PROJECTORS ON THE INTERMEDIATE ALGEBRAIC JACOBIANS

CHARLES VIAL

ABSTRACT. Let X be a complex smooth projective variety of dimension d. Under some assump-
tion on the cohomology of X, we construct mutually orthogonal idempotents in CHg(X X X)®Q
whose action on algebraically trivial cycles coincides with the Abel-Jacobi map. Such a con-
struction generalizes Murre’s construction of the Albanese and Picard idempotents and makes
it possible to give new examples of varieties admitting a self-dual Chow—Kiinneth decomposi-
tion as well as new examples of varieties having a Kimura finite dimensional Chow motive. For
instance, we prove that fourfolds with Chow group of zero-cycles supported on a curve (e.g.
rationally connected fourfolds) have a self-dual Chow—Kiinneth decomposition. We also prove
that hypersurfaces of very low degree are Kimura finite dimensional.

INTRODUCTION

Let X be a smooth projective variety of dimension d over an algebraically closed field k¥ C C.
The Chow group CH;(X) of cycles of dimension i on X is the Q-vector space generated by i-cycles
on X modulo rational equivalence. Given ~ an equivalence relation on cycles, CH;(X ). denotes
those cycles which are ~ 0. In this paper, ~ will either be algebraic, homological or numerical
equivalence. All three equivalence relations agree on zero-cycles and are spanned by the zero cycles
of degree zero.

Being able to exhibit cycles in CHy(X x X) with appropriate action on the homology of X is
essential to Grothendieck’s theory of pure motives. As discussed for instance in [11], being able to
exhibit cycles in CHy(X x X)) which are idempotents is a prerequisite to the understanding of Chow
groups as part of the framework of the Bloch—Beilinson—Murre philosophy. Roughly speaking, such
a framework predicts that the Chow groups of X should be controlled by the cohomology of X.
In this paper we address a question of a slightly different nature as whether the Chow groups of
X dictate its Chow motive. Of course, we do not answer such a question in generality. However,
we completely answer this question in the case when the Chow groups of X are generated by the
Chow groups of zero-cycles of curves. For this purpose we construct appropriate idempotents in
CH4(X x X). In the spirit of the BBM philosophy, work of Esnault and Levine [6] (and Jannsen
[11] in the case of points) shows that if the Chow groups of X are generated by the Chow groups of
curves, then the cohomology of X is generated by the cohomology of curves. Here, as a consequence
of the construction of appropriate idempotents, we show that if the Chow groups of X are generated
by the Chow groups of curves, then not only is the cohomology of X generated by the cohomology
of curves but the Chow motive of X is generated by the Chow motives of curves (see Theorem 4
below). In particular, this complements Esnault and Levine’s theorem by showing that the Chow
motive of X is finite dimensional in the sense of Kimura [14]. The basic properties of pure motives
are explained in [20] and the (covariant) notations we use are those of [13].

Murre [17] constructed mutually orthogonal idempotents IT; and a4 in CHg(X x X) called re-
spectively the Albanese projector and the Picard projector. Such idempotents satisfy the following
properties.
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H1 = tHQ _1-
(Hl)*H*((f)() = Hl(X) and (HQd_l)*H*(X) = HQd_l(X).
(Haq—1)«CH,(X) = CHg—1(X)pom = Pic% (k) ® Q.

Scholl [20] then showed that it is possible to modify slightly the construction of these idempotents
in order to, in addition, have a Lefschetz isomorphism :

e The map t.t* : (X,Hz4-1,0) — (X,13,d — 1) is an isomorphism of Chow motives. Here
t: C' — X is a smooth linear section of dimension one of X.

In this paper, we wish to generalize Murre’s construction in the following sense : we wish to
construct mutually orthogonal idempotents IIz; 41, in CHg(X x X) which, in homology, define
projectors on the largest sub-Hodge structure of Hy;11(X) generated by the Hy’s of curves. Here
Hy(X) := H,(X(C), Q) which is isomorphic to H2~¥(X(C), Q). We offer two different construc-
tions.

The first construction is explained in the first section. It is defined for all smooth projective vari-
eties X but we cannot show that the idempotents constructed there act appropriately in homology
without making some assumptions on X. In some sense the idempotents constructed there lift the
largest sub-motive of a curve contained in the numerical motive of X. What is needed is Jannsen’s
semi-simplicity theorem [10] in order to produce idempotents modulo numerical equivalence, and
then a lifting property from numerical equivalence up to rational equivalence (Proposition 1.1).

The second construction, which is much more precise, gives the required idempotents but de-
pends on an assumption on the cohomology of X which we describe below. Let us define N Ho;(X)
to be the image of the rational cycle class map ¢l; : CH;(X) — Ho;(X) and

N'Hyi1(X) = im (T : Hi(C) = Haiy1(X)),

where the sum runs through all smooth projective curves C' and through all correspondences
I' € CH;11(C x X). The use of the notation N*Hy;,1(X) is not arbitrary since it can be shown
that this sub-group of Hs;11(X) is spanned by those classes that vanish in the open complement
of some sub-variety of X of dimension i + 1. The group N*Ho;,1(X) is thus the last step of the
coniveau filtration on Ho;11(X).

Given an integer 4, the assumption we need on X in order to construct the idempotent that
we will denote II; /o) is that the cup product pairing Haq ;(X) x H;(X) — Q restricts to a
non degenerate pairing on NL(24=0/21f,, (X)) x NU/21H;(X). We begin the second section by
showing in Lemma 2.1 that such pairings are non degenerate for a large class of varieties. Lemma
2.1 also shows that these pairings are expected to be non degenerate for all smooth projective
varieties if one believes in Grothendieck’s standard conjectures.

The construction of the projectors Ily; ; is unsurprising and is usually used to extract the Néron—
Severi group N.S;(X) out of CH;(X) :

Theorem 1. Let i be an integer. Assume that the pairing N4 Hoy 2;(X) x N Hy(X) — Q is
non degenerate. Then there exist idempotents Ily; ; and Ilag_g; q—; in CHgq(X x X) such that
Iy ; = tHQd—Qi,d—i'_

(Hai4)« Ha(X) = N'Hpi(X).

CHi(X)hom = ker (H2i,i : CHZ<X) — CHZ(X))

The Chow motive (X, 1y, ;,0) is isomorphic to (L®")®% where d; = dim N*Ho;(X).

If 2i > d there is a Lefschetz isomorphism of Chow motives (X,IIy;;,0) —
(X, M2g—2i,4—i,2i — d) given by intersecting 2i — d times with a smooth hyperplane sec-
tion of X.
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We now turn to the construction of the projectors Ilz;11,;. In particular, our construction gives a
motivic interpretation of the Abel-Jacobi map to the algebraic part of the intermediate Jacobians.
Write J#(X) for the image of the Abel-Jacobi map AJ; : CHZ-(X)aZlg — J;(X(Q)), it is an algebraic
torus defined over k.

Theorem 2. Let i be an integer. Assume that the pairing N% " Hoy o; 1 (X)X N Hoi11(X) — Q
is non degenerate. Then there exist idempotents Ilo;11,; and Ilag—2;—1,4—i—1 in CHge(X x X) such
that

Maiq1,: = tH2d—2i—1,dfi—1-

(Mgi41,:)+Ho(X) = N'Hg11(X).

ker (AJZ : CHi(X)alg — J,ZI(X)(]C) X Q) = ker (H2i+171‘ : CHi(X)alg — CHi(X)alg)-

The Chow motive (X, 2,41 4,0) is isomorphic to b1 (JF(X))(7).

If 20 + 1 > d there is a Lefschetz isomorphism of Chow motives (X,Ilg;414,0) —
(X, Mag—2i—1,d—i—1, 2i+1—d) given by intersecting 2i+1—d times with a smooth hyperplane
section of X.

These generalize Murre’s construction of the Albanese and Picard projectors (II1 ¢ and ITag_1,4—1
respectively) because in the cases @ = 0 or i = d — 1 we have N°H;(X) = H;(X) and
NdilHQd_l(X) = Hgd_l(X). The pairing Ndiiingd_Qi_l(X) X Nngi_;,_l(X) — Q is thus just
the cup product pairing between Haq—1(X) and H;(X) and is always non degenerate.

Finally Lemma 2.1 shows that the above pairings are all non degenerate for curves, surfaces,
abelian varieties, complete intersections, uniruled threefolds, rationally connected fourfolds and
any smooth hyperplane section, product and finite quotient thereof. For those varieties X for
which those idempotents can be constructed for all ¢ we can show, thanks to the Gram—Schmidt
process of Lemma 2.12, that it is possible to choose the idempotents of Theorems 1 and 2 to be
pairwise orthogonal :

Theorem 3. If the pairings NLC4=0/21 [, (X)) x N2 H{(X) — Q are non degenerate for all
i then the idempotents of Theorems 1 and 2 can be chosen to be pairwise orthogonal.

The second section is then devoted to the proof of these theorems.

