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1 Varieties

We fix an algebraically closed field K of arbitrary characteristic.

1.1 Topological spaces and locally closed subsets

Recall that a topological space is given by a set X together with a set of
subsets of X, the open sets such that

- and X are open.

- Any union of open sets is open

- A finite intersection of open sets is open.

Any subset Y of a topological space X becomes a topological space with the
induced topology, in which the open sets are the sets of the form Y NU with
U an open subset of X.



Definition. A subset S of a topological space X 1is locally closed if the
following equivalent conditions hold:

(i) S is an open subset of a closed subset of X

(ii) S is open in its closure

(iii) S is the intersection of an open and a closed subset of X.

Proof of equivalence. Exercise.

Lemma. If X CY C Z and Y is locally closed in Z, then X is locally closed
in Y iff it is locally closed in Z.

Proof. Exercise.

Definition. A topological space X is connected if it cannot be written as a
disjoint union of two open and closed subsets.

A topological space X is irreducible if X # ) and X =Y U Z with Y and Z
closed subsets implies Y = X or Z = X. Equivalently any non-empty open
subset is dense.

An irreducible topological space is connected, but it is far from being Haus-
dorff.

1.2 Spaces with functions

If U is a set, then the set of functions U — K becomes a commutative
K-algebra under the pointwise operations

(f +9)(x) = f(x) +9(z), (f9)(z) = f(z)g(x).

Definition. [See Kempf] A space with functions consists of a topological
space X and an assignment for each open set U C X of a K-subalgebra
O(U) of the algebra of functions U — K, satisfying:

(a) If U is a union of open sets, U = | JU,, then f € O(U) iff f|y, € O(U,)
for all a.

(b) If f € OU) then D(f) = {u € U | f(u) # 0} is open in U and
1/f € O(D(f)).

Elements of O(U) are called regular functions. We sometimes write it as
Ox(U).

A morphism of spaces with functions is a continuous map 6 : X — Y with
the property that for any open subset U of Y, and any f € O(U), the



composition
I I VN e
is in O(6~1(U)). In this way one gets a category of spaces with functions.

Examples.

(1) Let X be a topological space, and choose any topology on K. Let O(U)
be the set of continuous functions U — K. Morphisms between such spaces
with functions are continuous maps.

(2) X manifold, O(U) = infinitely differentiable functions U — R. Mor-
phisms are infinitely differential maps between manifolds.

(3) X complex manifold, eg the complex plane, O(U) = analytic functions
U—C.

Definition. If X is a space with functions and Y is a subset of X, one
defines O(Y') to be the set of functions f : Y — K such that each y € Y has
a neighbourhood U in X such that f|y~ny = glyny for some g € O(U).

Any subset Y of a space with functions X has an induced structure as a space
with functions by equipping Y with the subspace topology and open subsets
of Y with the induced sets of functions.

We are only interested in the case where Y is locally closed in X.

Lemma. The inclusion ¢ : Y — X is a morphism of spaces with functions,
and if Z is a space with functions, then 6 : Z — Y is a morphism if and only
if 10 : Z — X is a morphism.

Proof. Exercise.

Theorem. If X and Y are spaces with functions, then the set X x Y can be
given the structure of a space with functions, so that it becomes a product
of X and Y in the category of spaces with functions.

Proof. See Kempf, Lemma 3.1.1. The topology is not the usual product
topology. Instead a basis of open sets is given by the sets

{(u,0) € U x V: f(u,v) 0}
where U is open in X, V is open in Y and f(z,y) = >, gi(z)h;(y) with
gi € O(U) and h; € O(V)
Lemma. The image of an open set under the projection p: X x Y — X is

open.

Proof. For y € Y, the categorical product gives a morphism 7, : X — X xV
with i, (z) = (x,y). Now if U C X x Y, then p(U) =,y ¢, (U), which is

yey
open.



Our spaces with functions will usually not be Hausdorff. Instead the following
usually holds.

Definition. A space with functions X is separated if the diagonal
Ax ={(z,x):z € X}

is closed in X x X.

Note that using the product topology, the diagonal is closed if and only if X
is Hausdorff.

Note that separatedness passes to subsets of a space with functions equipped
with the induced structure, for if Y is a subset of X, then Ay = (Y xY)NAx
in X x X.

1.3 Affine space

Affine n-space is A™ = K" considered as a space with functions

- The topology is the Zariski topology. Closed sets are of the form
V(S)={(x1,...,2,) € K" | f(x1,...,2,) =0for all fe S}

where S is a subset of the polynomial ring K[Xi,...,X,]. Observe that

V(S) =V(I), where [ is the ideal generated by S.

Equivalently, the open sets are unions of sets of the form

D(f)=A{(z1,...,x,) € K" | f(x1,...,2,) # 0}
with f € K[X,...,X,].
This is a topology since D(1) = K™, D(0) = () and D(f)ND(g) = D(fg), so

o) n (D) = D(fran).

For example, for Al if 0 # f € K[X] then V(f) is a finite set. Thus the
closed subsets of A! are (), finite subsets, and A'. Thus the nonempty open
sets in A! are the cofinite subsets A\ {ay,...,az}. This is NOT Hausdorff.

- If U is an open subset of A" then O(U) consists of the functions f : U —
K such that each point v € U has an open neighbourhood W C U such
that flw = p/q with p,q € K[Xy,...,X,] and ¢(z1,...,2,) # 0 for all
(x1,...,2,) € W.



Theorem.

(i) This turns A" into a space with functions.

(ii) Any open subset of A™ is a finite union D(f;) U---U D(f,,).
(i) It is irreducible.

Proof. (i) Straightforward, since the regular functions are defined locally.
(i) If U is an open set, say U = A™ \ V(S) then

V(S)=VI)=V((f1,.--. fu) =V ()N -0 V(fn)
since any ideal I is finitely generated, so U = D(f1) U ---U D(f,).
(iii) Since K is algebraically closed it is infinite. Thus any non-zero polyno-
mial in K[X] is non-zero on some element of K. An induction on n shows
that any non-zero polynomial in K[X7, ..., X,] is non-zero at some element
(1,...,2,) € A". Thus D(f) # 0 iff f is non-zero. For irreduciblity it is
equivalent to show that any two non-empty open subsets of A” have non-

empty intersection. Now one contains D(f) and the other D(g) with f and
g nonzero polynomials. Then fg # 0 since the polynomial ring is a domain,

so D(f) N D(g) = D(fg) # 0.
Theorem. If X is a space with functions, then a mapping
0:X — A" 0(x)=(b1(x),...,0,(x))
is a morphism of spaces with functions iff the 6; are regular functions on X.

Proof. Since the ith projection m; : A" — K is regular, if # is a morphism
then 0; = m;0 is regular.

Suppose 01, ...,0, are regular. Let U be an open subset of A" and f =
p/q € O(U) with q(u) # 0 for v € U. We need to show that f6 is regular on
6='(U). Now by assumption pd = p(6,(x),...,p,(x)) and ¢f are regular on
U. Also ¢f is non-vanishing on =1 (U). Thus pf/qf is regular on 6~(U).

Corollary 1. A™ x A™ = Ant™,
Corollary 2. A" is separated.
Proof. The diagonal for A" is
Apn ={(21, ..., T, Y1,y Un) €AY =1, T = Y}
so it is closed.

Coordinate-free description. If V' is an n-dimensional vector space, then
by choosing a basis we can identify V' = A" and then V' becomes a space
with functions. Choosing a different basis gives an isomorphic space with
functions.



1.4 Affine varieties

Definition. An affine variety is a space with functions which is (isomorphic
to) a closed subset of A".

The coordinate ring of an affine variety X is O(X). It is often denoted K|[X].

Example (Determinantal varieties). If IV and W are f. d. vector
spaces then the space Hom(V, W)<, of linear maps of rank < r is closed in
Hom(V, W), so an affine variety. Choosing bases, Hom(V, W) = M,,.,(K),
and the matrices of rank < r are exactly those for which all minors of size
r + 1 vanish.

Definition. Given any ideal [ in a commutative ring A, we define the radical
of I to be
VI={aeA:a" el for some n > 0}

It is an ideal. The ideal I is radical if I = /1, that is, a™ € I implies a € I.
Equivalently, if the factor ring A/I is reduced, that is, it has no nonzero
nilpotent elements.

Theorem. If [ is an ideal in K[X;,...,X,] and X = V/(I) is the corre-
sponding closed subset of A", then the natural map

K[Xi,...,X,] = O(X)
is surjective, and has kernel v/I. In particular, if X is an affine variety, then
O(X) is a finitely generated K-algebra which is reduced.

Proof. For surjectivity, adapt Hartshorne, Proposition 11.2.2. The statement
about the kernel is Hilbert’s Nullstellensatz.

Theorem. If X is an affine variety, and Z is a space with functions, then
the map

Homspaces with functions(Za X) — HomK—algebras(O(X>7 O(Z))

sending 0 : Z — X to the composition map f — f6, is a bijection.
Proof. Implicit in Kempf.

Corollary. There is an anti-equivalence between the categories of affine va-
rieties and finitely generated reduced K-algebras. The variety corresponding
to a finitely generated reduced K-algebra A is denoted Spec A.

Proof. 1t just remains to observe that all finitely generated reduced K-
algebras arise.

Proposition. An affine variety X is irreducible iff O(X) is a domain.
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Proof. Say X = V/(I) with I an ideal in K[Xi,...,X,]. We may assume
that I is radical.

If there are zero divisors, there are f,g ¢ I with fg € I. Then X =
V) n V() U (V) nVig)).

Conversely if X is not irreducible, then it has non-empty open subsets with
empty intersection, say (V(I) N D(f)) N (V(I) N D(g)) = 0. Then V(I)N
D(fg) =0, so fg vanishes on X, so fg € VI=1,but f,g ¢ I.

1.5 Abstract varieties

Definition. A wvariety is a space with functions X with a finite open covering
X = U,U- - -UU, by affine varieties. Usually one also includes in the definition
that X must be separated.

A subvariety Y of a variety X is a locally closed subset equipped with the
induced structure as a space with functions. A quasi-affine variety is an open
subvariety of an affine variety, or equivalently a subvariety of affine space.

Theorem. (i) If f € K[X,...,X,], then the open subvariety D(f) of A" is
isomorphic to the affine variety

{(z1,...,00,t) €A™ f(ay,...,2,) -t =1}

(ii) Any subvariety is a variety.

Proof. (i) The maps are the projection (z1,...,z,,t) = (z1,...,z,) and the
map (z1,...,2,) — (x1,..., 20, 1/f(x1,...,2,)). Now 1/f € O(D(f)), so

both are morphisms.

(ii) Suppose Y C X. We need to show that Y is a finite union of affine open
subsets. Sunce X is a finite union of affine opens, we may reduce to the case
when X is affine. We may also assume that Y is open in X and X is closed
in A”. But then Y = X NU with U = D(f1)U---U D(f,,) open in A", and
then Y = Vi U--- UV, with V; = X N D(f;) a closed subset of the affine
variety D(f;), hence affine.

Remarks. (i) (Added after the lecture) I should have mentioned before
that any polynomial ring K[X7, ..., X,] over a field is a unique factorization
domain (UFD). It follows that any irreducible polynomial f € K[X;, ..., X,)]
is prime, that is, the ideal it generates (f) is a prime ideal, or equivalently
the factor ring K[Xy,...,X,]/(f) is a domain. In particular it is reduced,
so \/(f) = (f). It follows that the coordinate ring of V'(f), the affine variety
in A" defined by f, is K[X,...,X,]/(f) and that it is irreducible.
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Given any polynomial f € K[X7,...,X,], the set D(f) is isomorphic to the
closed subset V(g) = {(z1,...,xn,t) € A" ¢ f(zy,...,2,) - t = 1}, where
9(X1,..., Xn,T) = f(Xq,...,X,) - T — 1. Now the polynomial g is easily
seen to be irreducible, so

OD(f) = O(V(g) = K[Xy,..., Xn, T)/(f(X1,..., Xn) - T — 1)
> K[Xy, e X (X0, X)),

(The last ring is alternative notation for the Ore localization of the ring
K[Xy,...,X,] at the multiplicative subset consisting of all powers of f.)

(ii) The example of D(f) shows that some quasi-affine varieties are again
affine. But this is not always true. For example U = A? \ {0} = D(X;) U
D(X5) is quasi-affine but not affine.

To see this, we show first that O(U) = K[X1, X5]. A function f € O(U) is
determined by its restrictions f; to D(X;) (i = 1,2). Now f; € O(D(X;)) =
K[X1, Xy, X; ']. Moreover the restrictions of f; and f, to D(X;) N D(X,) =
D(X1X5) are equal, so f; and f; are equal as elements of K[X;, Xo,1/X;X5].
But this is only possible if they are both in K[X;, X5], and equal. Thus
fe K[X1, Xa).

Now the inclusion morphism 6 : U — A? induces a homomorphism O(A?) —
O(U) which is actually an isomorphism. Now the corollary in the last section
says that the category of affine varieties is anti-equivalent to the category of
finitely generated reduced K-algebras. If U were affine, then since the map
on coordinate rings is an isomorphism, 6 would have to be an isomorphism.
But is isn’t.

(iii) A coordinate-free example of a variety. If V' and W are vector spaces,
the set of injective linear maps Inj(V, W) is an open in Hom(V, W), since
the complement is Hom<,.(V, W) where r = dim V' — 1. Thus Inj(V, W) is a
quasi-affine variety.

Theorem. A product of varieties X x Y is a variety. If X and Y are
irreducible, so is X x Y.

Proof. Recall that the product X xY exists for any two spaces with functions.
It is straightforward that if U C X and V C Y are open (resp. closed)
subsets, then U x V is open (resp. closed) in X x Y. Moreover with the
induced structure as a space with functions it is a categorical product.

Since any variety is a finite union of affine open subsets, decomposing X and
Y it suffices to prove that a product of affine varieties is affine. Now if X is
closed in A" and Y is closed in A™ then X x Y is closed in A" x A™ = An+tm,

so affine.



Assuming that X and Y are separated, Axyy is identified with Ax x Ay
which is closed in (X x X) x (Y xY).

Say X,Y are irreducible and X x Y = |J, Z;, a finite union of closed subsets.

Ify €Y then X = J{z € X | (z,y) € Zi} = U, i, (%), so by irreducibility
i,/'(Z;) = X for some i.

Thus Y =J,Y; where Y, ={y € Y | X x {y} C Z,;}.

Now Y\Y, ={y e Y | (z,y) ¢ Z; for some x € X} = py (X xY)\ Z;) is
open by the lemma at the end of Section 1.2

Thus Y; is closed, so some Y; =Y. Then Z; = X x Y.

Definition. An embedding or immersion of varieties is a morphism 6 : X —
Y whose image is locally closed, and such that X — Im(6) is an isomorphism.

For example, for any variety there is a diagonal morphism X — X x X and
X is separated if and only if the diagonal morphism is a closed embedding.
The point is that the natural map Ay — X is always a morphism, since it
factors as the inclusion morphism into X x X followed by either projection
to X.

Theorem. Any variety can be written in a unique way as a union of irre-
ducible components, maximal irreducible closed subsets.

Proof. See Kempf section 2.3.

For example the node {(z,y) € K* : zy = 0} is the union of the two coordi-
nate axes. These are each isomorphic to A, so irreducible.

Another example: {(z,y) € K? : zy* = z*}. The set is V(z(y? — 23)) =
V(x) UV(y? — 23). Since x and y*> — 2 are irreducible polynomials, the
varieties they define are irreducible (using that the polynomial ring K[X,Y]
is a UFD, as in remark (i) after the first theorem in this section).

Another example:
{(,,2) € K* 2y = 52 = 0} = {(0,9,2) : g, » € K} U{(2,0,0) : 3 € K},

a union of a plane and a line. This is the decomposition into irreducible
components.

1.6 Projective space

Projective n-space P" is the set of 1-dimensional subspaces of K", or equiv-
alently the set of (n + 1)-tuples [xg : @y : -+ - : x,] with the x; € K, not all
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zero, subject to the equivalence relation

[wg iy oy~ g a2l

iff there is some 0 # A € K with 2 = Az; for all . It can can be considered
as a space with functions

- P" is equipped with its Zariski topology, in which the closed subsets are
V'(S)={[zo: - :m)] | Flag,...,x,) =0 for all F € S} where S is a set
of homogeneous polynomials. Recall that a polynomial F' € K[Xy, ..., X,]
is homogeneous of degree d provided all monomials in it have total degree d,
or equivalently

F(Axo, ..., \xn) = X F(zg,...,1,)

for all A, z;.

Equivalently the open sets are unions of sets of the form
D'(F)={[zo: - : x| F(zo,...,x,) # 0}

with F' a homogeneous polynomial.

- If U is an open subset of P, then O(U) consists of the functions f : U — K
such that any point u € U has an open neighbourhood W in U such that
flw = P/Q with P,Q € K[X,,...,X,] homogeneous of the same degree and

Q(zo,...,xn) #0forall [zg:---: 2, € W.
Theorem. (i) P" is a space with functions.
(ii) For 0 <i < n the set U; = {[zg : -+ : x,) | ; # 0} is an open subset of

P which is isomorphic to A™.
(iii) P = Uy U - - - U U,, and P" is separated. Thus P" is a variety.

(iv) The map 7 : A"\ {0} — P" is a morphism of varieties. A subset U of
P" is open if and only if 7#71(U) is open in A"\ {0}. If so, then a function
f:U— Kisin O(U) if and only if fr € O(z 1(U)).

Proof. (i) Clear.

(ii) There are inverse maps between U; and A™ sending [z : --- @ x,] to
(xo/xiy .o i1 [Ty i1 [Ty ooy f2;) and (Y1, ..., Yn) tO [yp @ oor ty; o 1o
Yir1 : -+ Yn]. One needs to check that the regular functions correspond.

(iii) The union is clear.

For separatedness, given distinct points u, w, we need to find open neighbour-
hoods U and W and a function f(z,y) on U x W of the form ). g;(z)h;(y)
with g; and h; regular, such that f(u,w) # 0but f(z,x) = 0forallz € UNW.
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There must be indices 7, j with w;w; # u;w;, and without loss of generality

ww; # 0. Take U = {[wg s -+t xp] cy 0}, W={[yo: - :yn] 1 y; # 0}
and Ty — T,
floy) = S0l
LilYj

(iv) It is clear that 7 is a morphism. We show that as subset U of P™ is open
if and only if its inverse image 7! (U) is open in X = A"\ {0}. We leave
the rest as an exercise. First observe that 7#='(D'(F)) = X N D(F), so if U
is open, so is 77 }(U). Conversely suppose that 7=1(U) is open, so

= (U)=XnJD(f)
fes
for some subset S C K[Xy,...,X,]. Suppose z = [zg: -+ :2,| ¢ U. Let f €
S. Then (A\zg, ..., \z,) & 7= H(U) for all 0 # X\ € K. Thus f(Azo, ..., \x,) =
0 for all A # 0. Writing f as a sum of homogeneous polynomials, say f =
>, fa with f; homogeneous of degree d, we have >, fa(o, ..., z,)A? = 0 for
all A # 0. This forces fq(xg,...,z,) =0 for all d. It follows that

U= U UD/(fd)7

fes d

so U is open.

