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Introduction

My aim in this course is to cover the following topics:
(1) Basics of rings and modules (for students of differing backgrounds)
(2) Examples and constructions of algebras
(3) Module categories and related properties of modules
(4) Homological algebra: Ext and Tor, global dimension

This is the first course in a master sequence, which continues with:
Noncommutative algebra 2. Representations of finite-dimensional algebras
Noncommutative algebra 3. Geometric methods.

It is also the first part of a sequence to be given by Henning Krause, which
will continue with quasi-hereditary algebras and derived categories.

Examples class by Andrew Hubery.

Why study noncommutative algebra?

- Representation theory: to study groups, Lie algebras, algebraic groups, etc.,
one needs to understand their representations, and for this one should study
the group algebra, universal enveloping algebra, Schur algebra, etc.

- Physics: many algebras arise, e.g. for spin in quantum mechanic (Clif-
ford algebras), statistical mechanics (Temperley-Lieb algebras), dimer mod-
els (dimer algebras), etc.

- Differential equations: linear differential equations correpond to modules
for the ring of differential operators. The notion of a quantum group (which
is an algebra, not a group!) arose in the study of integrable systems.
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- Topology: The cohomology of a topological space gives a ring. The Jones
polynomial for knots came from the representation theory of Hecke algebras.

- Number Theory: a basic object is the Brauer group, classifying central
simple algebras. The final step in Wiles and Taylor’s proof of Fermat’s last
theorem involved a different type of Hecke algebra.

- Functional analysis is all about noncommutative algebras, such as C∗-
algebras and von Neumann algebras; but it is a different story.

- Linear algebra: Jordan normal form is the classification of f.d. modules for
K[x]. If you know the Jordan normal form of two n×nmatrices, what can you
say about the Jordan normal form of their sum? There is a partial solution
using deformed preprojective algebras and representations of quivers.

References. There are many good books on this topic. Some suggestions.
F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, 2nd
edition Springer 1992 .
A. J. Berrick and M. E. Keating, Categories and Modules with K-Theory in
View, Cambridge University Press 2000.
P. M. Cohn, Algebra 2, 2nd edition Wiley 1989. c.f. also P. M. Cohn, Basic
Algebra, 2005.
P. M. Cohn, Algebra 3, 2nd edition Wiley 1991.
B. Farb and R. K. Dennis, Noncommutative Algebra, Springer 1993.
M. Hazewinkel, N. Gubareni and V. V. Kirichenko, Algebras, Rings and
Modules, Kluwer 2005.
T.-Y. Lam, A First Course in Noncommutative Rings , Springer 1991.
T.-Y. Lam, Lectures on Modules and Rings, Springer 1999.
J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, 2nd
edition American Math. Soc. 2001.
M. S. Osborne, Basic Homological Algebra, Springer 2000.
R. S. Pierce, Associative Algebras, Springer 1982.
J. J. Rotman, An Introduction to Homological Algebra, 2nd edition Springer
2009.
J. J. Rotman, Advanced Modern Algebra, American Math. Soc. 2010, or
Parts I and 2, 2015 and 2017.
L. Rowen, Ring Theory, Student edition, Acdemic Press 1991.
B. Stenström, Rings of Quotients, Springer 1975.
C. A. Weibel, An Introduction to Homological Algebra, Cambridge Univer-
sity Press 1994.
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1 Basics of rings and modules

1.1 Rings

We consider rings R which are unital, so there is 1 ∈ R with r1 = 1r = r for
all r ∈ R. Examples: Z, Q, R, C, Z[

√
2] = {a+ b

√
2 : a, b ∈ Z}, R[x] of ring

of polynomials in an indeterminate x with coefficients in a ring R, Mn(R)
the ring of n× n matrices with entries in a ring R.

A subring of a ring is a subset S ⊆ R which is ring under the same operations,
with the same unity as R. A ring homomorphism is a mapping θ : R → S
preserving addition and multiplication and such that θ(1) = 1.

A (two-sided) ideal in a ring R is a subgroup I ⊆ R such that rx ∈ I and
xr ∈ I for all r ∈ R and x ∈ I. The ideal generated by a subset S ⊆ R is

(S) = {
n∑
i=1

risir
′
i : n ≥ 0, ri, r

′
i ∈ R, si ∈ S}.

If I is an ideal in R, then R/I is a ring.
Examples: Fp = Z/(p) = Z/pZ, F4 = F2[x]/(x2 + x+ 1).

The isomorphism theorems (see for example, P.M.Cohn, Algebra, vol. 1).
(1) A homomorphism θ : R→ S induces an isomorphism R/Ker θ ∼= Im θ.
(2) If I is an ideal in R and S is a subring of R then S/(S ∩ I) ∼= (S + I)/I.
(3) If I is an ideal in R, then the ideals in R/I are of the form J/I with J
an ideal in R containing I, and (R/I)/(J/I) ∼= R/J .

The opposite ring Rop is obtained from R by using the multiplication ·, where
r · s = sr. The transpose defines an isomorphism Mn(R)op →Mn(Rop).

A product of rings
∏

i∈I Ri is naturally a ring, e.g. Rn = R×R× · · · ×R or
RI =

∏
i∈I R, the set of functions I → R.

1.2 Modules

Let R be a ring. A (left) R-module consists of an additive group M equipped
with a mapping R×M →M which is an action, meaning
- (rr′)m = r(r′m) for r, r′ ∈ R and m ∈M ,
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- it is distributive over addition, and
- it is unital: 1m = m for all m.

An R-module homomorphism θ : M → N is a map of additive groups with
θ(rm) = rθ(m) for r ∈ R and m ∈M .

A submodule of a R-module M is a subgroup N ⊆ M with rn ∈ N for all
r ∈ R, n ∈ N . Given a submodule N of M one gets a quotient module M/N .

The isomorphism theorems for R-modules (see for example P.M.Cohn, Alge-
bra, vol. 2).
(1) A homomorphism θ : M → N induces an isomorphism M/Ker θ ∼= Im θ.
(2) If L and N are submodules of a module M , then L/(L∩N) ∼= (L+N)/N .
(3) If N is a submodule of M , then the submodules of M/N are of the form
L/N where L is a submodule ofM containingN , and (M/N)/(L/N) ∼= M/L.

If θ : R → S is a ring homomorphism, any S-module SM becomes an R-
module denoted RM or θM by restriction: r.m = θ(r)m.

Dually there is the notion of a right R-module with an action M × R → R.
Apart from notation, it is the same thing as a left Rop-module. If R is
commutative, the notions coincide.

If R and S are rings, then an R-S-bimodule is given by left R-module and
right S-module structures on the same additive group M , satisfying r(ms) =
(rm)s for r ∈ R, s ∈ S and m ∈M .

A ring R is naturally an R-R-bimodule. A (two-sided) ideal of R is a sub-
bimodule of R. A left or right ideal of R is a submodule of R as a left or
right module.

A product of R-modules
∏

i∈I Xi is naturally an R-module. We write XI for
the product of copies of X indexed by a set I, so the set of functions I → X.

The (external) direct sum or coproduct of modules is:

⊕
i∈I

Xi

(
or
∐
i∈I

Xi

)
=

{
(xi)i∈I ∈

∏
i∈I

Xi : xi = 0 for all but finitely many i

}
.

One writes X(I) =
⊕

i∈I X.

If the Xi (i ∈ I) are submodules of an R-module X, then addition gives a
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homomorphism ⊕
i∈I

Xi → X, (xi)i∈I 7→
∑
i∈I

xi.

The image is the sum of the Xi, denoted
∑

i∈I Xi. If this homomorphism
is an isomorphism, then the sum is called an (internal) direct sum, and also
denoted

⊕
i∈I Xi.

If (mi)i∈I is a family of elements of an R-module M , the submodule generated
by (mi) is∑

i∈I

Rmi = {
∑
i∈I

rimi : ri ∈ R, all but finitely many zero},

or equivalently the image of the map R(I) →M , (ri) 7→
∑

i∈I rimi.

Every module M has a generating set, for example M itself. A module M is
finitely generated if it has a finite generating set. Equivalently if there is a
map from Rn onto M for some n ∈ N.

A family (mi)i∈I is an (R-)basis for M if it generates M and is R-linearly
independent, that is, if ∑

i∈I

rimi = 0

with all but finitely many ri = 0, implies all ri = 0. That is, the map
R(I) → M is bijective. A module M is free if it has a basis; equivalently
M ∼= R(I) for some I.

Example. Z/2Z and Q are not free Z-modules.

Lemma. Any proper submodule of a finitely generated module is contained
in a maximal proper submodule.

Proof. Apply Zorn’s Lemma to the set of proper submodules containing the
submodule. Finite generation ensures that the union of a chain of proper
submodules is a proper submodule.

1.3 Algebras

Fix a commutative ring K (often a field). An (unital associative) algebra
over K, or K-algebra consists of a ring which is at the same time a K-
module, with the same addition, and such that multiplication is a K-module
homomorphism in each variable.
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To turn a ring R into a K-algebra is the same as giving a homomophism
from K to the centre of R, Z(R) = {r ∈ R : rs = sr for all s ∈ R}. Given
the K-module structure on R, we have the map K → Z(R), λ 7→ λ1. Given
a map f : K → Z(R) we have the K-module structure λ.m = f(λ)m.

A ring is the same thing as a Z-algebra.

Any module for a K-algebra R becomes naturally a K-module via λ.m =
(λ1)m. It can also be considered as a R-K-bimodule.

If R and S are K-algebras, then unless otherwise stated, one only considers
R-S-bimodules for which the left and right actions of K are the same.

A K-algebra homomorphism is a ring homomorphism which is also a K-
module homomorphism, or equivalenty a ring homomorphism which is com-
patible with the ring homomorphisms from K.

Example 1. Hamilton’s quaternions H = {a+ bi+ cj + dk : a, b, c, d ∈ R}.

If M,N are R-modules, the set of R-module homomorphisms HomR(M,N)
becomes a K-module via

(θ + φ)(m) = θ(m) + φ(m), (λθ)(m) = λθ(m)(= θ(λm).

But it is not necessarily an R-module, unless R is commutative. For example
if we define rθ for r ∈ R by (rθ)(m) = rθ(m), then for s ∈ R we have
(rθ)(sm) = rsθ(m) and s((rθ)(m)) = srθ(m).

Bimodule structures on M or N give module structures on HomR(M,N).
For example if M is an R-S-bimodule and N is an R-T -bimodule then
HomR(M,N) becomes an S-T -bimodule via (sθt)(m) = θ(ms)t.

Example 2. EndR(M) the set of endomorphisms of an R-module M is a
K-algebra.

If R is any K-algebra, then the R-module structures on a K-module M are
in 1:1 correspondence with K-algebra homomorphisms R→ EndK(M).

Example 3. If G is a group, written multiplicatively, the group algebra KG
is the free K-module with basis the elements of G, and with multiplication
given by g ·h = gh for g, h ∈ G. Thus a typical element of KG can be written
as
∑

g∈G agg with ag ∈ K, almost all zero, and

(
∑
g∈G

agg)(
∑
h∈G

bhh) =
∑
k∈G

(
∑
g∈G

agbg−1k)k.
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A representation of G over K consists of a K-vector space V and a group
homomorphism ρ : G → GL(V ). There is a 1-1 correspondence between
representations of G and KG-modules via ρ(g)(v) = gv.

Example 4. Given a set X, the free (associative) algebra K〈X〉 is the free
K-module on the set of all words in the letters of X, including the trivial
word 1. It becomes a K-algebra by concatenation of words. For example for
X = {x, y} we write K〈x, y〉, and it has basis

1, x, y, xx, xy, yx, yy, xxx, xxy, . . .

In case X = {x} one recovers the polynomial ring K[x].

If R is any K-algebra, there is a 1:1 correspondence between maps of sets
X → R and K-algebra maps K〈X〉 → R.

Thus there is a 1:1 correspondence between K〈X〉-module structures on a
K-module M and maps of sets X → EndK(M).

If X is a subset of R, the K-subalgebra of R generated by X is the image of
the natural homomorphism K〈X〉 → R.

1.4 Exact sequences

Let R be a ring or an algebra. A sequence of modules and homomorphisms

· · · −→ L
f−→M

g−→ N −→ · · ·

is said to be exact at M if Im f = Ker g. It is exact if it is exact at every
module. A short exact sequence is one of the form

0 −→ L
f−→M

g−→ N −→ 0,

so f is injective, g is surjective and Im f = Ker g.

Any map f : M → N gives an exact sequence

0→ Ker f →M → N → Coker f → 0

where Coker f := M/ Im f , and short exact sequences

0→ Ker f →M → Im f → 0, 0→ Im f → N → Coker f → 0.
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Snake Lemma. Given a commutative diagram with exact rows

(0 −−−→ )L
f−−−→ M

g−−−→ N −−−→ 0

α

y β

y γ

y
0 −−−→ L′

f ′−−−→ M ′ g′−−−→ N ′( −−−→ 0)

there is an induced exact sequence

(0→) Kerα→ Ker β → Ker γ
c−→ Cokerα→ Coker β → Coker γ(→ 0).

The maps, including the connecting homomorphism c, are given by diagram
chasing.

There is also the Five Lemma, and many variations. Maybe we only need:

Corollary. If α and γ are isomorphisms, so is β.

If L and N are modules, one gets an exact sequence

0→ L
iL−→ L⊕N pN−→ N → 0

where iL and pN are the inclusion and projection maps.

Lemma/Definition. A sequence 0 −→ L
f−→ M

g−→ N −→ 0, is a split if it
satisfies the following equivalent conditions
(i) f has a retraction, a morphism r : M → L with rf = 1L.
(ii) g has a section, a morphism s : N →M with gs = 1N .
(iii) There is an isomorphism θ : M → L⊕N giving a commutative diagram

0 −−−→ L
f−−−→ M

g−−−→ N −−−→ 0∥∥∥ θ

y ∥∥∥
0 −−−→ L

iL−−−→ L⊕N pN−−−→ N −−−→ 0.

Proof of equivalence. (i)⇒(iii). Define θ(m) = (r(m), g(m)). The diagram
commutes and θ is an isomorphism by the Snake lemma.

(ii)⇒(iii). Define φ : L ⊕ N → M by φ(`, n) = f(`) + s(n). It gives
a commutative diagram the other way up, so φ is an isomorphism by the
Snake lemma, and then take θ = φ−1.

(iii)⇒(i) and (ii). Define r = pLθ and s = θ−1iN .
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1.5 Idempotents

Let K be a commutative ring and let R be a K-algebra (including the case
of a ring, with K = Z).

Definitions
(i) An element e ∈ R is idempotent if e2 = e.
(ii) A family of idempotents (ei)i∈I is orthogonal if eiej = 0 for i 6= j.
(iii) A finite family of orthogonal idempotents e1, . . . , en is complete if e1 +
· · ·+ en = 1.

Examples.
(a) If e is idempotent, then e, 1− e is a complete set of orthogonal idempo-
tents.
(b) The diagonal unit matrices eii in Mn(K) are a complete set.

Lemma 1. If M is a left R-module, then
(i) If e is idempotent, then eM = {m ∈ M : em = m}. This is a K-
submodule of M .
(ii) If (ei) are orthogonal idempotents, then the sum

∑
i∈I eiM is direct.

(iii) If e1, . . . , en is a complete family of orthogonal idempotents, then M =
e1M ⊕ · · · ⊕ enM .

Proof. Straightforward. e.g. for (i), if em = m then m ∈ eM , while if
m ∈ eM then m = em′ = e2m′ = e(em′) = em.

Proposition (Peirce decomposition). If e1, . . . , en is a complete family of
orthogonal idempotents then R =

⊕n
i,j=1 eiRej.

We draw the Peirce decomposition as a matrix

R =


e1Re1 e1Re2 . . . e1Ren
e2Re1 e2Re2 . . . e2Ren
. . .

enRe1 enRe2 . . . enRen


and multiplication in R corresponds to matrix multiplication.

Remark. If e is an idempotent, then eRe is an algebra with the same opera-
tion as R, with unit element e. Since the unit element is not the same as for
R, it is not a subalgebra of R. Sometimes called a corner algebra.

Lemma 2. For M a left R-module, we have HomR(R,M) ∼= M as R-modules,
and if e ∈ R is idempotent, then HomR(Re,M) ∼= eM as K-modules.
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In particular, R ∼= EndR(R)op (if we used right modules, we wouldn’t need
the opposite here) and eRe ∼= EndR(Re)op.

Proof. Send θ : R→M to θ(1) and m ∈M to r 7→ rm, etc.

1.6 Hom spaces and decompositions

Let R be a K-algebra (including the case of R a ring with K = Z).

Lemma 1. Given modules X, Y and families of modules Xi, Yi (i ∈ I), there
are natural isomorphisms

HomR(X,
∏
i

Yi) ∼=
∏
i

HomR(X, Yi),

HomR(
⊕
i

Xi, Y ) ∼=
∏
i

HomR(Xi, Y ).

HomR(X,
⊕
i

Yi) ∼=
⊕
i

HomR(X, Yi) for X finitely generated

Proof. Straightforward.

Lemma 2. In the algebra EndR(X1 ⊕ · · · ⊕Xn), the projections onto the Xi

give a complete family of orthogonal idempotents, and the Peirce decompo-
sition is

EndR(X1⊕· · ·⊕Xn) ∼=


Hom(X1, X1) Hom(X2, X1) . . . Hom(Xn, X1)
Hom(X1, X2) Hom(X2, X2) . . . Hom(Xn, X2)

. . .
Hom(X1, Xn) Hom(X2, Xn) . . . Hom(Xn, Xn)

 .

In particular, EndR(Xn) ∼= Mn(EndR(X)).

Proof. Straightforward.

A module M is indecomposable if it is non-zero and in any decomposition
into submodules M = X ⊕ Y , either X = 0 or Y = 0.

Lemma 3. A module M is indecomposable if and only if EndR(M) has no
non-trivial idempotents (other than 0 and 1).

Proof. An idempotent endomorphism e gives M = Im e ⊕ Ker e. A decom-
position M = X ⊕ Y gives e = projection onto X.
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Theorem (Specker, 1950). HomZ(ZN,Z) is a free Z-module with basis (πi)i∈N
where πi(a) = ai.

Proof. (cf. Scheja and Storch, Lehrbuch der Algebra, Teil 1, 2nd edition,
Satz III.C.4, p230) It is clear that the πi are linearly independent. Let (ei)
be the standard basis of Z(N) ⊂ ZN. Let h : ZN → Z, and let bi = h(ei). Let
(cn) be a sequence of positive integers such that cn+1 is a multiple of cn and

cn+1 ≥ n+ 1 +
n∑
i=0

|cibi|.

Let c = h((cn)).

For each m ∈ N there is ym ∈ ZN with

(cn) =
m∑
i=0

ciei + cm+1ym.

Applying h gives

c =
m∑
i=0

cibi + cm+1h(ym),

so

|c−
m∑
i=0

cibi| = cm+1|h(ym)|

is either 0 or ≥ cm+1. But if m ≥ |c|, then

|c−
m∑
i=0

cibi| ≤ |c|+
m∑
i=0

|cibi| < cm+1.

Thus c =
∑m

i=0 cibi for all m ≥ |c|. But this implies bi = 0 for all i > |c|.
Then the linear form h −

∑|c|
i=0 biπi vanishes on all of the standard basis

elements ei.

It remains to show that if g ∈ Hom(ZN,Z) vanishes on all the ei, then it is
zero. Suppose given (ci) ∈ ZN. Expanding ci = ci(3 − 2)2i, we can write
ci = vi2

i + wi3
i for some vi, wi ∈ Z. Then g((ci)) = g((vi2

i)) + g((wi3
i)).

Now for any m, (vi2
i) =

∑m−1
i=0 vi2

iei + 2mzm for some zm ∈ ZN. Thus
g((vi2

i)) ∈ 2mZ. Thus g((vi2
i)) = 0. Similarly for w. Thus g((cn)) = 0.

Corollary. ZN is not a free Z-module.
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Proof. Say ZN ∼= Z(I). Since ZN is uncountable, I must be. Certainly it
must be infinite. Then HomZ(ZN,Z) ∼= Hom(Z(I),Z) ∼= (HomZ(Z,Z))I ∼=
ZI , which is also uncountable. But HomZ(ZN,Z) is a free Z-module with
countable basis, so it is countable.

1.7 Simple and semisimple modules

Let R be an algebra. A module S is simple (or irreducible) if it has exactly
two submodules, namely {0} and S. It is equivalent that S is non-zero and
any non-zero element is a generator. In particular the simple modules are
the quotients R/I with I a maximal left ideal.

Examples.
(i) The simple Z-modules are Z/pZ for p prime.
(ii) If D is a division ring, that is every non-zero element is invertible, then

DD is a simple D-module.
(iii) Kn considered as column vectors becomes a simple Mn(K)-module.

Schur’s Lemma. Any homomorphism between simple modules must either
be zero or an isomorphism, so if S is simple, EndR(S) is a division ring.
Moreover if R is a K-algebra, with K an algebraically closed field, and S is
finite-dimensional over K, then EndR(S) = K.

Proof. The last part holds because any f.d. division algebra D over an alge-
braically closed field is equal to K. Namely, if d ∈ D then left multiplication
by D gives a linear map D → D, and it must have an eigenvalue λ. Then
d− λ1 is not invertible, so must be zero, so d ∈ K1.

Theorem/Definition. A module M is said to be semisimple (or completely
reducible) if it satisfies the following equivalent conditions.
(a) M is isomorphic to a direct sum of simple modules.
(b) M is a sum of simple modules.
(c) Any submodule of M is a direct summand.

Sketch. For fuller details see P.M.Cohn, Algebra 2, §4.2.

(a) implies (b) is trivial. Assuming (b), say M =
∑

i∈I Si and that N is a
submodule of M , one shows by Zorn’s lemma that M = N ⊕

⊕
i∈J Si for

some subset J or I. This gives (a) and (c).

The property (c) is inherited by submodules N ⊆ M , for if L ⊆ N and
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M = L ⊕ C then N = L ⊕ (N ∩ C). Let N be the sum of all simple
submodules. It has complement C, and if non-zero, then C has a non-zero
finitely generated submodule F . Then F has a maximal proper submodule
P . Then P has a complement D in F , and D ∼= F/P , so it is simple, so
D ⊆ N . But D ⊆ C, so its intersection with N is zero.

Corollary 1. Any submodule or quotient of a semisimple module is semisim-
ple.

Proof. We showed above that condition (c) passes to submodules. Now if
M is semisimple and M/N is a quotient, then N has a complement C in M ,
and M/N ∼= C, so it is semisimple.

Corollary 2. If K is a field, or more generally a division ring, every K-module
is free and semisimple (hence the theory of vector spaces).

Proof. K is a simple K-module, and it is the only simple module up to
isomorphism, since if S is a simple module and 0 6= s ∈ S then the map
K → S, r 7→ rs must be an isomorphism. Thus free = semisimple. The
result follows.

1.8 Jacobson radical

Theorem/Definition. The (Jacobson) radical J(R) of R is the ideal in R
consisting of all elements x satisfying the following equivalent conditions.
(i) xS = 0 for any simple left module S.
(ii) x ∈ I for every maximal left ideal I
(iii) 1− ax has a left inverse for all a ∈ R.
(iv) 1− ax is invertible for all a ∈ R.
(i’)-(iv’) The right-hand analogues of (i)-(iv).

Proof (i) implies (ii). If I is a maximal left ideal in R, then R/I is a simple
left module, so x(R/I) = 0, so x(I + 1) = I + 0, so x ∈ I.

(ii) implies (iii). If there is no left inverse, then R(1 − ax) is a proper left
ideal in R, so contained in a maximal left ideal I by Zorn’s Lemma. Now
x ∈ I, and 1− ax ∈ I, so 1 ∈ I, so I = R, a contradiction.

(iii) implies (iv) 1− ax has a left inverse u, and 1 + uax has a left inverse v.
Then u(1− ax) = 1, so u = 1 + uax, so vu = 1. Thus u has a left and right
inverse, so it is invertible and these inverses are equal, and are themselves
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invertible. Thus 1− ax is invertible.

(iv) implies (i). If s ∈ S and xs 6= 0, then Rxs = S since S is simple, so
s = axs for some a ∈ R. Then (1− ax)s = 0, but then s = 0 by (iv).

