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Introduction

My aim in this course is to cover the following topics:

(1) Basics of rings and modules (for students of differing backgrounds)
(2) Examples and constructions of algebras

(3) Module categories and related properties of modules

(4) Homological algebra: Ext and Tor, global dimension

This is the first course in a master sequence, which continues with:
Noncommutative algebra 2. Representations of finite-dimensional algebras
Noncommutative algebra 3. Geometric methods.

It is also the first part of a sequence to be given by Henning Krause, which
will continue with quasi-hereditary algebras and derived categories.

Examples class by Andrew Hubery.
Why study noncommutative algebra?

- Representation theory: to study groups, Lie algebras, algebraic groups, etc.,
one needs to understand their representations, and for this one should study
the group algebra, universal enveloping algebra, Schur algebra, etc.

- Physics: many algebras arise, e.g. for spin in quantum mechanic (Clif-
ford algebras), statistical mechanics (Temperley-Lieb algebras), dimer mod-
els (dimer algebras), etc.

- Differential equations: linear differential equations correpond to modules
for the ring of differential operators. The notion of a quantum group (which
is an algebra, not a group!) arose in the study of integrable systems.



- Topology: The cohomology of a topological space gives a ring. The Jones
polynomial for knots came from the representation theory of Hecke algebras.

- Number Theory: a basic object is the Brauer group, classifying central
simple algebras. The final step in Wiles and Taylor’s proof of Fermat’s last
theorem involved a different type of Hecke algebra.

- Functional analysis is all about noncommutative algebras, such as C*-
algebras and von Neumann algebras; but it is a different story.

- Linear algebra: Jordan normal form is the classification of f.d. modules for
K[z]. If you know the Jordan normal form of two nxn matrices, what can you
say about the Jordan normal form of their sum? There is a partial solution
using deformed preprojective algebras and representations of quivers.
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edition Springer 1992 .
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J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, 2nd
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J. J. Rotman, An Introduction to Homological Algebra, 2nd edition Springer
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sity Press 1994.



1 Basics of rings and modules

1.1 Rings

We consider rings R which are unital, so there is 1 € R with r1 = 1r = r for
all r € R. Examples: Z, Q, R, C, Z[v2] = {a +bv2 : a,b € Z}, R[z] of ring
of polynomials in an indeterminate z with coefficients in a ring R, M, (R)
the ring of n X n matrices with entries in a ring R.

A subring of aring is a subset S C R which is ring under the same operations,
with the same unity as R. A ring homomorphism is a mapping 6 : R — S
preserving addition and multiplication and such that 6(1) = 1.

A (two-sided) ideal in a ring R is a subgroup I C R such that rz € I and
xr € I for all r € R and x € I. The ideal generated by a subset S C R is

(5) = {Zﬁ'sﬂ"; :n>0,r,7; € R, s; € S}.
=1

If I is an ideal in R, then R/I is a ring.
Examples: F, = Z/(p) = Z/pZ, Fy = Folz]/(2* + z + 1).

The isomorphism theorems (see for example, P.M.Cohn, Algebra, vol. 1).
(1) A homomorphism 6 : R — S induces an isomorphism R/ Ker§ = Im 6.
(2) If I is an ideal in R and S is a subring of R then S/(SNI) = (S+1)/I.
(3) If I is an ideal in R, then the ideals in R/I are of the form J/I with J
an ideal in R containing I, and (R/I)/(J/I) = R/J.

The opposite ring R is obtained from R by using the multiplication -, where
r-s = sr. The transpose defines an isomorphism M, (R)? — M, (R).

A product of rings [[,; R; is naturally a ring, e.g. " = RXx Rx --- X R or
R" = [L,c; R, the set of functions I — R.

1.2 Modules

Let R be aring. A (left) R-module consists of an additive group M equipped
with a mapping R X M — M which is an action, meaning
- (rr")ym = r(r'm) for r,7”’" € R and m € M,



- it is distributive over addition, and
- it is unital: 1m = m for all m.

An R-module homomorphism 6 : M — N is a map of additive groups with
6(rm) = rf(m) for r € R and m € M.

A submodule of a R-module M is a subgroup N C M with rn € N for all
r € R,n € N. Given a submodule N of M one gets a quotient module M /N.

The isomorphism theorems for R-modules (see for example P.M.Cohn, Alge-
bra, vol. 2).

(1) A homomorphism 6 : M — N induces an isomorphism M/ Ker6 = Im#.
(2) If L and N are submodules of a module M, then L/(LNN) = (L+N)/N.
(3) If N is a submodule of M, then the submodules of M /N are of the form
L/N where L is a submodule of M containing N, and (M/N)/(L/N) = M/ L.

If6: R — S is aring homomorphism, any S-module ¢M becomes an R-
module denoted g M or ¢M by restriction: r.m = 0(r)m.

Dually there is the notion of a right R-module with an action M x R — R.
Apart from notation, it is the same thing as a left R°’-module. If R is
commutative, the notions coincide.

If R and S are rings, then an R-S-bimodule is given by left R-module and
right S-module structures on the same additive group M, satisfying r(ms) =
(rm)s forr € R, s € S and m € M.

A ring R is naturally an R-R-bimodule. A (two-sided) ideal of R is a sub-
bimodule of R. A left or right ideal of R is a submodule of R as a left or
right module.

A product of R-modules [],.; X; is naturally an R-module. We write X I for
the product of copies of X indexed by a set I, so the set of functions I — X.

The (external) direct sum or coproduct of modules is:

EBXi (or HXZ> = {(mi)ig € HXi: x; = 0 for all but finitely many 2} )
iel icl iel

One writes XU) = @, ,; X.

If the X; (i € I) are submodules of an R-module X, then addition gives a



homomorphism

@Xz’ — X, (@i)ier = Z%

iel i€l
The image is the sum of the X;, denoted ), , X;. If this homomorphism
is an isomorphism, then the sum is called an (internal) direct sum, and also

denoted €B,.; X;.

If (m;);es is a family of elements of an R-module M, the submodule generated
by (m;) is

Z Rm; = {Z rim; : m; € R, all but finitely many zero},
iel iel
or equivalently the image of the map R — M, (r;) — Y oier T
Every module M has a generating set, for example M itself. A module M is
finitely generated if it has a finite generating set. Equivalently if there is a

map from R" onto M for some n € N.

A family (m;)ier is an (R-)basis for M if it generates M and is R-linearly
independent, that is, if
Z rym; = 0

iel
with all but finitely many r; = 0, implies all r; = 0. That is, the map
R — M is bijective. A module M is free if it has a basis; equivalently
M = RD for some 1.

Example. Z/2Z and Q are not free Z-modules.

Lemma. Any proper submodule of a finitely generated module is contained
in a maximal proper submodule.

Proof. Apply Zorn’s Lemma to the set of proper submodules containing the
submodule. Finite generation ensures that the union of a chain of proper
submodules is a proper submodule.

1.3 Algebras

Fix a commutative ring K (often a field). An (unital associative) algebra
over K, or K-algebra consists of a ring which is at the same time a K-
module, with the same addition, and such that multiplication is a K-module
homomorphism in each variable.



To turn a ring R into a K-algebra is the same as giving a homomophism
from K to the centre of R, Z(R) = {r € R:rs=sr forall s € R}. Given
the K-module structure on R, we have the map K — Z(R), A — Al. Given
amap f: K — Z(R) we have the K-module structure \.om = f(\)m.

A ring is the same thing as a Z-algebra.

Any module for a K-algebra R becomes naturally a K-module via A.m =
(Al)m. It can also be considered as a R-K-bimodule.

If R and S are K-algebras, then unless otherwise stated, one only considers
R-S-bimodules for which the left and right actions of K are the same.

A K-algebra homomorphism is a ring homomorphism which is also a K-
module homomorphism, or equivalenty a ring homomorphism which is com-
patible with the ring homomorphisms from K.

Example 1. Hamilton’s quaternions H = {a + bi + ¢j + dk : a,b,c,d € R}.

If M, N are R-modules, the set of R-module homomorphisms Hompg(M, N)
becomes a K-module via

(0 + 0)(m) = 6(m) + ¢(m),  (A0)(m) = A0(m)(= 6(Am).

But it is not necessarily an R-module, unless R is commutative. For example
if we define 76 for r € R by (rf)(m) = rf(m), then for s € R we have
(r0)(sm) = rsf(m) and s((r0)(m)) = srf(m).

Bimodule structures on M or N give module structures on Hompg(M, N).
For example if M is an R-S-bimodule and N is an R-T-bimodule then
Hompg (M, N) becomes an S-T-bimodule via (s6t)(m) = 6(ms)t.

Example 2. Endg(M) the set of endomorphisms of an R-module M is a
K-algebra.

If R is any K-algebra, then the R-module structures on a K-module M are
in 1:1 correspondence with K-algebra homomorphisms R — Endg(M).

Example 3. If G is a group, written multiplicatively, the group algebra KG
is the free K-module with basis the elements of GG, and with multiplication
given by g-h = gh for g, h € GG. Thus a typical element of K'G can be written
as ) e @gg With ay € K, almost all zero, and

(Z @gg)(z bph) = Z(Z aghg-11,) k.

geG heG keG geG



A representation of G over K consists of a K-vector space V and a group
homomorphism p : G — GL(V). There is a 1-1 correspondence between
representations of G and K G-modules via p(g)(v) = gv.

Example 4. Given a set X, the free (associative) algebra K(X) is the free
K-module on the set of all words in the letters of X, including the trivial
word 1. It becomes a K-algebra by concatenation of words. For example for
X ={z,y} we write K(x,y), and it has basis

17 x? y7 xx? xy? yx7 ny Ixx? xajy7 AR
In case X = {x} one recovers the polynomial ring K|z].

If R is any K-algebra, there is a 1:1 correspondence between maps of sets
X — R and K-algebra maps K(X) — R.

Thus there is a 1:1 correspondence between K (X)-module structures on a
K-module M and maps of sets X — Endg(M).

If X is a subset of R, the K-subalgebra of R generated by X is the image of
the natural homomorphism K(X) — R.

1.4 Exact sequences

Let R be a ring or an algebra. A sequence of modules and homomorphisms

RN SN VLN

is said to be exact at M if Im f = Kerg. It is exact if it is exact at every
module. A short exact sequence is one of the form

0=LLME NSO
so f is injective, g is surjective and Im f = Ker g.
Any map f: M — N gives an exact sequence
0—>Kerf—> M — N — Coker f = 0
where Coker f := M/Im f, and short exact sequences

0—=Kerf >M-—>Imf—-0, 0—Imf— N — Coker f— 0.
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Snake Lemma. Given a commutative diagram with exact rows

0 IV -1 M 25 N — 0

Lol

!

0 s L L M L N'(—— 0)

there is an induced exact sequence
(0 —) Ker o — Ker 8 — Kery — Coker a — Coker 3 — Coker y(— 0).

The maps, including the connecting homomorphism ¢, are given by diagram
chasing.

There is also the Five Lemma, and many variations. Maybe we only need:
Corollary. If o and ~ are isomorphisms, so is 5.
If L and N are modules, one gets an exact sequence

0L LN N0

where 77, and py are the inclusion and projection maps.

Lemma/Definition. A sequence 0 — L MmN 0, is a split if it
satisfies the following equivalent conditions

(i) f has a retraction, a morphism r : M — L with rf = 1.

(ii) ¢ has a section, a morphism s: N — M with gs = 1y.

(iii) There is an isomorphism 6 : M — L& N giving a commutative diagram

0 L1 wm I, N 0
| o| |
0 L s LaN -2, N 0.

Proof of equivalence. (i)=-(iii). Define 8(m) = (r(m), g(m)). The diagram
commutes and 6 is an isomorphism by the Snake lemma.

(ii)=(iii). Define ¢ : L& N — M by ¢(¢,n) = f({) + s(n). It gives
a commutative diagram the other way up, so ¢ is an isomorphism by the
Snake lemma, and then take § = ¢~

(iii)=(i) and (ii). Define r = pr.0 and s = 0~ 1iy.
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1.5 Idempotents

Let K be a commutative ring and let R be a K-algebra (including the case
of a ring, with K = 7Z).

Definitions

(i) An element e € R is idempotent if * = e.

(ii) A family of idempotents (e;);er is orthogonal if e;e; = 0 for ¢ # j.

(iii) A finite family of orthogonal idempotents ey, ..., e, is complete if e; +
cde, = 1.

Examples.

(a) If e is idempotent, then e, 1 — e is a complete set of orthogonal idempo-
tents.

(b) The diagonal unit matrices e” in M, (K) are a complete set.

Lemma 1. If M is a left R-module, then

(i) If e is idempotent, then eM = {m € M : em = m}. This is a K-
submodule of M.

(ii) If (e;) are orthogonal idempotents, then the sum ., ;M is direct.
(iii) If ey, ..., e, is a complete family of orthogonal idempotents, then M =
eeM@---®e, M.

Proof. Straightforward. e.g. for (i), if em = m then m € eM, while if
m € eM then m = em’ = e*m’ = e(em’) = em.

Proposition (Peirce decomposition). If ej,..., e, is a complete family of
orthogonal idempotents then R = B;;_, e; Re;.

We draw the Peirce decomposition as a matrix

etRe; eiRes ... e1Re,

esRe; eaRes ... esRe,
R =

e, Rei e,Res ... e,Re,

and multiplication in R corresponds to matrix multiplication.