Coordinate-free description. The set P(V') of 1-dimensional subspaces
of V' a vector space of dimension n + 1 has a natural structure as a variety
isomorphic to P".

Lemma. P” is a disjoint union Uy U V;; where

Up={[xo: - :x,] | xg # 0} is an open subvariety isomorphic to A™.
Vo={[xo: - :z,] | 2o = 0} is a closed subvariety isomorphic to P"!.
Repeating, we can write P as a disjoint union of copies of A", A"1 .. |
AY = {pt}.

Example. P! = A' U {co} where A € A! coresponds to [1: \] and co = [0 :

1]. For K = C one identifies P! with the Riemann sphere by stereographic
projection.

The closed subsets are (), finite subsets, and P'. Thus the nonempty open
sets are the cofinite subsets P* \ {ay, ..., ax}.

We show that O(P!) = K. A regular function f € O(P') induces a regular
functions on Uy = A! and on U; = A!. The coordinate ring of Al is the
polynomial ring K [X]. Thus there are polynomials p,q € K[X]| with f([zo :
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x1]) = p(x1/xo) for xy # 0 and f([zo : x1]) = q(zo/z1) for ;1 # 0. Thus
p(t) = q(1/t) for t # 0. Thus both are constant polynomials.

1.7 Projective varieties

Definition. A projective variety is (a variety isomorphic to) a closed subset
in projective space. A quasiprojective variety is (a variety isomorphic to) a
locally closed subset in projective space.

Example. A curve in A2, for example
{(z,y) € A?  y* = 2° + 2},
can be homogenized to give a curve in P?
{lw:z:y] € P?: y*w = 2° + zw?}

Recall that P? = A2UP!. On the affine space part w # 0, we recover the
original curve. On the line at infinity w = 0 the equation is 2% = 0, which
has solution x = 0, giving rise to one point at infinity [w:z :y] =[0:0: 1].

For the curve y* = 23 + z, the points at infinity are [0: 1 : ] where €3 = 1.

Theorem (Segre). The is an embedding P* x P™ in P"™ "™ give by
(lwo - xnl Yo s - - s Ym)) = [ToYo -+ 1Ty -+ Tl

Proof. See Kempf, Theorem 3.2.1.

Corollary. A product of (quasi-)projective varieties is (quasi-)projective.

1.8 Schemes

More general than varieties are schemes. I only discuss affine schemes. I do
it using functors rather than sheaves. See

M. Demazure and P. Gabriel, Groupes Algébriques, 1970. Partial English
translation, Introduction to Algebraic Geometry and Algebraic Groups, 1980.

W. C. Waterhouse, Affine group schemes, 1979.
D. Eisenbud and J. Harris, The geometry of schemes, 2000. (Chapter VI)

Let K be a commutative ring (not necessarily a field). When discussing
algebraic schemes we assume that K is noetherian. We write K-comm for
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the category of commutative K-algebras, or equivalently commutative rings
R equipped with a homomorphism K — R.

Definition. The category of affine (K-)schemes is the category of repre-
sentable (covariant) functors

F : K-comm — Sets

with morphisms given by natural transformations. (These are not additive
categories.) Recall that a functor F is said to be representable if there is an
object A in the category (a commutative K-algebra) such that

F(—) = Homg_comm (4, —).
By Yoneda’s lemma, the functor A — Hompg comm(A, —) defines an anti-

equivalence from K-comm to the category of affine schemes.

Examples. (i) A" (or A% if we need to stress the base ring K) is the
affine scheme with A"(R) = R"™. It is represented by the polynomial ring
K[Xy,...,X,], since

Hom g -comm (K[ X1, . .., Xn], R) = R".

(ii) Any subset S of K[X1,...,X,] defines a functor V(S) by
V(S)(R) = {(x1,...,2,) € R": f(x1,...,2,) =0 for all f € I}.

It is represented by the ring K[X7, ..., X,]/(S) where (S) is the ideal gen-
erated by S.

Definition. An affine scheme is algebraic if the algebra A is finitely gener-
ated as a K-algebra (assuming that K is a noetherian ring).

It is reduced if A is reduced.

Lemma. Given an affine (algebraic) scheme F, there is a reduced affine
(algebraic) scheme Fiq and a morphism Fi,q — F such that for all R the
map

Fred(R) — F(R)

is injective, and a bijection for R reduced. This defines a functor F' +— Fjeq
which is right adjoint to the inclusion of reduced affine (algebraic) schemes
into affine (algebraic) schemes.

Proof. If F(—) = Hom(A, —) we set Freq(—) = Hom(Aeq, —). The natural
map A — A,eq gives a morphism Froq — F.
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For example V(5) is algebraic. It is reduced if and only if K[X3,..., X,]/(S)
is reduced. The scheme V(S)cq is represented by K[Xq,..., X,]/1/(S5)

Definition. If K — L is a homomorphism of commutative rings, and F' is
an affine K-scheme, we write F'* for the functor defined by

where R is a commutative L-algebra, considered as a K-algebra by compo-
sition K — L — R.

This is an L-scheme since if F' = Homg_comm (A4, —) then
FL(R) = HOmK-comm(A7 R) = HomL-Comm(L K A, R)

This defines a functor from the category of affine (algebraic) K-schemes to
affine (algebraic) L-schemes.

Il

For example there is a unique homomorphism Z — K and K®zZ[ X, ..., X,]
K[X1,...,X,],s0 A% = (A™)7)%. Also, if S C Z[ X, ..., X,] then V(S)x =
(V(9)z)".

Proposition. If K is an algebraically closed field, then the category of affine
varieties is equivalent the category of reduced affine algebraic schemes.

Under this correspondence, an affine variety X is sent to the reduced affine
algebraic scheme Hom g _comm(O(X), —).

Conversely, if F' is an affine algebraic scheme, then the variety corresponding
to F' (or Freq if F' is not reduced) has as underlying set F'(K).

Proof. Straightforward, using that the category of affine varieties is anti-
equivalent to the category of finitely generated reduced K-algebras,
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2 Varieties arising in representation theory

2.1 Algebraic groups

Definition. An algebraic group is a group which is also a variety, such that
multiplication G x G — G and inversion G — G are morphisms of varieties.

A morphism of algebraic groups is a map which is a group homomorphism
and a morphism of varieties.

When considering an action of an algebraic group on a variety X we shall
suppose that the map G x X — X is a morphism of varieties.

The general linear group GL,(K) is the open subset D(det) of M, (K), so
an affine variety. It is an algebraic group thanks to the formula ¢=! =

adj g/ det g. It acts by left multiplication or by conjugation on M, (K).

Definition. A linear algebraic group is an algebraic group which is isomor-
phic to a closed subgroup of GL,(K). For example

- the special linear group SL,,(K),

- the orthogonal group O,,(K),

- the multiplicative group G,, = (K*, x) = GL1(K),

- the additive group G, = (K, +), since it is isomorphic to {(} ¢) : a € K}
- any finite group.

- any finite product of copies of these, using that GL,, (K) x GL,,(K) embeds
in GLy,m(K).

Lemma. A connected algebraic group is an irreducible variety.

Proof. Write the group as a union of irreducible components G = G; U
---UG,. Since G is not a subset of the union of the other components,
some element g € G does not lie in any other component. Now any two
elements of an algebraic group look the same, since multiplication by any
h € G defines an isomorphism G' — G. It follows that every element of G
lies in only one irreducible component. Thus G is the disjoint union of its
irreducible components. But then the components are open and closed, and
since GG is connected, there is only one component.

Remark. Clearly any linear algebraic group is an affine variety, and con-
versely one can show that any affine algebraic group is linear, see for ex-
ample Humphreys, Linear algebraic groups, section 8.6. There are algebraic
groups which are not affine varieties. One can show that a connected alge-
braic group which is a projective variety must be commutative. It is called
an ‘abelian variety’. For example elliptic curves (non-singular cubics in P?)
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have a group law.

Affine group schemes. If K is any commutative ring, then an affine group
scheme over K is a representable functor F' : K-comm — Groups. If A is the
commutative K-algebra A representing F', then A becomes a Hopf algebra,
see Waterhouse section 1.4.

For example GL,, is the affine group scheme with GL,,(R) = GL,(R) for all
R. Tt is represented by the algebra K[X;;,1/ det], so reduced.

Observe that (GL,)x = ((GL,)z)¥.

2.2 The variety of algebras

Let V be a vector space of dimension n, with basis e, ..., e,.

We write Bil(n) for the set of bilinear maps V' x V — V. A map p € Bil(n)
is given by its structure constants (cf;) € K " with

pe, ej) = Z cfjek.
k

Equivalently Bil(n) 2 Hom(V ® V, V), Thus it is affine space A"’

We write Ass(n) for the subset consisting of associative multiplications. This
is a closed subset of Bil(n), hence an affine variety, since it is defined by the
equations

(e ej), ex) = plei, plej, ex)),

s s 4
Z C?J'Cpk - Z CiqCjk
P q

that is

for all s.

We write Alg(n) for the subset of associative unital multiplications, so algebra
structures on V.

Theorem. Alg(n) is an affine open subset of Ass(n), hence an affine variety.
The algebraic group GL(V') acts by basis change, and the orbits correspond
to isomorphism classes of algebras.

Proof. (i) We use that a vector space A with an associative multiplication
has a 1 if and only if there is some a € A for which the maps ¢,,7,: A = A
of left and right multiplication by a are invertible.
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Namely, if u = ¢;'(a), then au = a. Thus aub = ab for all b, so since ¢, is
invertible, ub = b. Thus w is a left 1. Similarly there is a right 1, and they
must be equal.

(ii) For the algebra V' with multiplication p, write ¢# and r# for left and
right multiplication by a € V. Then Alg(n) = {J,cy D(fa) where fo(p) =
det(¢#) det(r#). Thus Alg(n) is open in Ass(n).

(iii) The map
Alg(n) =V, p+— thel for p

is a morphism of varieties, since on D(f,) it is given by (¢*)~1(a), whose
components are rational functions, with det(¢#) in the denominator.

(iv) Alg(n) is affine. In fact
Alg(n) = {(u,u) € Ass(n) x V| uis a1 for u}.

The right hand side is a closed subset, hence it is affine. Certainly there is a
bijection, and the maps both ways are morphisms.

(v) Last statement is clear.

Example. The structure of Alg(n) is known for small n. For example Alg(4)
has 5 irreducible components, of dimensions 15, 13, 12, 12, 9. See P. Gabriel,
Finite representation type is open, 1974.

2.3 Module varieties

Let A be a finitely generated associative K-algebra, and d € N.

Lemma 1. (i) Mod(A,d) = Homg ajgebra(A, M4(K)), the set of A-module
structures on K% has a natural structure as an affine variety.

(i) Given any a € A, the map Mod(A,d) — My(K), sending 0 : A — M(K)
to 6(a), is a morphism of varieties.

(iii) There is an action of GL4(K) on Mod(A,d) by conjugation, so given
by (g-60)(a) = gf(a)g~'. The orbits correspond to isomorphism classes of
d-dimensional modules.

Proof. (i) We choose a presentation A = K(z1,...,xx)/I. A homomorphism
0:A— My(K) is determined by the matrices A; = 0(x;), so

Mod(A,d) = {(Ay,...,Ar) € My(K)* : p(Ay,..., Ay) =0forall pe I}

Here any p € K(xy,..., ;) is thought of as a noncommutative polynomial in
x1,..., %, and then p(A;, ..., Ag) is a k X k matrix of ordinary polynomials
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in the entries of the A;. This is a closed subset of the affine space My(K)*,
so an affine variety.

It remains to check that the structure doesn’t depend on the presentation
of A. For this we use (ii), which is clear. Now if Mod(A,d)’ is the same
set but with the variety structure given by a different presentation, then (ii)
shows that the identity maps Mod(A,d) — Mod(A,d)" and Mod(A,d) —
Mod(A, d) are morphisms of varieties, giving (i).

(iii) Clear.

Quiver version. Suppose A is a finitely generated K-algebra and ey, ..., e,

is a complete set of orthogonal idempotents in A (not necessarily primitive).
Thus e;e; = d;;¢; and > e; = 1.

It is equivalent that A can be presented as K@)/l where @ is a (finite) quiver
with vertex set {1,...,n}, with the e; corresponding to the trivial paths.

If M is any A-module, then M = @}, e;M. The dimension vector of M is
the vector a € N" with «; = dim e; M.

Letting d = ) | o, we can define
Mod(A, o) ={0: A — My(K) : 0(e;) = m} € Mod(A,d)

where 7, is the projection of K% = K* @ --- @ K onto its ith summand.
If & € N" then
Rep(Q,a) = [] Hom(K®, Ko@),
acQ
This is a vector space, so affine space of some dimension.
Lemma 2. Let A= K@/I. Then
(i) As a variety, Mod(A4, a) = {x € Rep(Q, a) : z satisfies relations in I}.

(ii) There is an action of GL(a) = [[;—; GLq, (K) on Mod(A, «) by conjuga-
tion. The orbits correspond to isomorphism classes of modules of dimension
vector .

Scheme structure. Given a finitely generated K-algebra and d € N we
define a functor

Mod(A,d) : K-comm — Sets, R — Hompg ,5(A, My(R)).

Lemma 3. Mod(A,d) is an affine algebraic scheme. The variety Mod(A, d)
corresponds to the scheme Mod(A, d)yeq.
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Similarly there is a module schemes Mod(A4, ).

Proof. Recall that any algebra A has a dth root algebra v/A. Moreover for
any algebra B, we write define

Beomm = B/(bb' = b'b: b,V € B)
the largest quotient of B which is commutative. Then
Mod(A, d)(R) = Homg_aie(VA, R) = Homg-comm((VA) comm, R)

so it is represented by the commutative K-algebra (v A)comm.-
Examples.

(1) The scheme Mod(A,1) is represented by Acomm, and Mod(A, 1) is the
variety with regular functions (Acomm )red-

For example if A = K|[z]/(2?) then Mod(A, 1) is a point since A,q = K.
(2) The nilpotent variety is

Ng={A € My(K): A =0} = Mod(K[z]/(z?),d)

(3) The commuting variety is

Cy={(A,B) € My(K)?: AB = BA} = Mod(K|z, ], d).

(4) Mod(My(K),d) is the set of K-algebra maps My(K) — My(K). These
are all automorphisms, since My(K) is a simple algebra. Thus it is Aut(My(K)).
Now every automorphism of My(K) is inner (for central simple algebras this
is the Skolem-Noether Theorem). Thus the map

GLy(K) — Aut(My(K)),g +— (A gAg™)

is onto. The kernel consists of the multiples of the identity matrix, a copy of

the group G,,,. Thus Aut(M,(K)) is in bijection with PGL4(K) = GL4(K)/Gp.

2.4 Geometric quotients

Suppose that an algebraic group G acts on a variety X. Let X/G be the set
of orbits and let 7 : X — X/G be the quotient map. We can turn X/G into
a space with functions via

- A subset U of X/G is open iff 771 (U) is open in X. (Thus also U is closed
iff #=1(U) is closed in X.)
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- A function f: U — K isin O(U) iff f7 € O(z~1(U)).

This ensures that 7 is a morphism. If with this structure X/G is a variety,
we call it a geometric quotient.

Example. The group G,, acts on X = A"\ {0} by rescaling. The quotient
X/@G is isomorphic to P, so is a variety. This was part (iv) of the theorem
about projective space.

On the other hand the orbits of G,, acting on A" are not all closed, so
A"T1/@G,, is not a geometric quotient by the following.

Lemma. (i) If there is a geometric quotient X /G then the orbits of G must
be closed in X.

(ii) A geometric quotient X /G is a categorical quotient, meaning that 7 is a
morphism which is constant on G-orbits, and any morphism ¢ : X — Z which

is constant on G-orbits factors uniquely as a composition X = X/G Ny

(iii) If YV is a variety and G acts on Y x G by ¢(y,¢") = (y,99), then
(Y xG)/G=Y.

(iv) If Y is a variety and G acts on Y x G by ¢(y,q) = (y,99’) for some
action of G on Y, then (Y x G)/G =Y.

Proof. (i) Any orbit of G in X is the inverse image of a point in X/G, and
any point in a variety is closed. (We should have had this earlier. This is
clear for affine space, and hence it passes to abstract varieties.)

(ii) There is a unique map X/G — Z. It is straightforward that it is a
morphism.

(iii) The projection map p : Y x G — Y is open, so U is open in Y if and
only if p~1(U) is open. Also a function f on an open set U of Y is regular if
and only if fp is regular on U x G. Namely, if it is regular on U x G then so
is its composition with the map U — U x G, = +— (z,1).

(iv) Use the automorphism ¥ x G — Y x G, (y,9) — (97 'y, g) to pass to
the case of trivial action on Y.

Remark. If the orbits aren’t closed, one needs a different approach. This is
‘geometric invariant theory’. More later.

Even if the orbits of GG are closed, there may not be a geometric quotient. See
for example H. Derksen, Quotients of algebraic group actions, in: Automor-
phisms of affine spaces, 1995. Maybe you need to work with algebraic spaces
rather than varieties. See for example J. Kollar, Quotient spaces modulo
algebraic groups, Ann. of Math. 1997.

20



One case that is understood, however, is quotients G/H where G is a linear
algebraic group and H is a closed subgroup, acting on GG by left multiplica-
tion, so G/H is the set of cosets.

It is known that:

- G/H is a quasi-projective variety, so a geometric quotient. See A. Borel,
Linear Algebraic Groups, Corollary 5.5.6.

- If H is a normal subgroup, G/H is an affine variety, so a linear algebraic
group. Borel, Proposition 5.5.10.

- G/H is a projective variety (in which case H is called a parabolic subgroup)
if and only if H contains a Borel subgroup (a maximal closed connected
soluble subgroup of G). Borel, Theorem 6.2.7.

In the Example (4) in the last section, I mentioned that the module variety
Mod(My(K),d) is in bijection with PGL4(K'). This is an isomorphism of
varieties, but I don’t think we yet have the methods to prove this.

2.5 Grassmannians

Definition. If V' is a vector space of dimension n, the Grassmannian Gr(V, d)
is the set of subspaces of V' of dimension d.

