Präsenzübungsblatt 2¹

Aufgabe 1. Sei (G, \circ) eine Gruppe mit Neutralelement e. Zeigen Sie:

- (1) Das neutrale Element e ist eindeutig, d.h. gibt es ein Element $e' \in G$, so dass e'g = ge' = g für alle $g \in G$, dann gilt e' = e.
- (2) Jedes Element $g \in G$ hat ein eindeutiges Inverses, d.h. gilt hg = gh = e und h'g = gh' = e, so ist h = h'.
- (3) Wenn für alle $g \in G$ gilt, dass $g \circ g = e$, dann ist G abelsch.

Aufgabe 2. Die Funktionen $\cosh x = \frac{e^x + e^{-x}}{2}$ und $\sinh x = \frac{e^x - e^{-x}}{2}$ (für $x \in \mathbb{R}$) genügen den Gleichungen

$$\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$$
$$\sinh(x \pm y) = \sinh x \cosh y \pm \cosh x \sinh y,$$

für $x, y \in \mathbb{R}$. Zeigen Sie: Die Menge

$$L := \left\{ \begin{pmatrix} \cosh u & \sinh u \\ \sinh u & \cosh u \end{pmatrix} \mid u \in \mathbb{R} \right\}$$

ist eine Gruppe, mit Matrixmultiplikation als Verknüpfung. Ist die Gruppe abelsch? Welcher Wert von u liefert das Neutralelement? Geben Sie eine explizite Formel für das Inverse eines allgemeinen Elements an. (Hinweis: Multiplizieren Sie zwei allgemeine Elemente von L.)

Aufgabe 3. Wir definieren auf der Menge

$$\mathbb{R}^2 = \{(a,b) \mid a,b \in \mathbb{R}\}\$$

die folgende Operation:

$$*: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$$
$$((a_1, b_1), (a_2, b_2)) \mapsto (a_1 a_2 - b_1 b_2, b_1 a_2 + a_1 b_2)$$

Zeigen Sie: Zusammen mit der gewöhnlichen Addition

$$+: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$$

 $((a_1, b_1), (a_2, b_2)) \mapsto (a_1 + a_2, b_1 + b_2)$

stiftet die Operation * auf \mathbb{R}^2 die Struktur eines Körpers. (Hinweis: Sie kennen diesen Körper bereits.)

 $^{^{1}}$ Die Präsenzübungen beginnen in Woche 2. Es gibt kein Präsenzübungsblatt 1.

Präsenzübungsblatt 3

Aufgabe 1. Es sei $\mathbb{R}[x]$ der \mathbb{R} -Vektorraum der Polynome in einer Variablen x und, für $N \in \mathbb{N}_0$, $\mathbb{R}[x]_N$ die Menge der Polynome in $\mathbb{R}[x]$ vom Grad höchstens N, d.h. von der Form

$$f(x) = \sum_{i=0}^{N} a_i x^i.$$

Zeigen Sie, dass

- (1) $\mathbb{R}[x]_N$ ein Untervektorraum von $\mathbb{R}[x]$ ist.
- (2) $\mathbb{R}[x]$ nicht endlich erzeugt ist.
- (3) $\mathbb{R}[x]_N$ endlich erzeugt ist. Finden Sie ein Erzeugendensystem mit N+1 Vektoren? Eins mit N Vektoren?

Aufgabe 2. Wir betrachten die Vektoren

(1)

$$\begin{pmatrix} -1 \\ -2 \\ -2 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}, \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$
 im \mathbb{R} -Vektorraum \mathbb{R}^3 ,

(2)

$$\begin{pmatrix} 0 \\ 0 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ -2 \\ 1 \\ 0 \end{pmatrix} \text{ im } \mathbb{R}\text{-Vektorraum } \mathbb{R}^4,$$

(3)

$$\frac{1}{3}, \frac{4}{5}, \frac{7}{11}$$
 im Q-Vektorraum \mathbb{R} .

(4)

$$\begin{pmatrix} 0 \\ -i-2 \end{pmatrix}, \begin{pmatrix} -i+2 \\ -i \end{pmatrix}$$
 im \mathbb{R} -Vektorraum \mathbb{C}^2 .