(iv) implies (iv’). If b is an inverse for 1− ax, then 1 + xba is an inverse for
1− xa. Namely (1 − ax)b = b(1− ax) = 1, so axb = b− 1 = bax, and then
(1 + xba)(1 − xa) = 1 + xba − xa − xbaxa = 1, and (1 − xa)(1 + xba) =
1− xaxba− xa+ xba = 1.

Example. The maximal (left) ideals in Z are pZ, p prime, so J(Z) =
⋂
p Zp =

0.

Lemma (added later). If I is an ideal in R with I ⊆ J(R) then J(R/I) =
J(R)/I. In particular, J(R/J(R)) = 0.

Proof. The maximal left ideals of R contain I, so correspond to maximal left
ideals of R/I.

Notation. If M is an R-module and I an ideal in R, we write IM fot the
set of sums of products im. The powers of an ideal are defined inductively
by I1 = I and In+1 = IIn. An ideal is nilpotent if In = 0 for some n,
or equivalently i1 . . . in = 0 for all i1, . . . , in ∈ I. An ideal I is nil if every
element is nilpotent.

Lemma 1. For an ideal I, we have I nilpotent ⇒ I nil ⇒ I ⊆ J(R).

Proof. The first implication is clear. If x ∈ I and a ∈ R then ax ∈ I, so
(ax)n = 0 for some n. Then 1−ax is invertible with inverse 1 +ax+ (ax)2 +
· · ·+ (ax)n−1. Thus x ∈ J(R).

Lemma 2. If I is a nil ideal in a ring R, then any idempotent in R/I lifts to
one in R.

Proof. There is a formal power series p(x) = a1x + a2x
2 + . . . with integer

coefficients satisfying

(1 + 4x)p(x)2 − (1 + 4x)p(x) + x = 0.

Namely, either solve recursively for the ai, or use the formula for a quadratic,

p(x) =
1−

√
1− 4 x

1+4x

2
,

expand as a power series, and observe that the coefficients are integers.
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Now an idempotent in R/I lifts to an element a ∈ R with b = a2 − a ∈ I.
Since b is nilpotent and commutes with a, the element e = a(1−2p(b))+p(b)
makes sense and

e2 − e = a2(1− 2p(b))2 + 2ap(b)(1− 2p(b)) + p(b)2 − a(1− 2p(b))− p(b).

Writing a2 = a+ b and collecting terms, this becomes

a[(1− 2p(b))2 + 2p(b)(1− 2p(b))− (1− 2p(b)] + b(1− 2p(b))2 + p(b)2 − p(b)]

= (1 + 4b)p(b)2 − (1 + 4b)p(b) + b = 0.

Nakayama’s Lemma. Suppose M is a finitely generated R-module.
(i) If J(R)M = M , then M = 0.
(ii) If N ⊆M is a submodule with N + J(R)M = M , then N = M .

Proof. (i) Suppose M 6= 0. Let m1, . . . ,mn be generators with n minimal.
Since J(R)M = M we can write mn =

∑n
i=1 rimi with ri ∈ J(R). This

writes (1− rn)mn in terms of the others. But 1− rn is invertible, so it writes
mn in terms of the others. Contradiction.

(ii) Apply (i) to M/N .

Lemma/Definition. R is a local ring if it satisfies the following equivalent
conditions.
(i) R/J(R) is a division ring.
(ii) The non-invertible elements of R form an ideal (which is J(R)).
(iii) There is a unique maximal left ideal in R (which is J(R)).

Proof. (i) implies (ii). The elements of J(R) are not invertible, so it suffices
to show that any x /∈ J(R) is invertible. Now J(R) + x is an invertible
element in R/J(R), say with inverse J(R) + a. Then 1− ax, 1− xa ∈ J(R).
But this implies ax and xa are invertible, hence so is x.

(ii) implies (iii). Clear.

(iii) implies (i). Assuming (iii), J(R) is the unique maximal left ideal, so
R = R/J(R) is a simple R-module, and so a simple R-module. Then R ∼=
EndR(R)op, which is a division ring by Schur’s Lemma.

Examples. (a) The set R = {q ∈ Q : q = a/b, b odd} is a subring of Q. The
ideal (2) = {q ∈ Q : q = a/b, a even, b odd} is the set of all non-invertible
elements. Thus R is local and J(R) = (2).
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(b) The set of upper triangular matrices with equal diagonal entries is a
subalgebra of Mn(K), e.g.

{

a b c
0 a d
0 0 a

 : a, b, c, d ∈ K}

The set of matrices with a = 0 form a nil ideal I, so I ⊆ J(R). The map
sending such a matrix to a defines an isomorphism R/I ∼= K. Thus I = J(R)
and R/J(R) ∼= K so R is local.
(c) The ring Mn(K) has no 2-sided ideals other than 0 and Mn(K), but it is
not local.

1.9 Finite-dimensional algebras

In this section K is a field, and we consider f.d. algebras and modules.

Wedderburn’s Theorem/Definition. A f.d. algebra R is semisimple if the
following equivalent conditions hold
(i) J(R) = 0.
(ii) R is semisimple as an R-module.
(iii) Every R-module is semisimple.
(iv) Every short exact sequence of R-modules is split.
(v) R ∼= Mn1(D1)× · · · ×Mnr(Dr) with the Di division algebras.

Proof. If (i) holds, then since J(R) = 0 the intersection of the maximal
left ideals is zero. Since R is f.d., a finite intersection of them is zero, say
I1 ∩ · · · ∩ In = 0. Then the map R→ (R/I1)⊕ . . . (R/In) is injective. Thus
(ii).

If (ii) then R =
⊕

i∈I Si. Now for j ∈ I the sum Mj =
⊕

i 6=j Si is a maximal
left ideal in R, and

⋂
j∈IMj = 0, giving (i).

Now (ii) implies that every free module is semisimple, and since any module
is a quotient of a free module, (iii) follows.

The equivalence of (iii) and (iv) is easy, using that a short exact sequence

0→ L
f−→M

g−→ N → 0 is split if and only if Im f is a direct summand of M ,
and that a module is semisimple if and only if every submodule is a direct
summand.
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If (iii) holds then we can write RR as a finite direct sum of simples, and
collecting terms we can write

R ∼= S1 ⊕ · · · ⊕ S1 ⊕ S2 ⊕ · · · ⊕ S2 ⊕ · · · ⊕ Sr ⊕ · · · ⊕ Sr

where S1, . . . , Sn are non-isomorphic simples, and there are ni copies of each
Si. The Peirce decomposition of the endomorphism ring of this direct sum
gives EndR(R) ∼=

∏n
i=1Mni

(EndR(Si)). Now use Schur’s lemma and take the
opposite ring to get (v).

If (v) holds, say R ∼=
∏n

i=1 Mni
(Di) then R =

⊕n
i=1

⊕ni

j=1 Iij where Iij is the
left ideal in Mni

(Di) consisting of matrices which are zero outside the jth
column. This is isomorphic to the module consisting of column vectors Dni

i ,
and for Di a division algebra, this is a simple module, giving (ii).

Remarks. (i) The modules Si = Dni
i in the Wedderburn decomposition are

a complete set of non-isomorphic simple R-modules.

(ii) If K is algebraically closed, we get R ∼= Mn1(K) × · · · ×Mnr(K) since
there are no non-trivial f.d. division algebras over K.

(iii) This generalizes to artinian rings with the Artin-Wedderburn Theorem.

Proposition 1. If R is a f.d. algebra, then R/J(R) is semisimple and J(R) is
nilpotent, in fact it is the unique largest nilpotent ideal in R.

Proof. The intersection of the maximal left ideals in R/J(R) is zero, so it is
semisimple. Since R is f.d., we have

J(R) ⊇ J(R)2 ⊇ · · · ⊇ J(R)n = J(R)n+1 = . . .

for some n. Then J(R)J(R)n = J(R)n. Now J(R)n is a f.d. vector space, so
clearly f.g. as an R-module. Thus J(R)n = 0 by Nakayama’s lemma.

Example 1. If R is the subalgebra of M3(K) consisting of matrices of shape∗ ∗ ∗∗ ∗ ∗
0 0 ∗


then R = S ⊕ I where S and I consist of matrices of shape

S =

∗ ∗ 0
∗ ∗ 0
0 0 ∗

 , I =

0 0 ∗
0 0 ∗
0 0 0

 .
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It is easy to check that I is a nilpotent ideal in R, so I ⊆ J(R). Also S is a
subalgebra in R, and it is clearly isomorphic to M2(K)×K, so semisimple.
Then J(R)/I is a nilpotent ideal in R/I ∼= S, so it is zero. Thus J(R) ⊆ I.
Thus J(R) = I and R/J(R) ∼= S.

Definition. If R is any K-algebra and M is a f.d. R-module, the character
χM of M is the composition

R
x 7→`Mx−−−→ EndK(M)

tr−→ K

where `Mx (m) = xm and tr(θ) is the trace of an endomorphism θ.

Proposition 2.
(i) χM(xy) = χM(yx) for x, y ∈ R.
(ii) If 0→ L→ M → N → 0 is an exact sequence, then χM = χL + χN . In
particular, χL⊕N = χL + χN .
(iii) If K has characteristic zero, the characters of the simple modules are
linearly independent in the vector space HomK(R,K), so semisimple modules
with the same character are isomorphic.

Proof. (i) χM(xy) = tr(`Mxy) = tr(`Mx `
M
y ) = tr(`My `

M
x ).

(ii) Take a basis of L and extend it to a basis of M . It induces a basis of N .
With respect to this basis, the matrix of `Mx has block form(

A B
0 C

)
where A is the matrix of `Lx and C is the matrix of `Nx with respect to the
induced basis of N .

(iii) The statement actually holds for R infinite-dimensional. Namely, any
linear relation involves finitely many finite-dimensional modules, say with
direct sum M . Then, replacing R by R/{x ∈ R : xM = 0}, we reduce to the
case R is f.d.

Replacing R by R/J(R) if necessary, we may suppose that R is semisimple.

The simple modules are Si = Dni
i corresponding to the factors in the Wed-

derburn decomposition of R. Say
∑

i aiχSi
= 0. Let ej be the idempo-

tent in R which corresponds to the identity matrix in the jth factor. Then
0 =

∑
aiχSi

(ej) = aj dimSj, so aj = 0. Here we use characteristic zero.

Now let R be f.d. Consider the symmetric bilinear form R×R→ K defined
by 〈x, y〉 = χR(xy). It is non-degenerate if 〈x, y〉 = 0 for all y implies x = 0.
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If b1, . . . , bn is a K-basis of R, then the form is non-degenerate if and only if
the matrix (〈bi, bj〉)ij is non-singular.

Lemma 1. If 〈−,−〉 is non-degenerate, then R is semisimple.

Proof. If x ∈ J(R) then for y ∈ R we have 〈x, y〉 = tr(`Rxy) = 0 since xy is
nilpotent. Thus x = 0 by non-degeneracy. Thus J(R) = 0.

Maschke’s Theorem. If G is a finite group and K is a field of characteristic
0 (or not dividing |G|), then KG is semisimple.

Proof. χKG(1) = |G| and χKG(g) = 0 for g 6= 1. Now the matrix (〈g, h〉)g,h
has entry |G| where g = h−1 and other entries zero, so it is invertible.

To specify a character χM for a group algebra CG, it suffices to give the
values χM(g) for g ∈ G, and this only depends on the conjugacy class of g.
The character table of a finite group G has columns given by the conjugacy
classes in G, rows given by the simple CG-modules, and entries given by the
value of the character.

Example 2. Suppose G is cyclic of order n, say with generator σ and K = C.
Let ε = e2π

√
−1/n. Since G is abelian, we must have CG ∼= C × · · · × C.

There are 1-dimensional simple modules S0, . . . , Sn−1 with σ acting on Si as
multiplication by εi. Since there are n of them, they must be all of the simple
modules. One easily checks that

n−1∑
j=0

εij =

{
n (if n divides i)

0 (otherwise)

as in the second case its product with εi − 1 is εin − 1 = 0. It follows that
the elements

ei =
1

n

n−1∑
j=0

εijσj ∈ CG (0 ≤ i < n)

are a complete family of orthogonal idempotents. They must be linearly
independent, so a basis for CG.

For n = 3 the character table is

1 σ σ2

1 1 1
1 ε ε2

1 ε2 ε
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Example 3. The symmetric group S3 of order 6 is non-abelian, so by dimen-
sions we must have CS3

∼= C× C×M2(C). The character table is

1 (..) (...)
1 1 1
1 −1 1
2 0 −1

There are two easy 1-dimensional simple modules, the trivial representation,
on which all group elements act as 1, and the sign representation, on which
each permutation acts as multiplication by the sign of the permutation. The
remaining simple module is 2-dimensional. Its character can be deduced
from that of the regular module CS3. Alternatively, identifying S3 with the
dihedral group D3, it is the natural 2-dimensional representation with D3

preserving an equilateral triangle.

The Atlas of Finite Groups, gives character tables for some finite simple
groups. For example the Fischer group Fi23, a sporadic simple group of
order 218.313.52.7.11.13.17.23 has 98 simple modules over C of dimensions 1,
782, 3588, . . . , 559458900. It has a simple module over F3 of dimension 253.

Theorem 3. For a f.d. algebra R, the following are equivalent.
(i) R is local.
(ii) R has no idempotents apart from 0 and 1.
(iii) Every element of R is nilpotent or invertible.

Proof. (i)⇒(ii). If R is local, the non-invertible elements form an ideal I. If
e is an invertible idempotent then e = e1 = e(ee−1) = ee−1 = 1. Thus if e is
an idempotent 6= 0, 1 then e, 1− e ∈ I, so 1 ∈ I. Contradiction.

(ii)⇒(i). If not local, then R/J(R) is not a division ring, so its Wederburn
decomposiotn has more than one factor, or matrices. Thus it contains a
non-trivial idempotent. This lifts to an idempotent in R since J(R) is nil.

(i)⇒(iii). Since J(R) is nil.

(iii)⇒(i). If is x not invertible, nor is ax, so it is nilpotent, so 1 − ax is
invertible, so x ∈ J(R).

Example 4. The augmentation ideal ∆(G) of a group algebra KG is the
kernel of the algebra homomorphism

KG→ K,
∑
g∈G

agg 7→
∑
g∈G

ag.
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If G is a finite p-group and K is a field of characteristic p, we show that ∆(G)
is nilpotent. Thus it is equal to J(KG) and KG is local.

For a cyclic group G = 〈x〉 of order p, ∆(G) is spanned by xi − 1 = (x −
1)(1 +x+ · · ·+xi−1), so generated by x− 1. Then since KG is commutative
∆(G)p is generated by (x − 1)p = xp − 1p = 0 (by since all other binomial
coefficients are zero in K.)

In general, by induction. Choose a central subgroupH which is cyclic of order
p. Then there is a homomorphism θ : KG → K(G/H). Now θ(∆(G)) =
∆(G/H), and ∆(G/H)N = 0. Then ∆(G)N ⊆ Ker θ = KG.∆(H). Since H
is central, the pth power of this vanishes.

1.10 Noetherian rings

Lemma/Definition. A module M is noetherian if it satisfies the following
equivalent conditions
(i) Any ascending chain of submodules M1 ⊆ M2 ⊆ . . . becomes stationary,
that is, for some n one has Mn = Mn+1 = . . . .
(ii) Any non-empty set of submodules of M has a maximal element.
(iii) Any submodule of M is finitely generated.

Proof. (i) =⇒ (ii) because otherwise we choose M1 to be any of the sub-
modules, and iteratively, since Mi isn’t maximal, we can choose Mi < Mi+1.
This gives an ascending chain which doesn’t become stationary.
(ii) =⇒ (iii). Let N be a submodule, let L be a maximal element of the set
of finitely generated submodules of N , and n ∈ N . Then L + Rn is also a
finitely generated submodule of N , so equal to L by maximality. Thus n ∈ L,
so N = L, so it is finitely generated.
(iii) =⇒ (i) Choose a finite set of generators for N =

⋃
iMi. Some Mi must

contain each of these generators, so be equal to N . Thus Mi = Mi+1 = . . . .

Lemma. If L is a submodule of M then M is noetherian if and only if L and
M/L are noetherian. If M = L+N and L,N are noetherian, then so is M .

Proof. If M is noetherian then clearly L and M/L are noetherian. Now
suppose M1 ⊆ M2 ⊆ . . . is an ascending chain of submodules of M . If L
and M/L are noetherian, then L ∩Mi = L ∩Mi+1 = . . . and (L+Mi)/L =
(L + Mi+1)/L = . . . for some i, so L + Mi = L + Mi+1 = . . . . Now if
m ∈ Mi+1, then m = ` + m′ with ` ∈ L and m′ ∈ Mi. Then ` = m −m′ ∈
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L ∩Mi+1 = L ∩Mi, so m ∈ Mi. Thus Mi = Mi+1 = . . . . For the last part,
use that (L+N)/L ∼= N/(L ∩N).

Definition. A ring R is left noetherian if it satisfies the following equivalent
conditions
(a) RR is noetherian (so R is has the ascending chain condition on left ideals,
or any left ideal in R is finitely generated).
(b) Any finitely generated left R-module is noetherian (equivalently any sub-
module of a finitely generated left module is finitely generated).

Proof of equivalence. For (a) =⇒ (b), any finitely generated module is a
quotient of a finite direct sum of copies of R.

Definition. A ring is noetherian if it is left noetherian and right noetherian
(i.e. noetherian for right modules, or equivalently Rop is left noetherian).

Remarks. (1) Division rings and principal ideal domains such as Z are noethe-
rian. Hilbert’s Basis Theorem says that if K is noetherian, then so is K[x].
The free algebra R = K〈x, y〉 is not left noetherian, since the ideal (x) is not
finitely generated as a left ideal.

(2) If R → S is a ring homomorphism and M is an S-module such that

RM is noetherian, then M is noetherian. Thus if RS is a finitely generated
R-module, and R is left noetherian, then so is S. Thus, for example, if R is
noetherian, so is Mn(R).

(3) If K is noetherian and R is a finitely generated commutative K-algebra,
then R is noetherian, as it is a quotient of a polynomial ring K[x1, . . . , xn].
This is not true for R non-commutative. But we have the following.

Artin-Tate Lemma. Let A be a finitely generated K-algebra with K noethe-
rian, and let Z be a K-subalgebra of Z(A). If A is finitely generated as a
Z-module, then Z is finitely generated as a K-algebra, hence Z and A are
noetherian rings.

Proof. Let a1, . . . , an be algebra generators of A. Now A = Zb1+· · ·+Zbm, so
we can write ai =

∑
j zijbj and bibj =

∑
k zijkbk with zij, zijk ∈ Z. Let Z ′ be

the K-subalgebra of Z generated by the zij and zijk. It is a finitely generated
commutative K-algebra, so noetherian. Now A is generated as a K-module
by products of the ai, so A = Z ′b1 + · · · + Z ′bm, so it is a finitely generated
Z ′-module. Then Z ⊆ A is a finitely generated Z ′-module. In particular it
is finitely generated as a Z ′-algebra, and hence also as a K-algebra.
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1.11 Tensor products

If X is a right R-module and Y is a left R-module, the tensor product X⊗RY
is defined to be the additive group generated by symbols x⊗y (x ∈ X, y ∈ Y )
subject to the relations:
- (x+ x′)⊗ y = x⊗ y + x′ ⊗ y,
- x⊗ (y + y′) = x⊗ y + x⊗ y′,
- (xr)⊗ y = x⊗ (ry) for r ∈ R.

Properties. (1) By definition, an arbitrary element of X⊗R Y can be written
as a finite sum of tensors

∑n
i=1 xi⊗yi, but this expression is not unique. You

may need more than one term in the expression.

(2) If R is a K-algebra, then X⊗RY is a K-module via λ(x⊗y) = x(λ1)⊗y =
x⊗ (λ1)y.

If Z is a K-module, a map φ : X × Y → Z is K-bilinear if it is K-linear in
each argument, and R-balanced if φ(xr, y) = φ(x, ry) for all x, y, r. The map
X × Y → X ⊗R Y , (x, y) 7→ x ⊗ y is K-bilinear and R-balanced. Moreover
there is a bijection

HomK(X ⊗R Y, Z) ∼= {set of K-bilinear R-balanced maps X × Y → Z}.

It sends θ ∈ HomK(X ⊗R Y, Z) to the map bmap φ with φ(x, y) = θ(x⊗ y),
and sends φ to the map θ with θ(

∑
i xi ⊗ yi) =

∑
φ(xi, yi)

(3) IfX is an S-R-bimodule, thenX⊗RY becomes an S-module via s(x⊗y) =
(sx)⊗ y, and for a left S-module Z, there is a natural isomorphism

HomS(X ⊗R Y, Z) ∼= HomR(Y,HomS(X,Z)).

Both sides correspond to the K-bilinear R-balanced maps X×Y → Z which
are also S-linear in the first argument.

Dually, if Y is an R-T -bimodule, then X ⊗R Y is a right T -module and

HomT (X ⊗ Y, Z) ∼= HomR(X,HomT (Y, Z)).

(4) There are natural isomorphismsX⊗RR ∼= X, x⊗r 7→ xr andR⊗RY ∼= Y ,
r ⊗ y 7→ ry. There are natural isomorphisms(⊕

i∈I

Xi

)
⊗R Y ∼=

⊕
i∈I

(Xi ⊗R Y ), X ⊗R
(⊕

i∈I

Yi

)
∼=
⊕
i∈I

(X ⊗R Yi).
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Thus X ⊗R RR
(J) ∼= X(J) and R

(I)
R ⊗R Y ∼= Y (I), so R

(I)
R ⊗R RR

(J) ∼= R(I×J).

In particular if K is a field and V and W are K-vector spaces with bases
(vi)i∈J and (wj)j∈J then V ⊗K W is a K-vector space with basis (vi ⊗
wj)(i,j)∈I×J . Thus dim(V ⊗K W ) = (dimV )(dimW ).

(5) If θ : X → X ′ is a map of right R-modules and φ : Y → Y ′ is a map is
left R-modules, then there is a map

θ ⊗ φ : X ⊗R Y → X ′ ⊗R Y ′, x⊗ y 7→ θ(x)⊗ φ(y).

If θ is a map of S-R-bimodules, then this is a map of S-modules, etc.

(6) If X ′ ⊆ X is an R-submodule of X then (X/X ′) ⊗R Y is isomorphic to
the quotient of X⊗RY by the subgroup generated by all elements of the form
x′⊗ y with x′ ∈ X ′, y ∈ Y (so the cokernel of the map X ′⊗R Y → X ⊗R Y ).
Similarly for X ⊗R (Y/Y ′) if Y ′ is a submodule of Y .

Thus if I is a right ideal in R,

(R/I)⊗R Y ∼= (R⊗R Y )/ Im(I ⊗R Y → R⊗R Y ) ∼= Y/IY.

Similarly if J is a left ideal in R then X ⊗R (R/J) ∼= X/XJ .

Thus (R/I)⊗R (R/J) ∼= R/(I + J). eg. (Z/2Z)⊗Z (Z/3Z) = Z/Z = 0.

(7) If X is a right S-module, Y a S-R-bimodule and Z a left R-module, then
there is a natural isomorphism

X ⊗S (Y ⊗R Z) ∼= (X ⊗S Y )⊗R Z.

(8) Tensor product of algebras. If R and S are K-algebras, then R ⊗K
S becomes a K-algebra via (r ⊗ s)(r′ ⊗ s′) = (rr′) ⊗ (ss′). For example
Mn(K) ⊗K S ∼= Mn(S). An R-S-bimodule (for which the two actions of K
agree) is the same thing as a left R⊗K Sop-module.

(9) Base change. If S is a commutative K-algebra then R⊗K S is naturally
an S-algebra.

1.12 Catalgebras

Sometimes it is useful to consider non-unital associative algebras, but usu-
ally one wants some weaker form of unital condition, and there are many
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possibilities, for example “rings with local units”. The version below, I call
“catalgebras”, since we will see later that they correspond exactly to small
K-categories. (In categorical language, this is the theory of “rings with sev-
eral objects”).

Definition. By a catalgebra we mean a K-module R with a multiplication
R × R → R which is associative and K-linear in each variable, such that
there exists a family (ei)i∈I of orthogonal idempotents which is complete in
the sense that for all r ∈ R only finitely many of the elements rei are nonzero
and only finitely many of the elements eir are nonzero and r =

∑
i∈I rei =∑

i∈I eir.

By a left module for a catalgebra we mean a K-module M with a map
R×M →M which is an action, K-linear in each variable, and unital in the
sense that RM = M .