Remark. If e is an idempotent, then eRe is an algebra with the same opera-
tion as R, with unit element e. Since the unit element is not the same as for
R, it is not a subalgebra of R. Sometimes called a corner algebra.

Lemma 2. For M a left R-module, we have Homg (R, M) = M as R-modules,
and if e € R is idempotent, then Hompg(Re, M) = eM as K-modules.
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In particular, R = Endg(R)? (if we used right modules, we wouldn’t need
the opposite here) and eRe = Endg(Re).

Proof. Send 6 : R — M to 6(1) and m € M to r — rm, etc.

1.6 Hom spaces and decompositions

Let R be a K-algebra (including the case of R a ring with K = 7Z).

Lemma 1. Given modules X,Y and families of modules X;,Y; (i € I), there
are natural isomorphisms

Homp (X, [[¥7) = [ [ Homa(X, Y)),
Homp @Xi,Y = HHomR(XZ-,Y).

Homp (X @ Y;) @ Hompg(X,Y;) for X finitely generated

Proof. Straightforward.

Lemma 2. In the algebra Endg(X; @ --- @& X,,), the projections onto the X;
give a complete family of orthogonal idempotents, and the Peirce decompo-
sition is

Hom(Xy, X;) Hom(X,, X;) ... Hom(X,, X))
Endp(X,@- - ®X,) = Hom(X;, Xy) Hom(Xs, X5) ... Hom(X,, X>)
Hom(Xy, X,) Hom(X,, X,) ... Hom(X,,X,)

In particular, Endg(X") = M, (Endg(X)).
Proof. Straightforward.

A module M is indecomposable if it is non-zero and in any decomposition
into submodules M = X @Y, either X =0or Y =0.

Lemma 3. A module M is indecomposable if and only if Endg(M) has no
non-trivial idempotents (other than 0 and 1).

Proof. An idempotent endomorphism e gives M = Ime @ Kere. A decom-
position M = X @Y gives e = projection onto X.

10



Theorem (Specker, 1950). Homgz(ZY,Z) is a free Z-module with basis (;)sen
where m;(a) = a;.

Proof. (cf. Scheja and Storch, Lehrbuch der Algebra, Teil 1, 2nd edition,
Satz I11.C.4, p230) It is clear that the 7; are linearly independent. Let (e;)
be the standard basis of ZMN C ZN. Let h : ZN — Z, and let b; = h(e;). Let
(cn) be a sequence of positive integers such that ¢, is a multiple of ¢, and

Cni1 >n+1+ Z lcibi-

i=0
Let ¢ = h((cn)).
For each m € N there is y,, € Z" with
(cn) = Z Ci€i + Crmy1Ym-
i=0
Applying h gives
c= Z cibi + coma1h(Ym),

1=0
SO

e = > cibil = cialh(ym)|
i=0

is either 0 or > ¢,,11. But if m > |¢|, then

m m
|C — ZCsz| < ’C‘ + Z ’Czbz| < Cm+1-
=0 1=0

Thus ¢ = >, ¢;b; for all m > |¢|. But this implies b; = 0 for all ¢ > |¢].
Then the linear form h — ZL’;‘O b;m; vanishes on all of the standard basis
elements e;.

It remains to show that if g € Hom(Z",Z) vanishes on all the e;, then it is
zero. Suppose given (¢;) € ZY. Expanding ¢; = ¢;(3 — 2)%, we can write
c; = v;2° + w;3" for some v;, w; € Z. Then g((¢;)) = g((v:2%)) + g((w;3%)).
Now for any m, (v;2") = Z:.Z)l v;2%; + 2™z,, for some z,, € ZN. Thus

g((v;:2%) € 2™Z. Thus g((v;2)) = 0. Similarly for w. Thus g((c,)) = 0.

Corollary. ZN is not a free Z-module.
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Proof. Say ZN = Z). Since Z" is uncountable, I must be. Certainly it
must be infinite. Then Homgz(ZN,Z) = Hom(ZY),Z) = (Homgy(Z, 7)) =
7!, which is also uncountable. But Homgz(ZN,Z) is a free Z-module with
countable basis, so it is countable.

1.7 Simple and semisimple modules

Let R be an algebra. A module S is simple (or irreducible) if it has exactly
two submodules, namely {0} and S. It is equivalent that S is non-zero and
any non-zero element is a generator. In particular the simple modules are
the quotients R/I with I a maximal left ideal.

Examples.

(i) The simple Z-modules are Z/pZ for p prime.

(ii) If D is a division ring, that is every non-zero element is invertible, then
pD is a simple D-module.

(iii) K™ considered as column vectors becomes a simple M, (K )-module.

Schur’s Lemma. Any homomorphism between simple modules must either
be zero or an isomorphism, so if S is simple, Endg(S) is a division ring.
Moreover if R is a K-algebra, with K an algebraically closed field, and S is
finite-dimensional over K, then Endg(S) = K.

Proof. The last part holds because any f.d. division algebra D over an alge-
braically closed field is equal to K. Namely, if d € D then left multiplication
by D gives a linear map D — D, and it must have an eigenvalue A\. Then
d — A1 is not invertible, so must be zero, so d € K1.

Theorem/Definition. A module M is said to be semisimple (or completely
reducible) if it satisfies the following equivalent conditions.

(a) M is isomorphic to a direct sum of simple modules.

(b) M is a sum of simple modules.

(¢) Any submodule of M is a direct summand.

Sketch. For fuller details see P.M.Cohn, Algebra 2, §4.2.

(a) implies (b) is trivial. Assuming (b), say M = > .., S; and that N is a
submodule of M, one shows by Zorn’s lemma that M = N & ,_, S; for
some subset J or I. This gives (a) and (c).

ieJ

The property (c) is inherited by submodules N C M, for if L C N and
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M =L®Cthen N=L& (NNC). Let N be the sum of all simple
submodules. It has complement C', and if non-zero, then C' has a non-zero
finitely generated submodule F. Then F' has a maximal proper submodule
P. Then P has a complement D in F', and D = F/P, so it is simple, so
D C N. But D C C, so its intersection with N is zero.

Corollary 1. Any submodule or quotient of a semisimple module is semisim-
ple.

Proof. We showed above that condition (c¢) passes to submodules. Now if
M is semisimple and M/N is a quotient, then N has a complement C' in M,
and M/N = C| so it is semisimple.

Corollary 2. If K is a field, or more generally a division ring, every K-module
is free and semisimple (hence the theory of vector spaces).

Proof. K is a simple K-module, and it is the only simple module up to
isomorphism, since if S is a simple module and 0 # s € S then the map
K — S, r — rs must be an isomorphism. Thus free = semisimple. The
result follows.

1.8 Jacobson radical

Theorem/Definition. The (Jacobson) radical J(R) of R is the ideal in R
consisting of all elements x satisfying the following equivalent conditions.
(i) S = 0 for any simple left module S.
ii) x € I for every maximal left ideal 1

1 — ax has a left inverse for all a € R.
iv) 1 — az is invertible for all a € R.
i’)-(iv’) The right-hand analogues of (i)-(iv).

11

(
(ii)
(iv)
(

Proof (i) implies (ii). If I is a maximal left ideal in R, then R/I is a simple
left module, so z(R/I) =0,so (I +1)=1+0,s0z € I.

(i) implies (iii). If there is no left inverse, then R(1 — az) is a proper left
ideal in R, so contained in a maximal left ideal I by Zorn’s Lemma. Now
rel,andl —axr € l,s0olel,sol =R, a contradiction.

(iii) implies (iv) 1 — ax has a left inverse u, and 1 4 uax has a left inverse v.
Then u(1 — ax) =1, so u = 1 + wax, so vu = 1. Thus u has a left and right
inverse, so it is invertible and these inverses are equal, and are themselves
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invertible. Thus 1 — ax is invertible.

(iv) implies (i). If s € S and xs # 0, then Rxs = S since S is simple, so
s = axs for some a € R. Then (1 — ax)s = 0, but then s = 0 by (iv).

(iv) implies (iv’). If b is an inverse for 1 — az, then 1+ xba is an inverse for
1 — za. Namely (1 —ax)b =b(1 —azx) =1, so axb = b — 1 = bax, and then
(1 + zba)(1 — za) = 1+ zba — za — xbaxa = 1, and (1 — za)(1 + zba) =
1 — zaxba — xa + zba = 1.

Example. The maximal (left) ideals in Z are pZ, p prime, so J(Z) = ﬂp Zp =
0.

Lemma (added later). If I is an ideal in R with I C J(R) then J(R/I) =
J(R)/I. In particular, J(R/J(R)) = 0.

Proof. The maximal left ideals of R contain I, so correspond to maximal left

ideals of R/1.

Notation. If M is an R-module and I an ideal in R, we write IM fot the
set of sums of products tm. The powers of an ideal are defined inductively
by I' = I and I"*!' = [I™. An ideal is nilpotent if I = 0 for some n,
or equivalently 47 ...4, = 0 for all 4y,...,7, € I. An ideal I is nil if every
element is nilpotent.

Lemma 1. For an ideal I, we have [ nilpotent = I nil = I C J(R).

Proof. The first implication is clear. If x € I and @ € R then ax € I, so
(ax)™ = 0 for some n. Then 1 — ax is invertible with inverse 1+ ax + (az)? +
-+ (az)" 1. Thus z € J(R).

Lemma 2. If T is a nil ideal in a ring R, then any idempotent in R/I lifts to
one in R.

Proof. There is a formal power series p(z) = a1z + asz® + ... with integer
coefficients satisfying

(1 +42)p(z)* — (1 + 42)p(x) + z = 0.

Namely, either solve recursively for the a;, or use the formula for a quadratic,

1—/1 -4

p(r) = 5 ,

expand as a power series, and observe that the coefficients are integers.
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Now an idempotent in R/ lifts to an element @ € R with b = a? —a € I.
Since b is nilpotent and commutes with a, the element e = a(1—2p(b)) +p(b)
makes sense and

¢’ —e=a’(1—2p(b))* + 2ap(b)(1 — 2p(b)) + p(b)* — a(1 — 2p(b)) — p(b).

Writing a? = a + b and collecting terms, this becomes
al(1 = 2p(0))* +2p(0)(1 = 2p(b)) — (1 — 2p(D)] + b(1 — 2p(b))* + p(b)* — p(D)]

= (1 +4B)p(b)? — (1 + 4D)p(b) + b = 0.

Nakayama’s Lemma. Suppose M is a finitely generated R-module.
(i) If J(R)M = M, then M = 0.
(ii) If N € M is a submodule with N + J(R)M = M, then N = M.

Proof. (i) Suppose M # 0. Let my,...,m, be generators with n minimal.
Since J(R)M = M we can write m,, = Y. r;m; with r; € J(R). This
writes (1 —7,)m, in terms of the others. But 1 —r, is invertible, so it writes

m,, in terms of the others. Contradiction.
(i) Apply (i) to M/N.

Lemma/Definition. R is a local ring if it satisfies the following equivalent
conditions.

(i) R/J(R) is a division ring.

(ii) The non-invertible elements of R form an ideal (which is J(R)).

(iii) There is a unique maximal left ideal in R (which is J(R)).

Proof. (i) implies (ii). The elements of J(R) are not invertible, so it suffices
to show that any = ¢ J(R) is invertible. Now J(R) 4+ x is an invertible
element in R/J(R), say with inverse J(R)+ a. Then 1 —ax,1 —za € J(R).
But this implies ax and xa are invertible, hence so is z.

(ii) implies (iii). Clear.

(iii) implies (i). Assuming (iii), J(R) is the unique maximal left ideal, so
R = R/J(R) is a simple R-module, and so a simple R-module. Then R =

Endz(R)°, which is a division ring by Schur’s Lemma.

Examples. (a) The set R ={q € Q: ¢ = a/b,bodd} is a subring of Q. The
ideal (2) = {g € Q : ¢ = a/b,a even, b odd} is the set of all non-invertible
elements. Thus R is local and J(R) = (2).
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(b) The set of upper triangular matrices with equal diagonal entries is a
subalgebra of M, (K), e.g.

ca,b,c,d € K}

——
o O
o o
SRS e

The set of matrices with @ = 0 form a nil ideal I, so I C J(R). The map
sending such a matrix to a defines an isomorphism R/l = K. Thus I = J(R)
and R/J(R) = K so R is local.

(c) The ring M,,(K) has no 2-sided ideals other than 0 and M, (K), but it is
not local.

1.9 Finite-dimensional algebras

In this section K is a field, and we consider f.d. algebras and modules.

Wedderburn’s Theorem/Definition. A f.d. algebra R is semisimple if the
following equivalent conditions hold

(i) J(R) =

(i) R is semlslmple as an R-module.

(iii) Every R-module is semisimple.
(
(

iv) Every short exact sequence of R-modules is split.
v) R= M,, (D) X -+ x M, (D,) with the D, division algebras.

Proof. If (i) holds, then since J(R) = 0 the intersection of the maximal
left ideals is zero. Since R is f.d., a finite intersection of them is zero, say
ILin---Nn1l,=0. Then the map R — (R/I,) & ...(R/1,) is injective. Thus
(ii).

If (ii) then R = @,;
left ideal in R, and

Si. Now for j € I the sum M; = €P,; S; is a maximal
M; =0, giving (i).

jel
Now (ii) implies that every free module is semisimple, and since any module

is a quotient of a free module, (iii) follows.