We write Inj(K9, V) for the set of injective linear maps K¢ — V. It is open
in Hom(K4, V), so a quasi-affine variety.

The group GLg4(K) act by g- 60 = 6g~'.

Two injective maps are in the same orbit if and only if they have the same
image, so we have a natural bijection Inj(K%,V)/ GLy(K) — Gr(V,d).

This turns Gr(V, d) into a space with functions.

Fixing a basis ey,...,e, of V, we identify Inj(K% V) with the set of n x d
matrices of rank d.

Let I be a subset of {1,...,n} with |I| =d. If A € Inj(K¢,V), we write A;
for the square matrix obtained by selecting the rows of A in I. Then det(A;)
is a minor of A. We write A} for the (n —d) x d matrix obtained by deleting
the rows in 1.

We consider the map ¢ : Inj(K%, V) — PY where N = () — 1, sending A to
[det(A[)][.

The action of g € GL4(K) on Inj(K%, V) sends A to Ag~!, Now det((Ag~1);) =
det(Aj) det(g)~'. Thus the map ¢ is constant on the orbits of GL4(K).
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Theorem (Pliicker embedding). The induced map 6 : Gr(V,d) — PV is
a closed embedding, so Gr(V,d) is a projective variety.

We use the following facts.

Lemma 1. Given a mapping 6 : X — Y between varieties and an open
covering Y = JU,, the map 6 is a closed embedding if and only if its
restrictions @) : 671(Uy) — U, are closed embeddings.

Proof. First, Y \Im#6 = J, U, \Im¥é, is open in Y, so Im @ is closed. Second,
there is an inverse map ¢ : Imé — X. Now Im# has an open covering by
sets of the form A N Im#, and the restriction of g to each of these sets is a
morphism, hence so is g.

Lemma 2. If g : X — Y is a morphism, with Y separated, then the map
X - X XY,z (z,9(x)) is a closed embedding.

Proof. Its image is the inverse image of the diagonal Ay under the map
XxY =Y xY, (z,y) — (9(x),y). The projection from X x Y — X gives
an inverse map from the image to X.

Proof of the theorem.

Let X = Inj(K?% V), let Y = Gr(V,d) and let § : Y — P¥ be the Pliicker

map.

We write elements of PV in the form [z;] with z; € K, not all zero, for I a
subset of {1,...,n} of size d.

Recall that PV has an affine open covering by the sets U; = {[z;] : x; # 0}.
Let X, be the inverse image of U; in Inj(K<, V), and let Y; = X;/ GLy4(K)

be its inverse image in Y.
By Lemma 1 it suffices to show that Y; — U; is a closed embedding.

Now X ; consists of the matrices A such that A; is invertible. Thus there is
isomorphism of varieties

XJ = GLd(K) X M(nfd)xd(K)yA — (AJ,A{])

By the lemma from the last section, Y; = X;/ GL4(K) = M,—a)xa(K) so it
is an affine variety. Varying Y this gives an affine open covering of Y.

Given a matrix B € M(n_d)xd(K), we write B for the matrix A with Ay =1y
and A, = B. We can identify U; with A" with components indexed by
subsets I # J, and the map Y; — U; with the map

Mn—ayxa(K) — AN, B (det By);.
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Now observe that if we take I to be equal to J, except that we omit the jth
element, and instead insert the ith element of {1,...,n}\ J, then det(B;) =
£b;;. Thus, up to sign, this map is of the form Y; — Y; x W for some W.
Thus by Lemma 2 it is a closed embedding.

Alternative version. We can instead consider surjective linear maps, and
realise Gr(V, d) as a quotient of Surj(V, K¢) by GL.(K) where c+d = dim V.

(It is not obvious that these two constructions give the same variety structure.
This can no doubt be checked locally. An alternative would be to consider
the variety of exact sequences 0 — K¢ — V — K¢ — 0 modulo the action of
GL4(K) x GL.(K). This quotient would have a natural map, which should
be an isomorphism. to each of the other two quotients.)

Lemma 3 If 6 : V — V' is a linear map, then
{(U,U") € Gr(V,d) x Ge(V',d) : 0(U) CU'}

is closed in the product.

Proof. For this we realise Gr(V,d) as the quotient of Inj(K<, V') by GL(d).
We can realise Gr(V’,d') as a quotient of Surj(V’, K¢) by GL.(K), where
¢ =dim V'’ —d'. Then we have a closed subset

{(f,g9) € Inj(K% V) x Surj(V', K¢) : g6 f = 0}.

Using this, the flag variety

for 0 <dy <--- <dp <dimV, is realized as a closed subset of [[, Gr(V, d;),
hence a projective variety.

Definition. Let A be an algebra and eq,...,e, a complete set of orthogo-
nal idempotents. Let M be a finite dimensional A-module and let o be a
dimension vector. We write M; for ¢; M. We define

n

Gra(M,a) = {(U;) € H Gr(M;, «;) = (U;) defines a submodule of M}
i=1
This is a Quiver Grassmannian. This is a closed subvariety of the product of
Grassmannians [ [, Gr(M;, ;), hence a projective variety. Namely, for all 7, j
and all a € ejAe;, we need a(U;) C U, where a : M; — M; is the homothety
a(m) = am. This is a closed condition.
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3 Dimension theory and applications

3.1 Function fields

Recall that a variety is irreducible iff it is non-empty and any two non-empty
open subsets have non-empty intersection.

Definition. Let X be an irreducible variety. A rational function on X is a
regular function on a non-empty open subset of X. We identify f; € Ox(U)
with fo € Ox(Us) if they agree on an open subset of U; N Us. Then they
actually agree on all of U; N Us, for

{reUinU: | fi(z) = falz)}

is closed and dense in U; N U,. It follows that a rational function is defined
on a unique maximal open subset of X.

The function field K(X) of X is the set of all rational functions on X. It is
a field.

If U is a nonempty open subset of X then restriction induces an isomorphism
K(X)— K(U).
If U is open in X, one can identify O(U) with the subset of K (X) of rational

functions defined on U.

Lemma. If X is irreducible and affine, then K(X) is the quotient field of
its coordinate ring O(X).

Proof. An element f/g of the quotient field gives a rational function defined
on D(g) C X. Conversely, any rational function is regular on some open set
of U. This open set contains an affine open of the form D(g) with g € K[X],
and the regular functions on this are of the form f/g¢".

Definition. Two irreducible varieties are said to be birational if they have
non-empty open subsets which are isomorphic.

For example A%, P? and P! x P! are birational, but not isomorphic.

Proposition. Irreducible varieties are birational if and only if they have
isomorphic function fields.

Proof. One implication is trivial. For the other, assume that K (X) = K(Y).
We may assume that X is affine.

Take generators of O(X), consider as elements of K (Y'), and choose an affine
open subset Y’ of Y on which all the elements are defined. Then O(X)
embeds in O(Y’).
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Similarly O(Y”) embeds in O(X’) for an affine open X’ in X.
These give maps
x' Ly % x
such that ¢gf is the inclusion, so an open embedding. But then the map
X’ — ¢g7'(X’) is an isomorphism.

3.2 Dimension

See D. Mumford, The red book of varieties and schemes.

Definition. The dimension of a variety is the supremum of the n such that
there is a chain of distinct (non-empty) irreducible closed subsets Xo C X; C
- C X, in X, (dim0 = —o0.)

Thus, if X is an affine variety, dim X is the Krull dimension of O(X), the
maximal length of a chain of prime ideals Py C P, C --- C P,.

Lemma 1. If X is an irreducible affine variety, then dim X is the transcen-
dence degree of the field extension K(X)/K.

The proof is commutative algebra. As a consequence we get the following.

Lemma 2.

(0) dim A" =n.

(1) Any variety has finite dimension.

(2) If X C Y is a locally closed subset, then dim X < dimY’, strict if YV is
irreducible and X is a proper closed subset.

(3) If X is irreducible then dim X =transcendence degree of K(X)/K. Thus
if U is nonempty open in X, dimU = dim X.

(4) If X =Y, U---UY,, with the ¥; locally closed in X, then dim X =
max{dim Y;}.

Proof. (0) By transcendence degree.

(2) If X; is a chain of irreducible closed subsets in X, then X; is a chain of
irreducible closed subsets of YV, and if X; = X, then X, is open in X;, so

Xip1 = Xi U(Xi1 N (X5 \ X))

a union of two closed subsets, so X;11 = Xj.
(4) for the special case when Y; open in X.
Take a chain Xo C X; C---C X,, in X.
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Then X, meets some Y;.
Consider the chain ;N X CcY,NX; C---CY;NX, inY,.
Y; N X is nonempty and open in Xj;, hence irreducible.

The terms are distinct, for if ;N X; = Y;N X, then X; 1 = X;U(X;11\Y))
is a proper decomposition.

Thus dimY; > n.
(1) Combine (0), (2) and the special case of (4).

(3) X is a union of affine opens. These all have function field K(X), so
dimension given by the transcendence degree.

(4) in general. Suppose F' is an irreducible closed subset of X.
Then F is the union of the sets F NY,.

By irreducibility, some FNY; = F.

Thus F'NY; is open in F.

Thus dim F = dim FNY; < dimY;.

Definition. A morphism 6 : X — Y of varieties, with X and Y irreducible,
is dominant if its image is dense in Y.

Lemma 3. If § : X — Y is a morphism of varieties and X is irreducible,
then Z = Im# is irreducible, the restricted map ¢’ : X — Z is dominant and
it induces an injection K(Z) — K(X). Thus dim Z < dim X.

Proof. Straightforward.

Main Lemma. If 7 : X — Y is a dominant morphism of irreducible
varieties then any irreducible component of a fibre 77!(y) has dimension at
least dim X — dim Y. Moreover, there is a nonempty open subset U C Y
with dim 77! (u) = dim X —dimY for all u € U.

This can be reduced to the case when X, Y are affine, and then it is commu-
tative algebra.

Two special cases. (1) dim X x Y = dim X + dim Y. Reduce to the case
of irreducible varieties, and then consider the projection X x Y — Y.

(2) (Hypersurfaces in A™). The irreducible closed subsets of A™ of dimension
n — 1 are the zero sets V' (f) of irreducible polynomials f € K[Xj,...,X,].

Namely, if f is irreducible then V(f) is irreducible, a proper closed subset of
A", so dimension < n, but a fibre of f : A" — K, so dimension > n — 1.
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Conversely if X C A" is an irreducible closed subset of dimension n — 1 then
X =V(I)so X C V(g) for some non-zero g € I. But then X C V(f) for
some irreducible factor f of g. Then equal by dimensions.

Example. The commuting variety Cj is irreducible of dimension d? + d.
(Theorem of Motzkin and Taussky, 1955.)

Following R. M. Guralnick, A note on commuting pairs of matrices, 1992.

A d x d matrix A is reqular or non-derogatory if in it’s Jordan normal form
each Jordan block has a different eigenvalue. Equivalently if its minimal
polynomial is equal to its characteristic polynomial. Equivalently if it de-
fines a cyclic K[X]-module. Equivalently if all eigenspaces are at most one-
dimensional. Equivalently the only matrices which commute with A are
polynomials in A. Equivalently that I, A, A%, ..., A% are linearly indepen-
dent. Thus the set of regular matrices is an open subset U of M,(K).

Suppose B is any matrix and R is regular. Consider the map
f:A" = My(K), f(A) =R+ \B.

The image meets U. Thus f~'(My(K) \ U) is a proper closed subset of A!,
so finite. Thus R + AB is regular for all but finitely many A. Thus B + vR
is regular for all but finitely many v € K.

Every matrix A commutes with a regular matrix R, for if A has diagonal
blocks J,,,(A;) (with the \;) not necessarily distinct, then it commutes with
the matrix with diagonal blocks J,, (1), for any p;, and this is regular if the
1; are distinct.

The set C', = Cy N (Mg x U) is dense in Cy, for if (A, B) € Cy\ C’, then
there is an open set W of Cy containing (A, B) but not meeting C’. Let
g:A' = Cy, g(v) = (A, B+ vR). Then g~ *(C%) and g~ (W) are non-empty
open subsets of A! which don’t meet. Impossible.

Let P be the set of polynomials of degree < d — 1. Now the map h :
PxU — Cy (f(t),B) = (f(B),B)) has image C’,. Thus Cy = Imh,
and since P x U is irreducible, so is Cy. Also this map is injective, so
dim Cy = dim U + dim P = d? + d.

3.3 Constructible sets

A subset of a variety is constructible if it is a finite union of locally closed
subsets.
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Lemma. (1) The class of constructible subsets is closed under finite unions
and intersections, complements, and inverse images.

(2) If V' is a constructible subset of X and V is irreducible, then there is a
nonempty open subset U of V with U C V.

Proof. (1) Exercise.

(2) Write V' as a finite union of locally closed subsets V;. Then V=U,V.
Thus some V; = V. Then V; is open in V.

Example. The punctured x-axis is locally closed in A2%. It’s complement is
not locally closed, but it is constructible: it is the union of the plane minus
the x-axis, and the origin.

Chevalley’s Constructibility Theorem. The image of a morphism of
varieties # : X — Y is constructible. More generally, the image of any
constructible set is constructible.

Sketch. Wma X irreducible. Wma Y = Im(f). The main lemma says that
Im(#) contains a dense open subset U of Y. Thus it suffices to prove that
the image under 6 of X \ §~(U) is constructible. Now work by induction on
dimension.

Example. Theset {z € Mod(A4, a) : K, is indecomposable } is constructible
in Mod(A4, o). Here K, denotes the A-module of dimension vector « corre-
sponding to x.

If « = B + 7, then there is a direct sum map
f:Mod(A, ) x Mod(A,~) — Mod(A, «)

sending (z,y) to the module structure A — M,(K) which has = and y as
diagonal blocks. It is a morphism of varieties. Thus the map

GL(«) x Mod(A, 5) x Mod(A,~) = Mod(A, «), (g,z,y) — g.f(x,y)

has as image all modules which can be written as a direct sum of modules of
dimensions 8 and «. This is constructible. Thus so is the union of these sets
over all non-trivial decompositions o = [ + . Hence so is its complement,
the set of indecomposables.

3.4 Upper semicontinuity and completeness

Definition. A function f : X — Z is upper semicontinuous if {x € X |
f(z) <n} is open for all n € Z. Thus with {z € X | f(x) > n} closed.
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Examples. (1) The map Hom(V, W) — Z, 6 — dim Ker @ is upper semi-
continuous.

The set where it is > t is the set of maps of rank < r = dimV — ¢, so
identifying with matrices, the set where all minors of size r + 1 are zero.

(2) On the variety {(0,¢) € Hom(U,V) x Hom(V, W) : ¢ = 0}, the map
(0, ¢) — dim(Ker ¢/ Im 6) is upper semicontinuous.

Since it is equal to dim Ker 6 + dim Ker ¢ — dim U.

The local dimension at x € X, denoted dim, X is the infemum of the dimen-
sions of neighbourhoods of z. Equivalently it is the maximal dimension of
an irreducible component containing x.

Chevalley’s Upper Semicontinuity Theorem. If  : X — Y is a mor-
phism then the function X — Z, z — dim, 6~(6(z)) is upper semicontinu-
ous.

Sketch. Wma X is irreducible. Wma Y = Im(6). By the Main Lemma, the
minimal value of the function is dim X —dim Y, and it takes this value on an
open subset 8~ (U) of X. Thus need to know for the morphism X \6~*(U) —
Y \ U. Now use induction.

Definition. A cone in a vector space is a subset which contains 0 and is
closed under multiplication by A € K.

If C'is a closed cone in V' then every irreducible component of C' contains 0,
so dimg C' = dim C'. Namely, let D be an irreducible component of C', there
is a scaling map f: A' x D — C,s0 D CIm f C C. Now Im f is irreducible,
so equal to D. It contains 0.

Corollary 1. Suppose X is a variety and V' a vector space. Suppose that
Y is a closed subset of X x V and that for all x € X the set V, ={v e V :
(x,v) € Y} is a cone in V. Then the function X — Z, x +— dim V,, is upper
semicontinuous.

Proof. If f:Y — Z is upper semicontinuous and ¢ : X — Y is a morphism,
then the composition f¢ : X — Z is upper semicontinuous.

Consider the projection # : Y — X. This gives an upper semicontinuous
function Y — Z, (z,v) — dim,,,) 07 (0(x)).

Compose with the zero section ¢ : X — Y, x +— (z,0).

The map
z — dim, )07 (0(x)) = dimg V,,

is upper semicontinuous.
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Now since V,, is a cone, dimg V, = dim V.

Example. The function Mod(A4,«) — Z, x — dimEnd(K,) is upper
semicontinuous.

Let d = > a;. Then K, is K¢ with the action of A given by a homomorphism

Now End,4(K,) is a subspace of Endg (K,) = My(K), so a cone, and
V={(z=(A1...,4),0) | Aid = ¢A;Vi}
is a closed subset of Mod(A, o) x Endg(K?).

A variation: for a fixed finite-dimensional module M, the maps Mod(A, o) —
Z, x — dim Homy4 (M, K,) and dim Hom 4 (M, K,) are upper semicontinuous.

Another variation: the map Mod(A, a) x Mod(A, 8) — Z given by (x,y) —
dim Hom 4 (K, K) is upper semicontinuous.

Definition A variety X is complete or proper over K if for any variety Y,
the projection X x Y — Y is a closed map. (Sends closed sets to closed sets.)

Easy properties. (1) A closed subvariety of a complete variety is complete.
(2) A product of complete varieties is complete

(3) If X is complete and 6 : X — Y is a morphism, then the image is closed
and complete. (The image is the projection of the graph, hence closed. Need
separatedness.)

(4) A complete affine or quasi-projective variety is projective.
There is an embedding X — P".
Corollary 2. Projective varieties are complete.

Proof. It suffices to prove for P". Let V = K™™' and V, = V'\ {0}. There is a
morphism p : V, — P" sending a nonzero vector (xo, ..., z,) to [zg: - : z,].
Let C be closed in P* x Y. We need to show that its image under the
projection to Y is closed.

If y € Y thenV, = {0}u{v € Vi | (p(v),y) € C} is a cone in V. Is
Z =A{(v,y) | veV,}closedin V xY 7 Now p gives a morphism (p, 1) :
V.xY = P"xY. Then (p,1)7(C) is closed in V, x Y = (V xY)\ ({0} x Y,
so Z=(p,1)"H(C)U ({0} x Y) is closed in V x Y.

Thus the function y — dim V], is upper semicontinuous. Thus {y € Y |
dim V}, = 0} is open. This is the complement of the image of C.

Remark (to add to section on geometric quotients). Let f: X — Y
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be a morphism of varieties.

One says f is universally open if for any Z the map f': X x Z - Y x Z is
open, so sends open sets to open sets. One says that f : is submersive if it is
surjective and

U CYisopen < f'(U)is openin X.

