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ABSTRACT. The Chow rings of hyperKähler varieties are conjectured to have a particularly rich
structure. In this paper, we focus on the locally complete family of double EPW sextics and
establish some properties of their Chow rings. First we prove a Beauville–Voisin type theorem
for zero-cycles on double EPW sextics ; precisely, we show that the codimension-4 part of the
subring of the Chow ring of a double EPW sextic generated by divisors, the Chern classes and
codimension-2 cycles invariant under the anti-symplectic covering involution has rank one. Sec-
ond, for double EPW sextics birational to the Hilbert square of a K3 surface, we show that the
action of the anti-symplectic involution on the Chow group of zero-cycles commutes with the
Fourier decomposition of Shen–Vial.

INTRODUCTION

Since the seminal work of Beauville and Voisin on the Chow ring of K3 surfaces [5], it has
been observed that the Chow rings (and more generally the Chow motives, considered as algebra
objects) of hyperKähler varieties possess a surprisingly rich structure, which seems to parallel
that of abelian varieties. Our aim is to study aspects of the Chow ring, which conjecturally
should hold for all hyperKähler varieties, in the special case of double EPW sextics. Discov-
ered by O’Grady [34], double EPW sextics form a 20-dimensional locally complete family of
hyperKähler fourfolds, deformation equivalent to the Hilbert square of a K3 surface.

For a schemeX of finite type over a field, we denote CHi(X) the Chow group of codimension-
i cycle classes with rational coefficients (i.e. the group of codimension-i algebraic cycles on X
with Q-coefficients, modulo rational equivalence).

0.1. The Beauville–Voisin conjecture.

Conjecture 1 (Beauville–Voisin). Let X be a hyperKähler variety. Consider the Q-subalgebra

R∗(X) := 〈CH1(X), cj(X)〉 ⊂ CH∗(X)

generated by divisors and Chern classes. Then the restriction of the cycle class map Ri(X) →
H2i(X,Q) is injective for all i.

The conjecture was first proven (without being stated as such) in the case of K3 surfaces in the
seminal work of Beauville and Voisin [5]. The conjecture was then formulated by Beauville [3]
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without the Chern classes as an explicit workable consequence of a deeper conjecture stipulat-
ing the splitting of the conjectural Bloch–Beilinson filtration on the Chow rings of hyperKähler
varieties. It was then stated in this form by Voisin [44] who established it in the case of Hilbert
schemes of points on K3 surfaces of low dimension and in the case of Fano varieties of lines on
smooth cubic fourfolds. The Beauville–Voisin conjecture has by now been established in many
cases, including the generic double EPW sextic [13], generalized Kummer varieties [15] and,
without the Chern classes, hyperKähler varieties carrying a rational Lagrangian fibration [37] as
well as Hilbert schemes of points on K3 surfaces [31]. There are however, so far, only two ex-
amples of locally complete families of hyperKähler varieties all of whose members are known to
satisfy the Beauville–Voisin conjecture, namely K3 surfaces [5] and Fano varieties of lines on cu-
bic fourfolds [44]. The following result establishes in particular the Beauville–Voisin conjecture
for zero-cycles for double EPW sextics, which form a locally complete family of hyperKähler
varieties.

Theorem 1. Let X be a double EPW sextic, and let ι be its anti-symplectic involution. Consider
the Q-subalgebra

R∗(X) := 〈CH1(X),CH2(X)+, cj(X)〉 ⊂ CH∗(X)

generated by divisors, ι-invariant codimension-2 cycles and Chern classes. The restriction of the
cycle class map Ri(X)→ H2i(X,Q) is injective for i = 4.

This builds on and extends the main result of Ferretti [13]. The reason for including CH2(X)+

is motivated by Beauville’s splitting property conjecture for the Bloch–Beilinson filtration [3],
which in fact suggests that all of R∗(X) should inject in cohomology. Our new input consists in
extending a result of Voisin concerning zero-cycles on generic Calabi–Yau hypersurfaces to the
case of Calabi–Yau hypersurfaces with quotient singularities (the EPW sextics are such Calabi–
Yau hypersurfaces) ; this is Theorem 1.2. Unfortunately, we failed to establish the Beauville–
Voisin conjecture for codimension-3 cycles ; we identify in (4) the missing relations.

0.2. Anti-symplectic involutions and zero-cycles. In the same way that the action of homo-
morphisms of abelian varieties preserves the Beauville decomposition [2] of the Chow groups
(such a decomposition provides a splitting of the conjectural Bloch–Beilinson filtration), it is
conceivable to expect that morphisms (or even rational maps) between hyperKähler varieties
preserve the conjectural splitting of the conjectural Bloch–Beilinson filtration. Candidates for
such a splitting were constructed for Hilbert schemes of K3 surfaces [38, 40], generalized Kum-
mer varieties [17] and Fano varieties of lines on cubic fourfolds [38]. This expectation was
verified for the action of Voisin’s rational self-map on the Fano variety of lines on a cubic four-
fold in [38, Proposition 21.14], and for the action of finite-order symplectic automorphisms on
zero-cycles of generalized Kummer varieties [41, Theorem 5]. We also note that any rational
map between K3 surfaces is compatible with the splitting of the Bloch–Beilinson filtration given
by CH2(S) = Q[o] ⊕ CH2

hom(S), where o denotes the Beauville–Voisin [5] zero-cycle on S ;
indeed o is the class of any point lying on a rational curve of S and hence it is sent to the class of
a point lying on a rational curve by the action of any rational map. We provide more evidence for
this expectation by determining the action of the anti-symplectic involution attached to a double



ZERO-CYCLES ON DOUBLE EPW SEXTICS 3

EPW sextic birational to the Hilbert square of a K3 surface, and also by determining the action
of a birational automorphism of the Hilbert square of a very general K3 surface.

Precisely, we show in Theorem 3.6 that ι∗ commutes with the Fourier decomposition of
CH4(S[2]) constructed in [38], which provides an explicit candidate for the splitting of the Bloch–
Beilinson conjecture as conjectured by Beauville [3]. As a consequence, we describe explicitly
the action of ι on the Chow group of zero-cycles in case X is birational to a Hilbert square S[2]

with S a K3 surface (which happens on a dense, countable union of divisors in the moduli space
of double EPW sextics) :

Theorem 2. Let X be a smooth double EPW sextic, and assume that X is birational to a Hilbert
square S[2] with S a K3 surface. Let ι ∈ Aut(X) be the anti-symplectic involution coming from
the double cover f : X → Y , where Y ⊂ P5 is an EPW sextic. Then the action of ι on CH4(S[2])
is given by

ι∗[x, y] = [x, y]− 2[x, o]− 2[y, o] + 4[o, o],

where o ∈ S denotes any point lying on a rational curve in S and where [x, y] denotes the class
in CH4(S[2]) of any point in S[2] with support x+ y ∈ S(2) = S2/S2 (see §3.3).

Thanks to work of Boissière et alii [8] and Debarre–Macrı̀ [10], Theorem 2 implies (and in
fact by Remark 3.10 is equivalent to) the following statement :

Theorem 3 (Corollary 3.9). Let X be a Hilbert scheme X = S[2] where S is a K3 surface
with Pic(S) = Z. Let ι ∈ Bir(X) be a non-trivial birational automorphism. Then (ι is a
non-symplectic birational involution, and) ι acts on CH4(X) as in Theorem 2.