The equivalence of (iii) and (iv) is easy, using that a short exact sequence

0-LL ML NSOs split if and only if Im f is a direct summand of M,
and that a module is semisimple if and only if every submodule is a direct
summand.
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If (iii) holds then we can write gR as a finite direct sum of simples, and
collecting terms we can write

RSB - ®SPS® - DSHB--BS.® DS,

where S, ...,S, are non-isomorphic simples, and there are n; copies of each
S;. The Peirce decomposition of the endomorphism ring of this direct sum
gives Endg(R) = [[i—, My, (Endg(S;)). Now use Schur’s lemma and take the
opposite ring to get (v).

If (v) holds, say R = [, My, (D;) then R = @, D)., I;; where I;; is the
left ideal in M, (D;) consisting of matrices which are zero outside the jth
column. This is isomorphic to the module consisting of column vectors D},
and for D; a division algebra, this is a simple module, giving (ii).

Remarks. (i) The modules S; = D" in the Wedderburn decomposition are
a complete set of non-isomorphic simple R-modules.

(i) If K is algebraically closed, we get R = M, (K) x --- x M, (K) since
there are no non-trivial f.d. division algebras over K.

(iii) This generalizes to artinian rings with the Artin-Wedderburn Theorem.

Proposition 1. If R is a f.d. algebra, then R/J(R) is semisimple and J(R) is
nilpotent, in fact it is the unique largest nilpotent ideal in R.

Proof. The intersection of the maximal left ideals in R/J(R) is zero, so it is
semisimple. Since R is f.d., we have

JR)D J(R?*D---DJR)"=JR)" = ...

for some n. Then J(R)J(R)" = J(R)". Now J(R)" is a f.d. vector space, so
clearly f.g. as an R-module. Thus J(R)" = 0 by Nakayama’s lemma.

Example 1. If R is the subalgebra of M3(K) consisting of matrices of shape

S * %
O ¥ ¥
* % %

then R = S & I where S and I consist of matrices of shape

x x 0 0 0 =
S=1x*x x 0], I=10 0
0 0 = 000

17



It is easy to check that [ is a nilpotent ideal in R, so I C J(R). Also S is a
subalgebra in R, and it is clearly isomorphic to My(K) x K, so semisimple.
Then J(R)/I is a nilpotent ideal in R/I = S, so it is zero. Thus J(R) C .
Thus J(R) =1 and R/J(R) = S.

Definition. If R is any K-algebra and M is a f.d. R-module, the character
xum of M is the composition

Z M T
R 2% Endg (M) 5 K

where (M (m) = xm and tr(f) is the trace of an endomorphism 6.

Proposition 2.

(1) xm(zy) = xum(yz) for z,y € R.

(ii)) If 0 = L - M — N — 0 is an exact sequence, then xp = xr + xn. In
particular, xren = Xz + XN-

(iii) If K has characteristic zero, the characters of the simple modules are
linearly independent in the vector space Homg (R, K'), so semisimple modules
with the same character are isomorphic.

Proof. (i) xan(xy) = tr(€))) = tr(£27 ;") = tr(£) €3").

(ii) Take a basis of L and extend it to a basis of M. It induces a basis of N.
With respect to this basis, the matrix of 2! has block form

(o ¢)

where A is the matrix of ¢£ and C is the matrix of £ with respect to the
induced basis of N.

(iii) The statement actually holds for R infinite-dimensional. Namely, any
linear relation involves finitely many finite-dimensional modules, say with
direct sum M. Then, replacing R by R/{z € R : M = 0}, we reduce to the
case R is f.d.

Replacing R by R/J(R) if necessary, we may suppose that R is semisimple.

The simple modules are S; = D] corresponding to the factors in the Wed-
derburn decomposition of R. Say > . a;xs, = 0. Let e; be the idempo-
tent in R which corresponds to the identity matrix in the jth factor. Then
0=> aixs,(ej) =a;dim S}, so a; = 0. Here we use characteristic zero.

Now let R be f.d. Consider the symmetric bilinear form R x R — K defined
by (x,y) = xr(zy). It is non-degenerate if (x,y) = 0 for all y implies = = 0.
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If by,...,b, is a K-basis of R, then the form is non-degenerate if and only if
the matrix ((b;, b;));; is non-singular.

Lemma 1. If (—, —) is non-degenerate, then R is semisimple.

Proof. If # € J(R) then for y € R we have (z,y) = tr(£L,) = 0 since zy is
nilpotent. Thus z = 0 by non-degeneracy. Thus J(R) = 0.

Maschke’s Theorem. If G is a finite group and K is a field of characteristic
0 (or not dividing |G]), then KG is semisimple.

Proof. xka(1) = |G| and xka(g) = 0 for g # 1. Now the matrix ({g, h))4n
has entry |G| where g = h™! and other entries zero, so it is invertible.

To specify a character x,s for a group algebra CG, it suffices to give the
values xp/(g) for g € G, and this only depends on the conjugacy class of g.
The character table of a finite group G has columns given by the conjugacy
classes in GG, rows given by the simple CG-modules, and entries given by the
value of the character.

Example 2. Suppose G is cyclic of order n, say with generator o and K = C.
Let € = e2™V~1/7 Since G is abelian, we must have CG = C x --- x C.
There are 1-dimensional simple modules Sy, ..., S,_1 with ¢ acting on 5; as
multiplication by €. Since there are n of them, they must be all of the simple
modules. One easily checks that

0 (otherwise)

— i {n (if n divides 1)

.

as in the second case its product with € — 1 is €™ — 1 = 0. It follows that

the elements
n—1

1 o
e = — i <i
i nZe 0/ e CG (0<i<n)
7=0
are a complete family of orthogonal idempotents. They must be linearly
independent, so a basis for CG.

For n = 3 the character table is

1 o o

1 1 1
1 € €
1 € ¢



Example 3. The symmetric group S3 of order 6 is non-abelian, so by dimen-
sions we must have CS3 = C x C x My(C). The character table is

1 () ()

1 1 1
1 -1 1
2 0 -1

There are two easy 1-dimensional simple modules, the trivial representation,
on which all group elements act as 1, and the sign representation, on which
each permutation acts as multiplication by the sign of the permutation. The
remaining simple module is 2-dimensional. Its character can be deduced
from that of the regular module CS5. Alternatively, identifying S3 with the
dihedral group Ds, it is the natural 2-dimensional representation with Ds
preserving an equilateral triangle.

The Atlas of Finite Groups, gives character tables for some finite simple
groups. For example the Fischer group Fiss, a sporadic simple group of
order 2'®.313.52.7.11.13.17.23 has 98 simple modules over C of dimensions 1,
782, 3588, ..., 559458900. It has a simple module over 3 of dimension 253.

Theorem 3. For a f.d. algebra R, the following are equivalent.
(i) R is local.

(ii) R has no idempotents apart from 0 and 1.

(iii) Every element of R is nilpotent or invertible.

Proof. (i)=-(ii). If R is local, the non-invertible elements form an ideal I. If
e is an invertible idempotent then e = el = e(ee™!) = ee™! = 1. Thus if e is
an idempotent # 0,1 then e,1 —e € I, so 1 € I. Contradiction.

(ii)=-(i). If not local, then R/J(R) is not a division ring, so its Wederburn
decomposiotn has more than one factor, or matrices. Thus it contains a
non-trivial idempotent. This lifts to an idempotent in R since J(R) is nil.

(i)=-(iii). Since J(R) is nil.

(iii)=-(i). If is & not invertible, nor is az, so it is nilpotent, so 1 — az is
invertible, so z € J(R).

Example 4. The augmentation ideal A(G) of a group algebra KG is the
kernel of the algebra homomorphism

KG — K, ZaggHZag.

geG geqG
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If G is a finite p-group and K is a field of characteristic p, we show that A(G)
is nilpotent. Thus it is equal to J(KG) and KG is local.

For a cyclic group G = (z) of order p, A(G) is spanned by 2 — 1 = (z —
1)(1+x+---+2"1), so generated by  — 1. Then since KG is commutative
A(G)P is generated by (z — 1) = 2P — 17 = 0 (by since all other binomial
coefficients are zero in K.)

In general, by induction. Choose a central subgroup H which is cyclic of order
p. Then there is a homomorphism 0 : KG — K(G/H). Now 0(A(G)) =
A(G/H), and A(G/H)N = 0. Then A(G)YN C Kerf = KG.A(H). Since H
is central, the pth power of this vanishes.

1.10 Noetherian rings

Lemma/Definition. A module M is noetherian if it satisfies the following
equivalent conditions

(i) Any ascending chain of submodules M; C M, C ... becomes stationary,
that is, for some n one has M,, = M,,,1 = ....

(ii) Any non-empty set of submodules of M has a maximal element.

(iii) Any submodule of M is finitely generated.

Proof. (i) = (ii) because otherwise we choose M; to be any of the sub-
modules, and iteratively, since M; isn’t maximal, we can choose M; < M, .
This gives an ascending chain which doesn’t become stationary.

(ii) = (iii). Let N be a submodule, let L be a maximal element of the set
of finitely generated submodules of N, and n € N. Then L + Rn is also a
finitely generated submodule of N, so equal to L by maximality. Thusn € L,
so N = L, so it is finitely generated.

(iii) = (i) Choose a finite set of generators for N = (J, M;. Some M; must
contain each of these generators, so be equal to N. Thus M; = M;,; = ....

Lemma. If L is a submodule of M then M is noetherian if and only if L and
M /L are noetherian. If M = L+ N and L, N are noetherian, then so is M.

Proof. If M is noetherian then clearly L and M /L are noetherian. Now
suppose M; C M, C ... is an ascending chain of submodules of M. If L
and M /L are noetherian, then LN M; = LN M;y1 = ... and (L + M;)/L =
(L + M;1)/L = ... for some i, so L+ M; = L+ M1 = .... Now if
m € M; 1, then m = ¢+ m' with £ € L and m’ € M;. Then £ =m —m’ €
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LN My, =LNM;,some M;. Thus M; = M,;,; = .... For the last part,
use that (L+ N)/L = N/(LNN).

Definition. A ring R is left noetherian if it satisfies the following equivalent
conditions

(a) gpR is noetherian (so R is has the ascending chain condition on left ideals,
or any left ideal in R is finitely generated).

(b) Any finitely generated left R-module is noetherian (equivalently any sub-
module of a finitely generated left module is finitely generated).

Proof of equivalence. For (a) = (b), any finitely generated module is a
quotient of a finite direct sum of copies of R.

Definition. A ring is noetherian if it is left noetherian and right noetherian
(i.e. noetherian for right modules, or equivalently R is left noetherian).

Remarks. (1) Division rings and principal ideal domains such as Z are noethe-
rian. Hilbert’s Basis Theorem says that if K is noetherian, then so is K[z].
The free algebra R = K (x,y) is not left noetherian, since the ideal (z) is not
finitely generated as a left ideal.

(2) If R — S is a ring homomorphism and M is an S-module such that
rM is noetherian, then M is noetherian. Thus if S is a finitely generated
R-module, and R is left noetherian, then so is S. Thus, for example, if R is
noetherian, so is M, (R).

(3) If K is noetherian and R is a finitely generated commutative K-algebra,
then R is noetherian, as it is a quotient of a polynomial ring Klxy, ..., z,].
This is not true for R non-commutative. But we have the following.

Artin-Tate Lemma. Let A be a finitely generated K-algebra with K noethe-
rian, and let Z be a K-subalgebra of Z(A). If A is finitely generated as a
Z-module, then Z is finitely generated as a K-algebra, hence Z and A are
noetherian rings.

Proof. Let aq,...,a, be algebra generators of A. Now A = Zb;+---+Zb,,, so
we can write a; = Zj 2;;b; and b;b; =Y, 2zpbe with 2,5, 25, € Z. Let Z' be
the K-subalgebra of Z generated by the z;; and z;;. It is a finitely generated
commutative K-algebra, so noetherian. Now A is generated as a K-module
by products of the a;, so A = Z'by + --- + Z'b,,, so it is a finitely generated
Z'-module. Then Z C A is a finitely generated Z’-module. In particular it
is finitely generated as a Z’-algebra, and hence also as a K-algebra.
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1.11 Tensor products

If X is aright R-module and Y is a left R-module, the tensor product X @Y
is defined to be the additive group generated by symbols z®y (z € X,y € V)
subject to the relations:

-zt )Y Ry=ry+1 Y,

-z W+yY)=ryt+rey,

-(zr)®@y=2® (ry) for r € R.

Properties. (1) By definition, an arbitrary element of X ® g Y can be written
as a finite sum of tensors > ", z; ®y;, but this expression is not unique. You
may need more than one term in the expression.

(2) If Ris a K-algebra, then X®prY is a K-module via A(z®y) = 2(A\1)®y =
r® (Al)y.

If Z is a K-module, a map ¢ : X x Y — Z is K-bilinear if it is K-linear in
each argument, and R-balanced if ¢p(xr,y) = ¢(x,ry) for all z,y,r. The map
X XY = X®rY, (z,y) » z®y is K-bilinear and R-balanced. Moreover
there is a bijection

Homg (X ®@r Y, Z) = {set of K-bilinear R-balanced maps X x Y — Z}.