One says that f is universally submersive if f’ is submersive for all Z.
(Strictly speaking one should allow all fibre products in the category of
schemes.)

By definition any geometric quotient 7 : X — X /G is submersive.

Fact. A geometric quotient 7 is universally submersive < 7 is universally
open.

Namely, suppose 7 is universally submersive and U is open in X x Z, then
s0 is U, gU, and this is (7') 7! (7'(U)).Thus 7'(U) is open.

Conversely suppose 7 is universally open, so 7’ is open. Now 7 is a morphism,
hence so is 7', so if U C (X/G) x Z is open, so is (7)1 (U). Conversely as
7’ is open, if (7')~}(U) is open, so is ©'((7’) "1 (U)) = U, since 7’ is onto.
The book Mumford, Fogarty and Kirwan, Geometric Invariant Theory, 3rd
edition, 1994, claims in remark (4) on page 6 that any geometric quotient is
universally open. But this is probably not true. In the first edition universally
submersive was included as part of the definition of a geometric quotient.

When this was changed in the second edition, presumably the remark was
not corrected.

Remarks (to add to section on Grassmannians).

(1) We showed that the Grassmannian is a geometric quotient by showing
that it is locally a projection. Since projections are universally open, it
follows that Grassmannians are universally submersive geometric quotients.

(2) Let dim V' = c+d. To show that the constructions Gr(V,d) = Inj(K%,V)/ GL4(K)
and Surj(V, K¢)/ GL.(K) are isomorphic, by duality it suffices to show that
the map

Surj(V, K¢) — Gr(V,d), ¢ Ker¢

is a morphism of varieties.
As I suggested before, this can be checked locally.
Identify Surj(V, K¢) with the set of full rank matrices C' € M.y, (K).

Given a subset I of {1,...,n} of size d, let C; be the ¢ X ¢ matrix obtained
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by deleting the columns in I and C the ¢ x d matrix obtained by keeping
only the columns in /.

Let W; be the open subset of Surj(V, K¢) consisting of the matrices C' with
Cy invertible. As [ varies, this gives an open cover of Surj(V, K¢). Thus it
suffices to show that the restriction to Wy is a morphism.

Now we have a map

W, 5 nj(K% V) — Gr(V,d)
where f(C) is the n x d matrix A with A; = I; and A} = —(C7)~1(CY).
Observe that we have an exact sequence

0— K45 Km S Ke 0.

The composition is zero since it is C; A} + C;A; = 0. Thus f gives the map
we want, and clearly f is a morphism of varieties.

(3) The map Exact(K® V, K¢) — Gr(V,d) is universally submersive.

Since the map Surj(V, K¢) — Gr(V,d) is universally submersive, the map
Inj(K*, V) x Surj(V, K¢) x Z — Inj(K%, V) x Gr(V,d) x Z

is submersive.

It identifies GL.(K)-orbits on the LHS with points in the RHS.

Thus GL.(K)-stable closed subsets of the LHS correspond to closed subsets
of the RHS.

Thus GL,.(K)-stable closed subsets of Exact(K?, V, K¢) x Z (which is also of
this form) corresponds to the closed subsets of

{(0,7(0),2) : 0 € Inj(K?),z € Z} 2 Inj(K, V) x Z.

Thus the map Exact(K4?,V, K¢) — Inj(K%, V) is universally submersive.

Now compose it with the map Inj(K? V) — Gr(V,d) which is universally
submersive.

Example. Given A and dimension vector « and [, one want the set

Mod Gr(4, o, B) = {(z, (U;)) € Mod(A4, a)xH Cr(K®, B) : (U;) € Gra(K,, B)}

to be a closed subset of the product, so a variety. Now the map

H Exact(Kﬁi, K, Ko‘rﬁi) — H Gr(K™, 3;)
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is universally submersive, so it suffices to check that the lift to

Mod(A, o) x [ [ Exact(K*, K* K*~%)

is closed. Here it is straightforward.
Since Grassmannians are projective varieties, and projective varieties are
complete, we get that
{z € Mod(A, a) : K, has a submodule of dimension £}
which is the image of the projection
Mod Gr(A, a, ) — Mod(A, «)
is closed. Taking the union over all 5 # 0, o, we get that the set
Simple(A, a) = {z € Mod(A, a) : K, is a simple module}

is open in Mod(A, a).

3.5 Orbits

Let G be a (linear) algebraic group. For simplicity we assume G is connected.
Suppose that G acts on a variety X and x € X. Then the orbit the stabilizer
Stabg(x) is a closed subgroup of G.

Theorem. Suppose that G acts on a variety X. Any orbit Gz is a locally
closed subset of X of dimension dim G — dim Stabg(z). Its closure G is the
union of Gz together with orbits of strictly smaller dimension. Moreover Gx
contains a closed orbit.

Proof. We show that Gz is locally closed in X.
The map G — X, g — gz is a morphism, so its image Gz is constructible.

Since G is irreducible, the closure Gz is irreducible. Thus Gz contains a
nonempty open subset U of Gz.

Left multiplication by g € G induces an isomorphism X — X, so gU is an
open subset of ¢gGx = Gz.

Thus Gz = {J,c gU is an open subset of Gz.
Thus Gz is locally closed.
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Now the fibres of the map G — Gz are cosets of Stabg(x), so all are isomor-
phic as varieties to Stabg(x), so they have the same dimension. Then the
Main Lemma gives dim Gx = dim G — dim Stabg ().

Clearllm s a union of orbits. If Gy is one of them and dim Gy £ dim Gz,
then Gy = Gz, so Gy is open in Gz, so Gz \ Gy is closed in X. If Gy # Gx
then this contains Gz, so nonsense.

Finally, for a closed orbit, take Gy C Gz of minimal dimension.

Remark. Using that GG is connected, so an irreducible variety, we also get
that all orbits Gx and their closures Gz are irreducible varieties.

Proposition. The map X — Z, x — dim Stabg(z) is upper semicontinuous.
Thus the set

X<s ={z € X : dimStabg(z) < s} ={r € X : dimGz > dim G — s}
is open and the set
Xs; ={r € X :dimStabg(z) = s} ={r € X : dimnGzr = dim G — s}

is locally closed.

Proof. Let Z = {(g,2) € G x X : gr = z} and let 7 : Z — X be the
projection. Now

dim; ) 7 '7(1, 2) = dimy Stabg(z) = dim Stabg ()

since Stabg () is a group, so every point looks the same.

3.6 Orbits in Mod(A, «) degenerations and the nilpo-
tent variety

Notation. Recall that the orbits of GL(«) in Mod(A, a) correspond to
isomorphism classes of modules of dimension vector a. We write O, for the
orbit corresponding to a module M, so Oy = {x € Mod(A, «a) : K, = M}.
We have

dim GL(«) — dim Oy = dim Stabgp,) () = dim Aut4 (M) = dim Enda(M).

The last holds since Auty (M) C Ends(M) is a non-empty open subset of
a vector space, which is an irreducible variety. Recall also that GL(a) =
[1; GLq, (K) so it has dimension Y o?.
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Definition. We say that M degenerates to N if On C Oyy.

This is a partial order, for if M degenerates to N and M 2 N, then dim Oy <

More generally, given any G acting on a variety X, we say that x € X
degenerates to y € X if y € Gu.

Example. Recall that the nilpotent variety is Ny = Mod(K|[T]/(T%),d) =
{A € My(K) : A = 0}.

There are only finitely many orbits under the action of GL4(K). They are
Onmny where A = (Mg, Ao, ..., ) is a partition of n into at < d parts, and M ()
is the K[T]/(T%)-module with vector space K™ with T" acting as the matrix

involving a Jordan block J;(0) of eigenvalue 0 and size i for each column of
length i in the Young diagram of shape A (so with rows of length \;).

We claim that the module M (1) = K[T]/(T?) given by a Jordan block
of size d degenerates into any other module. Namely, given A and t € K,
consider the module M; which is given by the same matrix as M (A), so zero
except for some ones on the superdiagonal, but now with the zeros on the
superdiagonal changed into ts.

Clearly M; = M, = M(1¢) for t # 0 and My = M ().

Thus Ny = Oyy(10y, so it is irreducible of dimension d* — dim End(M (1%)) =
d? —d.

Theorem. Given A-modules M and N (of the same dimension vector) we
have (i) = (i) = (ii).

(i) There are modules M = My, M, ..., M, = M and exact sequences 0 —
(ii) M degenerates to N

(iii) dim Hom(X, M) < dim Hom(X, N) for all X.

Proof. (ii) = (iii). Use that dim Hom4 (X, —) is upper semicontinuous.

(i) = (ii). If M degenerates to N and N degenerates to L, then certainly M
degenerates to L. Thus it suffices to prove that if 0 - L - M — L' — 0
then M degenerates to L & L'. For simplicity we do Mod(A,d). An element
x € Mod(A,d) is defined by matrices z, where a runs through a set of
generators of A. Taking a basis of L and extending it to a basis of M, there
is ¢ € Oy in which each matrix z, has the form

[ Ya Wq
x“_<0 za)
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with K, =2 L and K, = L.

For t € K define an element z! via

t Ya twa
Ta = (0 Za ) ’
For t # 0, ' is the conjugation of z by the diagonal matrix (] ) € GL4(K),
so z' € Mod(A, d), and moreover z* € Oy;. Thus 2° € Oy, and Ko = LHL.

Remark. Hopefully we will have time to do Zwara’s Theorems.

- M degenerates to N iff there is an exact sequence 0 - Z — Z & M —
N — 0.

- If A has finite representation type then (iii) implies (ii) inequality on Homs
implies M degenerates to V.

Special case. For the nilpotent variety, so the algebra KI[T]/(T?), or
more generally the algebra KT, conditions (i),(ii),(iii) are all equivalent
(Gerstenhaber-Hesselink). Moreover if M = M(A) and N = M(u) then
condition (iii) becomes that A < p in the dominance ordering of partitions.
Firstly, dim Hom(K[T]/(T%), M(X)) = A\ + -+ + \;, so condition (iii) says
that Ay +---4+X\; < g+ - -+ p; for all 4, and this is the dominance ordering.
Now the dominance order is generated by the following move: A < p if p is

obtained from A by moving a corner block from a column of length j to a
column further to the right of length ¢ < j, for example

(6,6,4,2) < (6,6,5,1)

(See for example I. G. Macdonald, Symmetric functions and Hall polynomi-
als, I, (1.16).) We want to show in this case that there is an exact sequence

0=>L—>MMN—=L =0

with M(4) @ L@ I'. Now M(\) = K[T|/(T%) ® K[T]/(T"") & C and
M(p) = K[T]/(T’"Y) & K[T]/(T?) & C, so the exact sequence

—1
o) e
0 — K[T/(T") —— K[T]/(T"")®K[T]/(T’)
will do.

Lemma. If C is a finite-dimensional algebra, then the variety N(C') of
nilpotent elements in C' is irreducible of dimension dim C' — s, where s is the
sum of the dimensions of the simple C'-modules.
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Proof. Since K is algebraically closed, we can write C' = S @ J(C) where S
is semisimple, so S = My, (K)@--- @ My, (K). Then N(C) = Ny, X ... Ng, X
J(C), so it is irreducible of dimension

dim N(C) =) " d} — d; + dim J(C) = dim C = > " d;.
Proposition. If A is a finitely generated algebra, o a dimension vector, and
r € N then the set
Ind(A4, @), = {z € Mod(4, ) : K, is indecomposable and dim End,(K,) = r}
is a closed subset of

Mod(A4, o)<, = {z € Mod(A, «) : dim End 4 (K,) < r},

which is an open subset of Mod(A, a).

Proof. By the upper semicontinuity theorem for cones, the function
Mod(A,a) = Z, x+— dim N(Enda(K,))
is upper semicontinuous. Now by the lemma Ind(A, a), is equal to

{z € Mod(4, ) : dimEnd s (K,) < r}n{zr € Mod(A4, a) : dim N(End4(K,)) > r—1}.

3.7 Closed orbits in Mod(A, «)

Lemma. Given an A-module M and a simple module .S, the multiplicity of
S in M is given by

(M : S min {Order of zero at t = 0 of x4,,(t)}

I= dim S aeAnn(S)

where ay; is the homothety M — M, m — am and y,(t) = det(tl — 0) is
the characteristic polynomial of an endomorphism 6.

Proof. Given an exact sequence 0 - X — Y — Z — 0 of A-modules, the
endomorphism ay has uppertriangular block form, so

Xay (t) = Xax (t)Xdz (t) = Xaxaz (t)

Thus we may assume that M is semisimple.
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Next we may assume that M @ S is faithful. Thus A is semisimple, Now if
M = S¥ @ N with [N : S] = 0, then the smallest order we could hope to
get, and it can be achieved is if a acts on S as 0 and invertibly on N. This
is possible, for writing A as a product of matrix algebras we can take a to
correspond to 0 in the block for S and 1 in the other blocks.

Definition. Given a module M of dimension d and a € A, we define ¢¢(M) €
K by
Xags (£) = £ 4 (M) 4+ 4 cG(M)

Thus ¢§(M) = —tr(ay) and ¢4(M) = (—1)%det(ap). Then ¢ defines a
regular map Mod(A,a) — K. Moreover it is constant on the orbits of

GL(a).

By the lemma, these functions determine the multiplicities of the simples in
M. In fact if K has characteristic zero, one only needs to know the trace c¢;.
This is character theory of groups.

Theorem. O,; contains a unique orbit of semisimple modules, namely Ogr 1
where gr M is the semisimple module with the same composition multiplici-
ties as M. It follows that O, is closed if and only if M is semisimple.

Proof. By the theorem, Oy contains Og, pr. If On € Oy then by continuity

ct(N) =c¥(M), so M and N have the same composition multiplicities.

Remark. Also true is that Ext'(M, M) = 0 implies O, is open, with a
converse when the scheme Mod(A, «) is reduced, for example for A = KQ.
I hope to discuss later.

3.8 The variety AlgMod and global dimension

For a finite-dimensional algebra A we can identify Mod(A, d) with the set of
K-algebra maps A — M,(K). We set

Alg Mod(r,d) = {(a,z) € Alg(r) x Homg (K", My(K)) : x € Mod(K,,d)}
where K, denotes the algebra structure on K. This is a closed subset, so an

affine variety. The group GL4(K) acts by conjugation on the second factor.

The following is a reformulation of Lemma 3.2 in P. Gabriel, Finite repre-
sentation type is open. This reformulation is mentioned in C. Geiss, On
degenerations of tame and wild algebras, 1995.

Theorem (Gabriel). The projection 7 : AlgMod(r,d) — Alg(r) sends
GL4(K)-stable closed subsets to closed subsets.
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Lemma 1. If X is a variety, then the projection X x Inj(K? V) — X sends
GL4(K)-stable closed subsets to closed subsets. Similarly for the projection
X x Surj(V, K¢) — X.

Proof. We factor it as
X x Inj(K% V) = X x Gr(V,d) = X

Now the map Inj(K? V) — Gr(V,d) is universally submersive, so GLg(K)-
stable open subsets of X x Inj(K¢, V) correspond to open subsets of X x
Inj(K%, V). Thus GL4(K)-stable closed subsets of X x Inj(K%, V) correspond
to closed subsets of X x Inj(K? V). Now use that Gr(V, d) is complete.

Proof of the theorem. Let
W = {(a,0) € Alg(r) x Surj(K™ K% : Ker is a K,-submodule of (K,)"}.

This is a closed subset of the product. We have a commutative diagram

w —— Alg(r) x Surj(K"™ K%)
'] |
AlgMod(r,d) —— Alg(r)

where p is the projection and ¢ sends (a, #) to the pair consisting of a and the
induced K,-module structure on K¢. Now ¢ is onto since any d-dimensional
K,-module is a quotient of a free module of rank d.

One can check using the affine open covering of Surj(K"¢, K?) that g is a
morphism of varieties.

Suppose Z C AlgMod(r,d) is GLg4(K)-stable and closed. Then g~*(Z) is
also. Thus it is a GLg4(K)-stable closed subset of Alg(r) x Surj(K™, K%).
Thus 7(Z) = p(g~(Z)) is closed by the lemma.

Lemma 2. Any algebra A has a projective resolution as an A-A-bimodule
- ARQRARA—>ARA—->A—0

(where tensor products are over the base field K). Here the maps are

n—1
byt AP AR 04@a1 @ @a, = Y (—1)'ag®- @ (ai0i41) @+ Day,
=0

Tensoring with a left A-module X gives a projective resolution of X,

S AQARX - ARX =X =0
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On Wikipedia the complex of bimodules is called the standard complex. In
MacLane, Homology, the resolution of X is called the un-normalized bar
resolution of X.

Proof. Define a map (of right A-modules) h,, : A®" — A®"*! by h,(a; ®
e ®ay) =1®a; ® -+ ® a,. One easily checks that bjh; = 1 and

bn+1hn+1 + hnbn =1 (n Z ].)
Also b1by = 0 and then by induction b,b, 1 = 0 for all n > 1 since

bn+1bn+2hn+2 = bn+1(1_hn+1bn+1> = bn+1_bn+1hn+1bn+1 = bn+1_<1_hnbn)bn+1 = 0.

Now Im(h, o) generates A®" 2 as a left A-module, and the b; are left A-
module maps (in fact bimodule maps), so b, 416,12 = 0. Finally if z € Ker(b,)
then © = (bpy1hni1 + hnby)(z) implies x € Im(b,,11), giving exactness.

Applying — ®4 X with a left A-module X to the standard complex gives
an exact sequence. This is because the terms in the standard complex are
projective right A-modules, it you break it into short exact sequences of right
A-modules, all of them are split.

Proposition (Schofield). For any i, the map
AlgMod(r,d) = Z, (a,z) — dim Ext}y (K, K,)

is upper semicontinuous.

Proof. Applying Hom4(—,Y") to the projective resolution of X given by the
standard complex, with Y another A-module, and using that Hom4(A ®
M,Y) = Homg (M,Y), we see that Ext’(X,Y) is computed as the cohomol-
ogy of a complex

0 — Homg (X,Y) - Homg(A® X,Y) 5> Homg (AR A® X,Y) — ...

Now taking A = K, and X =Y = K, for (a,z) € AlgMod(r,d), we see
that the terms in this complex are fixed vector spaces V', and the maps are
given by morphisms f; : Alg Mod(r,d) — Homg (V' V). Thus we get a
morphism

AlgMod(r,d) — {(0,¢) € Hom(V'"1, V") x Hom(V*, V1) : ¢0 = 0}.

Now use that the map (6, ¢) — dim(Ker ¢/ Im 6) is upper semicontinuous.