In §3.6, we provide two applications to Theorem 2 : in Corollary 3.11 we extend Theorem 1
to codimension-3 cycles when X is birational to the Hilbert square of a K3 surface, while in
Corollary 3.12 we show that the canonical zero-cycle can be characterized as the class of any
point lying on a uniruled divisor whose class is ι-invariant.

There are three other explicit families of hyperKähler varieties such that all members have an
anti-symplectic involution : the double EPW quartics of [21], the double EPW cubes of [20] and
the eightfolds of [29]. It would be interesting to try the argument of the present note for those
hyperKählers that are in addition birational to a Hilbert scheme of a K3 surface.

Conventions. In this note, the word variety will refer to an integral scheme of finite type over C.
By quotient variety, we will mean a finite quotient of a smooth variety. For a variety X , CHj(X)
will denote the Chow group of j-dimensional algebraic cycles on X with Q-coefficients. For X
smooth of dimension n the notations CHj(X) and CHn−j(X) will be used interchangeably. We
will write Hj(X) to indicate singular cohomology Hj(X(C),Q). The notation CHj

hom(X) will
be used to indicate the subgroups of homologically trivial cycles. We denote V = V + ⊕ V − the
eigenspace decomposition of an involution acting on a vector space V .

1. ZERO-CYCLES ON CALABI–YAU HYPERSURFACES WITH QUOTIENT SINGULARITIES

Our approach to proving Theorem 1 will involve determining the subgroup of CH4(X) that
is generated by the intersection of ι-invariant cycles on X of positive codimension. Such cycles
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are pull-backs of the intersection of cycles of positive codimension on the EPW sextic, which is
a Calabi–Yau hypersurface that is a quotient variety. We observe that Voisin’s [45, Theorem 3.4]
can be generalized to the case of Calabi–Yau hypersurfaces that are quotient varieties. First we
recall that intersection theory on smooth varieties extends to quotient varieties if one is ready to
work with rational coefficients :

Lemma 1.1. LetM be a quotient variety, i.e. M = M ′/GwhereM ′ is a smooth quasi-projective
variety and G ⊂ Aut(M ′) is a finite group. Then CH∗(M) := ⊕i CHi(M) := ⊕i CHdimM−i(M)
is a commutative graded ring, with the usual functorial properties.

Proof. According to [19, Example 17.4.10], the natural map

CHi(M) → CHdimM−i(M)

from operational Chow cohomology (with Q-coefficients) to the usual Chow groups (with Q-
coefficients) is an isomorphism. The lemma follows from the good formal properties of opera-
tional Chow cohomology. �

Theorem 1.2. Let Y ⊂ Pn+1(C) be a hypersurface of degree n+ 2, and assume Y is a quotient
variety. Then the image of the intersection product map

CHi(Y )⊗ CHn−i(Y ) → CHn(Y ), 0 < i < n,

is one-dimensional.

Proof of Theorem 1.2. In the case Y is a general hypersurface, this is due to Voisin [45, §3]
(this was extended to general Calabi–Yau complete intersections by L. Fu [14]). The genericity
assumption is only made in order to ensure that Y is smooth and the Fano variety F (Y ) of lines
in Y is of the expected dimension (which is n− 3). Let us check that Voisin’s argument extends
to all Calabi–Yau hypersurfaces that are quotient varieties.

First we introduce some notation. If X → B is a complex morphism to a smooth complex
variety B, we denote Zb the fiber over b ∈ B(C) of the subscheme Z ⊆ X , while we denote Γ|b
the Gysin fiber [19] in CH∗(Xb) of the cycle class Γ ∈ CH∗(X ).

Let nowB = PH0(Pn+1
C ,O(n+2)) be the space parameterizing degree n+2 hypersurfaces in

Pn+1
C and let Y → B be the corresponding universal family, i.e. Y := {(f, x) : f(x) = 0} ⊆ B×

Pn+1
C . Let B◦ ⊂ B be the non-empty open subset parameterizing smooth hypersurfaces the Fano

varieties of which have dimension n − 3. Voisin’s argument in the proof of [45, Theorem 3.1]
provides relative cycle classes o ∈ CHn(YB◦) and R,Γ ∈ CH2n(Y ×B◦ Y ×B◦ Y) such that

δYb = p∗12∆Yb · p∗3o|b + p∗13∆Yb · p∗2o|b + p∗23∆Yb · p∗1o|b +R|b + Γ|b in CH2n(Yb × Yb × Yb) (1)

for all b ∈ B◦ with the following properties : o|b = 1
n+2

hn with h the hyperplane class on Yb,
∆Yb is the diagonal class in CHn(Yb×Yb), δYb := p∗12∆Yb ·p∗23∆Yb is the so-called small diagonal,
the restriction R|b of R at b ∈ B◦ is some cycle in the image of the restriction map

CH2n
(
Pn+1 × Pn+1 × Pn+1

)
→ CH2n

(
Yb × Yb × Yb

)
,

and Γ is a multiple of the cycle class attached to

Im
(
L ×B◦ L ×B◦ L → Y ×B◦ Y ×B◦ Y

)
⊂ Y ×B◦ Y ×B◦ Y ,
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where L → Y is the “relative universal line” over B. Here, pi : Yb × Yb × Yb → Yb is the
projection on the i-th factor and pij : Yb × Yb × Yb → Yb × Yb is the projection on the product of
the i-th and j-th factors. This decomposition implies Theorem 1.2 for Yb with b ∈ B◦ (which is
[45, Theorem 3.4]). Indeed, for any β ∈ CHi(Yb) and any γ ∈ CHn−i(Yb) with 0 < i < n one
has

β · γ = (δYb)∗(β × γ) = deg(β · γ)o|b + (R|b + Γ|b)∗(β × γ) in CHn(Yb),

where the small diagonal δYb is considered as a correspondence from Yb × Yb to Yb, and one can
check that the right-hand side is proportional to hn ∈ CHn(Yb).

Let now R̄, Γ̄ ∈ CH∗(Y ×B Y ×B Y) be relative cycles over B restricting over B◦ to R
and Γ, respectively. (Here we use the CH∗(−) notation, since Y → B is not a smooth mor-
phism and so the fiber product Y ×B Y ×B Y may not be smooth and contain components of
various dimensions.) A standard Hilbert scheme argument [48, Proposition 2.4] implies that the
decomposition (1) extends to the whole parameter space B, in the sense that

δYb = p∗12∆Yb · p∗3o|b + p∗13∆Yb · p∗2o|b + p∗23∆Yb · p∗1o|b + R̄|b + Γ̄|b in CHn(Yb × Yb × Yb)

for any b ∈ B.
Since the formalism of correspondences with Q-coefficients goes through unchanged for quo-

tient varieties, the equality β · γ = (δYb)∗(β × γ) is still valid for quotient varieties. Hence, to
prove the theorem we just need to understand the action of the correspondences R̄|b and Γ̄|b for
b parameterizing a hypersurface that is a quotient variety. The first is easy : the action of R̄|b still
factors over CHn(Pn+1) and so (R̄|b)∗(β × γ) is proportional to hn. As for the second, we can
consider the locus swept out by lines

Z := Im
(
L ×B L ×B L → Y ×B Y ×B Y

)
⊂ Y ×B Y ×B Y .