Lemma 1. For a catalgebra R and a left module M we have R =
⊕

i,j∈I eiRej
and M =

⊕
i∈I eiM .

Proof. Straightforward. For example if m ∈ M then RM = M implies
m =

∑t
s=1 rsms. Now each rs =

∑
i∈I eirsi. Thus m =

∑
i ei(
∑

s rsims) ∈∑
i∈I eiM .

Examples.
(i) Any algebra is a catagebra with family (1) or a finite complete set of
idempotents. Modules are the same as modules for an algebra.

(ii) A catalgebra with a finite family of idempotents is unital, so an ordinary
algebra.

(iii) An arbitrary direct sum of algebras (or catalgebras)
⊕

i∈I Ri is a catal-
gebra, with the idempotents given by the unit elements in the Ri or by
combining the families for the Ri.

(iv) If I is a set and R an algebra or catalgebra, write R(I×I) for the set of
matrices with entries in R, with rows and columns indexed by I, and only
finitely many non-zero entries. It is a catalgebra.

(v) If (I,≤) is a partially ordered set, there is an associated catalgebra KI
which has as basis the pairs (x, y) ∈ I2 with y ≤ x and product given by
(x, y)(x′, y′) = (x, y′) if y = x′ and otherwise 0. The elements (x, x) are a
complete set of orthogonal idempotents.
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It is an algebra if and only if I is finite. In this case it is the opposite of the
incidence algebra of I, introduced in combinatorics by G.-C. Rota. We call
it the poset algebra.

In case I = R with the usual ordering, or Rn, modules for KI are known as
persistence modules, and appear in topological data analysis.

Lemma 2. If R is a catalgebra, then R1 = R⊕K becomes an algebra with unit
element (0, 1) under the multiplication (r, λ)(r′, λ′) = (rr′+λr′+λ′r, λλ′), and
we can identify R as an ideal in R1. Moreover there is a 1:1 correspondence

{R-modules M} ↔ {R1-modules M with RM = M} .

If L is a submodule of an R1-module M , then then RM = M if and only if
RL = L and R(M/L) = M/L.

Proof. Straightforward.

Thus modules for a catalgebra are nothing new. Henceforth, everything I do
for algebras, you might think about possible generalizations to catalgebras.
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2 Examples and constructions of algebras

We consider K-algebras, where K is a commutative ring. Maybe K = Z, so
we consider rings.

2.1 Path algebras

A quiver is a quadruple Q = (Q0, Q1, h, t) where Q0 is a set of vertices, Q1 a
set of arrows, and h, t : Q1 → Q0 are mappings, specifying the head and tail
vertices of each arrow,

t(a)
• a−−−→

h(a)
• .

A path in Q of length n > 0 is a sequence p = a1a2 . . . an of arrows satisfying
t(ai) = h(ai+1) for all 1 ≤ i < n,

• a1←− • a2←− • · · · • an←− •.

The head and tail of p are h(a1) and t(an). For each vertex i ∈ Q0 there is
also a trivial path ei of length zero with head and tail i.

We write KQ for the free K-module with basis the paths in Q. It has a
multiplication, in which the product of two paths given by p · q = 0 if the tail
of p is not equal to the head of q, and otherwise p · q = pq, the concatenation
of p and q.

This makes KQ into a catalgebra in which the trivial paths are a complete
family of orthogonal idempotents. Normally we assume Q0 is finite, so KQ
is unital, 1 =

∑
i∈Q0

ei, so an algebra.

Examples 1. (i) The path algebra of the quiver 1
a−→ 2 with loop b at 2 has

basis e1, e2, a, b, ba, b
2, b2a, b3, b3a, . . . .

(ii) The algebra of lower triangular matrices in Mn(K) is isomorphic to the
path algebra of the quiver

1→ 2→ · · · → n

with the matrix unit eij corresponding to the path from j to i.
(iii) The free algebra K〈X〉 ∼= KQ where Q has one vertex and Q1 = X.

KQ-modules are essentially the same thing as representations of Q.
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A representation of Q is a tuple V = (Vi, Va) consisting of a K-module Vi for
each vertex i and a K-module map Va : Vi → Vj for each arrow a : i→ j in
Q. If there is no risk of confusion, we write a : Vi → Vj instead of Va.

If V is aKQ-module, then V =
⊕

eiV . We get a representation, also denoted
V , with Vi = eiV , and, for any arrow a : i→ j, the map Va : Vi → Vj is the
map given by left multiplication by a ∈ ejKQei.

Conversely any representation V determines aKQ-module via V =
⊕

i∈Q0
Vi,

with the action of KQ given as follows:
- For v = (vi)i∈Q0 ∈ V we have eiv = vi ∈ Vi ⊆ V . That is, the trivial path
ei acts on V as the projection onto Vi, and
- a1a2 . . . anv = Va1(Va2(. . . (Van(vt(an))) . . . )) ∈ Vh(a1) ⊆ V .

Under this correspondence:

(1) KQ-module homomorphisms θ : V → W correspond to tuples (θi)
consisting of a K-module map θi : Vi → Wi for each vertex i satisfying
Waθi = θjVa for all arrows a : i→ j.

(2) KQ-submodules W of V correspond to tuples (Wi) where each Wi is a
K-submodule of Vi, such that Va(Wi) ⊆ Wj for all arrows a : i → j. Then
W corresponds to the representation (Wi, Va|Wi

: Wi → Wj) and V/W to the
representation (Vi/Wi, Va : Vi/Wi → Vj/Wj).

(3) Direct sums of modules V =
⊕

λ∈Λ V
λ correspond to direct sums of

representations (
⊕

λ V
λ
i ,
⊕

λ V
λ
a ).

Notation.
(a) (KQ)+ is the K-span of the non-trivial paths. It is an ideal, and
(KQ)/(KQ)+

∼= K(Q0).
(b) We write P [i] for the KQ-module KQei, so KQ =

⊕
i∈Q0

P [i]. Consid-
ered as a representation of Q, the vector space at vertex j has basis the paths
from i to j.
(c) We write S[i] for the representation with S[i]i = K, S[i]j = 0 for j 6= i
and all S[i]a = 0. It corresponds to the module KQei/(KQ)+ei.

For the rest of this section, suppose K is a field. If V is a finite-dimensional
representation, its dimension vector is dimV = (dimVi) ∈ NQ0 .

Example 2. Let Q be the quiver 1
a−→ 2.

(i) S[1] is the representation K → 0 and S[2] is the representation 0→ K.
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(ii) P [1] is the representation K
1−→ K and P [2] ∼= S[2].

(iii) Hom(S[1], P [1]) = 0 and Hom(S[2], P [1]) ∼= K. The subspaces (K ⊆
V1, 0 ⊆ V2) do not give a subrepresentation of V = P [1], but the subspaces
(0 ⊆ V1, K ⊆ V2) do, and this subrepresentation is isomorphic to S[2].

(iv) There is an exact sequence 0→ S[2]→ P [1]→ S[1]→ 0.

(v) S[1]⊕ S[2] ∼= K
0−→ K and for 0 6= λ ∈ K we have K

λ−→ K ∼= P [1].

(vi) Every representation of Q is isomorphic to a direct sum of copies of S[1],
S[2] and P [1]. For a f.d. representation V1

a−→ V2 one can see it as follows.

Taking bases of V1 and V2, the representation is isomorphic to Kn A−→ Kn for
some m× n matrix A. Now there are invertible matrices P,Q with PAQ−1

of the form

C =

(
I 0
0 0

)
with I an identity matrix. Then (Q,P ) gives an isomorphism from Kn A−→ Kn

to Kn C−→ Kn, and this last representation is a direct sum as claimed.

Lemma.
(i) The P [i] are non-isomorphic indecomposable modules.
(ii) The S[i] are non-isomorphic simple modules.
(iii) KQ is f.d. if and only if Q is finite and has no oriented cycles. If so,
then (KQ)+ is nilpotent, so it is the Jacobson radical of KQ and the S[i]
are all of the simple KQ-modules.

Proof. (i) Clearly the spaces P [i] = KQei, ejKQei and ejKQ have as K-
bases the paths with tail at i and/or head at j.

If 0 6= f ∈ KQei and 0 6= g ∈ eiKQ then fg 6= 0. Explicitly if p and q are
paths of maximal length involved in f and g, then the coefficient of pq in fg
must be non-zero.

Now End(P [i])op ∼= eiKQei, and by the observation above this is a domain
(products of non-zero elements are non-zero). Thus it has no non-trivial
idempotents, so P [i] is indecomposable.

If P [i] ∼= P [j], then there are inverse isomorphisms, so elements f ∈ ejKQei
and g ∈ eiKQej with fg = ej and gf = ei. But by the argument above, f
and g can only involve trivial paths, so i = j.
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(ii) Clear.

(iii) First part clear. Now there is a bound on the length of any path, so
(KQ)+ is nilpotent. Since KQ/(KQ)+

∼= K(Q0), it is semisimple, J(KQ) ⊆
(KQ)+, so we have equality. The simples are indexed by Q0, so there are no
simples other than the S[i].

Definition. Suppose Q is finite. An ideal I ⊆ KQ is admissible if
(1) I ⊆ (KQ)2

+, and
(2) (KQ)n+ ⊆ I for some n.

Examples 3.
(i) If Q has no oriented cycles, I = 0 is admissible.

(ii) Let Q be the quiver with one vertex and one loop x, so KQ = K[x]. The
admissible ideals in KQ are (xn) for n ≥ 2.
(iii) The poset algebra of the poset

4
2 3

1

has basis (1, 1), (2, 2), (3, 3), (4, 4), (2, 1), (3, 1), (4, 2), (4, 3), (4, 1). It is iso-
morphic to KQ/(ca− db) where Q is the quiver

1
a−−−→ 2

b

y c

y
3

d−−−→ 4

This is trivially an admissible ideal. Modules correspond to representations
of the quiver satisfying the commutativity relation ca = db.

Theorem (Gabriel). If I is an admissible ideal in KQ then R = KQ/I is f.d.,
J(R) = (KQ)+/I, and R/J(R) ∼= K × · · · × K. Conversely, if R is a f.d.
algebra and R/J(R) ∼= K × · · · ×K, then R ∼= KQ/I for some finite quiver
Q and admissible ideal I.

Proof. First part is easy. Sketch for the second part.

Trivial fact (add to section 1.5). If e ∈ R is idempotent and N is a submodule
of an R-module M , then e(M/N) ∼= eM/eN .

Let J = J(R). Observe that if S = Kn = K×· · ·×K (n factors), then it has
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a basis consisiting of orthogonal idempotents fi = (0, . . . , 0, 1, 0, . . . , 0), and if
f = (1, 1, . . . , 1, 0) = f1 + · · ·+fn−1, then fSf = {(a1, . . . , an−1, 0)} ∼= Kn−1.

We show by induction on n that if R/J ∼= Kn then there are orthogonal
idempotents ei in R lifting the idempotents fi in R/J . Let e be a lift of f .
Then eJe is a nilpotent ideal in eRe, so eJe ⊆ J(eRe). Then J(eRe/eJe) =
J(eRe)/eJe ∼= J(eRe/eJ(R)e) = e(R/J)e = f(R/J)f ∼= Kn−1. Thus
J(eRe) = eJe, and by induction there are idempotents e1, . . . , en−1 in eRe
inducing the idempotents f1, . . . , fn−1 in R/J . Then take en = 1− e.

Let Q0 = {1, . . . , n}. We have J =
⊕

i,j∈Q0
ejJei. Then J/J2 is an R-R-

bimodule, so we can decompose it as

J/J2 =
⊕
i,j∈Q0

ej(J/J
2)ei =

⊕
i,j∈Q0

(ejJei)/(ejJ
2ei)

Let the arrows in Q from i to j correspond to elements of ejJei inducing a
K-basis of (ejJei)/(ejJ

2ei). We get an induced homomorphism θ : KQ→ R.

Let U = θ(KQ+) ⊆ J . Now U + J2 = J , so by Nakayama’s Lemma, U = J .
It follows that θ is surjective. Let I = Ker θ. If m is sufficiently large that
Jm = 0, then θ(KQm

+ ) = Um = 0, so KQm
+ ⊆ I. Suppose x ∈ I. Write it as

x = u+v+w where u is a linear combination of ei’s, v is a linear combination
of arrows, and w is in KQ2

+. Since θ(ei) = ei and θ(v), θ(w) ∈ J , we must
have u = 0. Now θ(v) = −θ(w) ∈ J2, so that θ(v) induces the zero element
of J/J2. Thus v = 0. Thus x = w ∈ KQ2

+.

2.2 Diamond lemma

The diamond lemma is due to Max Newman. There is an exposition in
P.M.Cohn, Algebra, volume 3. We explain a (trivial) quiver version of
G.M.Bergman, The diamond lemma for ring theory, Advances in Mathe-
matics 1978. It helps to find a K-basis for an algebra R given by generators
and relations. See also, for example, Farkas, Feustel and Green, Synergy in
the theories of Gröbner bases and path algebras, Canad. J. Math. 1993.

Setup.
(1) Write R = KQ/(S) for some quiver Q. For f ∈ KQ we have f =∑

i,j ejfei so (f) = (eifej : i, j ∈ Q0). Thus we may assume that each
element of S is a linear combination of parallel paths (same start and end).
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(2) We fix a well-ordering on the set of paths, such that if w,w′ are parallel
and w < w′, then uwv < uw′v for all compatible products of paths. (A well-
ordering is a total ordering with the descending chain condition, so every
non-empty subset has a minimal element.)

If Q is finite, this can be done by choosing a total ordering on the vertices
1 < 2 < · · · < n and on the arrows a < b < . . . and using the length-
lexicographic ordering on paths, so w < w′ if
- length w < length w′, or
- w = ei and w′ = ej with i < j, or
- length w = length w′ > 0 and w comes before w′ in the dictionary ordering.

(3) We suppose that the relations in S can be written in the form

wj = sj (j ∈ J)

where each wj is a path and sj is a linear combination of paths w parallel to
wj with w < wj. (This is always possible if K is a field.)

Example 1. Consider the algebra R = K〈x, y〉/(S) where S is given by

x2 = x, y2 = 1, yx = 1− xy

and the alphabet ordering x < y.

Definition. Given a relation wj = sj and paths u, v such that uwjv is a path,
the associated reduction is the linear map KQ→ KQ sending uwjv to usjv
and any other path to itself. We write f  g to indicate that g is obtained
from f by applying reduction with respect to some wj = sj and u, v.

Example 1 (continued). f = x2 + xy2  x2 + x  x + x = 2x, or f  
x+ xy2  2x, and g = yx2  yx 1− xy, or g  (1− xy)x = x− xyx 
x− x(1− xy) = x2y  xy.

Lemma 1. If f  g and u′, v′ are paths, then u′fv′  u′gv′ or u′fv′ = u′gv′.

Proof. Suppose g is the reduction of f with respect to u, v and the relations
wj = sj. If u′u or vv′ are not paths, then u′fv′ = u′gv′. Else u′gv′ is the
reduction of u′fv′ with respect to u′u, vv′ and the relation wj = sj.

Definition. We say that f is irreducible if f  g implies g = f . It is
equivalent that no path involved in f can be written as a product uwjv.

Lemma 2. Any f ∈ KQ can be reduced by a finite sequence of reductions to
an irreducible element.
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Proof. Any f ∈ KQ which is not irreducible involves paths of the form uwjv.
Amongst all paths of this form involved in f , let tip(f) be the maximal one.
Consider the set of tips of elements which cannot be reduced to an irreducible
element. For a contradiction assume this set is non-empty. Then by well-
ordering it contains a minimal element. Say it is tip(f) = w = uwjv. Writing
f = λuwjv+f ′ where λ ∈ K and f ′ only involving paths different from uwjv,
we have f  g where g = λusjv + f ′. By the properties of the ordering,
usjv only involves paths which are less than uwjv = w, so tip(g) < w. Thus
by minimality, g can be reduced to an irreducible element, hence so can f .
Contradiction.

Definition. We say that f is reduction-unique if there is a unique irreducible
element which can be obtained from f by a sequence of reductions. If so, the
irreducible element is denoted r(f).

Lemma 3. The set of reduction-unique elements is a K-submodule of KQ,
and the assignment f 7→ r(f) is a K-module endomorphism of it.

Proof. Consider a linear combination λf+µg where f, g are reduction-unique
and λ, µ ∈ K. Suppose there is a sequence of reductions (labelled (1))

λf + µg

(1)︷ ︸︸ ︷
 · · · h

with h irreducible. Let a be the element obtained by applying the same
reductions to f . By Lemma 2, a can be reduced by some sequence of reduc-
tions (labelled (2)) to an irreducible element. Since f is reduction-unique,
this irreducible element must be r(f).

f

(1)︷ ︸︸ ︷
 · · · a

(2)︷ ︸︸ ︷
 · · · r(f).

Applying all these reductions to g we obtain elements b and c, and after
applying more reductions (labelled (3)) we obtain an irreducible element,
which must be r(g).

g

(1)︷ ︸︸ ︷
 · · · b

(2)︷ ︸︸ ︷
 · · · c

(3)︷ ︸︸ ︷
 · · · r(g).

But h, r(f) are irreducible, so these extra reductions don’t change them:

λf + µg

(1)︷ ︸︸ ︷
 · · · h

(2)︷ ︸︸ ︷
 · · · h

(3)︷ ︸︸ ︷
 · · · h,
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f

(1)︷ ︸︸ ︷
 · · · a

(2)︷ ︸︸ ︷
 · · · r(f)

(3)︷ ︸︸ ︷
 · · · r(f).

Now the reductions are linear maps, hence so is a composition of reductions,
so h = λr(f) +µr(g). This shows that λf +µg is reduction-unique and that
r(λf + µg) = λr(f) + µr(g).

Definition. We say that two reductions of f , say f  g and f  h, satisfy
the diamond condition if there exist sequences of reductions starting with g
and h, which lead to the same element, g  · · ·  k, h  · · ·  k. (You
can draw this as a diamond.)

In particular we are interested in this in the following two cases:

An overlap ambiguity is a path w which can be written as wiv and also as
uwj for some i, j and some paths u, v 6= 1, so that wi and wj overlap. There
are reductions w  siv and w  usj.

An inclusion ambiguity is a path w which can be written as wi and as uwjv
for some i 6= j and some u, v. There are reductions w  si and w  usjw.

Example 1 (continued). For the relations x2 = x, y2 = 1, yx = 1 − xy the
ambiguities are:

xxx yyy yyx yxx.

The diamond condition fails for the last ambiguity.

Example 2. For the relations x2 = x, y2 = 1, yx = y − xy the ambiguities
are the same.

Does the diamond condition hold?
xxx xx x and xxx xx x. Yes.
yyy  1y = y and yyy  y1 = y. Yes.
yyx  1x = x and yyx  y(y − xy) = y2 − yxy = y2 − (yx)y  y2 − (y −
xy)y = xyy = x(yy) x1 = x. Yes.
yxx  (y − xy)x = yx − xyx  yx − x(y − xy) = yx − xy + xxy  
yx− xy + xy = yx . . . and yxx yx . . . . Yes.

Diamond Lemma. The following conditions are equivalent:
(a) The diamond condition holds for all overlap and inclusion ambiguities.
(b) Every element of KQ is reduction-unique.
In this case the algebra R = KQ/(S) has K-basis given by the irreducible
paths, with multiplication given by f.g = r(fg).
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Example 2 (continued). Consider our example of R generated by x, y subject
to x2 = x, y2 = 1, yx = y − xy. The irreducible paths 1, x, y, xy form a K-
basis of A with multiplication table

1 x y xy
1 1 x y xy
x x x xy xy
y y y − xy 1 1− x
xy xy 0 x 0

For example y(xy) = (yx)y  (y−xy)y = yy−xyy  1−xyy  1−x, and
(xy)(xy) = x(yx)y  x(y − xy)y = xyy − xxyy  x − xxyy  x − xyy  
x− x = 0.

Example 3. (P. Shaw, Appendix A, Generalisations of Preprojective algebras,
Ph. D. thesis, Leeds, 2005. Available from homepage of WCB.) The algebra
with generators b, c and relations b3 = 0, c2 = 0 and cbcb = cb2c − bcbc fails
the diamond condition for the overlap cbc(b3) = (cbcb)b2. But this calculation
shows that the equation cb2cb2 = bcb2cb− b2cb2c holds in the algebra, and if
you add this as a relation, the diamond condition holds.

Proof of Diamond Lemma. (b)⇒(a) is trivial, so we prove (a)⇒(b). Since
the reduction-unique elements form a subspace, it suffices to show that every
path is reduction-unique. For a contradiction, suppose not. Then there is a
minimal path w which is not reduction-unique. Let f = w. Suppose that f
reduces under some sequence of reductions to g, and under another sequence
of reductions to h, with g, h irreducible. We want to prove that g = h, giving
a contradiction.

Let the elements obtained in each case by applying one reduction be f1 and
g1. Thus

f  g1  · · · g, f  h1  · · · h.

By the properties of the ordering, g1 and h1 are linear combinations of paths
which are less than w, so by minimality they are reduction-unique. Thus
g = r(g1) and h = r(h1).

It suffices to prove that the reductions f  g1 and f  h1 satisfy the
diamond condition, for if there are sequences of reductions g1  · · · k and
h1  · · ·  k, combining them with a sequence of reductions k  · · ·  
r(k), we have g = r(g1) = r(k) = r(h1) = h.

Thus we need to check the diamond condition for f  g1 and f  h1. Recall
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that f = w, so these reductions are given by subpaths of w of the form wi
and wj. There are two cases:

(i) If these paths overlap, or one contains the other, the diamond condition
follows from the corresponding overlap or inclusion ambiguity. For example
w might be of the form u′wivv

′ = u′uwjv
′ where wiv = uwj is an overlap

ambiguity and u′, v′ are paths. Now condition (a) says that the reductions
wiv  siv and uwj  usj can be completed to a diamond, say by sequences
of reductions siv  · · ·  k and usj  · · ·  k. Then Lemma 1 shows
that the two reductions of w, which are w = u′wivv

′  u′sivv
′ and w =

u′uwjv
′  u′vsjv

′, can be completed to a diamond by reductions leading to
u′kv′.

(ii) Otherwise w is of the form uwivwjz for some paths u, v, z, and g1 =
usivwjz and h1 = uwivsjz (or vice versa). Writing si as a linear combination
of paths, si = λt+ λ′t′ + . . . , we have

r(g1) = r(usivwjz) = λr(utvwjz) + λ′r(ut′vwjz) + . . . .

Reducing each path on the right hand side using the relation wj = sj, we
have utvwjz  utvsjz, and ut′vwjz  ut′vsjz, and so on, so

r(g1) = λr(utvsjz) + λ′r(ut′vsjz) + . . . .

Collecting terms, this gives r(g1) = r(usivsjz). Similarly, writing sj as a
linear combination of paths, we have r(h1) = r(usivsjz). Thus r(h1) = r(g1),
so the diamond condition holds.

For the last part we show that r(f) = 0 if and only if f ∈ (S). If f  g
then f − g ∈ (S), so f − r(f) ∈ (S) giving one direction. For the other,
(S) is spanned by expressions of the form u(wj − sj)v, and uwjv  usjv so
r(uwjv) = r(usjv), so r(u(wj − sj)v) = 0.

Thus r defines a K-module isomorphism from KQ/(S) to the K-span of the
irreducible paths.

2.3 Tensor algebras and variations

Definitions. An algebra R is (Z-)graded if it is equipped with a decomposition
R =

⊕
n∈ZRn satisfying RnRm ⊆ Rn+m, and it is N-graded if Rn = 0 for

n < 0.
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If R is graded, an R-module M is graded if M =
⊕

n∈ZMn and RnMm ⊆
Mn+m.

An element of R or M is homogeneous of degree n if it belongs to Rn or Mn.

A submodule N of M is graded or homogeneous if N =
⊕

Nn where Nn =
N ∩Mn. Similarly for an ideal I in R.

A homomorphism is graded if it sends homogeneous elements to homogeneous
elements of the same degree.

Example. The path algebra R = KQ is graded with Rn = the K-span of the
paths of length n.

Proposition. Let R be a graded algebra.
(i) 1 ∈ R0.
(ii) A submodule or ideal is homogeneous if and only if it is generated by
homogeneous elements.
(iii) A quotient of a module or algebra by a homogeneous submodule or ideal
is graded.
(iv) Graded R-modules are the same thing as modules for the sub-catalgebra
of R(Z×Z) consisting of matrices (aij) with aij ∈ Ri−j.

