Lineare Algebra 1 Präsenzübungsblatt 5

Gegeben seien ein Körper K und ein K-Vektorräume V.

Aufgabe 1. Seien $U_1, U_2 \leq V$ zwei K-lineare Untervektorräume von V. Zeigen Sie:

- (1) Der Durchschnitt $U_1 \cap U_2$ ist stets ein K-linearer Unterraum von V.
- (2) Die Vereinigung $U_1 \cup U_2$ ist genau dann ein K-linearer Unterraum von V, wenn $U_1 \subseteq U_2$ oder $U_2 \subseteq U_1$ gilt.

Aufgabe 2. Sei W ein weiterer K-Vektorraum. Zeigen Sie: Die Menge $\operatorname{Hom}_K(V,W)$ aller K-linearen Abbildungen von V nach W ist ein K-linearer Unterraum des K-Vektorraums Abb(V, W).

Aufgabe 3. Betrachten Sie die Vektoren

- (1) (2,0,-2),(2,-1,1),(0,2,-1) im \mathbb{R} -Vektorraum \mathbb{R}^3 ,
- (2) (0,1,1),(1,0,1),(1,1,-1) im \mathbb{F}_3 -Vektorraum \mathbb{F}_3^3 ,
- (3) (0,1,1),(1,0,1),(1,1,-1) im \mathbb{R} -Vektorraum \mathbb{R}^3 ,

- (3) (0, 1, 1), (1, 0, 1), (1, 1, 1) In at voltage \mathbb{R} , (4) $\frac{1}{3}, \frac{3}{4}, \frac{5}{11}$ im \mathbb{R} -Vektorraum \mathbb{R} , (5) $\frac{1}{3}, \frac{3}{4}, \frac{5}{11}$ im \mathbb{Q} -Vektorraum \mathbb{R} , (6) (i+1, i-1), (-1+i, -1-i) im \mathbb{R} -Vektorraum \mathbb{C}^2 , (7) (i+1, i-1), (-1+i, -1-i) im \mathbb{C} -Vektorraum \mathbb{C}^2 .

Stellen Sie in jedem Fall fest, ob die Vektoren ein Erzeugendensystem des jeweiligen Vektorraums bilden und ob sie linear unabhängig über dem jeweiligen Grundkörper sind.