In the third section, we compute the Chow motive of those varieties whose Chow groups are all
representable. We say that CH; (X )a is representable if there exists a curve C' and a correspondence
I' € CH;41(C x X) such that CH;(X ), = I'xCHo(C)ale. We show that if X is a variety whose
Chow groups are all representable then the pairings NL24=9/21Hy; (X)) x NU/AH(X) - Q
are non degenerate for all . We then use Theorems 1, 2 and 3 to compute the Chow motive of
varieties having representable Chow groups. Informally, Esnault and Levine [6] showed that if the
Chow groups of a variety X are all representable then the cohomology of X is generated by the
cohomology of curves. Conversely Kimura [14] proved that if the cohomology groups of X are
generated by the cohomology of curves and if the Chow motive of X is finite dimensional (See [14]
for a definition) then the Chow groups of X are representable. Here we prove a stronger statement:

Theorem 4. Let k C C be an algebraically closed field. Let X be a smooth projective variety of
dimension d over k. Write X¢ := X XgpectSpec C and b; := dim H;(X). The following statements
are equivalent.
(1) B(X) = 1@ by (Alby) SLE @b, (JH(X))(1) & (L) - @by (Ji_y (X)) (d— 1) &L
(2) The cycle class maps cl; : CH;(X) — Ha;(X) and the rational Deligne cycle class maps
P : CH;(X¢) — HY (X, Q(i)) are surjective for all i and h(X) is finite dimensional.
(8) The rational Deligne cycle class maps clP : CH;(X¢) — HE(X,Q(i)) are injective for all
7.
(4) The Chow groups CH;(X¢)alg are representable for all i.
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Esnault and Levine [6] proved that if the total Deligne cycle class map of X is injective then it
is surjective. Theorem 4 gives thus a better insight to the link between injectivity and surjectivity
of cycle class maps.

The proof of the theorem goes as follows. The first statement is certainly the strongest, i.e.
it implies the three others. The equivalence (3 < 4) is certainly known but we couldn’t find a
reference for (4 = 3), so we include a proof in §3.2. The proof relies on a generalized decomposition
of the diagonal and was essentially written in [6]. The implication (2 = 4) is due to Kimura and
appears in [14, Theorem 7.10]. Our main input is then a proof of (4 = 1) which settles the theorem
and which we give in §3.3. For sake of completeness we also give a direct proof of (2 = 1) in §3.1
using our projectors Ily; ; and Ilg;1q ;.

As an immediate corollary we get the following theorem, which is a generalization of a result
by Jannsen [11, Th. 3.6] who proved that if the total cycle class map of X is injective then it is
surjective. Theorem 5 was also proved by Kimura [15].

Theorem 5. Let k C C be an algebraically closed field. Let X be a smooth projective variety of
dimension d over k. The following statements are equivalent.

(1) B(X) = @, (L2)%0=,

(2) The rational cycle class map cl : CH.(X¢) — H.(X) is surjective and h(X) is finite
dimensional.

(8) The rational cycle class maps cl : CH.(X¢) — H.(X) is injective.

(4) The Chow groups CH;(X¢) are finite dimensional Q-vector spaces for all i.

Again this theorem makes more precise the link between injectivity and surjectivity of cycle
class maps.

In the fourth and last section we are interested in using our construction of idempotents to give
new examples of varieties for which we can compute explicitly a Chow—Kiinneth decomposition
of the diagonal. Such examples include 3-folds X satisfying H?(X, Q%) = 0 (e.g. Calabi-Yau 3-
folds), rationally connected 4-folds, and 4-folds admitting a rational map to a curve with rationally
connected general fiber.

We are also interested in giving new examples of varieties whose Chow motives are finite di-
mensional in the sense of Kimura [14]. These will be given by smooth hyperplane sections of
hypersurfaces covered by a family of linear projective varieties of dimension |n/2] in P**1. These
were considered by Esnault, Levine and Viehweg [7] and also subsequently by Otwinowska [18] and
include hypersurfaces of very small degree, e.g. cubic 5-folds, 5-folds which are the smooth intersec-
tion of a cubic and a quadric and 7-folds which are the smooth intersection of two quadrics. Other
examples are given by rationally connected threefolds, a case which was treated by Gorchinskiy
and Guletskii in [8].

Let us mention that the construction given in the first section is used in [21] to prove a gener-
alization of the implication (4 = 1) in Theorem 4 to the case of Chow motives with representable
Chow groups. The proof given there does not involve any cohomology theory, except implicitly
through the use of Jannsen’s semi-simplicity theorem whose proof requires the existence of a “good”
cohomology theory. In [22], we prove Murre’s conjectures for the varieties considered in §4. We
also refer to [22, §2] for some statements that do not involve the cohomology (or the Chow groups)
of X in all degrees.
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1. A FIRST CONSTRUCTION

1.1. The coniveau filtration on numerical motives. Let k£ be any field and X a smooth
projective variety over k of dimension d. We refer to [13, §7.1] for the definition of pure motives in a
covariant setting. Chow motives are pure motives with rational coefficients for rational equivalence
and numerical motives are pure motives with rational coefficients for numerical equivalence. The
category of Chow motives over k is denoted M and the category of numerical motives over k
is denoted M. The reduction modulo numerical equivalence of a cycle v € CH(X) is denoted
7. A fundamental result of Jannsen [10] states that the category of numerical motives is abelian
semi-simple. In particular if f : N — M is a morphism of numerical motives with M = (X, p,n),
Jannsen’s theorem gives the existence of a correspondence 7 € Endy (M) such that im f = (X, 7, n).

It is thus possible to define a coniveau filtration on numerical motives as in [1, §8] and [13, §7.7]:
NIM =3 (f : h(Y)(j) — M) where the sum runs through all smooth projective varieties ¥’
and all morphisms f € Homy (h(Y)(j), M) and where h(Y)(j) denotes the numerical motive of ¥’
tensored j times by the Lefschetz motive.

Let us imagine for a moment that Grothendieck’s standard conjecture B (cf. [1, 5.2.4.1]) is true.
Then [1, 5.4.2.1] each numerical motive M has a weight decomposition that we write M = @, M.
Furthermore, for weight reasons NJM; = Y (f : hi—2;(Y)(j) — M;). Another consequence of
Grothendieck’s standard conjecture B is that if ¢ : Z — Y is a smooth hyperplane section of
dimension i — 2j of Y then 4, : h;_;(Z) — hi—2,(Y) is surjective [1, 5.2.5.1]. Therefore we have
NIM; = im (f : bi—2;(Y)(j) — M;), where the sum runs through all smooth projective varieties
Y with dimY =i — 25 and through all morphisms f € Homyg(hi—2;(Y)(5), M;).

1.2. The idempotents 7y, ; and 79,41 ;. Let us now forget about the standard conjectures. We
know that points and curves have a weight decomposition [1, 4.3.2]; it is therefore natural for any
integer j and for any numerical motive M to consider the following direct summands of M :

ngJ‘ = Zlm (f : Eo(Spec k)(j) — M) and M2j+1,j = Zlm (f : 61(0)(]) — M)

where the first sum runs through all morphisms f € Homy(ho(Speck), M) and the second sum
runs through all curves C' and through all morphisms f € Homy(h;(C), M). Thus in particular
there exist for all integers j correspondences mg; ; and ma;41; in CHy(X x X) such that My; ; =
()(7 7_1-2j,ja 0) and M2j+1,j = ()(7 7_1-2j+1,ja 0)

1.3. A lifting property. We denote by My (resp. M) the full thick sub-category of M generated
by the Chow motives of points (resp. the h1’s of smooth projective curves over k). For a motive
P € M, let P denote its image in M. (This notation is abusive since we previously denoted
numerical motives with a bar and it is not known if all numerical motives admit a lift to rational
equivalence). Let us also write Mg (resp. M) for the image of My (resp. M;) in M. The
functors Mo — Mg and M; — M, are equivalence of categories (see [20, Corollary 3.4]) and as
such the categories My and M are abelian semi-simple.

Proposition 1.1. Let M be an object in Mg (resp. in My). Let N be any motive in M. Then
any morphism f : M — N induces a splitting N = N1 & N2 with Ny isomorphic to an object in
My (resp. in M;) and Ny = im f.

Proof. The morphism M — N induces a morphism M — N and it is known that any morphism
in an abelian semi-simple category is a direct sum of a zero morphism and of an isomorphism (cf.
[2, A.2.13]). Let us thus write

M=ol B NeN,=N
where f is an isomorphism M; — Ni. The composition (f~* &0)o (f&0) € End(M) is therefore
equal to the projector M — M; — M. Let then g : N — M be any lift of f~'!®0: N - M
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and let M; be any lift of M;. Then go f € End(M). But it is a fact that End(M) = End(M).
Therefore, go f is a projector on M;. We now claim that fogo fog defines a projector in End(NV)
onto an object isomorphic to M;. Indeed,

(fogofog)o(fogofog)=fof((gof)olgofolgof))og=1Ffolgof)og=fogofog

and we have the commutative diagram
9 M f N9\ f N9 m f N9 m /
M, id M, id M,

showing that indeed f o go f o g projects onto M; (since it has a retraction). O

N N

1.4. The idempotents my;; and mp;41 ;. Proposition 1.1 shows that it is actually possible
to choose the correspondences my;; and mej41,; above to be idempotents in CHy(X x X). In
other words, Proposition 1.1 shows that it is possible to define direct summands (X, w9, ;,0) and
(X,m2;41,5,0) of the Chow motive h(X) of X whose reduction modulo numerical equivalence are
the direct summands Ma; ; and Msjy1 ; defined above.