. . .

R0 R−1 R−2

R1 R0 R−1

R2 R1 R0

. . .


Proof. (i) if 1 =

∑
rn and r ∈ Ri then r = r1 = 1r gives r = rr0 = r0r, so

r0 is a unity for R.

(ii)-(iv) Straightforward.

Definitions. Let V be a K-module. The tensor powers are

T n(V ) = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
n

,

where tensor products are over K and T 0(V ) = K.
(i) The tensor algebra is the graded algebra

T (V ) =
⊕
n∈N

T n(V ) = K ⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ . . .
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with the multiplication given by T n(V )⊗K Tm(V ) ∼= T n+m(V ).
(ii) The symmetric algebra is the graded algebra

S(V ) = T (V )/(v ⊗ w − w ⊗ v : v, w ∈ V ) =
⊕
d≥0

Sd(V ).

(iii) The exterior algebra is the graded algebra

Λ(V ) = T (V )/(v ⊗ v : v ∈ V ) =
⊕
d≥0

Λd(V ).

We write v∧w for the product in the exterior algebra. We have v∧w = −w∧v
since v ∧ v = 0, w ∧ w = 0 and (v + w) ∧ (v + w) = 0.

(iv) A mapping q : V → K is a quadratic form if q(λx) = λ2q(x) for λ ∈ K
and x ∈ V and the map V × V → K, (x, y) 7→ q(x + y) − q(x) − q(y) is a
bilinear form in x and y. The associated Clifford algebra is

C(V, q) = T (V )/(v ⊗ v − q(v)1 : v ∈ V ).

Lemma. If V is a free K-module with basis x1, . . . , xn, then
(i) T (V ) ∼= K〈x1, . . . , xn〉.
(ii) S(V ) ∼= K[x1, . . . , xn].
(iii) Λ(V ) ∼= K〈x1, . . . , xn〉/(x2

i , xixj + xjxi). Λd(V ) is the free K-module
with basis the products xi1 ∧ xi2 ∧ · · · ∧ xid with i1 < i2 < · · · < id. In
particular, Λn(V ) = K x1 ∧ x2 ∧ · · · ∧ xn and Λm(V ) = 0 for m > n. If K is
a field then Λ(V ) is local with J(Λ(V )) =

⊕
n>0 Λn(V ).

(iv) If q(
∑n

i=1 λixi) =
∑n

i=1 aiλ
2
i , then C(V, q) ∼= K〈x1, . . . , xn〉/(x2

i−ai1, xixj+
xjxi). It has basis the products xi1xi2 . . . xid with i1 < i2 < · · · < id. If K is
a field, then C(V, q) is semisimple if and only if all ai 6= 0.

Proof. (i), (ii) Clear.

(iii) For the exterior algebra use the Diamond Lemma with the relations
x2
i = 0 and xjxi = −xixj for j > i and check the ambiguities, xkxjxi for
k > j > i, xjxjxi and xjxixi for j > i and xixixi.

Clearly I =
⊕

n>0 Λn(V ) is nilpotent, and Λ(V )/I ∼= K, so I = J(Λ(V )) (or
use that the exterior algebra is defined by an admissible ideal).

(iv) The Diamond Lemma again. If ai = 0 then xi generates a nilpotent
ideal. For the converse, use the same argument as Maschke’s Theorem.
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The exterior algebra is useful for studying determinants and differential
forms. For example θ ∈ EndK(V ) induces a graded algebra homomorphism
Λ(V ) → Λ(V ) and the map on top exterior powers Λn(V ) → Λn(V ) is mul-
tiplication by det θ.

For V an R-vector space with basis x1, x2 and quadratic form q(λ1x1+λ2x2) =
−λ2

1 − λ2
2, we have C(V, q) ∼= H via x1 ↔ i, x2 ↔ j, x1x2 ↔ k.

Remark. More generally, if S is an algebra and V is an S-S-bimodule. One
defines the tensor algebra

TS(V ) = S ⊕ V ⊕ (V ⊗S V )⊕ (V ⊗S V ⊗S V )⊕ . . . .

One can show that the path algebra KQ is a tensor algebra, where S =⊕
i∈Q0

Kei and V =
⊕

a∈Q1
Ka.

2.4 Power series

Let Q be a finite quiver. The formal power series path algebra K〈〈Q〉〉 is the
algebra whose elements are formal sums∑

p path

app

with ap ∈ K, but with no requirement that only finitely many are non-zero.
Multiplication makes sense because any path p can be obtained as a product
qq′ in only finitely many ways.

In the special case of a loop one gets the formal power series algebra K[[x]]
and the element 1 + x is invertible in K[[x]] since it has inverse 1− x+ x2−
x3 + . . . .

Properties. (1) An element of K〈〈Q〉〉 is invertible if and only if the coefficient
aei of each trivial path ei is invertible in K.

If the condition holds one can multiply first by a linear combination of trivial
paths to get it in the form 1 + x with x only involving paths of length ≥ 1.
Then the expression 1− x+ x2 − x3 + . . . makes sense in K〈〈Q〉〉, and is an
inverse.

(2) J(K〈〈Q〉〉) = {
∑

p app : aei ∈ J(K) for all trivial paths ei}.
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(3) If K is a field, then f.d. K〈〈Q〉〉-modules correspond exactly to f.d. mod-
ules M for KQ which are nilpotent, meaning that (KQ)d+M = 0 for some d.

We consider restriction via the homomorphism KQ→ K〈〈Q〉〉. Clearly any
nilpotent KQ-module is the restriction of a K〈〈Q〉〉-module. Conversely if M
is a nilpotent KQ-module of dimension d, then by induction of d, JdM = 0,
where J = J(K〈〈Q〉〉). Namely, if M is simple then JM = 0. Otherwise
it has a submodule N of dimension e and JeN = 0, Jd−e(M/N) = 0. So
JdM = 0.

Remark. Let I = {
∑

p app : aei = 0 for all trivial paths ei}. Then In =
{
∑

p app : ap = 0 for all paths of length < n}. The I-adic topology on R =
K〈〈Q〉〉 has base of open sets the cosets In + r (n ≥ 1, r ∈ R). To do more,
one needs to take topology into account.

For example I am told that K〈〈x, y〉〉/(xy−yx) is non-commutative. Instead
one has K〈〈x, y〉〉/(xy − yx) ∼= K[[x, y]].

2.5 Skew polynomial rings

If R is a K-algebra and M is an R-R-bimodule, a (K-)derivation d : R→M
is a mapping of K-modules which satisfies d(rr′) = rd(r′) + d(r)r′ for all
r, r′ ∈ R.

Observe that for d(1) = d(1) + d(1) so d(1) = 0. Also, for λ ∈ K, d(λ1) =
λd(1) = 0 by linearity.

We write DerK(R,M) for the set of derivations. It is naturally a K-module.

Examples. (i) For any m ∈M the map r 7→ rm−mr is a derivation, called
an inner derivation.

(ii) The map d
dx

: K[x]→ K[x],

d

dx
(λ0 + λ1x+ λ2x

2 + · · ·+ λnx
n) = λ1 + 2λ2x+ · · ·+ nλnx

n−1.

is a derivation. More generally ∂/∂xi : K[x1, . . . , xn]→ K[x1, . . . , xn].

Definition. If R is a K-algebra and σ, δ : R → R, we write R[x;σ, δ] for a
K-algebra containing R as a subalgebra, which consists of all polynomials

r0 + r1x+ r2x
2 + · · ·+ rnx

n
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with ri ∈ R, with the natural addition and a multiplication satisfying

xr = σ(r)x+ δ(r)

for r ∈ R. If such a ring exists, the multiplication is uniquely determined. It
is called a skew polynomial ring or Ore extension of R.

Theorem. R[x;σ, δ] exists if and only if σ is a K-algebra endomorphism of
R and δ ∈ DerK(R, σR). [One says δ is a σ-derivation of R.]

Proof. If such an algebra exists, then clearly σ, δ ∈ EndK(R) and

σ(rr′)x+ δ(rr′) = x(rr′)

= (xr)r′

= (σ(r)x+ δ(r))r′

= σ(r)(xr′) + δ(r)r′

= σ(r)(σ(r′)x+ δ(r′)) + δ(r)r′.

Thus σ(rr′) = σ(r)σ(r′) and δ(rr′) = σ(r)δ(r′) + δ(r)r′. For the converse,
identify R with the subalgebra of E = EndK(RN), with r ∈ R corresponding
to left multiplication by r. Define X ∈ E by

(Xs)i = σ(si−1) + δ(si)

for s = (s0, s1, . . . ) ∈ RN, where s−1 = 0. Then

(X(rs))i = σ(rsi−1) + δ(rsi)

= σ(r)σ(si−1) + σ(r)δ(si) + δ(r)si

= σ(r)X(s)i + δ(r)si.

Thus X(rs) = σ(r)X(s) + δ(r)s, so Xr = σ(r)X + δ(r). It follows that anyt
element of the subalgebra S of E generated by X and the elements r ∈ R
can be written as a polynomial f =

∑N
i=1 riX

i.

The last step is to show that S is in bijection with the polynomials. This holds
since if ei denotes ith coordinate vector in RN, the infinite sequence which is
1 in the ith place and 0 elsewhere, then X(ei) = ei+1 so f(e0) = (r0, r1, . . . ),
so the coefficients of the polynomial f are uniquely determined by f as an
element of S.

Special cases. If δ = 0 the skew polynomial ring is isomorphic to TR(Rσ) and
we denote it R[x;σ]. If σ = 1 denote it R[x; δ].
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Properties. Let S = R[x;σ, δ].

(1) xnr = σn(r)xn + lower degree terms. Proof by induction on n.

(2) If R is a domain (no zero-divisors) and σ is injective then the degree of a
product of two polynomials is equal to the sum of their degrees. In particular
S is a domain. Proof. (r0 + · · ·+ rnx

n)(s0 + · · ·+ smx
m) = rnσ

n(sm)xn+m+
lower degree terms.

(3) If R is a division ring then σ is automatically injective and S is a principal
left ideal domain. Proof. Suppose I is a non-zero left ideal. It contains a
non-zero polynomial f(x) of least degree d, which we may suppose to be
monic. If g(x) is a polynomial with leading term rxd+n, then g(x)− rxnf(x)
has strictly smaller degree. An induction then shows that I = Sf(x).

(4) If σ is an automorphism then rx = xσ−1(r) − δ(σ−1(r)), so Sop =
Rop[x;σ−1,−δσ−1].

Hilbert’s Basis Theorem. Assume σ is an automorphism. If R is left (respec-
tively right) noetherian, then so is R[x;σ, δ].

Proof. By the observation above, it suffices to prove this for right noetherian.
Let J be a right ideal in S which is not finitely generated, and take a poly-
nomial f1 of least degree in J . By induction, if we have found f1, . . . , fk ∈ J ,
then since J is not finitely generated J \

∑k
i=1 fiS 6= ∅, and we take fk+1

of least possible degree. We obtain an infinite sequence of polynomials
f1, f2, · · · ∈ J . Let fi have leading term rix

ni . By construction n1 ≤ n2 ≤ . . . .
The chain

r1R ⊆ r1R + r2R ⊆ . . .

must become stationary, so some rk+1 =
∑k

i=1 rir
′
i with r′i ∈ R. Then

fk+1 −
k∑
i=1

fiσ
−ni(r′i)x

nk+1−ni ∈ J \
k∑
i=1

fiS

and it has degree < nk+1, contradicting the choice of fk+1.

Let K be a field.

Example 1. The first Weyl algebra is A1 = K〈x, y : yx − xy = 1〉. It is a
skew polynomial ring K[x][y; d/dx]. It has K-basis the monomials xiyj. It
is isomorphic to the subalgebra of EndK(K[x]) consisting of all differential
operators of the form

∑n
i=0 pi(x)di/dxi. It is a noetherian domain.
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Lemma. If K is a field of characteristic 0, then A1 has no non-trivial ideals,
that is, it is a simple ring.

Proof. The Weyl algebra has basis the elements w = xiyj. Observe that
yw − wy = ixi−1yj and xw − wx = −jxyj−1.

Suppose I is a non-zero ideal. Choose 0 6= c ∈ I. Choosing an element xiyj

involved in c with non-zero coefficient λ with i+ j maximal. Then i!j!λ ∈ I.
Thus I = A1.

More generally, the nth Weyl algebra An(K) is the K-algebra generated by
x1, . . . , xn, y1, . . . , yn subject to the relations

yixj − xjyi = δij, xixj = xjxi, yiyj = yjyi

It has basis the monomials xi11 . . . x
in
n y

j1
1 . . . yjnn . It is an iterated skew poly-

nomial ring K[x1, . . . , xn][y1; ∂/∂x1][y2; ∂/∂x2] . . . [yn; ∂/∂xn].

Various rings of functions become modules for A = An(K), for example
polynomial functions K[x1, . . . , xn], or the smooth functions C∞(U) on an
open subset of Rn (if K = R) or the holomorphic functions O(U) on an open
subset of Cn (if K = C). Let F be one of these A-modules of functions.
Given P = (Pij) ∈Mm×n(A) we consider the system of differential equations

P

f1
...
fn

 = 0

with fi ∈ F . The set of solutions is identified with HomA(M,F ) where M is
the cokernel of the map Am → An given by right multiplication by P .

Example 2. If q is invertible in K, the coordinate ring of the quantum plane
is Oq(K2) = K〈x, y : yx = qxy〉. It is a skew polynomial ring K[x][y;σ],
where σ : K[x]→ K[x] is the automorphism with σ(x) = qx. It has K-basis
the monomials xiyj. It is a noetherian domain.

Example 3. If R is a K-algebra, a 2 by 2 quantum matrix with entries in R
is a matrix ( a bc d ) with a, b, c, d ∈ R satisfying the relations

ab = qba, ac = qca, bc = cb, bd = qdb, cd = qdc, ad− da = (q − q−1)bc.

Equivalently it is a homomorphism Oq(M2(K)) → R, where the coordinate
ring of quantum 2 by 2 matrices is Oq(M2(K)) = K〈a, b, c, d〉/I where I is
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generated by the relations. It has basis the monomials aibjckd`. It is an
iterated skew polynomial ring, so a noetherian domain.

The quantum determinant is detq = ad−qbc = da−q−1cb. This makes sense
for a quantum matrix or for an element of Oq(M2(K)).

detq commutes with a, b, c, d, so is a central element of Oq(M2(K)).

(
a b
c d

)(
d −q−1b
−qc a

)
= (detq)I =

(
d −q−1b
−qc a

)(
a b
c d

)
.

2.6 Localization

Let R be an algebra. A subset S ⊆ R is multiplicative if 1 ∈ S and ss′ ∈ S
for all s, s′ ∈ S.

Lemma. (a) If S is a multiplicative subset in R, then there exists an algebra
homomorphism θ : R → RS with the properties (i) θ(s) is invertible for all
s ∈ S, and (ii) If θ′ : R → R′ is an algebra homomorphism and θ′(s) is
invertible for all s ∈ S, then there is a unique homomorphism φ : RS → R′

with φθ = θ′.
(b) Given any other homomorphism θ′ : R → R′S, with properties (i),(ii),
there is a unique isomorphism φ : RS → R′S with φθS = θ′.
(c) RS is generated as an algebra by the elements θ(r) and θ(s)−1 for r ∈ R
and s ∈ S.
(d) If sr = 0 with s ∈ S and r ∈ R then θ(r) = 0.
(e) If M is an R-module, and multiplication by s acts invertibly on M for all
s ∈ S, then the action of R on M extends uniquely to an action of RS.

Proof. (a) Define RS = K〈{xr : r ∈ R} ∪ {is : s ∈ S}〉/I where I is
generated by the relations x1 = 1, xr + xr′ = xr+r′ , xrxr′ = xrr′ , λxr =
xλr, xsis = 1, isxs = 1 and θ(r) = xr. (b) Universal property. (c) Clear. (d)
Clear. (e) Consider the map R→ EndK(M).

Definition. A multiplicative subset S in R satisfies the left Ore condition if
for all s ∈ S and r ∈ R there exist s′ ∈ S and r′ ∈ R with s′r = r′s, and it is
left reversible if rs = 0 with r ∈ R and s ∈ S implies that there is s′ ∈ S with
s′r = 0. Both conditions are trivial if R is commutative or more generally if
S ⊆ Z(R).
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Construction. If S is a left reversible left Ore set in R and M is a left
R-module, then on the set of pairs (s,m) ∈ S ×M we consider the relation

(s,m) ∼ (s′,m′)⇔ there are u, u′ ∈ R with um = u′m′ and us = u′s′ ∈ S.

Lemma 1. This is an equivalence relation.

Proof. Exercise.

We write s−1m for the equivalence class of (s,m) and define S−1M to be the
set of equivalence classes.

Lemma 2. Any finite set of elements of S−1M can be written with a common
denominator.

Proof. It suffices to do two elements s−1m and (s′)−1m′. The Ore condition
gives t ∈ S, r ∈ R with ts′ = rs ∈ S. Then s−1m = (rs)−1rm and (s′)−1m′ =
(ts′)−1tm′.

Lemma 3. (a) S−1M becomes an R-module via

s−1m+ s−1m′ = s−1(m+m′),

r(s−1m) = (s′)−1(r′m) where s′r = r′s with s′ ∈ S and r′ ∈ R

(b) s−1m = 0 ⇔ there is u ∈ R with um = 0 and us ∈ S. In particular
1−1m = 0 ⇔ there is u ∈ S with um = 0.
(c) Elements of S act invertibly on S−1M , so S−1M becomes an RS-module.
(d) An R-module map θ : M → N induces an RS-module map S−1M →
S−1N .
(e) If L

θ−→M
φ−→ N is exact, then so is S−1L→ S−1M → S−1N .

(f) There is a natural isomorphism
⊕

i∈I S
−1Mi

∼= S−1(
⊕

i∈IMi)

Proof. (a) Straightforward.

(b) Now s−1m = 1−10⇔ there are u, u′ ∈ R with um = u′0 and us = u′1 ∈ S,
gives the condition.

(c) If t ∈ S then t((st)−1m) = s−1m, and if t(s−1m) = 0, then there are
s′, t′ with s′ ∈ S, s′t = t′s and (s′)−1(t′m) = 0. Then there is u ∈ R with
ut′m = 0 and us′ ∈ S. Then (ut′)m = 0 and (ut′)s = us′t ∈ S, so s−1m = 0.

(d) Send s−1m to s−1θ(m). This gives an R-module map S−1M → S−1N ,
and since RS is generated by the elements of R and the inverses of elements
of S, it is an RS-module map.
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(e) If s−1m is sent to zero in S−1N , then there is u ∈ R with uφ(m) = 0 and
us ∈ S. Then φ(um) = 0, so um = θ(`). Then (us)−1` ∈ S−1L is sent to
s−1m ∈ S−1M .

(f) holds since a finite number of fractions can be put over a common de-
nominator.

Theorem. The following are equivalent.
(i) S is a left reversible left Ore set.
(ii) S is a left reversible left Ore set and RS

∼= S−1R considered as a ring
with multiplication

(t−1r)(s−1u) = (s′t)−1r′u

where s′r = r′s with s′ ∈ S and r′ ∈ R.
(iii) Every element of RS can be written as θ(s)−1θ(r) for some s ∈ S and
r ∈ R, and θ(r) = 0 if and only if sr = 0 for some s ∈ S.

Proof. (i) implies (ii). Define a mapping f : S−1R → RS sending s−1r
to θ(s)−1θ(r). It is easy to see this is well-defined. By the Ore condition
any composition θ(r)θ(s)−1 can be rewritten as θ(s′)−1θ(r′). Combined with
Lemma 0 (c) and Lemma 2, it follows that f is surjective. Also S−1R becomes
an RS-module, so there is a map g : RS → S−1R with gθ(r) = 1−1r. Then
gf is the identity, so f is injective. Thus f is a bijection. The multiplication
for RS corresponds to that given.

(ii) implies (iii). Clear.

(iii) implies (i). Say as = 0. Then θ(a) = 0. Thus s′a = 0 for some s′ ∈ S,
giving left reversibility. Given a, s, we have θ(a)θ(s)−1 = θ(s′)−1θS(a′) for
some s′ ∈ S and a′ ∈ R. Thus θ(s′a − a′s) = 0. Thus there is t ∈ S with
t(s′a− a′s) = 0. Thus (ts′)a = (ta′)s, giving the Ore condition.

Remark. Similarly there is the notion of a right reversible right Ore set, for
which RS can be constructed as fractions of the form rs−1.

Examples 1. (1) If σ is a K-algebra automorphism of R, then {1, x, x2, . . . }
is a left and right reversible Ore set in R[x;σ]. The elements of R[x;σ]S are
of the form

(r0 + r1x+ · · ·+ rnx
n)x−m = r0x

−m + · · ·+ rnx
n−m,

so Laurent polynomials.

(2) detq is central in Oq(M2(K)), so we can invert S = {1, detq, det2
q, . . . }

giving Oq(GL2(K)).

46



(3) From the section on local rings, {q ∈ Q : q = a/b, b odd} = ZS where S
is the set of odd integers.

Theorem (Special case of Goldie’s Theorem). Let R be a domain which is
left noetherian (or more generally has no left ideal isomorphic to R(N)). Then
S = R \ {0} is a left reversible left Ore set, and θ : R → RS is an injective
map to a division ring.

Proof. The left reversibility condition is trivial. If S fails the left Ore con-
dition, then there are a, b 6= 0 with Ra ∩ Rb = 0. Then a, ab, ab2, . . . are
linearly independent, for if

∑
i riab

i = 0, then by cancelling as many factors
of b on the right as possible, we get

r0a+ r1ab+ · · ·+ rnab
n = 0

with r0 6= 0. But then 0 6= r0a ∈ Ra ∩Rb. Thus
⊕

iRab
i ⊆ R. Now RS is a

division ring for if s−1r 6= 0 then r 6= 0 and (s−1r)−1 = r−1s.

Examples 2. (1) Z embeds in Q, K[x1, . . . , xn] embeds in K(x1, . . . , xn), etc.

(2) R = An(K) is a noetherian domain, so it embeds in a division ring
RS = Dn(K).

(3) For R = K〈x, y〉 the set R\{0} fails the left Ore condition since Rx∩Ry =
0. There do exist embeddings of R in division rings, but they are more
complicated.

2.7 Algebras from Lie theory and elsewhere

THIS SECTION IS ONLY BRIEFLY DISCUSSED IN LECTURES.

The aim is to give some examples of algebras, without details or proofs,
showing the need for the Diamond Lemma, skew polynomial rings, etc.

For simplicity K = C.

Many of these algebras come in families indexed by the simple f.d. Lie alge-
bras, so first we need something about them.

A Lie algebra is aK-vector space g with aK-bilinear multiplication g×g→ g,
(x, y) 7→ [x, y]. which is skew symmetric [x, x] = 0 (so [x, y] = −[y, x]) and
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satisfies the Jacobi identity

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

A Lie algebra homomorphism θ : g→ g′ is a K-linear map with [θ(x), θ(y)] =
θ([x, y]) for all x, y ∈ g. A Lie algebra is simple if any homomorphism from
it is injective.

Examples. (i) Any associative algebra A becomes a Lie algebra with bracket
[a, b] = ab− ba.

(ii) gl(V ) = EndK(V ), gln = Mn(K) with bracket as above.

(iii) sln = {a ∈Mn(K) : tr(a) = 0} and son = {a ∈Mn(K) : a+ aT = 0} are
simple Lie algebras.

The simple f.d. Lie algebras are classified by Dynkin diagrams, or equivalently
Cartan matrices. The Dynkin diagrams are Am, Bm, Cm, Dm, E6, E7, E8,
F4, G2.

Source: Wikipedia

The corresponding Cartan matrices for Am is the m×m matrix

C =


2 −1 0 . . . 0
−1 2 −1 0
0 −1 2 0
...

. . .
...

0 0 0 . . . 2

 .

For example sln corresponds to An−1, so2n corresponds to Dn.