It sends 6 € Homg (X ®g Y, Z) to the map bmap ¢ with ¢(z,y) = 0(z ®y),
and sends ¢ to the map 6 with 003", z; ® v;) = > ¢(4, vi)

(3) If X is an S-R-bimodule, then X®pzY becomes an S-module via s(z®y) =
(sz) ® y, and for a left S-module Z, there is a natural isomorphism

Homg(X ®g Y, Z) = Homg(Y, Homg(X, Z)).

Both sides correspond to the K-bilinear R-balanced maps X xY — Z which
are also S-linear in the first argument.

Dually, if YV is an R-T-bimodule, then X ®z Y is a right T-module and
Homp (X ® Y, Z) = Hompg(X, Homy (Y, Z)).

(4) There are natural isomorphisms X®@zrR = X, x®r — zr and RQrY =Y,
r ® y — ry. There are natural isomorphisms

(@)Q) ©rY = PX;0rY). X ©n (@Yi) ~ DX @rY)).

el el iel icl
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Thus X ®r gRY) 2 X and Ry @z Y 2 YD, s0 Ry @ gRY) = R,

In particular if K is a field and V and W are K-vector spaces with bases
(vi)ies and (wj)jes then V ®x W is a K-vector space with basis (v; ®
wj)(ijyerxs- Thus dim(V @x W) = (dim V') (dim W).

(5) If 0 : X — X' is a map of right R-modules and ¢ : Y — Y’ is a map is
left R-modules, then there is a map

0R¢: X@rY - X' QrY', 2@y~ 0(z) @ ¢(y).
If # is a map of S-R-bimodules, then this is a map of S-modules, etc.

(6) If X' C X is an R-submodule of X then (X/X') ®x Y is isomorphic to
the quotient of X ®zY by the subgroup generated by all elements of the form
¥ @y with 2/ € X', y € Y (so the cokernel of the map X' ®@rY — X ®rY).
Similarly for X ®pg (Y/Y”) if Y is a submodule of Y.

Thus if I is a right ideal in R,

(R/I)@pY = (RopY)/Im(Il ©pY — RopY) = Y/IY.
Similarly if J is a left ideal in R then X ®p (R/J) =2 X/ X J.
Thus (R/I)®gr (R/J) = R/(I+J). eg. (Z/27) @z (Z/3Z) = Z]7Z = 0.

(7) If X is a right S-module, Y a S-R-bimodule and Z a left R-module, then

there is a natural isomorphism

X®s(YRrZ)Z (X ®sY)®rZ.

(8) Tensor product of algebras. If R and S are K-algebras, then R ®
S becomes a K-algebra via (r @ s)(r' ® s') = (1) ® (ss’). For example
M,(K)®g S = M,(S). An R-S-bimodule (for which the two actions of K
agree) is the same thing as a left R @ S°P-module.

(9) Base change. If S is a commutative K-algebra then R ®x S is naturally
an S-algebra.

1.12 Catalgebras

Sometimes it is useful to consider non-unital associative algebras, but usu-
ally one wants some weaker form of unital condition, and there are many
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possibilities, for example “rings with local units”. The version below, I call
“catalgebras”, since we will see later that they correspond exactly to small
K-categories. (In categorical language, this is the theory of “rings with sev-
eral objects”).

Definition. By a catalgebra we mean a K-module R with a multiplication
R x R — R which is associative and K-linear in each variable, such that
there exists a family (e;);cr of orthogonal idempotents which is complete in
the sense that for all » € R only finitely many of the elements re; are nonzero
and only finitely many of the elements e;r are nonzero and r = >, re; =

Ziel e;r.

By a left module for a catalgebra we mean a K-module M with a map
R x M — M which is an action, K-linear in each variable, and unital in the
sense that RM = M.

Lemma 1. For a catalgebra R and a left module M we have R =
and M = @, ., e;M.

i jer €ilte;

Proof. Straightforward. For example if m € M then RM = M implies
m = Zizl rsms. Now each 7y = 3. eirg. Thus m = Y7 e;(D 0 rams) €
Zz’el e;M.

Examples.
(i) Any algebra is a catagebra with family (1) or a finite complete set of
idempotents. Modules are the same as modules for an algebra.

(ii) A catalgebra with a finite family of idempotents is unital, so an ordinary
algebra.

(iii) An arbitrary direct sum of algebras (or catalgebras) €,.; R; is a catal-
gebra, with the idempotents given by the unit elements in the R; or by
combining the families for the R;.

(iv) If I is a set and R an algebra or catalgebra, write RY*D for the set of
matrices with entries in R, with rows and columns indexed by I, and only
finitely many non-zero entries. It is a catalgebra.

(v) If (I, <) is a partially ordered set, there is an associated catalgebra K1
which has as basis the pairs (z,y) € I? with y < x and product given by
(x,y)(2,y) = (z,y) if y = 2’ and otherwise 0. The elements (z,z) are a
complete set of orthogonal idempotents.
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It is an algebra if and only if [ is finite. In this case it is the opposite of the
incidence algebra of I, introduced in combinatorics by G.-C. Rota. We call
it the poset algebra.

In case I = R with the usual ordering, or R", modules for K1 are known as
persistence modules, and appear in topological data analysis.

Lemma 2. If R is a catalgebra, then Ry = R® K becomes an algebra with unit
element (0, 1) under the multiplication (r, \)(r’, X') = (rr’+Xr"+X'r, AN'), and
we can identify R as an ideal in R;. Moreover there is a 1:1 correspondence

{R-modules M} <+ {R;-modules M with RM = M} .

If L is a submodule of an R;-module M, then then RM = M if and only if
RL =1L and R(M/L) = M/L.

Proof. Straightforward.

Thus modules for a catalgebra are nothing new. Henceforth, everything I do
for algebras, you might think about possible generalizations to catalgebras.
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2 Examples and constructions of algebras

We consider K-algebras, where K is a commutative ring. Maybe K = Z, so
we consider rings.

2.1 Path algebras

A quiver is a quadruple Q = (Qq, @1, h,t) where Qg is a set of vertices, @1 a
set of arrows, and h,t : Q1 — )y are mappings, specifying the head and tail

vertices of each arrow,

tla) o hia)
o — o

A path in @Q of length n > 0 is a sequence p = ajas . .. a, of arrows satisfying
t(CL,L> = h(aiﬂ) foralll <i< n,

a a2 an
o — 0~ 0---0{— o,

The head and tail of p are h(a;) and t(a,). For each vertex i € @)y there is
also a trivial path e; of length zero with head and tail 7.

We write K for the free K-module with basis the paths in (). It has a
multiplication, in which the product of two paths given by p-q = 0 if the tail
of p is not equal to the head of ¢, and otherwise p- g = pq, the concatenation
of p and q.

This makes K@) into a catalgebra in which the trivial paths are a complete
family of orthogonal idempotents. Normally we assume @) is finite, so K@
is unital, 1 = Zier e;, so an algebra.

Examples 1. (i) The path algebra of the quiver 1 < 2 with loop b at 2 has
basis e1, eq, a, b, ba, b?, b%*a, b®, b?a, . . ..

(ii) The algebra of lower triangular matrices in M, (K) is isomorphic to the
path algebra of the quiver

1=-2—=--—=n

with the matrix unit e” corresponding to the path from j to i.
(iii) The free algebra K(X) = K@ where ) has one vertex and ¢; = X.

K(@Q-modules are essentially the same thing as representations of Q).
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A representation of @ is a tuple V' = (V;, V) consisting of a K-module V; for
each vertex ¢ and a K-module map V, : V; = Vj for each arrow a : 7 — j in
Q. If there is no risk of confusion, we write a : V; — V; instead of V.

If Vis a K@-module, then V = @ ¢;V. We get a representation, also denoted
V, with V; = ¢;V, and, for any arrow a : ¢ — j, the map V, : V; — Vj is the
map given by left multiplication by a € e; KQe;.

Conversely any representation V' determines a K@-module via V' = @ Vi,
with the action of K@ given as follows:

- For v = (v;)icq, € V we have e;uv = v; € V; C V. That is, the trivial path
e; acts on V as the projection onto V;, and

- arag ... 0,0 = Vo, (Voo (0o (Va, (Wean))) -+ -)) € Vi) €V

i€Qo

Under this correspondence:

(1) KQ-module homomorphisms 6 : V. — W correspond to tuples (6;)
consisting of a K-module map 6; : V; — W, for each vertex i satisfying
W,0; = 0;V, for all arrows a : 7 — j.

(2) KQ-submodules W of V' correspond to tuples (W;) where each W; is a
K-submodule of V;, such that V,(W;) C W, for all arrows a : ¢ — j. Then
W corresponds to the representation (W;, V,|w, : W; — W;) and V/W to the
representation (V;/W;, V, : Vi/W; — V;/W;).

(3) Direct sums of modules V' = @,_, V* correspond to direct sums of
representations (9, V,*, @, V')

Notation.

(a) (KQ)4 is the K-span of the non-trivial paths. It is an ideal, and
(KQ)/(KQ), = K@),

(b) We write P[d] for the KQ-module KQe;, so KQ = @, Pli]. Consid-
ered as a representation of (), the vector space at vertex j has basis the paths
from 7 to j.

(c) We write S[i] for the representation with S|i|; = K, S[i]; = 0 for j # i
and all S[i], = 0. It corresponds to the module KQe;/(KQ)+e;.

For the rest of this section, suppose K is a field. If V is a finite-dimensional
representation, its dimension vector is dim V = (dim V) € N,

Example 2. Let @ be the quiver 1 % 2.

(i) S[1] is the representation K — 0 and S[2] is the representation 0 — K.
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(ii) P[1] is the representation K 4 K and P2] = S[2].

(iii) Hom(S[1], P[1]) = 0 and Hom(S[2], P[1]) = K. The subspaces (K C
V1,0 C V3) do not give a subrepresentation of V' = P[1], but the subspaces
(0 C Vi, K C V3) do, and this subrepresentation is isomorphic to S[2].

(iv) There is an exact sequence 0 — S[2] — P[1] — S[1] — 0.
(v) S[1] @ S[2] 2 K % K and for 0 # A € K we have K 2 K = P[1].

(vi) Every representation of @) is isomorphic to a direct sum of copies of S[1],
S[2] and P[1]. For a f.d. representation V; = V; one can see it as follows.

Taking bases of V; and V5, the representation is isomorphic to K" A K™ for
some m x n matrix A. Now there are invertible matrices P, Q) with PAQ™!

of the form
I 0
= (o 1)

with I an identity matrix. Then (Q, P) gives an isomorphism from K" A K

to K* % K " and this last representation is a direct sum as claimed.

Lemma.

(i) The P[i] are non-isomorphic indecomposable modules.

(ii) The S[i] are non-isomorphic simple modules.

(i) KQ is f.d. if and only if @ is finite and has no oriented cycles. If so,
then (K Q). is nilpotent, so it is the Jacobson radical of K@ and the S[i]
are all of the simple K ()-modules.

Proof. (i) Clearly the spaces P[i] = KQe;, e;KQe; and e; K(Q have as K-
bases the paths with tail at ¢ and/or head at j.

If0# fe KQe; and 0 # g € ¢;KQ then fg # 0. Explicitly if p and ¢ are
paths of maximal length involved in f and g, then the coefficient of pg in fg
must be non-zero.

Now End(P[i])? = e; KQe;, and by the observation above this is a domain
(products of non-zero elements are non-zero). Thus it has no non-trivial
idempotents, so P[i] is indecomposable.

If P[i] = P[j], then there are inverse isomorphisms, so elements f € e; KQe;
and g € e, KQe; with fg = e; and gf = e;. But by the argument above, f
and g can only involve trivial paths, so ¢ = j.
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ii) Clear.

(

(iii) First part clear. Now there is a bound on the length of any path, so
(KQ), is nilpotent. Since KQ/(KQ), = K@) it is semisimple, J(KQ) C
(KQ)4, so we have equality. The simples are indexed by @, so there are no
simples other than the S[i].

Definition. Suppose @ is finite. An ideal I C K is admissible if
(1) I C (KQ)?, and
(2) (KQ)% € I for some n.

Examples 3.
(i) If @ has no oriented cycles, I = 0 is admissible.

(ii) Let @ be the quiver with one vertex and one loop z, so KQ = K|z]. The
admissible ideals in K@ are (z") for n > 2.
(iii) The poset algebra of the poset

4

1

has basis (1,1),(2,2),(3,3),(4,4),(2,1),(3,1),(4,2),(4,3),(4,1). It is iso-
morphic to KQ/(ca — db) where @ is the quiver

1 —25 9
I
d
3 —— 4

This is trivially an admissible ideal. Modules correspond to representations
of the quiver satisfying the commutativity relation ca = db.

Theorem (Gabriel). If I is an admissible ideal in K@ then R = KQ/I is f.d.,
J(R) = (KQ)y/I, and R/J(R) =2 K x --- x K. Conversely, if R is a f.d.
algebra and R/J(R) = K x --- x K, then R = K@Q/I for some finite quiver
() and admissible ideal I.

Proof. First part is easy. Sketch for the second part.

Trivial fact (add to section 1.5). If e € R is idempotent and N is a submodule
of an R-module M, then e(M/N) = eM/eN.