We won’t be giving the details here but it can be shown that, if Grothendieck’s Lefschetz stan-
dard conjecture B (see below for a precise statement of this conjecture) is true for all smooth
projective varieties, then the idempotents 7o; ; and m9;41 ; constructed here coincide modulo ho-
mological equivalence with the idempotents Ily; ; and Ilp 1 ; of §2.

1.5. A remark about the Kiinneth projectors. We would like to explain how it is possible
to construct cycles whose numerical classes are the expected Kiinneth projectors, i.e. whose ho-
mological classes are expected to be the projectors H.(X) — H;(X) — H.(X). We proceed by
induction on d = dim X. If X = Spec k, we define 7 to be the cycle X x X inside X x X.
Suppose we have constructed projectors modulo numerical equivalence 73 , 71 ... ,w%/( dimY)—2 for
all smooth projective varieties Y of dimension dimY < d. Then, for all i € {0,...,d — 1}, we
define the cycle ¥ € CH4(X x X)/num to be the projector such that

(X,75,00= |J im(fe:(Vi7),0) = (X)),
fY—X
where the sum runs through all smooth projective varieties Y of dimension ¢ and all morphisms
f:Y — X. We then set 75 ; = 'mi and mj =idx — >, ;7"

If Grothendieck’s standard conjecture B is true, then it can be checked that those define the
expected Kiinneth projectors.

2. THE PROJECTORS Ily; ; AND Il 41

In this section, we fix an algebraically closed field k with an embedding & <— C and we prove
Theorems 1, 2 and 3. We start with a lemma which shows that many varieties do satisfy the
assumptions of these theorems.

Let X be a d-dimensional smooth projective variety over k. Let ¢+ : H — X be a smooth
hyperplane section of X and let I', € CHy_1(H x X) be its graph and let 'T’, be the transpose of
[',. We define L :=T,0'T, € CHy_1(X x X). The hard Lefschetz theorem asserts that the map
L' : Hyi(X) — Hgq—i(X) given by intersecting i times with H is an isomorphism for all i > 0.
The variety X is said to satisfy property B if the inverse morphism is induced by an algebraic
correspondence for all ¢ > 0. It is one of Grothendieck’s standard conjectures that all smooth
projective varieties should satisfy B.
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Lemma 2.1. Let i be an integer in {d,...,2d}. The cup product pairing NLG4=D/21Hyy (X)) x
NU2IH(X) — Q is non degenerate in either of the following cases:

o X satisfies property B.

o NU2IH(X) = Hi(X).
In particular the pairing N9~ 'Hag 1(X) x NYH{(X) — Q is non degenerate for all X.
Proof. In the case X satisfies property B, the Hodge index theorem is a crucial ingredient and the
lemma is a special case of [22, Prop. 1.4]. The other case is obvious. (]

Therefore the results in this section hold for curves, surfaces, abelian varieties, complete inter-
sections, uniruled threefolds, rationally connected fourfolds and any smooth hypersurface section,
product or finite quotient thereof. All those varieties satisfy property B. Lemma 3.1 shows that
the results in this section also hold for varieties for which some cycle class map is surjective.

2.1. Setup. We are given a smooth projective variety X over k of dimension d. By definition
NiHy;(X) coincides with the image of the cycle class map CHa;(X) — Ho;(X). For each integer i,
let d; = dimg N*H»;(X) and let P; be the disjoint union of d; copies of Spec k. Notice that d; > 0
because N?Ha;(X) always contains the (d — i)-fold intersection of a hyperplane section. We then
fix I'y; € CHZ<Pl X X) such that

(ng)* : Ho(Pl) i) NZHQZ(X)
is bijective. This amounts to fixing a basis of N'Hs;(X) = im (cl; : CH;(X) — Ha;(X)).

For each integer i, we also fix a smooth projective curve (not necessarily connected) C; and a
correspondence I'g; 11 € CH;41(C; x X) such that

(Tait1)«H1(Cy) = N'Haiy1 (X).
Let C;; be the connected components of C; and for all [ let z; ; be a rational point on C;;. Up to

composing I'y; 11 with the correspondence A¢, — >, ({zll} x Cii+Cip % {zll}) € CHy(C; x Cy),
we can and we will assume moreover that

(T2i41)«Ho(C;) = (T2i41)«H2(C;) = 0.

In order to establish the Lefschetz isomorphism of Theorems 1, 2 and 3 we will make use of the
following easy lemma.

Lemma 2.2. Let i be an integer in {d + 1,...,2d} and assume that the cup product pairing
NL@R=D21 0 (X)) x NU/2IH(X) — Q is non degenerate. Then L'~ : Hy(X) — Haq_i(X)
maps isomorphically N/ H;(X) to NLC4=9/21H,y, (X).

Proof. The non degeneracy assumption says in particular that the two Q-vector spaces
NU/2IH(X) and NLU24=9/2] FH,, (X) have same dimension. The Lefschetz isomorphism L re-
stricts to an injective map N2 H;(X) — Hyy_;(X) and, by definition of N, maps N /2 H;(X)
into NL4=0/21 [, (X). O

Remark 2.3. In fact if the pairing NL14=9/21 H,; (X)) x NUW/2 H;(X) — Q is non degenerate,
then more is true. Namely, as a consequence of the Lefschetz isomorphisms of Propositions 2.4
and 2.8, we have that the isomorphism L=% : NU/2 H;(X) — NL24=9/21 g, , ;(X) has its inverse
induced by a correspondence.

If for an integer i such that 2i € {d,...,2d}, the cup product pairing N9 Hyq 9;(X) x
NiHy;(X) — Q is non degenerate, Lemma 2.2 makes it possible to furthermore assume that
Py = Py_; and T'ag_o; = L =% o Ty,.

Likewise if for an integer ¢ such that 2¢ + 1 € {d,...,2d}, the cup product pairing
N =1 o 9; 1(X) x N'H;11(X) — Q is non degenerate, Lemma 2.2 makes it possible to
furthermore assume that C; = Cy_;_1 and T'aq_9;_1 = L¥ 17909, .
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2.2. Proof of Theorem 1. In this paragraph we consider an integer ¢ with 2¢ > d and a smooth
projective variety X of dimension d for which the pairing N9~ Hyq_;(X) x N*Ho;(X) — @ is non
degenerate.

The correspondence I'ag_o; := L% =% 0 T'y; induces by duality a bijective map
("Toa—2i)« : (Nd*indfzi(X))v = Ho(Py)".

By the non degeneracy assumption (Nd*iHQd_gi(X))v identifies with N?Ho;(X) and Hy(P;)V
identifies with Hq(P;). Therefore the composition T'a4_o; o I's; induces a Q-linear isomorphism
Hy(F) = Hy(P;). Tt is then clear that there exists a correspondence vo; € CHo(P; X P;) such
that ~yg; 0 'T'9q_o; 0 T'a; acts as identity on Ho(P;). Because L = 'L we also have

Y2i = t’Yzz'-
We then set
Iy; ; :=Dg; 072 0 'Tag_9; € CHy(X x X).
Since 72;0'Ta4_2;0T2; = id € CHg(P; x P;), it is clear that Ils; ; is an idempotent and that it induces
the projector H,(X) — N'Hy;(X) — H,(X) in homology. Also, it is clear that Ilag_o2; 4—; := IIa; ;
(Notice that if 20 = d then I 4,9 = tHd7d/2) defines an idempotent which induces the projector
H.(X) = N¥Hyy_5;(X) — H,(X) in homology. O

Proposition 2.4. The correspondence Hag_o; g—;0L* ~9olly; ; : (X, la;.4,0) — (X, Hog—2i d—i, 2i—
d) is an isomorphism of Chow motives.

Proof. Using the identities L = ‘L, vo; = ‘v9;, Ilag—2;4—i = 'Ils;; and the fact that Iy;; =
I'y; 0795090 tr2i—d i an idempotent, one can easily check that IIy; ; 0I'9; 0720 tTy; 0 Mog—2ida—i
is the inverse of Iag_2i q—; 0 L?*~% 0 Iy ;. O

Proposition 2.5. Let IIs; € CHy(X x X) be an idempotent which factors through a zero-
dimensional variety P; as Ilo; =T o a with T' € CH;(P; x X) and a € CHy_;(X X P;), and whose
action on H,(X) is the orthogonal projection on N*Ho;(X). Then the Chow motive (X,Ily;,0) is
isomorphic to (IL®")®d:,

Proof. The cycle class map CHy(P;) — Ho(F;) is an isomorphism. Let 7 := aoT’ € CHy(P; x F;).
By functoriality of the cycle class map, we see that 7 is an idempotent such that (P;, 7,0) = 199,
The correspondence I' is an element of CH;(P; x X) = Homy, (h(P;)(é), h(X)) and it can easily be
checked that the correspondence Ily; o' o 7 € Homy, ((Pi, 7,1), (X, oy, 0)) is an isomorphism with
inverse 7 o a o Ils;. O

Proposition 2.6. Let Qq; be a correspondence in CHy(X x X) such that Qa; acts as the identity
on N'Ho;(X) and such that Qo; is supported on X x Z with Z a sub-variety of X of dimension i.
Then CH; (X )nom = ker (Q2; : CH;(X) — CH;(X)). In particular

CHi(X)hom = ker (Hgiﬂ‘ : CI{Z (X) — CHI(X))

Proof. By functoriality of the cycle class map, we have a commutative diagram

CH;(X) — CH"(Z) —— CH;(X)

Tk

Hyi(X) H°(Z) Hoyi(X)

The composition of the two arrows of the top row is the map induced by @Qs; and the composition
of the two arrows of the bottom row is the identity on im (¢l;). The proposition follows easily. O
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2.3. Proof of Theorem 2.