Stellen Sie in jedem Fall fest, ob die gegebenen Vektoren

- linear unabhängig sind,
- ein Erzeugendensystem des jeweiligen Vektorraums bilden.

Aufgabe 3. Wir betrachten die folgenden Teilmengen des \mathbb{R}^3 :

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mid x - y = 0 \right\}, \quad W = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \lambda \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \mid \lambda \in \mathbb{R} \right\}.$$

- (1) Skizzieren Sie V und W.
- (2) Zeigen Sie, dass V ein Untervektorraum von \mathbb{R}^3 ist, W hingegen nicht.
- (3) Berechnen und skizzieren Sie $V \cap W$.

Präsenzübungsblatt 4

Aufgabe 1. Gegeben seien die Punkte

$$P = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, Q = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, R = \begin{pmatrix} -1 \\ 2 \end{pmatrix} \in \mathbb{R}^2.$$

- (1) Beschreiben Sie die Gerade g, die durch die Punkte Q und R geht.
- (2) Bestimmen Sie den Abstand zwischen P und g.

Aufgabe 2.

(1) Bestimmen Sie den Abstand des Punktes

$$S = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \in \mathbb{R}^3$$

von der Ebene E im \mathbb{R}^3 , die durch die Gleichung x+2y-3z=1 gegeben ist.

(2) Bestimmen Sie den Abstand zwischen den Geraden

$$g_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \cdot \mathbb{R}, \quad g_2 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \cdot \mathbb{R}$$

im \mathbb{R}^3 .

(3) Skizzieren Sie S, E, g_1 und g_2 .

Aufgabe 3. Gegeben seien die Vektoren

$$u = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad v = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} \in \mathbb{R}^3.$$

- (1) Bestimmen Sie einen Vektor w der Länge 1, der senkrecht steht sowohl auf u als auch auf v.
- (2) Zeigen Sie, dass

$$\langle u, v \rangle_{\mathbb{R}} = \left\{ \mathbf{x} \in \mathbb{R}^3 \mid \langle w, \mathbf{x} \rangle = 0 \right\}.$$

(Hierbei bezeichnet, wie in der Vorlesung $\langle \, , \, \rangle_{\mathbb{R}}$ die lineare Hülle, $\langle \, , \, \rangle$ jedoch das Standardskalarprodukt.)

Präsenzübungsblatt 5

Aufgabe 1. Gegeben seien die reellen Matrizen

$$A = \begin{pmatrix} 0 & 3 & 5 \\ 1 & -1 & 2 \\ 1 & 8 & 7 \end{pmatrix}, B = \begin{pmatrix} 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 \\ 0 \\ 8 \\ -7 \end{pmatrix}$$

$$D = \begin{pmatrix} -1 & 2 & 0 & 8 \end{pmatrix}, E = \begin{pmatrix} 1 & 4 \\ 0 & 5 \\ 6 & 8 \end{pmatrix}.$$

Berechnen Sie alle definierten Produkte XY mit $X, Y \in \{A, B, C, D, E\}$.

Aufgabe 2. Die *Transponierte* einer Matrix $A = (a_{ij}) \in \operatorname{Mat}_{n,m}(K)$ über einem Körper K hatten wir in der Vorlesung definiert als die Matrix

$$A^{\mathbf{t}} = (a_{ii}) \in \mathrm{Mat}_{m,n}(K).$$

Seien $m, n, p \in \mathbb{N}_0$ sowie $X \in \mathrm{Mat}_{m,n}(K)$ und $Y \in \mathrm{Mat}_{n,p}(K)$. Zeigen Sie, dass

$$(XY)^{\mathbf{t}} = Y^{\mathbf{t}}X^{\mathbf{t}}$$

gilt.

Aufgabe 3. Die Reaktionsgleichung für die vollständige Verbrennung von Octan ist von der Form

$$a C_8 H_{18} + b O_2 \rightarrow c C O_2 + d H_2 O$$
.

Bestimmen Sie alle $a, b, c, d \in \mathbb{N}_0$, die diese Reaktionsgleichung lösen.

Präsenzübungsblatt 6

Aufgabe 1. Gegeben seien

$$A = \begin{pmatrix} -3 & 0 \\ 3 & 1 \end{pmatrix}, B = \begin{pmatrix} 6 & 6 \\ -7 & -6 \end{pmatrix} \in \operatorname{Mat}_2(\mathbb{R}).$$

Bestimmen Sie die Menge aller Matrizen $X \in \operatorname{Mat}_2(\mathbb{R})$ derart, dass

$$AX = B$$

gilt.