Corollary (Schofield). The algebras of global dimension < g form an open
subset of Alg(r), as do the algebras of finite global dimension. There is an
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integer N,, depending on r, such that any algebra of dimension r of finite
global dimension has global dimension < N,.

Proof. A has global dimension < g if and only if Extf4+1(M ,N) =0 for all
M, N. By the long exact sequences, it is equivalent that Ext?4+1(M ,N)=0
for all simple M and N. Thus it is equivalent that Ext%™ (M, M) = 0 for
M = gr A. Consider the pairs (a, z) € Alg Mod(r, r) such that Ext?;l([(x, K,) #
0. By upper semicontinuity this is a closed subset of Alg Mod(r,r). It is also
stable under GL,(K), so its image in Alg(r) is closed. This is the set of
algebras of global dimension > ¢g. Thus the algebras of global dimension

< g form an open subset D,. Now since varieties are noetherian topological
spaces, the chain of open sets

Dy C Dy CD;yC ...

stabilizes.

3.9 Number of parameters

Let GG be a connected algebraic group acting on a variety X. We define
Xy ={r € X :dimGz =d} = {z € X : dim Stabg(z) = dim G—d} = Xgima-d
a locally closed subset of X and

Xi<gy={r € X :dimGz < d} = {z € X : dimStabg(x) > dim G — d}

a closed subset of X.

Lemma 1. If Y C X is a constructible subset of X, then it can be written
as a disjoint union
Y=/,U---ULZ,

with the Z; being irreducible locally closed subsets of X. If Y is G-stable,
then we may take the Z; to be G-stable.

Proof. Exercise.

For the first part, by definition we can write Y as a not necessarily disjoint
union Y = Z; U ---U Z,. Replacing each Z; by its irreducible components
we may suppose the Z; are irreducible. Then if this union is of the form
Y = ZUW where Z is irreducible of maximal dimension and W is the union of
the other terms, then Y is the disjoint union of Z\W and W' = (ZNW)UW,
and if the first term is non-empty, then (Z N'W) is a proper closed subset
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of Z, so has strictly smaller dimension than Z, so W’ can be understood by
induction.

For the last part, use that G is irreducible, so if Z C Y is locally closed in X
and irreducible, then GZ = gec 92 18 constructible, contained in Y and its

closure GZ is irreducible, so there is an open subset U of GZ with U C GZ.
But then GU is open in GZ and GU C GZ.

Definition. If Y is constructible, and it is written as a disjoint union of
irreducible locally closed subsets Z;, we define the dimension and number of
top-dimensional irreducible components of Y by

dimY = max{dim Z; : 1 <i <n},

topY = [{1 <i<n:dimZ;, =dimY}|

for a decomposition of Y as in the lemma (here we can take G = 1). This
does not depend on the decomposition of Y.

Now suppose that G acts on X and assume that Y is G-stable. We define
the number of parameters and number of top-dimensional families by

dimg Y = max{dim(Y' N X(4)) —d : d > 0},
tope Y = Z{top(Y NX@):d>0,dim(Y NXy)—d=dimgY}.

Properties.
(i) If Y1, Y5 are G-stable then dimg (Y7 U Ys) = max{dimg Y7, dimg Y5 }.

(ii) dimg Y = 0 if and only if Y contains only finitely many orbits, and if so,
tope Y is the number of orbits.

(iii) If Y contains a constructible subset Z meeting every orbit, then dimg Y <
dim Z.

(iv) If f : Z — X is a morphism and the inverse image of each orbit has
dimension < d, then dimg X > dim Z — d.

(v) dimg Y = max{dim(Y N X(<q)) —d : d > 0}.

Lemma 2. Suppose that 7 : X — Y is constant on orbits, and suppose that
the image of any G-stable closed subset of X is a closed subset of Y. Then
the function Y — Z, y — dimg(7~(y)) is upper semicontinuous.

Proof. We prove it forst for the function dim. By Chevalley’s upper semi-
continuity theorem, for any r the set

C, ={r € X : dim, 7' (n(z)) > r}
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is closed in X. It is also G-stable, so by hypothesis 7(C,) is closed. Now if
y € Y then dim 7 !(y) = max{dim, 7' (y) : z € 7' (y)}. Thus

{yeY dimn '(y) >r} ==(C,),

so it is closed in Y. Thus the map y — dim 7~ !(y) is upper semicontinuous.

Now X(<qy = {# € X : dimGz < d} is closed in X, and mg, which is the
restriction of 7 to this set, sends closed G-stable subsets to closed subsets,
SO

{yeY dimnm;'(y) >r}

is closed in Y. Now

{yeY :dimgm '(y) >r} = U{y €Y dimm,'(y) >d+r}
d

which is closed.

3.10 Tame and wild

Let A and B be K-algebras and d € N.

Observe that there is a 1-1 correspondence between K-algebra homomor-
phisms 6 : A — My(B) up to conjugacy by an element of GL4(B) and
A-B-bimodules M which are free of rank d over B.

If A and B are finitely generated and s € N, then such a homomorphism 6
induces a morphism of varieties

f:Mod(B,s) = Mod(A,ds)

sending a K-algebra map B — M (K) to the composition A — My(B) —
My(My(K)) = Mys(K). In terms of the corresponding A-B-bimodule M we
have M ®@p K, = Kj(,) for all z.

Taking B to be a commutative and reduced, and s = 1, we can write this as
f : Spec B — Mod(A,d).

Conversely any morphism of varieties of this form with B f.g. commuta-
tive and reduced comes from a homomorphism A — My(B). Namely since
Mod(A, d) is an affine variety, morphisms Spec B to Mod(A, d) correspond to
K-algebra maps O(Mod(A,d)) — B. Since B is commutative and reduced,
this is the same as K-algebra maps v/A — B. This is the same as K-algebra
maps A — My(B).
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Definition. An algebra A is tame if for any d there are A-K[T]-bimodules
My, ..., My, finitely generated and free over K [T, such that all but finitely
many indecomposable A-modules of dimension < d are isomorphic to M; ®

K[T|/(T — X) for some i and A.

Remarks. (i) Equivalently there are a finite number of morphisms A! —
Mod(A, d) such that the images meet all but finitely many orbits.

(ii) In the definition of tame can delete the “but finitely many” by including
additional maps A! — Mod (A4, d) which are constant. In terms of bimodules
it means including bimodules of the form M = X ®j K|[T] where X is a
given left A-module.

(iii) Any algebra of finite representation type is clearly tame by this definition.
Sometimes the name tame representation type’ is only used for algebras of
infinite representation type.

Definition. Let us say that a functor F' from B-module to A-modules is a
representation embedding if

(i) F' sends indecomposable modules to indecomposable modules.
(ii) f F(X)=F(Y) then X =Y.

(iii) £ is naturally isomorphic to a tensor product functor M ®p — for an
A-B-bimodule which is finitely generated projective over B (and on which K
acts centrally), or equivalently it is an exact K-linear functor which preserves
products and direct sums.

An algebra A is wild if there is a representation embedding from K (X,Y)-
modules to A-modules.

Remarks. In the definition of wild, we work with categories of all A- and
B-modules, following WCB, Tame algebras and generic modules, 1991. One
can also restrict to the categories of finite-dimensional modules.

Lemma. (i) If [ is an ideal in A then the natural functor A/I-Mod —
A-Mod is a representation embedding.

(ii) For any n there is a representation embedding K(Xj, ..., X,,)-Mod —
K(X,Y)-Mod.

Thus if A is wild there is a representation embedding B-Mod — A-Mod for
any finitely generated algebra B.

Proof. (i) is trivial. For (ii) Let B = K(Xj,...,X,). Consider the A-B-
bimodule M corresponding to the homomorphism 6 : A — M, 2(B) sending
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X and Y to the matrices C' and D,

Clo0 o 0 0 0 0 00
001 1 0 0 0 00
T ' X, 1 0 0 00

¢= : ey PD=10 x, 1 0 00
000 0 0 0 0 ... X, 10

These matrices are in S. Brenner, Decomposition properties of some small
diagrams of modules, 1974. Thus M = B"*? as a right B-module, with the
action of A given by the homomorphism. Suppose Z, Z' are B-modules and
f:M®pZ — M®pgZ'. Then f is given by an (n + 2) X (n + 2) matrix
of linear maps Z — Z’, say F' = (f;;) such that CF = FC and DF = FD.
The condition C'F = FC' gives

01 0 0 01 0 ... 0
00 1 0 fuu fiz .. fur fie 0 01 0
Lo : for foo .| = | fa fo Lo :
0 0 0 1 000 ... 1
0 0 0 0 0 0

sO fiv1; = fij—1 for 1 <4,5 < n 4 2, where the terms are zero if 7 or j are
out of range. This forces F' to be constant on diagonals, and zero below the
main diagonal,

fl f2 f3 fn+1 fn+2

0 fl f2 fn fn-‘rl
F=|: & : S
00 0 ... fi f
0 0 0 0 £

Now the condition DF = F'D gives f; =0 for i > 1 and X, f; = f1.X; for all
i. Thus f; is a B-module map Z — Z'.

If f is is an isomorphism, then so is f;. Also, taking Z = Z’, if f is an
idempotent endomorphism, then so is f;. Thus is Z is indecomposable,

fi=0or1l,so f=0o0r1,so M ®pgZ is indecomposable.

Examples. Path algebras of Dynkin and extended Dynkin quivers are tame.
Other important classes of tame algebras are the tubular algebras and string
algebras.
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Path algebras of other quivers are wild. For example, letting B = (X,Y),
for the path algebra A of the three arrow Kronecker quiver or five subspace
quiver, consider the A-B-bimodule which is the direct sum of the indicated
powers of B, with the natural action of B, and with the A-action given by
the indicated matrices, acting as left multiplication.

. 2
fam)
D

\ " <
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t A AT

’ [

% 5 R B R @

The algebra A = K|[z,vy, z]/(x,y,2)? is wild. (This argument is taken from
Ringel, The representation type of local algebras, 1975) Given a K(X,Y)-
module V', we send it to the A-module V? with

=(@00) =60) =)

This is a tensor product functor. The image is contained in the subcategory C'
of A-modules M which are free over K[z]/(z?), or equivalently with 2710, =
zM. There is a functor from C to K(X,Y)-modules, sending M to zM with
X and Y given by the relations zz~! and yz~!. The composition

K(X,Y)-Mod & C S K(X,Y)-Mod
is isomorphic to the identity functor. Now if G(M) = 0 then M = 0. It

follows that F'is a representation embedding.

The algebra K[z, y| is wild (Gelfand and Ponomarev), in fact even the algebra
Klz,y]/ (22, zy?, 3?) is wild (Drozd).

Drozd’s Theorem. Any finite dimensional algebra is tame or wild, and not
both.

The proof of the first part is difficult. The second part follows from the
following.

Lemma. If A is tame then dimqr,,x) Mod(A, d) < d for all d. If A is wild
then there is r > 0 with dimgr,,(x) Mod(A, rd) > d* for all d.
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Proof. If M is an A-B-bimodule, free of rank r over B, then choosing a free
basis of M, one obtains a homomorphism A — M,(B). Now any element of
Mod(B,d) is a K-algebra homomorphism B — M,(K). Combining these,
we get a K-algebra map A — M,4(K). This defines a morphism of varieties

Mod(B, d) — Mod(A, rd)

corresponding to the functor M ®p —.

If A is wild we have a map
Mod(K(X,Y),d) — Mod(A, rd).
The inverse image of any orbit is an orbit, so
dimgr, (k) Mod(A, rd) > dimgr,,(xy Mod(K (X, Y), d).

Now dim Mod(K(X,Y),d) = 2d?, and every orbit in Mod(K(X,Y),d) has
dimension < d. Thus there is some s < d such that the set Mod(K < ) d)s)
consisting of the orbits of dimension s has dimension 2d?. Then

dimgr,, () Mod(K(X,Y),d) > 2d* — s > d°.

If A is tame, we can suppose that any d-dimensional module is isomorphic
to a direct sum of

where the sum of the ranks of the M;, is d. In particular m < d. This defines
a map

A™ — Mod(A, d).

The union of the images of these maps, over all possible choices is a con-
structible subset of Mod(A,d) of dimension < d which meets every orbit,
giving the claim.

Theorem (Geif}). A degeneration of a wild algebra is wild.

Thus, by Drozd’s Theorem, if an algebra degenerates to a tame algebra, it is
tame.

Proof. By the lemma {x € Alg(r) : K, is wild} = (J, My where
Mg = {z € Alg(n) : dimgr,, (k) Mod (K, d) > d}.

Now My is closed by properties of Alg Mod and dimgr,,(k), and it is obviously
GL4(K)-stable. Suppose z,y € Alg(r) and y € GLy(K)z. If K, wild, then
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x € M, for some d, then the orbit of x is contained in My, and hence so is
the orbit closure. Thus y € My, so K, is wild.

Example. The algebra
A = K({a,b)/(a* — bab,b* — aba, (ab)?, (ba)?)

degenerates to
B = K({a,b) /(a2 12, (ab)?, (ba)?)

and B is known to be tame, hence so is A. The degeneration is give as follows.
Fort € K let 2' € Alg(7) have basis 1, a, b, ab, ba, aba, bab with multiplication
as indicated, and with a? = tbab, b* = taba, (ab)? = 0, (ba)* = 0. Then for
t # 0 this is isomorphic to A, and for ¢t = 0 it is B.

[At the moment, I know of no classification of the indecomposable modules
for this algebra A.|

Remark. In the same way, a degeneration of an algebra of infinite repre-
sentation type is of infinite representation type. Gabriel used this, together
with the second Brauer-Thrall conjecture to prove that the set of algebras of
finite representation type is open in Alg(r).
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4 Kac’s Theorem

4.1 The fundamental set

Let ) be a finite quiver.
The Ringel form is the bilinear form on Z% given by
(o, B) = Z ;i — Z () Bh(a)-
1€Qo a€Q1
The associated quadratic form is ¢(a) = («, a).
The associated symmetric bilinear form is (o, 8) = (a, 8) + (8, a).
We write €[i] for the ith coordinate vector.

Definition. The fundamental set F is the set of non-zero o € N9 with
Supp(«) connected and («, €[i]) < 0 for all vertices i.

We define F” to be the set of non-zero a@ € N@ such that g(a) < ¢(BW") +
-+ q(BM) whenever a = 3 + ... 4+ 30 with r > 2 and 0 # ) € N,

Lemma 1. If a € F then either a € F’ or Supp(«) is extended Dynkin and
q(a) = 0.

Proof. We may assume ) = Supp(«), and so @ is connected. If the condition
fails, then " (a—B@, ) = (o, ) = > (BW, 3%)) > 0, so thereis 0 < 8 <
with 5 # 0, and with (o — 3, 8) > 0. Now

1 . B;

0 (o= 8.8) = Yo cli)ifos — e+ & (el elihaay (2 — Liy
i i#j ! J

SO S—J = % whenever (e[i], €[j]) < 0, ie if an arrow connects ¢ with j. Thus «

is a multiple of 5. Now the first sum implies that («, €[i]) = 0 for all i. This
implies that @) is extended Dynkin.

Lemma 2. If « € F’, then Ind(K @, «) is a dense subset of Mod(K @, ).
Proof. If « = 4 v (8,7 # 0) then there is a map

0 : GL(a)xMod(KQ, 8)xMod(KQ,~) — Mod(KQ, a), (g,2,y) — g(zDy).

This map is constant on the orbits of a free action of H = GL(5) x GL(7), so

dim Im(¢) < dim LHS—dim H. Now since g(a) = dim GL(«)—dim Mod(KQ, «)

one deduces that

dim Mod(K Q, @) — dimIm(6) > ¢(5) + ¢(7) — g(@) > 0,
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so Im(@) is a proper subset of Mod(K @), «).
Notation. Let End(a) = @,cq, Ma, (K).

Suppose that A = (A[i]) is a collection of partitions, one for each vertex,
where A[i] is a partition of «;. We say that § € End(«) is of type A if the
maps 6; € M, (K) are nilpotent of type Ali] (so that A[i], is the number of
Jordan blocks of size > r).

The zero element of End(«) is of type z, with z[i] the partition (¢, 0, .. .).

We write N, for the set of # € End(«) of type A. It is a locally closed subset
of End(«).

If € End(a) we define Mody = {x € Mod(KQ, @) : 8 € Endgq(K,)}.
Lemma 3. (1) If § € N, then dimModg = 3., >, Ali], Alj]-
(2) dim Ny = dim GL(a) = i, 2 Alilr Al

Proof. It is easy to check that if f € End(V') and g € End(W) are nilpotent
endomorphisms of type p and v, then dim{h : V. — W | gh = hf} =
> vy, Part (1) follows immediately. For (2) note that N, is an orbit for
the conjugation action of GL(«) on End(«), so if # € N, then

dim Ny = dim GL(a) — dim{g € GL(«) | g0 = g}
= dim GL(«) — dim{g € End(«) | g0 = fg}
— dim GL(a) — Z > il

Notation. Let g = dimGL(a) = >_._, a?. If x € Mod(KQ, a), then its

i€Qo Tt
orbit has dimension g — dim End KQ(Km).O

Let I = Ind(KQ, o) = U, I(s). Recall that I() is locally closed in Mod(KQ, ).
Thus /(41 is the set of x € Rep(a) such that K is a brick (has 1-dimensional
endomorphism algebra).

Lemma 4. If o € F’ and s < g — 1 then dimgra) I(s) < 1 — g().

Proof. Let N be the set of non-zero nilpotent € End(«), so also the union
UA#& Ny

MN = {(z,0) € Mod(KQ,a) x N | § € Endgq(K,)} = Uy, MNy.

IgN ={(z,0) € I;sy x N | 0 € Endgq(K,)} € MN.

We show that dim M N < g — g(«). It suffices to prove that dim M N, <
g —q(a) for all A # z. Let m : M Ny, — N, be the projection. Now 7~1(0) =
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Mody is of constant dimension, so

dim MN, < dim Ny + dimMody = g — Y _ q(\,) < g — g(a),

since @ = ) A, and at least two A, are non-zero since A # z. Here A,
denotes the dimension vector whose components are the A[i],.

Now suppose that s < g — 1. If € I, then K, is indecomposable and
not a brick, so has a non-zero nilpotent endomorphism. Thus the projection
I(S)N 1> [(8) is onto. Now

dim 7! (z) = dim Endgg(K,) N N = dim Rad Endgg(K,) =g — s — 1.

Thus dim /() = dim [(yN —(g—s—1) < dimMN —(g—s—1) < s+1—q(a).

Lemma 5. For a € I’ the set I(,_yy of bricks is a non-empty open subset
of Mod(KQ, ).