Let J = J(R). Observe that if S = K" = K x ---x K (n factors), then it has
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a basis consisiting of orthogonal idempotents f; = (0,...,0,1,0,...,0), and if
f=0,1,...,1,0) = fi+-- -+ fo_1, then fSf={(ay,...,a,_1,0)} = K" 1

We show by induction on n that if R/J = K" then there are orthogonal
idempotents e; in R lifting the idempotents f; in R/J. Let e be a lift of f.
Then eJe is a nilpotent ideal in eRe, so eJe C J(eRe). Then J(eRe/eJe) =
J(eRe)/eJe = J(eRe/eJ(R)e) = e(R/J)e = f(R/J)f = K" ' Thus
J(eRe) = eJe, and by induction there are idempotents ej,...,e,_; in eRe
inducing the idempotents fi,..., f,—1 in R/J. Then take e, =1 —e.

Let Qo = {1,...,n}. We have J = P
bimodule, so we can decompose it as

J/J2 = @ 6j(J/J2>€i = @ (ejJei)/(ejﬁei)

ivjEQO ivjeQO

ejJe;. Then J/J? is an R-R-

iijQO

Let the arrows in ) from ¢ to j correspond to elements of e;Je; inducing a
K-basis of (e;Je;)/(e;J%e;). We get an induced homomorphism 6 : KQ — R.

Let U =0(KQ,) C J. Now U + J? = J, so by Nakayama’s Lemma, U = J.
It follows that 6 is surjective. Let I = Ker6. If m is sufficiently large that
J™ =0, then (KQT) =U™ =0, s0 KQ7' C I. Suppose x € I. Write it as
r = u+v+w where u is a linear combination of e;’s, v is a linear combination
of arrows, and w is in KQ?%. Since 0(e;) = e; and 0(v),f(w) € J, we must
have u = 0. Now 0(v) = —0(w) € J?, so that f(v) induces the zero element
of J/J? Thus v =0. Thus z = w € KQ3.

2.2 Diamond lemma

The diamond lemma is due to Max Newman. There is an exposition in
P.M.Cohn, Algebra, volume 3. We explain a (trivial) quiver version of
G.M.Bergman, The diamond lemma for ring theory, Advances in Mathe-
matics 1978. It helps to find a K-basis for an algebra R given by generators
and relations. See also, for example, Farkas, Feustel and Green, Synergy in
the theories of Grobner bases and path algebras, Canad. J. Math. 1993.

Setup.

(1) Write R = KQ/(S) for some quiver ). For f € K@ we have f =
Zi’j e;fe; so (f) = (e;fe; 1 4,5 € Q). Thus we may assume that each
element of S is a linear combination of parallel paths (same start and end).
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(2) We fix a well-ordering on the set of paths, such that if w,w’ are parallel
and w < w', then wwv < vw'v for all compatible products of paths. (A well-
ordering is a total ordering with the descending chain condition, so every
non-empty subset has a minimal element.)

If @ is finite, this can be done by choosing a total ordering on the vertices
1 <2< -+ < n and on the arrows a < b < ... and using the length-
lexicographic ordering on paths, so w < w' if

- length w < length w’, or

-w=-¢; and w =e; with i < j, or

- length w = length w’ > 0 and w comes before w’ in the dictionary ordering.

(3) We suppose that the relations in S can be written in the form
wj=s; (j€J)

where each w; is a path and s; is a linear combination of paths w parallel to
w; with w < w;. (This is always possible if K is a field.)

Example 1. Consider the algebra R = K(z,y)/(S) where S is given by
=z, =1 yr=1—ay
and the alphabet ordering = < y.

Definition. Given a relation w; = s; and paths u, v such that ww;v is a path,
the associated reduction is the linear map K@) — K@ sending uw;v to us;v
and any other path to itself. We write f ~» ¢ to indicate that g is obtained
from f by applying reduction with respect to some w; = s; and u,v.

Example 1 (continued). f = 2%+ zy? ~ 2> + 2 ~ o+ = 2z, or [ ~
x + ay? ~ 2z, and g = yx? ~ yr ~ 1 — 27, or g~ (1 —xy)r =x — xyr ~
r— (1 —ay) = 2%y ~ y.

Lemma 1. If f ~» g and ', v" are paths, then «' fv' ~ u/gv’ or v/ fov/ = u/gv'.

Proof. Suppose g is the reduction of f with respect to u, v and the relations
w; = s;. If w'u or vv' are not paths, then «'fv' = v'gv’. Else v/gv’ is the
reduction of «’ fv" with respect to w'u, vv’ and the relation w; = s;.

Definition. We say that f is irreducible if f ~~» g implies ¢ = f. It is
equivalent that no path involved in f can be written as a product uw;v.

Lemma 2. Any f € K@ can be reduced by a finite sequence of reductions to
an irreducible element.
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Proof. Any f € K@ which is not irreducible involves paths of the form uw;v.
Amongst all paths of this form involved in f, let tip(f) be the maximal one.
Consider the set of tips of elements which cannot be reduced to an irreducible
element. For a contradiction assume this set is non-empty. Then by well-
ordering it contains a minimal element. Say it is tip(f) = w = ww;v. Writing
[ = Auwjv+ f" where A € K and f’ only involving paths different from uw,v,
we have f ~» g where g = Aus;v + f’. By the properties of the ordering,
us;v only involves paths which are less than ww;v = w, so tip(g) < w. Thus
by minimality, g can be reduced to an irreducible element, hence so can f.
Contradiction.

Definition. We say that f is reduction-unique if there is a unique irreducible
element which can be obtained from f by a sequence of reductions. If so, the
irreducible element is denoted r(f).

Lemma 3. The set of reduction-unique elements is a K-submodule of K@),
and the assignment f +— r(f) is a K-module endomorphism of it.

Proof. Consider a linear combination A f+ug where f, g are reduction-unique
and A\, u € K. Suppose there is a sequence of reductions (labelled (1))

(1)

with h irreducible. Let a be the element obtained by applying the same
reductions to f. By Lemma 2, a can be reduced by some sequence of reduc-
tions (labelled (2)) to an irreducible element. Since f is reduction-unique,
this irreducible element must be r(f).

(1) (2)
FoTTR S rlf).

Applying all these reductions to g we obtain elements b and ¢, and after
applying more reductions (labelled (3)) we obtain an irreducible element,
which must be r(g).

(1) (2) ®3)
gwwbwwcw.w ’r‘(g)

But h,r(f) are irreducible, so these extra reductions don’t change them:

(1) (2) (3)
MAug S TR h S TR h S h,
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(1) (2) (3)
Prm— — e e
f’v\—)...f\/\—)a/«\/\—)...f\/\—) T(f)""‘)""\’") r(f)

Now the reductions are linear maps, hence so is a composition of reductions,
so h = Ar(f)+ pr(g). This shows that Af + ug is reduction-unique and that

r(Af +ug) = Ar(f) + pr(g).

Definition. We say that two reductions of f, say f ~» g and f ~» h, satisfy
the diamond condition if there exist sequences of reductions starting with g
and h, which lead to the same element, g ~» -+~ k, h ~> -+ ~» k. (You
can draw this as a diamond.)

In particular we are interested in this in the following two cases:

An overlap ambiguity is a path w which can be written as w;v and also as
uwj; for some 7, j and some paths u,v # 1, so that w; and w; overlap. There
are reductions w ~» s;v and w ~ us;.

An inclusion ambiguity is a path w which can be written as w; and as vw;v
for some 7 # j and some u,v. There are reductions w ~~ s; and w ~» us;w.

Example 1 (continued). For the relations 2> = z, y*> = 1, yr = 1 — xy the
ambiguities are:
PET YT g Y

The diamond condition fails for the last ambiguity.

Example 2. For the relations 22 = z, y?> = 1, yr = y — 2y the ambiguities
are the same.

Does the diamond condition hold?

zxx ~ 22~ x and TTT ~ xx ~ . Yes.

yyy ~ ly =y and yyy ~ yl = y. Yes.

yyr ~ 1z =z and ygz ~ y(y — 2y) = y* — yry = y> — (yo)y ~ y* — (y —
xy)y = zyy = x(yy) ~ xl = x. Yes.

yrr ~ (y —ay)r = yr — zyr ~ yr — 2(y — 1Y) = yr — Y + I33Y ~>
yr — xy + zy = yx ~» ... and YyTT ~» yx ~> .... Yes.

Diamond Lemma. The following conditions are equivalent:

(a) The diamond condition holds for all overlap and inclusion ambiguities.
(b) Every element of K@ is reduction-unique.

In this case the algebra R = K@Q/(S) has K-basis given by the irreducible
paths, with multiplication given by f.g = r(fg).
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Example 2 (continued). Consider our example of R generated by z, y subject
to 22 = x, y*> = 1, yr = y — xy. The irreducible paths 1, z,y, zy form a K-
basis of A with multiplication table

1 x Y Ty
171 x Y xy
x| x Ty Yy
yly y—zy 1 1—-z

Ty | Ty 0 x 0

For example y(zy) = (y2)y ~ (y—zy)y = yy —xyy ~ 1 —ayy ~ 1 —x, and

(zy)(zy) = 2(y2)y ~ 2(y — 1Y)y = TYY — TXYY ~ T — TXYY ~> T — TYY ~>
rz—x=0.

Example 3. (P. Shaw, Appendix A, Generalisations of Preprojective algebras,
Ph. D. thesis, Leeds, 2005. Available from homepage of WCB.) The algebra
with generators b, ¢ and relations b% = 0, ¢ = 0 and cbeb = cb?c — bebe fails
the diamond condition for the overlap cbe(b®) = (cbcb)b?. But this calculation
shows that the equation cb?cb? = bcb?ch — b%cb?c holds in the algebra, and if
you add this as a relation, the diamond condition holds.

Proof of Diamond Lemma. (b)=-(a) is trivial, so we prove (a)=-(b). Since
the reduction-unique elements form a subspace, it suffices to show that every
path is reduction-unique. For a contradiction, suppose not. Then there is a
minimal path w which is not reduction-unique. Let f = w. Suppose that f
reduces under some sequence of reductions to g, and under another sequence
of reductions to h, with g, h irreducible. We want to prove that g = h, giving
a contradiction.

Let the elements obtained in each case by applying one reduction be f; and
g1. Thus
fwglw---«»-)g, fwhlwwh

By the properties of the ordering, g; and h; are linear combinations of paths

which are less than w, so by minimality they are reduction-unique. Thus
g=r(g1) and h = r(hy).

It suffices to prove that the reductions f ~» ¢; and f ~» hy satisfy the
diamond condition, for if there are sequences of reductions g; ~» - -+ ~» k and
hy ~» --+ ~ k, combining them with a sequence of reductions k ~» --- ~~
r(k), we have g = r(g1) = r(k) = r(hy) = h.

Thus we need to check the diamond condition for f ~» g; and f ~~ h;. Recall
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that f = w, so these reductions are given by subpaths of w of the form w;
and w;. There are two cases:

(i) If these paths overlap, or one contains the other, the diamond condition
follows from the corresponding overlap or inclusion ambiguity. For example
w might be of the form vw'w;vv" = v'uw;v" where w;v = uw; is an overlap
ambiguity and u’,v" are paths. Now condition (a) says that the reductions
w;v ~ s;v and uw; ~ us; can be completed to a diamond, say by sequences
of reductions s;v ~» --- ~» k and us; ~» --- ~» k. Then Lemma 1 shows
that the two reductions of w, which are w = v'w;vv" ~ u's;pv" and w =
wuw;v ~ w'vs;v’, can be completed to a diamond by reductions leading to
u'kv’.

(ii) Otherwise w is of the form ww;vw;z for some paths u,v,z, and ¢; =
us;vw;z and hy = uww,;vs;z (or vice versa). Writing s; as a linear combination
of paths, s; = At + X't + ..., we have

r(g1) = r(usiyw;z) = Ar(utvw;z) + XN'r(ut'vw;z) + ... .

Reducing each path on the right hand side using the relation w; = s;, we
have utvw;z ~ utvs;z, and ut'vw;z ~» ut'vs;z, and so on, so

r(g1) = Ar(utvs;z) + Nr(ut'vs;z) + ... .

Collecting terms, this gives 7(g1) = r(us;vs;z). Similarly, writing s; as a
linear combination of paths, we have r(h;) = r(us;vs;z). Thus r(hy) = r(g1),
so the diamond condition holds.

For the last part we show that r(f) = 0 if and only if f € (S). If f ~ ¢
then f— g € (9), so f —r(f) € (5) giving one direction. For the other,
(S) is spanned by expressions of the form u(w; — s;)v, and vw;v ~> us;v so
r(uw;v) = r(us;v), so r(u(w; — s;)v) = 0.

Thus r defines a K-module isomorphism from KQ/(S) to the K-span of the
irreducible paths.

2.3 Tensor algebras and variations

Definitions. An algebra R is (Z-)graded if it is equipped with a decomposition
R = @, R satisfying R, R,, € Ryym, and it is N-graded if R, = 0 for
n < 0.
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If R is graded, an R-module M is graded if M = @nez M, and R,M,, C
My im.

An element of R or M is homogeneous of degree n if it belongs to R,, or M,.

A submodule N of M is graded or homogeneous if N = @ N,, where N,, =
N N M, Similarly for an ideal [ in R.

A homomorphism is graded if it sends homogeneous elements to homogeneous
elements of the same degree.

Example. The path algebra R = K( is graded with R,, = the K-span of the
paths of length n.

Proposition. Let R be a graded algebra.

(i) 1 € Ro.

(ii)) A submodule or ideal is homogeneous if and only if it is generated by
homogeneous elements.

(iii) A quotient of a module or algebra by a homogeneous submodule or ideal
is graded.

