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Abstract

Let k be an algebraically closed field. We show using Kahn’s and Sujatha’s theory of
birational motives that a Chow motive over k whose Chow groups are all representable (in
the sense of definition 2.1) belongs to the full and thick subcategory of motives generated
by the twisted motives of curves.

Résumé

Motifs purs dont les groupes de Chow sont représentables. Soit k un corps
algébriquement clos. Nous prouvons, en nous servant de la théorie des motifs birationnels
développée par Kahn et Sujatha, qu’un motif de Chow défini sur k dont les groupes de Chow
sont tous représentables (au sens de la définition 2.1) appartient à la sous-catégorie pleine
et épaisse des motifs engendrée par les motifs de courbes tordus.

Version française abrégée

Dans cette note, nous présentons une preuve de l’énoncé suivant.

Théorème 0.1 (cf. theorem 3.4). Soit k un corps algébriquement clos et soit Ω ⊃ k un domaine
universel, i.e. un corps algébriquement clos de degré de transcendance infini sur k. Soit M un
motif de Chow rationnel sur k dont les groupes de Chow CHj(MΩ)alg sont représentables pour
tout entier j. Alors M est isomorphe à une somme directe de motifs de Lefschetz et de h1 de
variétés abéliennes tordus.

Ici, CHj(MΩ)alg désigne le groupe des cycles algébriques de dimension j algébriquement
triviaux modulo l’équivalence rationnelle. La notion de représentabilité est définie en 2.1. Un
tel résultat est connu pour les motifs de surfaces et a été récemment prouvé pour les motifs
de variétés lisses projectives de dimension 3 par Gorchinskiy et Guletskii [3]. Kimura [7] a
prouvé qu’étant donné un motif M , si ses groupes de Chow rationnels CHj(MΩ) sont des Q-
espaces vectoriels de dimension finie alors M est isomorphe à une somme directe de motifs
de Lefschetz, offrant ainsi une généralisation d’un théorème dû à Jannsen [5, Th. 3.5.]. Notre
résultat généralise les résultats cités ci-dessus et redonne un théorème dû à Esnault et Levine [2]
qui montre que pour une variété complexe lisse et projective, si l’application classe de Deligne
rationnelle en tous degrés est injective alors elle est bijective.

Notre méthode repose sur l’existence de projecteurs de Chow relevant le plus grand facteur
direct du motif numérique M̄ isomorphe à un objet dans la sous-catégorie pleine et épaisse des
motifs numériques engendrée par les motifs de courbes tordus. Une telle construction est l’objet
de [10, §1]. Nous nous servons de façon essentielle de la théorie des motifs purs birationnels
développée par Kahn et Sujatha. Nous aimons penser à cette théorie comme à une manière
synthétique de procéder à une décomposition généralisée de la diagonale telle qu’elle a été mise
en œuvre par Jannsen, et Esnault et Levine entre autres.
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1 Introduction

Given a field k, there are three categories we will be dealing with.

• Meff(k,Q), the category of effective Chow motives with coefficients in Q.

• M(k,Q), the category of Chow motives with coefficients in Q, see [9].

• M◦(k,Q), the category of birational Chow motives with coefficients in Q, as defined by
Kahn and Sujatha in [6].

Roughly, M(k,Q) is obtained from Meff(k,Q) by inverting the Lefschetz motive and
M◦(k,Q) is obtained from Meff(k,Q) by killing the Lefschetz motive (modulo taking the
pseudo abelian envelope).

Objects in M(k,Q) are triples (X, p, n) and morphisms are given by

Homk((X, p, n), (Y, q,m)) := q ◦ CHdim X+n−m(X × Y ) ◦ p

where CHi denotes the Chow group of i-dimensional cycles tensored with Q. To any smooth
projective variety X we associate functorially the motive h(X) := (X, idX , 0). The category
Meff(k,Q) is the full subcategory of M(k,Q) whose objects have the form (X, p, 0).

Let L be the ideal ofMeff(k,Q) generated by those morphisms that factor through an object
of the form N⊗L with N an effective Chow motive and L = (Spec k, id, 1) the Lefschetz motive.
Kahn and Sujatha [6] define the Q-linear tensor category M◦(k,Q) of pure birational Chow
motives over k to be the pseudo-abelianization of the quotient category Meff(k,Q)/L. The
functor Meff(k,Q) → M◦(k,Q) will be denoted by M 7→ M◦ and to any smooth projective
variety X we associate functorially the motive h◦(X).

For each of these three categories, we will write Homk for the groups of morphisms. It will
be clear in which category this takes place. Note that since the functor Meff(k,Q) →M(k,Q)
is fully faithful, it doesn’t matter in which of these two categories we consider Homk(M,N) for
two effective motives M and N .