Aufgabe 2. Bestimmen Sie eine Matrix $A \in \operatorname{Mat}_2(\mathbb{R})$ und einen Vektor $b \in \mathbb{R}^2$ derart, dass

$$\mathbb{L}_{A,b} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \mathbb{R} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

gilt. Was können Sie zur Menge aller solchen Paare (A, b) sagen?

Aufgabe 3. Wir betrachten die folgenden Arten von Umformungen einer $m \times n$ -Matrix über einem Körper K:

- (R1) Multiplikation einer Zeile von A mit einem beliebigen $\lambda \in K \setminus \{0\}$.
- (R2) Vertauschen zweier Zeilen.
- (R3) Addition eines beliebigen Vielfachen einer Zeile zu einer anderen.

Wir nennen Matrizen C und C' zeilenäquivalent, geschrieben $C \sim C'$, falls C' aus C durch endlich viele Instanzen von Umformungen des Typs (R1), (R2) oder (R3) hervorgeht.

Gegeben seien nun zwei erweiterte Koeffizientenmatrizen $(A|b), (A'|b') \in \text{Mat}_{m,(n+1)}$. Zeigen Sie, dass

$$(A|b) \sim (A'|b') \Rightarrow \mathbb{L}_{A,b} = \mathbb{L}_{A',b'}.$$

Gilt die Umkehrung?

Präsenzübungsblatt 7

Aufgabe 1. In der Vorlesung hatten wir gesehen, dass die Matrizen

$$C = \begin{pmatrix} 0 & 0 & 0 & 1 & 3 \\ 0 & 2 & 2 & 2 & -4 \\ 0 & 1 & 1 & 2 & 0 \\ 0 & 3 & 3 & 4 & -4 \end{pmatrix} \quad \text{und} \quad C' = \begin{pmatrix} 0 & 2 & 2 & 2 & -4 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \in \text{Mat}_{4,5}(\mathbb{R})$$

zeilenäquivalent sind.

Bestimmen Sie nun Elementarmatrizen E_1, \ldots, E_k derart, dass

$$C = E_1 E_2 \dots E_k C'$$

gilt.

Aufgabe 2.

(1) Bestimmen Sie, zu jeder der Elementarmatrizen E_i , die Sie in Aufgabe 1 bestimmt haben, eine Matrix F_i derart, dass

$$E_i F_i = F_i E_i = \mathrm{Id}_4$$

gilt. (Die Matrizen F_i heißen die Inversen der Matrizen E_i .)

(2) Sei $E := E_1 E_2 \dots E_k$. Finden Sie eine Matrix E^{-1} derart, dass

$$E^{-1}E = EE^{-1} = \text{Id}_4$$

gilt.

Aufgabe 3. Gegeben sei die Matrix

$$A = \begin{pmatrix} 1 & 0 & 3 & 2 & 1 \\ 4 & 2 & 6 & 5 & 2 \\ 2 & 2 & 0 & 1 & 0 \\ 4 & 4 & 0 & 2 & 0 \end{pmatrix} \in \operatorname{Mat}_{4,5}(\mathbb{R}).$$

- (1) Benutzen Sie das Gaußsche Eliminierungsverfahren, um eine zu A (zeilen-)äquivalente Matrix in Zeilenstufenform zu bestimmen.
- (2) Benutzen Sie diese Matrix, um die Lösungsmenge des Gleichungssystems

$$Ax = \begin{pmatrix} 7\\19\\5\\10 \end{pmatrix}$$

zu bestimmen.

Präsenzübungsblatt 8

Sei K ein Körper.

