Lineare Algebra 2 Übungsblatt 6

Abgabe bis 10:00 Uhr am Donnerstag, den 24. Mai 2018, im Postfach Ihrer Tutorin bzw. Ihres Tutors.

* * *

Seien K ein Körper und V ein K-Vektorraum.

Aufgabe 1. Sei $f \in \text{End}(V)$. Zeigen Sie: Ist jeder Vektor $v \in V \setminus \{0\}$ ein Eigenvektor von f, so ist f eine *Homothetie*, d.h. es gibt ein $\lambda \in K$ derart, dass $f = \lambda$ id.

Aufgabe 2. Zur Erinnerung: Ein Endomorphismus $f \in \text{End}(V)$ heißt nilpotent wenn $f^k = 0$ für ein $k \in \mathbb{N}_0$. Sei $f \in \text{End}(V)$ und dim V = n. Zeigen
Sie die Äquivalenz folgender Aussagen:

- (1) f ist nilpotent.
- (2) $\chi_f = X^n$.
- (3) Es gibt eine Basis \mathcal{B} von V, bezüglich derer f durch eine strikte obere Dreiecksmatrix dargestellt ist, d.h. $(M_{\mathcal{B}}^{\mathcal{B}}(f))_{ij} = 0$ falls $i \geq j$.
- (4) $f^n = 0$.

Aufgabe 3. Eine Matrix $A \in \operatorname{Mat}_n(K)$ heißt *nilpotent* wenn $A^k = 0$ für ein $k \in \mathbb{N}_0$. Man zeige:

- (1) $\operatorname{Sp}(A) := \sum_{i=1}^{n} a_{ii} = 0.$
- (2) $\det(\operatorname{Id}_n A) = \det(\operatorname{Id}_n + A) = 1.$
- (3) Ist $B \in \operatorname{Mat}_n(K)$ mit A vertauschbar (d.h. gilt AB = BA), so gilt $\det(A + B) = \det(B)$.

Aufgabe 4. Betrachten Sie die Matrix

$$A = \begin{pmatrix} 2 & 1 & -2 \\ -1 & -1 & 3 \\ 2 & 3 & -4 \end{pmatrix} \in Mat_3(\mathbb{R}).$$

- (1) Bestimmen Sie das charakteristische Polynom χ_A und das Minimalpolynom μ_A von A.
- (2) Bestimmen Sie die Eigenwerte von A sowie ihre geometrischen und algebraischen Vielfachheiten.
- (3) Ist A diagonalisierbar? Begründen Sie Ihre Antwort. Bestimmen Sie gegebenenfalls eine diagonalisierende Matrix, d.h. eine Matrix $S \in GL_3(\mathbb{R})$ derart, dass $S^{-1}AS$ eine Diagonalmatrix ist.
- (4) Ist A trigonalisierbar? Bestimmen Sie gegebenenfalls eine trigonalisierende Matrix, d.h. eine Matrix $T \in GL_3(\mathbb{R})$ derart, dass $T^{-1}AT$ eine obere Dreiecksmatrix ist.