Theorem (Chevalley-Serre relations). A simple Lie algebra g with m × m
Cartan matrix C is generated as a Lie algebra by elements hi, ei, fi (i =
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1, . . . ,m) with relations

[hi, hj] = 0, [ei, fj] =

{
hi (i = j)

0 (i 6= j),
[hi, ej] = Cjiej, [hi, fj] = −Cjifj

[ei, [. . . , [ei︸ ︷︷ ︸
1−Cji

, ej] . . . ]] = 0, [fi, [. . . , [fi︸ ︷︷ ︸
1−Cji

, fj] . . . ]] = 0 (i 6= j)

Remark. The groups GLn(K), SLn(K), SOn(K) = {g ∈ SLn(K) : gT = g−1}
can be considered as Lie groups or algebraic groups. The tangent space at
the identity becomes a Lie algebra. This gives gln(K), sln(K), son(K). A
f.d. representation of a Lie group or algebraic group G is a homomorphism
G → GL(V ) of such groups. It induces a Lie algebra map g → gl(V ), that
is, a representation of g as a Lie algebra.

Example 1. Universal enveloping algebras. Let g be a Lie algebra. Its
universal enveloping algebra is the associative algebra

U(g) = T (g)/(x⊗ y − y ⊗ x− [x, y] : x, y ∈ g).

If g is a f.d. simple Lie algebra, U(g) is generated as an associative algebra by
hi, ei, fi subject to the Chevalley-Serre relations, now interpreted as relations
in an associative algebra, where [a, b] = ab− ba.

For any algebraR we get a bijection Homalgebra(U(g), R)→ HomLie algebra(g, R).
Thus U(g)-modules correspond exactly to representations of g.

Poincaré-Birkoff-Witt Theorem. If g has basis x1, . . . , xn, then U(g) has basis
the monomials xi11 . . . x

in
n . Use the Diamond Lemma.

Example 2. Drinfeld-Jimbo quantum groups. They arose in the theory of
integrable systems, in order to help find solutions of the ‘quantum Yang-
Baxter equation’.

Let q ∈ K with q 6= 0, 1,−1. Let g be a simple Lie algebra. We do the
case sl2. The quantum group Uq(sl2) is the algebra generated by κ, κ−1, E, F
subject to the relations

κEκ−1 = q2E, κFκ−1 = q−2F, EF − FE =
κ− κ−1

q − q−1

as well as κκ−1 = κ−1κ = 1.
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It is an iterated skew polynomial ring K[κ, κ−1][E;σ][F ;σ′, δ′].

Example 3. Associated to a f.d. simple Lie algebra there is Weyl group W
together with a set S of Coxeter generators. For sln it is the symmetric group
W = Sn equipped with the set S = {si = (i i + 1) : i = 1, . . . , n− 1} which
generates the group subject to the relations

s2
i = 1, sisj = sjsi (|i− j| > 1), sisi+1si = si+1sisi+1.

The group algebra KSn is the algebra generated by s1, . . . , sn−1 subject to
these relations.

Example 4. The (Artin) braid group Bn is the group generated by σ1, . . . , σn−1

subject to the relations

σiσj = σjσi (|i− j| > 1), σiσi+1σi = σi+1σiσi+1.

One can show that the elements of Bn can be identified with braids

identifying two such braids if they are isotopic. The generators correspond
to the braids

and the relations are as follows
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By joining the ends of a braid, one gets a knot (or a link if it is not connected),
for example

Moreover any knot arises from some braid (for some n).

The group algebraKBn is the algebra generated by σ1, . . . , σn−1 and σ−1
1 , . . . , σ−1

n−1

subject to the relations

σiσ
−1
i = σ−1

i σi = 1, σiσj = σjσi (|i− j| > 1), σiσi+1σi = σi+1σiσi+1.

Example 5. Let 0 6= q ∈ K. The (Iwahori-)Hecke algebra is a deformation
of the group algebra KW . For sln it is generated by t1, . . . , tn−1 subject to
the relations

(ti − q)(ti + 1) = 0, titj = tjti (|i− j| > 1), titi+1ti = ti+1titi+1.

Now ti is invertible, with inverse (1/q)(1 + (1− q)ti), so there is a surjective
homomorphism from KBn to the Hecke algebra sending σi to ti.

One can show that the Hecke algebra has dimension n!, and for q not a root
of 1 it is semisimple. The case q = 1 recovers KSn.

Example 6. The Temperley-Lieb algebra TLn(δ) for n ≥ 1 and δ ∈ K
has basis the diagrams with two vertical rows of n dots, connected by n
nonintersecting curves. For example

Two diagrams are considered equal if the same vertices are connected. The
product is defined by

ab = δrc
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where c is obtained by concatenating a and b and deleting any loops, and r
is the number of loops removed. For example

One can show that TLn(δ) is generated by u1, . . . , un−1 where ui is the dia-
gram

subject to the relations u2
i = δui, uiui±1ui = ui and uiuj = ujui if |i− j| > 1.

The algebra TLn(δ) is f.d., with dimension the nth Catalan number. For
example for n = 3 the diagrams are

1 = , u1 =

�� ��
, u2 =

�� �� , p =
�� ��Q
QQ , q =

�� ���
��

The Temperley-Lieb algebra was invented to help make computations in
study Statistical Mechanics. It is now also important in Knot Theory.

The Markov trace is the linear map tr : TLn(δ) → K sending a diagram
to δr−n where r is the number of cycles in the diagram obtained by joining
vertices at opposite ends.

Given 0 6= A ∈ K, there is a homomorphism θ : KBn → TLn(δ) where
δ = −A2 − 1/A2, with θ(σi) = Aui + (1/A), θ(σ−1

i ) = (1/A)ui + A.

Combined one gets a map tr θ : KBn → K. One can show that this only
depends on the knot obtained by joining the ends of the braid, and it is a
Laurent polynomial in A. It is essentially the Jones polynomial of the knot.
See Lemma 2.18 in Aharonov, Jones and Landau, A polynomial quantum
algorithm for approximating the Jones polynomial, Algorithmica 2009.
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Example 7. The preprojective algebra for a finite quiver Q is

Π(Q) = KQ/(
∑
a∈Q

(aa∗ − a∗a))

where Q, the double of Q, is obtained by adjoining an inverse arrow a∗ : j → i
for each arrow a : i→ j in Q. For example if Q is the quiver

then Q is the quiver

Observe that if c =
∑

a∈Q(aa∗−a∗a) then eicej = 0 if i 6= j, so Π(Q) is given
by the relations

ci = eicei =
∑

a∈Q,h(a)=i

aa∗ −
∑

a∈Q,t(a)=i

a∗a

for i ∈ Q0.

Examples. For Q = • a−→ • b−→ • the relations are

a∗a = 0, aa∗ = b∗b, bb∗ = 0.

If Q is a loop x, then Π(Q) = K〈x, x∗〉/(xx∗ − x∗x) ∼= K[x, x∗].

Theorem. Π(Q) is f.d. if and only if the underlying graph of Q is a Dynkin
diagram (assuming Q is connected).

For the following, see A. Mellit, Kleinian singularities and algebras generated
by elements that have given spectra and satisfy a scalar sum relation, Algebra
Discrete Math. 2004.

Theorem. Given k, d1, . . . , dk > 0, we have

K〈x1, . . . , xk〉/(x1 + · · ·+ xk, x
d1
1 , . . . , x

dk
k ) ∼= e0Π(Q)e0
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where Q is star-shaped with central vertex 0 and arms 1, . . . , k, with vertices
(i, 1), (i, 2), . . . , (i, di−1) going outwards on arm i and arrows ai,1, . . . , ai,di−1

pointing inwards.

Proof. Let the algebra on the left be A and the one on the right be B =
e0Π(Q)e0. Now B is spanned by the paths in Q which start and end at vertex
0. If vertex (i, j) is the furthest out that a path reaches on arm i, then it
must involve aija

∗
ij, and if j > 1, the relation

aija
∗
ij = a∗i,j−1ai,j−1

shows that this path is equal in B to a linear combination of paths which
only reach (i, j − 1). Repeating, we see that B is spanned by paths which
only reach out to vertices (i, 1). Thus we get a surjective map

K〈x1, . . . xk〉 → B

sending each xi to ai1a
∗
i1. It descends to a surjective map θ : A→ B since it

sends x1 + · · ·+ xk to 0 and xdii is sent to

(ai1a
∗
i1)di = ai1(a∗i1ai1)di−1ai1

= ai1(ai2a
∗
i2)di−1a∗i1

= ai1ai2(a∗i2ai2)di−2a∗i2a
∗i1

= · · · =
= ai1ai2 . . . ai,di−1(a∗i,di−1ai,di−1)a∗i,di−1 . . . a

∗
i1 = 0

since a∗i,di−1ai,di−1 = 0.

To show that θ is an isomorphism it suffices to show that any A-module can
be obtained by restriction from a B-module, for if a ∈ Ker θ and M = θN ,
then aM = θ(a)N = 0. Thus if A can be obtained from a B-module by
restriction, then aA = 0, so a = 0.

Thus take an A-module M . We construct a representation of Q by defining
V0 = M and V(i,j) = xjiM . with aij the inclusion map, and a∗ij multiplication
by xi. This is easily seen to satisfy the preprojective relations, so it becomes
a module for Π(Q). Then e0V = M becomes a module for e0Π(Q)e0 = B.
Clearly its restriction via θ is the original A-module M .

Example 8. If Q is a quiver, the Leavitt path algebra is L(Q) = KQ/I where
I is generated by the relations

ab∗ =

{
eh(a) (a = b)

0 (a 6= b)
and

∑
a∈t−1(i)

a∗a = ei (1 < |t−1(i)| <∞).
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(More precisely, in the literature, it is the opposite ring to this).

For example L(1
a1−→ 2

a2−→ . . .
an−1−−−→ n) ∼= Mn(K) sending ei to eii ai to ei+1,i

and a∗i to ei,i+1.

Theorem (Leavitt 1962). If R = L(Q) where Q has one vertex and n + 1
loops, then Ri ∼= Rj as R-modules ⇔ i ≡ j (mod n).

If the loops are a1, . . . , an+1, the relations ensure that maps

r 7→ (ra∗1, . . . ra
∗
n+1), (r1, . . . , rn+1) 7→

∑
riai.

are inverse isomorphisms between R and Rn+1. The problem is to show that
Ri 6∼= Rj when i 6≡ j (mod n); in particular that R 6= 0.
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3 Module categories

3.1 Categories

A category C consists of
(i) a collection ob(C) of objects
(ii) For any X, Y ∈ ob(C), a set Hom(X, Y ) (or C(X, Y ), or sometimes
HomC(X, Y )) of morphisms θ : X → Y , and
(iii) For anyX, Y, Z, a composition map Hom(Y, Z)×Hom(X, Y )→ Hom(X,Z),
(θ, φ) 7→ θφ.
satisfying

(a) Associativity: (θφ)ψ = θ(φψ) for X
ψ−→ Y

φ−→ Z
θ−→ W , and

(b) For each object X there is an identity morphism idX ∈ Hom(X,X), with
idY θ = θ = θidX for all θ : X → Y .

Examples.
(1) The categories of Sets, Groups, Abelian groups, Rings, Commutative
rings, K-algebras, etc.
(2) The category R-Mod of R-modules for a ring R.
(3) Given a group G or a ring R, the category with one object ∗, Hom(∗, ∗) =
G or R and composition given by multiplication.
(4) Given a ring R, the category with objects N, Hom(m,n) = Mn×m(R) and
composition given by matrix multiplication.
(5) Path category of a quiver Q. Objects Q0 and Hom(i, j) = set of paths
from i to j. The K-linear path category of Q. Objects Q0 and Hom(i, j) =
K-module with basis the paths from i to j.
(6) The category of correspondences. The objects are sets, Hom(X, Y ) is the
set of subsets S ⊆ X × Y , the composition of morphisms S ∈ Hom(X, Y )
and T ∈ Hom(Y, Z) is

TS = {(x, z) ∈ X × Z : (x, y) ∈ S and (y, z) ∈ T for some y ∈ Y }.

The identity morphisms are the diagonal subsets idX = {(x, x) : x ∈ X}.

Definition. An isomorphism is a morphism θ : X → Y with an inverse, that
is, there is some φ : Y → X, θφ = idY , φθ = idX . If so, then φ is uniquely
determined, and denoted θ−1.

Definition. A subcategory of a category C is a category D with ob(D) ⊆ ob(C)
and D(X, Y ) ⊆ C(X, Y ) for all X, Y ∈ ob(D), such that composition in D
is the same as that in C and idCX ∈ D(X,X). It is a full subcategory if
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D(X, Y ) = C(X, Y ).

Examples.
(a) The category of finite groups in the category of all groups.
(b) The category R-mod of finitely generated R-modules inside R-Mod.
(c) The category whose objects are sets and with Hom(X, Y ) = the injective
functions X → Y is a subcategory of the category of sets.
(d) Identifying a mapping of sets X → Y with its graph, the category of sets
becomes a subcategory of the category of correspondences.

Definition. If C is a category, the opposite category Cop is given by ob(Cop) =
ob(C), Cop(X, Y ) = C(Y,X), with composition of morphisms derived from
that in C.

If C and D are categories, then C×D denotes the category with ob(C×D) =
ob(C)× ob(D) and Hom((X,U), (Y, V )) = C(X, Y )×D(U, V ).

Remark. Recall that there is no set of all sets. Thus ob(C) may be a proper
class. We say that C is small if ob(C) is a set, and skeletally small if there
is a set S of objects such that every object is isomorphic to one in S.

Example. The category of finite sets is not small, but it is skeletally small
with S = {∅, {1}, {1, 2}, . . . }. R-Mod is not small or skeletally small, but
R-mod is skeletally small with S = {Rn/U : n ∈ N, U ⊆ Rn}.

3.2 Monomorphisms and epimorphisms

Definition. A monomorphism in a category is a morphism θ : X → Y such
that for all pairs of morphisms α, β : Z → X, if θα = θβ then α = β.

An epimorphism is a morphism θ : X → Y such that for all pairs of mor-
phisms α, β : Y → Z, if αθ = βθ then α = β.

In many concrete categories a monomorphism = injective map, epimorphism
= surjective map.

Lemma. In R-Mod, monomorphism = injective map and epimorphism =
surjective map.

Proof. We show epi = surjection. The other is similar.

Say θ : X → Y is surjective and αθ = βθ then for all y ∈ Y there is x ∈ X
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with θ(x) = y. Then α(y) = α(θ(x)) = β(θ(x)) = β(y). Thus α = β.

Say θ : X → Y is an epimorphism. The natural map Y → Y/ Im θ and
the zero map have the same composition with θ, so they are equal. Thus
Im θ = Y .

Example. In the category of rings, a localization map θ : R → RS is an
epimorphism, but usually not a surjective map, for example Z→ Q.

Namely, if α, β : RS → T and αθ = βθ, then αθ is a map R → T which
inverts the elements of S, so it can be factorized uniquely through θ. Thus
α = β.

Theorem. The following are equivalent for a ring homomorphism θ : R→ S.
(i) θ is an epimorphism in the category of rings
(ii) s⊗ 1 = 1⊗ s in S ⊗R S for all s ∈ S.
(iii) The multiplication map S⊗RS → S is an isomorphism of S-S-bimodules.
(iv) Multiplication gives an isomorphism S ⊗R M → M for any S-module
M .
(v) For any S-modules M,N we have HomS(M,N) = HomR(M,N).

Proof. (i)⇒(ii) Let M be the S-S-bimodule S ⊗R S and let T = S ⊕M ,
turned into a ring with the multiplication (s,m)(s′,m′) = (ss′, sm′ + ms′).
The maps α, β : S → T defined by α(s) = (s, 0) and β(s) = (s, s⊗ 1− 1⊗ s)
are ring homomorphisms with αθ = βθ. Thus α = β, so s⊗ 1 = 1⊗ s.

(ii)⇒(iii) s 7→ s⊗ 1 = 1⊗ s is an inverse. For example this map sends st to
st⊗ 1 = s(t⊗ 1) = s(1⊗ t) = s⊗ t.

(iii)⇒(iv) S ⊗RM ∼= S ⊗R S ⊗S M ∼= S ⊗S M ∼= M .

(iv)⇒(v) HomR(M,N) ∼= HomR(M,HomS(S,N)) ∼= HomS(S ⊗R M,N) ∼=
HomS(M,N).

(v)⇒(i). Say f, g : S → T have the same composition with θ. Then the
identity map is an R-module map between the restrictions of fT and gT .
Thus it is an S-module map. Thus f = g.
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3.3 Functors

If C,D are categories, a (covariant) functor F : C → D is an assignment of
(i) For each object X ∈ ob(C), an object F (X) ∈ ob(D), and
(ii) For each X, Y ∈ ob(C) a map F or FXY from C(X, Y ) to D(F (X), F (Y )),
such that F (θφ) = F (θ)F (φ) and F (idX) = idF (X).

A contravariant functor F : C → D is the same thing as a covariant functor
Cop → D. Thus it is an assignment of
(i) For each object X ∈ ob(C), an object F (X) ∈ ob(D), and
(ii) For each morphism θ : X → Y in C a morphism F (θ) : F (Y ) → F (X)
in D,
such that F (θφ) = F (φ)F (θ) and F (idX) = idF (X).

Definitions. If for all X, Y ∈ ob(C) the map F : C(X, Y )→ D(F (X), F (Y ))
is injective, then F is faithful. It it is surjective then F is full. If every object
in D is isomorphic to F (X) for some object X in C, we say that F is dense.

The inclusion of a subcategory is a faithful functor. It is full if and only if
the subcategory is full.

Definition. Let C be a category and let Hom(X, Y ) denote the Hom sets for
C. Fix an object X ∈ ob(C). The representable functor F = Hom(X,−)
is the functor C → Sets sending an object Y to F (Y ) = Hom(X, Y ), and
sending a morphism θ ∈ Hom(Y, Z) to the morphism F (θ) : Hom(X, Y ) →
Hom(X,Z) defined by F (θ)(φ) = θφ.

Dually, fixing Y , we get a contravariant functor Hom(−, Y ) from C to Sets.

Varying both X and Y , Hom defines a functor Hom(−,−) : Cop×C → Sets.

Other examples of functors.
(1) There are many examples of “forgetful functors”, which forget some struc-
ture. For example Groups to Sets, or K-Alg to K-Mod. They are faithful.
(2) Given a ring homomorphism θ : R → S, restriction defines a faithful
functor S-Mod → R-Mod. It is full if and only if θ is a ring-epimorphism.
(3) If M is an R-S-bimodule, then any homomorphism of S-modules X → X ′

gives a homomorphism M ⊗S X → M ⊗S X ′ of R-modules. Thus M ⊗S −
becomes a functor from S-Mod to R-Mod.
(4) If M is an R-S-bimodule, it also gives functors HomR(M,−) from R-Mod
to S-Mod and HomR(−,M) from R-Modop to Sop-Mod. Special case: if K
is a field, then duality V  V ∗ = HomK(V,K) gives a contravariant functor
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K-Mod to K-Mod.
(5) A functor from the path category of a quiver Q to K-Mod is exactly the
same thing as a representation of Q.

3.4 Natural transformations

Definition. If F,G are functors C → D, then a natural transformation Φ :
F → G consists of morphisms ΦX ∈ D(F (X), G(X)) for all X ∈ ob(C) such
that G(θ)ΦX = ΦY F (θ) for all θ ∈ C(X, Y ).

We say that Φ is a natural isomorphism if all ΦX are isomorphisms in D.

Examples. (1) If K is a field and V is a K-vector space, there is a natural
map V → V ∗∗, v 7→ (θ 7→ θ(v)). This is a natural transformation 1C → (−)∗∗

of functors from K-Mod to K-Mod. If we used K-mod, the category of finite
dimensional K-vector spaces, it would be a natural isomorphism.

(2) Any morphism θ : X → Y in a category C defines a natural trans-
formation of representable functors Φ : Hom(Y,−) → Hom(X,−), with
ΦZ : Hom(Y, Z) → Hom(X, Y ), f 7→ fθ. Also it defines a natural transfor-
mation of contravariant representable functors Hom(−, X)→ Hom(−, Y ).

(3) A map of R-S-bimodules M → N gives natural transformations
(i) HomR(N,−)→ HomR(M,−) of functors R-Mod→ S-Mod,
(ii) HomR(−,M)→ HomR(−, N) of functors R-Modop → Sop-Mod,
(iii) M ⊗S − → N ⊗S − of functors S-Mod→ R-Mod, etc.

(4) If M is an R-S-bimodule, X an R-module and Y an S-module, one gets
a map

HomR(X,M)⊗S Y → HomR(X,M ⊗S Y ).

It is natural in X and Y , so defines natural transformations
HomR(X,M)⊗S − → HomR(X,M ⊗S −) of functors S-Mod→ K-Mod, or
HomR(−,M)⊗S Y → HomR(−,M ⊗S Y ) (R-Modop → K-Mod), or
HomR(−,M)⊗S − → HomR(−,M ⊗S −) (R-Modop × S-Mod→ K-Mod).

Yoneda’s Lemma. For a functor F : C → Sets and X ∈ ob(C) there is a
1-1 correspondence between natural transformations Hom(X,−) → F and
elements of F (X).

Proof. A natural transformation Φ : Hom(X,−) → F gives a map ΦX :
Hom(X,X) → F (X), and hence an element ΦX(idX) ∈ F (X). Conversely,
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given f ∈ F (X) and Y ∈ ob(C) we get a map ΦY : Hom(X, Y ) → F (Y ),
θ 7→ F (θ)(f). This defines a natural transformation Φ. These constructions
are inverses.

Corollary 1. Any natural isomorphism of representable functors Hom(X,−) ∼=
Hom(Y,−) is induced by an isomorphism Y ∼= X.

Proof. If Φ : Hom(X,−) ∼= Hom(Y,−) is a natural isomorphism, it corre-
sponds to an element of f ∈ Hom(Y,X).

Now ΦY : Hom(X, Y ) → Hom(Y, Y ), θ 7→ θf is an isomorphism in the
category of sets, so a bijection. Thus there is some g ∈ Hom(X, Y ) with
gf = idY .

Also ΦX : Hom(X,X)→ Hom(Y,X), φ 7→ φf is a bijection, and sends both
fg and idX to f , so fg = idX .

Proposition/Definition. If C,D are categories, with C skeletally small, then
there is a category Fun(C,D) whose objects are the functors C → D and
whose morphisms are the natural transformations. The isomorphisms are
the natural isomorphisms.

Proof. It is straightforward to define the composition of natural transfor-
mations F → G and G → H. The characterization of isomorphisms is also
straightforward.

The only difficulty is to be sure that the Hom spaces are sets. Since C
is a skeletally small category, every object is isomorphic to an object in a
set S. Let F,G : C → D functors. A natural transformation Φ : F →
G is determined by the morphisms ΦX for X ∈ S, for if θ : Y → X is
an isomorphism, then ΦY = G(θ−1)ΦXF (θ) ∈ D(F (Y ), G(Y )). The result
follows.

Corollary 2. We get a full and faithful functor Cop → Fun(C, Sets), X 7→
Hom(X,−).

3.5 Adjoint functors

Definition. Given functors F : C → D and G : D → C, we say that (F,G)
is an adjoint pair, or that F is left adjoint to G or G is right adjoint to F
if there is a natural isomorphism Φ : Hom(F (−),−) ∼= Hom(−, G(−)) of
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functors Cop ×D → Sets.

Thus one needs bijections

ΦX,Y : Hom(F (X), Y ) ∼= Hom(X,G(Y ))

for all X ∈ ob(C) and Y ∈ ob(D), such that

Hom(F (X ′), Y )
ΦX′,Y−−−→ Hom(X ′, G(Y ))

·F (θ)

y ·θ
y

Hom(F (X), Y )
ΦX,Y−−−→ Hom(X,G(Y ))

commutes for all θ : X → X ′, and

Hom(F (X), Y )
ΦX,Y−−−→ Hom(X,G(Y ))

φ·
y G(φ)·

y
Hom(F (X), Y ′)

ΦX,Y ′−−−→ Hom(X,G(Y ′))

commutes for all φ : Y → Y ′.

Examples. (1) (Hom tensor adjointness) If M is an R-S-bimodule then

HomR(M ⊗S X, Y ) ∼= HomS(X,HomR(M,Y ))

for X an S-module and Y an R-module, so (M ⊗S −,HomS(M,−)) is an
adjoint pair between R-modules and S-modules.

(2) Free algebras and free modules. For K a commutative ring,

HomK-alg(K〈X〉, R) ∼= HomSets(X,R),

for X from the category of sets and R from the category of K-algebras, so
(X 7→ K〈X〉, Forget) is an adjoint pair between K-algebras and sets. For R
a ring

HomR(R(X),M) ∼= HomSets(X,M)

for X from the category of sets and M from the category of R-modules, so
(X 7→ R(X), Forget) is an adjoint pair between R-modules and sets.
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3.6 Equivalence of categories

Definition. A functor F : C → D is an equivalence if there is G : D → C
such that FG ∼= 1D and GF ∼= 1C .

