Corrections by Darij Grinberg

- page 18, Properties, (3): After "Explicitly", add ", if".

- page 21, proof of Theorem: In the proof of injectivity of θ, you write: "$\tilde{r}(s') = w \tilde{r}(s)$". This should be "$\tilde{r}(s') = \tilde{r}(s) w$" instead.

- page 22, proof of Proposition: Replace "length ≥ 1" by "length ≥ 1" on the last line of the proof.
But more importantly, I think the proof of the proposition can be simplified: Assume that M is a finite-dimensional $K\langle Q \rangle$-module. Let $N = \dim M$. We shall show that $pM = 0$ for any path p of length N. Indeed, let $p = a_k a_{k-1} \cdots a_1$ be a path of length $k > N$. We must show that $pM = 0$. In other words, we must show that $pm = 0$ for any $m \in M$. Thus, fix $m \in M$.
We must prove $pm = 0$. Assume the contrary; hence, $pm \neq 0$.
Set $m_n = a_n a_{n-1} \cdots a_1 m$ for each $0 \leq n \leq k$. Then, $m_k = pm \neq 0$.

Now, consider the sequence of vector subspaces
$\left< m_0, m_1, \ldots, m_k \right>$, $\left< m_1, m_2, \ldots, m_k \right>$, \ldots, $\left< m_{k-1}, m_k \right>$, $\left< m_k \right>$
of M. Each of these subspaces contains the next one as a subset, and so their dimensions are weakly decreasing. Moreover, the dimension of the first one is $\dim M = N$, whereas the dimension of the last one is $\leq N$ (since $m_k \neq 0$). Thus, the dimensions appearing in these sequence are numbers between N and N. Consequently, two of these dimensions must be equal (since in total, the sequence contains $k + 1 > N$ dimensions, but there are only N numbers between N and N). In other words, there exist some i and j with $i < j$ such that the subspaces $\left< m_i, m_{i+1}, \ldots, m_k \right>$ and $\left< m_j, m_{j+1}, \ldots, m_k \right>$ have the same dimension. Of course, these two subspaces must therefore be equal (since the latter is included in the former). Thus, $m_i \in \left< m_j, m_{j+1}, \ldots, m_k \right>$, \ldots
of $\left< m_k \right>$.

- page 27, definitions of "overlap ambiguity" and "inclusion ambiguity": You should probably say that f means the word in question.

- page 31, proof of (the first) Lemma: On the last line of the proof, the \cong sign between L and N should probably be a \cap sign.

- page 32, Example, (ii): The displayed equation (which defines $d/(dx)$) should not end with a period.

- page 33, proof: "a polynomial $f = \sum r_i X^i$" --> "a polynomial $f = \sum r_i X^i$".

- page 33, proof: On the last line of the proof, "$\widehat{r}\$" should probably be defined (or replaced by "$r\$").

- page 36, proof of Proposition: Replace "$[r, P] = \forall r \in S$" by "$[r, P] = 0 \forall r \in S$" (on the first line of the proof).
- Page 42, definition of graded/homogeneous submodules: Replace "$n \in \mathbb{Z}$" (under the direct-sum sign) by "$n \in \mathbb{Z}$".

- Page 45, first Definition: "if $\theta : R \to A$ is a ring" -> "if $\theta : R \to A$ is a ring homomorphism".

- Page 45, Construction: "left Ore set" may be better off explicitly defined (you only introduced the "left Ore condition"). More substantially: In "$s, m \sim (s', m')$", the second m should be an m'.

- Page 58: Missing period after "Definition".