Aufgabe 1. Wir definieren, gewissermassen *ad hoc*, die Determinante einer 2×2 -Matrix $A = (a_{ij}) \in \operatorname{Mat}_2(K)$ durch die Formel

$$\det(A) := a_{11}a_{22} - a_{12}a_{21}.$$

Zeigen Sie, dass die Abbildung det : $\operatorname{Mat}_2(K) \to K$ die folgenden Eigenschaften besitzt: Für $\lambda \in K$ und $a_1^{(1)}, a_2^{(1)}, a_1^{(2)}, a_1^{(2)}, a_1^{(1)}, a^{(2)} \in K^2$ gelten

(1)
$$\det(\lambda a^{(1)}, a^{(2)}) = \det(a^{(1)}, \lambda a^{(2)}) = \lambda \det(A),$$
(2)
$$\det(a_1^{(1)} + a_2^{(1)}, a^{(2)}) = \det(a_1^{(1)}, a^{(2)}) + \det(a_2^{(1)}, a^{(2)}),$$

$$\det(a_1^{(1)}, a_1^{(2)} + a_2^{(2)}) = \det(a^{(1)}, a_1^{(2)}) + \det(a^{(1)}, a_2^{(2)}),$$
(3)
$$\det(a^{(1)}, a^{(2)}) = -\det(a^{(2)}, a^{(1)}).$$

Aufgabe 2. Untersuchen Sie die folgenden Matrizen auf Invertierbarkeit und geben Sie gegebenenfalls die Inverse an.

$$A = \begin{pmatrix} -5 & 4 \\ 9 & -7 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -2 & -2 \\ -6 & -8 & -8 \\ -2 & -2 & -2 \end{pmatrix}, \quad C = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 1 \\ 2 & 1 & 1 \end{pmatrix},$$
$$D(\lambda) = \begin{pmatrix} 1 & \lambda \\ \lambda & 1 \end{pmatrix} \text{ für } \lambda \in \mathbb{R}.$$

Aufgabe 3. Seien $A \in \operatorname{Mat}_n(K)$ und $b \in K^n$. Zeigen Sie: Das lineare Gleichungssystem

$$Ax = b$$

ist genau dann eindeutig lösbar, wenn A invertierbar ist.

Präsenzübungsblatt 9

Sei K ein Körper.

Aufgabe 1. Sei $n \in \mathbb{N}$.

- (1) Zeigen Sie, dass $det(A) = det(A^{t})$ für jede Matrix $A \in Mat_{n}(K)$.
- (2) Schließen Sie, dass, falls n ungerade ist und $A^{t} = -A$,

$$2\det(A) = 0$$

gilt.

Aufgabe 2. Sei $A \in \operatorname{Mat}_n(K)$ eine Matrix der Form

$$A = \begin{pmatrix} B & C \\ 0 & E \end{pmatrix},$$

wobei $B \in \operatorname{Mat}_m(K)$ für ein $m \leq n, E \in \operatorname{Mat}_{n-m}(K), C \in \operatorname{Mat}_{m,n-m}(K)$ und $0 \in \operatorname{Mat}_{n-m,m}(K)$ die Nullmatriz bezeichnet. Man zeige, dass

$$\det(A) = \det(B) \det(E)$$

gilt.

Aufgabe 3. Sei $n \in \mathbb{N}$ gerade und $A = (a_{ij}) \in \operatorname{Mat}_n(K)$ mit

$$a_{ij} = \begin{cases} 1 & \text{für } i < j \\ 0 & \text{für } i = j \\ -1 & \text{für } i > j. \end{cases}$$

Man zeige det(A) = 1. Hinweis: Manipulieren Sie zunächst nur die ersten zwei Zeilen und Spalten von A durch Operationen, die die Determinante invariant lassen, bis Sie induktiv argumentieren können (etwa mithilfe von Aufgabe 2).

Präsenzübungsblatt 10

Seien K ein Körper und V ein K-Vektorraum.

Aufgabe 1. Seien ferner $v_1, \ldots, v_n \in V$ und $f: K^n \to V$ die durch

$$f((x_1, \dots, x_n)) := \sum_{i=1}^n x_i v_i$$

definierte Abbildung. Zeigen Sie:

- (1) f ist eine K-lineare Abbildung.
- (2) f ist genau dann surjektiv, wenn (v_1, \ldots, v_n) ein Erzeugendensystem von V ist.

Aufgabe 2. Seien W ein weiterer K-Vektorraum und \mathcal{B}_V eine Basis von V. Zeigen Sie: Eine lineare Abbildung $f: V \to W$ ist durch ihre Werte auf \mathcal{B}_V eindeutig festgelegt.

Aufgabe 3. Welche der folgenden Abbildungen sind nicht \mathbb{R} -linear?