Proof. It is the same as the set Mod(KQ, a)>¢-1), so it is open. Now [ is
dense and constructible in Mod(K @, «), so

dim I = dim Mod(KQ, @) = > apa)tia) = g — q(cv).
ac@Qq

On the other hand, if s < g — 1 we have
dim I () = dimg Iy + s <1 —¢q(a) + 5 < g — q(a)

s0 I(4—1) must be non-empty.

Theorem. If a € F then we have dimgr) Ind(KQ, o) = 1 — ¢(«) and
topgr, (o) INd(KQ, a) = 1.

Proof. If a € F’ it follows from above, since bricks dominate. Otherwise we
may assume that () is extended Dynkin and use the classification.

4.2 The generating function of representations

Besides Kac’s original papers, especially V. Kac, Root systems, representa-
tions of quivers and invariant theory. Invariant theory (Montecatini, 1982),
1983, in this section we cover material from J. Hua, Counting representations
of quivers over finite fields, 2000. I also used notes of A. Hubery. [I use the
conjugate partition to Hua, so some formulas look different.]
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In this subsection we consider the representations of () over a finite field
K = TF,. For notational simplicity we assume that Qy = {1,2,...,n}, so
dimension vectors are elements of N".

Let r(a,q) be the number of isomorphism classes of representations of di-
mension vector a. Let i(a, ¢) be the number of isomorphism classes of inde-
composable representations of dimension vector a.

We consider the generating function

Z r(a,q) X € Z[ X, ..., X,]]

aeNm
where X = X" ... X",

Example. For the quiver consisting of a vertex 1 and no arrows, there is a
unique representation of each dimension, so this is

I+ X+ X2+ X0 =1/(1- X))

For the quiver 1 — 2 a dimension vector is a pair (a,b) and the number of
representations is 1 + min(a, b). So the generating function is

> (1 + min(a, b)) X7 X}

a,b>0
This is

SU+m)XPXS+ > +m)XPXr 4 Y (1 +m) XXt

m>0 m>0,k>0 m>0,k>0

This works out as

R TR S X
(1-X1X) & (1-X X2 = (1-X1X,)

_ 1 1+ X1 n X
(1 - X1 X,)2 1-X1 1-X,

1
(1—=X1)(1—-X5)(1 - X1 X))

Proposition. We have

Z (o, ) X" = H (1-— Xﬂ)—i(ﬂm.

aeNn? BeEN?
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Proof. This follows from Krull-Remak-Schmidt, since if M; (i € I) are a
complete set of non-isomorphic indecomposable representations, we can write
both sides as

[(1+ xdimte g xeodime oy,

el
Notation. Recall that K = F,. Let

X =Mod(KQ,a) = [ Maghayxa((a(K)

ac@Qq

and
G =GL(a) = [] GLa,(K
1€Qo

Thus r(a, q) = | X/G|. Recall that Burnside’s Lemma says that if a group G
acts on a finite set X, then

X/6 = g X
geG
where XY is the fixed points of g on X. Thus

x6 =y

9EC [Ca(9)l

where the sum is over conjugacy classes and Cg(g) is the centraliser of g

in G.

Lemma 1. The conjugacy classes in G are in 1-1 correspondence with
collections (M;) of K[T,T']-modules, with M; of dimension «;, up to iso-
morphism. For ¢ in the corresponding conjugacy class, one has

X9 = @ Hom g7, 7-1) (Mt (a), Mh(a))

ac@Qq

and

9) = [ Autggr— (M)

1€Qo

Proof. An element of GLy(K) turns K¢ into a K[T,T~!]-module, and con-
jugate elements correspond to isomorphic modules. The rest follows.

Notation. Recall that the finite-dimensional indecomposable K[T,T~!]-
modules are the modules K[T,T~']/(f") where r > 1 and f runs through the
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set @ of monic irreducible polynomials in K [T, excluding the polynomial T'.
We write C for the full subcategory consisting of the direct sums of copies
modules of the form K[T,T7']/(f") with r > 1. Given a partition A we

define
M\ = @ (KT, T1/(7))

i>1
so the number of copies of K[T,T~'/(f") is the number of columns of length

r in the Young diagram for A\. These modules parameterize the isomorphism
classes in C.

Lemma 2.
(i) dim Mf(X) = d |A| where |[A| = Ay 4+ Ao + ... is the weight of A and d is
the degree of f.
(ii) We have
0
dim Hom(M; (), My(1)) = \f70)
diAp) (f=9)
where by definition (A, i) = >, Aif;.
(i) | Aut(M; ()] = ¢“*Vb (g7, where by(T) = [Ty [1X7 (1 = T9).
Proof. (iii) For all i > 0, the module Mg(\) has A; — A\;1 copies of the
indecomposable module K[T,T71]/( fz) of length i. Thus

End(M;()\))/ Rad End(M (X HMA un(F

Thus
dim Rad End(M(\)) = d ((A, A=) (- )\Hl)?) .

Then
| AUt(Mf()‘))| = | Rad End(Mf()‘)| H ‘ GL)\i—)\iH (qu)|

and [ GL,(F)| = (¢" = D)(¢" — 9)(¢" = ¢*) ... (¢" = ¢" 7).
Theorem (Kac-Stanley-Hua). We have

> rla HP (X2, ..., X4 gh)Pala)

aeN?

where ¢/,(¢) is the number of polynomials in &’ of degree d, so the number
of monic irreducible polynomials in K [T] of degree d, excluding T', and
Toco gAl@IA R (@)D
a€Q

P(X17"'7X7L7Q) = T X‘A[IHXY'LA[”“
XA: [Licq, aPADbA (g7
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where the sum is over collections of partitions A = (A[1],..., A[n]).

Proof. Burnside’s Lemma and Lemma 1 give

(CY q) _ Z Hate |HomK[T,T—1](Mt(a)7 Mh(a))‘
’ [Tico, | Autgirr—1(M;))|

(M)

where the sum is over collections (M;) of dimension « up to isomorphism.
Thus the generating function is

o Haeq, [Homgmr—1(Myay, Mh@)| gimar, rdimar,
> r(ag) X =) o 7 XlimMy -y
eNn (M) Hier | Autgpr,r-1) (M)

where the sum is over all collections (M;) of K[T,T~']-modules, up to iso-
morphism.

Since every K[T,T~']-module can be written uniquely as a direct sum of
modules in Cf f € @) and there are no non-zero maps between the different

Cy we obtain
Zr(a,q)X“ = H P

e fed

where

Pf _ Z HaGQl | HomK[TvTil](Mt(a% Mh(a))lXiiim My o X;Liirn M,
[Ticq, | Autgirr—1(M;))|

(M;)eCy
where the sum is over all collections (M;) in C, up to isomorphism. Now by
Lemma 2, if f € ® is of degree d, then P; = P(X{, ..., X4 ¢%).

Notation. The power series P(X7, ..., X,,q) € Q(q)[[X1,. .., X,]] has con-
stant term 1, so there are h(a, q) € Q(q) with

h
log P(X1,..., Xuyg) = 3 ha,9) ya

(0%
aeN?

where @ is the highest common factor of the coefficients of a.

Corollary 1. Letting e(a,q) = >_ ;5 doj(¢)h(a/d, q?), we have

los( 3 rla.g)x) = 3 L0 o

aeN" aeN"

and

6(a,Q)=Zgi(a/d7Q), i(a, q) Zu e(a/d,q).

dfa
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Proof. Observe that

%) = Z h(a_aqd)Xda

log P(X{, ... X1
(6’

n’
aeN"

so the theorem gives the first part. Then by the proposition

(@ q) o _ ay — : 1
Y. X =log( Y r(aq)X) = Y i(B.a)log 5
aceN" a€eNn BEN™

_ Z f: 7;(502 Q)Xdﬂ‘
BENn d=1

Comparing coefficients of X gives one equality. The other follows by Mobius
inversion.

Lemma 3. ¢,,(q) € Q[q].

Proof. Any monic irreducible polynomial in IF,[T'] of degree d corresponds to
d elements which lie in [F,« but not in any intermediate field between F, and
F,a. Thus if the are ¢4(q) such polynomials, then

¢" = ddalq).
dn
By induction on d, or Mobius inversion
1
I d n/d
04(0) = 5 3 ulag
one deduces that ¢4(q) € Q[g]. Then also ¢/,(q) € Q|q] since

/ _Ja—- 1 (d ::1)
dalq) = {%(q) (d>1)

(o1 ¢(a) = 5 X gpa () (¢ = 1)).

Corollary 2. i(«,q) and r(«, ¢) € Q[q], and are independent of the orienta-
tion of ().

Proof. Corollary 1 shows that i(«, q) € Q(q).

It takes integer values for ¢ any prime power, so it must be a polynomial.
(Note that you cannot deduce that it is in Z[q|, for example %q(q +1).)
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It is independent of the orientation since P(Xj, ..., X,,q) only involves an
arrow a through the bracket (A[t(a)], A[h(a)]), and this bracket is symmetric.

By Corollary 1 we then have e(a, q) € Q[g| and then r(«, q) € Q|q] since

Zr(a,Q)XO‘ = exp (Z 6(05?,(]))(&)

a aeNn

4.3 Field extensions

Let L/K be a field extension. We consider the relationship between repre-
sentations of ) over K and over L.

More generally we consider a K-algebra A and AL = A ® L. (Unadorned
tensor products are over K.) Since L is commutative, A*-modules can be
thought of as A-L-bimodules (with K acting centrally).

Any finite-dimensional A-module M gives a finite-dimensional A*-module
MY=M® L.

Lemma 1. We have Hom 4o (M%, (M')F) = Homs(M, M') @ L. Moreover
top End 4z (M™) = top ((top Enda(M))").

Proof. We use that M is finite dimensional. There is a natural map
Hom (M, M') @ L — Hom 4o (M*, (M")*)

which is easily seen to be injective. We need to show it is onto. Say 6 €
Hom 4o (ME, (M")F). Choose a basis & of L over K. Define 6; by f(m®1) =
> 0i(m) ®&;. Clearly §; € Homa (M, M') and since M is finite-dimensional,
only finitely many 6; are non-zero. Then 6 is the image of the element

Zi 0; ® &;.

For the last part we just observe that (Rad End4(M))® L is a nilpotent ideal
in Endy (M) ® L = End . (MT).

Lemma 2. Assume L/K is finite of degree n. Any finite-dimensional A%-
module N gives a finite-dimensional A-module Nk by restriction. If M is an
A-module then (M%), = M™. If M, M’ are A-modules and M* = (M')L,
then M = M'.

Proof. Clear. For the last part use Krull-Remak-Schmidt, since M™ = (M')".

(s

Lemma 3. Assume L/K is a finite separable extension. Then top End(M?1)
(top End(M))%. If N is an A¥-module, then N is a direct summand of (Ng )~.
Any indecomposable AX-module N arises as a direct summand summand of
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an induced module M* with M indecomposable. The module M is unique
up to isomorphism.

Proof. The first part holds since, for a separable field extension, inducing up
a semisimple K-algebra gives a semisimple L-algebra.

Since L ® L is a semisimple algebra, the multiplication map L ® L. — L is a
split epimorphism of L-L-bimodules, so L is a direct summand of L ® L. It
follows that if N is an A¥-module, then N is a direct summand of (Ng)~.

If N arises as a summand of ML and (M’)* with M, M’ indecomposable,
then Nk is a summand of M"™ and (M')". By Krull-Remak-Schmidt this
implies M = M'.

Lemma 4. Assume L/K is Galois of degree n with group G. The map

LRL—>EDL, a®br (ag(h)),

geG

is an isomorphism as K-algebras, and gives an isomorphism of L-L-bimodules
LeL=6h gec Lg, where the L-action on the right is given by restriction
via g.

Example. C C=Cae C.

Proof. I am indebted to Andrew Hubery for his help in many places in these
notes, and especially with this lemma. The map is a map of K-algebras,
and also a bimodule map for the indicated action. Thus we need it to be a
bijection.

By the theorem of the primitive element we can write L = K[z]/(f(z)) with
f(z) irreducible over K. Let z correspond to an element o € L. Since G acts
faithfully on L and « generates L over K, the elements g(«) are distinct, and
in L[z] we can factorize f(z) = [[,cq(x — g(@)).

Now we can identify L ® L = L ® K[z]/(f(x)) = L[z]/(f(x)), and the map
sends elements of L (identified with L ® 1) to themselves, and x (identified
with 1 ® a) to (g(a))y, so it sends any polynomial p(z) € L{x] to (p(g(«))),-
Thus if p(x) is sent to zero, then p(g(«)) = 0 for all g € G. Thus p(z) is
divisible by f(z). Thus p(x) =0 in L ® L. Thus the map is injective, hence
by dimensions a bijection.

Theorem. Suppose L/K is Galois with group G.

Then induction and restriction give a 1-1 correspondence between isomor-
phism classes of

- indecomposable A-modules M, and
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- G-orbits of indecomposable A"-modules.

Explicitly if M is an indecomposable A-module then the indecomposable
summands of M* form an orbit under G, perhaps occuring with multiplicity,
and if NV is an indecomposable A*-module, then Nx = M" for some inde-
composable A-module M and some 7, and the modules in the orbit of N give
the same module M.

Example. For the field extension C/R:

A ‘ AL ‘ indec A-mods ‘ G-orbits of indec A¥-mods
A=R C R {C}
A=C|CasC C {C,,Cy}

A=H| M,(C) H {c?}

Proof. The key formula is that if N is an A*-module, then

(Nk)' =N, (Lo L) =N o, (P L) = PN,

geG geG

where N, is the A¥-module obtain from N with the L-action given by re-
striction via g.

Induction. If N is one of the summands of M, then N is a summand of
(M*)g = M", so N = M", some 7. Then (M")" = (Ng)" = @, Ny.

Restriction. If Nx = @, M;, then @, M} = (Ng )" = ®D,cc Ny Thus
Mz'L = @ Ng
gES;

where the S; are a partition of G. Then
M= (M) = N

Thus Nk is isomorphic to a direct sum of copies of M;, so all the summands
M; are isomorphic, say to M, and the sets S; all have the same size s with
s|n. Then M™* 2 Ny.

Definition. We say that an A-module M is absolutely indecomposable if M*
is an indecomposable A“-module for any field extension L/K.

If top End(M) = K then M is absolutely indecomposable. If the base field is
finite, then the converse holds, for top End (M) is necessarily a field L, and the
extension L/K is necessarily Galois. Then as an algebra L& L = L x--- X L
(dim L copies), showing that M’ has dim L indecomposable summands.
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Corollary 1. Suppose that A is an algebra over K = F,. Consider the field
extension L/K where L = Fn, and let s|n. Then induction and restriction
give a 1-1 correspondence between isomorphism classes of

- indecomposable A-modules M with top End(M) = F ., and
- G-orbits of size s of absolutely indecomposable A“-modules.

Explicitly M* is the direct sum of one copy of each of the modules in the
orbit, and if N is in the orbit then Ny = M™/s.

Proof. If dimtop End(M) = F, then topEnd(M) @k F,o = (Fys)*%, so
top End(M) @k L = L*, so ML splits as a direct sum of s non-isomorphic
indecomposables with top End(/V) = L.

Conversely if N comes from an orbit of size s of absolutely indecomposables,

[

then Nx = M" for some indecomposable A-module M and some r. Now
(M*)" = (Ng)* = @, Ny Suppose top End(M) = D. Since there are no
finite division algebras, D is a field. Thus top End(M%) = D¥ is commuta-
tive. Thus MT consists of one copy of each indecomposable in the orbit of
N, sor =mn/s. Then also D* = L*. Thus dim D = s, so D = F..

We return to representations of quivers. We write a(a, g) for the number of
absolutely indecomposable representations of ) of dimension o over [F,.

Corollary 2. [Hua, Corollary 4.2]. We have

S Sita/d ) = 3 Zala/d,q)

dlo dlo

Proof. If M is an indecomposable representation of ) of dimension «, then
for each vertex i, the vector space at ¢ becomes a module for End(M). It
follows that if top End(M) = Fg, then s|a. Thus apply Corollary 1 with
n=a.

Namely take n to be the hcf of components of a. An indecomposable of
dimension «/r over F, with top End(M) = Fy. contributes 1/r to the LHS
for d = r. For any n divisible by s it corresponds to an orbit of size s of
absolutely indecomposable reps over F,» of dimension a/rs. This contributes
1/r to the term d = rs on the RHS.

Corollary 3. We have

(0,0) = 30 3 S S)a(G ), along) =35 ur)ic5. )

dla rld dla r|d

where p is the Mobius function.
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Proof. The formula
1. 1
Z C_lz(a/dv Q> - Z C_la(a/d’ qd)
dla e
can be written for « = nf with g coprime as follows (multiplying it by n)
- n. - n d
h(n) = ; Si(nB/d,q) = ; —a(nf/d,q%)

The first of these can be written as

Zei(eﬁ,q).

eln

Then by Mobius inversion

ni(nB, q) Zu

d'|n
—Zu Z—a (dB/r.q").
d'|n r|d

Now rewrite this as a sum over r|d|n where d/r = n/d', and it becomes
2D - S a(ns/d, q).
din r|d

Giving the first formula. The second formula follows by another Md&bius
inversion.

4.4 Kac’s Theorem

Let X be a variety over an algebraically closed field K, and let k be a subfield
of K. There is the notion of X being defined over k.

For example if X is a (quasi) affine or projective variety in A™ or P" this
means that X can be defined using polynomials with coefficients in k.

(Equivalently X is isomorphic to (Y*).q for some reduced algebraic k-
scheme Y'.)

Definition. The Zeta function of a variety X defined over F, is

Z(X;t) = exp (Z | X (Fgr)l- tr/?“) Q[[t]]-

r=1
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Example. Z(A™;t) = exp(>_ ¢™t"/r) =explog1/(1 —¢"t) =1/(1 — ¢"t).
Z(Pht) = exp(3_(¢" + 1)t7/r) = 1/(1 — qt)(1 — 1)

Weil conjectures 1949. If X is a smooth projective variety of dimension
n then

Rationality: Z(X;t) is a rational function of ¢.
Functional equation: Z(X;1/q"t) = £¢"*/*tPZ(X;t) for suitable E.
Analogue of Riemann hypothesis:
Pi(t)Ps(t) ... Poyp_1(t)
Po(t)Pa(t) ... Py (t)

where Py(t) = 1 —t, Po,(t) = 1 — ¢"t and the other P;(t) € Z[t] and have
roots which are algebraic integers with absolute value ¢*/2.

Theorem of Dwork 1960. Rationality holds for any X defined over F,
(not necessarily smooth or projective).

Z(X;t) =

Later work of Grothendieck and Deligne gives the rest of the Weil conjectures,
and much more.

Proposition. If X is a variety defined over F,, and |X(F, )| = P(q") for
some P(t) € Q(t) then P(t) € Z][t].

