Lineare Algebra 2 Übungsblatt 3

Abgabe bis 10:00 Uhr am Donnerstag, den 03. Mai 2018, im Postfach Ihrer Tutorin bzw. Ihres Tutors.

Aufgabe 1. Wir betrachten $V = \mathbb{R}^n$ als quadratischen Raum mit dem Standardskalarprodukt. Ergänzen Sie in den beiden folgenden Fällen die gegebenen Vektoren jeweils zu einer Orthonormalbasis des jeweiligen Vektorraums.

(1)
$$V = \mathbb{R}^3$$
, $v = \frac{1}{\sqrt{14}}(1, 2, 3)$,

(1)
$$V = \mathbb{R}^3$$
, $v = \frac{1}{\sqrt{14}}(1, 2, 3)$,
(2) $V = \mathbb{R}^4$, $v_1 = \frac{1}{2}(1, 1, -1, -1)$, $v_2 = \frac{1}{2}(1, 1, 1, 1)$.

Aufgabe 2. Sei V der \mathbb{R} -Vektorraum der reellen Polynome vom Grad höchstens 2. Auf dem Präsenzübungsblatt 3 hatten Sie gezeigt, dass

$$\phi: V \times V \to \mathbb{R}, \quad (f,g) \mapsto \int_{-1}^{1} f(x)g(x)dx$$

eine nicht ausgeartete symmetrische Bilinearform auf V ist.

- (1) Zeigen Sie, dass ϕ positiv definit ist.
- (2) Wenden Sie das Gram-Schmidtsche Orthonormalisierungsverfahren auf die Basis $\mathcal{B} = (1, x, x^2)$ an, um eine Orthonormalbasis von V bezüglich ϕ zu berechnen.

Aufgabe 3. Eine Matrix $A \in \operatorname{Mat}_n(\mathbb{R})$ heißt orthogonal wenn $A^{-1} = A^{\operatorname{t}}$ gilt. Beweisen oder widerlegen Sie folgende Aussagen:

- (1) Die Summe zweier orthogonaler Matrizen ist orthogonal.
- (2) Das Produkt zweier orthogonaler Matrizen ist orthogonal.
- (3) Die Transponierte einer orthogonalen Matrix ist orthogonal.
- (4) Die Inverse einer orthogonalen Matrix ist orthogonal.
- (5) Ist $A \in \operatorname{Mat}_n(\mathbb{R})$ orthogonal, so ist $\det(A) \in \{-1, 1\}$.
- (6) Ist $A \in \operatorname{Mat}_n(\mathbb{R})$ und gilt $\det(A) \in \{-1, 1\}$, so ist A orthogonal.

Aufgabe 4. Sei $A \in \operatorname{Mat}_n(\mathbb{R})$ schiefsymmetrisch, d.h. $A = -A^{\operatorname{t}}$, derart, dass $\det(\mathrm{Id}_n + A) \neq 0$. Zeigen Sie, dass die Matrix

$$(\operatorname{Id}_n - A)(\operatorname{Id}_n + A)^{-1}$$

orthogonal ist.