The natural morphism L → B has fibers of dimension n−3 ≥ 0 overB◦, but the fiber dimension
may jump outside of B◦. Because of upper-semicontinuity, any fiber Lb has dimension ≥ n −
3. By construction of the refined Gysin homomorphism [19, §6], we have that the zero-cycle
(Γ̄|b)∗(β×γ) is supported on the image of Lb under the restriction over b of the natural morphism
L → Y . It follows that (Γ̄|b)∗(β × γ) is supported on a finite union of lines contained in Yb. We
can conclude since any 0-cycle on a line is proportional to hn in Yb. �

Remark 1.3. The image of the intersection product map

CH1(Y )⊗ CHi(Y ) → CHi+1(Y ) , 0 ≤ i < n ,

is one-dimensional for every hypersurface Y of dimension > 2 that is a quotient variety. Indeed
in that case we have CH1(Y ) = Q[c1(OY (1))] and c1(OY (1)) · α is the restriction of a cycle
on Pn+1 to Y . In particular, for Calabi–Yau hypersurfaces of dimension n ≤ 4 with quotient
singularities, the image of the intersection product map

CHi(Y )⊗ CHj(Y ) → CHi+j(Y ) , i, j > 0 and i+ j ≤ n

is one-dimensional.

The following lemma is used in Remark 1.3.
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Lemma 1.4. Let τ : Y ⊂ Pn+1(C) be a hypersurface of degree d that is a quotient variety. Let
h ∈ CH1(Y ) denote the restriction of c1(OPn+1(1)) to Y .

(i) The composition

CHi(Y )
τ∗−→ CHi+1(Pn+1)

τ∗−→ CHi+1(Y )

is the same as intersecting with dh.
(ii) Assume n ≥ 3. Then CH1(Y ) = Q[h].

Proof. We recall that by convention, CHi(Y ) is identified with CHn−i(Y ) (Lemma 1.1). Point
(i) is [19, Proposition 2.6]. As for (ii), any (possibly singular) hypersurface Y of dimension≥ 3
has Pic(Y ) = Z[h] (Grothendieck–Lefschetz). Because quotient varieties are Q-factorial, this
implies that CH1(Y ) = CHn−1(Y ) = Q[h]. �

Remark 1.5. It is possible to relax the hypotheses on the hypersurface Y in Theorem 1.2. Instead
of demanding that Y is a quotient variety, the argument proving Theorem 1.2 goes through
as soon as Y is an Alexander scheme (in the sense of [42], [24]). In this case, CH∗(Y ) (the
operational Chow cohomology of Fulton [19]) is isomorphic to the Chow groups CHn−∗(Y ), and
so the conclusion of Lemma 1.1 holds for Y . Varieties with quotient singularities are examples
of Alexander schemes.

2. THE BEAUVILLE–VOISIN CONJECTURE FOR ZERO-CYCLES ON DOUBLE EPW SEXTICS

2.1. Double EPW sextics and some of their geometry. As the name suggests, double EPW
sextics are double covers of certain so-called EPW sextics :

Definition 2.1 (Eisenbud–Popescu–Walter [11]). Let A ⊂ ∧3C6 be a subspace which is La-
grangian with respect to the symplectic form on ∧3C6 given by the wedge product. The EPW
sextic associated to A is

YA :=
{

[v] ∈ P(C6) | dim
(
A ∩ (v ∧ ∧2C6)

)
≥ 1
}
⊂ P(C6) .

An EPW sextic is an YA for some A ⊂ ∧3C6 Lagrangian.

Theorem 2.2 (O’Grady). Let Y be an EPW sextic such that the singular locus S := Sing(Y )
is a smooth irreducible surface. Let f : X → Y be the double cover branched over S. Then
X is a smooth hyperKähler fourfold of K3[2] type (called a double EPW sextic), and the class
h := f ∗c1(OY (1)) ∈ CH1(X) defines a polarization of square 2 for the Beauville–Bogomolov
form. Double EPW sextics form a 20-dimensional locally complete family.

Proof. This is [34, Theorem 1.1(2)]. Let us remark that the hypothesis on Sing(Y ) is satisfied by
a generic EPW sextic (more precisely, it suffices that the Lagrangian subspaceA be in LG(∧3V )0,
which is a certain open dense subset of LG(∧3V ) defined in [34, Section 2]). Letting A vary in
LG(∧3V )0, one obtains a locally complete family with 20 moduli (as noted in [34, Introduction]).

�

Let Z be the invariant locus of the involution ι : X → X , which is also the pre-image of the
singular locus S of Y along f : X → Y . The following proposition summarizes the information
that will be needed concerning Z and its class in CH2(X).
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Proposition 2.3. The surface Z is smooth projective, regular and Lagrangian. Moreover its
class modulo rational equivalence satisfies the following relation

3Z = 15h2 − c2(X) in CH2(X) . (2)

Proof. The surfaceZ is isomorphic to the singular locus of the EPW sextic Y , which is smooth ir-
reducible by assumption. The fixed locus of an anti-symplectic involution on a hyperKähler vari-
ety is (smooth and) Lagrangian [4, Lemma 1]. The relation (2) is due to Ferretti [13, Lemma 4.1].

It remains to show that Z is regular, i.e. that q(Z) := h1(OZ) = 0. This is done in [12, Corol-
lary 3.19]. (Alternatively, the irregularity and the geometric genus of Z can also be computed
using the Chow-theoretic results of [43], as explained in [27, Corollary 4.2(iv)].) �

2.2. Proof of Theorem 1. We start by recalling the main result of [13], which establishes the
Beauville–Voisin conjecture for the generic double EPW sextic.

Theorem 2.4 (Ferretti [13]). Let X be a double EPW sextic. Consider the Q-subalgebra

R∗(X) := 〈h, cj(X)〉 ⊂ CH∗(X)

generated by the polarization h = f ∗c1(OY (1)) and the Chern classes. The restriction of the
cycle class map Ri(X)→ H2i(X) is injective for all i. Moreover,

c2(X) · h = 5h3 in CH3(X) . (3)

Proof. For illustrative purposes, let us briefly show how Ferretti’s original argument can be
slightly simplified by exploiting Theorem 1.2.

First we observe that the tangent bundle TX is ι-invariant, so that R∗(X) consists of ι-invariant
cycles. In degree 1, the injectivity is obvious. In degree 2, the injectivity follows from the fact
that h2 and c2(X) are linearly independent inH4(X). In degree 3, the generators of R3(X) are h3

and h · c2(X) and, by Remark 1.3, h · c2(X) is a multiple of h3, thereby yielding the injectivity in
degree 3. In degree 4, the generators of R4(X) are h4, h2 ·c2(X), c2(X) ·c2(X) and c4(X). Since
c2(X) is ι-invariant, Theorem 1.2 yields that the subspace of R∗(X) spanned by h4, h2 · c2(X)
and c2(X) · c2(X) is one-dimensional. The injectivity in degree 4 now follows from the Chern
class computation carried out by Ferretti in [13, Proposition 4.5], where the relation (3) is also
established. �

Consider now the eigenspace decomposition

CH1(X) = CH1(X)+ ⊕ CH1(X)−

for the action of the involution ι. Note that CH1(X)+ = f ∗CH1(Y ) is one-dimensional spanned
by h := f ∗c1(OY (1)) and that CH1(X)− consists of primitive divisors. The proof of Theorem 1
is a combination of Theorem 1.2, which describes the intersection of ι-invariant cycles on X of
positive and complementary codimension, and of the following lemma and elementary claim.