Given a field extension L/k, there are base change functors for each of these three categories.
Given a motive (either effective, pure or birational) M over k, we will write ML for its image in
the corresponding category of motives (either effective, pure or birational) over L. Moreover,
for two motives M and N over k, we write

HomL(M,N) := HomL(ML, NL).

An essential feature of Kahn and Sujatha’s category of birational motives is the following
(cf. [6, (2.5)])

Theorem 1.1 (Kahn-Sujatha). Let X and Y be smooth projective varieties over k. Denote by
k(X) the function field of X. Then

Homk(h◦(X), h◦(Y )) = CH0(Yk(X)) = Homk(X)(1
◦, h◦(Y )).

We now fix a field Ω containing k which is a universal domain, i.e. an algebraically closed
field of infinite transcendence degree over its prime subfield. Before we start, we need to compute
some Hom groups in the category of birational motives. Let X and Y be smooth projective
varieties. Then by theorem 1.1 Homk(h◦(Y ), h◦(X)) = lim−→CHdim X(U × X), where the limit
runs through all nonempty open subsets U of Y . Now assume M = (X, p) is an effective Chow
motive and denote by M◦ its image in M◦(k,Q). Then, we have
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Homk(h◦(Y ),M◦) = p ◦Homk(h◦(Y ), h◦(X)) = p ◦ lim−→CHdim X(U ×X)

= lim−→ (idU ⊗ p)∗CHdim X(U ×X) = (idk(Y ) ⊗ p)∗CH0(Xk(Y ))
= pk(Y ) ◦ CH0(Xk(Y )) = Homk(Y )(1

◦,M◦).

Lemma 1.2. Let M ∈Meff(k,Q) and let M◦ denote its image inM◦(k,Q). Then the following
statements are equivalent.

• M◦ = 0.

• HomΩ(1◦,M◦) = 0.

• There exists an effective Chow motive N ∈Meff(k,Q) such that M is isomorphic to N(1).

Proof. The first and the third statements are equivalent by [6]. Moreover, the first statement
obviously implies the second one. It remains to prove that the second statement implies the first
one. Suppose M = (X, p). Then HomΩ(1◦,M◦) ⊃ Homk(X)(1◦,M◦) = Homk(h◦(X),M◦) ⊃
Hom(M◦,M◦) = End(M◦). Consequently End(M◦) = 0 and thus M◦ = 0.

Lemma 1.3 (see also [3], lemma 1). Let M ∈ M(k,Q). Then the following statements are
equivalent.

• M = 0.

• HomΩ(1(i),M) = 0 for all i ∈ Z.

Proof. Assume M = (X, p, n) is non-zero, dim X = d and that M is isomorphic to some
effective motive N = (Y, q, 0). Then End(M) ' Hom(M,N) ⊆ Hom(h(X)(n), N) ' Hom(1(n+
d), h(X)⊗N) ⊆ CHn+d(X × Y ) and hence End(M) 6= 0 (i.e. M 6= 0) implies n ≥ −d.

Thus there is an integer j which is the smallest integer such that M(j) is effective. Then,
by assumption, HomΩ(1,M(j)) = 0. Therefore, HomΩ(1◦,M(j)◦) = 0. By lemma 1.2, this
implies there exists an effective motive N such that M(j) ' N(1). Hence, M(j − 1) ' N is
effective, contradicting the choice of j.

2 Representability

Let M = (X, p, j) be a motive inM(k,Q) and let CHi(M)∼ := Homk(1,M(−i))∼ = p∗CHi−j(X)∼
be the subgroup of CHi(M) made of those cycles ∼ 0 for an adequate equivalence relation ∼.
Such a definition is unambiguous in the following sense : it can be checked that if p ∈ End(h(X))
is an idempotent then (p∗CHi(X))∼ = p∗(CHi(X)∼). In what follows we will be mainly inter-
ested in ∼= alg where alg denotes algebraic equivalence.

Definition 2.1. Let Ω be a universal domain over k. We say that the Chow group CHi(M)alg
of algebraically trivial cycles of a motive M = (X, p, j) ∈ M(k,Q) is representable if there
is a smooth projective curve C over Ω (not necessarily connected) and a correspondence Γ ∈
HomΩ(h1(C),M(−i)) such that Γ∗ : HomΩ(1, h1(C)) → HomΩ(1,M(−i))alg is surjective. We
say that the total Chow group CH∗(M)alg of a motive M ∈ M(k,Q) is representable if
CHi(M)alg is representable for all i.

