above bases and is the residue field of cM seen as a point
of the torsor of periods ΩdRB

M ; in particular degtrQK(cM ) ≤ dim ΩdRB
M . In case M is the motive

of a smooth projective variety X over Q, by Poincaré duality, the residue field K(cM ) is the field
generated over K by the periods of X :∫

γ
ω, γ ∈ HB

n (Xan
C ,Q), ω ∈ Hn

dR(X/K), n ∈ Z≥0.

It is then clear, see for instance [And04, Prop. 7.5.2.2], that Conjecture 6.6(i) is equivalent to the
following.

Conjecture 6.8 (Grothendieck Period Conjecture). If M is a André motive over K, then ΩAnd
M

is connected and

degtrQK(cM ) = dimGAnd(M).

On the other hand, Hodge classes onM are expected to be motivated, so that by Proposition 3.3
the inclusion MT(M) ⊆ GAnd(M) is expected to identify MT(M) with the connected component
of GAnd(M). Hence, conjecturally, the degree of transcendence of the field of periods of M only
depends on the Hodge structure on HB(M). Precisely :

Conjecture 6.9 (Grothendieck). If M is a André motive over K, then

degtrQK(cM ) = dim MT(M).

Over K = Q, the Grothendieck Period Conjecture 6.6, as well as Conjectures 6.8 and 6.9, have
so far only been fully established in the following cases :

(a) M = 1(k) : this is trivial for k = 0 and this amounts to the transcendence of π for k 6= 0.
(b) M = h(E) for E a CM elliptic curve : In that case, GAnd(E) = MT(E) is a 2-dimensional

torus, and the result follows from Chudnovsky’s theorem [Chu80] stating that, for any elliptic
curve E, the degree of transcendence of the residue field of the comparison cE in ΩdRB

E is ≥ 2.

6.4. The de Rham–Betti Conjecture. In this work, we will address the following special
instance of the Grothendieck Period Conjecture 6.6 :

Conjecture 6.10 (De Rham–Betti Conjecture).

(i) Let M be a André motive over K. We say M satisfies the motivated de Rham–Betti con-
jecture if the inclusion

ΩdRB
M ⊆ ΩAnd

M

is an equality.
(ii) Let M be a homological motive over K. We say M satisfies the de Rham–Betti conjecture

if the inclusions

ΩdRB
M ⊆ ΩAnd

M ⊆ Ωmot
M

are equalities.



AROUND THE DE RHAM–BETTI CONJECTURE 21

The following lemma reduces the motivated de Rham–Betti conjecture for M to that for MQ

(and a similar statement holds for homological motives and torsors of motivic periods, in place of
André motives and torsors of motivated periods, provided the standard conjectures hold for M) :

Lemma 6.11. Let M be a André motive over K. Then

ΩdRB
M
Q

= ΩAnd
M
Q

=⇒ ΩdRB
M = ΩAnd

M .

Proof. In general, we have the chain of closed immersions

ΩdRB
M
Q� _

��

� � // ΩAnd
M
Q� _

��
(ΩdRB

M )Q
� � // (ΩAnd

M )Q.

If the top horizontal inclusion is an equality, then we have inclusions ΩAnd
M
Q
⊆ (ΩdRB

M )Q ⊆
(ΩAnd

M )Q. This gives inclusions GAnd(MQ)Q ⊆ GdRB(M)Q ⊆ GAnd(M)Q. Since the action of

Gal(Q/Q) on tensor spaces of MQ preserves motivated cycles [And96b, Scolie p.17], GAnd(MQ)

has finite index in GAnd(M). Indeed, GAnd(MQ) can be defined as the closed subgroup of

GL(ωB(MQ)) fixing a finite number of motivated classes in tensors spaces of MQ and the quo-

tient set GAnd(M)Q/GAnd(MQ) can be shown to preserve the Galois orbit of each of these classes

and therefore is finite ; see e.g. [And96b, §4.6] and [DM82, Prop. 6.23(a)]. As a consequence,
GdRB(M)Q is a finite extension of the reductive group GAnd(MQ)Q. Hence GdRB(M) is reduc-

tive. From Lemma 6.2 and Proposition 6.12, we conclude that ΩdRB
M = ΩAnd

M . �

The following proposition shows that Conjecture 6.10(i) for a André motive M over L is a
strengthening of Conjecture 6.1 restricted to 〈M〉 ; see also [BC16, Prop. 2.14].

Proposition 6.12. Let M be a André motive over K. The following statements are equivalent :

(i) M satisfies the motivated de Rham–Betti conjecture, i.e., ΩdRB
M = ΩAnd

M ;
(ii) The functor (ρdRB)|〈M〉 is full and GdRB(M) is reductive.

In particular, if M satisfies the motivated de Rham–Betti conjecture, then any de Rham–Betti
class on a tensor space M⊗n⊗ (M∨)⊗m is motivated, and if M = h(X), then any de Rham–Betti

class in Hj
dRB(Xn,Q(k)) is motivated and in particular zero if j 6= 2k.

Proof. The equivalence of (i) and (ii) is analogue to Proposition 3.3 ; it is a direct consequence
of the basic facts concerning Tannakian categories (see Section 2) and the fact that GAnd(M) is
reductive (see Section 3). Assume now that (ρdRB)|〈M〉 is full. Then any de Rham–Betti classes

on a tensor space M⊗n ⊗ (M∨)⊗m is motivated. If now M = h(X), we note that 1(−1) is a
direct summand of h(X), so that h(Xn)(k) is a direct summand of h(X)⊗r ⊗ (h(X)∨)⊗s for some

r, s ≥ 0. Hence any de Rham–Betti class in Hj
dRB(Xn,Q(k)) is motivated. That de Rham–Betti

classes in Hj
dRB(Xn,Q(k)) are zero for j 6= 2k follows at once from the fact that a André motive

with no grade zero component does not support any non-zero motivated class. �

6.5. The Q-de Rham–Betti Conjecture. Let MAnd
K ⊗ Q be the Q-linear category of André

motives over K with Q-coefficients ; it is the pseudo-abelian envelope of the base-change to Q of

MAnd
K . For clarity, we note that, if K ( Q, although one may consider Hj

dRB(X,Q(k))⊗Q as an

object in CdRB,KdR,QB
for X smooth projective over K, there is no linear functor MAnd

K ⊗ Q →
VecK and hence no de Rham–Betti realization functor MAnd

K ⊗ Q → CdRB,KdR,QB
. (This is the

reason we did not consider the case K ( L among the cases (a)–(c) in §4.1.) Recall however
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from Proposition 5.1 that, if M is a André motive over K = Q, then ΩM = ΩQ−dRB

M⊗Q . This

justifies calling, in analogy to the de Rham–Betti Conjecture 6.10, the following conjecture the
Q-de Rham–Betti Conjecture.

Conjecture 6.13 (Q-de Rham–Betti Conjecture).

(i) Let M be a André motive over K. We say M satisfies the motivated Q-de Rham–Betti
conjecture if the inclusions

ΩM ⊆ ΩdRB
M ⊆ ΩAnd

M

are equalities, that is, if the comparison isomorphism cM generates ΩAnd
M as a K-torsor.

(ii) Let M be a homological motive over K. We say M satisfies the Q-de Rham–Betti conjecture
if the inclusions

ΩM ⊆ ΩdRB
M ⊆ ΩAnd

M ⊆ Ωmot
M

are equalities, that is, if the comparison isomorphism cM generates Ωmot
M as a K-torsor.

Obviously, Conjecture 6.13 for M implies Conjecture 6.10 for M . We have the analogue of
Lemma 6.11, which reduces Conjecture 6.13 to motives over Q :

Lemma 6.14. Let M be a André motive over K. Then

ΩM
Q

= ΩAnd
M
Q

=⇒ ΩM = ΩAnd
M .

Proof. As in the proof of Lemma 6.11, we have the chain of closed immersions

ΩM
Q� _

��

� � // ΩAnd
M
Q� _

��
(ΩM )Q

� � // (ΩAnd
M )Q.

If the top horizontal inclusion is an equality, then we have inclusions ΩAnd
M
Q
⊆ (ΩM )Q ⊆ (ΩAnd

M )Q.

By [And96b, §4.6], there is a short exact sequence

1→ GAnd(MQ)→ GAnd(M)→ Gal(F/K)→ 1

for some finite Galois extension F of K. This implies that

(ΩAnd
M )Q =

∐
Gal(F/K)

ΩAnd
M
Q
. (5)

The inclusion ΩM ⊆ ΩAnd
M is defined over K, and therefore the action of Gal(Q/K) preserves the

subvariety (ΩM )Q ⊆ (ΩAnd
M )Q. Since Gal(Q/K) permutes the components on the right-hand side

of (5) and ΩAnd
M
Q
⊆ (ΩM )Q, we conclude that (ΩM )Q = (ΩAnd

M )Q. �

Remark 6.15. Let N ∈ CdRB,K be a de Rham–Betti object. For the object N⊗K ∈ CdRB,KdR,KB

we can define a Tannakian torsor ΩdRB,KdR,KB
N⊗K similarly as in Definition 6.3, but using the Tan-

nakian category CdRB,KdR,KB
. If N = HdRB(M) is the de Rham–Betti realization of a André

motive M over K and ΩM
Q

= ΩAnd
M
Q

, then Lemma 6.14 implies that ΩN = ΩdRB,KdR,KB
N⊗K . We

want to emphasize that this last equality is not true for a general de Rham–Betti object N . For
example, let a ∈ Q be such that an /∈ K for all n ≥ 1. Then we can define

N := (NdR = K,NB = Q, cN ),

where cN is multiplication by a. It is easy to see that ΩN = SpecF g, where F g denotes the Galois
closure of K(a). But N⊗m does not admit a K-de Rham–Betti class for m > 0, and therefore
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ΩdRB,KdR,KB
N⊗K is a torsor under Gm,K . Note that this is in contrast to Proposition 5.1, which holds

for arbitrary de Rham–Betti objects.

We also have the analogue of Proposition 6.12 :

Proposition 6.16. Let M be a André motive over Q. The following statements are equivalent :

(i) M satisfies the motivated Q-de Rham–Betti conjecture, i.e., ΩM = ΩAnd
M ;

(ii) The Q-de Rham–Betti realization functor ρQ−dRB : MAnd
Q
⊗Q→ CQ−dRB restricted to 〈M ⊗Q〉

is full and GQ−dRB(M) is reductive.

In particular, if M satisfies the motivated Q-de Rham–Betti conjecture, then any Q-de Rham–
Betti class on a tensor space M⊗n ⊗ (M∨)⊗m is Q-motivated (meaning a Q-linear combination

of motivated cycles) and if M = h(X), then any Q-de Rham–Betti class in Hj
dRB(Xn,Q(k)) is

motivated and in particular zero if j 6= 2k.

Proof. From Proposition 5.1, we have ΩM = ΩQ−dRB

M⊗Q and the proof is then the same as that of

Proposition 6.12. �

Finally, we have :

Lemma 6.17. Let M ∈ MAnd
Q

be a André motive over Q. If Q-de Rham–Betti classes on M are

Q-motivated, then de Rham–Betti classes on M are motivated.

Proof. This is clear. �

7. De Rham–Betti classes on abelian varieties

In this section, we fix an algebraic closure Q of Q inside C and we let K be a subfield of Q.

7.1. Consequences of Wüstholz’ analytic subgroup theorem. Let M ∈ CdRB,QdR,KB
and

γ ∈M∨B . The comparison cM : MdR ⊗Q C
'−→MB ⊗K C defines a Q-linear map∫

γ
: MdR → C, ω 7→ γC(cM (ωC)).

As in Definition 5.4 we define the annihilator of γ ∈M∨B to be Ann(γ) =def ker
∫
γ ⊆MdR.