2.3.1. The Albanese and the Picard varieties. Let X be a smooth projective variety over a field k.
The Albanese variety attached to X and denoted Alby is an abelian variety universal for maps
X — A from X to abelian varieties A sending a fixed point zp € X to 0 € A. The Picard variety
Pic% of X is the abelian variety parametrizing numerically trivial line bundles on X (i.e. those
with vanishing Chern class). These define respectively a covariant and a contravariant functor
from the category of smooth projective varieties to the category of abelian varieties.

The abelian varieties Albx and Picg( are dual and are isogenous in the following way. Let C be
a curve which is a smooth linear section of X. Then the map

U : Pick — Pic -2 Albe — Alby
is an isogeny, where © is the map induced by the theta-divisor on the curve C.

The following proposition is essential to the construction of the idempotents Ilp; ;.

Proposition 2.7 (¢f. Th. 3.9 and Prop. 3.10 of [20]). LetY and Z be connected smooth projective
varieties and let ¢ € CHo(Y) and n € CHo(Z) be 0-cycles of positive degree. Then there is an
isomorphism
Q : Hom(Alby,Pic%) ® Q — {c € CH (Y x Z), ¢(¢) = ‘e(n) = 0}.
Moreover, Q) is functorial in the following sense. Let ¢ :Y' —Y and ) : Z' — Z be morphisms of
varieties and let (' and ' be positive 0-cycles on Y’ and Z' with direct image ¢ and n on Y and
Z. If B: Alby — PiCOZ 18 a homomorphism, then
Q(Picy 0 B) =" o Q(B) and QB o Alby) = Q(B) o ¢s,
where () is taken with respect to the chosen 0-cycles.
2.3.2. Intermediate Jacobians. Given a smooth projective complex variety X, the i*"" intermediate
Jacobian attached to X is the compact complex torus
_ Hji1(X, C)
FiHi11(X,C) + Hai11 (X, Z)

Ji(X)

It comes with a map

AJ; : CHA(X)pom — Ji(X)
defined on the integral Chow group called the i*" Abel-Jacobi map which was thoroughly studied
by Griffiths [9]. In the cases i = 0 and ¢ = dim X — 1, we recover the notions of Albanese variety
and Picard variety respectively. These intermediate Jacobians are however fairly different since
they are of transcendental nature. While the Albanese and the Picard variety are algebraic tori,
this is not the case in general for intermediate Jacobians. Precisely, let J:* '8 denote the maximal
sub-torus inside J;(X) whose tangent space is included in H,4; (X, C). It is then a fact that Jflg
is an abelian variety and that
. N}-‘IH22'+1(X7(D)

NiHsii1(X,C) N (FiHy11(X, C) + Haiy1(X, Z))

where N Ha;11(X) is the maximal sub-Hodge structure of Ho;11(X) contained in H; 1 (X, C) @
H; ;+1(X,C). In particular, the intermediate Jacobian is algebraic if and only if Hy;y1(X,C) is
concentrated in degrees (4,7 + 1) and (i + 1,4). As a consequence of the horizontality of normal
functions associated to algebraic cycles [9], the cycles in CH%(X )yom that are algebraically trivial
map into J™%(X) under the Abel-Jacobi map. The map CHZ(X)., — J2'8(X) is surjective if

NHy;1(X) D NiHoi1(X) (the reverse inclusion always holds), in particular if N?Ho;11(X) =
Hy;11(X). In any case, let us write J¢(X) for the image of the map AJ; : CHZ(X )ayg — JH&(X).

THE(X)

K2
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It is an abelian sub-variety of the abelian variety J*#(X) which is defined the same way as J*'2(X)
with Ny replaced with N. We sum this up in the commutative diagram

CHZ (X )pom AJi

)

CHZ(X ) —2m J& (X)) JUB(X).

Ji(X)

Finally if X is defined over an algebraically closed sub-field k of C, the image of the composite
map
CHY (X )alg = CHZ(X0)alg — Jflg(XC)

defines an abelian variety over k that we denote J?(X).

2.3.3. The projectors a1, and Ilag_2,—1 4—i—1. Given any abelian varieties A and B, Hom(A, B)
denotes the group of homomorphisms from A to B. Recall that the category of abelian varieties up
to isogeny is the category whose objects are the abelian varieties and whose morphisms are given
by Hom(A, B) ®z Q for any abelian varieties A and B. This category is abelian semi-simple, cf.
[23].

In the rest of this paragraph we consider an integer ¢ with 2 + 1 > d and a smooth projective
variety X of dimension d for which the pairing N9 "1Hyy o9; 1(X) x N Ho;11(X) — Q is non
degenerate. In particular the dual of J$_. ;(X) identifies with J*(X). Lemma 2.2 implies that
the correspondence L2174 induces an isogeny A : J*(X) — J$ , ,(X) and because L = 'L we
have A = AV, i.e. A is equal to its dual.

Taking up what was said in §2.1 we have a smooth projective curve C; over k and correspondences
F2i+1 S CHi+1(Cz‘ X X) and ['og_9,_1 := L#tl-d, F2i+1 S CHd—i(Ci X X) such that both maps

(Taig1)w s Hi(Cy) — N'Hai1(X) and (Tag_2i1)s : Hi(C;) = N Hyy o5 1 (X)

are surjective and such that both maps act trivially on Hy(C;) and on H(C;). The correspondence
I'9;41 induces by functoriality of the Abel-Jacobi map a surjective homomorphism

(F2i+1)* N Albci cd Jla(X)
as well as a homomorphism with finite kernel
("Tait1)s 0 A s JH(X) = Picg .
By semisimplicity of the category of abelian varieties up to isogeny, there exists a €
Hom(J{(X), Albc,) ® Q such that (I'zi11). o a = idje(x). Let us consider
®:=aoA " oa" € Hom(Picg, , Albc,) ® Q
so that
(*) (F2i+1)* odo (tFQH_l)* OA:ldJ;z(X)

We would now like to use Proposition 2.7 in order to give an algebraic origin to ®. Decomposing
C; into the disjoint union of its connected components C;;, Proposition 2.7 gives a functorial
isomorphism between Hom(Albg;,, Pic%i) ® Q and {c € CHY(C; x C;) / c(ziy) = te(2i1) = 0} for
z;,; the rational point on C;; considered in §2.1. Here, ® belongs to Hom(Pic%i,Alei) ® Q which
is not quite the Hom group in the statement of Proposition 2.7. To correct this, let © denote the
theta-divisor of the curve C;. Then under the isomorphism of Proposition 2.7, ® corresponds to a

correspondence ;11 1= Qol'0O ! ¢ CHl(CZ- x C;) satisfying (vai11)«2i1 = ("Y2i41)+2i1 = 0 for
all [. Because ® = ®" we have

t
Y2i4+1 = V2i41-
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We now set
o1, := D2ig1 0 Y2i41 © Togooi—1 = Daj1 092541 0 Taipq 0 L% € CHy(X x X).

By (%), the action of ITg;41; on J#(X) is given by id je(x). The fact that IIz;11; defines a projector
goes as follows. It is enough to prove that

t
Y2i+1 © F21'+1 oAo F2i+1 O Y2i4+1 = 7V2i+1-

Thanks to Proposition 2.7, it is actually enough to prove ® o (*I'g;11)s 0 L2179 0 (T'g;41)s 0 ® =
& : Picg, — Albg,. This last statement follows directly from (x).
Now because II3;11 ; acts as the identity on J#(X) and because I'g; 11 and I'yg_9;—1 act trivially
on homology classes of degree # 1, we see that the homology class of Ily;11,; is the projector
Finally we set Ilag—2i—1,d—i—1 = tH2i+1’i, which is licit in the case 2d — 27 — 1 = d since in
this case v2;41 = "yoi11 implies Io; 41 ,; = Ilg;11 ;. It is then straightforward that Iag—2;—1,4—i—1
defines and idempotent that induces the projector H,(X) — N9 " 1Hyy o, 1(X) = H.(X). O

Proposition 2.8. The correspondence ag_9;—1.4—i—1 © L2179 0 Tly;1,; ¢ (X, Tl2i414,0) —
(X, Mog—2i—1,d—i—1,2i + 1 — d) is an isomorphism of Chow motives.