(iv) Graded R-modules are the same thing as modules for the sub-catalgebra
of RZ*%) consisting of matrices (a;;) with a;; € R;_;.

Ry Ry R_
Ry Ry R
Ry Ry Ry

Proof. (i) if 1 =Y r, and r € R; then r = r1 = 1r gives r = rrq = ror, so
ro is a unity for R.

(ii)-(iv) Straightforward.

Definitions. Let V be a K-module. The tensor powers are

mV)=VeVe---aV,

n

where tensor products are over K and T°(V) = K.
(i) The tensor algebra is the graded algebra

TV)=PrVv)=KeveVeV)o(VaVelV)a...

neN
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with the multiplication given by T™(V) @x T™ (V) = T (V).
(ii) The symmetric algebra is the graded algebra

SV)=T(V)/(vew-wev:v,weV)=EHSV).

d>0

(iii) The exterior algebra is the graded algebra

AV)=T(V)/(v@v:veV)=EHAYV).

d>0

We write v Aw for the product in the exterior algebra. We have vAw = —wAv
sincev Av =0, wAw=0and (v+w)A (v+w)=0.

(iv) A mapping ¢ : V — K is a quadratic form if g(Az) = XN*q(x) for A € K
and z € V and the map V xV — K, (z,y) — q(z +y) — q(z) — q(y) is a
bilinear form in x and y. The associated Clifford algebra is

CV,q)=T(V)/(vev—q)l:veV).

Lemma. If V is a free K-module with basis x1,...,z,, then

(1) T(V) = K(x1,...,2,).

(i) S(V) = K[z1,...,2y,).

(iil) A(V) & K(x1,...,z0)/ (2}, 22 + zj2;). AYV) is the free K-module
with basis the products z;, A xj, A -+ Ax;, with 73 < 1p < -+ < iq. In
particular, A"(V) = K 1y Axa A+ Az, and A™(V) =0 for m > n. If K is
a field then A(V) is local with J(A(V)) = @, A"(V).

(V) g0 Niwy) = Do aA\F, then C(V, q) = K(xy, ..., x,) /(27 —a;1, x5+
x;x;). It has basis the products x;, z;, ...z, with 41 <iy < -+ <i4. If K is
a field, then C(V, q) is semisimple if and only if all a; # 0.

Proof. (i), (ii) Clear.

(iii) For the exterior algebra use the Diamond Lemma with the relations

x? = 0 and z;@; = —x;z; for j > ¢ and check the ambiguities, xz;x; for

P =

k> j>1, zjo;x; and xx0; for 7 > i and z7,2;.

Clearly I = @,,.,A"(V) is nilpotent, and A(V)/I = K,so I = J(A(V)) (or
use that the exterior algebra is defined by an admissible ideal).

(iv) The Diamond Lemma again. If a; = 0 then z; generates a nilpotent
ideal. For the converse, use the same argument as Maschke’s Theorem.
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The exterior algebra is useful for studying determinants and differential
forms. For example 6 € Endg (V') induces a graded algebra homomorphism
A(V) — A(V) and the map on top exterior powers A"(V) — A™(V) is mul-
tiplication by det 6.

For V' an R-vector space with basis 1, xo and quadratic form g(A1x1+Xozy) =
—\2 — )2, we have C(V, q) @ H via x; <> 1, Ty <> J, 1179 <> k.

Remark. More generally, if S is an algebra and V' is an S-S-bimodule. One
defines the tensor algebra

Ts(V)=SeVae(VesV)e(VesVesV)e....

One can show that the path algebra K@) is a tensor algebra, where S =
Dico, Kei and V =P, ., Ka.

2.4 Power series

Let @ be a finite quiver. The formal power series path algebra K ((Q)) is the
algebra whose elements are formal sums

D ap

p path

with a, € K, but with no requirement that only finitely many are non-zero.
Multiplication makes sense because any path p can be obtained as a product
qq’ in only finitely many ways.

In the special case of a loop one gets the formal power series algebra K[[z]]
and the element 1+ z is invertible in K[[z]] since it has inverse 1 — z + % —
4.

Properties. (1) An element of K ((Q)) is invertible if and only if the coefficient
a., of each trivial path e; is invertible in K.

If the condition holds one can multiply first by a linear combination of trivial
paths to get it in the form 1 + x with z only involving paths of length > 1.
Then the expression 1 —z + 2% — 2% + ... makes sense in K({(Q)), and is an
inverse.

(2) J(K{Q))) ={>_, app : ae, € J(K) for all trivial paths e;}.
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(3) If K is a field, then f.d. K((Q))-modules correspond exactly to f.d. mod-
ules M for K@ which are nilpotent, meaning that (K Q)iM = 0 for some d.

We consider restriction via the homomorphism K@ — K((Q)). Clearly any
nilpotent K Q-module is the restriction of a K ((Q)))-module. Conversely if M
is a nilpotent K @Q-module of dimension d, then by induction of d, JM = 0,
where J = J(K((Q))). Namely, if M is simple then JM = 0. Otherwise
it has a submodule N of dimension e and J°N = 0, J¥¢(M/N) = 0. So
JIM = 0.

Remark. Let I = {}_ app : ae, = 0 for all trivial paths e;}. Then I" =
{>_, ap : a, = 0 for all paths of length < n}. The [-adic topology on R =
K{{Q)) has base of open sets the cosets I" + 1 (n > 1,7 € R). To do more,
one needs to take topology into account.

For example I am told that K ((z,y))/(xy—yz) is non-commutative. Instead
one has K ((z,y))/(zvy — yx) = K[z, y]].

2.5 Skew polynomial rings

If R is a K-algebra and M is an R-R-bimodule, a (K -)derivation d : R — M
is a mapping of K-modules which satisfies d(rr’) = rd(r") + d(r)r’ for all
r,r’ € R.

Observe that for d(1) = d(1) + d(1) so d(1) = 0. Also, for A € K, d(A\1) =
Ad(1) = 0 by linearity.

We write Derg (R, M) for the set of derivations. It is naturally a K-module.

Examples. (i) For any m € M the map r — rm — mr is a derivation, called
an inner deriwation.

(ii) The map - : K[z] — K|z],

d
(o + Mz + Aot 4 A™) = Ay 2007 + - 2"

is a derivation. More generally 0/0x; : K[x1,...,x,] = K[z1, ..., 2y).

Definition. If R is a K-algebra and 0,6 : R — R, we write R[z;0,0] for a
K-algebra containing R as a subalgebra, which consists of all polynomials

To 4+ T + rox® + - oo + 12"
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with r; € R, with the natural addition and a multiplication satisfying
xr =o(r)z +§(r)

for r € R. If such a ring exists, the multiplication is uniquely determined. It
is called a skew polynomial ring or Ore extension of R.

Theorem. R]z;0,d] exists if and only if o is a K-algebra endomorphism of
R and 0 € Derg (R, ,R). [One says 0 is a o-derivation of R.]

Proof. If such an algebra exists, then clearly 0,6 € Endg(R) and

o(rr)xz +6(rr'") = z(rr')
( /

Thus o(rr’) = o(r)o(r’) and §(rr") = o(r)d(r’) + §(r)r’. For the converse,
identify R with the subalgebra of E = Endg (RY), with r € R corresponding
to left multiplication by r. Define X € E by

(Xs)i =o(si—1) +d(s;)

for s = (sg, 51,...) € RY, where s_; = 0. Then

Thus X(rs) = a(r)X(s) +d(r)s, so Xr = o(r)X +6(r). It follows that anyt
element of the subalgebra S of F generated by X and the elements r € R
can be written as a polynomial f = SN 7, X7,

The last step is to show that S'is in bijection with the polynomials. This holds
since if e’ denotes ith coordinate vector in RY, the infinite sequence which is
1 in the ith place and 0 elsewhere, then X (e') = €' so f(e") = (ro,71,...),
so the coefficients of the polynomial f are uniquely determined by f as an
element of S.

Special cases. If 6 = 0 the skew polynomial ring is isomorphic to Tr(R,) and
we denote it R[z;o]. If 0 =1 denote it R[z;J].
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Properties. Let S = R[z;0,d].
(1) 2"r = o™(r)a™ + lower degree terms. Proof by induction on n.

(2) If R is a domain (no zero-divisors) and o is injective then the degree of a
product of two polynomials is equal to the sum of their degrees. In particular
S is a domain. Proof. (ro + -+ +7,2") (80 + * + + 80 @™) = 10" (8 )2 T+
lower degree terms.

(3) If R is a division ring then ¢ is automatically injective and S is a principal
left ideal domain. Proof. Suppose [ is a non-zero left ideal. It contains a
non-zero polynomial f(x) of least degree d, which we may suppose to be
monic. If g() is a polynomial with leading term rz®™™ then g(z) — ra"f(x)
has strictly smaller degree. An induction then shows that I = Sf(z).

(4) If o is an automorphism then rz = zo~'(r) — §(c7(r)), so S? =
RP[x;07 1 —do~1].

Hilbert’s Basis Theorem. Assume o is an automorphism. If R is left (respec-
tively right) noetherian, then so is R|x; 0, ].

Proof. By the observation above, it suffices to prove this for right noetherian.
Let J be a right ideal in S which is not finitely generated, and take a poly-
nomial f; of least degree in J. By induction, if we have found f1,..., fx € J,
then since J is not finitely generated J \ Zle fiS # 0, and we take fr 1
of least possible degree. We obtain an infinite sequence of polynomials
fi, fa,- -+ € J. Let f; have leading term r;2™. By constructionn; < ns < ....
The chain
TlRQTlR—i—TgRg

. k .
must become stationary, so some ryq = Y, rir; with ; € R. Then

k k
fr1 — Z Jio™™ (Tg)xnkﬂ_m €J \ Z fiS
i=1 i=1

and it has degree < nj.1, contradicting the choice of fr.;.
Let K be a field.

Example 1. The first Weyl algebra is A = K{x,y : yr —xy = 1). It is a
skew polynomial ring K[z|[y;d/dz]. Tt has K-basis the monomials x'y’. Tt
is isomorphic to the subalgebra of Endy (K[z]) consisting of all differential
operators of the form Y " p;(x)d'/dx’. It is a noetherian domain.
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Lemma. If K is a field of characteristic 0, then A; has no non-trivial ideals,
that is, it is a simple ring.

Proof. The Weyl algebra has basis the elements w = x'y/. Observe that
yw — wy = iz 1y and rw — wr = —jry’ L.

Suppose I is a non-zero ideal. Choose 0 # ¢ € I. Choosing an element z%y’
involved in ¢ with non-zero coefficient A with 7 + j maximal. Then ilj!\ € I.
Thus I = A;.

More generally, the nth Weyl algebra A, (K) is the K-algebra generated by
L1,y Loy Y1, - -, Yn Subject to the relations

Vi — T = 0ij,  TiT; = TTi,  YilY; = YiYi

It has basis the monomials z' .. xj{ly{l ...yn. Tt is an iterated skew poly-
nomial ting K[z, ..., 0] [y1; 0/021][y2; /023 ... [yn; 0/ 0]

Various rings of functions become modules for A = A, (K), for example
polynomial functions Klxy,...,x,], or the smooth functions C*(U) on an
open subset of R™ (if K = R) or the holomorphic functions O(U) on an open
subset of C" (if K = C). Let F be one of these A-modules of functions.
Given P = (P;j) € M,xn(A) we consider the system of differential equations

fi
Pl :]1=0
In
with f; € F. The set of solutions is identified with Hom (M, F') where M is
the cokernel of the map A™ — A" given by right multiplication by P.

Example 2. If ¢ is invertible in K, the coordinate ring of the quantum plane
is O,(K?) = K(z,y : yr = quy). It is a skew polynomial ring K|[z][y; o],
where o : K[z] — K[z] is the automorphism with o(x) = gx. It has K-basis

the monomials x'y’. It is a noetherian domain.

Example 3. If R is a K-algebra, a 2 by 2 quantum matrix with entries in R
is a matrix (¢9%) with a,b,c,d € R satisfying the relations

ab = qba, ac = qca, bc = cb, bd = qdb, cd = qdc, ad — da = (¢ — g ')be.

Equivalently it is a homomorphism O, (M,(K)) — R, where the coordinate
ring of quantum 2 by 2 matrices is O (My(K)) = K{a,b,c,d)/I where I is
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generated by the relations. It has basis the monomials a’b/c*d’. It is an
iterated skew polynomial ring, so a noetherian domain.

The quantum determinant is det, = ad — gbc = da — ¢'cb. This makes sense
for a quantum matrix or for an element of O,(My(K)).

det, commutes with a, b, ¢, d, so is a central element of O,(Ms(K)).

(5 )-m (5 1))

2.6 Localization

Let R be an algebra. A subset S C R is multiplicative if 1 € S and ss’ € S
for all s,s" € S.

Lemma. (a) If S is a multiplicative subset in R, then there exists an algebra
homomorphism 0 : R — Rg with the properties (i) (s) is invertible for all
s € S,and (ii) If ¥ : R — R is an algebra homomorphism and 6'(s) is
invertible for all s € S, then there is a unique homomorphism ¢ : Rg — R’
with ¢0 = ¢'.

(b) Given any other homomorphism ¢’ : R — R, with properties (i),(ii),
there is a unique isomorphism ¢ : Rg — Rl with ¢fs =0'.

(c) Rg is generated as an algebra by the elements §(r) and 6(s)~! for r € R
and s € S.