Notice that we do not require the curve C to be defined over k (which would have been
more restrictive). The notion of representability chosen here seems to be the most appropriate
in the language of motives. Proposition 2.1 below, which generalizes Jannsen’s [5, 1.6] where
idempotents are not being dealt with, shows that most notions of representability for zero-cycles
are the same. First we need a lemma whose proof can be found in [8, (1.4)–(1.7)].
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Lemma 2.2. Let X and Y be smooth projective varieties over an algebraically closed field
F . Then there exists an albanese map albX : CH0(X)alg → AlbX(F ). Moreover, if α ∈
HomF (h(X), h(Y )) then α in-duces a homomorphism ᾱ : AlbX(F ) → AlbY (F ) satisfying ᾱ ◦
albX = albY ◦ α∗ : CH0(X)alg → AlbY (F ).

Proposition 2.1. Let M = (X, p) ∈Meff(k,Q). The following statements are equivalent.
i) CH0(M)alg is representable.
i′) There is a smooth projective curve C over k and a correspondence Γ ∈ Homk(h1(C),M)

such that (ΓΩ)∗ : CH0(CΩ)alg → (pΩ)∗CH0(XΩ)alg is surjective.
i′′) (pΩ ◦ ιΩ)∗CH0(BΩ)alg = (pΩ)∗CH0(XΩ)alg where ι : B ↪→ X is a smooth linear section

of X of dimension 1.
ii) There exists a closed subvariety Y ⊂ XΩ of dimension 1 such that for all γ ∈ CH0(XΩ),

(pΩ)∗γ has vanishing restriction in CH0(XΩ − Y ).
ii′) There exists a closed subvariety Y ⊂ X of dimension 1 such that for all γ ∈ CH0(XΩ),

(pΩ)∗γ has vanishing restriction in CH0((X − Y )Ω).
iii) There is a decomposition pΩ = p1 + p2 with p1, p2 ∈ CHd(XΩ × XΩ) such that p1 is

supported on XΩ×Y and p2 is supported on D×XΩ for some curve Y ⊂ XΩ and some divisor
D ⊂ XΩ.

iii′) There is a decomposition p = p1+p2 with p1, p2 ∈ CHd(X×X) such that p1 is supported
on X × Y and p2 is supported on D ×X for some curve Y ⊂ X and some divisor D ⊂ X.

iv) The albanese map alb : CH0(XΩ)alg → AlbXΩ
(Ω) is injective when restricted to (pΩ)∗CH0(XΩ)alg.

Proof. Clearly i′′ ⇒ i′ ⇒ i, ii′ ⇒ ii and iii′ ⇒ iii.
i′ ⇒ ii′. Let C and Γ be as in (i′). Clearly, (ΓΩ)∗CH0(CΩ) is supported on YΩ for Y

the projection on X of a representative of Γ on C ×X. Therefore, by localization, this group
vanishes in CH0((X − Y )Ω).

ii′ ⇒ iii′. We use Bloch’s and Srinivas’ technique [1]. Let p̃ be the image of p under the
natural map CHd(X×X) → CH0(k(X)×k X). Fix an embedding k(X) ⊂ Ω that extends that
of k. The natural map CH0(Yk) → CH0(YL) is known to be injective for any smooth variety Y
over k and any field extension L/k. This combined to the fact that p̃ = p∗ηX for ηX the generic
point of X seen as a rational point over k(X) implies that, for Y as in ii′, p̃ has vanishing
restriction in CH0(k(X) ×k (X − Y )). By the localization exact sequence p̃ is supported on
k(X) ×k Y . Let p1 be an element of CHd(X ×k Y ) mapping to p̃. Then p − p1 has vanishing
restriction in CH0(k(X)×k X) and thus, again by the localization exact sequence, is supported
on D ×X for some divisor D on X. Set p2 := p− p1.

iii′ ⇒ i′. Thanks to Chow’s lemma on 0-cycles, (p2)Ω acts trivially on CH0(XΩ), hence
((p1)Ω)∗CH0(XΩ) = (pΩ)∗CH0(XΩ). If C is the normalization of Y and α is the pullback of
p1 in CHd(X × C), we can write p1 = β ◦ α with β ∈ Homk(h(C), h(X)). Then we have ((p ◦
β)Ω)∗CH0(CΩ)alg ⊇ ((p◦β)Ω)◦(αΩ)∗CH0(XΩ)alg = (pΩ◦pΩ)∗CH0(XΩ)alg = (pΩ)∗CH0(XΩ)alg.
We also clearly have ((p◦β)Ω)∗CH0(CΩ)alg ⊆ (pΩ)∗CH0(XΩ)alg. Therefore (i′) follows by taking
the curve C and the correspondence Γ = p ◦ β.