Proof. Using the identities L = 'L, v2;+1 = "y2i41, ag—2i—1,d—i—1 = 'T2;+1; and the fact that

Hait1,i = a1 0 Y2541 0 Taip1 0 LL% 174 is an idempotent, one can easily check that Ig; 1 o
¢ . . 2i+1—d

F2i+1 O Y2441 © F2i+1 (¢] H2d—2i—1,d—i—1 1S the mverse Of H2d—2i—1,d—i—1 oL it [¢] H2i+1,i' O

Proposition 2.9. Let IIy;11 € CHg(X x X) be an idempotent which factors through a curve C;
as Ma;p1 =T oa with T € CH;11(C; x X) and o € CHy—;(X x C;), and whose action on H,.(X)
is the orthogonal projection on N*Ha;11(X). Then the Chow motive (X,1l9;11,,0) is isomorphic
to b1 (J3(X))(2).

Proof. The assumption on the homology class of Il5; 1 implies that I15; 41 acts as the identity on
J#(X) and acts as zero on Hy;(X). Therefore, by functoriality of the cycle class map, ao T €
CH'(C; x C;) acts as zero on some positive degree zero-cycle ¢ on C;. Now a consequence of
Proposition 2.7 is that given two abelian varieties J and J' over k, there is a canonical identification

HOIII(J, J/) ® Q = Homk (bl(‘])’ bl(Jl))
Because IIg;11 acts as the identity on J#*(X), a oI' defines an idempotent 7 € End(h;(C;)) such
that (CiﬂT,O) = hl(J{l(X))
The correspondence I' seen as a morphism of motives belongs to Homy, (h(C;)(), h(X)). Let us
show that

o4, o T o € Homy, ((Cy, ,4), (X, ai41,4,0))

is an isomorphism. In fact, let us show that its inverse is given by m o av 0 Ilp; 11 ;, i.e that
(IToTom)o(moaolIl)=1II and (mroaoll)o(IloI'om) =7 as correspondences,

where for convenience we have dropped the subscripts “2¢ + 17. But then this is obvious because
II=Toaand m =aol are idempotents. 0

Proposition 2.10. Let Q2,41 be a correspondence in CHy(X x X) such that Q2,41 acts as the
identity on N*Ha;1(X) and such that Qaiy1 is supported on X x Z with Z a sub-variety of X
of dimension ¢ + 1. Then ker (AJi ¢ CH(X)ag = Ji(X) ® Q) = ker (Q2i+1 ¢ CHi(X)alg —
CHi(X)alg). In particular

ker (AJl : CHi(X)alg — Jl(X) X Q) = ker (H2i+1,1 : CHi(X)alg — CHi(X)alg)~
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Proof. The assumptions on (g;4+1 imply that the action of Q9;4; on CH;(X) factors through
CH'(Z) for some desingularization Z — Z; they also imply that the induced action of Q2,41 on
J#(X) is the identity.

We have thus the commutative diagram

CH;(X )alg —> CHY(Z)a1g —2> CH;(X)ag

lM |- l

JP(X) ® Q —— Pic} © Q —= J¢(X) © Q

where A and B are correspondences such that B o A = (Q;41. The inclusion ker AJ; C ker Iy 11 ;
follows from the commutativity of the diagram, which itself is a consequence of the functoriality
of the Abel-Jacobi map with respect to the action of correspondences. The reverse inclusion
ker Ilg;41,; C ker AJ; follows from the fact that the composite of the two lower horizontal arrows
is the identity on im AJ; = J&(X) ® Q. O

Remark 2.11. An interesting question is to decide whether or not the action of an idempotent
on homology determines its action on Chow groups. For example, given idempotents my; ; and
T2%4+1,i S CHd(X X X) such that (7T217z)*H*(X) = Nngl(X) and (7T2i+1,i)*H*(X) = N2H2i+1(X),
do we have

CHi(X)hom = ker (772i7i : CHZ(X) — CH,L(X))
and ker (AJZ : CHi(X)alg — JZG(X) (24 Q) = ker (7r2i+1,i : CHl(X)alg — CHi(X)alg)?

It is shown in [22] that this is the case if X is finite dimensional in the sense of Kimura.

2.4. Proof of Theorem 3. In this section we are given a smooth projective variety X of dimension
d for which the pairings are all non degenerate. As such, by Theorems 1 and 2 we can define all
the idempotents Ily; ; and Ily;11,;. However these are not all necessarily pairwise orthogonal. We
start with the following linear algebra lemma which makes it possible to modify the idempotents
so as to make them pairwise orthogonal.

Lemma 2.12. Let V be a Q-algebra and let k be a positive integer. Let mg, ..., T, be idempotents
in 'V such that mj o m; = 0 whenever j —i < k and j # i. Then the endomorphisms

1 1 1 1
Di 1=(1—§7Tn)0"'0(1—§7Ti+1)O7Ti0(1—§7Ti71)0"'0(1—§7T0)

define idempotents such that pj o p; = 0 whenever j —i < k+1 and j # 1.

Proof. Let j and i be such that j — 7 < £+ 1 and look at

IM:=m;0(1— %ﬂ'j_l)o~-~o(1— %ﬂ'o)o(l— %Wn)o-~-o(1—%7ri+1)o7ri.
Suppose first j < i. Because we have 7. o m; = 0 for all r < s, we immediately see that II = 0.
Suppose j = i, it is also easy to see that in this case Il = 7;. Finally, suppose that i < j <i+k+1.
Because . o mg = 0 for all r < s 4 k, we can see after expanding II that II = m; o m; — %ﬂ'j om0

ﬂi—%wjomomzo. O

In our case of concern, we get

Theorem 2.13. Let X be a smooth projective variety of dimension d. Let i < d be an integer and
let mo,...,m € CHg(X x X) be idempotents such that (7;) H.(X) = Hj(X) for all 0 < j < .
Let moq—j = t7rj for0 < 53 <4 Ifmomg =0 forall0 < r < s < 2d, then the Gram—
Schmidt process of Lemma 2.12 gives mutually orthogonal idempotents {p;}jcqo,....i,2d—i,...2d} such
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that (pj)«H.(X) = H;(X) and pag—; :="p; for all j € {0,...,i,2d —1,...2d}. Moreover, we have
isomorphisms of Chow motives (X, ;) = (X, p;) for all j.

Proof. In order to get mutually orthogonal idempotents, it is enough to apply Lemma 2.12 2i + 2
times. In order to prove the theorem, it suffices to prove each statement after each application of
the process of Lemma 2.12. Everything is then clear, except perhaps for the last statement. The
isomorphism is simply given by the correspondence p; o 7; and its inverse is 7; o p;. O

Proposition 2.14. The projectors of Theorems 1 and 2 satisfy
[ HQi,i e} ng’j =0 f07“ 7 7é ]

Ioiq1,5 0oy, =0 for |i — j| > 1.

Ioiq1,5 0o =0 for [i — j| > 1.

;0 Haj1,5 =0 for |[i — j[ > 1.

Proof. The proposition follows from looking at the dimension of ‘T'aq_; o T';. (]

Proposition 2.15. The projectors of Theorems 1 and 2 satisfy
[ H2i—1,1’—1 o H2i+1,i =0 fOT’ all i.
o Il ;0llpi415 =0 and Ilpipq 5 0 Hoiq0 441 =0 for all d.

Proof. For the first point we have ‘T'ay 2,11 0941 02,41 € CH2(C; x C;_1) and thus there exist
rational numbers a;; such that "Tog_2;41 0 a1 0 Y2541 = Zl’l, apy[Ciy x Ci—1 ). This yields
("T2g—2i+10T2i410Y2i41)«2it = 2y ar, [Ci—1,]. By definition of 2,41 we also have (y2i41)+2i; = 0
for all I. Hence a;;r = 0 for all [ and all I’. Therefore 'T'a4_2;+1 © I'2;41 © Y2541 = 0.

For the second point, up to transposing it is enough to prove one of the two equalities. Let us
prove the second one. We have ‘T'yq_o; 1 0 I'g;40 € CHy(P;11 x C;). But then, because 'y2;41
acts trivially on z;; € CHo(C; ;) for all I, we see that y2;41 acts trivially on CH;(C;). Therefore
Y2i41 © ‘Tag_2i—1 0910 = 0. O

Remark 2.16. We have shown through the two previous propositions that ‘T'yq—; o T'; 0y; = 0 for
J —14 <0 and in particular that II; ;o) o Il; |;/2) = 0 for j —4 < 0.

Remark 2.17. The missing orthogonal relations are Ilz;41; 0 Il;; = 0, Ilgi49 41 0 g1, =0
or Ig;41,; 0 lg;—1 ;-1 = 0. There is no reason that these should hold true for the idempotents
constructed in §§2.2. and 2.3.

Before we proceed to the proof of Theorem 3 we need a lemma.
Lemma 2.18. Ifi > d then 'Il; 0o L'~ o I1;; = 0 for j,j’ > i except in the case i = j = j'.