Remark. F is an isomorphism if there is G giving equalities of functors
FG = 1D and GF = 1C . This is not such a useful concept.

Theorem. F is an equivalence if and only if it is full, faithful and dense.

Proof. Suppose there is a G and natural isomorphisms Φ : GF → 1C and
Ψ : FG→ 1D. For θ ∈ C(X, Y ) we get θΦX = ΦYG(F (θ)) so if F (θ) = F (θ′)
then θΦX = θ′ΦX , so θ = θ′ since ΦX is an isomorphism. Thus F is faithful.
Similarly G is faithful. Suppose φ ∈ D(F (X), F (Y )). Let θ = ΦYG(φ)Φ−1

X ∈
C(X, Y ). Then θΦX = ΦYG(F (θ)) gives G(φ) = G(F (θ)), so φ = F (θ), so
F is full. Also any Y ∈ ob(D) is isomorphic to F (G(Y )), so F is dense.

On the other hand, if F satisfies the stated conditions, for each Z ∈ ob(D)
choose G(Z) ∈ ob(C) and an isomorphism ηZ : Z → F (G(Z)). We extend it
to a functor G : D → C by defining G(θ) for θ ∈ D(Z,W ) to be the unique
morphism α ∈ C(G(Z), G(W )) with F (α) = ηW θη

−1
Z .

Examples. (i) If K is a field, there is an equivalence of categories from the
category with objects N and Hom(m,n) = Mn×m(K) to the category K-mod
of finite dimensional K-vector spaces, sending n to Kn and a matrix A to
the corresponding linear map.

(ii) The following three categories are equivalent for a quiver Q.
(1) KQ-Mod.
(2) The category of K-representations of Q
(3) The functor category from the path category of Q to K-Mod.

(iii) If R is a graded ring, the category of graded R-modules is equivalent to
the category of modules for the associated catalgebra.

3.7 K-categories and catalgebras

Let K be a commutative ring.

Definition. A K-category is a category C with the additional structure that
each of the sets Hom(X, Y ) is a K-module, in such a way that composition
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Hom(Y, Z)×Hom(X, Y )→ Hom(X,Z) is K-bilinear. In particular each set
Hom(X, Y ) contains a distinguished element, the zero element.

A functor F : C → D between K-categories is K-linear, if all of the maps
C(X, Y )→ D(F (X), F (Y )) are K-module maps.

One uses the terminology pre-additive category and additive functor if these
hold for some K (equivalently for K = Z).

Examples.
(i) K-Mod is a K-category. If R is a K-algebra, then R-Mod is a K-category.
(ii) The K-linear path category of a quiver Q.
(iii) Warning. The category of K-algebras is NOT a K-category.

Remark/Definitions. If C is a K-category, then the representable functor
Hom(X,−) can be considered as a K-linear functor C → K-Mod. Yoneda’s
lemma still works for K-linear functors C → K-Mod. If D is another K-
category and C is skeletally small, there is a category FunK(C,D) ofK-linear
functors C → D.

Proposition. There is a 1-1 correspondence (an equivalence of categories)
between
(i) small K-categories C, and
(ii) K-catalgebras R equipped with a complete family of orthogonal idempo-
tents (ei)i∈I .
For C corresponding to R, there is an equivalence between FunK(C,K-Mod)
and R-Mod.

Proof. Given a small category C, let I be the set of objects, let R =⊕
i,j∈I C(j, i). We think of the elements r ∈ R as matrices whose entry

rij ∈ C(j, i). It becomes an algebra by matrix multiplication

(rr′)ij =
∑
k

rikr
′
kj

and let ei = 1i ∈ C(i, i) ⊆ R. Conversely, given R and (ei)i∈I , let C have set
of objects I and C(j, i) = eiRej, with composition induced by multiplication
in R.

Given a K-linear functor F : C → K-Mod we define M =
⊕

i∈I F (i) and
turn it into an R-module via

(rm)i =
∑
j∈I

F (rij)(mj) ∈ F (i)
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Conversely given M , the unital condition guarantees that M =
⊕

i∈I eiM .
We define F by F (i) = eiM and for r ∈ C(j, i) = eiRej, F (r) : ejM → eiM
is multiplication by r.

Example. The K-linear path category of a quiver Q corresponds to the path
algebra KQ with the trivial paths ei.

3.8 Limits and colimits

Let C be a category.

Definition 1. Let J be a small category.

Given an object X in C, the constant functor cX : J → C sends every object
of J to X and every morphism to idX .

There is a functor c : J → Fun(J,C) sending any object X to cX , and any
morphism θ : X → Y to the natural transformation Φ : cX → cY with Φj = θ
for all objects j in J .

Given a functor F : J → C, a limit for F is an object X in C and a natural
isomorphism HomC(−, X) ∼= HomFun(J,C)(c(−), F ). If F has a limit, it is
unique up to a unique isomorphism, so we can talk about ‘the limit’.

Special cases 1. Taking taking J to the path category of a suitable quiver
gives the following notions.

(a) A product of a family of objects Xi (i ∈ I) is an object X equipped
with morphisms pi : X → Xi such that for any object X ′ and morphisms
qi : X ′ → Xi there is a unique morphism θ : X ′ → X with qi = piθ, that is,
the map Hom(X ′, X)→

∏
i Hom(X ′, Xi), θ 7→ (piθ) is a bijection.

Take the quiver with vertex set I and no arrows. A functor F : J → C is
given by a collection of objects Xi (i ∈ I). By Yoneda’s Lemma, natural
transformations HomC(−, X) → HomFun(J,C)(c(−), F ) correspond to collec-
tions of morphisms X → Xi for i ∈ I.

(b) An equalizer of a pair of morphisms f, g : U → W consists of an object
X and a morphism p : X → U with fp = gp and the universal property, that
for all p′ : X ′ → U with fp′ = gp′ there is a unique θ : X ′ → X with p′ = pθ.
The quiver is ◦ −→−→ ◦.
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In a K-category, the kernel of a morphism f : U → W is the equalizer of f
and 0. Thus it is an object X and a morphism p : X → U with fp = 0, such
that for any morphism p′ : X ′ → U with fp′ = 0 there is a unique morphism
θ : X ′ → X with p′ = pθ. Conversely the equalizer of f, g = kernel of f − g.

(c) A pullback of a pair of morphisms f : U → W and g : V → W , consists of
an object X and morphisms p : X → U and q : X → V giving a commutative
square

X
p−−−→ U

q

y f

y
V

g−−−→ W

and which is univeral for such commutative squares, that is for any X ′,
p′ : W ′ → X, q′ : W ′ → Y with fp′ = gq′ there is a unique θ : X ′ → X with
p′ = pθ and q′ = qθ.

Examples 1. In the category Sets, K-algebras or R-modules, all limits exist.

The product is the usual one.

The kernel of f : U → W in R-Mod is Ker f → U .

The pullback is {(u, v) ∈ U × V : f(u) = g(v)}, etc.

Lemma. In an equalizer, p is mono. In a pullback, if f is mono, so is q.

For the equalizer, suppose α, β : X ′ → X and pα = pβ = p′. Since fp′ = gp′,
there is a unique θ : X ′ → X with p′ = pθ. But both θ = α and θ = β satisfy
this, so α = β.

For the pullback. Suppose α, β : X ′ → X with qα = qβ. Then gqα = gqβ,
so fpα = fpβ. Since f is mono, pα = pβ. Thus by the uniqueness part of
the universal property for a pullback, α = β.

Definition 2. Colimits in C are the same as limits in Cop.

Special cases 2.
(a) A coproduct of a family of objects Xi (i ∈ I) is an object X equipped
with morphisms ii : Xi → X such that for any object X ′ and morphisms
ji : Xi → X ′ there is a unique morphism θ : X → X ′ with ji = θii, that is,
the map Hom(X,X ′)→

∏
i Hom(Xi, X

′), θ 7→ (θii) is a bijection.

(b) A coequalizer of a pair of morphisms f, g : U → W consists of an object
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X and a morphism p : W → X with pf = pg and the universal property.

In a K-category, the cokernel of a morphism f : U → W is the coequalizer
of f and 0.Thus it is an object X and a morphism p : W → X with pf = 0,
such that for any morphism p′ : W → X ′ with p′f = 0 there is a unique
morphism θ : X → X ′ with p′ = θp.

(c) A pushout of a pair of morphisms f : W → U and g : W → V , consists of
an object X and morphisms p : U → X and q : V → X giving a commutative
square pf = qg, and which is univeral for such commutative squares, that
is for any X ′, p′ : U → X ′, q′ : V → X ′ with p′f = q′g there is a unique
θ : X → X ′ with p′ = θp and q′ = θq.

Examples 2. (i) In the category Sets and R-Mod all colimits exist.

Coproducts: disjoint union
⋃
Xi, direct sum

⊕
Xi.

The cokernel of a morphism f : U → W in R-Mod is W → W/ Im f .

Pushouts: U∪V/ ∼ where ∼ is the equivalence relation generated by f(w) ∼
g(w) for w ∈ W , and (U ⊕ V )/ Im θ, where θ : W → U ⊕ V is θ(w) =
(f(w),−g(w)).

(ii) In the category of commutative K-algebras / all K-algebras we have
finite coproducts. For the first, the coproduct of U and V is U ⊗K V . For
the second, the coproduct is U ∗K V . For example if U = K〈X〉/I and
V = K〈Y 〉/J , then U ∗K V = K〈X ∪ Y 〉/(I ∪ J).

3.9 Additive categories

Proposition 1. For objects X, X1, . . . , Xn (n ≥ 0) in a K-category the
following are equivalent
(i) X is the product of X1, . . . , Xn for some morphisms pi : X → Xi

(ii) X is the coproduct of X1, . . . , Xn for some morphisms ii : Xi → X,
(iii) There are morphisms pi : X → Xi and ii : Xi → X with piii = idXi

,
piij = 0 for i 6= j and

∑n
i=1 iipi = idX .

In this case we write X =
⊕n

i=1Xi and call it a direct sum.

Proof. (i)⇒(iii) For any object X ′ we have a bijection Hom(X ′, X) →∏n
i=1 Hom(X ′, Xi), φ 7→ (piφ). For Z = Xj, in the RHS we take the identity

endomorphism of Xj and the zero maps in Hom(Xj, Xi) for i 6= j. This
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gives a map ij : Xj → X. These satisfy the conditions. For example if
φ =

∑n
i=1 iipi then pjφ =

∑n
i=1 pjiipi =

∑
δij1jpi = pj, so φ = idX .

(iii)⇒(i) For any X ′ one has inverse bijections

Hom(X ′, X)
(αi)7→

∑
iiαi←−

−→
φ 7→(piφ)

n∏
i=1

Hom(X ′, Xi)

so the pi turn X into a product.

(ii)⇔(iii) Dual.

Special case. In a K-category, X is a product or coproduct of no objects ⇔
Hom(X,X) = 0. Such an object is called a zero object, denoted 0.

Definition. A category is additive if it is a K-category for some K (equiv-
alently for K = Z), if it has a zero object and every pair of objects has a
direct sum (equivalently it has all finite direct sums).

Example. R-Mod, R-mod, the category of free R-modules.

Proposition 2.. If F is a K-linear functor between additive K-categories, then
F preserves finite direct sums, so F (0) = 0 and F (X ⊕ Y ) ∼= F (X)⊕ F (Y ).

Proof. Apply F to the morphisms in part (iii) of Proposition 1.

3.10 Abelian categories and exact functors

Definition. A category is abelian if
(i) it is additive,
(ii) every morphism has a kernel and cokernel,
(iii) every morphism factors as an epi followed by a mono, and
(iv) every mono is the kernel of its cokernel and every epi is the cokernel of
its kernel.

Example. R-Mod. Also the category R-mod of finitely generated modules,
for R a left noetherian ring. (The noetherian hypothesis ensures that the
kernel of a morphism between f.g. modules is f.g.)

Definitions. A subobject of an object X in an abelian category is an equiva-
lence class of monos to X, where α : U → X is equivalent to α′ : U ′ → X ⇔
α = α′θ for some isomorphism φ : U → U ′.
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[There is possibly a set-theoretic problem here, which we ignore.]

Given a subobject U → X we write X/U for its cokernel.

Given a morphism θ : X → Y , the kernel of θ gives a subobject Ker θ of X,
and the kernel of the cokernel of θ gives a subobject Im θ of Y .

We get analogues of the isomorphism theorems - details omitted.

Recall that a sequence of modules

· · · → X
f−→ Y

g−→ Z → . . .

is exact at Y if Im f = Ker g. This makes sense for an abelian category too.

A short exact sequence is an exact sequence 0 → X
f−→ Y

g−→ Z → 0.
Equivalently f the kernel of g, and g is the cokernel of f .

A short exact sequence is split exact if it satisfies the following equivalent
conditions
(i) g has a section, a morphism s : Y → E with gs = idY .
(ii) f has a retraction, a morphism r : E → X with rf = idX .
(iii) There are

X
r←−
−→
f

E
g−→
←−
s

Y

with gs = idY , gf = 0, rs = 0, rf = idX and sg + fr = idE, so E ∼= X ⊕ Y .

Definition. If F is an additive functor between abelian categories, we say
that F is exact (respectively left exact, respectively right exact) if given any
short exact sequence

0→ X → Y → Z → 0

the sequence
0→ F (X)→ F (Y )→ F (Z)→ 0

is exact (respectively 0 → F (X) → F (Y ) → F (Z) is exact, respectively
F (X) → F (Y ) → F (Z) → 0 is exact). Similarly, if F is a contravariant
functor, we want the sequence

0→ F (Z)→ F (Y )→ F (X)→ 0

to be exact (respectively 0 → F (Z) → F (Y ) → F (X) exact, respectively
F (Z)→ F (Y )→ F (X)→ 0 exact).
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Notes. (i) Any additive functor between abelian categories sends split exact
sequences to split exact sequences.

(ii) An exact functor sends any exact sequence (not just a short exact se-
quence) to an exact sequence. A left exact functor sends an exact sequence
0 → X → Y → Z to an exact sequence 0 → F (X) → F (Y ) → F (Z).
Similarly for right exact.

Proposition. For an abelian category, Hom(−,−) gives a left exact functor
in each variable. That is, if M is an object and 0 → X → Y → Z → 0 is
exact, then so are

0→ Hom(M,X)→ Hom(M,Y )→ Hom(M,Z)

and
0→ Hom(Z,M)→ Hom(Y,M)→ Hom(X,M).

Proof. The first sequence is exact at Hom(M,Y ) since X → Y is a kernel
for Y → Z, and it is exact at Hom(M,X) since X → Y is a mono.

Lemma. For morphisms f : U → W and g : V → W in an abelian category,
the pullback

X
p−−−→ U

q

y f

y
V

g−−−→ W

exists. Moreover, if g is part of an exact sequence 0 → Z
α−→ V

g−→ W → 0
one gets a commutative diagram with exact rows

0 −−−→ Z
β−−−→ X

p−−−→ U −−−→ 0∥∥∥ q

y f

y
0 −−−→ Z

α−−−→ V
g−−−→ W −−−→ 0

Dually, for morphisms f : W → U and g : W → V , the pushout

W
g−−−→ V

f

y q

y
U

p−−−→ X
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exists. Moreover, if g is part of an exact sequence 0 → W
g−→ V

α−→ Z → 0
one gets a commutative diagram with exact rows

0 −−−→ W
g−−−→ V

α−−−→ Z −−−→ 0

f

y q

y ∥∥∥
0 −−−→ U

p−−−→ X
β−−−→ Z −−−→ 0

Proof. We have morphisms

U
pU←−
−→
iU

U ⊕ V
pV−→
←−
iV

V.

Let θ = fpU + gpV : U ⊕ V → W . This morphism has a kernel, say X
k−→

U ⊕ V . Let p = pUk and q = −pV k. Now 0 = θk = (fpU + gpV )k = fp− gq,
so fp = gq. Moreover given morphisms p′ : X ′ → U and q′ : X ′ → V with
fp′ = gq′, we get a morphism φ = iUp

′ − iV q′ : X ′ → U ⊕ V with θφ = 0.
Thus φ factors uniquely as kφ′ for some φ′ : X ′ → X. This means that
p′ = pUφ = pUkφ

′ = pφ′ and q′ = −pV φ = −pV kφ′ = qφ′, which is the
universal property for a pullback.

We have already shown that if f is mono, so is q.

Conversely, if q is mono, so is f . Namely, suppose α : Z → U is a morphism
with fα = 0. Consider the zero map Z → V . By the pullback property there
is a morphism γ : Z → X with pγ = α and qγ = 0. Since q is mono, γ = 0.
Thus α = 0.

Dually there are pushouts.

Now suppose that g : V → W belongs to an exact sequence. The morphism
α : Z → V together with the zero morphism Z → U give a morphism
β : Z → X. We need to show 0→ Z → X → U → 0 is exact.

Since g is an epi, so is θ. Thus the sequence

0→ X
k−→ U ⊕ V θ−→ W → 0

is exact. Thus θ is the cokernel of k. Thus W is the pushout of p and q.
Thus by properties of pushout, dual to pullbacks, since g is epi, so is p.

It remains to see that β is a kernel for p. This is straightforward.
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3.11 Projective modules

Proposition/Definition. An object P in an abelian category is projective if it
satisfies the following equivalent conditions.
(i) Hom(P,−) is an exact functor.
(ii) Any short exact sequence 0→ X → Y → P → 0 is split.
(iii) Given an epimorphism θ : Y � Z, any morphism P → Z factors
through θ.

Proof. (i)⇒(ii) Hom(P, Y )→ Hom(P, P ) is onto. A lift of idP is a section.

(ii)⇒(iii) Take the pullback along the map P → Z. The resulting exact
sequence has P as third term, so is split. This gives a map from P to the
pullback. Composing with the map to Y gives the map P → Y .

(iii)⇒(i) Clear.

Lemma 1. Given sequences 0 → Xi → Yi → Zi → 0 (i ∈ I) of R-modules,
the following are equivalent.
(i) The sequences are exact for all i ∈ I.
(ii) 0→

∏
iXi →

∏
i Yi →

∏
i Zi → 0 is exact.

(iii) 0→
⊕

iXi →
⊕

i Yi →
⊕

i Zi → 0 is exact.

Proof. Straightforward.

Proposition. A direct sum of modules
⊕

iMi is projective ⇔ all Mi are
projective.

Proof. Hom(
⊕

iMi,−) =
∏

i Hom(Mi,−), so
⊕

iMi is projective
⇔ 0 → Hom(

⊕
iMi, X) → Hom(

⊕
iMi, Y ) → Hom(

⊕
iMi, Z) → 0 exact

for all 0→ X → Y → Z → 0
⇔ 0→

∏
i Hom(Mi, X)→

∏
i Hom(Mi, Y )→

∏
i Hom(Mi, Z)→ 0 exact

⇔ all 0→ Hom(Mi, X)→ Hom(Mi, Y )→ Hom(Mi, Z)→ 0 are exact
⇔ all Mi are projective.

Theorem. Any free module is projective, and any module is a quotient of a
free module. A module is projective if and only if it is a direct summand of
a free module.

Proof. HomR(R,X) ∼= X, so R is a projective module, hence so is any direct
sum of copies of R. If F → P is onto with F free and P projective, then P
is isomorphic to a summand of F .
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Examples.
(i) If R is a semisimple f.d. algebra, then every submodule is a direct sum-
mand, so every short exact sequence is split, so every module is projective.
(ii) For a principal ideal domain, any finitely generated projective module is
free. This follows from the usual classification of f.g. modules for a pid.
(iii) If e ∈ R is an idempotent, then R = Re ⊕ R(1 − e), so Re is a direct
summand of RR, so it is projective. Conversely any direct summand I of

R is of the form Re for some idempotent e, for the projection onto I is an
idempotent e ∈ EndR(R) ∼= Rop, so gives an idempotent e ∈ R with I = Re.

Notation. We write R−proj for the category of finitely generated projective
left R-modules. Note that an R-module is finitely generated projective if and
only if it is isomorphic to a direct summand of a free module Rn for some n.

Lemma 2. The functor HomR(−, R) defines an antiequivalence between R−
proj and Rop − proj.

Proof. There is a natural transformation

X → HomR(HomR(X,R), R), x 7→ (θ 7→ θ(x)).

It is an isomorphism for X = R, so for finite direct sums of copies of R, so
for direct summands of such modules.

Lemma 3. If M is an R-S-bimodule, then there is a natural transformation

HomR(X,M)⊗S Y → HomR(X,M ⊗S Y ), θ ⊗ y 7→ (x 7→ θ(x)⊗ y)

for X an R-module and Y an S-module. It is an isomorphism if X is finitely
generated projective. Moreover, if idX is in the image of the natural map
HomR(X,R)⊗R X → EndR(X), then X is finitely generated projective.

Proof. For the first part, reduce to the case of X = R. Say idX comes from∑
i θi ⊗ xi, then the composition of the maps

X
(θi)−−→ Rn (xi)−−→ X

is the identity.

3.12 Injective modules

Proposition/Definition. An object I in an abelian category is injective if it
satisfies the following equivalent conditions.
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(i) Hom(−, I) is an exact functor.
(ii) Any short exact sequence 0→ I → Y → Z → 0 is split.
(iii) Given an injective map θ : X ↪→ Y , any map X → I factors through θ.

Proof. This is the opposite category version of the result for projectives.

Definition 1. An inclusion of R-modules M ⊆ N is an essential extension of
M if every non-zero submodule S of N has S ∩M 6= 0.

Theorem 1. For an R-module I, following conditions are equivalent.
(a) I is injective.
(b) (Baer’s criterion) Every homomorphism f : J → I from a left ideal J of
R can be extended to a homomorphism R→ I.
(c) I has no non-trivial essential extensions

Proof. (a)⇒(b) is trivial.

(b)⇒(c) Let I ⊆ L be a non-trivial essential extension and fix ` ∈ L \ I. We
consider the pullback

J −−−→ Ry y
I −−−→ L

where R→ L is the map r 7→ r`. Then J → R is injective, so J is identified
with a left ideal in R. By (b), the map J → I lifts to a map R → I, say
sending 1 to i. Then if r(` − i) ∈ I, then r` ∈ I, so r ∈ J , so r` = ri, so
r(` − i) = 0. Thus I ∩ R(` − i) = 0 and R(` − i) 6= 0, contradicting that
I ⊆ L is an essential extension.

(c)⇒(a). Given I ⊆ Y , we need to show that I is a summand of Y . By
Zorn’s Lemma, the set of submodules in Y with zero intersection with I has
a maximal element C. If I+C = Y , then C is a complement. Otherwise, I ∼=
(I +C)/C ⊆ Y/C is a non-trivial extension. By (c) it cannot be an essential
extension, so there is a non-zero submodule U/C with zero intersection with
(I + C)/C. Then U ∩ (I + C) = C, so U ∩ I ⊆ C ∩ I = 0. This contradicts
the maximality of C.

Proposition. A direct product of modules
∏

iMi is injective ⇔ all Mi are
injective

Proof. Use that Hom(−,
∏

iMi) =
∏

i Hom(−,Mi).

Definition 2. If K is an integral domain, then a K-module M is divisible if
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and only if for all m ∈M and 0 6= a ∈ K there is m′ ∈M with m = am′.

Observe that if M is divisible, so is any quotient M/N .

Theorem 2. If K is an integral domain, then any injective module is divisible.
If K is a principal ideal domain, the converse holds.

Proof. Divisibility says that any map Ka → M lifts to a map K → M . If
K is a pid these are all ideals in K.

Now suppose that K is a field or a principal ideal domain. We define (−)∗ =
HomK(−, E), where

E =

{
K (if K is a field)

F/K (if K is a pid with fraction field F 6= K)

Then E is divisible, so an injective K-module, so (−)∗ is an exact functor. It
gives a functor from R-modules on one side to R-modules on the other side.

Lemma. If M is a K-module, the map M → M∗∗, m 7→ (θ 7→ θ(m)) is
injective. (It is an isomorphism if K is a field and M is a finite-dimensional
K-vector space).