Lemma 2.5. Let Z be the smooth Lagrangian surface which is the invariant locus of the involu-
tion ι : X → X . Then Z ·D = 0 in CH3(X) for all D ∈ CH1(X)−.



8 ROBERT LATERVEER AND CHARLES VIAL

Proof. Denote j : Z ↪→ X the embedding. Since Z is Lagrangian and defined for all double
EPW sextics and since H2

prim(X) = H2
tr(X) for the very general double EPW sextic, we have

that j∗H2(X)prim = 0 and hence that j∗CH1(X)− consist of homologically trivial divisors
on Z. Since Z is regular (Proposition 2.3), we conclude that j∗CH1(X)− = 0 and hence that
Z · CH1(X)− = 0.

(Alternative proof : since Z ∈ CH2(X)+, we have Z · CH1(X)− ⊂ CH3(X)−. On the
other hand, Z · CH1(X) is generated by j∗CH1(Z). But any divisor in Z is ι-invariant (as Z
is the fixed locus of ι) and so Z · CH1(X) ⊂ CH3(X)+. The lemma follows from the fact that
CH3(X)+ ∩ CH3(X)− = 0.) �

Claim 2.6. h · α is a multiple of h3 for all α ∈ CH2(X)+.

Proof. By the projection formula, the cycle h · α is the pull-back along f : X → Y of the
intersection of c1(OY (1)) with the codimension-2 cycle f∗α, and so (Remark 1.3) is the pull-
back along f of a multiple of c1(OY (1))3, i.e. it is a multiple of h3. �

Proof of Theorem 1. First we observe that c2(X) is ι-invariant (since TX is ι-invariant) and that
c4(X) belongs to the image of CH2(X)+⊗CH2(X)+ → CH4(X) (this follows from [13, Propo-
sition 4.5]). Next, let Dk ∈ CH1(X)− be anti-invariant divisors on X . We note from Claim 2.6
that, since D1 ·D2 is ι-invariant, h ·D1 ·D2 is a multiple of h3. Thus h ·D1 ·D2 ·D3 is a multiple
of h3 ·D3. Intersecting Ferretti’s relation (2) with h ·D3, Lemma 2.5 yields that

0 = Z ·D3 · h = 15h3 ·D3 − c2(X) · h ·D3 = 15h3 ·D3 − 5h3 ·D3 = 10h3 ·D3,

where the third equality comes from Ferretti’s relation (3). It follows that R4(X) is spanned by
cycles in im

(
CHi(X)+⊗CH4−i(X)+ → CH4(X)

)
for i = 1, 2. We conclude with Theorem 1.2.

�

Remark 2.7. The alternative proof of Lemma 2.5 also shows that Z ·CH2(X)− = 0. Combined
with Theorem 1, this implies that

Z · CH2(X) = Q[c4(X)] .

This is an indication that Z might perhaps be a constant cycle surface in X .

2.3. A variant of Theorem 1. If one is willing to drop primitive divisors, then one can deal
with codimension-3 cycles :

Theorem 2.8. LetX be a double EPW sextic, and let ι be its anti-symplectic involution. Consider
the Q-subalgebra

R∗(X) := 〈h,CH2(X)+, cj(X)〉 ⊂ CH∗(X)

generated by h = f ∗c1(OY (1)), ι-invariant codimension-2 cycles and Chern classes. The re-
striction of the cycle class map Ri(X)→ H2i(X) is injective for i ≥ 3.

Proof. In view of Theorem 1, we only need to prove the injectivity for i = 3. Since c2(X) is
ι-invariant, this follows readily from Claim 2.6. �
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2.4. Towards the Beauville–Voisin conjecture for double EPW sextics. Since [7] the cup-
product map Sym2H2(X) → H4(X) is injective for all hyperKähler varieties of dimension
larger than 2, the Beauville–Voisin conjecture holds in codimension 2 for any hyperKähler va-
riety X of dimension > 2 for which [c2(X)] does not belong to the image of the restriction
Sym2 NS(X)→ H4(X) of the above cup-product map to the Néron–Severi group of X . This is
in particular the case for hyperKähler varieties of dimension > 2 that are deformation equivalent
to Hilbert schemes of K3 surfaces or to generalized Kummer varieties. The following proposi-
tion thus shows that the Beauville–Voisin conjecture for double EPW sextics reduces to showing
that

(CH1(X)−)·3 ⊆ h2 · CH1(X)−. (4)

Proposition 2.9. Let X be a double EPW sextic. Then c2(X) · CH1(X) = h2 · CH1(X).

Proof. Let Z be the smooth Lagrangian surface which is the invariant locus of the involution
ι : X → X . By Lemma 2.5, we have Z · CH1(X)− = 0. Since 3Z = 15h2 − c2(X) in CH2(X)
(see (2)), we have c2(X) · CH1(X)− = h2 · CH1(X)−. Finally, the relation (3) concludes the
proof of the proposition. �

Finally, let us mention that, due to Theorem 1 and precisely to the fact that (CH1(X)−)·4

injects in cohomology, it is likely that the recent result of Voisin [49, Theorem 0.3] applies to
double EPW sextics ; this would imply that (CH1(X)−)·3 injects in cohomology. Although this
would provide new information concerning the Beauville–Voisin conjecture in codimension 3
for double EPW sextics, it is however not clear how to establish the missing relation (4).

3. HILBERT SQUARES OF K3 SURFACES WITH AN INVOLUTION

3.1. MCK decomposition. Multiplicative Chow–Künneth decompositions were introduced in
[38, §8] as a motivic way to provide an explicit candidate for Beauville’s conjectural splitting of
the conjectural Bloch–Beilinson filtration on the Chow rings of hyperKähler varieties. First, we
recall what a Chow–Künneth decomposition is.

Definition 3.1 (Murre [32]). Let X be a smooth projective variety of dimension n. We say that
X has a Chow–Künneth decomposition (CK decomposition for short) if there exists a decompo-
sition of the diagonal

∆X = Π0
X + Π1

X + · · ·+ Π2n
X in CHn(X ×X) ,

such that the Πi
X are mutually orthogonal idempotents and (Πi

X)∗H
∗(X) = H i(X).

Assuming the Bloch–Beilinson conjectures, Jannsen [23] proved that all smooth projective
varieties admit a CK decomposition and moreover the CK projectors Πi

X induce a splitting of the
Bloch–Beilinson filtration on the Chow groups. A sufficient condition for the induced splitting
to be compatible with the ring structure is given by the following definition.

Definition 3.2 (Shen–Vial [38]). Let X be a smooth projective variety of dimension n. Let
δX ∈ CH2n(X ×X ×X) be the class of the small diagonal

δX :=
{

(x, x, x) | x ∈ X
}
⊂ X ×X ×X .
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A multiplicative Chow–Künneth decomposition (MCK decomposition for short) is a CK decom-
position {Πi

X} of X that is multiplicative, i.e. that satisfies

Πk
X ◦ δX ◦ (Πi

X × Πj
X) = 0 in CH2n(X ×X ×X) for all i+ j 6= k .