We denote by AB ⊂ MAnd
Q

the full abelian subcategory of the category of André motives

generated by the motives h1(A), where A is an abelian variety over Q ; it is equivalent to the
category of abelian varieties over Q up to isogeny.

The following formulation of Wüstholz’ analytic subgroup theorem [Wüs84] is derived from
the more general formulation for 1-motives taken from [HW22, Thm. 9.7]. It has the advantage
that it admits a natural extension to motives with Q-coefficients (see §7.2) and will allow for
applications regarding Q-de Rham–Betti classes.

Proposition 7.1 (Analytic subgroup theorem for abelian motives ; [HW22, Thm. 9.7]). Let
M ∈ AB and γ ∈ HB(M)∨. There exists a decomposition

M = M ′ ⊕M ′′

in the category AB such that γ ∈ HB(M ′′)∨ and Ann(γ) = HdR(M ′).
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Proof. This is [HW22, Thm. 9.7], where a stronger version for 1–motives is proved. More precisely,
we obtain a short exact sequence

0→M ′ →M →M ′′ → 0

in the category of 1–motives such that γ ∈ HB(M ′′)∨ and Ann(γ) = HdR(M ′). Since the category
AB is a full subcategory of the category of 1–motives which is stable under taking subquotients,
we know that M ′,M ′′ ∈ AB. The short exact sequence is split since the category AB is semi-
simple. �

Remark 7.2. Proposition 7.1 can also be derived without reference to 1-motives by applying
the more classical version of the analytic subgroup theorem [HW22, Thm. 6.2] to the universal
vector extensions of abelian varieties.

Remark 7.3. Let M ∈ AB. By applying the de Rham–Betti realization, Proposition 7.1 tells us
that for every γ ∈ HB(M)∨, there is a decomposition HdRB(M) = N ′⊕N ′′ in the category CdRB

such that γ ∈ (N ′′B)∨ and Ann(γ) = N ′dR. This is not true for an arbitrary de Rham–Betti object
N ∈ CdRB and therefore forces a strong restriction on the possible de Rham–Betti objects which
arise as realizations of motives in AB. As an example, consider the de Rham–Betti object

N :=
(
NdR = Q

2
, NB = Q2, cN

)
, with cN =

(
α β
−β γ

)
, degtrQQ(α, β, γ) = 3.

Denote by γ1, γ2 the dual basis of the natural basis e1, e2 of NB. Similarly, denote by ω1, ω2 the
natural basis of NdR. If we let γ := (γ1, γ2) ∈ (N⊕2

B )∨, then Ann(γ) ⊂ N⊕2
dR is the one-dimensional

subspace generated by (ω2, ω1). But one checks that the de Rham–Betti object N is simple, hence
there does not exist a subobject N ′ ⊂ N⊕2 such that Ann(γ) = N ′dR.

Theorem 7.4 (André, Bost, Wüstholz). The functor AB → CdRB is fully faithful and the image
is closed under taking subobjects. In particular, the essential image forms a full abelian subcategory
of CdRB which is semi-simple.

Proof. We first prove that the image is closed under taking subobjects. Let M ∈ AB and suppose
that 0 ( N ⊂ HdRB(M) is a subobject in the category CdRB of de Rham–Betti objects. We may
assume that N is not contained in the de Rham–Betti realization of a submotive M ′ ( M ,
otherwise we replace M by M ′. We aim to show that N = HdRB(M). To get a contradiction,
assume that N ( HdRB(M). Then we denote by N ′ ∈ CdRB the quotient of HdRB(M) by N .
If we choose 0 6= γ ∈ N ′B

∨, then Proposition 7.1 gives a decomposition M = M ′ ⊕M ′′ in AB
such that 0 6= γ ∈ HB(M ′′)∨ and Ann(γ) = HdR(M ′). But then NdR ⊂ Ann(γ) = HdR(M ′).
This contradicts the assumption that N is not contained in the realization of a proper submotive
M ′ (M .

We now prove the fully faithfulness. Let M,N ∈ AB and let (fdR, fB) : HdRB(M)→ HdRB(N)
be a morphism in CdRB. We denote by ΓfdR ⊂ HdR(M)⊕HdR(N) and ΓfB ⊂ HB(M)⊕HB(N) the
graphs of fdR and fB, respectively. Then (ΓfdR ,ΓfB) defines a subobject of HdRB(M)⊕HdRB(N)
in CdRB. By the first part of the proof, this subobject is the realization of a submotive Γ ⊂M⊕N .
The composition

r : Γ ⊂M ⊕N
pr1 // // M

is an isomorphism. Then

f : M
r−1
// Γ ⊂M ⊕N

pr2 // // N,

defines a morphism in AB whose de Rham–Betti realization is (fdR, fB). �

Remark 7.5. Theorem 7.4 is stated in [And04, §7.5.3] and established as a consequence of a
weaker form of Wüstholz’ analytic subgroup theorem. Bost [Bos13, Thm. 5.1 & 5.3] also provides
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a proof of the full faithfulness based on the older transcendence theorems of Schneider and Lang.
However, in the next subsection we will need the full power of the analytic subgroup theorem in
the version of Proposition 7.1 to prove an analog of Theorem 7.4 with Q–coefficients.

An easy consequence of Theorem 7.4 is the following :

Theorem 7.6. Let X be a smooth projective variety over Q. Then the de Rham–Betti object
H1

dRB(X,Q) does not have any odd-dimensional subobject. In particular, for any k ∈ Z, any
de Rham–Betti class on H1

dRB(X,Q(k)) is zero.

Proof. The Poincaré bundle induces an isomorphism h1(X) ' h1(Pic0
X) of André motives. It

follows from Theorem 7.4 that any subobject of H1
dRB(X,Q) is isomorphic to the de Rham–Betti

realization of h1(A) for some abelian variety A/Q and hence is even-dimensional. We have the
identification

HomdRB(1,H1
dRB(X,Q(k))) = HomdRB(1(−k),H1

dRB(X,Q)),

which then shows that any de Rham–Betti class on H1
dRB(X,Q(k)) is zero. �

Remark 7.7. That H1
dRB(X,Q(k)) does not support any non-zero de Rham–Betti class appears

for the cases k = 0 and k = 1 in [BC16, Thms. 4.1 & 4.2]. Note that the proof of [BC16,
Thm. 4.2] (the case k = 1) relies on [BC16, Cor. 3.4], which itself relies on [BC16, Thm. 3.3].
Although [BC16, Cor. 3.4] is correct, it appears that [BC16, Thm. 3.3] is wrong as can be seen by
considering the case G = Gm,Q therein. Likewise, the functor ω of [And04, §7.5.3] is not full nor

is a subobject in the image of ω the image of a subobject, as can be seen with 0 = Hom(Ga,Gm)
but Hom(ω(Ga), ω(Gm)) = Q.

7.2. A Q-version of Wüstholz’ analytic subgroup theorem. We write AB⊗Q ⊂ MAnd
Q
⊗Q

for the full abelian subcategory of the category of André motives with coefficients in Q generated
by the motives h1(A), where A is an abelian variety over Q.

Proposition 7.8 (Analytic subgroup theorem for abelian motives with Q–coefficients). Let M ∈
AB ⊗Q and γ ∈ HB(M)∨. There exists a decomposition

M = M ′ ⊕M ′′

in the category AB ⊗Q such that γ ∈ HB(M ′′)∨ and Ann(γ) = HdR(M ′).

Proof. We first handle the case where M = h1(A)⊗Q is the motive of an abelian variety. Write

γ =
n∑
i=1

λiγi ∈ H1
B(A,Q)⊗Q, with λi ∈ Q and γi ∈ H1

B(A,Q).

Inspired by the proof of [HW22, Thm. 9.10], we apply Proposition 7.1 to γ := (γ1, ..., γn) ∈
H1

B(A,Q)⊕n. This gives a decomposition h1(A)⊕n = N ′⊕N ′′ in AB such that γ ∈ HB(N ′′)∨ and

Ann(γ) = HdR(N ′). The motive N ′ is the kernel of the second projection pr2 : h1(A)⊕n → N ′′.

Via the inclusion Q ⊂ End(A)⊗Q, we can view λi ∈ Q as an endomorphism of h1(A)⊗Q. We
can thus define the morphism

f : h1(A)⊗Q
(λ1,...,λn) // h1(A)⊕n ⊗Q

pr2 // N ′′ ⊗Q

in AB ⊗ Q. We let M ′ := ker f ⊂ M = h1(A) ⊗ Q and write M = M ′ ⊕M ′′ for some motive
M ′′ ∈ AB ⊗ Q. We have to show that γ ∈ HB(M ′′)∨ and Ann(γ) = HdR(M ′). For the former,
note that by construction the dual morphism

(λ1, ..., λn)∨ : (H1
B(A,Q)∨)⊕n ⊗Q −→ H1

B(A,Q)∨ ⊗Q
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maps γ to γ and the subspace HB(N ′′)∨ ⊗ Q to HB(M ′′)∨. For the latter, one computes that

Ann(γ) ⊂ H1
dR(A)⊗Q is precisely the preimage of Ann(γ) under

(λ1, ..., λn) : H1
dR(A)⊗Q −→ H1

dR(A)⊕n ⊗Q.
By construction of N ′, we have Ann(γ) = HdR(N ′) = ker pr2,dR. This proves that Ann(γ) =

ker fdR = HdR(M ′) and concludes the proof for M = h1(A)⊗Q.
In general, M ∈ AB⊗Q will be a direct summand of h1(A)⊗Q for some abelian variety A. Let

γ ∈ HB(M)∨. Via the projection, this gives an element γ̃ ∈ HB(A)∨⊗Q. Applying the proposition
to the motive h1(A)⊗Q, we get a decomposition h1(A)⊗Q = N ′ ⊕N ′′ such that γ̃ ∈ HB(N ′′)∨

and Ann(γ̃) = HdR(N ′). Setting M ′ := M ∩N ′ and M ′′ = M/M ′, we get γ ∈ HB(M ′′)∨ and

Ann(γ) = Ann(γ̃) ∩HdR(M) = HdR(M ′),

which concludes the proof of the proposition. �

Remark 7.9 (A Q-version of the analytic subgroup theorem for 1-motives). Using the arguments
in the proof of Proposition 7.8, one can more generally establish a version with Q-coefficients of
the analytic subgroup theorem for 1-motives [HW22, Thm. 9.7].

Theorem 7.10. The functor AB ⊗ Q → CdRB,QdR,QB
is fully faithful and the image is closed

under taking subobjects. In particular, the essential image forms a full abelian subcategory of
CdRB,QdR,QB

which is semi-simple.

Proof. The proof is the same as in Theorem 7.4, with essential input the Q–version of the analytic
subgroup theorem for abelian motives (Proposition 7.8). �

7.3. The de Rham–Betti group of an abelian variety. Let A be an abelian variety over Q
and let GdRB(A) =def GdRB(h(A)) be its de Rham–Betti group. Since H∗dRB(A,Q) is the exterior
algebra on H1

dRB(A,Q), we have GdRB(A) = GdRB(H1
dRB(A)). Likewise, we let GQ−dRB(A) =def

GQ−dRB(h(A)⊗Q) be itsQ-de Rham–Betti group and we haveGQ−dRB(A) = GQ−dRB(H1
dRB(A,Q)).

Theorem 7.11. Let A/Q be an abelian variety of positive dimension. Its de Rham–Betti group
GdRB(A) has the following properties.

(i) GdRB(A) ⊆ MT(A) is a connected reductive group.
(ii) EndGdRB(A)(H

1
B(A,Q)) = End(A)Q.

(iii) det : GdRB(A)→ Gm is surjective.
(iv) A has complex multiplication if and only if GdRB(A) is a torus.

Likewise, its Q-de Rham–Betti group GQ−dRB(A) has the following properties.

(i’) GQ−dRB(A) ⊆ MT(A) is a connected reductive group.