Proof. Up to transposing we only have to prove ‘II; o Lo I, = 0 for j/ > j > i not all equal.
In fact it is enough to prove v, o 'T';j o Li—?o I'jsoryy =0 for j/ > j > i not all equal. The
correspondence 7y; o 'T'j o Li=4 o T';s 0 7 is a cycle of dimension j + j' — 2i in the Chow group of
Py x Pjj, Clyy x Pjj, Pjr) x C|j) or C|jr) x C|;) depending on the parity of j and j'. Notice
that j+7'—2¢ > 1, and that j+j'—2¢ = 1 implies that ;' =i+1 and j = 4, and that j+j' —2i = 2
implies that j and j’ have same parity (in fact j = j' =i+ 1 or 5/ = j+2 = i + 2). The proof
that v; o 'T'; o Li=?o I'js o yjs = 0 in each of these cases is then similar to the cases treated in the
proof of the previous proposition. O

Proof of Theorem 3. We proceed by induction on k£ > 0 to prove property
Py = There exist idempotents II; € CHy(X x X) for 0 < i < 2d such that
o lljoll; =0if j —7i <k and j # 1.
e II,; satisfies the properties listed in Theorem 1 for all 4.
e Il satisfies the properties listed in Theorem 2 for all 4.
e The II;’s satisfy the conclusion of Lemma 2.18.
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Clearly if property Pag41 holds, then the idempotents II; are mutually orthogonal. (Actually it
is enough to settle P3 by Remark 2.17). If we set II; := II; |;/2), we see thanks to Theorems 1 and
2, Remark 2.16 and Lemma 2.18 that property Py holds. Let us suppose that property Py holds
and let us prove that Py holds.

We set

1 1 1 1 1
Pi = (]. — §H2d) o (]. — §H2d,1) ©--+0 (1 — §Hi+1) o Hl o (1 — 5]._[7;,1) ©---0 (1 — 5]._[0)

By Lemma 2.12, these define idempotents such that Pjo P, = 0if j —i < k+ 1 and j # 4. It
remains to check that P; enjoys the same properties as II;.

It is straightforward from the formula that we have *P; = Pyq_;. It is also straightforward that
P; induces the projector H,(X) — NU/2 H;(X) — H.(X) in homology.

Let us now consider an integer ¢ > d and prove that the Lefschetz correspondence L*~% induces
an isomorphism of Chow motives (X, P;,0) — (X, Pag—;,7 — d). In fact, we are going to show that
tPyo L'=% o P; admits P;oI'; o7, o 'T; o *P; as an inverse, i.e. that

(Piorio%otfiotpi) o (tPioLi*doPi) =P,
and
(*P;o L4 oP)o(Piol;ov0'T;0'P)="P,.

Because L = 'L and v; = *v;, the second equality is the transpose of the first one. Therefore it is
enough to establish the first equality. Thanks to Remark 2.16 we have II; oI';0y; = 0 for all j <4
and by transposing v; o 'T'; o 'II; = 0 for all j < i. Expanding P;, we therefore see that

1 1 1 1
PZ'OFiO’}/iOtFZ‘OtPZ‘ = (l—iﬂgd)o- . ~O(]_—§Hi+1)OHiOFiO’yiOtFiOtHiO(l—itni+1)0~ . -O(l—ﬁtn2d).
On the other hand, Lemma 2.18 implies that
) 1 1 . 1 1
tPiOLl_dOPZ‘ = (1— §tH0)O---O(1— §tHi+1)OtHiOLl_dOHiO(1 - 51__[1‘,1)0---0(1— 51_[0)

Put altogether, this gives
(PiOFiO’yiOtFiOtPi)O(tPiOLi_dOPZ‘) ==

1 1 ; 1 1
(l—iﬂgd)o-“o(l—§Hi+1)OHiO].—‘iO’yiOtFiOtHiOLz_dOHiO(l—inifl)o---o(l—in(]).

By Proposition 2.4 if i is even and by Proposition 2.8 if i is odd, we have II; o I'; o y; o 'T'; o !II; o
L~ o TlI; = II;. This finishes the proof of the Lefschetz isomorphism.

Let us now prove that the P;’s satisfy the conclusion of Lemma 2.18. A careful look at the proof
of Lemma 2.18 shows that it is enough to show that P; factors through T'; o f~; if II; does. This
can be read immediately from the formula defining II;.

If the projectors Ily; factor through a 0-dimensional variety and if the projectors Ils; 11 factor
through a curve for all 4, then it is clear from the formula that so will the projectors Ps; and Po;y1.
On the one hand, Proposition 2.6 gives CH;(X)nom = ker (P,; : CH;(X) — CH;(X)) and Propo-
sition 2.10 gives ker (AJi : CH;(X)alg = JH(X) ® Q) = ker (P2i+1 : CH;(X )alg — CHi(X)alg). On
the other hand, Proposition 2.5 shows that (X, Py;,0) is isomorphic to (L®%)®% and Proposition
2.9 shows that (X, P2;41,0) is isomorphic to b1 (J*(X))(¢). Alternately, the conclusion of Theorem
2.13 gives these isomorphisms of Chow motives. O
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3. REPRESENTABILITY OF CHOW GROUPS AND FINITE DIMENSIONAL MOTIVES

Given a smooth projective complex variety X of dimension d, its i'" Deligne cohomology group
HP(X,Z(p)) is the (2d — i)™ hypercohomology group of the complex Zp(d — p) given by 0 —
(2im)dP —p—

z Ox = Q% = - = QP 5 0. In other words,
HP (X, Z(p)) = B**"*(X, Zp(d — p)).

Deligne cohomology comes with a cycle map ¢IP : CH#(X) — HE (X, Z(i)) defined on the integral
Chow group CH?(X) which is functorial with respect to the action of correspondences and fits
into an exact sequence

0— Ji(X) = HD(X,7Z(i)) — Hdg,;(X) = 0

where Hdg,,;(X) denotes the Hodge classes in Hy;(X,Z) and J;(X) is Griffiths’ i intermediate
Jacobian. As proved in [5, Prop. 1], the following diagram with exact rows commutes

(1) 0 — CH?(X)pom — CH#(X) —— CH#(X)/hom — 0
lAJi J(cz? \Lcli
0 Ji(X) HP(X) Hdg,; (X) 0.

The homomorphism cl; : CHZ(X)/hom — Hdg,,(X) is always injective by definition of homological
equivalence. In particular the functoriality of the Deligne cycle class map implies the functoriality
of the Abel-Jacobi map with respect to the action of correspondences.

Lemma 3.1. Let ¢ be an integer such that d < 2i < 2d.

o If th¢ map cl : CH;(X) — Ha;(X) is surjective then Hoij(X) = N*Ho;(X) and Hag_2;(X) =
N Haq 0;(X). 4

o If the map clP : CH,(X) — HP(X) is surjective then Haiy1(X) = N'Hzip1(X) and
Hyg—2i-1(X) = N Hyy 9; 1(X).

Proof. If the map cl : CH;(X) — Ho;(X) is surjective then by definition Ha;(X) = N*Hq;(X).
Because the Lefschetz isomorphism L%~9 : Hy;(X) — Hag_2;(X) is induced by a correspondence
we also see that Hog 2;(X) = N9 " Hagq o;(X).

Now suppose that the map ¢l : CH;(X) — HZ(X) is surjective. A simple diagram chase in
diagram 1 shows that the Abel-Jacobi map AJ; : CH;(X)hom — Ji(X) ® Q is then surjective.
The Griffiths group Griff;(X) being countable, this is possible only if J;(X) ® Q = J*4(X) ® Q.
Therefore we have J;(X) ® Q = J*(X) ® Q and hence Ha;11(X) = N*H;41(X). Again because
the Lefschetz isomorphism L2*=9+1 : Hy;\ 1 (X) — Hagq_2;—1(X) is induced by a correspondence
we also see that Hag_o;_1(X) = N9 Hoy o 1(X). O

3.1. From finite dimensionality to representability : proof of 2 = 1 in Theorem 4. First
we need a standard lemma.

Lemma 3.2. Let N be a finite dimensional Chow motive. If its homology groups H.(N) vanish
then N = 0.

Proof. The homology class of idy € Endg (V) is then 0. Kimura [14, Prop. 7.2] proved that if
a Chow motive N is finite dimensional then the ideal of correspondences in Endy(N) which are
homologically trivial is a nilpotent ideal. Hence idy is nilpotent i.e. idy = 0. O
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Proof of 2 = 1. Lemma 3.1 shows that H;(X) = N2 H;(X) for all i. Therefore by Lemma 2.1 the
pairings NU/2) H;(X)x NL2d=D/21 ,, ;(X) — Q are all non degenerate. Theorems 1, 2 and 3 then
show that A := 1@h;(Albx)®LE2 @b (JH(X))(1)®(LZ2) % a. @by (J¢_ (X)) (d—1)DL®? is a
direct summand of the Chow motive h(X) and that H.(A) = H,(X). Let us write h(X) =A@ N.
The property of being finite dimensional is stable by direct summand. Therefore N is a finite
dimensional motive. Moreover H,.(N) = 0. Lemma 3.2 shows that N = 0. 0

3.2. Representability vs. injectivity of the Abel-Jacobi maps : proof of 3 & 4 in
Theorem 4. The results in this section are seemingly well-known. Given a smooth projective
complex variety X, we prove that the following statements are equivalent :

(1) CH;(X)alg is representable for all i.