- (1) $f_1: \mathbb{R}^2 \to \mathbb{R}$, $(x_1, x_2) \mapsto 5x_2 6x_1$,

- (1) $f_1 : \mathbb{R}^2 \to \mathbb{R}^2$, $(x_1, x_2) \mapsto (x_2 + 1)$, (2) $f_2 : \mathbb{R} \to \mathbb{R}^2$, $x \mapsto (x 2, x + 1)$, (3) $f_3 : \mathbb{R}^2 \to \mathbb{R}$, $(x_1, x_2) \mapsto (x_1, 0)$, (4) $f_4 : \mathbb{R}^2 \to \mathbb{R}$, $(x_1, x_2) \mapsto (x_2x_1, x_1 + 2x_x)$?

Begründen Sie Ihre Antworten.

Präsenzübungsblatt 11

Aufgabe 1. Für $n \in \mathbb{N}_0$ sei V_n der \mathbb{R} -Vektorraum der reellen Polynome vom Grad höchstens n. Sie können ohne Beweis annehmen, dass die Polynome x^i für $i = 0, \ldots, n$ eine Basis $\mathcal{B} = (1, x, x^2, \ldots, x^n)$ von V_n bilden. Sei nun

$$\Delta: V^n \to V^n, \quad f \mapsto f'$$

die Abbildung, die einem Polynom $f \in V^n$ seine Ableitung f' zuordnet:

$$\Delta\left(\sum_{i=0}^{n} a_i x^i\right) = \sum_{i=1}^{n} i a_i x^{i-1}.$$

- (1) Zeigen Sie, dass Δ eine \mathbb{R} -lineare Abbildung ist.
- (2) Bestimmen Sie die darstellende Matrix $M_{\mathcal{B}}^{\mathcal{B}}(\Delta)$.

Aufgabe 2. Seien K ein Körper, V und W endlich-dimensionale K-Vektorräume und $f:V\to W$ eine K-lineare Abbildung. Zeigen Sie, dass es geordnete K-Basen für V und W gibt mit der Eigenschaft, dass die darstellende Matrix $A=(a_{ij})_{i=1,\dots,\dim W}$ von f bezüglich dieser Basen die folgende Gestalt hat: $j=1,\dots,\dim V$

$$a_{ij} = \begin{cases} \delta_{ij} & \text{falls } 1 \le i, j \le \dim_K(\operatorname{Im}(f)), \\ 0 & \text{sonst.} \end{cases}$$

Hierbei ist Im(f) = f(V), das Bild von f, und δ_{ij} das Kronecker-Symbol, d.h.

$$\delta_{ij} = \begin{cases} 1 & \text{wenn } i = j \text{ und} \\ 0 & \text{wenn } i \neq j. \end{cases}$$

Aufgabe 3. Im \mathbb{R} -Vektorraum \mathbb{R}^3 seien gegeben die Vektoren

$$v_1 = (1, -1, 2)^{t}, \quad v_2 = (-1, 2, 1), \quad v_3 = (1, -1, 0).$$

- (1) Zeigen Sie, dass $\mathcal{B} := (v_1, v_2, v_3)$ eine Basis des \mathbb{R}^3 ist.
- (2) Bestimmen Sie die darstellende Matrix T der \mathbb{R} -linearen Abbildung

$$\phi: \mathbb{R}^3 \to \mathbb{R}^3, \quad e_i \mapsto v_i,$$

die dadurch festgelegt ist, dass sie die Standardeinheitsvektoren e_i , i=1,2,3, auf die Vektoren v_1 , v_2 , v_3 abbildet, bezüglich der Standardeinheitsbasis \mathcal{E}_3 .

(3) Bestimmen Sie die darstellende Matrix T' der Umkehrabbildung

$$\psi: \mathbb{R}^3 \to \mathbb{R}^3, \quad v_i \mapsto e_i$$

bezüglich der Standardeinheitsbasis \mathcal{E}_3 .

(4) Bestimmen Sie die Matrizen TT' und T'T und interpretieren Sie Ihre Rechnungen.

