Lineare Algebra 2 Präsenzübungsblatt 8

In der Vorlesung hatten wir gezeigt, dass jedes Skalarprodukt auf einem reellen Vektorraum eine Norm definiert; siehe Lemma 3.4. Es entsteht jedoch nicht jede Norm auf diese Weise, wie die folgende Aufgabe zeigt.

Aufgabe 1.

(1) Sei V ein \mathbb{R} -Vektorraum mit Skalarprodukt \langle , \rangle und zugehöriger Norm $||x|| := \sqrt{\langle x, x \rangle}$. Zeigen Sie, dass für alle $x, y \in V$ die Gleichung

 $||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2$

gilt

(2) Zeigen Sie, dass für $n \geq 2$ auf \mathbb{R}^n durch

$$||x||_{\infty} := \max\{|x_i| \mid i \in \{1, \dots, n\}\}$$

eine Norm definiert ist.

(3) Zeigen Sie, dass für $n \geq 2$ kein Skalarprodukt \langle , \rangle auf \mathbb{R}^n existiert mit $||x||_{\infty} = \sqrt{\langle x, x \rangle}$. Hinweis: (1).

Aufgabe 2. Sei

$$A = \begin{pmatrix} 3 & 1 & 1 & 1 \\ 1 & 3 & 1 & 1 \\ 1 & 1 & 3 & 1 \\ 1 & 1 & 1 & 3 \end{pmatrix} \in \operatorname{Mat}_4(\mathbb{R}).$$

Bestimmen Sie, ohne das charakteristische Polynom von A zu berechnen, die Eigenwerte von A, sowie eine Basis des \mathbb{R}^4 , die aus Eigenvektoren von A besteht. Bestimmen Sie damit eine orthogonale Matrix, die A diagonalisiert.

Aufgabe 3. Skizzieren Sie die reellen Lösungen der Gleichungen

$$3x_1^2 - 2x_1x_2 + x_2^2 = 4,$$

$$3x_1^2 - 2x_1x_2 - x_2^2 = 4,$$

und diskutieren Sie die prinzipiellen Unterschiede zwischen den beiden Lösungsmengen.

Bringen Sie beide Gleichungen auf die Normalform $xA_ix^t = 4$ für symmetrische Matrizen $A_1, A_2 \in \operatorname{Mat}_2(\mathbb{R})$.