Algebra 1 Übungsblatt 4

Abgabe bis 12:00 Uhr am Mittwoch, den 07. November 2018, im Postfach Ihrer Tutorin bzw. Ihres Tutors.

Durchweg sei R ein kommutativer Ring mit Einselement.

Aufgabe 1. Zeigen Sie:

- (1) Ist R ein Integritätsbereich, so auch der Polynomring R[X].
- (2) In diesem Fall ist die Einheitengruppe $R[X]^*$ von R[X] isomorph zu R^* . (Hinweis: Zeigen Sie, dass in diesem Fall die Formel

$$\deg(fg) = \deg(f) + \deg(g)$$

für alle $f, g \in R[X]$ gilt.)

Aufgabe 2. Setze $L = \{ \sum_{i=0}^{\infty} a_i X^i \in R[X] \mid a_1 = 0 \}.$

- (1) Zeigen Sie, dass L ein Unterring von R[X] ist, nicht jedoch ein Ideal in R[X].
- (2) Zeigen Sie, dass L als Ring isomorph ist zum Faktorring

$$R[X][Y]/(X^2-Y^3).$$

(Hierbei bezeichnet R[X][Y] den Polynomring in einer Variablen Yüber dem Polynomring R[X].)

Aufgabe 3. Der Ring R[X] der formalen Potenzreihen mit Koeffizienten in R ist definiert wie folgt. Als Menge ist

$$R[X] = R^{\mathbb{N}_0} = \{(a_0, a_1, \dots,) \mid a_i \in R \text{ für } i \in \mathbb{N}_0\}.$$

Addition und Multiplikation sind definiert wie im Polynomring R[X].

(Letzterer kann interpretiert werden als Unterring von R[X], bestehend aus den "endlichen Potenzreihen", d.h. Folgen $(a_i)_{i\in\mathbb{N}_0}$ mit $a_i=0$ für fast alle $i \in \mathbb{N}_0$.) Formale Potenzreihen werden oft als formale unendliche Summen $\sum_{i=0}^{\infty} a_i X^i$ dargestellt.

- (1) Zeigen Sie, dass $R[X]^* = \{\sum_{i=0}^{\infty} a_i X^i \mid a_0 \in R^*\}$ gilt. (2) Sei R ein Körper. Bestimmen Sie alle Ideale von R[X].

Aufgabe 4. Ein Element $r \in R$ heißt nilpotent, falls ein $n \in \mathbb{N}$ existiert mit $r^n = 0$. Zeigen Sie:

- (1) Die Menge N(R) der nilpotenten Elemente in R ist ein Ideal von R(genannt das $Nilradikal\ von\ R$).
- (2) Für $u \in R^*$ und $r \in N(R)$ gilt stets $u+r \in R^*$. (Hinweis: Reduzieren Sie auf den Fall u=1 und entwickeln Sie 1/(1+X) als formale Potenzreihe.)