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1 Some basics

Let A be a K-algebra.

Usually we are interested in finite-dimensional A-modules. That is, we as-
sume that K is a field. We write A-mod for the category of finite-dimensional
A-modules. It is an abelian category. The functor D(−) = HomK(−, K)
gives an antiequivalence between the categories A-mod and Aop-mod.

We are especially interested in the case that A is finite-dimensional. Often
K will be an algebraically closed field. In this chapter we do some basics.
Later we shall cover Auslander-Reiten theory, representations of quivers and
other topics.
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1.1 Fitting and Krull-Remak-Schmidt

Let A be a K-algebra. For the rest of this subsection we consider f.d. A-
modules, with K a field. In this case, indecomposable modules have local
endomorphism ring. We proved this before in another way. Here is the usual
way to see it.

Fitting’s Lemma. If M is a finite-dimensional A-module and θ ∈ EndA(M),
then there is a decomposition

M = M0 ⊕M1

such that θ|M0 is a nilpotent endomorphism of M0 and θ|M1 is an invert-
ible endomorphism of M1. In particular, if M is indecomposable, then any
endomorphism is invertible or nilpotent, so EndA(M) is a local ring.

Proof. There are chains of submodules

Im(θ) ⊇ Im(θ2) ⊇ Im(θ3) ⊇ . . .

Ker(θ) ⊆ Ker(θ2) ⊆ Ker(θ3) ⊆ . . .

which must stabilize since M is finite dimensional. Thus there is some n with
Im(θn) = Im(θ2n) and Ker(θn) = Ker(θ2n). We show that

M = Ker(θn)⊕ Im(θn).

If m ∈ Ker(θn) ⊕ Im(θn) then m = θn(m′) and θ2n(m′) = θn(m) = 0, so
m′ ∈ Ker(θ2n) = Ker(θn), so m = θn(m′) = 0. If m ∈ M then θn(m) ∈
Im(θn) = Im(θ2n), so θn(m) = θ2n(m′′) for some m′′. Then m = (m −
θn(m′′)) + θn(m′′) ∈ Ker(θn) + Im(θn).

Now it is easy to see that the restriction of θ to Ker(θn) is nilpotent, and its
restriction to Im(θn) is invertible.

Definition/Lemma. If X and Y are A-modules, we define radA(X, Y ) to be
the set of all θ ∈ HomA(X, Y ) satisfying the following equivalent conditions.
(i) 1X − φθ is invertible for all φ ∈ HomA(Y,X).
(ii) 1Y − θφ is invertible for all φ ∈ HomA(Y,X).
Thus by definition radA(X,X) = J(EndA(X)).

Proof of (i) implies (ii). If u is an inverse for 1X − φθ then 1Y + θuφ is an
inverse for 1Y − θφ.
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Lemma 1.
(a) The radical forms an ideal in the module category, that is, radA(X, Y ) is
closed under addition, and given maps X → Y → Z, if one is in the radical,
so is the composition.
(b) The radical commutes with finite direct sums, that is, radA(X⊕X ′, Y ) =
radA(X, Y )⊕ radA(X ′, Y ) and radA(X, Y ⊕Y ′) = radA(X, Y )⊕ radA(X, Y ′).

Proof. (a) For a sum θ + θ′, let f be an inverse for 1− φθ. Then 1− φ(θ +
θ′) = (1 − φθ)(1 − fφθ′), a product of invertible maps. The composition is
straightforward.

(b) If you keep one variable fixed, it is a K-linear functor, so preserves direct
sums.

Lemma 2. For f.d. modules we have
(i) If X is indecomposable, then radA(X, Y ) is the set of maps which are not
split monos. (θ : X → Y is a split mono if there is a map φ : Y → X with
φθ = 1X , Equivalently if θ is an isomorphism of X with a direct summand
of Y .)
(ii) If Y is indecomposable, then radA(X, Y ) is the set of maps which are
not split epis. (θ : X → Y is a split epi if there is a map ψ : Y → X with
θψ = 1Y . Equivalently if θ identifies Y with a direct summand of X.)
(iii) If X and Y are indecomposable, then radA(X, Y ) is the set of non-
isomorphisms.

Proof. We use Fitting’s Lemma. (i) Suppose θ ∈ Hom(X, Y ). If θ is a split
mono there is φ ∈ Hom(Y,X) with φθ = 1X , so 1 − φθ is not invertible.
Conversely if there is some φ with f = 1 − φθ not invertible, then f is
nilpotent, and so φθ = 1− f is invertible. Then (φθ)−1φθ = 1X , so θ is split
mono. (ii) is dual and (iii) follows.

Krull-Remak-Schmidt Theorem. Any f.d. module can be written as a direct
sum of indecomposable modules,

M ∼= X1 ⊕ · · · ⊕Xn.

Moreover ifM ∼= Y1⊕· · ·⊕Ym is another decomposition into indecomposables,
then m = n and the Xi and Yj can be paired off so that corresponding
modules are isomorphic.

Proof. Given modules X and M , with X indecomposable, we can define a
vector space

t(X,M) = HomA(X,M)/ radA(X,M).
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This is naturally a right EndA(X)-module, and in fact a module for the
division algebra D = End(X)/J(End(X)) is a division algebra. Thus it is a
free right D-module of a certain rank. In fact the rank is

µX(Y ) =
dim t(X, Y )

dimD
.

Clearly if Y is indecomposable, then

µX(Y ) =

{
1 (Y ∼= X)

0 (Y 6∼= X).

Now t(X,M) = t(X,X1 ⊕ · · · ⊕Xn) ∼= t(X,X1)⊕ · · · ⊕ t(X,Xn), so

µX(M) = µX(X1 ⊕ · · · ⊕Xn) = µX(X1) + · · ·+ µX(Xn)

Thus µX(M) is the number of the Xi which are isomorphic to X. Similarly,
it is the number of Yj which are isomorphic to X. Thus these numbers are
equal.

Definition. Let θ : X → Y be a map of A-modules.
We say that θ is left minimal if for α ∈ End(Y ), if αθ = θ, then α is
invertible.
We say that θ is right minimal if for β ∈ End(X), if θβ = θ, then β is
invertible.

Lemma 3. Given a map θ : X → Y of finite-dimensional A-modules
(i) There is a decomposition Y = Y0 ⊕ Y1 such that Im(θ) ⊆ Y1 and X → Y1
is left minimal.
(ii) There is a decomposition X = X0⊕X1 such that θ(X0) = 0 and X1 → Y
is right minimal.

Proof. (i) Of all decompositions Y = Y0⊕Y1 with Im(θ) ⊆ Y1 choose one with
Y1 of minimal dimension. Let θ1 be the map X → Y1. Let α ∈ End(Y1) with
αθ1 = θ1. By the Fitting decomposition, Y1 = Im(αn)⊕ Ker(αn) for n� 0.
Now αnθ1 = θ1, so Im(θ1) ⊆ Im(αn), and we have another decomposition
Y = [Y0⊕Ker(αn)]⊕ Im(αn). By minimality, Ker(αn) = 0, so α is injective,
and hence an isomorphism.

Lemma 4. If θi : Xi → Yi are finitely many right (respectively left) minimal
maps, then so is

⊕
iXi →

⊕
i Yi.
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