An MCK decomposition is necessarily self-dual, i.e. it satisfies Πk
X = tΠ2n−k

X for all k, where
the superscript t indicates the transpose correspondence ; see [18, footnote 24].

From the definition, it follows that if X has an MCK decomposition {Πi
X}, then setting

CHi
(j)(X) := (Π2i−j

X )∗CHi(X) ,

one obtains a bigraded ring structure on the Chow ring : that is, the intersection product sends
CHi

(j)(X) ⊗ CHi′

(j′)(X) to CHi+i′

(j+j′)(X). In other words, an MCK decomposition induces a
splitting of the conjectural Bloch–Beilinson filtration on the Chow ring of X .

While the existence of a CK decomposition for any smooth projective variety is expected (ei-
ther as part of the Bloch–Beilinson conjectures, or as part of Murre’s conjectures [32, 23]), the
property of having an MCK decomposition is severely restrictive ; for example, a very general
curve of genus ≥ 3 does not admit an MCK decomposition (although the conjectural BB fil-
tration on the Chow ring of curves splits). The existence of an MCK decomposition is closely
related to Beauville’s “weak splitting property” [3], and it is conjectured in [38, Conjecture 4]
that hyperKähler varieties should admit an MCK. The seminal work of Beauville–Voisin [5] es-
tablishes for K3 surfaces S the existence of a canonical zero-cycle o ∈ CH2(S) of degree 1 that
“decomposes” the small diagonal in S × S × S. By [38, Proposition 8.14], this can be reinter-
preted as saying that the Chow–Künneth decomposition defined by Π0

S := o × S, Π4
S := S × o

and Π2
S = ∆S−Π0

S−Π4
S is multiplicative. Beyond the case of K3 surfaces, the MCK conjecture

for hyperKähler varieties has been established for Hilbert squares of K3 surfaces in [38], more
generally for Hilbert schemes of length-n subschemes on K3 surfaces in [40], and for generalized
Kummer varieties in [17]. Other examples of varieties admitting an MCK can be found in [39]
and [28]. For more ample discussion and examples of varieties with an MCK decomposition, we
refer to [38, Section 8] and also [40], [39], [17], [28].

3.2. The Chow rings of birational hyperKähler varieties. Consider two birational hyperKähler
varieties. We recall a result of Rieß showing the existence of a correspondence inducing an iso-
morphism between their Chow rings.

Theorem 3.3 (Rieß [36]). Let φ : X 99K X ′ be a birational map between two hyperKähler
varieties of dimension n.

(i) There exists a correspondenceRφ ∈ CHn(X×X ′) such that (Rφ)∗ : CH∗(X)→ CH∗(X ′)
is a graded ring isomorphism.

(ii) For any j, there is equality (Rφ)∗cj(X) = cj(X
′) in CHj(X ′).

(iii) There is equality

(ΓR)∗ = (Γ̄φ)∗ : CHj(X) → CHj(X ′) for j = 0, 1, n− 1, n

(where Γ̄φ denotes the closure of the graph of φ).
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Proof. Item (i) is [36, Theorem 3.2], while item (ii) is [36, Lemma 4.4].
In a nutshell, the construction of the correspondenceRφ is as follows : [36, Section 2] provides

a diagram

X

  

Ψ // X ′

~~
C

where X ,X ′ are algebraic spaces over a quasi-projective curve C such that the fibers X0,X ′0 are
isomorphic to X resp. X ′, and where Ψ: X 99K X ′ is a birational map inducing an isomorphism
XC\0 ∼= X ′C\0 and whose restriction Ψ|X0 coincides with φ. The correspondence Rφ is then
defined as the specialization (in the sense of [19], extended to algebraic spaces) of the graphs of
the isomorphisms Xc ∼= X ′c, c 6= 0.

Point (iii) is not stated explicitly in [36], and can be seen as follows. Let U ⊂ X be the locus
on which φ induces an isomorphism. The complement T := X \U has codimension ≥ 2. Using
complete intersections of hypersurfaces, one can find a closed subset T ⊂ X of codimension 2
such that T0 contains T , i.e. Ψ restricts to an isomorphism on V := X0 \ T0. Since specialization
commutes with pullback, the restriction of Rφ to V ×X ′ is the specialization of the graphs of the
morphisms Xc \ Tc → X ′c, c 6= 0 to V ×X ′, which is exactly the graph of the morphism φ|V , i.e.

Rφ|V×X′ = Γ(φ|V ) = Γ̄φ|V×X′ in CHn(V ×X ′) .
It follows that one has

Rφ = Γ̄φ + γ in CHn(X ×X ′) ,
where γ is some cycle supported on T0 × X ′. This proves the “moreover” statement : 0-cycles
and 1-cycles on X can be moved to be disjoint of T0, and so γ∗ acts as zero on CHj(X) for
j ≥ n − 1. Likewise, γ∗ acts as zero on CHj(X ′) for j ≤ 1 for dimension reasons, and so (by
inverting the roles of X and X ′) statement (iii) is proven. �

Remark 3.4. As observed in [40, Introduction], the correspondence Rφ of Theorem 3.3 actually
induces an isomorphism of Chow motives as Q-algebra objects. This implies that the property
“having an MCK decomposition” is birationally invariant among hyperKähler varieties.

3.3. MCK for K3[2]. Let S be a K3 surface. We denote S[2] the Hilbert scheme of length-2
subschemes of S and Z := {(ζ, x) ∈ S[2] × S : x ∈ Supp(ζ)} the corresponding universal
family. The former is naturally the quotient of the blow-up S̃ × S of S × S along the diagonal
under the natural involution switching the factors, while the latter comes equipped with two
projection maps :

Z
p //

q

��

S[2] .

S

Recall that every divisor class on S[2] is of the form p∗q
∗DS + aδ for some divisor class DS on

S and some integer a, where δ denotes half of the image of the exceptional divisor under the
quotient morphism S̃ × S → S[2].
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For a closed point x ∈ S, Sx := p(q−1(x)) defines a smooth subvariety of S[2] (which canon-
ically identifies with the blow-up of S at x) and its class in CH2(S[2]) is Z∗[x]. For two distinct
points x, y ∈ S, [x, y] denotes the point of S[2] that corresponds to the subscheme {x, y} ⊂ S.
When x = y, [x, x] denotes the element in CH4(S[2]) represented by any point corresponding to
a nonreduced subscheme of length 2 of S supported at x. As cycles, we have Sx · Sy = [x, y].

The following statement summarizes the results concerning the Chow ring of hyperKähler
varieties birational to the Hilbert square of a K3 surface that will be needed for the proofs of
Theorems 2 and 3.6.

Theorem 3.5 (Shen–Vial [38]). Let S be a K3 surface, and let X be a hyperKähler fourfold
birational to the Hilbert square S[2]. ThenX admits a self-dual MCK decomposition such that the
induced bigraded ring structure CH∗(∗)(X) on CH∗(X) coincides with the bigrading on CH∗(X)
defined by the “Fourier transform” of [38] and enjoys the following properties :

(i) cj(X) ∈ CHj
(0)(X) for all j ;

(ii) The multiplication map ·D2 : CH2
(2)(X)→ CH4

(2)(X) is an isomorphism for any choice of
divisor D ∈ CH1(X) with deg(D4) 6= 0 ;

(iii) The intersection product map CH2
(2)(X)⊗ CH2

(2)(X)→ CH4
(4)(X) is surjective.