(d) If sr =0 with s € S and r € R then 0(r) = 0.

(e) If M is an R-module, and multiplication by s acts invertibly on M for all
s € S, then the action of R on M extends uniquely to an action of Rg.

Proof. (a) Define Rg = K{{z, : r € R} U {is : s € S})/I where I is
generated by the relations x1 = 1,2, + 2 = Tpyp, Tplp = Tpp, AT, =
Ty, Tsls = 1,025 = 1 and O(r) = x,. (b) Universal property. (c) Clear. (d)
Clear. (e) Consider the map R — Endg(M).

Definition. A multiplicative subset S in R satisfies the left Ore condition if
for all s € S and r € R there exist ' € S and ' € R with s'r = r's, and it is
left reversible if rs = 0 with r € R and s € S implies that there is s’ € S with
s'r = 0. Both conditions are trivial if R is commutative or more generally if

S C Z(R).
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Construction. If S is a left reversible left Ore set in R and M is a left
R-module, then on the set of pairs (s,m) € S x M we consider the relation

(s,m) ~ (s',m') & there are u,u’ € R with um = «'m’ and us = u's’ € S.

Lemma 1. This is an equivalence relation.
Proof. Exercise.

We write s~'m for the equivalence class of (s, m) and define S™*M to be the
set of equivalence classes.

Lemma 2. Any finite set of elements of S™'M can be written with a common
denominator.

Proof. It suffices to do two elements s™'m and (s')"'m/. The Ore condition
givest € S, r € Rwithts' =rs € S. Then s7'm = (rs)"lrm and (s')'m/ =
(ts')~Htm'.

Lemma 3. (a) S™'M becomes an R-module via

stm4sTim! = s (m 4+ m),

r(s'm) = (s)"'(r'm) where s'r = 1’s with s’ € S and 7’ € R

(b) s7'm = 0 & there is v € R with um = 0 and us € S. In particular
17'm = 0 & there is u € S with um = 0.

(c) Elements of S act invertibly on S™'M, so S™'M becomes an Rg-module.
(d) An R-module map 6 : M — N induces an Rg-module map S™'M —
STIN.

(e) If L% M % N is exact, then so is S™'L — S~1M — S—IN.

(f) There is a natural isomorphism @, ., S™'M; = S~ H(P,.; M)
Proof. (a) Straightforward.

(b) Now s7'm = 170 & there are u, v’ € R with um = v/0 and us = v'1 € S,
gives the condition.

(c) If t € S then t((st)™'m) = s7'm, and if ¢(s7'm) = 0, then there are
st with s € S, s't = t's and (s')"'(/m) = 0. Then there is u € R with
ut'm =0 and us’ € S. Then (ut')m = 0 and (ut')s = us't € S, so s 'm = 0.

(d) Send s7'm to s7'@(m). This gives an R-module map S™'M — S™'N,
and since Rg is generated by the elements of R and the inverses of elements
of S, it is an Rg-module map.
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(e) If s7'm is sent to zero in ST!N, then there is u € R with u¢(m) = 0 and
us € S. Then ¢(um) = 0, so um = 6(f). Then (us)~'¢ € S~'L is sent to
stme STIM.

(f) holds since a finite number of fractions can be put over a common de-
nominator.

Theorem. The following are equivalent.
(i) S is a left reversible left Ore set.
(ii) S is a left reversible left Ore set and Rg = S™'R considered as a ring
with multiplication
(t 1) (s7 ) = (s't) 'y
where s'r =1's with s’ € S and ' € R.
(iii) Every element of Rg can be written as 8(s)~'0(r) for some s € S and
r € R, and 0(r) = 0 if and only if s = 0 for some s € S.

Proof. (i) implies (ii). Define a mapping f : ST'R — Rg sending s~ 'r
to 0(s)"'0(r). It is easy to see this is well-defined. By the Ore condition
any composition 6(r)f(s)~! can be rewritten as 6(s')~'0(r"). Combined with
Lemma 0 (c) and Lemma 2, it follows that f is surjective. Also S~ R becomes
an Rg-module, so there is a map g : Rg — S™'R with ¢gf(r) = 17!r. Then
gf is the identity, so f is injective. Thus f is a bijection. The multiplication
for Rg corresponds to that given.

(ii) implies (iii). Clear.

(iii) implies (i). Say as = 0. Then #(a) = 0. Thus s'a = 0 for some s’ € S,
giving left reversibility. Given a, s, we have 0(a)f(s)™! = 0(s")"'05(a’) for
some s’ € S and @’ € R. Thus 6(s'a — a’s) = 0. Thus there is t € S with
t(s'a—a’'s) = 0. Thus (ts')a = (ta’)s, giving the Ore condition.

Remark. Similarly there is the notion of a right reversible right Ore set, for

which Rg can be constructed as fractions of the form rs~!.

Examples 1. (1) If ¢ is a K-algebra automorphism of R, then {1,z,2? ...}
is a left and right reversible Ore set in R[x;o]. The elements of R[z;0]s are
of the form

(ro+rx+ - F+ra")e ™ =regxz” "+ F ",

so Laurent polynomials.

(2) det, is central in Oy (M2(K)), so we can invert S = {1,detq,detz, .
giving O,(GLy(K)).
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(3) From the section on local rings, {g € Q : ¢ = a/b,b odd} = Zg where S
is the set of odd integers.

Theorem (Special case of Goldie’s Theorem). Let R be a domain which is
left noetherian (or more generally has no left ideal isomorphic to R™). Then
S = R\ {0} is a left reversible left Ore set, and 6 : R — Rg is an injective
map to a division ring.

Proof. The left reversibility condition is trivial. If S fails the left Ore con-
dition, then there are a,b # 0 with Ra N Rb = 0. Then a,ab,ab?, ... are
linearly independent, for if Y, r;ab® = 0, then by cancelling as many factors
of b on the right as possible, we get

roa +riab+---+rpab” =0

with 79 # 0. But then 0 # r9a € Ra N Rb. Thus @, Rab’ C R. Now Rg is a
division ring for if s7'7 £ 0 then r # 0 and (s 'r)™' =r~!s.

Examples 2. (1) Z embeds in Q, K[xy,...,z,] embeds in K(xy,...,x,), etc.

(2) R = A,(K) is a noetherian domain, so it embeds in a division ring
Rs = D, (K).

(3) For R = K (x,y) the set R\{0} fails the left Ore condition since RtNRy =
0. There do exist embeddings of R in division rings, but they are more
complicated.

2.7 Algebras from Lie theory and elsewhere

THIS SECTION IS ONLY BRIEFLY DISCUSSED IN LECTURES.

The aim is to give some examples of algebras, without details or proofs,
showing the need for the Diamond Lemma, skew polynomial rings, etc.

For simplicity K = C.

Many of these algebras come in families indexed by the simple f.d. Lie alge-
bras, so first we need something about them.

A Lie algebra is a K-vector space g with a K-bilinear multiplication gxg — g,
(x,y) — [z,y]. which is skew symmetric [z,2] = 0 (so [z,y] = —[y, z]) and
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satisfies the Jacobi identity

[z, [y, 2]l + [y, [z, 2]] + [2, [#,9]] = 0.
A Lie algebra homomorphism 6 : g — ¢’ is a K-linear map with [0(x), 0(y)] =
O([z,y]) for all x,y € g. A Lie algebra is simple if any homomorphism from

it is injective.

Examples. (i) Any associative algebra A becomes a Lie algebra with bracket
[a,b] = ab — ba.

(i) gl(V) = Endg(V), gl, = M,,(K) with bracket as above.

(iii) sl, = {a € M,(K) : tr(a) = 0} and so,, = {a € M,,(K) : a +a” = 0} are
simple Lie algebras.

The simple f.d. Lie algebras are classified by Dynkin diagrams, or equivalently
Cartan matrices. The Dynkin diagrams are A,,, B,,, Cp, Dy, Fs, E7, Es,
F4, GQ.

Source: Wikipedia

The corresponding Cartan matrices for A,, is the m x m matrix

2 -1 0 0
~1 2 -1 0
c—]0 -1 2 0
0 0 0 .. 2

For example sl,, corresponds to A,_1, o9, corresponds to D,,.

Theorem (Chevalley-Serre relations). A simple Lie algebra g with m x m
Cartan matrix C' is generated as a Lie algebra by elements h;, ¢e;, f; (i =
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1,...,m) with relations

=0, (el =t U= e i ] = —Cuf
[hih] =0, [ei, £} {O iz, el =Cues [ fi) = ~Cif,
el lene] =0, f [ 1 =00 (07 7)
1-Cj; 1-Cys

Remark. The groups GL,(K), SL,(K), SO,(K) = {g € SL,(K) : g" =g~}
can be considered as Lie groups or algebraic groups. The tangent space at
the identity becomes a Lie algebra. This gives gl (K), sl,(K), so,(K). A
f.d. representation of a Lie group or algebraic group G is a homomorphism
G — GL(V) of such groups. It induces a Lie algebra map g — gl(V), that
is, a representation of g as a Lie algebra.

Example 1. Universal enveloping algebras. Let g be a Lie algebra. Its
universal enveloping algebra is the associative algebra

U =T(g)/ 20y —y@x—[r,y]: 2,y € g).

If g is a f.d. simple Lie algebra, U(g) is generated as an associative algebra by
h;, e;, fi subject to the Chevalley-Serre relations, now interpreted as relations
in an associative algebra, where [a, b] = ab — ba.

For any algebra R we get a bijection Hom,jgenra(U(g), R) — Homye algebra (9, R)-
Thus U(g)-modules correspond exactly to representations of g.

Poincaré-Birkoff-Witt Theorem. If g has basis 21, ..., x,, then U(g) has basis
the monomials z}' ... x%. Use the Diamond Lemma.

Example 2. Drinfeld-Jimbo quantum groups. They arose in the theory of
integrable systems, in order to help find solutions of the ‘quantum Yang-
Baxter equation’.

Let ¢ € K with ¢ # 0,1,—1. Let g be a simple Lie algebra. We do the
case sly. The quantum group U,(sly) is the algebra generated by x, s~ ', E, F
subject to the relations

R—K

kEx' =¢@E, kFrk'=q¢?F, EF-FFE=

as well as k™! =k 1k = 1.
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It is an iterated skew polynomial ring K[k, k7 |[E; o|[F; o', ).

Example 3. Associated to a f.d. simple Lie algebra there is Weyl group W
together with a set S of Coxeter generators. For sl, it is the symmetric group
W =S, equipped with the set S = {s; = (ii+1):i=1,...,n— 1} which
generates the group subject to the relations

2 . .
S; = 17 S5iS5 = 5554 <|’L - jl > 1), §iSi+15;i = Si+15iSi+1-

The group algebra K.S,, is the algebra generated by si,...,s, 1 subject to
these relations.

Example 4. The (Artin) braid group B, is the group generated by o1, ..., 0,1
subject to the relations

00; =050 (|t —j| > 1), 0:04410; = 04410:0:41.

One can show that the elements of B,, can be identified with braids

L
j.: ) . | |

_ T T
| /
| e
-] - i
identifying two such braids if they are isotopic. The generators correspond
to the braids

\_/
{'
N

T N S T A~ ¥ “
i ! s N~ <
= -
i/ i
[ A I ~ P‘ “"\
T\ 6?2— i -y, 1 Wg
i S—
I P /]
: r




By joining the ends of a braid, one gets a knot (or a link if it is not connected),
for example

L TT
i\
i):

J

Moreover any knot arises from some braid (for some n).

:
E

-1
n—1

The group algebra K B,, is the algebra generated by o1, ...,0,_1and o', ... o
subject to the relations
1

0,0, =0,

1 _ : : _
o =1, 0i0; = 040 (‘Z —J’ > 1), 0i0i4+10; = 0i410i0;41-

Example 5. Let 0 # ¢ € K. The (Iwahori-)Hecke algebra is a deformation
of the group algebra KW. For sl, it is generated by tq,...,t,_1 subject to
the relations

(ti—q)ti+1)=0, tt;=t;t; (|i—j|>1), titiat;="tintitis.

Now t; is invertible, with inverse (1/q)(1+ (1 — q)t;), so there is a surjective
homomorphism from K B, to the Hecke algebra sending o; to t;.

One can show that the Hecke algebra has dimension n!, and for ¢ not a root
of 1 it is semisimple. The case ¢ = 1 recovers K S,.

Example 6. The Temperley-Lieb algebra TL,(d) for n > 1 and 6 € K
has basis the diagrams with two vertical rows of n dots, connected by n
nonintersecting curves. For example

Two diagrams are considered equal if the same vertices are connected. The
product is defined by
ab=140"c
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where ¢ is obtained by concatenating a and b and deleting any loops, and r
is the number of loops removed. For example

N7 D) 4
TN\ ([ €

A\ AN )

M — M\
L UIA [ VL
JU A4 A

_/‘C 1

One can show that T'L,(9) is generated by wuy, ..., u,_1 where u; is the dia-
gram

%
\
il

3

™
J

subject to the relations u? = du;, wu;t1u; = u; and wu; = wju; if |1 — j| > 1.

The algebra T'L,(9) is f.d., with dimension the nth Catalan number. For
example for n = 3 the diagrams are

D d D

1= ) Uy = ) uQZD C7 p:D ) q= C

The Temperley-Lieb algebra was invented to help make computations in
study Statistical Mechanics. It is now also important in Knot Theory.