Präsenzübungsblatt 12

Aufgabe 1. Seien K ein Körper und $\mathcal{B} = (v_1, \ldots, v_n)$ eine Basis des Standardvektorraums K^n . Die Vektoren v_1, \ldots, v_n seien Eigenvektoren sowohl der linearen Abbildung $f: K^n \to K^n$ als auch der linearen Abbildung $g: K^n \to K^n$. Zeigen Sie, dass mit

$$A := M_{\mathcal{B}}^{\mathcal{B}}(f), B := M_{\mathcal{B}}^{\mathcal{B}}(g) \in \operatorname{Mat}_n(K)$$

dann

$$AB = BA$$

gilt.

Aufgabe 2. Zeigen Sie, dass die Matrix

$$A = \begin{pmatrix} -5 & -8 & 0\\ 4 & 7 & 0\\ 20 & 40 & -1 \end{pmatrix} \in \text{Mat}_3(\mathbb{R})$$

diagonalisierbar ist und geben Sie eine invertierbare Matrix $S \in \operatorname{Mat}_n(\mathbb{R})$ an, für die $S^{-1}AS$ diagonal ist.

Aufgabe 3. Berechnen Sie A^{25} für

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \in \operatorname{Mat}_2(\mathbb{R}).$$

Präsenzübungsblatt 13

Aufgabe 1. Berechnen Sie

$$\frac{\partial}{\partial x}x^3\sin(y^4), \quad \frac{\partial}{\partial y}x^3\sin(y^4), \quad \frac{\partial}{\partial t}x^3\sin(y^4).$$

Aufgabe 2. Aus Aufgabe 2 des 14. Übungsblatts der MfC1-Vorlesung kennen Sie bereits die Maxwell-Boltzmann-Verteilung ρ als Wahrscheinlichkeitsdichte, die in der kinetischen Gastheorie die Verteilung der Geschwindigkeiten von Teilchen eines idealen Gases beschreibt. Sie ist gegeben durch die Gleichung

$$\rho(v,T) = 4\pi \left(\frac{m}{2\pi kT}\right)^{3/2} v^2 \exp\left(\frac{-mv^2}{2kT}\right).$$

Hierbei sind T die Temperatur des Gases, m die Masse eines einzelnen Teilchens und k die Boltzmann-Konstante. Grob gesprochen gibt $\rho(v,T)$ den Anteil der Teilchen mit Geschwindigkeit v bei Temperatur T an.

Berechnen Sie den Gradienten von ρ als Funktion von v und T; betrachten Sie hierbei m und k als Konstanten.

Aufgabe 3. Für eine Funktion $f:\mathbb{R}^n \to \mathbb{R}$ schreiben wir, für $i,j\in$ $\{1, \ldots, n\},\$

$$\frac{\partial^2}{\partial x_i \partial x_j} f = \frac{\partial}{\partial x_i} \left(\frac{\partial}{\partial x_j} f \right).$$

Wir definieren den Laplace-Operator Δ durch

$$\Delta f = \frac{\partial^2}{\partial x_1 \partial x_1} f + \dots + \frac{\partial^2}{\partial x_n \partial x_n} f.$$

Wir nennen f harmonisch, wenn $\Delta f = 0$ gilt. Berechnen Sie, für jede der folgenden Funktionen f, jeweils den Gradienten grad(f) und entscheiden Sie, ob die Funktion harmonisch ist.

- (1) $f(x, y, z) = y^2 + \cos(xy) + \ln(z)$, (2) $f(x, y) = x^5 10x^3y^2 + 5xy^4$, (3) $f(x, y) = x^2 y^2$.

Präsenzübungsblatt 14

Aufgabe 1. Zeigen Sie anhand des Beispiels der Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{cases} \frac{x^3 y - x y^3}{x^2 + y^2}, & \text{falls } (x, y) \neq (0, 0) \\ 0, & \text{falls } (x, y) = (0, 0), \end{cases}$$

dass die Bedingungen des Satzes 5.6 von Schwarz notwendig für seine Konklusion sind.

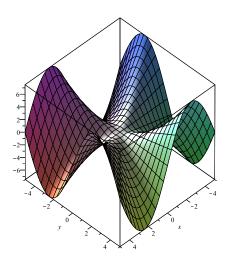


ABBILDUNG 1. Ausschnitt aus dem Graphen der Funktion f.