Moreover, with respect to the choice of any birational map X
∼
99K S[2], the bigraded pieces of

the Chow groups have the following explicit descriptions :
• CH0(X) = CH0

(0)(X) = Q[X] ;
• CH1(X) = CH1

(0)(X) injects in cohomology via the cycle class map ;
• CH2(X) = CH2

(0)(X)⊕ CH2
(2)(X), where CH2

(2)(X) = 〈Sx − Sy : x, y ∈ S〉 ;
• CH3(X) = CH3

(0)(X)⊕ CH3
(2)(X), CH3

(2)(X) = CH3
hom(X) ;

• CH4(X) = CH4
(0)(X)⊕CH4

(2)(X)⊕CH4
(4)(X), where CH4

(0)(X) = Q[o, o], CH4
(2)(X) =

〈[x, o]− [y, o] : x, y ∈ S〉 and CH4
(4)(X) = 〈[x, y]− [x, o]− [y, o] + [o, o] : x, y ∈ S〉.

Here, o denotes any point lying on a rational curve on S.

Proof. By the result of Rieß (Theorem 3.3), birational hyperKähler varieties have isomorphic
Chow motives as algebra objects (and Chern classes are sent to Chern classes). It follows that
the proof of the theorem reduces to the case of X = S[2] ; see e.g. [38, Section 6] and [40,
Introduction].

We consider the MCK on X constructed in [38, Theorem 13.4] ; its relation with the Fourier
transform is [38, Theorem 15.8]. Statement (i) about the Chern classes is [38, Lemma 13.7(iv)],
while statement (iii) is [38, Proposition 15.6]. The explicit description of the Chow groups is the
combination of [38, Theorem 2], [38, Proposition 15.6] and [38, Proposition 12.9].

It remains to check (ii). Let D ∈ CH1(S[2]). Then D = p∗q
∗DS + aδ, where a ∈ Q and

DS ∈ CH1(S). As in the proof of [38, Proposition 12.8], one computes D2 · Sx = −a2[x, x] +
deg(D2

S)[x, o]. Combined with the fact that [x, x] = 2[x, o] − [o, o] ([38, Proposition 12.6]) and
the fact that q(D) = deg(D2

S)− 2a2, one finds

D2 · (Sx − Sy) = q(D)([x, o]− [y, o]).
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Now if D is such that deg(D4) 6= 0, since q(D)2 = λ deg(D4) with λ the Fujiki–Beauville–
Bogomolov constant (which is non-zero), we see that intersecting with D2 induces an isomor-
phism CH2

(2)(X)
∼−→ CH4

(2)(X). �

3.4. Proof of Theorem 2. Before proving Theorem 2, we first prove the following statement,
which determines the action of ι on the relevant pieces of the Fourier decomposition CH∗(∗)(X).

Theorem 3.6. Let X be a smooth double EPW sextic, and assume that X is birational to a
Hilbert square S[2] with S a K3 surface. Let ι ∈ Aut(X) be the anti-symplectic involution
coming from the double cover f : X → Y , where Y ⊂ P5 is an EPW sextic. Then ι∗ commutes
with the Fourier decomposition, i.e. ι∗ respects the grading of CHi

(∗)(X) given by Theorem 3.5
for all i. Moreover, we have CH1(X)+ = Q[h] and CH3

(0)(X)+ = Q[h3], together with

ι∗ = id: CH4
(0)(X) → CH4

(0)(X) ;

ι∗ = −id : CH4
(2)(X) → CH4

(2)(X) ;

ι∗ = id: CH4
(4)(X) → CH4

(4)(X) ;

ι∗ = −id : CH2
(2)(X) → CH2

(2)(X) .

Proof. Recall that h = f ∗c1(OY (1)) ; in particular, h is ι-invariant. Since X satisfies the as-
sumptions of Theorem 3.5, we know that CH4(X) is generated by CH2

(2)(X) and by h. There-
fore, Theorem 3.6 for CH4(X) would follow from knowing that CH2

(2)(X) is ι-anti-invariant.
Considering that CH2

(2)(X) consists of homologically trivial cycles, the latter would follow from
knowing that CH2

hom(Y ) = 0, where Y is the EPW sextic. However, although it is conjectured
that CH2

hom(Y ) = 0 for any hypersurface Y of dimension ≥ 4, this is an intractable problem for
Calabi–Yau hypersurfaces and for hypersurfaces of general type – not a single case is known.
Instead, our strategy consists in first showing that CH4

(2)(X) is ι-anti-invariant and then deduce
that CH2

(2)(X) is ι-anti-invariant.
We now proceed to the proof of Theorem 3.6 and argue step-by-step. Since CHi(X) =

CHi
(0)(X) for i = 0, 1, it is clear that ι preserves the multiplicative grading in these cases. If X is

very general in moduli, then CH1(X) = Q[h], and consequently H2(X) = h⊥⊕Q[h] where h⊥

is an irreducible polarized Hodge structure. Since ι is anti-symplectic, we get that ι acts as−id on
h⊥. This must hold for all smooth double EPW sextics. It follows that CH1(X)+ = Q[h]. Alter-
natively, CH1(X)+ = f ∗CH1(Y ), but CH1(Y ) = Q[c1(OY (1))] by the Grothendieck–Lefschetz
theorem.

By Theorem 3.5, CH3(X) = CH3
(0)(X) ⊕ CH3

(2)(X), where CH3
(2)(X) = CH3

hom(X) is
clearly stable under the action of ι. In particular, CH3

(0)(X) identifies with the image of the
cycle class map CH3(X) → H6(X). Therefore, by the hard Lefschetz theorem together with
the multiplicativity of the bigrading on CH∗(∗)(X), we have CH3

(0)(X) = h2 ·CH1(X). It follows
readily that CH3

(0)(X)+ = Q[h3].
We now deal with the remaining cases of codimension-4 and codimension-2 cycles. First, note

that CH4
(0)(X) = Q[h4] (apply Theorem 3.5), so that CH4

(0)(X) is stable under the action of ι,
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i.e. we have CH4
(0)(X) = CH4

(0)(X)+. Let now α ∈ CH2
(2)(X), and consider the ι-invariant

zero-cycle α · h2 + ι∗(α · h2). By the projection formula, we have

α · h2 + ι∗(α · h2) = f ∗
(
(f∗α) · c1(OY (1))2

)
∈ CH4(X).

It follows readily from Remark 1.3 that this cycle is a multiple of h4. Since α is algebraically
trivial, the zero-cycles α · h2 and ι∗(α · h2) are of degree zero, and hence

α · h2 + ι∗(α · h2) = 0 in CH4(X) . (5)

As any element in CH4
(2)(X) is of the form α · h2 with α ∈ CH2

(2)(X) (Theorem 3.5(ii)), equal-
ity (5) proves that CH4

(2)(X) = CH4
(2)(X)−.