(ii’) EndG
Q−dRB(A)(H

1
B(A,Q)) = End(A)Q ⊗Q.

(iii’) det : GQ−dRB(A)→ Gm is surjective.

(iv’) A has complex multiplication if and only if GQ−dRB(A) is a torus.

Proof. That GdRB(A) lies in MT(A) is due to André’s Theorem 3.4 stating that the inclusion
MT(A) ⊆ GAnd(A) is an equality. That GdRB(A) is connected is Theorem 4.7. As a conse-
quence of Theorem 7.4, the de Rham–Betti cohomology group H1

dRB(A,Q) is semi-simple as an
object in CdRB. It follows from Proposition 2.2 that GdRB(A) acts faithfully and semi-simply on
H1

B(A,Q) and from Proposition 1.1 that, since we are working in characteristic zero, GdRB(A)
is reductive. Statement (ii) is Theorem 7.4. Regarding (iii), the image of det is connected.
Assume it is trivial. Then GdRB(A) acts trivially on det(H1

B(A,Q)) = H2 dimA
B (A,Q). But

h2 dimA(A) ' 1(−dimA). This is a contradiction since 2πi is transcendental. For (iv), suppose



AROUND THE DE RHAM–BETTI CONJECTURE 27

A has complex multiplication. Then GdRB(A) is a subgroup of the Mumford–Tate group MT(A),
which is a torus. Since GdRB(A) is reductive and connected by (i), it has to be a torus. Con-
versely, assume that GdRB(A) is a torus. We recall the following classical argument (usually used
for the Mumford–Tate group): GdRB(A) is contained in a maximal torus T ⊆ GL(H1

B(A,Q)).
Then

EndT (H1
B(A,Q)) ⊆ EndGdRB(A)(H

1
B(A,Q)) = End(A)Q.

But EndT (H1
B(A,Q)) is a commutative Q-algebra of dimension 2g, as can be seen after extending

scalars to an algebraically closed field. It follows that A has complex multiplication.
Statements (i′), (ii′), (iii′) and (iv′) are proven similarly by replacing Theorem 7.4 with its

Q-analogue Theorem 7.10. �

7.4. The de Rham–Betti conjecture for products of elliptic curves. We prove the follow-
ing stronger (but equivalent, by the motivic analogue of Proposition 6.12) version of Theorem 1
in the case of products of elliptic curves.

Theorem 7.12. Let E1, · · · , Es be pairwise non-isogenous elliptic curves over Q and let A be an
abelian variety over K such that AQ is isogenous to En1

1 × · · · × Ens
s .

(i) The de Rham–Betti conjecture (Conjecture 6.10(ii)) holds for h(A), i.e.,

ΩdRB
A = Ωmot

A .

In particular, by Proposition 6.12, for any n ≥ 0 and any k ∈ Z, any de Rham–Betti class
on h(An)(k) is algebraic.

(ii) If at most one of the Ei has CM, then the Q-de Rham–Betti conjecture (Conjecture 6.13(ii))
holds for h(A), i.e.,

ΩA = Ωmot
A .

In particular, by Proposition 6.16, for any n ≥ 0 and any k ∈ Z, any Q-de Rham–Betti
class on h(An

Q
)(k) is a Q-linear combination of algebraic classes.

We start by recalling that the Hodge conjecture is known for products of complex elliptic
curves. Recall that the Hodge group Hdg(H) of a rational Hodge structure H is the smallest
algebraic Q-subgroup of GL(H) that contains the image of UC/R ↪→ ResC/RGm → GL(H)R,
where the right arrow is the morphism defining the Hodge structure on H. The group Hdg(H)
can be characterized as being the largest subgroup of GL(H) that fixes all Hodge classes in tensor
spaces associated to H. In case H is of pure weight 0, then the Hodge group of H agrees with its
Mumford–Tate group, while in case H is of pure weight n 6= 0, its Mumford–Tate group MT(H)
is the image of the multiplication map Gm×Hdg(H)→ GL(H). If A is a complex abelian variety,
the Hodge group Hdg(A) (resp. the Mumford–Tate group MT(A)) of A is the Hodge group (resp.
the Mumford–Tate group) of the Hodge structure H1

B(A,Q).

Proposition 7.13. Let E1, · · · , Es be pairwise non-isogenous complex elliptic curves and let A be
an abelian variety isogenous to En1

1 ×· · ·×Ens
s . Denote Vi := H1(Ei,Q) and Ki := End(Ei)⊗Q.

Then the Hodge group of A is

Hdg(A) = Hdg(E1)× · · · ×Hdg(Es), where Hdg(Ei) =

{
UKi if Ei has CM ;
SL(Vi) if Ei is without CM,

In particular, the subspace of Hodge classes on A is generated by Hodge classes in H2(A,Q) and,
consequently, every Hodge class on A is algebraic.

Proof. This is classical and we refer to [Gor99, §3] for a proof. �
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Proof of Theorem 7.12(i). By Lemma 6.11, we may and do assume that K = Q. The proof
goes similarly as for the Mumford–Tate group. By Proposition 7.13, we only need to show that
GdRB(A) = GAnd(A). From André’s Theorem 3.4, we have GAnd(A) = MT(A). Hence it remains
to show that the inclusion GdRB(A) ⊆ MT(A) is an equality, which is equivalent to showing
that the inclusion G1

dRB(A) ⊆ Hdg(A) is an equality, where G1
dRB(A) denotes the connected

component of the kernel of det : GdRB(A)→ Gm.

Step 1 : A = E is an elliptic curve. If E has complex multiplication, then MT(E) =
ResK/QGm,K , where K = End(E)Q. In this case we know from Theorem 7.11 that GdRB(E) ⊆
MT(E) is a torus. If GdRB(E) is one-dimensional, then either GdRB(E) = UK or GdRB(E) = Gm.
Note that the case GdRB(E) = UK violates the surjectivity of the determinant and the case
GdRB(E) = Gm violates the fact that EndGdRB(E)(H

1
B(E,Q)) = K. Hence we see that GdRB(E)

is two-dimensional and equal to MT(E). If E does not have CM, then MT(E) = GL(V ), where
V = H1

B(E,Q). In this case, we have Hdg(E) = SL(V ) and G1
dRB(E) ⊆ SL(V ) is a connected

reductive subgroup. It follows that up to conjugation G1
dRB(E) ⊆ SL(V ) is either a maximal

torus or equal to SL(V ). In the first case, we get a two-dimensional space of invariants in
End(V ) which violates the assumption that End(E)Q = Q. Hence G1

dRB(E) = SL(V ) and thus
GdRB(E) = GL(V ) = MT(E).

Step 2 : A = En1
1 × E

n2
2 × · · · × Enr

r , for pairwise non-isogenous CM elliptic curves Ei. The
fact that det(H1

dRB(Ei,Q)) ∼= Q(−1) for all i implies that

G1
dRB(A) ⊆ G1

dRB(E1)×G1
dRB(E2)× · · · ×G1

dRB(Er) (6)

and that G1
dRB(A) surjects onto each factor G1

dRB(Ei) = UKi with Ki = End(Ei)Q. By Goursat’s
lemma [Gor99, Prop. B.71.1] and the fact that the UKi are pairwise non-isogenous, we conclude
that the above inclusion is an identity. It follows from Proposition 7.13 that G1

dRB(A) = Hdg(A).

Step 3 : A = En1
1 ×E

n2
2 , where E1 and E2 are non-isogenous elliptic curves without CM. Due

to the lack a theory of weights in the de Rham–Betti setting, we are unable to use the usual
argument for the Mumford–Tate group as in [Gor99, §3]. We may assume that n1 = n2 = 1. Let
Vi := H1

B(Ei,Q), i = 1, 2. Then we know that MT(Ei) = GL(Vi), i = 1, 2. Consider the inclusion
GdRB(A) ⊆ MT(A) at the level of Lie algebras. We get

g = gss ⊕ z(g) ↪→ mt = sl2 ⊕ sl2 ⊕ c,

where g := Lie GdRB(A) is the Lie algebra of GdRB(A), z(g) corresponds to the center of GdRB(A)
and c is a one-dimensional commutative Lie algebra. The fact that GdRB(A) surjects onto
GdRB(Ei) implies that gss ↪→ sl2⊕ sl2 surjects onto both factors. This implies z(g) ↪→ c. Further-
more, by Goursat’s lemma [Gor99, Prop. B.71.2], we have either gss ' sl2, embedded in sl2 ⊕ sl2
as the graph of an isomorphism, or gss = sl2⊕ sl2. If gss ' sl2, then H1

B(A,Q) = V1⊕V2 becomes
the direct sum of two copies of the standard representation of sl2. As a consequence, the space of
GdRB(A)-invariants of End(H1

B(A,Q)) is of dimension 4, which contradicts the assumption that
E1 and E2 are not isogenous. Hence gss = sl2 ⊕ sl2. The fact that GdRB(A) surjects onto Gm
implies that z(g) = c. It follows that GdRB(A) = MT(A).

Step 4 : A = En1
1 × E

n2
2 × · · · × Enr

r for pairwise non-isogenous non-CM elliptic curves Ei. In
this case, by Step 3, the inclusion (6) surjects onto the product of each pair of factors. Then one
can apply a form of Goursat’s lemma [Gor99, Prop. B.71.3].

Step 5 : A = B×C where B is a product of non-CM elliptic curves and C is a product of CM
elliptic curves. In this case, we apply Goursat’s lemma to G1

dRB(A) ⊂ G1
dRB(B)×G1

dRB(C) and
note that G1

dRB(B) is semi-simple and G1
dRB(C) is a torus. �

Proof of Theorem 7.12(ii). By Lemma 6.14, we may and do assume that K = Q. By Proposi-
tion 7.13, we only need to show that GQ−dRB(A) = GAnd(A)Q. This holds for A a non-CM elliptic



AROUND THE DE RHAM–BETTI CONJECTURE 29

curve by the exact same argument as in the proof of Theorem 7.12(i). For A a CM elliptic curve,
this holds thanks to Chudnovsky’s theorem [Chu80]. The proof then follows from the observation
that Steps 3 and 4, as well as Step 5 with C the power of a single CM elliptic curve, of the proof
of Theorem 7.12(i) carry over to the setting of Q-de Rham–Betti classes. �

Remark 7.14. The Q-de Rham–Betti conjecture remains open for the product of two non-
isogenous CM elliptic curves. In that situation, the arguments in Step 2 of the proof of Theo-
rem 7.12(i) do not carry over as tori over Q are merely classified by their rank.

7.5. The case of abelian surfaces. We prove the following equivalent (by the motivic analogue
of Proposition 6.12) version of Theorem 1 in the case of powers of abelian surfaces with non-trivial
endomorphism ring.

Theorem 7.15. Let A be an abelian surface over K such that End(AQ)⊗Q 6= Q.

(i) The de Rham–Betti conjecture (Conjecture 6.10(ii)) holds for h(A), i.e.,

ΩdRB
A = Ωmot

A .

In particular, by Proposition 6.12, for any n ≥ 0 and any k ∈ Z, any de Rham–Betti class
on h(An)(k) is algebraic.

(ii) If in addition A is simple without CM, then the Q-de Rham–Betti conjecture (Conjec-
ture 6.13(ii)) holds for h(A), i.e.,

ΩA = Ωmot
A .

In particular, by Proposition 6.16, for any n ≥ 0 and any k ∈ Z, any Q-de Rham–Betti
class on h(An

Q
)(k) is a Q-linear combination of algebraic classes.