Proof. As argued before, since P(q") € Z for all r, we must have P(t) € Q[t].
Say P(t) =3, a;t". Then

T 1
Z(Xit) =exp() > g™t /r) = Hm
Since this is a rational function, a; € Z.
Theorem 1. a(«,q) € Z[q].

Proof. Let K be an algebraically closed field. Recall that we have an action
of G = GL(«) on the variety M = Mod(K @, ) and its constructible subset
I =Ind(KQ,a).

These are defined over the prime subfield of K, and for any subfield k& of K
we have that G(k) = GL(«a)(k), M (k) = Mod(KQ, «)(k) and I(k) is the
absolutely indecomposable representations of () over k.

We would like to apply the proposition to I /G, but this is not a variety. Kac
quotes a theorem of Rosenlicht. We would like to avoid this complication.

We consider have I = |J, I and set
I(S)G = {(:U,g) S [(s) x G:gr= ZB}
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This is a locally closed subset of M) xG. Let X be the disconnected union of
these as s varies. This makes sense for any K, in particular for characteritic
p, and it is defined over the prime field, and

[ X(Fy)| = [G(Fy)l-ala; ).

Now |G(F,)| € Z[q] and it is monic (for example | GLo(F,)| = (¢*—1)(¢*—q)).
By the generating function, this is in a(a, ¢) € Q[g]. Thus | X (F,)| € Q[q].
Thus by the proposition it is in Z[g]. But then a(«,q) € Z[q] by Gauss’s
Lemma.

Theorem of Lang-Weil 1954. There is a constant A(n, k,d) depending
only on n, k, d, such that if X is an irreducible closed subvariety of projective
space P" of degree k and dimension d, defined over F,, then

1X(F,)| — ] < (k= 1)(k —2)g" 2 + A(n, k, d)g* .

The degree of a projective variety is defined using the Hilbert series of its co-
ordinate ring. They remark that for curves, this is equivalent to the Riemann
Hypothesis for function fields.

Corollary. Suppose X is a variety which is defined over a finite field. Then
X (Fy)| ~ tq*

where d = dim X and ¢t = top X, meaning that for all ¢ > 0 there is some
finite field F,, over which X is defined, such that

| X ()|

1—€<tq—d<1+6

for all IF, containing F,.
Sketch. One proves this by induction on the dimension.

It is true for irreducible projective varieties. It follows for all projective
varieties. Note that the irreducible components of X are defined over a
(possibly larger) finite field.

Any irreducible affine variety X can be  embedded in projective space, and
then we know the result for it’s closure X and for the complement X \ X.

Now any irreducible variety is the union of an affine open and a variety of
smaller dimension. Then get it for all varieties.

Theorem 2. For any algebraically closed field K, dimgp,q) Ind(Q, a) is the
degree of a(a, q) and topgy,,) Ind(Q, @) is its leading coefficient.
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Sketch.. For K of characteristic p this follows from Lang-Weil applied to the
disconnected union X of the I(,)G.

For K of characteristic 0, one needs to argue that X comes from a scheme
over Z, and that the behavour over 0 is the same as the behavoiur over large
primes p.

Roots. Let ) be a quiver. There is an associated set of roots in Z%°.

The simple roots are the coordinate vectors e[i] € Z% with i a loopfree
vertex. Thus g(e[i]) = 1. Observe that s;(e[i]) = —e¢[i]. The corresponding
reflection s; : Z9° — 720 is defined by

si(a) = a — (o, €[i))e[d].

The Weyl group W is the subgroup of Aut(Z?) generated by the s;.

A real root is a vector in Z?° in the orbit of a simple root. An imaginary
root is a vector in the orbit of £a with « in the fundamental region (and
NON-Zero).

Clearly « is a root iff —« is root. A root is positive if all components are
> 0, negative if all are < 0. In fact every root is positive or negative.

Reflection Functors. Let ¢ be a sink in @) and let Q' be the quiver obtained
by reversing all arrows incident at ¢. There there is a bijection between
isomorphism classes

Indecomposables of @) except S; <> Indecomposables of )/ except S;
It acts on dimension vectors as s;.
Theorem 3. i(«, q), a(a, q), r(a, q) are invariant under reflections.

Kac’s Theorem. Suppose K is an algebraically closed field. Ind(Q, «) is
non-empty if and only if av is a positive root. If so, then dimgr,o) Ind(@Q, o) =
1 — g(a) and topgy,o) Ind(Q, ) = 1. Equivalently a(a, q) € Z[g] is nonzero
if and only if « is a positive root, and if so, it is monic of degree 1 — g(«).

Proof. The equivalence holds by Theorem 2. By Theorem 3 we can replace
a by anything in its Weyl group orbit.
If a is a root, we can assume it is a simple root, or in the fundamental region.

For a simple root it is clear that a(«, q) = 1. For the fundamental region we
have the theorem in section 4.1.

If « is not a root, we can reflect until it either has positive or negative
components, or it has disconnected support. FEither way, it is clear that

a(a, q) = 0.
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5 More about group actions and quotients

5.1 Representations of algebraic groups

Again K is an algebraically closed field. Let G' be a linear algebraic group.

Definition. A KG-module is rational provided that any finite-dimensional
subspace is contained in a finite dimensional submodule U such that the
corresponding representation G — GL(U) is a morphism of algebraic groups.

Theorem 1. Any submodule or quotient of a rational K G-module is ratio-
nal.

Proof. Suppose W is a submodule and U is a finite-dimensional submodule
as in the definition. Then UNW is a submodule of U and the representation

takes block triuangular
_ (Alg) Blyg)
R(g) = ( 0 D(g)

with A(g) € GL{UNW) and D(g) € GL(U/(W NU)). Now if R is a map of
algebraic groups, so are A and D.

Definition. A coalgebra C' is a vector space C' equipped with a comultipli-
cation p : C' = C ® C and a counit € : C' — K satisfying coassociativity and
counitality axioms.

(@ Dp=00up (e@)p=1 1Qcp=1

A C-comodule is a vector space V equipped with a coaction p: V — V @ C
such that

loup=(po1)p 1®ep=1

There is a category of comodules with suitably defined morphisms. Also
subcomodules, etc.

Lemma. Any comodule is a union of finite-dimensional ones.

Proof. A sum of subcomodules is again a subcomodule, so it suffices to show
that each v € V' is contained in a finite-dimensional subcomodule. Let (¢;)
be a basis of C. Write

p(v) = Z U ® ¢

with all but finitely many of the v; zero. Write p(c;) = > a;jx¢; ® . Then

Do) @ =(p@1)p(v) = (18 pp(v) = D i & ¢; @ .

i7j7k
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Comparing coefficients of ¢, we get p(vg) =), ; QijkVi @ ¢j, so the subspace
spanned by the v; is a subcomodule.

Recall that A = O(G) becomes a Hopf algebra. In particular it is a coalgebra.
Any g € G defines a map ev, : O(G) = K by ev,(f) = f(g).

We have evg,q,(f) = [(9192) = (evg, ® evg,)u(f).
Theorem 2. Any O(G)-comodule V' becomes a K G-module via

g.v = (1® evy)p(v).

This defines an equivalence from the category of O(G)-comodules to the
category of rational KG-modules.

Sketch. We have
g1.<92.U) = gl‘(l X 6092)p(v) = (1 ® evgl)p((l ® evgz)p(U»

= (1 @ evy, )(p ® evg,)p(v)
— (1@ evy, )19 18 evy, (0@ L)p(v)
= (1 ® evy, ® evy, (1 ® p)p(v)
= (1® evg,0,)p(v) = (g192)-v-
Similarly for 1.v.

This clearly defines a faithful functor. If z € U ® O(G) and (1 ® ev,)(z) =0
for all g € G, then x = 0. Namely, write x = > u; ® f; with the w; linearly
independent. Then > fi(g)u; = 0 for all g, so f;(g) =0, so f; = 0. It follows
that the functor is full. Namely, if V' and V' are comodules and 6 : V — V'’
satisfies ¢g.0(v) = 6(g.v) for all g, then

(1@ evg)p(B(v)) = 0((1 @ evy)(p(v)) = (6 @ evy)(p(v))
(1®@ evy)(p(0(v) — (6 x 1)p(v))) = 0,
so p(f@(v) — (0 x 1)p(v)) =0, so 0 is a comodule map.

To show that any comodule V' is sent to a rational K G-module, by the lemma,
we may suppose that V' is finite dimensional. Take a basis of e, ...¢e, of V.

Let p(ej) = > ,e; ® fi; for suitable f;j € O(G). Then the matrix (f;;)
corresponds to a morphism of varieties 0 : G — M, (K).

Once checks easily that this is the representation given by V', so it actually
goes into GL,(K), and is a morphism of varieties.
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Conversely if V' is a rational KG-module, we want to show that it comes
from some comodue structure on V', so we need to define p: V. — V@ O(G).

Given v € V, choose a finite-dimensional submodule U containing V' such
that G — GL(U) is a morphism. Take a basis ej,...,e, of U. Then the
map G — M, (K) is a morphism, so given by a matrix of regular maps (f;;).
Then we define p on U by p(e;) =", e; @ fij.

Example. If G acts on an affine variety X then it acts as algebra automor-
phism on O(X). This turns O(X) into a rational G-module, because the
action G x X — X gives a coaction O(X) — O(X) ® O(G).

Theorem 3. Any rational representation of the multiplicative group G,, is
a direct sum of copies of the one-dimensional representations

0, : G — GLy(K), pa(N) =" (n € Z).

In this way one gets an equivalence between the category of rational repre-
sentations of GG, and the category of vector spaces V' equipped with a direct

sum decomposition V =&, ., Vi

Proof. We have O(G,,) = K[T,T 1 with p(T") =T @ T™ and €¢(T") = 1.
Then 6,, corresponds to the comodule K — K ® O(G,,), 1 — 1@ T".

If V' is a comodule, let V,, = {v € V : p(v) = v®@T"}. This is a subcomodule
isomorphic to a direct sum of copies of 6,,.

We show that V =@, .,
p(v) =>, v, ®T". Then

V,,. The sum is clearly direct. Now if v € V| write

(1@ p)p Zvn®T”®T”

and it also equals
(p@1)p Z p(v,) @T"

s0 p(vy) = v, @ T™. Thus v, € V,, and v = (1 ® €)p(v) = > vy,.
Conversely given a graded vector space, we make G,,, act on V,, by A.v = A\"v.

Example. If R is a K-algebra, a grading of R is the same thing as rational
action of GG, as algebra automorphisms of R. Let R, is the subspace on
which \ € G,,, acts as \™.

If G,, acts as automorphisms then for z € R,,, y € R,, we have \.(zy) =
(Az)(A\y) = (A\"x)(A\"y) = X" (2y) so 2y € Ryim. Conversely if we have
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a grading, so R, R,, C R,.,, and we make G,, act via \.x = \"zx for x € R,,,
then G, acts as algebra automorphisms on R.

Thus the actions of GG,,, on an affine variety X correspond to the gradings of
O(X).

5.2 Reductive groups

Let G be a linear algebraic group. If V acts on a set X we write X¢ for the
fixed points. If V is a G-module then V¢ is a submodule. If G acts on an
algebra R then RC is a subalgebra.

Definition. G is reductive if its radical (its unique maximal connected nor-
mal solvable subgroup) is isomorphic to an algebraic torus (G,,)". (See Borel,
Linear algebraic groups, §11.21).

Example. Classical groups like GL,(K), SL,(K), SO,(K) are reductive.
Products of reductive groups are reductive.

G is linearly reductive if any rational G-module is semisimple. It follows (and
is in fact equivalent) that the functor V' — V¢ from rational G-modules to
vector spaces is exact.

The multiplicative group G,, and more generally tori (products of copies
of G,,) are linearly reductive. In characteristic zero, reductive groups are
linearly reductive. (Weyl).

G is geometrically reductive if for any finite-dimensional rational G-module
V and non-zero v € V¢ there is a G-invariant homogeneous polynomial

function f:V — K with f(v) # 0.

Linearly reductive implies geometrically reductive: Namely, consider the map
Homp(V, K) — Homg (VY K). This is a surjective map of rational G-
modules. Thus the map Homg(V, K) — Homg (VY K) is onto. Now there
is a linear map V¢ — K which doesn’t kill v. Hence there is a G-module
homomorphism V' — K which doesn’t kill v. This gives a G-invariant ho-
mogeneous polynomial of degree 1.

Theorem (Haboush/Nagata/Popov). Given G, the following are equiv.
- (G is reductive

- (G is geometrically reductive

- R% is finitely generated for all finitely generated commutative K-algebras
R with rational G-action.

Reynolds operator. If G is linearly reductive and V' is a rational KG-
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module, then V = V¢ @ W where W is a direct sum of non-trivial simple
modules. The Reynolds operator is the unique K G-module map £ :V — V
which is the identity on V¢ and zero on W. Thus E? = E and E(v) = v iff
ve Ve,

For characteristic p > 0 there is the following replacement: See M. Nagata,
Invariants of a group in an affine ring, 1964, Lemma 5.1.B and 5.2.B. See
also P. E. Newstead, Introduction to moduli problems and orbit spaces, Tata
notes, 1978 Lemmas 3.4.1 and 3.4.2.

Nagata Lemmas. Suppose G is geometrically reductive acting on a com-
mutative K-algebra R, as a rational KG-module.

(1) If I is a G-stable ideal in R then [ +r € (R/I)“ implies r¢ € I + RY for
some positive integer d.

(2) If I =57 | RCr; is a finitely generated ideal in R® and r € RI N R,
then ¢ € I for some positive integer d.

If G is linearly reductive then both hold with d = 1. For example in (1), since
the map R — R/I is surjective, linear reductivity gives that R — (R/I)¢
is surjective.

Proof. (1) We may suppose r ¢ I. Choose a finite dimensional rational
submodule Y of R containing r. Let X = Kr+(YNI). Since (I+r) € (R/I)¢
it follows that X is a G-submodule of R. Now X /(Y NI) is a one-dimensional
trivial K'G-module so there is a KG-module map A : X — K with A(r) =1
and A\(Y'NI) = 0. Apply the geometric reductivity hypothesis to A € (DX)C.
Let y1,...,ym be a basis of Y N I. Then r,y;,...,y, is a basis for X.
Polynomial functions DX — K are given by elements of f € K[r,y1,...,Yml,
where the evaluation at £ € DX is given by applying ¢ to each indeterminate.
In particular f(\) is the sum of the coefficients of the powers of r. Now we
have a G-invariant homogeneous f of degree d whose evaluation at A is non-
zero (so wlog 1). Thus f = r? + terms of lower degree in r. Now there is
a natural map p : K[r,yy,...,yn] — R and it is G-equivariant. It sends
each indeterminate to the corresponding element of R, and a polynomial
to the corresponding linear combination of products. Then p(f) € R® and
p(y;) € I, giving result.

(2) We work by induction on s. For s = 1, let 7 € Rry N RY. Then r = r'r,
and (977 — r")ry = 0. So by (1) applied to the ideal J = {h € R : hr; = 0},
we obtain r” € R® and d with (r” — (r')!)r; = 0. Hence

rt = (r)irt =7"rt € RCr.

Now suppose s > 1. We write R = R/Rr,. If r € RI N R® by induction we
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get a positive integer d with

Thus we can write

with h; € R and Tia, ..., s € R_. Now by (1) applied to the ideal J = R
there is a positive integer d’ and h’, € R such that h_sd = h.. Tt follows that

s—1
r —nrd e () Rr) N R
i=1
Again by induction there is a positive integer d” with
s—1
(rid — pr?? ¢ Z R%,).
i=1
Thus %" € I as required.

5.3 Good quotients and affine quotients

Let an algebraic group G act on a variety X.

We don’t try to turn X/G into a variety. Instead we use the set of closed
orbits, which we denote X // G.

Recall that each orbit closure Gz contains a closed orbit.

Good example. If A is a finitely generated algebra and « is dimension
vector, then GL(«) acts on an affine variety Mod(A, ). The closed orbits
are those of semisimple modules. Each orbit closure contains a unique closed
orbit. The quotient Mod (A, «) // GL(«) classifies the semisimple modules of
dimension vector a.

Bad example.

G:{((l) 2) :AEK,MGK*} C GLy(K)

acting by conjugation on K?. The orbits are K x K* and {(z,0)}. The
closure of the first orbit contains all the others.

70



Definition. We say that an action of G on a variety X has a good quotient
if
(1) For any z € X, the orbit closure Gz contains a unique closed orbit.

Assuming this, we get a mapping ¢ : X — X // G, and we can turn X // G
into a space with functions:

Topology: U C X // G is open iff ¢~*(U) is open in X.
Functions: Oy ;¢(U) = Ox(¢(U))°.

Thus ¢ : X — X // G is a morphism of spaces with functions.
(2) The space with functions X // G is a variety.

(3) If W is a closed G-stable subset of X then ¢(W) is closed in X //G.
Equivalently {x € X : Gz N W # 0} is closed in X.

(4) We may also demand (Newstead, Geometric invariant theory, 2009, but
not all others) that ¢ is an affine morphism, that is, $~!(U) is affine for any
affine open subset U of X // G, or equivalently for the sets U in an affine
open covering of X // G.

Proposition. If the action of G on X has a good quotient, then
(i) Disjoint closed G-stable subsets of X have disjoint images under ¢.

(i) ¢ is a good quotient in the sense of Newstead, 2009. (Conversely, any
Good quotient in that sense arises this way).

(iii) ¢ is a categorical quotient of X by G.

(iv) If G acts on X with closed orbits, then Y = X/G is a geometric quotient
of X by G.

Proof. (i) If a closed orbit G is in the image of closed G-stable subsets Z
and Z’, then there must be z, 2’ with Gz and Gz’ both containing Gu. But
thenue ZNZ'.

(i) Trivial.

(iii) I think it is straightforward. Let ¢ : X — Z be a morphism which is
constant on G-orbits. If ¢(x) = z, then Gz C ¥~!(z). It follows that ¢ = y¢

where x : X // G — Z sends a closed orbit Gu to ¥(u). Now x is a morphism
by the definition of X // G as a space with functions.

(iv) Clear.

Lemma. If a reductive group G acts on an affine variety X, and if Wy, W
are disjoint closed G-stable subsets of X, then there is a function f € O(X)¢
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Proof. First we find a function in O(X). If the ideals defining W; are I; then
since the W; are disjoint, I} + I = O(X). Thus we can write 1 = f; + fo
with f; € I;. Thus f; is zero on W; and 1 on Ws.

Let V be the KG-submodule of O(X) generated by f;. It has basis h; = % f;
for some elements ¢,...,¢9, € G. Consider the map o : X — DV, x
(f = f(z)). Then a(W;) = 0 and a(Ws) = £ where ¢ is the element with
&(h;) =1 for all 1.