Thus the action of ι commutes with the covariant action of Π6
X on CH4(X). By Bloch–

Srinivas [6], this means that

ι∗ ◦ Π6
X = Π6

X ◦ ι∗ + Γ in CH4(X ×X)

for some correspondence Γ supported on D × X for some divisor D in X . Let D̃ → D be
a desingularization of D. Since CH2

(2)(X) consists of algebraically trivial cycles, and since
H3(X) = 0, the contravariant action Γ∗ : CH2

(2)(X) → CH2(X) factors through ker(AJ :

CH1(D̃) → Pic0(D̃)), which is zero. Using that Π2
X is the transpose of Π6

X , it follows that the
action of ι and that of Π2

X commute on CH2
(2)(X) ; in particular, the action of ι on CH2(X)

preserves CH2
(2)(X). Equation (5) together with Theorem 3.5(ii) yields that α = −ι∗α, proving

that CH2
(2)(X) = CH2

(2)(X)−.
It then follows from Theorem 3.5(iii) that the action of ι on CH4(X) preserves CH4

(4)(X) and
that CH4

(4)(X) = CH4
(4)(X)+.

It remains to check that the action of ι on CH2(X) preserves CH2
(0)(X). Let α be a cycle in

CH2
(0)(X) and let us write ι∗α = β0 + β2, where β0 ∈ CH2

(0)(X) and β2 ∈ CH2
(2)(X). Since

h2 · CH2
(2j)(X) ⊆ CH4

(2j)(X), and since CH4
(0)(X) = CH4

(0)(X)+ and CH4
(2)(X) = CH4

(2)(X)−,
we have

β0 · h2 + β2 · h2 = α · h2 = ι∗(α · h2) = ι∗(β0 · h2) + ι∗(β2 · h2) = β0 · h2 − β2 · h2.

Consequently, β2 · h2 = 0, and hence, thanks to Theorem 3.5(ii), also β2 = 0. Thus ι∗α belongs
to CH2

(0)(X), thereby concluding the proof of the theorem. �

We now prove Theorem 2 stated in the introduction :

Proof of Theorem 2. Let us write φ : X ′ → X for the birational map from a Hilbert square X ′,
and ι′ := φ−1 ◦ ι ◦ φ ∈ Bir(X ′) for the birational automorphism induced by ι ∈ Aut(X).

To prove Theorem 2 for X ′, it will suffice, thanks to the explicit generators for CH4
(2j)(X

′)
given in Theorem 3.5, to prove that

(ι′)∗ = (−1)j id : CH4
(2j)(X

′) → CH4(X ′) . (6)

Let Rφ be Rieß’s correspondence from Theorem 3.3 ; it induces, thanks to Remark 3.4, an
isomorphism of bigraded rings (Rφ)∗ : CH∗(∗)(X

′)
'−→ CH∗(∗)(X). We claim that there is a
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commutative diagram

CH4(X ′)
(Rφ)∗ //

ι′∗
��

CH4(X)

ι∗
��

CH4(X ′)
(Rφ)∗ // CH4(X).

Clearly this claim, combined with Theorem 3.6, establishes equality (6). To prove the claim, we
use Theorem 3.3(iii). We note that any zero-cycle b ∈ CH4(X ′) can be represented by a cycle
β supported on an open U ′ ⊆ X ′ such that the birational map φ restricts to an isomorphism
φ|U ′ : U ′

'−→ U and U ⊆ X is ι-stable. Because (Rφ)∗ and (Γ̄φ)∗ coincide on 0-cycles (Theo-
rem 3.3(iii)), the image (Rφ)∗b ∈ CH4(Z) is supported on (φ|U ′)(Supp(β)) ⊂ U , which gives
the claimed commutativity

ι∗(Rφ)∗(b) = (Rφ)∗(ι
′)∗(b) in CH4(X) .

�

3.5. A concise reformulation of Theorem 2. In order to restate Theorem 2 in a concise way,
we invoke the following result :

Theorem 3.7 (Debarre–Macrı̀ [10]). Let S be a polarized K3 surface of degree d and Picard
number 1, and let X := S[2]. Then Bir(X) is trivial except in the following cases :

• d = 2, or d > 2 and d verifies

(∗) a2d = 2n2 + 2 , a, n ∈ Z ,

while the Pell equation

P2d(5) : n2 − 2da2 = 5

has no solution. In this case, Aut(X) = Bir(X) = Z/2Z.
• d = 10, or d is not divisible by 10 and d verifies (∗) and the Pell equation P2d(5) is

solvable. In this case, Aut(X) = 0 and Bir(X) = Z/2Z.
Moreover, if Bir(X) is non-trivial and d 6∈ {2, 4, 10}, X is birational to a double EPW sextic.

Proof. This is [10, Proposition B.3]. This extends and builds on prior work of Boissière et alii
[8, Theorem 1.1], who had proven the result for Aut(X). �

Remark 3.8. Double EPW sextics isomorphic to the Hilbert square of a K3 surface can be
explicitly described [10, Corollary 7.6] and are dense (for the euclidean topology) in the moduli
space of double EPW sextics [10, Proposition 7.9]. Double EPW sextics birational to the Hilbert
square of a K3 surface are explicitly described by Pertusi [35, Theorem 1.4] (this completes
earlier work of Iliev–Madonna [22]).

Corollary 3.9. Let X be a Hilbert scheme X = S[2] where S is a K3 surface with Pic(S) = Z.
Let ι ∈ Bir(X) be a non-trivial birational automorphism. Then (ι is a non-symplectic birational
involution, and) ι acts on CH4(X) as in Theorem 2.
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Proof. Theorem 3.7 implies that ι is the unique non-symplectic birational involution. In case
the degree of S is 2, ι must be the automorphism induced by the covering involution S → P2,
and it is elementary to prove that ι acts on CH4(X) as requested. In case the degree of S is 4, ι
must be the famous Beauville involution [1], for which Theorem 3.6 (and hence Theorem 2) is
known to hold ([16, Corollary 1.8] or [26]). In case the degree of S is 10, ι must be the O’Grady
involution [33]. For this case, it was proven in [25] that ι acts as−id on CH4

(2)(X). Reasoning as
in the proof of Theorem 3.6, this proves that ι acts on CH4(X) as in Theorem 2 (a simpler, more
geometric argument for the case of the O’Grady involution is given by Lin [30]). Finally, in case
the degree of S is≥ 6 and not equal to 10, X must be birational to a double EPW sextic X ′ and ι
is induced by the covering involution ι′ of the double EPW sextic (Theorem 3.7). It follows that
ι acts on CH4

(j)(X) as in Theorem 2. �

Remark 3.10. We observe that Corollary 3.9 in turn implies Theorem 2. Indeed, assume X is
a double EPW sextic birational to a Hilbert square S[2]. Let d be the degree of S. Since ”being
birational to a Hilbert square” can be translated, via lattice-theory, into a numerical condition
on double EPW sextics (cf. [35]), all Hilbert squares of degree-d K3 surfaces are birational to
a double EPW sextic (and d satisfies the numerical condition of Theorem 3.7). Let Xd → Fd
denote the universal family of Hilbert squares of degree-d K3 surfaces. Corollary 3.9 applies
to the very general element of this family. But then a standard spread argument ([46, Lemma
3.2]), plus the fact that the graph of the covering involution and the MCK decomposition are
universally defined, implies that Theorem 3.6 (and hence Theorem 2) holds for all elements of
Xd → Fd.