Proof of Theorem 7.15(i). By Lemma 6.11, we may and do assume that K = Q. The case where
A is isogenous to a product of elliptic curves is handled by Theorem 7.12. We therefore assume
that A is a simple abelian surface over Q. We recall, e.g. from [MZ99, (2.2)], that there are the
following four possibilities for the endomorphism ring End(A)Q :

(a) End(A)Q = Q;
(b) End(A)Q is a real quadratic extension of Q;
(c) End(A)Q is a quaternion algebra with center Q which splits over R;
(d) End(A)Q is a CM field of degree 4 over Q which does not contain an imaginary quadratic

subfield.

We prove that the inclusionGdRB(A) ⊆ MT(A) is an equality when End(A)Q 6= Q. We distinguish
the different cases for End(A)Q.

Case (b) : Suppose k := End(A)Q is a real quadratic field. Then MT(A) ⊆ Resk/QGL2,k is
the subgroup with R-points given by

MT(A)(R) = {g ∈ GL2(k ⊗Q R) | det g ∈ R×}.
Denote by g the Lie algebra of GdRB(A). Write the reductive Lie algebra g = gss ⊕ z(g) as the
sum of a semi-simple Lie algebra and an abelian Lie algebra. On the other hand, the Lie algebra
of MT(A)k is mtk = sl2,k ⊕ sl2,k ⊕ c, where c is a one-dimensional abelian Lie algebra. Then
gssk := gss ⊗Q k ⊆ sl2,k ⊕ sl2,k and the semi-simple part is non-trivial since otherwise GdRB(A)
would be a torus, contradicting Theorem 7.11(iv). Since gss is defined over Q, the k-Lie algebra
gssk is invariant under the non-trivial automorphism σ ∈ Gal(k/Q) which acts on sl2,k ⊕ sl2,k by
conjugating and swapping both factors. Consequently, gssk surjects onto both factors. Thus either

gssk = sl2,k ⊕ sl2,k or gssk
∼= sl2,k ⊂ sl2,k ⊕ sl2,k

is the graph of an automorphism of sl2,k. We have to exclude the latter. Using Theorem 7.11(iii)
it follows that z(g) = c and thus gk ∼= gl2,k, where the action on H1

B(A,Q) ⊗Q k is isomorphic
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to the direct sum of two copies of the standard representation. But then the dimension of
Endgk(H1

B(A,Q) ⊗Q k) is four, which is different from dimQ End(A)Q = 2. It follows that gssk =
sl2,k ⊕ sl2,k. By using Theorem 7.11(iii) once more we conclude gk = mtk.

Case (c) : In this case, GdRB(A)C ⊆ MT(A)C ∼= GL2,C. Since GdRB(A) is not a torus by
Theorem 7.11(iv), the group GdRB(A)C is either SL2,C or GL2,C. But GdRB(A) admits a non-
trivial map to Gm by Theorem 7.11(iii), so we have GdRB(A)C = GL2,C.

Case (d) : Suppose F := End(A)Q is a CM field of degree 4 over Q, which does not contain an
imaginary quadratic subfield. In this case, T := MT(A) ⊆ ResF/QGm is the torus whose points
in a Q-algebra R are given by

T (R) = {g ∈ (F ⊗Q R)× | gḡ ∈ R×}.

The torus T is determined up to isogeny by the rational vector space of (Q-)cocharacters X∗(T )Q
equipped with its Gal(Q/Q)-action. We have the short exact sequence

1→ UF → T → Gm → 1,

where UF is the unitary torus given on R-points by

UF (R) = {g ∈ (F ⊗Q R)× | gḡ = 1}.

This gives rise to the short exact sequence of Q-vector spaces with Gal(Q/Q)-action

0→ X∗(UF )Q → X∗(T )Q → X∗(Gm)Q = Q→ 0,

where the Galois action on the rightmost term is trivial.
Let TdRB := GdRB(A) ⊆ T , which is a torus by Theorem 7.11(iv). It is enough to prove that

the inclusion X∗(TdRB)Q ⊆ X∗(T )Q is an equality. By Theorem 7.11(iii), the group X∗(TdRB)Q
surjects onto X∗(Gm)Q. The kernel is a Galois-stable subspace of X∗(UF )Q.

Claim. There is no non-trivial Galois-stable subspace of X∗(UF )Q.

Proof of Claim. Let ΣF := Hom(F,C) = {φ1, φ̄1, φ2, φ̄2} be the set of embeddings of the CM
field F into the complex numbers. Then X∗(ResF/QGm)Q is naturally identified with the Q-

vector space with basis ΣF with its natural Gal(Q/Q)-action, and we denote by {φ∨1 , φ̄∨1 , φ∨2 , φ̄∨2 }
the associated dual basis of X∗(ResF/QGm)Q.

With this notation,
X∗(UF )Q = 〈φ∨1 − φ̄∨1 , φ∨2 − φ̄∨2 〉Q. (7)

Assume there exists a one-dimensional Galois-stable subspace L ⊆ X∗(UF )Q. As Gal(Q/Q) acts
transitively on ΣF , we know that

L 6= 〈φ∨1 − φ̄∨1 〉Q and L 6= 〈φ∨2 − φ̄∨2 〉Q. (8)

Denote by F g the Galois closure of F . Then Gal(Q/Q) acts on L through a character

χ : Gal(F g/Q)→ Z/2Z.

Let K := (F g)kerχ. As F is a CM field, the Galois group Gal(F g/F ) fixes one pair of complex
embeddings (φi, φ̄i). Together with (8), we get that Gal(F g/F ) acts trivially on L, and hence
K ⊆ F .

Since F does not contain a totally imaginary quadratic subfield, K ⊂ F is totally real. Con-
sequently, complex conjugation acts trivially on the target of

ΣF = Hom(F,C) � Hom(K,C).

It follows that there exist σ1, σ2 ∈ Gal(F g/K) such that φ̄1 = σ1φ1 and φ̄2 = σ2φ2. Applying
these relations to the generators in (7), we see that there is no non-zero element of X∗(UF )Q on
which both σ1 and σ2 act trivially. �
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The claim shows that either X∗(TdRB)Q = X∗(T )Q, in which case we are done, or

X∗(TdRB)Q ∼= X∗(Gm)Q.

As Gal(Q/Q) acts transitively on ΣF , there is a unique one-dimensional subspace of X∗(T )Q
on which Gal(Q/Q) acts trivially. It corresponds to the scalar matrices Gm ⊆ T . Since by
Theorem 7.11(ii), TdRB cannot just consist of scalar matrices, we conclude that X∗(TdRB)Q =
X∗(T )Q. This shows TdRB = T , as desired. �

Proof of Theorem 7.15(ii). By Lemma 6.14, we may and do assume that K = Q. We have to
deal with cases (b) and (c). In case (c) one proves that the inclusion GQ−dRB(A) ⊆ MT(A)Q is

an equality as in the proof of Theorem 7.15(i) by using the second part of Theorem 7.11 instead
of the first. As for case (b), denote by g the Lie algebra of GQ−dRB(A) ; its semi-simple part gss

is a Lie subalgebra of mtss
Q

= sl2,Q⊕ sl2,Q. First we show that gss surjects onto both factors. Here

we may no longer use the Galois argument as in the proof of Theorem 7.15(i). We argue instead
as follows. We have the inclusion

GQ−dRB(A) ⊆ MT(A)Q = Gm,Q ·
(

SL2,Q×SL2,Q

)
⊂ GL2,Q×GL2,Q .

Here, the action of GQ−dRB(A) on H1
B(A,Q) is via the action of GL2,Q×GL2,Q on two copies

of the standard representation. We claim that the projections of GQ−dRB(A) on both GL2,Q-

factors contains SL2,Q. If not, since GQ−dRB(A) is connected and reductive, then up to switching

the factors we would have an inclusion GQ−dRB(A) ⊆ GL2,Q×T for some maximal torus T

inside GL2,Q. But then the space of invariants in End(H1
B(A,Q)) under GQ−dRB(A) would have

dimension at least 3, which contradicts Theorem 7.11(ii′) and End(A)⊗Q = Q⊕Q. We conclude
that gss surjects onto both sl2,Q-factors. We can now argue as in the proof of Theorem 7.15(i)
by using the second part of Theorem 7.11 instead of the first and conclude that g = mtQ. �

Remark 7.16. It seems that, in the case of an abelian surface A over Q with End(A)Q = Q,
neither the properties established in Theorem 7.11 nor Proposition 9.8 below applied to the
Kummer surface associated to A are sufficient to determine GdRB(A) uniquely. In this case, the
Mumford–Tate group is MT(A) = GSp4. We do not know how to exclude the possibility that
the semi-simple part gss ⊆ sp4 of the Lie algebra of GdRB(A) is sl2, embedded via the third
symmetric power of the standard representation.

8. The Kuga–Satake correspondence

We review the Kuga–Satake construction and André’s proof [And96a] that the Kuga–Satake
correspondence is motivated and descends. The purpose is to fix notation and to state Theo-
rem 8.3, which will be used in our proof of Theorem 3 ; see Theorem 9.5.

8.1. The Kuga–Satake construction. Let R be a commutative ring, e.g. Z, Q, R or C. Let
VR be a free R-module of finite rank equipped with a symmetric bilinear form

Q : VR × VR −→ R.

The associated Clifford algebra C(VR) is the quotient of the tensor algebra T (VR) by the two-
sided ideal generated by v ⊗ v − Q(v, v), for all v ∈ VR ; it admits a natural Z/2Z-grading and
we have

C(VR) = C+(VR)⊕ C−(VR).

The sub-algebra C+(VR) is called the even Clifford algebra. The even Clifford group is

CSpin+(VR) =def {γ ∈ C+(VR)× | γV γ−1 = V }.
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Each element γ ∈ CSpin+(VR) induces an R-linear homomorphism τ(γ) : VR −→ VR, v 7→ γvγ−1.
One easily checks that the homomorphism τ(γ) preserves the bilinear form Q and hence provides
a group homomorphism

τ : CSpin+(VR) −→ SO(VR).

The above constructions are compatible with scalar extensions R → R′. As such CSpin+(VR)
has the natural structure of an algebraic group over R making τ a surjective homomorphism of
R-groups with kernel given by Gm,R.

We now consider the special case R = Z. Assume that VZ is equipped with a Hodge structure
of K3 type, that is, a Hodge structure of type (−1, 1) + (0, 0) + (1,−1) such that dimV −1,1 = 1.
Assume that the integral bilinear form Q : VZ⊗VZ −→ Z is a homomorphism of Hodge structures
such that −Q is a polarization. Then the Hodge structure of VZ is given by

h : S = ResC/R(C∗) −→ SO(VR)

and it lifts uniquely to a homomorphism

h̃ : S −→ CSpin+(VR)

such that the restriction of h̃ to Gm is the natural inclusion of Gm in CSpin+(VR). The action
of SO(VR) on the tensor algebra T (VR) induces an action on the quotient C(VR) and hence also
on C+(VR). Thus h induces a Hodge structure of weight 0 on C+(VZ). This Hodge structure
also has type (−1, 1) + (0, 0) + (1,−1).

Now let LZ be a (left) C+(VZ)-module that is torsion-free as a Z-module such that

L := LZ ⊗Q
is a free C+(V )-module of rank r, where V := VZ ⊗ Q. Then LZ is naturally a CSpin+(VZ)-

module via left multiplication. After base change to R and composing with h̃, we get a group
homomorphism

S −→ GL(LR)

that defines a weight one Hodge structure on LZ.
The assumption that VZ is of K3-type and that −Q is a polarization implies that Q has sig-

nature (2, N). Under these assumptions, the weight 1 Hodge structure on LZ is polarizable and
hence we get an abelian variety A such that H1(A,Z) = LZ. Concretely, when r = 1, a polariza-
tion on L can be given as follows. Pick a generator of L and consider the induced identifications
C+(V ) = L of Q-vector spaces. Satake [Sat66, Prop. 3] gave all possible polarizations and one
special instance can be described as follows. Pick f1 and f2 in V with Q(f1, f1) > 0, Q(f2, f2) > 0
and Q(f1, f2) = 0 and let a = f1f2 ∈ C+(V ). Then the skew symmetric bilinear form

ϕa : L× L −→ Q(−1), (x, y) 7→ ±trC(V )(ax
∗y)

defines a polarization on L. We note that the formula above also defines a polarization on the free
C+(V )-module L = C(V ) of rank r = 2. In the special case where LZ is a free C+(VZ)-module
of rank 1, the associated abelian variety is called the Kuga–Satake variety attached to VZ and is
denoted KS(VZ) ; it has dimension 2rkVZ−2.

