Lineare Algebra 1 Präsenzübungsblatt 12

Sei K ein Körper.

Aufgabe 1. Eine Matrix $A \in \operatorname{Mat}_n(K)$ heißt symmetrisch, falls $A = A^{\operatorname{tr}}$, und antisymmetrisch (oder schiefsymmetrisch) falls $A = -A^{\operatorname{tr}}$. Wir schreiben

$$\operatorname{Sym}^{(n)}(K) = \{ A \in \operatorname{Mat}_n(K) \mid A = A^{\operatorname{tr}} \}$$

für die Menge der symmetrischen $n \times n$ -Matrizen über K und

$$A^{(n)}(K) = \{ A \in Mat_n(K) \mid A = -A^{tr} \}$$

für die Menge der antisymmetrischen $n \times n$ -Matrizen über K. Zeigen Sie, dass sowohl $\operatorname{Sym}^{(n)}(K)$ als auch $\operatorname{A}^{(n)}(K)$ Unterräume von $\operatorname{Mat}_n(K)$ sind und bestimmen Sie die jeweiligen K-Dimensionen. Bestimmen Sie insbesondere $\dim_K(\operatorname{A}^{(2)}(K))$.

Aufgabe 2. Sei K nun ungerader Charakteristik, d.h. es gelte $2 \neq 0$ in K. Zeigen Sie, dass sich jede Matrix A eindeutig schreiben lässt als

$$A = A^+ + A^-,$$

wobei A^+ symmetrisch und A^- antisymmetrisch ist. Folgern Sie, dass

$$\operatorname{Mat}_n(K) \cong \operatorname{Sym}^{(n)}(K) \oplus \operatorname{A}^{(n)}(K).$$

Hinweis: Die Annahme an die Charakteristik von K impliziert, dass 2 in K invertierbar ist, d.h. $1/2 \in K$.

Aufgabe 3. Sei K ungerader Charakteristik. Zeigen Sie:

(1) Jede symmetrische bilineare Abbildung in $\mathrm{Sym}^2(K^n,K)$ ist von der Form

$$K^n \times K^n \to K$$
, $(x,y) \mapsto xAy^{\text{tr}}$

für eine eindeutig bestimmte (!) symmetrische Matrix $A \in \text{Sym}^{(n)}(K)$.

(2) Jede alternierende bilineare Abbildung in $\bigwedge^2(K^n,K)$ ist von der Form

$$K^n \times K^n \to K$$
, $(x,y) \mapsto xAy^{\text{tr}}$

für eine eindeutig bestimmte (!) antisymmetrische Matrix $A \in A^{(n)}(K)$.

Hinweis: In Proposition 6.6 hatten wir festgehalten, dass r-lineare Abbildungen durch ihre Werte auf r-Tupeln von Basisvektoren eindeutig bestimmt sind. Vergleichen Sie die Einträge von A mit den Werten der jeweiligen bilinearen Abbildungen auf Paaren von Standardbasisvektoren des K^n .