Aufgabe 2. Gegeben sei die Funktion

$$g: \mathbb{R}^2 \to \mathbb{R}, \quad \begin{pmatrix} x \\ y \end{pmatrix} \mapsto x^2 y.$$

Berechnen Sie

- (1) die partiellen Ableitungen g_x und g_y ,
- (2) den Normalen Vektor der Tangentialebene $E_{(-1,1)}$ an den Graphen der Funktion g im Punkt $(-1,1,g(-1,1))^{t}$.

Liegt der Punkt $(0,0,-2)^{\mathrm{t}} \in \mathbb{R}^3$ auf der Tangentialebene $E_{(-1,1)}$?

Aufgabe 3. Gegeben eine partiell differenzierbare Funktion $f: \mathbb{R}^n \to \mathbb{R}$ und Indizes $i_1, \ldots, i_r \in \{1, \ldots, n\}$, schreiben wir

$$f_{i_1 i_2 \dots i_r} = \frac{\partial}{\partial x_{i_1}} \left(\frac{\partial}{\partial x_{i_2}} \left(\dots \left(\frac{\partial}{\partial x_{i_r}} f \right) \right) \right)$$

für die partiellen Ableitungen der Ordnung r.

Bestimmen Sie, für die Funktionen $f_i: \mathbb{R}^2 \to \mathbb{R}$, definiert durch

(1) $f_1((x_1, x_2)^t) = x_1^4 e^{x_1} x_2^2 + 2$,

(2) $f_2((x_1, x_2)^t) = x_2 \left(\sin(x_1) - x_1^4\right)$,

(3) $f_3((x_1, x_2)^t) = x_1^2 x_2^2 + x_2 \sin(x_1^3) + e^{x_1}$,

die partielle Ableitung 5. Ordnung $f_{22211}.$ (Hinweis: Satz von Schwarz.)

Präsenzübungsblatt 15

Aufgabe 1. Betrachten Sie die Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad (x, y)^{\mathrm{t}} \mapsto \cos(x^2 + y^2).$$

- (1) Berechnen Sie den Gradienten und die Hesse-Matrix von f.
- (2) Bestimmen Sie die lokalen Extrema von f.

Aufgabe 2. Betrachten Sie die (sog. Potential-)Funktion

$$u: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}, \quad (x,y)^{\mathrm{t}} \mapsto \frac{1}{\sqrt{x^2 + y^2}}$$

und das von ihr induzierte elektrische (Vektor-)Feld $E = \nabla u$, verursucht durch eine Punktladung im Nullpunkt.

- (1) Berechnen und skizzieren Sie das Vektorfeld E.
- (2) Zeigen Sie, dass die Kurve C_1 mit Parameterdarstellung

$$x: \mathbb{R} \to \mathbb{R}^2, \quad t \mapsto \begin{pmatrix} \cos(t) \\ \sin(t) \end{pmatrix}$$

zu jeder Zeit senkrecht zu E verläuft, d.h. $\langle E(x(t)), x'(t) \rangle = 0$ für alle $t \in \mathbb{R}$ gilt. Tragen Sie C_1 in Ihre Skizze von E ein.

(3) Bestimmen Sie die Zeiten $t \in \mathbb{R}$, zu denen die Kurve C_2 mit Parameterdarstellung

$$x: \mathbb{R} \to \mathbb{R}^2, \quad t \mapsto \begin{pmatrix} t \\ 2t+1 \end{pmatrix}$$

zu E senkrecht verläuft. Tragen Sie auch C_2 und diese Zeiten in Ihre Skizze von E ein.

Aufgabe 3. Betrachten Sie das Vektorfeld

$$f: \mathbb{R}^3 \to \mathbb{R}^3, \quad (x_1, x_2, x_3)^{\mathsf{t}} \mapsto (x_1, 2x_2, 3x_3).$$

(1) Bestimmen Sie die Kurvenintegrale

$$\int_{C_i} f(x)dx,$$

wobei, für $i \in \{1,2\}, C_i$ die Kurve ist mit Parameterdarstellung

$$x_i: [0,1] \to \mathbb{R}^2, \quad t \mapsto \begin{cases} (t,t,t)^{\mathsf{t}}, & \text{falls } i = 1, \\ (t,t^2,t^4)^{\mathsf{t}}, & \text{falls } i = 2. \end{cases}$$

(2) Ist f ein Gradientenfeld?