Finally, let C+ be the opposite ring (EndC+(V ) L)op of the ring of C+(V )-linear endomorphisms

of L. Note that L admits a right-action of C+ that respects the Hodge structure of L ; in
particular, C+ is endowed with the trivial Hodge structure. More precisely, C+ is a subring of
End(A)Q with action on L given by pull back of cohomology classes. The choice of a basis of L
provides an isomorphism L ' C+(V )⊕r and also an induced isomorphism C+ ' Mr×r(C

+(V ))
of algebras (but not of Hodge structures). Note that left-multiplication by C+(V ) provides a
canonical algebra isomorphism

ψ : C+(V ) ∼= EndC+ L

which is also an isomorphism of Hodge structures.
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8.2. The Kuga–Satake construction and complex hyper-Kähler varieties. We compare
the Kuga–Satake varieties obtained from the primitive, or transcendental, second cohomology
group of a complex hyper-Kähler variety equipped with a polarization form or the Beauville–
Bogomolov form.

Example 8.1 (The Kuga–Satake construction for complex hyper-Kähler varieties). Let X/C be
a hyper-Kähler variety of dimension 2n with ample divisor class η. The second cohomology group
H := H2

B(X,Z(1)) is naturally endowed with a Hodge structure of type (−1, 1) + (0, 0) + (1,−1)
such that dimH−1,1 = 1 and it comes equipped with two quadratic forms : the one induced by
the polarization η, namely (α, β) 7→

∫
X α ∪ β ∪ η

2n−2, and the Beauville–Bogomolov form

B : H2
B(X,Z(1))×H2

B(X,Z(1)) −→ Z.

We denote P2
B(X,Z(1)) the primitive cohomology of X ; by definition it is the orthogonal comple-

ment of η in H2
B(X,Z(1)) with respect to the polarization form. It is a fact that η and P2

B(X,Z(1))
are also orthogonal with respect to the Beauville–Bogomolov form, and that the polarization form
and the Beauville–Bogomolov form restricted to 〈η〉 (resp. to P2

B(X,Z(1))) differ by a positive ra-
tional multiple. Since the restriction of the polarization form on P2

B(X,Z(1)) has signature (2, N),
the Kuga–Satake construction of §8.1 can be carried out for VZ = P2

B(X,Z(1)) equipped with the
Beauville–Bogomolov bilinear form. The corresponding Kuga–Satake variety is denoted KS(X).
The Kuga–Satake variety constructed in [And96a] is the one obtained from VZ = P2

B(X,Z(1))
equipped with the polarization form. This gives however rise to isogenous Kuga–Satake varieties.
Indeed, let Q′ = cQ, c ∈ Q>0. Then we can define an isomorphism T+V → T+V , which is multi-
plication by ck on T 2kV . Then this induces an isomorphism between C+(VQ, Q

′) and C+(VQ, Q)
and hence an isogeny between the associated Kuga–Satake varieties.

Example 8.2 (The transcendental cohomology of a hyper-Kähler variety). Let X/C be a hyper-
Kähler variety of dimension 2n with ample divisor class η. Denote NS(X) the image of the cycle
class map CH1(X)→ H2

B(X,Z(1)) and denote ρ its rank. The second transcendental cohomology
group of X is by definition the orthogonal complement of NS(X) inside H2

B(X,Z(1)), that is,

T2
B(X,Z(1)) =def NS(X)⊥.

Here the orthogonal complement is with respect to either the polarization form or the Beauville–
Bogomolov form ; it doesn’t matter which, according to Example 8.1. Moreover, the Beauville–
Bogomolov form and the polarization form differ by a positive rational multiple when restricted
to T2

B(X,Z(1)) and have signature (2,M). The Kuga–Satake variety of X is then isogenous to
the 2ρ-th power of the Kuga–Satake variety associated to T2

B(X,Z(1)).

8.3. The Kuga–Satake correspondence is motivated. In this section, we discuss the above
Kuga–Satake construction in the setting of André motives. We focus on the special case of
hyper-Kähler varieties.

Let X be a hyper-Kähler variety defined over a field K ⊆ C, together with an ample divisor
class η. Denote by v := p2(X)(1) ⊂ h2(X)(1) (resp. v := t2(X)(1) ⊂ h2(X)(1)) the primitive
submotive (resp. transcendental submotive), whose Betti realization is simply V := P2

B(X,Q(1))
(resp. V = T2

B(X,Q(1))). The Beauville–Bogomolov bilinear form restricted to V is a rational
multiple of the one defined by the power of η and hence it is motivated. In other words, we have
a morphism

Q : v⊗ v −→ 1

of André motives that induces the Beauville–Bogomolov form B under Betti realization.
Now we define the even Clifford algebra motive C+(v, Q). Let

µ = (Id + σ,−2Q) : v⊗ v −→ v⊗ v⊕ 1
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be the morphism of André motives, where σ is the automorphism of v⊗ v that switches the two
factors. In other words, the Betti realization of µ is given by (u, v) 7→ u⊗ v + v ⊗ u− 2B(u, v).
For each pair of integers a, b ≥ 0, we define

µa,b = Idv⊗a ⊗ µ⊗ Idv⊗b : v⊗(a+b+2) −→ v⊗(a+b+2) ⊕ v⊗(a+b).

Let T+(v) :=
⊕

n≥0 v
⊗2n be the even tensor algebra of v, which is viewed as a formal direct sum.

Let i ⊂ T+(v) be the image of
∑
µa,b where a and b run through all non-negative integers such

that a+b is even. It turns out that C+(v, Q) := T+(v)/i is a well-defined object in MAnd
K . Indeed,

let T+
n (v) =

⊕
0≤i≤n v

⊗2i. Then we have a morphism T+
n (v)→ C+(v, Q) and let in be the kernel

of this morphism. One checks that C+(v, Q) = T+
n (v)/in for all n ≥ dimV

2 . Let FnC
+(v, Q) be

the image of T+
n (v) in C+(v, Q) and this defines an increasing filtration on C+(v, Q).

Let A be the Kuga–Satake abelian variety associated to P2
B(X,Z(1)) (resp. T2

B(X,Z(1))).
Then, by [And96a, Lem. 6.5.1], A is defined over some finite extension K ′ of K ; see Theo-
rem 8.3(1) below. Hence L is the Betti realization of h1(A) ∈ MAnd

K′ .
Note that C+ ⊂ End(AC). We may enlarge K ′ and assume that all endomorphisms of AC are

actually defined over K ′. This gives rise to a subalgebra object C+
Q ⊂ End(h1(A)), where C+

Q

is the motive associated to the algebra C+
Q and End(h) = h∨ ⊗ h is the internal endomorphism

object. Hence we get the subalgebra object

EndC+(h1(A)) ⊂ End(h1(A)).

Let M and N be two André motives. A homomorphism H∗B(M) −→ H∗B(N) is said to be
motivated if it is induced by a morphism M −→ N of motives. The following theorem is essentially
due to André [And96a].

Theorem 8.3. Let X be a hyper-Kähler variety defined over a field K ⊆ C with an ample
class η. Let VZ := P2

B(X,Z(1)) (resp. VZ := T2
B(X,Z(1))) be the primitive cohomology (resp. the

transcendental cohomology). Let LZ be a torsion-free C+(VZ)-module such that L = LZ ⊗ Q is
a free C+(V )-module of finite rank, where V = VZ ⊗ Q. Let A be the associated abelian variety
such that LZ = H1

B(A,Z). Then there exists a finite extension K ′/K such that the following
statements are true.

(i) The abelian variety A is defined over K ′.
(ii) The canonical algebra isomorphism

ψ : C+(V ) ∼= EndC+ L

is motivated and descends to K ′.
(iii) There is a canonical algebra isomorphism

End(L) ∼= (EndC+ L)⊗ (C+)op

which is motivated and descends to K ′.
(iv) The natural inclusion C+(V ) ↪→ End(L), which corresponds to the inclusion

EndC+ L ↪→ (EndC+ L)⊗ (C+)op, α 7→ α⊗ 1,

is motivated and descends to K ′.

Proof. Note that A is isogenous to KS(VZ)r and hence one can easily reduce to the case A =
KS(VZ). Since KS(P2

B(X,Z(1))) is isogenous to a power of KS(T2
B(X,Z(1))), it is enough to

prove the theorem for VZ = P2
B(X,Z(1)).

In that setting, statements (i) and (ii) are explicit in [And96a] while statements (iii) and (iv)
are easy consequences as we will see. Precisely, statement (i) is [And96a, Lem. 6.5.1]. Fur-
ther enlarging K ′ so that all endomorphisms of AC are defined over K ′, we get statement (ii)
from [And96a, Prop. 6.2.1 and Lem. 6.5.1]. For the remaining part of the proof, all motives
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are considered as defined over K ′. It follows from (ii) that we have an algebra isomorphism

ψ̃ : C+(v, Q) −→ EndC+(h1(A)) which induces ψ. Note that both C+ and EndC+(h1(A)) are
subalgebra objects of End(h1(A)). Hence we have a canonical algebra homomorphism

(EndC+(h1(A)))⊗ (C+)op −→ End(h1(A))

which induces an isomorphism of the Betti realizations. As a consequence, this is an isomorphism
of André motives. Here we use the general fact that EndQ(R) is canonically isomorphic to
R ⊗Q Rop for any finite dimensional Q-algebra R. This proves statement (iii). The element
1 ∈ C+ induces a morphism 1→ (C+)op yielding a morphism

EndC+(h1(A)) −→ EndC+(h1(A))⊗ 1 −→ EndC+(h1(A))⊗ (C+)op

whose Betti realization is given by α 7→ α⊗ 1. This shows statement (iv). �

From Theorem 8.3, André deduces :

Theorem 8.4 (André [And96a, Prop. 6.4.3 & Cor. 1.5.3]).

(i) Let X be a hyper-Kähler variety defined over a field K ⊆ C. Then there is a finite field
extension K ′/K and an abelian variety A over K ′ such that the André motive h2(XK′) is a
direct summand of h(A) ;

(ii) Any Hodge class in a direct summand M of (⊗h2(Xi))⊗(⊗h(Aj)), where the Xi are complex
hyper-Kähler varieties and the Aj are complex abelian varieties, is motivated. In particular,
the Mumford–Tate group MT(M) of M coincides with its motivated Galois group GAnd(M).

Proof. For the sake of completeness, let us outline the proof. Since h2(X)(1) = 1⊕v, it is enough
to prove (i) for v := p2(X)(1) ⊂ h2(X)(1) the primitive submotive. Denote by V := P2

B(X,Q(1))
its Betti realization.

If dimV = 2n+ 1 is odd, then the primitive motive v satisfies

v ∼= v∨ ∼= v∨ ⊗ det v ∼= ∧2nv ∼= GrnC
+(v, Q)

where the last term is the graded piece Fn/Fn−1. It follows that v is a subquotient of C+(v, Q)
and hence a submotive of C+(v, Q) by semi-simplicity. Theorem 8.3(ii) thus provides a split
inclusion

v ↪→ C+(v, Q) ∼= EndC+(h1(A)) ↪→ End(h1(A)) = h1(A)⊗ h1(A)∨ ↪→ h(A×A∨)(1).