By working over Ω instead of k, the exact same arguments prove i ⇒ ii ⇒ iii ⇒ i.
iii ⇒ iv. As for the implication (iii′) ⇒ (i′), p2 acts trivially on CH0(XΩ) and p1 factors

as α ◦ β with α ∈ HomΩ(h(X), h(C)) and β ∈ HomΩ(h(C), h(X)) for some smooth projective
curve C over Ω. We have to prove that if x ∈ CH0(XΩ)alg satisfies alb(p∗x) = 0 then p∗x = 0.
Obviously alb(p∗x) = 0 implies ᾱ◦alb(p∗x) = 0. By lemma 2.2 albC((α◦p)∗x) = 0 and because
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albC is an isomorphism we get (α ◦ p)∗x = 0. Thus (β ◦ α ◦ p)∗x = 0, that is p∗ ◦ p∗x = 0 i.e.
p∗x = 0.

iv ⇒ i′′. Fix x ∈ CH0(XΩ)alg. We want to show that there exists z ∈ CH0(BΩ)alg such
that (pΩ ◦ ιΩ)∗z = (pΩ)∗x. It is a fact [9, 4.3] that the induced map AlbBΩ

(Ω) → AlbXΩ
(Ω)

is surjective. Thus, using also the bijectivity of albBΩ
, there exists z ∈ CH0(BΩ)alg such that

alb((pΩ)∗x) = ῑΩ ◦ alb(z). Now, thanks to lemma 2.2, alb((pΩ ◦ ιΩ)∗z) = p̄Ω(ῑΩ ◦ alb(z)) =
p̄Ω(alb◦ (pΩ)∗x) = alb((pΩ)∗x). By assumption on the map alb we get (pΩ ◦ ιΩ)∗z = (pΩ)∗x.

3 Main theorem

We denote by M0(k,Q) (resp. M1(k,Q)) the full thick subcategory of M(k,Q) generated by
the h0’s (resp. h1’s) of smooth projective varieties over k. Equivalently, M0(k,Q) is generated
by the motives of points and M1(k,Q) is generated by the h1’s of curves, see [9]. We write
Mnum(k,Q) for the category of motives for numerical equivalence with rational coefficients.
Jannsen [4] famously proved that this category is abelian semi-simple. For a motive P ∈
M(k,Q), let P̄ denote its image in Mnum(k,Q).

Proposition 3.1 (see [10] for a proof). Let M be an object in M0(k,Q) (resp. in M1(k,Q)).
Let N be any motive in M(k,Q). Then any morphism f : M → N induces a splitting N =
N1 ⊕N2 with N1 isomorphic to an object in M0(k,Q) (resp. in M1(k,Q)) and N̄1 ' Im f̄ .

From now on, k is an algebraically closed field and Ω denotes a universal domain over k.
Recall that if M and N are two Chow motives over k, then Homk(M̄, N̄) = HomΩ(M̄, N̄).

Lemma 3.2. Let M ∈ Meff(k,Q) and let n be the dimension of the finite dimensional vector
space HomΩ(1̄, M̄). Then 1⊕n is a direct summand of M .

Proof. Pick a basis (ēi)1≤i≤n of the group Homk(1̄, M̄) = HomΩ(1̄, M̄) of 0-cycles modulo
numerical equivalence on M . Lift it to a family (ei)1≤i≤n of the Chow group Homk(1,M) and
consider the morphism ⊕ei : 1⊕n −→ M. By proposition 3.1, M has then a direct summand N
isomorphic to an object inM0 whose reduction modulo numerical equivalence is 1̄⊕n. Therefore
N ' 1⊕n.

Lemma 3.3. Let M = (X, p) ∈ Meff(k,Q) be such that Homk(1,M)alg is representable. As-
sume moreover that M̄ has no direct factor of the form h̄1(J) for an abelian variety J . Then
HomΩ(1,M)alg = 0.