Proof. Given 0 6= m ∈ M it suffices to find a K-module map f : Km → E
with f(m) 6= 0, for then since E is injective, f lifts to a map θ : M → E. If K
is a field there is an isomorphism Km→ E. If K is a principal ideal domain,
choose a maximal ideal Ka containing ann(m) = {x ∈ K : xm = 0}. Then
there is a map Km→ E sending xm to K + x/a.

If K is a field, and M is of dimension d, then so is M∗, and so also M∗∗ so
the map M →M∗∗ must be an isomorphism.

Theorem 3. Any R-module embeds in a product of copies of R∗, and such a
product is an injective R-module. A module is injective if and only if it is
isomorphic to a summand of such a product.

Proof. We have R∗ injective since HomR(−, R∗) ∼= (−)∗ is exact. Thus
any product of copies is injective. Now choose a free right R-module and a
surjection R(X) →M∗. Then M embeds in M∗∗ and this embeds in (R(X))∗ ∼=
(R∗)X . The last part is clear.

Corollary. Any module over any ring embeds in an injective module.

Proof. Apply the last result with K = Z.
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3.13 Flat modules

If M is an S-R-bimodule, then by a lemma in the section on tensor products,
M⊗R− defines a right exact functor from R-Mod to S-Mod which commutes
with direct sums,

M ⊗R

(⊕
i∈I

Xi

)
∼=
⊕
i∈I

(M ⊗R Xi) .

Eilenberg-Watts Theorem. Any right exact functor from R-Mod to S-Mod
which commutes with direct sums is naturally isomorphic to a tensor product
functor for some bimodule.

Proof. Suppose that F is a right exact functor from R-Mod to S-Mod. Then
F (R) is an S-module, and it becomes an S-R-bimodule via the map

R
∼=−→ EndR(R)op

F−→ EndS(F (R))op.

Now for any R-module X there is a R-module map

X
∼=−→ HomR(R,X)

F−→ HomS(F (R), F (X)).

By hom-tensor adjointness this gives an S-module map F (R)⊗RX → F (X).
This is natural in X, so it ΦX for some natural transformation Φ : F (R)⊗R
− → F . Clearly ΦR is an isomorphism. Then for any free module R(I) we
have F (R(I)) = F (R)(I) ∼= F (R)⊗R(I), so ΦR(I) is an isomorphism. Then for
any module X there is a presentation R(I) → R(J) → X → 0 and the first
two vertical maps in the diagram

F (R)⊗R(I) −−−→ F (R)⊗R(J) −−−→ F (R)⊗X −−−→ 0

Φ
R(I)

y Φ
R(J)

y ΦX

y
F (R(I)) −−−→ F (R(J)) −−−→ F (X) −−−→ 0

are isomorphisms. Also the rows are exact. Hence the third vertical map is
an isomorphism. Thus Φ is a natural isomorphism.

Definition 1. A right R-module is flat if M ⊗R − is an exact functor (from
R-Mod to K-Mod).

Properties.
(i) A direct sum of modules is flat if and only if each summand is flat, since
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M ⊗R (
⊕

iXi) ∼=
⊕

iM ⊗R Xi.
(ii) Any projective module is flat, for R ⊗R X ∼= X, so R is flat. Now use
the previous result.

Proposition 1. If K is a field or a pid, then an R-module M is flat if and
only if M∗ is injective.

Proof. We have HomR(X,M∗) ∼= (M ⊗R X)∗. If M is flat, then the right
hand functor is exact, so M∗ is injective. Conversely, if M∗ is injective then
the right hand functor is exact. Suppose M is not flat. Given an exact
sequence

0→ X → Y → Z → 0

we get
0→ L→M ⊗R X →M ⊗R Y →M ⊗R Z → 0.

Then get
(M ⊗R Y )∗ → (M ⊗R X)∗ → L∗ → 0

Thus L∗ = 0. But L embeds in L∗∗, so L = 0.

Proposition 2. A module MR is flat if and only if the multiplication map
M ⊗R I →M is injective for every left ideal I in R.

Proof. If flat, the map is injective. For the converse we can work over K = Z.
If the map is injective, then the map M∗ → (M ⊗R I)∗ is surjective. We
can write this as HomR(R,M∗)→ HomR(I,M∗). By Baer’s criterion M∗ is
injective. Thus M is flat.

Example. A Z-module is flat if and only if it is torsion-free. If I = Zn then
M ⊗ I → M is injective if and only if multiplication of M by n is injective.
For example Q is a flat Z-module.

Proposition 3. If S is a left reversible left Ore set in R then the assignment
M  S−1M defines an exact functor which is naturally isomorphic to the
tensor product functor M  RS ⊗RM , so RS is a flat as a right R-module.

Proof. Combine Eilenberg-Watts with results from section 2.6.

Definition 2. A module M is finitely presented if it is a quotient of a finitely
generated free module by a finitely generated submodule. Equivalently if
there is an exact sequence Rm → Rn →M → 0.

Any f.g. projective module is finitely presented. If R is left noetherian, any
finitely generated left R-module is finitely presented.
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Lemma. If M is an R-S-bimodule, the natural transformation

HomR(X,M)⊗S Y → HomR(X,M ⊗S Y )

is an isomorphism if X is finitely presented and Y is flat.

Proof. It is clear for X = R. Then it follows for X = Rn. In general there is
an exact sequence Rm → Rn → X → 0, and in the diagram

0 −−−→ HomR(X,M)⊗S Y −−−→ HomR(Rn,M)⊗S Y −−−→ HomR(Rm,M)⊗S Yy y y
0 −−−→ HomR(X,M ⊗S Y ) −−−→ HomR(Rn,M ⊗S Y ) −−−→ HomR(Rm,M ⊗S Y )

the rows are exact and the right two vertical maps are isomorphisms, hence
so is the first.

Proposition 4. A finitely presented flat module is projective.

Proof. The natural map HomR(X,R)⊗R X → EndR(X) is an isomorphism
by the last lemma. Thus idX is the image of some element

∑n
i=1 fi ⊗ xi.

Then the fi and xi define maps f : Rn → X and g : X → Rn with fg = idX ,
so X is a direct summand of Rn.

3.14 Envelopes and covers

Suppose C is a full subcategory of R-Mod, closed under finite direct sums
and direct summands.

Definition. If M is an R-module, a C-preenvelope is a homomorphism θ :
M → C with C in C, such that any θ′ : M → C ′ with C ′ in C factors as
θ′ = φθ for some φ : C → C ′. It is a C-envelope if in addition, for any
φ ∈ EndR(C), if φθ = θ, then φ is an automorphism.

If a C-envelope exists, it is unique up to a (non-unique) isomorphism.

Dually, if M is an R-module, a C-precover is a homomorphism θ : C → M
with C in C, such that any C ′ →M factors through C →M . It is a C-cover
if in addition, for any φ ∈ EndR(C), if θφ = θ, then φ is an automorphism.

If a C-cover exists, it is unique up to a (non-unique) isomorphism.
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Theorem 1. Every module M has an injective envelope, M ↪→ E(M). More-
over θ : M → I is an injective envelope if and only if θ is a monomorphism,
I is injective and Im θ ⊆ I is an essential extension.

Proof. Any module M embeds in an injective module E. Zorn’s Lemma
implies that the set of submodules of E which are essential extensions of M
has a maximal element I.

Suppose that I ⊂ J is a non-trivial essential extension. Then M ⊂ J is an
essential extension. Since E is injective the inclusion I → E can be extended
to a map g : J → E. Clearly M ∩ Ker g = 0, so since M is essential in J it
follows that Ker g = 0. Thus we can identify J with g(J). But then M is
essential in J , contradicting the maximality of I.

Thus I has no non-trivial essential extensions, so I is injective.

Thus the inclusion θ : M → I satisfies the stated conditions. We show it is
an injective envelope. Clearly it is a preenvelope.

Say φθ = θ for some φ : I → I. Then M ∩ Kerφ = 0, so Kerφ = 0. Then
φ : I → I is a monomorphism, so I = Imφ⊕C for some complement C. But
then M ∩ C = 0, so C = 0. Thus φ is an automorphism.

Corollary. Suppose R is a f.d. algebra over a field. If M is a f.d. module, so
is E(M). If I is an indecomposable injective module then it has a unique
simple submodule S and I ∼= E(S). This gives a 1:1 correspondence between
indecomposable injective modules and simple modules.

Proof. If M is f.d., then M∗ is a f.d. Rop-module, so f.g., so is there is a
surjection (Rop)n → M∗, so M ∼= M∗∗ ↪→ (R∗)n, so M embeds in a f.d.
injective, so E(M) is f.d.. The rest is straightforward.

Theorem 2. Suppose R is a f.d. algebra over a field. Every module M
has a projective cover P (M) � M . If M is f.d., so is P (M). If P is
an indecomposable projective module, it has a unique simple quotient S,
and P ∼= P (S). This gives a 1:1 correspondence between indecomposable
projective modules and simple modules.

Sketch. Let J = J(R). If M is any R-module then M/JM is an R/J-module,
so semisimple.

Any endomorphism φ : P → P induces an endomorphism φ : P/JP →
P/JP . If P is a projective module, the ring homomorphism EndR(P ) →
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EndR(P/JP ) sending φ : P → P to φ is surjective. Moreover the kernel
is L = HomR(P, JP ). Now Lk ⊆ HomR(P, JkP ) for any k, so since J is
nilpotent, so is L.

If P is indecomposable projective, then EndR(P ) has no non-trivial idempo-
tents. Since idempotents lift modulo nilpotent ideals, EndR(P/JP ) has no
non-trivial idempotents, so P/JP is indecomposable, and since it is semisim-
ple, it must be simple.

Now we want to see that every simple module occurs as P/JP for some
indecomposable projective. Writing RR as a direct sum of indecomposables⊕n

i=1 Pi, we have R/J ∼=
⊕n

i=1 Pi/JPi. Since all simple modules occur as a
summand of R/J , they all occur from some Pi.

Now any homomorphism θ : P → M induces a homomorphism θ : P/JP →
M/JM . We show that if θ : P → M is a homomorphism with P projective
and such that θ is an isomorphism, then θ is a projective cover. Since θ is
surjective, M = JM + Im(θ) = J(JM + Im(θ)) + Im(θ) = J2M + Im(θ) =
· · · = JkM + Im(θ) for all k. Since J is nilpotent, M = Im(θ), so θ is
surjective. It follows that it is a projective precover.

Now if φ ∈ EndR(P ) and θφ = θ, then θ φ = θ, and since θ is an isomorphism
we deduce that φ = 1. Thus φ− 1 = 0. Thus φ − 1 ∈ L, so it is nilpotent,
and hence φ is an automorphism. Thus θ is a projective cover.

In general, given any module M , write M/JM =
⊕

i∈I Si, and consider

P (M) =
⊕

i∈I P (Si) → M/JM . This lifts to a map θ : P (M) → M with θ
an isomorphism. Thus θ is a projective cover of M .

Remark. The ring for which all modules have projective covers are the ‘left
perfect rings’. They are also the rings for which flat = projective, so the best
generalization of Theorem 2 is

Theorem of Bican, El Bashir and Enochs 2001. Every module has a flat
cover.

Proof is much harder.
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Example.
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3.15 Morita Equivalence

I ONLY BRIEFLY DISCUSSED THIS SECTION IN LECTURES.

Definitions. An abelian category A is cocomplete if it has arbitrary coprod-
ucts, or equivalently arbitrary colimits. If so, then an object P is finitely
generated if Hom(P,−) preserves coproducts, and P is a generator if for
every object M there is an epimorphism P (I) →M .

Note that a module category R-Mod is cocomplete, finitely generated is the
same as the usual definition, and R is a projective generator.

Theorem 1. If A is an abelian category and R is a ring, then A is equivalent
to R-Mod if and only if A is cocomplete, and it has a finitely generated
projective generator P with R ∼= End(P )op.

Proof. The module category R-Mod has these properties, with P = R. For
sufficiency, consider the functor F = Hom(P,−) from A to R-Mod. Given
objects X and Y choose epimorphisms pX : P (I) → X and pY : P (J) → Y .
Given θ : X → Y , if F (θ) = 0, then the composition P (I) → X → Y is zero,
so θ is zero. Thus F is faithful.

Applying F one gets R(I) → F (X) and R(J) → F (Y ). Any R-module map
α : F (X)→ F (Y ) lifts to an R-module map R(I) → R(J). This corresponds
to an element of Hom(P (I), P (J)). Now the composition Ker pX → P (I) →
P (J) → Y is sent by F to zero, so since F is faithful, it is zero itself. Thus
there is an induced morphism θ : X → Y giving a commutative square. Thus
F (θ) gives a commutative square with the map R(I) → R(J). Thus α = F (θ).
Thus F is full.

Now for any R-module M there is a presentation R(I) → R(J) → M → 0.
The first map comes from a morphism P (I) → P (J). Let this have cokernel X.
Then since F is exact, we get R(I) → R(J) → F (X)→ 0. Thus M ∼= F (X).
Thus F is dense.

Theorem 2. Let R and S be two rings. The following are equivalent.
(i) The categories R-Mod and S-Mod are equivalent
(ii) There is an S-R-bimodule M such that M ⊗R − gives an equivalence
R-Mod to S-Mod
(iii) S ∼= EndR(P )op for some finitely generated projective generator P in
R-Mod.
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Proof. (i)⇔(iii) follows from the theorem.

(ii)⇒(i) is trivial. For (i)⇒(ii) note that an equivalence is exact, and pre-
serves direct sums, so it must be a naturally isomorphic to a tensor product
functor.

Examples. (i)R is Morita equivalent toMn(R) for n ≥ 1. Namely the module
Rn is a finitely generated projective generator in R-Mod with EndR(Rn)op ∼=
Mn(R).

(ii) If e ∈ R is idempotent, and ReR = R, then R is Morita equivalent to eRe.
Namely, the condition ensures that the multiplication map Re⊗eRe eR→ R
is onto. Taking a map from a free eRe-module onto eR, say eRe(I) → eR,
we get a map Re(I) → R, so Re is a generator. Then EndR(Re)op ∼= eRe.

Corollary. Any f.d. algebra over a field is Morita equivalent to one with
R/J(R) ∼= D1 × · · · ×Dr, a product of division algebras.

In particular if K is algebraically closed, any f.d. algebra is Morita equivalent
to KQ/I for some quiver Q and admissible ideal I.

Sketch. Write RR as a direct sum of indecomposable projectives, and collect
isomorphic summands, say

RR ∼= P [1]n1 ⊕ · · · ⊕ P [r]nr .

Then P = P [1] ⊕ · · · ⊕ P [r] is a f.g. projective generator, so R is Morita
equivalent to S = EndR(P )op. One can show that

J(S) =

 J(End(P [1])) Hom(P [2], P [1]) . . .
Hom(P [1], P [2]) J(End(P [2])) . . .

...
...

. . .

 ,

so S/J(S) ∼=
∏r

i=1 End(P [i])/J(End(P [i])), a product of division algebras.
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4 Homological algebra

Recommended book: C. A. Weibel, An introduction to homological algebra.

4.1 Complexes

Definition 1. Let R be a ring. A chain complex C (or C· or C∗) consists of
R-modules and homomorphisms

. . . −→ C2
d2−→ C1

d1−→ C0
d0−→ C−1

d−1−−→ C−2 −→ . . .

satisfying dndn+1 = 0 for all n. The elements of Cn are called chains of
degree n or n-chains. The maps dn are the differential.

If C is a chain complex, then its homology is defined by

Hn(C) = Ker(dn)/ Im(dn+1) = Zn(C)/Bn(C).

The elements of Bn(C) are n-boundaries. The elements of Zn(C) are n-cycles.
If x is an n-cycle we write [x] for its image in Hn(C).

A chain complex C is acyclic if Hn(C) = 0 for all n, that is, if it is an exact
sequence. It is non-negative if Cn = 0 for n < 0. It is bounded if there are
only finitely many nonzero Cn.

Definition 2. A cochain complex C (or C · or C∗) consists of R-modules and
homomorphisms

. . . −→ C−2 d−2

−−→ C−1 d−1

−−→ C0 d0−→ C1 d1−→ C2 −→ . . .

satisfying dndn−1 = 0 for all n. The elements of Cn are called cochains of
degree n or n-cochains.

The cohomology of a cochain complex is defined by

Hn(C) = Ker(dn)/ Im(dn−1) = Zn(C)/Bn(C).

The elements of Bn(C) are n-coboundaries. The elements of Zn(C) are n-
cocycles.

Remarks. (i) There is no difference between chain and cohain complexes,
apart from numbering. Pass between them by setting Cn = C−n.
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(ii) Many complexes are zero to the right, so naturally thought of as non-
negative chain complexes, or zero to the left, so naturally thought of as
non-negative cochain complexes.

(iii) More generally we could replace R-modules by objects in an abelian
category.

Definition 3. The category of cochain complexes C(R-Mod) has as objects
the cochain complexes. A morphism f : C → D is given by homomorphisms
fn : Cn → Dn such that each square in the diagram commutes

. . .
d−−−→ Cn−1 d−−−→ Cn d−−−→ Cn+1 d−−−→ . . .

fn−1

y fn
y fn+1

y
. . .

d−−−→ Dn−1 d−−−→ Dn d−−−→ Dn+1 d−−−→ . . .

There is a shift functor [i] : C(R-Mod)→ C(R-Mod) defined by C[i]n = Cn+i

with the differential dC[i] = (−1)idC .

The category C(R-Mod) is abelian. (It can be identified with the category
of graded R[d]/(d2)-modules, where R has degree 0 and d has degree 1, so it
is the category of modules for a catalgebra.)

Direct sums are computed degreewise, (C⊕D)n = Cn⊕Dn. Also kernels and
cokernels are computed degreewise. Thus a sequence 0→ C −→ D −→ E → 0
is exact if and only if all 0→ Cn → Dn → En → 0 are exact.

Lemma. A morphism of complexes f : C → D induces morphisms on coho-
mology Hn(C)→ Hn(D), so Hn is a functor from C(R-Mod) to R-Mod.

Proof. An arbitrary element of Hn(C) is of the form [x] with x ∈ Zn(C) =
Ker dn. We send it to [fn(x)] ∈ Hn(D).

Definition 4. A morphism of complexes f : C → D is a quasi-isomorphism
if the map Hn(C)→ Hn(D) is an isomorphism for all n.

Example. Morphism from Z a−→ Z to 0→ Z/aZ for a 6= 0.

Theorem. A short exact sequence of complexes 0 → C → D → E → 0
induces a long exact sequence on cohomology

· · · → Hn−1(E)→ Hn(C)→ Hn(D)→ Hn(E)→ Hn+1(C)→ Hn+1(D)→ . . .

for suitable connecting maps cn : Hn(E)→ Hn+1(C).

85



Proof. For all n we have a diagram

0 −−−→ Cn −−−→ Dn −−−→ En −−−→ 0

dnC

y dnD

y dnE

y
0 −−−→ Cn+1 −−−→ Dn+1 −−−→ En+1 −−−→ 0

and the easy part of the snake lemma gives exact sequences on kernels of the
vertical maps

0→ Zn(C)→ Zn(D)→ Zn(E)

and on cokernels

Cn+1/Bn+1(C)→ Dn+1/Bn+1(D)→ En+1/Bn+1(E)→ 0

This holds for all n, so shows that the rows in the following diagram are
exact

Cn/Bn(C) −−−→ Dn/Bn(D) −−−→ En/Bn(E) −−−→ 0

d
n
C

y d
n
C

y d
n
E

y
0 −−−→ Zn+1(C) −−−→ Zn+1(D) −−−→ Zn+1(E).

Here the vertical maps are induced by dnC , dnD and dnE, so the diagram com-
mutes. Thus by the snake lemma one gets an exact sequence

Ker(d
n

C)→ Ker(d
n

D)→ Ker(d
n

E)→ Coker(d
n

C)→ Coker(d
n

D)→ Coker(d
n

E)

That is,

Hn(C)→ Hn(D)→ Hn(E)→ Hn+1(C)→ Hn+1(D)→ Hn+1(E)

as required.

4.2 Ext

Definition 1. If M is an R-module, then a projective resolution of M is an
exact sequence

· · · → P2
d2−→ P1

d1−→ P0
ε−→M → 0

with the Pi projective modules. It is equivalent to give a non-negative chain
complex P of projective modules and a quasi-isomorphism P →M (with M
considered as a chain complex in degree 0),

. . . −−−→ P2
d2−−−→ P1

d1−−−→ P0 −−−→ 0 −−−→ . . .y y ε

y y
. . . −−−→ 0 −−−→ 0 −−−→ M −−−→ 0 −−−→ . . .
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Note that every module has many different projective resolutions. Choose
any surjection ε : P0 → M , then any surjection d1 : P1 → Ker ε, then any
surjection d2 : P2 → Ker d1, etc.

If one fixes a projective resolution of M then the syzygies of M are the
modules ΩnM = Im(d : Pn → Pn−1) (and Ω0M = M). Thus there are exact
sequences

0→ Ωn+1M → Pn → ΩnM → 0.

Dually an injective resolution of a module X is an exact sequence

0→ X → I0 → I1 → I2 → . . .

with the In injective modules. The cosyzygies are Ω−nX = Im(In−1 → In)
(and Ω0X = X), so

0→ Ω−nX → In → Ω−(n+1)X → 0.

Definition 2. Given modules M and X, choose a projective resolution P∗ →
M of M . We define ExtnR(M,X) = Hn(HomR(P∗, X)), the nth cohomology
of the cochain complex of K-modules HomR(P∗, X), which is

· · · → 0→ 0→ HomR(P0, X)
d∗1−→ HomR(P1, X)

d∗2−→ HomR(P2, X)→ . . .

where HomR(Pn, X) is in degree n.

Properties. (i) ExtnR(M,X) is aK-module, it is zero for n < 0, and Ext0
R(M,X) ∼=

Hom(M,X) since the exact sequence P1 → P0 → M → 0 gives an exact se-
quence

0→ HomR(M,X)→ HomR(P0, X)→ HomR(P1, X).

(ii) This definition depends on the choice of the projective resolution. But we
will show that ExtnR(M,X) can also be computed using an injective resolution
of X, and that will show that it does not depend on the projective resolution
of M .

(iii) ExtnR(M,X) = 0 for n > 0 if X is injective. Namely, the sequence
· · · → P2 → P1 → P0 is exact, hence so is the sequence

Hom(P0, X)→ Hom(P1, X)→ Hom(P2, X)→ . . .

Lemma. A map X → Y induces a map ExtnR(M,X)→ ExtnR(M,Y ), and in
this way the assignment X  ExtnR(M,X) is a K-linear functor.
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Proof. It induces a map of complexes HomR(P∗, X) → HomR(P∗, Y ), and
that induces a map on cohomology.

Proposition 1. A short exact sequence 0→ X → Y → Z → 0 induces a long
exact sequence

0→ HomR(M,X)→ HomR(M,Y )→ HomR(M,Y )

→ Ext1
R(M,X)→ Ext1

R(M,Y )→ Ext1
R(M,Z)

→ Ext2
R(M,X)→ Ext2

R(M,Y )→ Ext2
R(M,Z)→ . . .

Proof. One gets a sequence of complexes

0→ HomR(P∗, X)→ HomR(P∗, Y )→ HomR(P∗, Z)→ 0.

This is exact since each Pn is projective. Thus it induces a long exact sequence
on cohomology.

Proposition 2. If 0→ X → I0 → I1 → I2 → . . . is an injective resolution of
X, then one can compute ExtnR(M,X) as the nth cohomology of the complex
HomR(M, I∗) if K-modules:

0→ HomR(M, I0)→ HomR(M, I1)→ HomR(M, I2) . . .

Proof. Break the injective resolution into exact sequences

0→ Ω−iX → I i → Ω−(i+1)X → 0

for i ≥ 0 where Ω0X = X. One gets long exact sequences

0→ HomR(M,Ω−iX)→ HomR(M, I i)→ HomR(M,Ω−(i+1)X)

→ Ext1
R(M,Ω−iX)→ 0→ Ext1

R(M,Ω−(i+i)X)

→ Ext2
R(M,Ω−iX)→ 0→ Ext2

R(M,Ω−(i+1)X) . . .

so
Ext1

R(M,Ω−iX) ∼= Coker(HomR(M, I i)→ HomR(M,Ω−(i+1)))

and
ExtjR(M,Ω−(i+1)X) ∼= Extj+1

R (M,Ω−iX)

for j ≥ 1. Thus (it is called dimension shifting)

ExtnR(M,X) ∼= Extn−1
R (M,Ω−1X) ∼= . . . ∼= Ext1

R(M,Ω−(n−1)X)
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∼= Coker
(
HomR(M, In−1)→ HomR(M,Ω−nX)

)
Now 0→ Ω−nX → In → In+1 is exact, hence so is

0→ HomR(M,Ω−nX)→ HomR(M, In)→ HomR(M, In+1)

It follows that ExtnR(M,X) is the cohomology in degree n of the complex

· · · → HomR(M, In−1)→ HomR(M, In)→ HomR(M, In+1)→ . . .

as required.