If dimV = 2n is even, then one reduces to the previous case by considering v# := v ⊕ 1. Its
Betti realization V # := V ⊕Z(0) is equipped with the quadratic form Q# := Q⊕ 〈−1〉 and one
may run the Kuga–Satake construction to get an abelian variety A# over K ′ with split inclusions

v ↪→ v# ↪→ h(A# × (A#)∨)(1).

Precisely, the analogue of Theorem 8.3(ii) for V # is [And96a, Cor. 6.4.4].
Finally, (ii) follows from (i) and the fact (Theorem 3.4) proved by André [And96b] that Hodge

cycles on complex abelian varieties are motivated (the statement MT(M) = GAnd(M) is Propo-
sition 3.3). �

Finally, as in [Cha13, MP15], we consider the special case LZ = C(VZ), viewed as a C+(VZ)-
module via left multiplication. The Kuga–Satake construction provides a complex abelian variety
A such that L = H1

B(A,Q) together with a canonical inclusion

V ↪→ End(L), v 7→ lv (9)

where lv(u) = vu, for all u ∈ L = C(V ). (Note that A is isogenous to the square of the Kuga–
Satake variety of VZ.) This inclusion is a homomorphism of Hodge structures and we call it the
Kuga–Satake correspondence. Combining Theorem 8.4 and Theorem 3.4, we get the following
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Proposition 8.5. We take up the assumptions of Theorem 8.3 and assume in addition that
LZ = C(VZ). Then the Kuga–Satake correspondence (9) is motivated and defined over K. �

9. De Rham–Betti classes on hyper-Kähler varieties

We fix an algebraic closure Q of Q inside C and we let K be a subfield of Q. In this section,
we prove Theorems 3, 4, 5 and 6 of the introduction.

9.1. First observations. Via André’s Theorem 8.4, Theorem 7.11 admits the following two
consequences :

Proposition 9.1. Let X be a hyper-Kähler variety over K ⊆ Q.

(i) Any de Rham–Betti class in H2
dRB(X,Q(1)) is algebraic.

(ii) Any Q-de Rham–Betti class in H2
dRB(XQ,Q(1)) is Q-algebraic.

Proof. By Theorem 8.4, there exists an abelian variety A over Q such that the André motive
h2(XQ) is a direct summand of h2(A). Statement (i) in case K = Q, which is [BC16, Thm. 5.6],

as well as statement (ii) are then a direct consequence of Theorem 7.11. The case K ⊆ Q in (i)
follows from Lemma 6.2. �

Proposition 9.2. Let X be a hyper-Kähler variety over Q.

(i) The de Rham–Betti group GdRB(h2(X)) is reductive.
(ii) The Q-de Rham–Betti group GQ−dRB(h2(X)⊗Q) is reductive.

Proof. By Theorem 8.4, there exists an abelian variety A over Q such that h2(X) is a direct
summand of h(A). Hence GdRB(h2(X)) is a quotient of GdRB(A) and GQ−dRB(h2(X) ⊗ Q) is a

quotient of GQ−dRB(A). It follows from Theorem 7.11(i) that both groups are reductive. �

9.2. De Rham–Betti isometries between hyper-Kähler varieties are motivated. For a
polarized hyper-Kähler variety X over K, we denote p2(X) its degree-2 primitive André motive
and t2(X) its degree-2 transcendental motive. Their de Rham–Betti realizations are respectively
given by P2

dRB(X,Q) and T2
dRB(X,Q). The former is the orthogonal complement of the polariza-

tion in H2
dRB(X,Q), while the latter is the orthogonal complement of the subspace of H2

dRB(X,Q)
spanned by the classes of divisors.

Theorem 9.3. Let X and X ′ be hyper-Kähler varieties over Q. Then

(i) any Q–de Rham–Betti isometry P2
dRB(X,Q)

∼−→ P2
dRB(X ′,Q) is Q-motivated.

(ii) any Q–de Rham–Betti isometry T2
dRB(X,Q)

∼−→ T2
dRB(X ′,Q) is Q-motivated.

(iii) any Q–de Rham–Betti isometry H2
dRB(X,Q)

∼−→ H2
dRB(X ′,Q) is Q-motivated.

Here, the isometries are with respect to either the form induced by η or the Beauville–Bogomolov
form (see Example 8.1).

Proof. By Proposition 9.1, if X is a hyper-Kähler variety, then T2
B(X,Q(1)) does not support

any non-zero Q-de Rham–Betti class. Hence (ii) =⇒ (iii) and it thus suffices to show items
(i) and (ii). Let X and X ′ be two hyper-Kähler varieties over Q with respective polarizations
η and η′. Let V := P2

B(X,Q(1)) (resp. V := T2
B(X,Q(1))) and V ′ := P2

B(X ′,Q(1)) (resp.
V ′ := T2

B(X ′,Q(1))) be the primitive cohomology (resp. transcendental cohomology). Assume
that we have a GQ−dRB-invariant isometry

i : V ⊗Q ∼−→ V ′ ⊗Q.

We will show that i is motivated.
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Consider L = C(V ) and L′ = C(V ′) viewed as C+(V )- and C+(V ′)-modules respectively, with
their natural integral structures. Let A and A′ be the corresponding abelian varieties over Q
provided by Theorem 8.3 ; hence we have identifications L = H1

B(A,Q) and L′ = H1
B(A′,Q). We

fix a C+(V ⊗Q)-basis {1, α} of L⊗Q with α ∈ V ⊗Q, as well as the corresponding basis {1, α′}
of L′ ⊗Q, where α′ = i(α) ∈ V ′ ⊗Q. This induces identifications of Q-algebras

C+ ⊗Q := (EndC+(V ) L)op ⊗Q = M2(C+(V ⊗Q)) and

C ′
+ ⊗Q := (EndC+(V ′) L

′)op ⊗Q = M2(C+(V ′ ⊗Q)).

The isometry i : V ⊗Q −→ V ′ ⊗Q induces Q-algebra isomorphisms

C+ ⊗Q
j0 // C ′+ ⊗Q

M2(C+(V ⊗Q))
M2(C+(i)) // M2(C+(V ′ ⊗Q)) .

On the other hand, the GQ−dRB-invariant isometry i : V ⊗ Q −→ V ′ ⊗ Q induces a GQ−dRB-

invariant algebra isomorphism C+(i) : C+(V ⊗ Q) −→ C+(V ′ ⊗ Q). By Theorem 8.3(ii) we
obtain a GQ−dRB-invariant algebra isomorphism

(EndC+ L)⊗Q
j //

∼ =

(EndC′+ L
′)⊗Q

∼ =
C+(V ⊗Q)

C+(i) // C+(V ′ ⊗Q) .

By Theorem 8.3(iii), we then get a GQ−dRB-invariant algebra isomorphism

End(L⊗Q)
J //

∼ =

End(L′ ⊗Q)

∼ =

((EndC+ L)⊗Q)⊗ (C+ ⊗Q)op j⊗j0 // ((EndC′+ L
′)⊗Q)⊗ (C ′+ ⊗Q)op .

Here C+ ⊗Q and C ′+ ⊗Q are viewed as representations of GQ−dRB with trivial action.
Our aim is to show that J is motivated. By Lemma 9.4 below, there exists isomorphisms

ν : L⊗Q→ L′ ⊗Q such that

J(f) = ν ◦ f ◦ ν−1

for all f ∈ EndQ(L⊗Q). The isomorphism ν is unique up to scaling by a scalar in Q
∗
.

Lemma 9.4. Let W and W ′ be two vector spaces over a field k and let Φ : Endk(W )→ Endk(W
′)

be an isomorphism of k-algebras. Then there exists a k-linear isomorphism φ : W → W ′ such
that Φ(f) = φ ◦ f ◦ φ−1 for all f ∈ Endk(W ). The isomorphism φ is unique up to a scalar in k∗.

Proof. Pick a basis {w1, w2, . . . , wn} of W . Let pr1 ∈ Endk(W ) be the projector onto the subspace
generated by w1. Let pr′1 := Φ(pr1) ∈ Endk(W

′), which is nonzero. Pick some w′ ∈ W ′ such
that w′1 := pr′1(w′) is nonzero. Let fi ∈ Endk(W ), i = 2, 3, . . . , n, be defined by fi(w1) = wi
and fi(wj) = 0 for all j > 1. Let f ′i := Φ(fi) and set w′i := f ′i(w

′
1). In this way, we get a basis

{w′1, w′2, . . . , w′n} of W ′ and the isomorphism φ : W → W ′, φ(wi) = w′i, satisfies the required
condition. If φ′ is another such isomorphism, then φ−1 ◦ φ′ sits in the center of Endk(W ) and
hence φ′ = cφ for some c ∈ k∗. �
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The condition that J is a GQ−dRB-invariant isomorphism of algebras means

ν ◦ g ◦ f ◦ g−1 ◦ ν−1 = g ◦ ν ◦ f ◦ ν−1 ◦ g−1, ∀g ∈ GQ−dRB, f ∈ End(L⊗Q).

As a consequence λ(g) := g−1 ◦ ν−1 ◦ g ◦ ν commutes with all f ∈ End(L ⊗ Q) and hence

λ(g) ∈ Q∗. After choosing a Q-basis for L ⊗ Q and L′ ⊗ Q, we can write λ(g) = Y ZY −1Z−1

with Y,Z ∈ Mr×r(Q). By taking determinant, we see that λ(g) ∈ µr. Since by Theorem 4.7 the
Q-de Rham–Betti group GQ−dRB is connected, we conclude that λ(g) = 1 for all g ∈ GQ−dRB.

As a consequence ν is GQ−dRB-invariant. It follows from Theorem 7.10 that ν is a Q-linear

combination of classes of algebraic cycles. As a consequence, J is Q-motivated. Note that the
Kuga–Satake correspondence (9), by the definition of J , fits into the following commutative
diagram

V ⊗Q i //

��

V ′ ⊗Q

��
End(L⊗Q)

J // End(L′ ⊗Q)

We conclude from Proposition 8.5 and the semi-simplicity that i : V ⊗ Q → V ′ ⊗ Q is Q-
motivated. �

We record the following direct consequence of Theorem 9.3.

Theorem 9.5. Let X and X ′ be hyper-Kähler varieties over K. Then

(i) any de Rham–Betti isometry P2
dRB(X,Q)

∼−→ P2
dRB(X ′,Q) is motivated.

(ii) any de Rham–Betti isometry T2
dRB(X,Q)

∼−→ T2
dRB(X ′,Q) is motivated.

(iii) any de Rham–Betti isometry H2
dRB(X,Q)

∼−→ H2
dRB(X ′,Q) is motivated.

Here, the isometries are with respect to either the form induced by η or the Beauville–Bogomolov
form (see Example 8.1).

Proof. In view of Lemma 6.2 and Lemma 6.17, this is a direct consequence of Theorem 9.3 �

Corollary 9.6. If X and X ′ are hyper-Kähler varieties over K of K3[n]-deformation type, then

any de Rham–Betti isometry H2
dRB(X,Q)

∼−→ H2
dRB(X ′,Q) is algebraic.

Proof. By Markman [Mar22], any Hodge isometry H2
B(Xan

C ,Q)
∼−→ H2

B((X ′)an
C ,Q) is algebraic.

(The case where X and X ′ are K3 surfaces is due to Buskin [Bus19]). The corollary then follows
directly from Theorem 9.5(iii). �

9.3. A global de Rham–Betti Torelli theorem for K3 surfaces over Q. We derive from
Theorem 9.5 the following result of independent interest :

Theorem 9.7 (A global de Rham–Betti Torelli theorem for K3 surfaces over Q). Let S and S′

be two K3 surfaces over Q. If there is an integral de Rham–Betti isometry

i : H2
dRB(S,Z)

∼−→ H2
dRB(S′,Z),

i.e., an isometry i : H2
B(San

C ,Z)
∼−→ H2

B(S′an
C ,Z) that becomes de Rham–Betti after base-change

to Q, then S and S′ are isomorphic.