Proof. Thanks to proposition 2.1 and its proof (specifically the statement (i) ⇒ (iii′) plus
an extra argument included in the proof of (iii′) ⇒ (i′)) the representability assumption on
Homk(1,M)alg yields a decomposition p = p1 + p2 ∈ CHd(X ×X) such that p1 factors through
a smooth projective curve C over k and p2 is supported on D ×X for some proper subscheme
D of X. In particular (p2)Ω acts trivially on 0-cycles on XΩ. Let’s write p1 = β ◦ α with
α ∈ Homk(h(X), h(C)) and β ∈ Homk(h(C), h(X)). The correspondence (p1)Ω acts as the
identity on HomΩ(1,M). If π1 denotes the projector on h1(C) with respect to the choice of a
0-cycle of degree 1 on C (see e.g. [9]) and if q1 := p◦β ◦π1 ◦α then (q1)Ω acts as the identity on
HomΩ(1,M)alg. Therefore (q1◦q1)Ω also acts as the identity on HomΩ(1,M)alg. By assumption
on M , the map p◦β◦π1 must be numerically trivial. Hence the map π1◦α◦p◦β◦π1 ∈ End(h1(C))
is also numerically trivial. Because End(h1(C)) = End(h̄1(C)) we get that π1 ◦α ◦ p ◦β ◦π1 = 0
and therefore that q1◦q1 = p◦β◦π1◦α◦p◦β◦π1◦α = 0. This proves that HomΩ(1,M)alg = 0.
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Theorem 3.4. Let M ∈ M(k,Q). Then CH∗(M)alg is representable if and only if M is
isomorphic to a sum of Lefschetz motives and twisted h1’s of abelian varieties.

Proof. Assume M = (X, p, n) with X a smooth projective variety over k. Up to tensor-
ing with 1(−n) we can assume that M is effective. The integers r for which CHr(MΩ) :=
HomΩ(1(r),M) is possibly non-zero are non-negative. We proceed by induction on µ(M) :=
max{r : HomΩ(1(r),M) 6= 0} ∈ {−∞} ∪ Z≥0.

In the case µ(M) = −∞, that is by definition in the case when CHr(MΩ) = 0 for all integers
r, we conclude directly by lemma 1.3 that M = 0. Let then M be an effective motive with
µ(M) > −∞. Let n be the dimension of the Q-vector space HomΩ(1̄, M̄). By lemma 3.2, there
exists a motive M ′ over k such that M = 1n ⊕M ′ and HomΩ(1̄, M̄ ′) = 0.

Let C be a curve over k and Γ ∈ Homk(h1(C),M) be such that Γ̄ ∈ Homk(h̄1(C), M̄ ′)
has maximal image inside M̄ ′ among all curves C ′ and all morphisms in Homk(h̄1(C ′), M̄ ′).
By proposition 3.1, Γ induces a splitting M ′ = h1(J) ⊕ N for some abelian variety J and
some effective motive N satisfying Homk(h̄1(C ′), N̄) = 0 for all curves C ′. Since N is a direct
summand of M , the group Homk(1, N)alg is representable. By lemma 3.3, HomΩ(1, N)alg =
0. Moreover, because N is a direct summand of M ′, we have HomΩ(1̄, N̄) = 0. Algebraic
equivalence and numerical equivalence agree on 0-cycles. Therefore we have a decomposition
M = 1⊕n ⊕ h1(J)⊕N with HomΩ(1, N) = 0. Hence HomΩ(1◦, N◦) = 0. Therefore, by lemma
1.2, there exists an effective Chow motive N ′ ∈Meff(k,Q) such that M = 1⊕n⊕h1(J)⊕N ′(1).
The Chow group of the motive N ′

Ω is a subgroup of the Chow group of MΩ, it is therefore
representable. Clearly µ(N ′) ≤ µ(M)− 1 which concludes the proof by induction.

Corollary 3.5 (Kimura [7]). Let M ∈ M(k,Q). Then CH∗(MΩ) is a finite dimensional Q-
vector space if and only if M is isomorphic to a sum of Lefschetz motives.

Let X be a smooth projective variety of dimension d over an algebraically closed subfield
k of C. The Abel-Jacobi map AJi : CHi(XC)hom → Ji(XC) defined by Griffiths (here Chow
groups are not tensored with Q) restricts to CHi(XC)alg and the image of the composite map
CHi(X)alg → CHi(XC)alg → Ji(XC) defines an abelian variety over k that we denote Ja

i (X).

Corollary 3.6. Assume that the total Chow group of X is representable. Then,

h(X) = 1⊕ h1(AlbX)⊕ L⊕b2 ⊕ h1(Ja
1 (X))(1)⊕ (L⊗2)⊕b4 ⊕ . . .⊕ h1(Ja

d−1(X))(d− 1)⊕ L⊗d

where bi denotes the ith Betti number of X. Moreover, algebraic equivalence agrees with numer-
ical equivalence on X and the generalized Hodge conjecture holds for X.

Corollary 3.7 (Esnault-Levine [2]). Let X be a complex smooth projective variety. Suppose
that the total rational Deligne cycle class map clD : ⊕iCH i(X) → ⊕iH

2i
D (X,Q(i)) is injective.

Then it is surjective.
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