(2) The total Abel-Jacobi map @@; CH;(X )nom — P, Ji(X) ® Q is injective.

(3) The total Deligne cycle class map clp : @; CH;(X)nom — @; H3 (X, Q(i)) is injective.
(4) The total Deligne cycle class map is bijective and H;(X) = NL/21 H;(X) for all 4.

The equivalence (2 < 3) follows immediately from diagram 1. The implication (4 = 3) is
obvious and the implication (3 = 4) is due to Esnault and Levine [6] (Theorem 3.3 below together
with Lemma 3.1). The main argument is a generalized decomposition of the diagonal as performed
by Laterveer [16] and Paranjape [19] among others after Bloch’s and Srinivas’ original paper [4].
Proposition 3.4 proves the standard implication (2 = 1). We couldn’t find any reference for the
implication (1 = 2) so we include a proof of it, see Corollary 3.6. The proof goes through a
generalized decomposition of the diagonal as done in [6, Theorem 1.2] with some minor changes
(Theorem 3.5).

Theorem 3.3 (Esnault-Levine). Let s be an integer. Assume that the rational Deligne cycle class
maps clP : CH;(X) — HE(X) are injective for all i < s. Then these are all surjective. Moreover
the rational cycle class maps cl; : CH;(X) — Hay;(X) are also surjective for all i < s.

Proof. The fact that the rational Deligne cycle class maps are surjective for all 7 < s is contained
in Theorem 2.5 of [6] (the maps cIP are denoted clgfiofi in [6]). The claim about the rational
cycle class maps being surjective is Corollary 2.6 (which states that N*Hy;(X) = Hdge:(X) ® Q)
together with Theorem 3.2 (which states in particular that Hy;(X) = Hdge;(X) @ Q) of [6]. O

Proposition 3.4. Given i, if the Abel-Jacobi map CH;(X)az — Ji(X) ® Q is injective, then
CH;(X )alg is representable.

Proof. Let J*(X) be the image of the Abel-Jacobi map AJ; : CH(X)a — Ji(X). By definition
of algebraic equivalence, CH;(X)alg := > im (I'y : CHo(C)pom — CH;(X)) where the sum runs
through all smooth projective curves C' and all correspondences I' € CH; 1 (C x X). Therefore, by
functoriality of the Abel-Jacobi map, we have J#(X) =Y im (I, : J(C) — J#(X)). By finiteness
properties of abelian varieties there exist a curve and a correspondence I' € CH;11(C x X) such
that J#(X) = TI'.J(C). Therefore for this particular curve I'yCHo(C)nom = CH;(X )alg. O

Theorem 3.5. Let s be an integer with 0 < s < d and let X be a d-dimensional smooth projective
complez variety. Assume CH;(X)ayg is representable for all i < s. Then there is a decomposition

Ax =70+ + - +7 +7"" € CHy(X x X)

such that 7; is supported on D* x T';y1 for some sub-schemes D* and T'; 11 of X satisfying dim D* =
d—iand dimT; 1 =i+ 1 and v**! is supported on D! x X for some sub-scheme D511 of X
satisfying dim Dt =d — s — 1.

Proof. The proof is the same as the proof of [6, Lemma 1.1] once one remarks that the map
ch : CHo(D) — CH"(X) on page 207 has image contained in CH"(X)a, and therefore factors
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through the Albanese map CHo(D) — Albg, because CH" (X)), is representable and has thus the
structure of an abelian variety. O

Corollary 3.6. Assume CH;(X ).y, is representable for all i < s. Then the Abel-Jacobi maps
AJ; : CHy(X)nom — Ji(X) ® Q are injective for all i < s.

Proof. By assumption made on CH, (X)aig, the diagonal A x admits a decomposition as in Theorem
3.5. For all : < s, let I';41 be a desingularization of I';;1. The action of the correspondence ~;

on CHj(X)hom then factors through CH; (fi+1)h0m. For dimension reasons «; acts possibly non
trivially only on CH;(X) and CH;;1(X). Also for dimension reasons, the correspondence ***
acts trivially on CH,(X) for ¢ < s. Therefore the cycle ; acts non trivially on CH;(X )nom only
if i = j. Thus the action of v; on CH;(X )nom is identity. Finally, by functoriality of the algebraic

Abel-Jacobi map, we have the following commutative diagram for all i < s

CH; (X)hom — CH;(Ti41)hom — CH; (X )hom

o - M

Ji(Tis1) Ji(X).

The composition of the two maps on each row is induced by 7; and is equal to identity up to
torsion. A diagram chase then shows that AJ; : CH;(X)ae — J&(X) ® Q is injective. O

Remark 3.7. Given 4, I cannot prove that if CH;(X)ay, is representable then the Abel-Jacobi
map AJ; : CH; (X )ag = Ji(X) ® Q restricted to algebraically trivial cycles is injective.

Remark 3.8. Bloch and Srinivas proved [4, Theorem 1(i)] that if CHg(X)ae Is rep-
resentable then so is CHQ(X)alg. A generalized decomposition of the diagonal shows
that if CHp(X)alg,.-.,CHs(X)a are representable then CH?*(X).q,..., CH**¥(X),, are
also representable.  Therefore, if d is the dimension of X, it is enough to know that
CHo(X)alg, - - - CH|g/2)—1(X)alg are representable in order to deduce that CH.(X)ay is repre-
sentable.

3.3. From representability to finite dimensionality : proof of 4 = 1 in Theorem 4. In
order to prove the implication 4 = 1 of Theorem 4, we again use our projectors Ily; ; and IIz;41 ,
together with the following lemma which appears in [8, Lemma 1].

Lemma 3.9. Let N be a Chow motive over a field k and let Q) be a universal domain over k,
i.e. an algebraically closed field of infinite transcendence degree over k. If CH,(Ngq) = 0, then
N =0. O

Proof of 4 = 1. If CH,.(X¢)aig is representable then Corollary 3.6 shows that the Deligne cycle class
maps clP are all injective. By Esnault and Levine’s Theorem 3.3, the Deligne cycle class maps cl”
and the cycle class maps cl; are surjective for all i. Now Lemma 3.1 shows that Hy;(X) = N*Hy;(X)
and Ha;y1(X) = N'Hag;1(X) for all i. Thanks to Lemma 2.1 we can therefore apply Theorems 1, 2
and 3 to cut out the motive 1@®h; (Alby ) ®LE2 @by (JH(X))(1) B (LE2)Pba @ - @by (JI_ (X)) (d—
1) @ L®? from h(X). These two motives have same rational Chow groups when the base field is
extended to C, Lemma 3.9 implies they are equal. O

As a corollary, we obtain a result proved independently by Kimura [15] (Kimura’s result works
more generally for any pure Chow motive over C).
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Proposition 3.10. Let X be a d-dimensional smooth projective variety over k. If CH,(X¢) is a
finite dimensional Q-vector space, then

d

H(X) = PILE).

=0
Moreover, the cycle class maps cl; : CH;(X) — H;(X) are all isomorphisms

Proof. Indeed, if CH,(X¢) is a finite dimensional Q-vector space then it is representable. Apply
Theorem 4 to see that h(X) is a direct sum of Lefschetz motives and twisted h1’s of abelian varieties.
Now for a complex abelian variety J, CHo(h1(J)) = J®Q which is an infinite dimensional Q-vector
space if J # 0. Therefore h(X) is a direct sum of Lefschetz motives only. O

4. CHOW-KUNNETH DECOMPOSITIONS

A smooth projective variety X of dimension d is said to have a Chow—Kiinneth decomposition
(CK decomposition for short) if there exist mutually orthogonal idempotents Il Iy, ...l €
CH4(X x X) adding to the identity Ax such that (II;).H.(X) = H;(X) for all 4. In this section,
we wish to give explicit examples of varieties having a Chow-Kiinneth decomposition. For this
purpose we use the projectors of Theorems 1 and 2. Along the way we are able to establish
Grothendieck’s standard conjectures and Kimura’s finite dimensionality conjecture in some new
cases. In [22], we prove Murre’s conjectures for all the varieties considered in §§4.2 and 4.3 (and
some others as well).

4.1. The basic theorem. Here, X denotes a smooth projective variety of dimension d. All the
varieties for which we will be able to show that they admit a CK decomposition will actually also
be endowed with a Chow-Lefschetz decomposition in the following sense.

Definition 4.1. The variety X is said to have a Chow—Lefschetz decomposition if it admits a CK
decomposition {II;}o<i<24 such that, for all i > d the morphism of Chow motives (X,II;,0) —
(X,I24—;,% — d) given by intersecting ¢ — d times with a hyperplane section is an isomorphism.