Proof. Let η be an ample divisor class on S. Then η′ = i(η) is a de Rham–Betti class and hence
algebraic by [BC16, Thm. 5.6] ; see also Proposition 9.1. Thus either η′ or −η′ is a positive class
on S′. Without loss of generality, we assume that η′ is a positive class. Then η′ can be moved
to an ample class by a series of reflections along (−2)-classes ; see [Huy16, Ch. 8, Cor. 2.9]. Such
reflections are all algebraic isometries of H2

dRB(S′,Z) since each (−2)-class is represented by a
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rational curve on S′. By composing i with these reflections, we may assume that η′ is an ample
class. Thus i restricts to a de Rham–Betti isometry

i′ : P2
dRB(S,Z)→ P2

dRB(S′,Z),

where P2
dRB(S,Z) (resp. P2

dRB(S′,Z)) is the orthogonal complement of η (resp. η′). It follows from
Theorem 9.5 that i′ ⊗ 1Q is motivated and hence respects Hodge structures. As a consequence,
i is a Hodge isometry and the usual Torelli theorem for K3 surfaces provides an isomorphism
SC ' S′C, from which we obtain an isomorphism S ' S′. �

9.4. Codimension-2 de Rham–Betti classes on hyper-Kähler varieties. Recall from Sec-
tion 3 that GAnd(M) is reductive and that we have GQ−dRB(M ⊗Q) ⊆ GdRB(M)Q ⊆ GAnd(M)Q
for all André motives M over Q. Recall also from Proposition 9.2 that GQ−dRB(h2(X)) is reduc-

tive if X is a hyper-Kähler variety over Q. The following proposition is analogous to [And96a,
Lem. 7.4.1].

Proposition 9.8. Let X be a hyper-Kähler variety over Q. Then the inclusion

EndGAnd(h2(X))(H
2
B(Xan

C ,Q)) ⊆ EndG
Q−dRB(h2(X))(H

2
B(Xan

C ,Q))

is an equality. Equivalently, any Q-de Rham–Betti class in H2
dRB(X,Q(1)) ⊗ H2

dRB(X,Q(1)) is

Q-motivated.

Proof. The two statements in the proposition are equivalent since any choice of polarization on X
induces an isomorphism of André motives h2(X)(1)∨ ' h2(X)(1).

Since GAnd(h2(X)) and GQ−dRB(h2(X)) are reductive, it is enough to show that any simple

GQ−dRB-submodule T of H2
B(Xan

C ,Q) is a GAnd,Q-submodule. Since the intersection form on

H2
B(Xan

C ,Q) is motivated, T ∩T⊥ is a GQ−dRB-submodule of T and it is therefore either {0} or T .

If T ∩ T⊥ = {0}, then H2
B(Xan

C ,Q) = T ⊕⊥ T⊥ and (−idT , idT⊥) defines a GQ−dRB-equivariant

isometry of H2
B(Xan

C ,Q). By Theorem 9.3 it is motivated and hence T is a GAnd,Q-submodule.

If T ∩T⊥ = T , i.e. if T is totally isotropic, then choose a GQ−dRB-submodule T ′ of H2
B(Xan

C ,Q)

such that H2
B(Xan

C ,Q) = T⊥⊕T ′. The restriction of the quadratic form to the GQ−dRB-submodule

T ⊕ T ′ is then nondegenerate. Let ψ : T ⊕ T ′ → T∨ ⊕ T ′∨ be the induced GQ−dRB-equivariant

map and let ψT : T ′ → T∨ and ψT ′ : T ′ → T ′∨ be the induced GQ−dRB-equivariant maps.
Since T is totally isotropic, the map ψT is an isomorphism. Define the GQ−dRB-submodule

T ′′ := im
(
− 1

2(ψ−1
T )∨ ◦ ψT ′ ⊕ idT ′ : T ′ → T ⊕ T ′

)
. Then T ⊕ T ′ = T ⊕ T ′′ is a decomposition of

the nondegenerate quadratic space T ⊕T ′ into GQ−dRB-submodules such that both T and T ′′ are

totally isotropic. It follows that (2idT ,
1
2 idT ′′ , id(T⊕T ′′)⊥) defines a GQ−dRB-equivariant isometry

of H2
B(Xan

C ,Q). By Theorem 9.3 it is Q-motivated and hence T is a GAnd,Q-submodule. �

Theorem 9.9. Let X be a hyper-Kähler variety over K of known deformation type and let n be
a positive integer.

(i) Any de Rham–Betti class in H4
dRB(Xn,Q(2)) is motivated.

(ii) Any Q-de Rham–Betti class in H4
dRB(Xn

Q
,Q(2)) is Q-motivated.

Proof. By Lemma 6.2 and Lemma 6.17, it suffices to show (ii) and we can assume K = Q.
By [GKLR21, Prop. 2.35(ii) & Prop. 2.38(i)], for any hyper-Kähler variety X, H4

B(Xan
C ,Q) is a

sub-Hodge structure of
(
H2

B(Xan
C ,Q)⊗H2

B(Xan
C ,Q)⊕H2

B(Xan
C ,Q(−1))⊕Q(−2)

)⊕N
for some N .

Since H1
B(Xan

C ,Q) = 0 and since Q(−1) is a direct summand of H2
B(Xan

C ,Q), we see that for all

n ≥ 1, H4
B((Xan

C )n,Q) is a sub-Hodge structure of
(
H2

B(Xan
C ,Q) ⊗ H2

B(Xan
C ,Q)

)⊕N
for some N .
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From [FFZ21, Cor. 1.17] and [Sol21, Cor. 1.2], if X is of known deformation type, any Hodge class
on a power of XC is motivated ; it follows that the André motive h4(Xn) is a direct summand of
(h2(X) ⊗ h2(X))⊕N . Now, having proved in Proposition 9.8 that any Q-de Rham–Betti class in
h2(X)(1)⊗ h2(X)(1) is Q-motivated, we deduce that any Q-de Rham–Betti class in h4(Xn)(2) is
Q-motivated. �

Corollary 9.10. Let X be a hyper-Kähler fourfold over K of known deformation type and let k
be a non-negative integer.

(i) Any de Rham–Betti class in H2k
dRB(X,Q(k)) is motivated.

(ii) Any Q-de Rham–Betti class in H2k
dRB(XQ,Q(k)) is Q-motivated.

Proof. From Proposition 9.1 and Theorem 9.9, it remains to see that any Q-de Rham–Betti class
in H6

dRB(XQ,Q(3)) is Q-motivated. This follows from Proposition 9.1 together with the Lefschetz

isomorphism of André motives h2(X)(1) ' h6(X)(3). �

9.5. The de Rham–Betti group of a hyper-Kähler variety. LetX be a hyper-Kähler variety
over Q and denote by t2(X) its transcendental motive in degree 2. By Zarhin [Zar83], the
endomorphism algebra E := End(t2(X)) is a field of degree dividing dimQT2

B(X,Q). We say
that X has complex multiplication if [E : Q] = dimQT2

B(X,Q) (this implies E is a CM field).
With what we have established so far, we have the following analogue of Theorem 7.11.

Theorem 9.11. Let X/Q be a hyper-Kähler variety of positive dimension. The de Rham–Betti
group GdRB(h2(X)) has the following properties.

(i) GdRB(h2(X)) ⊆ MT(h2(X)) is a connected reductive group.
(ii) EndGdRB(h2(X))(H

2
B(X,Q)) = EndMT(h2(X))(H

2
B(X,Q)).

(iii) det : GdRB(h2(X))→ Gm is surjective.
(iv) X has complex multiplication if and only if GdRB(h2(X)) is a torus.

Likewise, the Q-de Rham–Betti group GQ−dRB(h2(X)) has the following properties.

(i’) GQ−dRB(h2(X)) ⊆ MT(h2(X)) is a connected reductive group.

(ii’) EndG
Q−dRB(h2(X))(H

2
B(X,Q)) = EndMT(h2(X))(H

2
B(X,Q))⊗Q.

(iii’) det : GQ−dRB(h2(X))→ Gm is surjective.

(iv’) X has complex multiplication if and only if GQ−dRB(h2(X)) is a torus.

Proof. That GdRB(h2(X)) lies in MT(h2(X)) is due to André’s Theorem 8.4 stating that the inclu-
sion MT(h2(X)) ⊆ GAnd(h2(X)) is an equality. That GdRB(A) is connected is Theorem 4.7 and
that it is reductive is Proposition 9.2. Statement (ii) is Proposition 9.8. Regarding (iii), the image
of det is connected. Assume it is trivial. Then GdRB(h2(X)) acts trivially on det(H2

B(X,Q)). But,
by André’s Theorem 8.4, det h2(X) ' 1(−dim H2

B(X,Q)) as André motives. This is a contradic-
tion since 2πi is transcendental. For (iv), suppose that the transcendental motive t2(X) has com-
plex multiplication. Then GdRB(h2(X)) is a subgroup of the Mumford–Tate group MT(h2(X)),
which is a torus. Since GdRB(h2(X) is reductive and connected by (i), it has to be a torus.
Conversely, assume that GdRB(h2(X)) is a torus. Similarly to the case of abelian varieties, if
GdRB(h2(X)) is contained in a maximal torus T ⊆ GL(T2

B(X,Q)), then

EndT (T2
B(X,Q)) ⊆ EndGdRB(h2(X))(T

2
B(X,Q)) = EndMT(h2(X))(T

2
B(X,Q)).

But EndT (T2
B(X,Q)) is a commutative Q-algebra of dimension dim T2

B(X,Q), as can be seen after
extending scalars to an algebraically closed field. It follows that X has complex multiplication.

Statements (i′), (ii′), (iii′) and (iv′) are proven with the exact same arguments. �

Corollary 9.12. Let X be a hyper-Kähler variety over Q and let k ∈ Z. Every de Rham–Betti
class in T2

dRB(X,Q(k)) is zero.
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Proof. It follows from Theorem 9.11(ii) that

EndGdRB(h2(X))(T
2
B(X,Q)) = EndMT(h2(X))(T

2
B(X,Q)).

In particular, since the Hodge structure T2
B(X,Q) is irreducible, the de Rham–Betti object

T2
dRB(X,Q) is simple. Since dim T2

B(X,Q) ≥ 2, we get

HomdRB(1(−k),T2
dRB(X,Q)) = 0,

for all k ∈ Z. �

9.6. The de Rham–Betti conjecture and hyper-Kähler varieties of large Picard rank.
For convenience we make the following definition.

Definition 9.13. Let X be a smooth projective variety over a subfield of C.

• The Picard rank of X is ρ(X) =def rk(CH1(XC)→ H2
B(Xan

C ,Q(1))).
• The Picard corank ofX is ρc(X) =def h

1,1(Xan
C )−ρ, where h1,1(Xan

C ) = dimCH1(Xan
C ,Ω

1
Xan
C

).

We address the (Q-)de Rham–Betti conjecture (Conjectures 6.10 and 6.13) for the second co-
homology group of hyper-Kähler varieties of Picard corank ≤ 2 and prove Theorem 6. First we
observe that the de Rham–Betti conjectures are stable under direct summand.

Proposition 9.14. Let N be a André motive over K and let M be an object in 〈N〉. If the
motivated de Rham–Betti conjecture holds for N , then it holds for M . In other words,

ΩdRB
N = ΩAnd

N =⇒ ΩdRB
M = ΩAnd

M .

If K = Q, we also have
ΩN = ΩAnd

N =⇒ ΩM = ΩAnd
M .

