Lineare Algebra 2

Übungsblatt 1

Abgabe bis 10:00 Uhr am Donnerstag, den 19. April 2018, im Postfach Ihrer Tutorin bzw. Ihres Tutors.

Es sei K ein beliebiger Körper. Seien V und W endlich-dimensionale K-Vektorräume, mit Basen \mathcal{B}_V bzw. \mathcal{B}_W . Wie üblich bezeichnen \mathcal{B}_W^* bzw. \mathcal{B}_V^* die jeweils dualen Basen. Es sei $\beta: V \times W \to K$ eine K-Bilinearform. In der Vorlesung hatten wir folgende Abbildungen eingeführt:

$$\beta_1: V \to W^*, \quad v \mapsto (w \mapsto \beta(v, w)),$$

 $\beta_2: W \to V^*, \quad w \mapsto (v \mapsto \beta(v, w)).$

Aufgabe 1. Beweisen Sie Proposition 1.5 der Vorlesung: Ist $B \in \operatorname{Mat}_{n,m}(K)$ die Strukturmatrix von β bzgl. \mathcal{B}_V und \mathcal{B}_W , so gilt

- (1) $B^{t} = M_{\mathcal{B}_{W}^{*}}^{\mathcal{B}_{V}}(\beta_{1})$ und (2) $B = M_{\mathcal{B}_{V}^{*}}^{\mathcal{B}_{W}}(\beta_{2}).$

Aufgabe 2. Wir nehmen nun an, dass $\dim_K V = \dim_K W$ gilt. Zeigen Sie die Äquivalenz der folgenden Eigenschaften:

- (1) β ist nicht ausgeartet in der ersten Variablen.
- (2) β ist nicht ausgeartet in der zweiten Variablen.
- (3) B ist invertierbar.

Aufgabe 3. Welche der folgenden Funktionen $\beta: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ sind \mathbb{R} -Bilinearformen? Begründen Sie Ihre Antworten. Bestimmen Sie gegebenenfalls die Strukturmatrizen bezüglich der Basen $\mathcal{B}_1 := (e_1, e_2)$ sowie $\mathcal{B}_2 := (e_1 + e_2, e_2)$ von \mathbb{R}^2 , wobei e_i die Standardeinheitsvektoren bezeichnen. Seien $x = (x_1, x_2)$ und $y = (y_1, y_2)$.

- (1) $\beta(x,y) = -2x_1y_2 y_1^2 + 5x_2y_1$
- (2) $\beta(x,y) = -x_2y_1 + 3x_1y_2$
- (3) $\beta(x,y) = 7x_1 x_2$
- (4) $\beta(x,y) = x_1x_2 + 4y_1y_2$
- (5) $\beta(x,y) = 3x_1y_1 + x_2x_1 + 1$

Aufgabe 4. Die *Spur* einer Matrix $A = (a_{ij}) \in \operatorname{Mat}_n(K)$ ist $\operatorname{Sp}(A) := \sum_{i=1}^n a_{ii}$. Zeigen Sie: Die Abbildung

$$\beta^{(n)}: \operatorname{Mat}_n(K) \times \operatorname{Mat}_n(K), \quad (A, B) \mapsto \operatorname{Sp}(AB)$$

ist eine symmetrische Bilinearform. Berechnen Sie die Strukturmatrix von $\beta^{(2)}$ bezüglich der folgenden K-Basen von $Mat_2(K)$:

$$\begin{array}{l} (1) \ \, \mathcal{B}_1 := \left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right\}, \\ (2) \ \, \mathcal{B}_2 := \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\}.$$

$$(2) \ \mathcal{B}_2 := \left\{ \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right\}.$$