Remarks. (i) As mentioned, it follows that ExtnR(M,X) does not depend on
the projective resolution of M .

(ii) Using the description in terms of an injective resolution of X it follows
that the assignment M  Extn(M,X) is a contravariant K-linear functor.

Also, if 0 → L → M → N → 0 is an exact sequence and I∗ is an
injective resolution of X, then one gets an exact sequence of complexes
0 → HomR(N, I∗) → HomR(M, I∗) → HomR(L, I∗) → 0, and hence a long
exact sequence

0→ HomR(N,X)→ HomR(M,X)→ HomR(L,X)

→ Ext1
R(N,X)→ Ext1

R(M,X)→ Ext1
R(L,X)

→ Ext2
R(N,X)→ Ext2

R(M,X)→ Ext2
R(L,X)→ . . .

Example 0. If R is a field, or more generally a finite-dimensional semisimple
algebra over a field, then all short exact sequences of R-modules are split
exact, so all modules are projective and injective. Thus

ExtnR(M,X) ∼=

{
HomR(M,X) (n = 0)

0 (n > 0).

Example 1. If 0 6= a ∈ Z then Z/aZ has projective resolution 0→ Z a−→ Z→
Z/aZ→ 0. Thus ExtnZ(Z/aZ, X) is the cohomology of the complex

· · · → 0→ Hom(Z, X)
a−→ Hom(Z, X)→ 0→ . . .

that is,
· · · → 0→ X

a−→ X → 0→ . . .
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so Ext0
Z(Z/aZ, X) = Hom(Z/aZ, X) ∼= {x ∈ X : ax = 0}, Ext1

Z(Z/aZ, X) ∼=
X/aX and ExtnZ(Z/aZ, X) = 0 for n > 1.

Example 2. Let R = K[x]/(x2) with K a field. Any finitely generated module
is a direct sum of copies of K (with x acting as 0) and R. The module K
has projective resolution

→ R
x−→ R

x−→ R→ K → 0.

Now HomR(R,K) = K, and we get ExtnR(K,K) ∼= K for all n ≥ 0.

Example 3. Consider the algebra R = KQ/I given over a field K by a quiver
Q and an admissible ideal I. For example

1
a−→ 2

b−→ 3
c−→ 4

d−→ 5

and I = (cba, dc). Let S[i] be the simple module at vertex i. The corre-
sponding indecomposable projective module is P [i] = Rei. It has basis the
paths starting at i modulo the relations. This gives representations

S[1] : K → 0→ 0→ 0→ 0, P [1] : K → K → K → 0→ 0,

S[2] : 0→ K → 0→ 0→ 0, P [2] : 0→ K → K → K → 0,

S[3] : 0→ 0→ K → 0→ 0, P [3] : 0→ 0→ K → K → 0,

S[4] : 0→ 0→ 0→ K → 0, P [4] : 0→ 0→ 0→ K → K,

S[5] : 0→ 0→ 0→ 0→ K, P [5] : 0→ 0→ 0→ 0→ K.

The simples have projective resolutions:

0→ P [5]→S[5]→ 0,

0→ P [5]→ P [4]→S[4]→ 0,

0→ P [5]→ P [4]→ P [3]→S[3]→ 0,

0→ P [3]→ P [2]→S[2]→ 0,

0→ P [5]→ P [4]→ P [2]→ P [1]→S[1]→ 0.

We can compute ExtnR(S[i], S[j]) as the cohomology of the complex HomR(P∗, S[j])
where P∗ is a projective resolution of S[i]. Use that

HomR(P [i], S[j]) = HomR(Rei, S[j]) = eiS[j] =

{
K (i = j)

0 (i 6= j)
.

For example for Extn(S[1], S[4]) we have

0→ Hom(P0, S[4])→ Hom(P1, S[4])→ Hom(P2, S[4])→ Hom(P3, S[4])→ . . .
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which is

0→ Hom(P [1], S[4])→ Hom(P [2], S[4])→ Hom(P [4], S[4])→ Hom(P [5], S[4])→ 0→ . . .

which is
0→ 0→ 0→ K → 0→ 0→ . . .

so

ExtnR(S[1], S[4]) =

{
K (n = 2)

0 (n 6= 2)
.

4.3 Description of Ext1 using short exact sequences

Definition 1. Two short exact sequences ξ, ξ′ with the same end terms are
equivalent if there is a map θ (necessarily an isomorphism) giving a commu-
tative diagram

ξ : 0 −−−→ L −−−→ M −−−→ N −−−→ 0∥∥∥ θ

y ∥∥∥
ξ′ : 0 −−−→ L −−−→ M ′ −−−→ N −−−→ 0

It is easy to see that the split exact sequences form one equivalence class.

Definition 2. For any short exact sequence of modules

ξ : 0→ L→M → N → 0

we define an element ξ̂ ∈ Ext1
R(N,L) as follows. The long exact sequence

for HomR(N,−) gives a connecting map HomR(N,N) → Ext1
R(N,L) and ξ̂

is the image of idN under this map.

Theorem 1. The assignment ξ 7→ ξ̂ gives a bijection between equivalence
classes of short exact sequences 0 → L → M → N → 0 and elements
of Ext1

R(N,L). The split exact sequences correspond to the element 0 ∈
Ext1

R(N,L).

Proof. Fix a projective resolution of N , and hence an exact sequence

0→ Ω1N
θ−→ P0

ε−→ N → 0.

91



An exact sequence ξ gives a commutative diagram with exact rows and
columns

0y
Hom(N,N)y

0 −−−→ Hom(P0, L) −−−→ Hom(P0,M) −−−→ Hom(P0, N) −−−→ 0

θ∗

y y y
0 −−−→ Hom(Ω1N,L) −−−→ Hom(Ω1N,M) −−−→ Hom(Ω1N,N)y

Ext1(N,L)y
0

and the connecting map Hom(N,N)→ Ext1(N,L) is given by diagram chas-
ing, so by the choice of maps α, β giving a commutative diagram

0 −−−→ Ω1N −−−→ P0 −−−→ N −−−→ 0

α

y β

y ∥∥∥
ξ : 0 −−−→ L

f−−−→ M
g−−−→ N −−−→ 0.

Then ξ̂ = [α] where [. . . ] denotes the map Hom(Ω1N,L)→ Ext1(N,L).

Any element of Ext1(N,L) arises from some ξ. Namely, write it as [α] for
some α ∈ Hom(Ω1N,L). Then take ξ to be the pushout

0 −−−→ Ω1N −−−→ P0 −−−→ N −−−→ 0

α

y y ∥∥∥
ξ : 0 −−−→ L −−−→ M −−−→ N −−−→ 0.
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Now if ξ, ξ′ are equivalent exact sequences one gets a diagram

0 −−−→ Ω1N −−−→ P0 −−−→ N −−−→ 0

α

y β

y ∥∥∥
ξ : 0 −−−→ L −−−→ M −−−→ N −−−→ 0∥∥∥ y ∥∥∥
ξ′ : 0 −−−→ L −−−→ M ′ −−−→ N −−−→ 0.

so ξ and ξ′ correspond to the same map α, so ξ̂ = ξ̂′. If two short ex-
act sequences ξ, ξ′ give the same element of Ext1(N,L) there are diagrams
with maps α, β and α′, β′ and with α − α′ in the image of the map θ∗ :
Hom(P0, L)→ Hom(Ω1N,L). Say α− α′ = φθ with φ : P0 → L. Then there
is also a diagram

0 −−−→ Ω1N
θ−−−→ P0 −−−→ N −−−→ 0

α′

y β−fφ
y ∥∥∥

ξ : 0 −−−→ L
f−−−→ M −−−→ N −−−→ 0.

This is a pushout, so by the uniqueness of pushouts, ξ and ξ′ are equivalent.

Remark. Homomorphisms L→ L′ and N ′′ → N induce maps Ext1(N,L)→
Ext1(N,L′) and Ext1(N,L)→ Ext1(N ′′, L). One can show that these maps
correspond to pushouts and pullbacks of short exact sequences. For pushouts
this follows directly from the definition. For pullbacks it needs more work -
omitted.

Theorem 2. The following are equivalent for a module M .
(i) M is projective
(ii) Extn(M,X) = 0 for all X and all n > 0.
(iii) Ext1(M,X) = 0 for all X.

The following are equivalent for a module X.
(i) X is injective
(ii) Extn(M,X) = 0 for all M and all n > 0.
(iii) Ext1(M,X) = 0 for all cyclic modules M .

Proof. (i)⇒(ii)⇒(iii) are clear. (iii)⇒(i) using the characterization of a
projective or injective module as one for which all short exact sequences
ending or starting at the module split. In the injective case we use Baer’s
criterion: if I is a left ideal in R, the pushout of a sequence 0 → I → R →
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R/I → 0 along any map I → X spits. Using the splitting one gets a lift of
the map to a map R→ X, and then by Baer’s criterion X is injective.

4.4 Global dimension

Proposition/Definition 1. Let M be a module and n ≥ 0. The following are
equivalent.
(i) There is a projective resolution 0→ Pn → · · · → P0 →M → 0
(ii) Extm(M,X) = 0 for all m > n and all X.
(iii) Extn+1(M,X) = 0 for all X.
(iv) For any projective resolution of M , we have ΩnM projective.
The projective dimension, proj. dimM , is the smallest n with this property
(or ∞ if there is none).

Let X be a module and n ≥ 0. The following are equivalent.
(i) There is an injective resolution 0→ X → I0 → · · · → In → 0
(ii) Extm(M,X) = 0 for all m > n and all X.
(iii) Extn+1(M,X) = 0 for all cyclic M .
(iv) For any injective resolution of X, we have Ω−nX injective.
The injective dimension, inj. dimX, is the smallest n with this property (or
∞ if there is none).

Proof (i)⇒(ii)⇒(iii) are trivial. For (iii)⇒(iv) let P∗ → M be a projective
resolution. For any X, dimension shifting gives

0 = Extn+1(M,X) ∼= Extn(Ω1M,X) ∼= . . . ∼= Ext1(ΩnM,X),

so ΩnM is projective. Then

0→ ΩnM → Pn−1 → · · · → P0 →M → 0

is also a projective resolution of M , giving (i).

Lemma. If 0→ L→M → N → 0 is exact, then

proj. dimM ≤ max{proj. dimL, proj. dimN},
inj. dimM ≤ max{inj. dimL, inj. dimN}.

Proof. For any X the long exact sequence for Hom(−, X) gives an exact
sequence

Extn+1(N,X)→ Extn+1(M,X)→ Extn+1(L,X)
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and the outer terms are zero for n = max.

Definition. The (left) global dimension of R (in N ∪ {∞}) is

gl. dimR = sup{proj. dimM : M ∈ R−Mod}
= inf{n ∈ N : Extn+1(M,X) = 0∀M,X}
= sup{inj. dimX : X ∈ R−Mod}
= inf{n ∈ N : Extn+1(M,X) = 0∀M,X, M cyclic}
= sup{proj. dimM : M cyclic}.

Example. gl. dimR = 0 ⇔ all modules are projective ⇔ all short exact
sequences split ⇔ every submodule has a complement ⇔ R is semisimple
artinian.

Proposition/Definition 2. A ring R is said to be (left) hereditary if it satisfies
the following equivalent conditions
(i) gl. dimR ≤ 1.
(ii) Every submodule of a projective module is projective.
(iii) Every left ideal in R is projective.

Proof of equivalence. (i)⇒(ii) If N is a submodule of P then for any X, by
the long exact sequence, Ext1(N,X) ∼= Ext2(P/N,X) = 0.

(ii)⇒(iii) Trivial.

(iii)⇒(i) For any X and left ideal I we have Ext2(R/I,X) ∼= Ext1(I,X) = 0,
so X has injective dimension ≤ 1.

Examples. A principal ideal domain is hereditary. If K is a field and Q is a
quiver, then one can show that any KQ-module M has a standard resolution

0→
⊕
a∈Q

KQeh(a) ⊗K eh(a)M
f−→
⊕
i∈Q0

KQei ⊗ eiM
g−→M → 0

where g(xi ⊗ mi) = ximi, and f(xa ⊗ ma) = xaa ⊗ ma − xa ⊗ ama. Thus
proj. dimM ≤ 1, so KQ is hereditary.

Proposition. If R is a f.d. algebra over a field, then

gl. dimR = max{proj. dimS : S is a simple module}.

Proof. We show by induction on dimM that any f.d. module M has pro-
jective dimension ≤ m, where m is the maximum of the projective dimen-
sions of the simples. Namely if M is simple, this hold by definition. If
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not, it has a non-trivial proper submodule X. Now in the exact sequence
0→ X →M →M/X → 0, the end terms have smaller dimension, so projec-
tive dimension at most m, hence proj. dimM ≤ m by the lemma. Now every
cyclic module is f.d., so has projective dimension ≤ m, hence gl. dimR = m.

Examples. In Example 3 of §4.2, the simple module S[1] has projective
resolution

0→ P3 → P2 → P1 → P0 → S[1]→ 0

where P3 = P [5], P2 = P [4], P1 = P [2] and P0 = P [1], so proj. dimS[1] ≤ 3.
In fact we have equality—for example the methods in the example show that
Ext3(S[1], S[5]) 6= 0. The other simples have projective dimension ≤ 2. Thus
gl. dimR = 3.

For the commutative square algebra in §3.14, the simple module S[1] has
projective resolution

0→ P [4]→ P [2]⊕ P [3]→ P [1]→ S[1]→ 0

so proj. dimS[1] = 2, and the other simples have projective dimension ≤ 1,
so gl. dimR = 2.

Theorem. Consider a skew polynomial ring S = R[x;σ, δ] with σ an auto-
morphism of R and δ a σ-derivation.
(i) For any S-module M there is a an exact sequence

0→ S ⊗R (σ−1M)
f−→ S ⊗RM

g−→M → 0

where g is multiplication and f(s⊗m) = sx⊗m− s⊗ xm.
(ii) gl. dimS ≤ 1 + gl. dimR.
(iii) gl. dimS = 1 + gl. dimR if δ = 0.

Proof. (i) Since σ is an automorphism, S is a free right R-module with basis
{1, x, x2, . . . }, so for any R-module N , the elements of S⊗RN can be written
uniquely as expressions

∑
xi ⊗ ni.

The map f is well-defined: define f ′ : S ⊗K M → S ⊗R M by f ′(s ⊗m) =
sx⊗m− s⊗ xm. Then since xr = σ(r)x+ δ(r) we get

f ′(sr ⊗m)− f ′(s⊗ σ−1(r)m) = srx⊗m− sr ⊗ xm− sx⊗ σ−1(r)m+ s⊗ xσ−1(r)m

= s(rx− xσ−1(r))⊗m+ s⊗ (xσ−1(r)− rx)m

= −sδ(σ−1(r))⊗m+ s⊗ δ(σ−1(r))m = 0.

Thus f ′ descends to a map f .
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Exact in middle: clearly gf = 0. Choose an element of Ker g of the form
xi ⊗ m+ lower powers of x, with m 6= 0 and i minimal. Then i = 0, for
otherwise one can cancel the leading term by subtracting f(xi−1⊗m). Thus
the element is 1⊗m. But then since the element is in Ker g, it is zero.

Exact on left: an element of the form xi⊗m+ lower powers of x with m 6= 0
is sent by f to xi+1 ⊗m+ lower powers of x, which cannot be zero.

(ii) SR is free, so flat, so a projective resolution P∗ → N of an R-module
N gives an S-module projective resolution S ⊗R P∗ → S ⊗R N . Using that
HomS(S ⊗R −, X) ∼= HomR(−, X) for an S-module X, it follows that

ExtnS(S ⊗R N,X) ∼= ExtnR(N,X). (∗)

By the long exact sequence for HomS(−, X) we get

ExtnS(S⊗M,X)
h−→ ExtnS(S⊗σ−1M,X)→ Extn+1

S (M,X)→ Extn+1
S (S⊗M,X).

For n > gl. dimR, the second and fourth terms are zero, so also the third
term is zero, so gl. dimS ≤ 1 + gl. dimR.

(iii) Let X be an R-module and X → I∗ an injective resolution. We get
cosyzygies 0 → Ω−(i−1)X → I i → Ω−iX → 0. Since δ = 0, we can consider
all of these as S-modules with x acting as 0, so for any S-module U , we get
a long exact sequence

0→ HomS(U,Ω−(i−1)X)→ HomS(U, I i)→ HomS(U,Ω−iX)→ Ext1
S(U,Ω−(i−1)X)→ . . .

Now suppose U = S ⊗R N . If j > 0 we have ExtjS(U, I i) ∼= ExtjR(N, I i) = 0,
so as in dimension shifting, we get

HomS(U,Ω−nX)� Ext1
S(U,Ω−(n−1)X) ∼= . . . ∼= ExtnS(U,X).

Applying this to the map f we get a commutative square

HomS(S ⊗M,Ω−nX) −−−→ ExtnS(S ⊗M,X)

f ′

y h

y
HomS(S ⊗ σ−1M,Ω−nX) −−−→ ExtnS(S ⊗ σ−1M,X)

where f ′ is composition with f .

Since x acts as zero on M and Ω−nX it follows that f ′ is zero. Namely
f ′(φ)(s⊗m) = φf(s⊗m) = φ(sx⊗m−s⊗xm) = φ(sx⊗m) = sxφ(1⊗m) = 0.
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Since the horizontal maps are onto, h is zero. Thus for n = gl. dimR we
get Extn+1

S (M,X) ∼= ExtnR(σ−1M,X), and for suitable M,X this is non-zero.
Thus gl. dimS = 1 + gl. dimR.

Corollary. If K is a field, then gl. dimK[x1, . . . , xn] = n.

4.5 Tor

Given a right R-module M and a left R-module X, choose a projective
resolution P∗ →M (or more generally a flat resolution, where we only require
the Pn to be flat). We define TorRn (M,X) to be the nth homology of the
complex

P∗ ⊗R X : · · · → P2 ⊗R X → P1 ⊗R X → P0 ⊗R X → 0

Since the tensor product is a right exact functor, it follows that TorR0 (M,X) ∼=
M ⊗R X. Moreover a short exact sequence 0 → X → Y → Z → 0 gives a
long exact sequence

· · · → TorR2 (M,Z)→ TorR1 (M,X)→ TorR1 (M,Y )→ TorR1 (M,Z)→

→M ⊗R X →M ⊗R Y →M ⊗R Z → 0.

Using this one can show that Tor can be computed using a projective or flat
resolution of X. Thus the two modules M,X play a symmetrical role; Torn
is a covariant functor in both arguments. This shows independence of the
resolution.

Theorem. The following are equivalent for a module M .
(i) M is flat
(ii) TorRn (M,X) = 0 for all X and all n > 0.
(iii) TorR1 (M,X) = 0 for all X.

Proposition/Definition. Let M be a module and n ≥ 0. The following are
equivalent.
(i) There is a flat resolution 0→ Pn → · · · → P0 →M → 0
(ii) TorRm(M,X) = 0 for all X and m > n
(iii) TorRn+1(M,X) = 0 for all X.
(iv) For any flat resolution of M , we have ΩnM flat.
The flat dimension flatdimM is the smallest n with this property (or ∞ if
there is none).
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Definition. The weak dimension of R is

w. dimR = sup{flatdimM : ∀M} = inf{n ∈ N : TorRn+1(M,X) = 0∀M,X}.

It is left/right symmetric.

4.6 Global dimension for noetherian rings

Proposition. (i) For M a left R-module, flatdimM ≤ proj. dimM , with
equality if M is finitely generated and R is left noetherian.
(ii) w. dimR ≤ gl. dimR, with equality if R is left noetherian.
(iii) If R is (left and right) noetherian, the left and right global dimensions
or R are equal.

Proof. (i) The inequality holds since any projective resolution is also a flat
resolution. If R is left noetherian and M is f.g., we have a projective resolu-
tion with all Pn finitely generated. Then flatdimM ≤ n implies ΩnM is flat.
Since it is also finitely presented, it is projective. Thus proj. dimM ≤ n.

(ii) Use that gl. dimR = sup{proj. dimM : M cyclic}.

(iii) Clear.

THE REMAINING MATERIAL WAS ONLY BRIEFLY DISCUSSED IN
THE LAST LECTURE.

Let K be a field. Recall that the first Weyl algebra is

R = A1(K) = K[x][y; d/dx] = K〈x, y〉/(yx− xy − 1).

We know gl. dimR ≤ 2. In fact more is true.

Theorem. Let K be a field of characteristic zero, and for simplicity suppose
it is algebraically closed. In this case the first Weyl algebra is hereditary.

Lemma 1. S = k[x] \ {0} is a left and right Ore set in R and RS
∼=

K(x)[y; d/dx]. Thus gl. dimRS ≤ 1.

Proof. To show S is a left Ore set, given a ∈ R and s ∈ S we need to find
a′, s′ with a′s = s′a. We do this by induction on the order of a as a differential
operator. Now [a, s] has smaller order, so there is a′′, s′′ with a′′s = s′′[a, s].
Then (s′′a − a′′)s = s′′sa, so we can take a′ = s′′a − a′′ and s′ = s′′s. The
rest is straightforward.
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Lemma 2. If M is a finitely generated R-module which is torsion-free as a
k[x]-module, then proj. dimM ≤ 1.

Proof. Since M is torsion-free over k[x], the natural map M → S−1M is
injective. Now S−1M is a module for K(x)[y; d/dx] so it has a projective
resolution 0 → Q1 → Q0 → S−1M → 0. As RS is flat as left R-module, Q0

and Q1 are flat R-modules, so flatdimR S
−1M ≤ 1.

Now M embeds in S−1M and w. dimR = gl. dimR ≤ 2, so for any L the
long exact sequence gives an exact sequence

→ TorR3 (L, (S−1M)/M)→ TorR2 (L,M)→ TorR2 (L, S−1M)→

The outside terms are zero, so flatdimM ≤ 1. Now use that M is finitely
generated.

Lemma 3. If λ ∈ K, then the R-module Sλ = R/R(x − λ) is simple and
proj. dimSλ ≤ 1.

Proof. Any element of R can be written uniquely as a sum
∑

n y
npn(x), so

as a K-linear combination of elements yn(x−λ)m. Thus Sλ can be identified
with K[y], with y acting by multiplication and the action of x given by
xq(y) = λq(y)− q′(y).

To show simplicity, note that the action of (λ−x) on K[y] is as differentiation
by y, so the submodule generated by any non-zero element of K[y] contains
1, and hence this submodule is all of K[y].

Now we have projective resolution 0→ R
·(x−λ)−−−→ R→ Sλ → 0.

Proof of the theorem. It suffices to show that proj. dimM ≤ 1 for M cyclic.

If M is not torsion-free over K[x], then some non-zero element of M is
killed by a non-zero polynomial p(x). Since K is algebraically closed, we can
factorize this polynomial, and hence find 0 6= m ∈ M and λ ∈ K with (x −
λ)m = 0. Then m generates a submodule of M isomorphic to Sλ. Repeating
with the quotient module, we get an ascending chain of submodules of M ,
and since M is noetherian this terminates. Thus we get submodules

0 = M0 ⊆M1 ⊆ · · · ⊆Mk ⊆M

such that each Mi/Mi−1
∼= Sλi and M/Mk is torsion-free as a K[x]-module.

The quotients Mi/Mi−1 and M/Mk all have projective dimension ≤ 1, and
hence proj. dimM ≤ 1.
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Some other facts about noetherian rings.

(i) R is left noetherian ⇔ any direct sum of injective modules is injective
⇔ any injective module is a direct sum of indecomposable modules. See for
example Lam, Lectures on modules and rings.

(ii) (Chase) Any product of flat right modules is flat if and only if R is
left coherent, which means that any finitely generated left ideal is finitely
presented. In particular this holds if R is left noetherian or left hereditary.

(iii) If R is left noetherian ring and gl. dimR <∞ then

gl. dimR = sup{proj. dimS : S simple}.

For a proof see McConnell and Robson, Noncommutative noetherian rings,
Corollary 7.1.14.
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