Proof. By Proposition 6.12, ΩdRB
N = ΩAnd

N if and only if GdRB(N) is reductive and every de Rham–
Betti class on tensor spaces N⊗n⊗(N∨)⊗m is motivated. Now if M belongs to 〈N〉, then GdRB(N)
is a quotient of GdRB(M), hence is reductive, and every de Rham–Betti class on tensor spaces
M⊗n ⊗ (M∨)⊗m is motivated. By Proposition 6.12 again, we conclude that ΩdRB

M = ΩAnd
M . The

implication ΩN = ΩAnd
N ⇒ ΩM = ΩAnd

M is proved similarly by using Proposition 6.16 in place of
Proposition 6.12. �

Theorem 9.15. Let X be a hyper-Kähler variety over K.

(i) If ρc(X) = 0, then Zh2(X) = ΩAnd
h2(X).

(ii) If ρc(X) = 1, then Ωh2(X) = ΩAnd
h2(X).

(iii) If ρc(X) = 2, then ΩdRB
h2(X) = ΩAnd

h2(X).

Assume further that X is of known deformation type.

(i’) If ρc(X) = 0, then ZX = ΩAnd
X .

(ii’) If ρc(X) = 1, then ΩX = ΩAnd
X .

(iii’) If ρc(X) = 2, then ΩdRB
X = ΩAnd

X .

Proof. Regarding (i) : By André’s Theorem 8.4, GAnd(h2(XQ)) agrees with the Mumford–Tate

group and hence is connected. By a Galois argument we deduce that ΩAnd(h2(X)) is connected.
Therefore it suffices to show statement (i) in the case K = Q. Note that the Kuga–Satake variety
associated to X of maximal Picard rank is a CM elliptic curve, so that we have an isomorphism
of André motives

h2(X) '
(
h1(E)⊗ h1(E)

)
⊕ 1(−1)⊕b2−4.

To conclude it suffices to see that dimZh2(X) ≥ 2. This follows at once from Chudnovsky’s
theorem [Chu80] that the transcendence degree of periods of elliptic curves is at least 2.



42 TOBIAS KREUTZ, MINGMIN SHEN, AND CHARLES VIAL

Regarding (ii) : By Lemma 6.14, we may and do assume that K = Q. Note that if the Picard
corank of X is at most 1, then the Kuga–Satake variety A associated to the transcendental
motive t2(X) is either a CM elliptic curve or an abelian surface of Picard rank 3. Since t2(X) is a
direct summand of h(A×A), we can conclude from Proposition 9.14 together with Theorems 7.12
and 7.15.

Regarding (iii) : By Lemma 6.11, we may and do assume that K = Q. Let E = End(t2(X)).
By Zarhin [Zar83], E is a field and there are three possibilities for the Mumford–Tate group of
h2(X)(1) : it is either SO4, or U2(E) for the CM quadratic extension E/Q, or ResF/QU1(F ) for
the CM quartic extension E/F/Q, where F is a real quadratic extension. (Note that the case
ResE/QSO2 for a real quadratic extension E/Q does not occur since in that case the Hodge group

of h2(X) is commutative and hence h2(X) would be CM.) In what follows, we use the shorthand
h2 for h2(X).

First we assume that MT(h2(1)) = SO4,Q. In that case, we actually show the stronger state-
ment that the inclusion GQ−dRB(h2(1)) ⊆ GAnd(h2(1))Q = SO4,Q is an equality. Let g be the Lie

algebra of GQ−dRB(h2(1)). We then have an inclusion

g ⊆ so4,Q = sl2,Q × sl2,Q,

where the g-module structure on T2
B(X,Q(1)) is induced from the sl2,Q × sl2,Q-module decom-

position T2
B(X,Q(1)) = V1 ⊗ V2, where Vi is the standard representation of the i-th factor of

sl2,Q × sl2,Q. Now, by using Theorem 9.11 instead of Theorem 7.11, we may argue exactly as in

the proof of Theorem 7.15(ii) in the case of simple abelian surfaces with endomorphism algebra
given by a real quadratic extension of Q to show that the inclusion g ⊆ so4,Q = sl2,Q × sl2,Q is
an equality.

Suppose MT(h2(1)) = U2(E) for a CM quadratic extension E of Q, and let mt denote the Lie
algebra of MT(h2(1)). Then mtQ = gl2,Q = sl2,Q ⊕ c and the embedding

mtQ ⊂ sl2,Q ⊕ sl2,Q (10)

corresponding to the embedding MT(h2(1)) ⊂ SO4 is given by mapping sl2,Q to one of the factors
and c to the Lie algebra of a maximal torus in SL2,Q in the other factor. Here the action of

sl2,Q⊕ sl2,Q on T2
B(1)⊗Q is via the tensor product of two copies of the standard representation.

Let g ⊆ sl2,Q⊕ c denote the Lie algebra of GQ−dRB(h2(1)). If g was abelian, then GQ−dRB(h2(1))

would be a torus, contradicting by Theorem 9.11 the fact that End(h2(1)) = E. Hence g has to
contain sl2,Q. We have to exclude the case g = sl2,Q. In this case the embedding (10) shows that

EndG
Q−dRB(h2(1))(T

2
B(X,Q(1)) has dimension 4, which contradicts Theorem 9.11(ii′).

Suppose MT(h2(1)) = ResF/QU1(F ) for a CM quartic extension E/Q, where F ⊂ E denotes the
real quadratic subfield. We distinguish two cases : if E does not contain an imaginary quadratic
subfield, then the proof of Theorem 7.15(i) in case (d) shows that MT(h2(1)) does not contain any
non-trivial subtori defined over Q. Since GdRB(h2(1)) cannot be trivial by Proposition 9.8, we
conclude that GdRB(h2(1)) = MT(h2(1)). Suppose now that E contains an imaginary quadratic
subfield. Then E is a biquadratic field, and hence Gal(E/Q) = Z/2Z × Z/2Z. As we have
seen in the proof of Theorem 7.15(i) in case (d), the cocharacter lattice of ResF/QU1(F ) is given

by X∗(ResF/QU1(F ))Q = 〈φ∨1 − φ̄∨1 , φ
∨
2 − φ̄∨2 〉Q. Here ΣE := Hom(E,C) = {φ1, φ̄1, φ2, φ̄2} is

the set of embeddings of the CM field E into the complex numbers. One computes shows that
X∗(ResF/QU1(F ))Q has two one-dimensional Galois-stable subspaces, generated by φ∨1 + φ∨2 −
(φ̄∨1 + φ̄∨2 ) and φ∨1 − φ∨2 − (φ̄∨1 − φ̄∨2 ), respectively. The corresponding Q-subtori of rank 1 are
precisely the tori of the form U1(K) for K ⊂ E an imaginary quadratic subfield. We have to
exclude the possibility that GdRB(h2(1)) = U1(K). If this is the case, then EndK(T2

B(X,Q)) ⊂
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EndGdRB(h2(1))(H
2
B(X,Q)). Note that EndK(T2

B(X,Q)) is of dimension 4 over K, and hence of
dimension 8 over Q. This contradicts Theorem 9.11(ii).

Now that we have established in all cases thatGdRB(h2(1)) = MT(h2(1)), let us proveGdRB(h2) =
MT(h2). We first show that MT(h2(1)) ⊂ GdRB(h2). Namely, since we know that both groups
are reductive, we can argue as follows : Suppose v ∈ (H2

B)⊗a ⊗ (H2
B)∨⊗b is fixed by GdRB(h2).

Since

(H2
B(1))⊗a ⊗ (H2

B(1))∨⊗b = (H2
B)⊗a ⊗ (H2

B)∨⊗b ⊗Q(a− b),
we see that the one-dimensional subspace spanned by v is preserved by GdRB(h2(1)). The equal-
ity GdRB(h2(1)) = MT(h2(1)) then shows that this subspace is a one-dimensional sub-Hodge
structure of (H2

B(1))⊗a ⊗ (H2
B(1))∨⊗b. It therefore has to be of weight zero, and consequently

v is fixed by MT(h2(1)). Since MT(h2) is generated by the scalars Gm and MT(h2(1)), and
we know from Theorem 9.11 that GdRB(h2) surjects onto the determinant, we conclude that
GdRB(h2) = MT(h2).

Finally, we show how to derive (i′), (ii′) and (iii′) from (i), (ii) and (iii), respectively. As
before, we may and do assume that K = Q. Since h2(X) is a direct summand of h(X) we have
a commutative diagram with surjective horizontal arrows

GAnd(X) // // GAnd(h2(X))

MT(X)
?�

OO

// // MT(h2(X))
?�

OO

By Theorem 8.4(ii) the right inclusion is an equality, while the assumption that X is of known
deformation type provides by [FFZ21, Thm. 1.11 & Cor. 1.16] that the left inclusion is an equality.
On the other hand, by [FFZ21, Prop. 6.4] the bottom horizontal arrow has finite kernel.

In particular, GAnd(X) is connected and dimGAnd(X) = dimGAnd(h2(X)). Since clearly
dimZX ≥ dimZh2(X), we get the implication (i)⇒ (i′).

On the other hand, we have commutative diagrams with surjective horizontal arrows

GdRB(X)� _

��

// // GdRB(h2(X))� _

��

GQ−dRB(X)
� _

��

// // GQ−dRB(h2(X))
� _

��
GAnd(X) // // GAnd(h2(X)) GAnd(X)Q

// // GAnd(h2(X))Q

and, as explained above, the surjection GAnd(X) � GAnd(h2(X)) is an isogeny of connected
algebraic groups. Therefore, if the inclusion GdRB(h2(X)) ↪→ GAnd(h2(X)) (resp. the inclusion
GQ−dRB(h2(X)) ↪→ GAnd(h2(X))Q) is an equality, then the inclusion GdRB(X) ⊆ GAnd(X) (resp.

the inclusion GQ−dRB(X) ⊆ GAnd(X)Q) is an equality. This establishes the implication (iii) ⇒
(iii′) (resp. the implication (ii)⇒ (ii′)). �

Remark 9.16. Let X be a hyper-Kähler variety over K. Assume that X does not have CM and
that ρc(X) = 2. The arguments of the proof of Theorem 9.15 actually show that Ωh2(X) = ΩAnd

h2(X).

Moreover, if X is of known deformation type, then ΩX = ΩAnd
X .

Using the Shioda–Inose structure on K3 surface of Picard corank ≤ 1 and the validity of the
Hodge conjecture for powers of abelian surfaces, we obtain :

Corollary 9.17. Let S be a K3 surface over K.

(i) If ρc(S) = 0, then ZS = Ωmot
S .

(ii) If ρc(S) = 1, then ΩS = Ωmot
S .
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In particular, in both cases, for any n ≥ 0 and any k ∈ Z, any Q-de Rham–Betti class on h(Sn)(k)
is a Q-linear combination of algebraic classes.

Proof. On the one hand, Theorem 9.15 provides ZS = ΩAnd
S and ΩS = ΩAnd

S if ρc(S) = 0 and

ρc(S) = 1, respectively. We are thus left to show that ΩAnd
S = Ωmot

S if ρc(S) ≤ 1. Since the
standard conjectures hold for surfaces in characteristic zero, we have to show that motivated
classes on powers of S are algebraic. For that purpose, we may and do assume that K = Q. If S
has Picard corank ≤ 1, then it has a Shioda–Inose structure and its transcendental (homological)
motive is thus isomorphic to the transcendental motive of an abelian surface over Q. Since Hodge
classes on powers of complex abelian surfaces are algebraic [Tan82], it follows that motivated
classes on powers of S are algebraic. �

Remark 9.18. Corollary 9.17(i) is also established in [Kaw23] in the case of Kummer surfaces
associated to squares of CM elliptic curves.
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[Bos13] Jean-Benôıt Bost, Algebraization, transcendence, and D-group schemes, Notre Dame J. Form. Log. 54
(2013), no. 3-4, 377–434.

[Bus19] Nikolay Buskin, Every rational Hodge isometry between two K3 surfaces is algebraic, J. Reine Angew.
Math. 755 (2019), 127–150.
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