It is immediate to see that if X has a Chow-Lefschetz decomposition then it satisfies the
Lefschetz standard conjecture. Since in characteristic zero Grothendieck’s standard conjectures
for X reduce to the standard Lefschetz conjecture for X [1, 5.4.2.2], we get that X satisfies all of
Grothendieck’s standard conjectures.

The key result of this section is the following.

Theorem 4.2. If H;(X) = NU/21H;(X) for alli > d, then X has a Chow-Lefschetz decomposition
{P;}o<i<24 where the idempotents P; for i # d satisfy all the properties listed in Theorems 1 and
2.

Proof. Tf H;(X) = NL/21H;(X) for i > d, then by intersecting with a linear section of dimension
i —d we find that Hog—;(X) =N 2d271JH2d77;(X) for 4 > d. Thus by Poincaré duality the pairings
NlzlH;(X) x NLﬁJHQdfi(X) — Q are non degenerate for all ¢ > d. The motivic Lefschetz
isomorphisms of Theorems 1 and 2 then imply that X satisfies the Lefschetz standard conjecture.
Therefore, by Lemma 2.1, the pairing N1¥/2 Hy(X)x Nl4/2 Hy(X) — Q is also non degenerate. By
Theorem 3, we get mutually orthogonal idempotents {II; }o<;<24 that satisfy the motivic Lefschetz
isomorphisms. Let us set P; :=1II; for i # d and P; := Ax — Z#d IT;. Then {P;}o<i<2q is the
required Chow—Lefschetz decomposition for X. O
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4.2. Some examples of varieties having a Chow—Lefschetz decomposition. An immediate
consequence to Theorem 4.2 is the following.

Corollary 4.3. Let Y be a 3-fold with H*(Y,Oy) = 0, e.g. a Calabi-Yau 3-fold that is a 3-fold
with trivial canonical bundle and vanishing first Betti number. Then Y has a Chow-Lefschetz
decomposition.

Proof. By the Lefschetz (1, 1)-theorem, H%(Y, Oy ) = 0 implies Hy(Y) = N2H,(Y). Thus H;(X) =
NU/21g,(X) for all 4 > 3. O

In Theorems 4.5 and 4.8 below, in addition to proving that some X has a Chow-Lefschetz
decomposition, we give some information on the support of the middle CK projector of X. Such
information will be used in [22] to further prove Murre’s conjectures in the cases covered by the
theorems. For this purpose we need the following lemma stated in [21, Lemma 1.2] and which is
due to Kahn and Sujatha [12].

Lemma 4.4. Let M = (X, p,0) be a Chow motive over k and let Q be a universal domain over k.
If CHo(Nq) = 0, then there exists a Chow motive N = (Y, q,0) such that M = (Y, q,1). O

Theorem 4.5. Let X be a smooth projective variety of even dimension d = 2n. If
CHo(X)alg, CH1(X)alg, - - ., CHy—2(X)aig are representable, then X has a Chow-Lefschetz decom-
position {I1;}. Moreover, the idempotents I1; are as in Theorems 1 and 2 for i # d and the
idempotent 11y has a representative supported on X X Z with Z a sub-variety of X of dimension
n+1.

Proof. By a generalized decomposition of the diagonal (as performed for instance by Laterveer
[16, 2.1]), the assumption on the Chow groups of X implies that H;(X) = NL/2H,(X) for
all # > d. We can therefore apply Theorem 4.2 to get a CK decomposition {II,;}o<i<2q for X
where the idempotents II; for ¢ # d satisfy all the properties listed in Theorems 1 and 2. By
Corollary 3.6 if CHy(X )aig, CH1(X)aig, - . ., CHp—2(X)aig are representable, then the Abel-Jacobi
maps AJ; : CH;(X)hom — Ji(X) ® Q are injective for all i < n — 2. Esnault and Levine’s
Theorem 3.3 then implies that the Abel-Jacobi maps are bijective. Thanks to the properties of
the CK projectors, we thus get CH;(X) = (Ily; + II3;41).CH;(X) for all ¢ < n — 2. As such, the
idempotent IT; acts trivially on CH;(X) for all i < n — 2. By applying n — 1 times Lemma 4.4,
we get that (X,II4,0) is isomorphic to some Chow motive (Y,q,n — 1). This means that there
exists a correspondence f € Hom((X,114,0), (Y, q,n — 1)) such that [Ty = Mzo f~togo folly. In
particular Il factors through Y and a straightforward analysis of the dimensions shows that I
has a representative supported on X x Z with Z a sub-variety of X of dimension n + 1. O

Corollary 4.6. Every fourfold X with CHo(X)alg representable has a Chow-Lefschetz decompo-
sition. In particular, if X is a smooth projective fourfold which is either rationally connected or
admits a curve C as a base for its mazimal rationally connected fibration (i.e. if there exists a
rational map f : X --» C with rationally connected general fiber), then X has a Chow-Lefschetz
decomposition. O

Remark 4.7. Arapura [3] proved the Lefschetz standard conjecture for unirational fourfolds. He
does so by proving that a unirational fourfold is motivated by surfaces. More generally, Arapura
proves that any variety which is motivated by a surface (this means that the cohomology of X
is generated by the cohomology of product of surfaces via correspondences) satisfies the standard
Lefschetz conjecture. Corollary 4.6 is more precise for unirational fourfolds because we obtain the
Lefschetz isomorphism modulo rational equivalence (rather than just modulo homological equiva-
lence). Moreover, Corollary 4.6 includes the case of rationally connected fourfolds as well as the
case of fourfolds admitting a curve as a base for their maximal rationally connected fibration.
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Let us also mention that in what follows Arapura’s technique doesn’t seem to apply to prove
the Lefschetz standard conjecture because the middle cohomology of the varieties in question is
not necessarily generated by the cohomology of products of surfaces.

Theorem 4.8. Let X be a smooth projective variety of odd dimension d = 2n + 1 with
H (X, Q}_l) = 0. If CHo(X)alg, CH1(X )alg, - - -, CHp—2(X)aig are representable, then X has
a Chow-Lefschetz decomposition. Moreover, the idempotents 11; are as in Theorems 1 and 2 for
1 # d and the idempotent 11y has a representative supported on X x Z with Z a sub-variety of X
of dimension n + 2.

Proof. As for the proof of Theorem 4.5, a generalized decomposition of the diagonal argument
shows that the assumption on the Chow groups of X implies that H;(X) = NL/2/H,(X) for
i >d+ 1 and that Hy1(X) = N Hy1(X). This last equality means that there is a smooth
projective variety S of dimension n + 2 and a map f : S — X such that f.H?*(S) = Hgy1(X).
Because H""1(X,Q% ') = 0, we see that Hgy1(X) is made of Hodge classes. By the Lef-
schetz (1, 1)-theorem applied to S, we see that Hy1(X) is spanned by algebraic cycles, i.e. that
Hiq1(X) = N Hi1(X). We can thus apply Theorem 4.2 to get a Chow—Lefschetz decomposi-
tion {IT; }o<i<24. The proof of the fact that II; has a representative supported on X x Z for Z a
sub-variety of X of dimension n + 2 goes along the same lines as the proof of Theorem 4.5. O

Corollary 4.9. Let X be a smooth projective fivefold. If CHo(X)az is representable and if
H3(X,Q%) = 0, then X has a Chow-Lefschetz decomposition. In particular, if X is a smooth
projective rationally connected fivefold with H*(X, Q%) = 0, then X has a Chow-Lefschetz decom-
POSItion. O

4.3. Hypersurfaces of very small degree are Kimura finite dimensional. Otwinowska [18]
proved that if X is a smooth hyperplane section of a hypersurface in P"*! covered by I[-planes
then CH;(X)hom = 0 for ¢ <1 —1 (see also Esnault, Levine and Viehweg [7]). Therefore when
[ = [n/2] the Chow groups CH;(X)ai, are all representable by Remark 3.8. As a direct application
of Theorem 4 we get

Theorem 4.10. Let I = |n/2] and let X be a smooth hyperplane section of a hypersurface in
Pt covered by l-planes. Then,

o ifn—1iseven, h(X)=10LOL®?q...gLO 1,
o ifn—1isodd H(X)=1OL® - OLO @ by (J 5)(1) L @ - @ LEL,
(X)

Moreover, in any case, H(X) is finite dimensional in the sense of Kimura.

Remark 4.11. Otwinowska also mentions that if k(n —1) — (djl) +1 > 0, any smooth projective
hypersurface of degree d in P¢ is covered by linear projective varieties of dimension /.

Examples 4.12. Here are some varieties for which Theorem 4 and the results of [7] make it
possible to prove that they have finite dimensional Chow motive :

e Cubic 5-folds.
e A 5-fold which is the smooth intersection of a cubic and a quadric.
e A 7-fold which is the smooth intersection of two quadrics.

Further examples of varieties with finite dimensional Chow motive can be constructed as follows.
Let X be a variety as in the theorem above. Consider smooth projective varieties obtained from
X by successively blowing up smooth curves. Then, by the blowing-up formula for Chow motives,
such varieties have finite dimensional Chow motive. Moreover any variety Y which is dominated
by a product of such varieties has finite dimensional Chow motive.
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