Mathematik für Naturwissenschaften I Übungsblatt 6

Abgabe bis 10:00 Uhr am Donnerstag, den 21. November 2019, im Postfach Ihrer Tutorin bzw. Ihres Tutors.

* * *

Aufgabe 1. Es seien $a, b \in \mathbb{R}$ mit a < b gegeben und $f : [a, b] \to [a, b]$ eine monoton wachsende, stetige Funktion. Zeigen Sie, dass, für beliebiges $x_0 \in [a, b]$ die Folge $(x_n)_{n \in \mathbb{N}_0}$, die durch $x_{n+1} := f(x_n)$ definiert ist,

- (a) monoton ist und
- (b) gegen einen Grenzwert ξ konvergiert.

Zeigen Sie ferner, dass $f(\xi) = \xi$ gilt.

Aufgabe 2. Sei $M \neq \emptyset$ eine nach unten beschränkte nichtleere Teilmenge von \mathbb{R} . Aus der Vorlesung wissen Sie, dass eine größte untere Schranke $M_{\min} \in \mathbb{R}$ von M existiert. Konstruieren Sie eine Folge $(a_n)_{n \in \mathbb{N}}$ in M (d.h. $a_n \in M$ für alle n), die gegen M_{\min} konvergiert. Ist M_{\min} immer ein Element von M?

Hinweis. M_{\min} ist untere Schranke von M, aber für kein $\varepsilon > 0$ ist $M_{\min} + \varepsilon$ eine untere Schranke von M. Betrachten Sie $\varepsilon = 1/n$.

Aufgabe 3. Seien $D \subseteq \mathbb{R}$ ein Intervall, $f, g: D \to \mathbb{R}$ stetige Funktionen und $D' := \{x \in D \mid g(x) \neq 0\}.$

- (a) Zeigen Sie, dass der Quotient $f/g: D' \to \mathbb{R}$ eine stetige Funktion ist.
- (b) Zeigen Sie, ausgehend von der Definition der Stetigkeit, dass
 - (a) für jedes $c \in \mathbb{R}$, die konstante Funktion f(x) = c sowie
 - (b) die Funktion g(x) = x stetig auf \mathbb{R} ist.
- (c) Schließen Sie, dass die Funktion $h: [a, b] \to \mathbb{R}$ mit h(x) = 1/x für alle 0 < a < b stetig ist. Was passiert, wenn a < 0 und b > 0?

Aufgabe 4.

(a) Zeigen Sie, dass eine in 0 stetige Funktion $f: \mathbb{R} \to \mathbb{R}$, die die Funktionalgleichung

$$f(x+y) = f(x)f(y)$$

für alle $x, y \in \mathbb{R}$ erfüllt, stetig ist.

(b) Zeigen Sie, für $x \in \mathbb{R}$ mit $|x| \leq 1$, die Ungleichung

$$|\exp(x) - 1| \le 2|x|.$$

Hinweis: $2 = \sum_{n=0}^{\infty} (1/2)^n$.

- (c) Nutzen Sie diese Ungleichung, um die Stetigkeit der Exponentialfunktion im Nullpunkt $0 \in \mathbb{R}$ zu beweisen.
- (d) Schließen Sie, dass die Exponentialfunktion stetig ist. *Hinweis:* Teil ??.