3.6. Some applications of Theorem 2. We provide two corollaries to Theorem 2, which con-
jecturally should hold for all double EPW sextics. First, when X is birational to the Hilbert
square of a K3 surface, we can improve Theorem 1 to the case of codimension-3 cycles.

Corollary 3.11. Let X be a double EPW sextic, and assume either that CH1(X) = Q[h], or that
X is birational to the Hilbert square of a K3 surface. Consider the subring

R∗(X) := 〈CH1(X),CH2(X)+, cj(X)〉 ⊂ CH∗(X) .

The cycle class map Ri(X)→ H2i(X) is injective for i ≥ 3.

Proof. The case where CH1(X) = Q[h] is the content of Theorem 2.8. In the case X is assumed
to be birational to the Hilbert square of a K3 surface, it suffices to show, due to Theorem 3.5,
that CH2(X)+ ⊂ CH2

(0)(X). Since CH2(X) = CH2
(0)(X) ⊕ CH2

(2)(X), this follows from the
facts proven in Theorem 3.6 that ι∗ acts as −1 on CH2

(2)(X) and that CH2
(0)(X) is stable under

the action of ι∗. �

We note that Corollary 3.11 should hold for all i (the problem in proving this is that it is not
known whether CH2

(0)(X) injects into cohomology) and for all double EPW sextics. Second,
still when X is birational to the Hilbert square of a K3 surface or when X is generic, we can
characterize the canonical zero-cycle on X as being the class of any point lying on a uniruled
divisor whose class is ι-invariant.



ZERO-CYCLES ON DOUBLE EPW SEXTICS 17

Corollary 3.12. Let X be a double EPW sextic, and assume either that CH1(X) = Q[h], or that
X is birational to the Hilbert square of a K3 surface. Let S1 CH4(X) ⊂ CH4(X) denote the
subgroup generated by points on uniruled divisors in X . Then

S1 CH4(X) ∩ CH4(X)+ = Q[c4(X)] .

Proof. Let X be a double EPW sextic. From [13], we know that c4(X) is a multiple of h4 in
CH4(X), where h = f ∗c1(OY (1)) is the ι-invariant polarization on X . From [9, Theorem 1.6
and Remark 1.2] we have

S1 CH4(X) = CH1(X) · CH3(X). (7)
First assume that CH1(X) = Q[h]. In that case, we have S1 CH4(X)∩CH4(X)+ = h·CH3(X)+.
The corollary in that case then follows immediately from Remark 1.3.

Second, assume thatX is birational to the Hilbert square of a K3 surface. In that case, the sub-
group S1 CH4(X) coincides with CH4

(0)(X)⊕ CH4
(2)(X), where CH∗(∗)(X) refers to the Fourier

decomposition of Theorem 3.5. This can be seen either as a combination of [47, End of Sec-
tion 4.1] and the fact that S1 CH4(X) is a birational invariant due to [36] and the characteriza-
tion (7), or as a direct consequence of Theorem 3.5. Theorem 3.6 then implies that the ι-invariant
part of S1 CH4(X) is CH4

(0)(X) ∼= Q[h4]. �
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[9] F. Charles, G. Mongardi and G. Pacienza, Families of rational curves on holomorphic symplectic varieties
and applications to 0-cycles, arXiv:1907.10970.

[10] O. Debarre and E. Macrı̀, On the period map for polarized hyperKähler fourfolds, Internat. Math. Re-
search Notices.



18 ROBERT LATERVEER AND CHARLES VIAL

[11] D. Eisenbud, S. Popescu and C. Walter, Lagrangian subbundles and codimension 3 subcanonical sub-
schemes, Duke Math. J. 107 no. 3 (2001), 427–467.

[12] A. Ferretti, The Chow ring of double EPW sextics, Ph. D. thesis, Roma 2009. Available from
http://www1.mat.uniroma1.it/PhD/TESI/ARCHIVIO/ferretti.pdf.

[13] A. Ferretti, The Chow ring of double EPW sextics, Algebra Number Theory 6 (2012), no. 3, 539–560.
[14] L. Fu, Decomposition of small diagonals and Chow rings of hypersurfaces and Calabi–Yau complete

intersections, Advances in Mathematics 244 (2013), 894–924.
[15] L. Fu, Beauville–Voisin conjecture for generalized Kummer varieties, Int. Math. Res. Not. IMRN 2015,

no. 12, 3878–3898.
[16] L. Fu, R. Laterveer and Ch. Vial, The generalized Franchetta conjecture for some hyper-Kähler varieties

(with an appendix joint with M. Shen), Journal Math. Pures et Appliquées (9) 130 (219), 1–35.
[17] L. Fu, Zh. Tian and Ch. Vial, Motivic hyperKähler resolution conjecture: I. Generalized Kummer vari-

eties, Geom. Topol. 23 (2019) 427–492.
[18] L. Fu and Ch. Vial, Distinguished cycles on varieties with motive of abelian type and the Section Property,

J. Alg. Geom. 29 (2020), 53–107.
[19] W. Fulton, Intersection theory, Springer-Verlag Ergebnisse der Mathematik, Berlin Heidelberg New York

Tokyo 1984.
[20] A. Iliev, G. Kapustka, M. Kapustka and K. Ranestad, EPW cubes, arXiv:1505.02389v2, to appear in J. f.

Reine u. Angew. Math.
[21] A. Iliev, G. Kapustka, M. Kapustka and K. Ranestad, Hyperkähler fourfolds and Kummer surfaces, Pro-

ceedings of the LMS 115 no. 6 (2017), 1276–1316.
[22] A. Iliev and C. Madonna, EPW sextics and Hilbert squares of K3 surfaces, Serdica Math. Journal 41 no.

4 (2015), 343–354.
[23] U. Jannsen, Motivic sheaves and filtrations on Chow groups, in: Motives (U. Jannsen et al., eds.), Pro-

ceedings of Symposia in Pure Mathematics Vol. 55 (1994), Part 1.
[24] S.-I. Kimura, On the characterization of Alexander schemes, Comp. Math. 92 no. 3 (1994), 273–284.
[25] R. Laterveer, Algebraic cycles on a very special EPW sextic, Rend. Semin. Mat. Univ. Padova 140 (2018),

81–121.
[26] R. Laterveer, Bloch’s conjecture for certain hyperKähler fourfolds, Pure and Applied Math. Quarterly 13

no. 4 (2018), 639–692.
[27] R. Laterveer, Zero-cycles on self-products of surfaces: some new examples verifying Voisin’s conjecture,

Rend. Circ. Mat. Palermo, Series 2, 68(2) (2019), 419–431.
[28] R. Laterveer and Ch. Vial, On the Chow ring of Cynk–Hulek Calabi–Yau varieties and Schreieder vari-

eties, to appear in Canad. J. Math., arXiv:1712.03070.
[29] Ch. Lehn, M. Lehn, Ch. Sorger and D. van Straten, Twisted cubics on cubic fourfolds, J. für Reine u.

Angew. Math. 731 (2017), 87–128.
[30] H.-Y. Lin, On the action of the O’Grady involution on the Chow ring, preprint.
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