Since G is geometrically reductive, there is an invariant homogeneous poly-
nomial function p : DV — K, s0 p € K[hy,...,h,]%, with p(0) = 0, p(¢&) = 1.
Then f = pa has the required properties.

Theorem. A reductive group GG acting on an affine variety X has a good
quotient, and X // G is the affine variety with coordinate ring O(X)¢.

Proof. By Haboush and Nagata, the algebra O(X)¢ is finitely generated. It
also has no nilpotent elements, so defines a variety Y, and the inclusion give
a morphism ¢ : X — Y.

First, 1 is constant on orbits, for if ¢/(gz) # ¥ (x) then since Y is affine there
is f € O(Y) with f(1(gx)) # f(¥(x)). But this contradicts that f € O(X)C.

Next we show that 1 is onto. Let y € Y and let the maximal ideal in
O(Y) = O(X)% corresponding to y be generated by fi, ..., f;. Now Nagata’s
Lemma (2) implies that

Zin(X> # O(X).

Hence some maximal ideal of O(X) contains this ideal. Let = be the corre-
sponding point of X. Then f;(x) = 0 for all i. Thus ¥ (z) = y.

Now if Wy, W, are disjoint closed G-stable subsets of X, then there is f €
O(X)% with f(W;) =0 and f(W3) = 1. Considering f as a map ¥ — K we
see that (W) and 1 (W,) are disjoint.

It follows that every orbit closure contains a unique closed orbit, and the
induced map ¢, as a map of sets, coincides with .

If W is closed G-stable then ¢(W) is closed, for if y € ¢(W) \ ¢ (W), then
Wy =W and Wy = ¢~ !(y) are disjoint G-stable closed sets, but there is no
function f € O(X)% with f(W;) =0 and f(Ws) = 1.

It follows that the topology on Y coincides with that on X // G.
To identify Y with X // G as a space with functions, we need to show that
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Ox yc(U) = Oy(U) for any open set U in Y. It suffices to do this for
U = D(f) with f € Oy(Y) = O(X)®. Then the LHS is O(X)[f1]¢ and
the RHS is O(X)%[f~!], and these are isomorphic.

5.4 GIT (=Geometric invariant theory) quotients

First we need to know about Proj R for an commutative N-graded ring, as
defined, for example, in Hartshorne. Suppose R is a finitely generated K-
algebra and reduced. I think we can understand Proj R as follows. There
is an action of GG, on R with g.r = g"r for r € R,. Then G,, acts on the
corresponding affine variety Y = Spec R and the set of fixed points Y% is
the zero set of the ideal R, so is isomorphic to Spec Ry. The complement

Y'=J U D)

n>0 feR,

This is a union of affine GG,,-stable open subsets with good quotients. More-
over all orbits in Y’ are closed. Thus Y’ has a good quotient. It is a geo-
metric quotient, Y'/G,,. This is Proj R, I think. Moreover the morphism
Y'—-Y =Y //G,, = Spec Ry induces a morphism Proj R — Spec Ry which
is a projective morphism.

Let G be reductive. GIT is really for actions of G on projective varieties -
you need to choose a linearization. Following King, Moduli of representations
of finite-dimensional algebras, 1994, we consider an action of GG on an affine
variety X and choose a character x € Hom(G, G,,).

We fix a closed subgroup A which acts trivially on X and we assume that
X(A) =1.

We write x" for the nth power of this character. We write O(X)%X" for the
relative invariants of weight x", that is, functions f € O(X) with f(g.z) =

x(z)" f(x) for all g, z.

There is a corresponding moduli space
X J/(G.x) =Proj R

where R is the N-graded algebra
R=ox)%".
n=0

It is finitely generated because of the following.
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Lemma 1. Let G act on X x K via g.(z,2) = (9.7, x(9)"*2). Then the map

P ox)" — 0(x x K)°

n>0

sending f € O(X)9X" to the map X x K — K, (z,2) — 2"f(z) is an
isomorphism of algebras. Thus the ring @, ., O(X)“X" is the coordinate
ring of (X x K) // G, and the grading corresponds to the action of G, induced
from the action of G,, on X x K given by t.(z, 2) = (z,tz).

Proof. O(X x K) = O(X)® O(K) = O(X) ® K[t]. If f corresponds to
o fn @™ then f(x,2) =3 fu(z)2", so

flg-(x,2)) = flga.x(9)2) = 3 fulg.) (@>

so f € O(X x K)Y iff f,(g.7) = x(9)"fu(2), ie., f, € O(X)X" for all n.

Definition. Recall that if f € O(X) then D(f) ={x € X : f(z) # 0} is an
affine open subset of X. If f € O(X)%X" then D(f) is G-stable.

(i) A point x € X is x-semistable if x € D(f) for some f € O(X)“X" with
n>1.

(ii) A point = € X is x-stable if there is f as above, the G-action on D(f) is
closed, and dim Stabg(x) = dim A.

Theorem.

(i) XX7*¥ and XX* are G-stable open subsets of X.

(ii) Let (z,z) € X x K with z # 0. Then z is y-semistable iff in X x K we
have G(z,z) N (X x {0}) = 0.

(iii) The action of G on XX** has a good quotient, and XX7% //G =
X /(G ).

(iv) The action of G on XX~* has a good geometric quotient.

(v) Let (z,2) € X x K with z # 0. Then x is x-stable iff dim Stabg(x, z) =
dim A and G(z, 2) is closed in X x K.

(vi) If z € XX7%° the x is y-stable iff dim Stabg(z) = dim A and Gz is closed
in XX7%,

Proof. (i) Use that D(f) is open and the dimension of the stabiliser of x is
upper semicontinuous.

(ii) Use Lemma 1 and the lemma in the last section showing that disjoint
closed G-stable subsets of the affine variety X x K are separated by an
invariant function.

(iii) First we need to show that each orbit closure Gx in XX~ contains a
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unique closed orbit. I didn’t find a nice proof of this, so omit it. We will
check it later for moduli spaces of modules.

Let R = @,5, O(X)“X" and let Y = Spec R. As above, Y9 = V(Rx),
Y' =Y\ Y% and Proj R =Y'/G,,.

The inclusion of R in O(X) gives a map ¢ : X — Y. If v € XX7% then
there is f € O(X)%X" with f(x) # 0. Then f € R+ is a function on Spec R
which is non-zero on o(x). Thus o(z) ¢ V(R=o). Thus we get a map 7

Xx—ss_>yl_>Y,/Gm:PI‘OjR:X//(G7X)'

To show that the quotient of XX7%¢ by G has a good quotient, and that it
is 7, it suffices to show that for U in an affine open covering of Proj R, the
open sets 7 1(U) are affine, and that U = 7~ (U) // G.

An element f € R, (n > 0) defines an affine G,,-stable open set D(f) of Y’
and hence an affine open subset U C Proj R. Now O(D(f)) = R[f™'], so
since the quotient by G, is good,

O(U) = R[f~]%" = R[f "o = O(X)[f ]
On the other hand 71 (U) = D(f) so it has coordinate ring O(X)[f~!].

(iv) We have a good quotient ¢ : XX™** — Z where Z = X //(G,x). Let
Z* = ¢(XX*). Now Z is a union of open affine sets Z;. Let Z° be the union
of the Z; for which G acts on D(f) with closed orbits. Clearly XX™° C
¢~ (Z%), and so Z* C Z°. Let X° = ¢~1(Z°). Then X° — Z° is a geometric
quotient. Tt follows that XX~ = ¢~(Z*) and Z°\ Z° = ¢(X°\ X*~*). Hence
7%\ Z¢ is closed in Z° by one of the properties of a geometric quotient. Thus
7% is open in Z°, and hence also in Z. It follows that X* — Z° is a geometric
quotient.

(v) (cf. Newstead 2009, p105, Prop 2.1(ii).) Either condition implies that z
is y-semistable, so there is f € O(X)9X" with f(z) # 0. Let a = 2"f(x)
and let W = {(2/2') € X x K : (2/)"f(2') = a}. Consider the projection
p: W — D(f). This is an affine map which is surjective with finite fibres.
In fact a finite morphism. It follows that it is a closed map.

Suppose x is y-stable. Then A C Stabg(z, z) C Stabg = so dim Stabg(z, z) =
dim A. Also Gz is closed in D(f). Then p~!(Gz) is closed, and the union of
a finite number of G-orbits. Since all have the same dimension these orbits
are closed in W, and hence in X x K.

Conversely suppose that G(z,z) is closed and dim Stabg(z,z) = dimA.
Then Gz = p(G(z,z)) is closed in D(f). Since this holds for all f with
x € D(f), it follows that Gz is closed in XX~*5.
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(vi) (cf. Newstead 2009, proof of Thm 1.7(iv) on p113.) If x is y-stable we
need to show that Gz is closed in XX7%%. Let ¢ : XX7% — Z be the quotient
map. Now ¢ (d(x)) C ¢~ H(Z%) = XX %, Since ¢! (¢(z)) is closed in XX,
it follows that

G N XX C XX,

But G acts on XX™* with closed orbits, so Gz is closed in XX~*, and therefore
also in XX7%,

Conversely, if the hypotheses hold, we need to find f with x € D(f) and
such that the action of G on D(f) has closed orbits. We can find f with
x € D(f). Then since stabilizer dimensions are upper semicontinuous, the
set

T = {2’ € D(f) : dim Stabg(z’) > dim A}

is closed in D(f). Hence Gz and T are disjoint closed G-stable subsets of the
affine variety D(f). Hence there is a G-invariant function f’ on D(f) with
f/(T) =0 and f'(Gz) = 1. Now f' € O(X)[f7Y%, so f' = h/f" for some
h € O(X)%X" some m. Then f” = fh satisfies that x € D(f") C D(f)\ T
and all orbits of G on D(f”) have the same dimension, so the action is closed.

Notation. If a : G, — X is a morphism, we write lim;, ,pa(t) = x if a
extends to a morphism o’ : K — X and a/(0) = z. If so, then the fact that
X is separated implies that x is unique (for if @', a” are extensions, then they
define a morphism (a/,a”) : K — X x X. Then the inverse image of the
diagonal is closed and contains G,,, so it must be all of K).

Kempf’s Fundamental Theorem. Let X be an affine variety with an
action of GG, a connected reductive group. Let x be a point of X; Let Gu
be the closed orbit contained in Gx. Then there is a 1-psg A € Hom(G,,, G)
such that limit lim; o A\(¢).z exists and is contained in Gu.

We have a pairing between characters and 1-psgs defined by (x,\) = m
where x(A(t)) = t™.

Theorem (Hilbert-Mumford numerical criterion). Let (z,2) € X x K
with z # 0. Then

(a) The following are equivalent:

(i) x is y-semistable

(ii) for all 1-psgs A € Hom(G,,,G), if lim; o A(t).(x, z) exists, it is not in
X x {0}.

iii) for all 1-psgs A € Hom(G,,, G), if lim;_,o A\(t).z exists, then (x, A} > 0.

(
(b) The following are equivalent:
(i) « is x-stable
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(ii) the only 1-psgs A € Hom(G,,, G) for which lim; ,o A\(¢).(z, 2) exists, are
in A.

(iii) the only 1-psgs A € Hom(G,,,G) for which lim; o A(t).z exists and
(x,A) =0, are in A.

Proof. (a) Clear.

(b) (ii) iff (iii) and (ii) implies (i) are clear.

I didn’t find a nice proof that (i) implies (ii), so omit it. We will avoid using
this part of the theorem later when we talk about moduli spaces of modules.

5.5 Moduli spaces of representations

Let A be a finitely generated K-algebra and ey,...,e, a complete set of
orthogonal idempotents.

Definition. Let § € Z". An A-module M is 0-semistable if 6.dim M = 0
and 6.dim M’ > 0 for all submodules M’ C M.

Moreover M is 0-stable if the inequality is strict for M’ #£ 0, M.

Apart from some changes of convention, we studied this last semester. The 6-
semistable modules form a wide subcategory of the category of A-modules, in
particular it is abelian. The #-stables are the simple objects in this category.
For #-semistable M we write gry M for the direct sum of the quotients in a
composition series of M in this category.

Let o € N a dimension vector. The group G = GL(«a) acts on Mod(A4, «).
The element 8 defines a character

Xo : GL(a) = G, x0(9) = Hdet(gi)ei.

Let A be the subgroup of G consisting of the elements g such that each g; is
the same multiple of the identity (so A = G,,). Clearly A acts trivially on
Mod(A4, «), and xg(A) =1 iff .o = 0.

The components of a 1-psg A are 1-psgs \; : G, — GL(q;), so they corre-
spond to Z-gradings
K% = P Vis

SEZ
where \;(t).v = t°v for t € K* and v € V ;. This defines filtrations

KOéi2...2%72_12W,202%7212-..
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where V; 55 = @pzs Vip- Thus V; >, = K% for s < 0 and V; >5 = 0 for s > 0.
Conversely any such filtrations arise from some .

Lemma. Let z € Mod(A,«). Then lim; o A(¢).z exists if and only if the
filtrations define A-submodules V5, = @), V; >s of K, for all s. In this case
(X6, A) = > 4ez0.dim V5, and limy_ A(t).z corresponds to the associated
graded module @, V>5/Vss41.

Proof. a € e;Ae; gives a linear map z, : K% — K%, so corresponds to
linear maps Zupq : Vi, — Vip. Now the action of ¢ = (¢;) € GL(«) on
Mod(A, a) is given by (9.2)s = giwag; - Thus (A(t).2)a = Ni(t)zaX; (1)~
Thus (A(t).2)apg = 7 I apq-

Thus lim;_,o A\(t).z exists

iff 2qpq = 0 for all @ and p < ¢

iff V5, is a submodule of K, for all g.
Then

(Xo: Ay =D _0; > ndimV; =" s(0.dim(Vay/Voupn)) = Y 0.dim V..

i SEZL SEZ SEZ

Theorem. Let © € Mod(A, «) and let K, be the corresponding A-module.
(i) K, is f-semistable iff x is xg-semistable.

(ii) K, is a direct sum of #-stables iff the orbit of x is closed in Mod (A, a))X¢—55.
Moreover every orbit closure Gz in Mod(A, a)X¢~** contains a unique closed
orbit, corresponding to the module gr, K.

(iii) K, is O-stable iff = is xs-stable.

Proof. (i) If z is xg-semistable and M’ is a submodule of K, with 6. dim M’ <
0 then it defines a filtration with V5, =0, V5o = M" and V>_; = K,. Let A

be the corresponding 1-psg. Then the limit exists, so (xg, A) = 0. dim M’ < 0,
contradicting the Hilbert-Mumford numerical criterion.

Conversely if K, is #-semistable and A is a 1-psg such that the limit exists,
then it corresponds to a filtration, and so (xs,A) = >, 0.dim V>, > 0
since K, is f-semistable. Thus x is xg-semistable by the Hilbert-Mumford
numerical criterion.

(ii) If K, is f-semistable, then it has a filtration with associated graded
module gry K, so the orbit of this module is contained in Gz.

If Gz is closed, it follows that K, is a direct sum of #-stables.

If Gz is not closed, then G contains a closed orbit Gy in Mod (A, a)X¢~s2.
Then y € D(f) for some f € O(Mod(A4,a))¥X". Then also x € D(f). Thus
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by Kempf’s Fundamental Theorem, applied to the affine variety D(f), there
is a 1-psg with lim; ,o A(t).z in the orbit of y. Thus K, is an associated
graded module for some filtration of K,. But since K, is a direct sum of
O-stables, K, = gry K.

(The fact that every orbit closure contains a unique closed orbit, therefore,
comes down to the fact that gr, K, is well-defined, which is essentially the
Jordan-Holder theorem.)

(iii) Straightforward, using that the #-stable modules form an open subset of
Mod(A, «), and a direct sum of #-stables is #-stable iff it has automorphism
group A.

Summary. Let’s write M (A, )y for Mod(A, «) //(GL(cv,0). We get a pro-
jective morphism

M(A,a)g — M(A,a)p = Mod(A, ) // GL(«).

The space on the RHS classifies semisimple modules of dimension vector .
If A is finite dimensional, this is finite, so M (A, )y is a projective variety.

The stable points form an open subset M (A, a)j of M(A,«)s which is a
geometric quotient

Mod(A, )’/ GL(a).
But in general it might be empty.
If 0.5 # 0 for all § with 0 < 8 < a, then M(A,a); = M(A, a)y. We say

“S:SS (C.

Examples. (i) Let @ be a quiver and « a dimension vector. One would
like to study M(KQ, a)és). The cohomology of these moduli spaces is stud-
ied by M. Reineke, The Harder-Narasimhan system in quantum groups and
cohomology of quiver moduli, Invent. Math. 2003.

(ii) If there is a vertex ¢ with o = 1, 0; = — 3, a; and 6; = 1 for all j # 4,
then a module M of dimension « has e; M 1-dimensional, and M is #-stable
iff it is O-semistable iff M is generated by e; M.

(iii) For the quiver with vertices 1 and 2, n arrows from 1 to 2, dimension
vector (1,7) and 6 = (—r,1), a representation is given by n linear maps
K — K", so by amap K™ — K. The stability condition is that this map is
onto. Thus the moduli space is Gr(n —r, K™).

(iv) K of characteristic 0. If @ is an extended Dynkin quiver and II(Q)
is its preprojective algebra, then M (I1(Q),d)o is isomorphic to the corre-
sponding Kleinian singularity K?/T', T’ a finite subgroup of SLy(K). The
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space M(II(Q),0)q for suitable 0, eg as in (ii), is the minimal resolution of
singularities.

(v) If @ has vertices 1, 2, an arrow 1 to 2 and a loop at 2, « = (1,n) and
0 = (n,—1) then M (I1(Q), v)g is isomorphic to the Hilpert scheme of n points
in the plane and M (I1%(Q), o)y is Calogero-Moser space.

(vi) If @ is a quiver without oriented cycles and «, are two dimension
vectors, then the Nakajima quiver variety can be defined to be M (I1(Q"), ' )g
where )" is (Q with a new vertex oo, and 3; arrows oo — ¢ for all 7, o/ = «
with o/ = 1 and 6 as in (ii).

See for example A. Kirillov Jr., Quiver representations and quiver varieties,
2016.

Omissions.

- I wanted to talk about tangent spaces, smoothness of varieties and moment
maps. This is one of the explanations of why preprojective algebras come
up.

- I would have liked to talk about vector bundles, so as to discuss, for example,
universal bundles in GIT.

- It would have been nice to explain the connection to McKay correspondence
and Kleininan singularities in much more detail.

It seems that 4 hours per week for 3 semesters of 15 weeks each is not enough!
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