The Markov trace is the linear map tr : T'L,(0) — K sending a diagram
to 0"™" where r is the number of cycles in the diagram obtained by joining
vertices at opposite ends.

Given 0 # A € K, there is a homomorphism 6 : KB, — TL,(5) where
§ = —A? —1/A?% with 0(0;) = Au; + (1/A), 0(o; ") = (1/A)u,; + A.

Combined one gets a map trf : KB, — K. One can show that this only
depends on the knot obtained by joining the ends of the braid, and it is a
Laurent polynomial in A. It is essentially the Jones polynomial of the knot.
See Lemma 2.18 in Aharonov, Jones and Landau, A polynomial quantum
algorithm for approximating the Jones polynomial, Algorithmica 2009.
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Example 7. The preprojective algebra for a finite quiver @) is
Q) = KQ/(D_(aa” — a*a))
acqQ

where ), the double of Q), is obtained by adjoining an inverse arrow a* : j — i
for each arrow a : i — j in ). For example if () is the quiver

A N ‘k

N

va

<
0}

AN

then @ is the quiver

Observe that if c = (aa” —a"a) then e;ce; = 0if i # j, so I1(Q) is given

by the relations
C; = ejce; = Z aa™ — Z a‘a
a€Q,h(a)=t acQ,t(a)=t

for 1 € Q.
Examples. For Q = e % o L. o the relations are
a*a =0, aa® = b*b, bb* = 0.
If @ is a loop z, then II(Q) = K{(z,2*)/(xa* — z*z) = K[z, x|

Theorem. I1(Q) is f.d. if and only if the underlying graph of @ is a Dynkin
diagram (assuming @ is connected).

For the following, see A. Mellit, Kleinian singularities and algebras generated
by elements that have given spectra and satisfy a scalar sum relation, Algebra
Discrete Math. 2004.

Theorem. Given k,dy,...,d; > 0, we have

K(wy, )/ (@ + -4 o, a2k 2 epll(Q)e
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where () is star-shaped with central vertex 0 and arms 1,.. ., k, with vertices
(4,1),(4,2),...,(i,d; — 1) going outwards on arm i and arrows a; 1, . . ., G;4,—1
pointing inwards.

Proof. Let the algebra on the left be A and the one on the right be B =
eoll(Q)ep. Now B is spanned by the paths in () which start and end at vertex
0. If vertex (i,7) is the furthest out that a path reaches on arm 4, then it

must involve a;;aj;, and if j > 1, the relation

Qijy; = Qg5 10551
shows that this path is equal in B to a linear combination of paths which

only reach (7,7 — 1). Repeating, we see that B is spanned by paths which
only reach out to vertices (i,1). Thus we get a surjective map

K(xy,...x) > B

sending each x; to a;1a};. It descends to a surjective map 6 : A — B since it
sends x1 + - -+ + x; to 0 and xf is sent to

(aila;)di = ail(a;ail)di_laﬂ
= a1 (apal)bta}
= anap(ajan)" ajhatil

= Q02 - - - Q3,107 g, _10idi—1) 0 g,y - -Gy = 0

: . -
since a; 4.1 4,-1 = 0.

To show that 6 is an isomorphism it suffices to show that any A-module can
be obtained by restriction from a B-module, for if a € Kerf and M = ¢yN,
then aM = O(a)N = 0. Thus if A can be obtained from a B-module by
restriction, then aA = 0, so a = 0.

Thus take an A-module M. We construct a representation of Q by defining
Vo =M and V; j) = xf M. with a;; the inclusion map, and a;; multiplication
by x;. This is easily seen to satisfy the preprojective relations, so it becomes
a module for II(Q). Then eV = M becomes a module for eoII(Q)ey = B.
Clearly its restriction via 6 is the original A-module M.

Example 8. If Q is a quiver, the Leavitt path algebra is L(Q) = KQ/I where
I is generated by the relations

«_ Jenw (a=0b) o RPN
ab—{o (a4 b) and Z ata=e¢ (1<[t7(i)] < o0).

a€t=1(4)
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More precisely, in the literature, it is the opposite ring to this).
y

For example L(1 2% 2 2 224 p) 2 M, (K) sending e; to e a; to et
and a} to el

Theorem (Leavitt 1962). If R = L(Q) where @) has one vertex and n + 1
loops, then R' = RJ as R-modules < ¢ = j (mod n).

If the loops are ay,...,a,4 1, the relations ensure that maps

*

r— (raj,...ray,,), (ST »—>Znai.

are inverse isomorphisms between R and R™"!. The problem is to show that
R'% RJ when i # j (mod n); in particular that R # 0.
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3 Module categories

3.1 Categories

A category C consists of

(i) a collection ob(C') of objects

(ii) For any X,Y € 0b(C), a set Hom(X,Y) (or C(X,Y), or sometimes
Home (X, Y)) of morphisms 6 : X — Y, and

(iii) For any X, Y, Z, a composition map Hom(Y, Z)xHom(X,Y) — Hom(X, Z),
(0, 0) — 0¢.

satisfying

(a) Associativity: (6¢)y = 0(p)) for X Yy 4z W, and

(b) For each object X there is an identity morphism idxy € Hom(X, X), with
idy0 =0 =0idx forall0: X — Y.

Examples.

(1) The categories of Sets, Groups, Abelian groups, Rings, Commutative
rings, K-algebras, etc.

(2) The category R-Mod of R-modules for a ring R.

(3) Given a group G or aring R, the category with one object x, Hom(x, ) =
G or R and composition given by multiplication.

(4) Given a ring R, the category with objects N, Hom(m, n) = M, . (R) and
composition given by matrix multiplication.

(5) Path category of a quiver ). Objects @)y and Hom(i, j) = set of paths
from i to j. The K-linear path category of Q). Objects Qo and Hom(z, j) =
K-module with basis the paths from 7 to j.

(6) The category of correspondences. The objects are sets, Hom(X,Y") is the
set of subsets S C X Xx Y, the composition of morphisms S € Hom(X,Y)
and T € Hom(Y, Z) is

TS ={(z,z) e X X Z: (z,y) € S and (y,2) € T for some y € Y'}.
The identity morphisms are the diagonal subsets idy = {(z,z) : x € X}.

Definition. An isomorphism is a morphism 6 : X — Y with an inverse, that
is, there is some ¢ : Y — X, 8¢ = idy, ¢0 = idx. If so, then ¢ is uniquely
determined, and denoted 6~ 1.

Definition. A subcategory of a category C'is a category D with ob(D) C ob(C')
and D(X,Y) C C(X,Y) for all X,Y € ob(D), such that composition in D
is the same as that in C' and id§{ € D(X,X). It is a full subcategory if
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D(X,Y) =C(X,Y).

Examples.

(a) The category of finite groups in the category of all groups.

(b) The category R-mod of finitely generated R-modules inside R-Mod.

(c) The category whose objects are sets and with Hom (X, Y’) = the injective
functions X — Y is a subcategory of the category of sets.

(d) Identifying a mapping of sets X — Y with its graph, the category of sets
becomes a subcategory of the category of correspondences.

Definition. If C'is a category, the opposite category C°P is given by ob(CP) =
ob(C), CP(X,Y) = C(Y, X), with composition of morphisms derived from
that in C.

If C and D are categories, then C' x D denotes the category with ob(C' x D) =
ob(C) x ob(D) and Hom((X,U),(Y,V)) = C(X,Y) x D(U,V).

Remark. Recall that there is no set of all sets. Thus 0b(C') may be a proper
class. We say that C' is small if 0b(C) is a set, and skeletally small if there
is a set S of objects such that every object is isomorphic to one in S.

Example. The category of finite sets is not small, but it is skeletally small
with S = {0,{1},{1,2},...}. R-Mod is not small or skeletally small, but
R-mod is skeletally small with S = {R"/U :n € N;U C R"}.

3.2 Monomorphisms and epimorphisms

Definition. A monomorphism in a category is a morphism 6 : X — Y such
that for all pairs of morphisms «, 8 : Z — X, if o = 65 then o = .

An epimorphism is a morphism 6 : X — Y such that for all pairs of mor-
phisms o, 5 : Y — Z, if af = 560 then o = .

In many concrete categories a monomorphism = injective map, epimorphism
= surjective map.

Lemma. In R-Mod, monomorphism = injective map and epimorphism =
surjective map.

Proof. We show epi = surjection. The other is similar.

Say 0 : X — Y is surjective and afl = 360 then for all y € Y there is z € X
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with 0(z) = y. Then a(y) = a(6(z)) = S(0(x)) = B(y). Thus a = 5.

Say 6 : X — Y is an epimorphism. The natural map ¥ — Y/Imé and
the zero map have the same composition with 0, so they are equal. Thus
Imf =Y.

Example. In the category of rings, a localization map 6 : R — Rg is an
epimorphism, but usually not a surjective map, for example Z — Q.

Namely, if a, 8 : Rg — T and afl = 6, then af is a map R — T which
inverts the elements of S, so it can be factorized uniquely through 6. Thus

a=pf.

Theorem. The following are equivalent for a ring homomorphism 6 : R — S.
(i) @ is an epimorphism in the category of rings

(i) s®1=1®sin S®gr S forall s € S.

(iii) The multiplication map S®gS — S is an isomorphism of S-S-bimodules.
(iv) Multiplication gives an isomorphism S @z M — M for any S-module
M.

(v) For any S-modules M, N we have Homg(M, N) = Hompg(M, N).

Proof. (i)=-(ii) Let M be the S-S-bimodule S ®g S and let T'= S & M,
turned into a ring with the multiplication (s, m)(s’,m') = (ss', sm’ + ms’).
The maps «, 5 : S — T defined by a(s) = (s,0) and B(s) = (s,s®1—-1® )
are ring homomorphisms with a = 6. Thus a =f£,s0 s® 1 =1® s.

(ii)=(iii) s = s ® 1 = 1 ® s is an inverse. For example this map sends st to
stel=st®l)=s5(1®t)=s®t.

(il))=({v) SRR M ZSRrS®@s M =S ®s M =M.

(iv)=(v) Hompg(M, N) = Hompg(M, Homg(S, N)) = Homg(S ®r M, N) =
Homg (M, N).

(v)=(). Say f,g : S — T have the same composition with 6. Then the
identity map is an R-module map between the restrictions of ;7" and ,T'.
Thus it is an S-module map. Thus f = g.
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3.3 Functors

If C, D are categories, a (covariant) functor F : C'— D is an assignment of
(i) For each object X € ob(C), an object F'(X) € ob(D), and

(ii) For each X, Y € 0b(C') amap F or Fyy from C(X,Y) to D(F(X), F(Y)),
such that F'(0¢) = F(0)F(¢) and F(idx) = idp(x).

A contravariant functor F : C'— D is the same thing as a covariant functor
C° — D. Thus it is an assignment of

(i) For each object X € ob(C), an object F'(X) € ob(D), and

(ii) For each morphism 6 : X — Y in C' a morphism F(6) : F(Y) — F(X)
in D,

such that F'(0¢) = F(¢)F(0) and F(idx) = idp(x).

Definitions. If for all X,Y € ob(C) the map F : C'(X,Y) — D(F(X), F(Y))
is injective, then F'is faithful. It it is surjective then F'is full. If every object
in D is isomorphic to F(X) for some object X in C, we say that F is dense.

The inclusion of a subcategory is a faithful functor. It is full if and only if
the subcategory is full.

Definition. Let C' be a category and let Hom(X,Y’) denote the Hom sets for
C. Fix an object X € 0b(C). The representable functor F = Hom(X, —)
is the functor C' — Sets sending an object Y to F(Y) = Hom(X,Y), and
sending a morphism ¢ € Hom(Y, Z) to the morphism F(#) : Hom(X,Y) —
Hom(X, Z) defined by F(0)(¢) = 0¢.

Dually, fixing Y, we get a contravariant functor Hom(—,Y") from C' to Sets.
Varying both X and Y, Hom defines a functor Hom(—, —) : C°? x C' — Sets.

Other examples of functors.

(1) There are many examples of “forgetful functors”, which forget some struc-
ture. For example Groups to Sets, or K-Alg to K-Mod. They are faithful.
(2) Given a ring homomorphism 6 : R — S, restriction defines a faithful
functor S-Mod — R-Mod. It is full if and only if # is a ring-epimorphism.
(3) If M is an R-S-bimodule, then any homomorphism of S-modules X — X’
gives a homomorphism M ®g¢ X — M ®g X' of R-modules. Thus M ®g —
becomes a functor from S-Mod to R-Mod.

(4) If M is an R-S-bimodule, it also gives functors Hompg(M, —) from R-Mod
to S-Mod and Hompg(—, M) from R-Mod” to S°’-Mod. Special case: if K
is a field, then duality V ~» V* = Homg (V, K) gives a contravariant functor
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K-Mod to K-Mod.
(5) A functor from the path category of a quiver @ to K-Mod is exactly the
same thing as a representation of ().

3.4 Natural transformations

Definition. If F,G are functors C' — D, then a natural transformation ® :
F — G consists of morphisms ®x € D(F(X),G(X)) for all X € ob(C') such
that G(0)®x = Py F(0) for all § € C(X,Y).

We say that ® is a natural isomorphism if all & are isomorphisms in D.

Examples. (1) If K is a field and V is a K-vector space, there is a natural
map V — V** v (0 — 60(v)). This is a natural transformation 1o — (—)**
of functors from K-Mod to K-Mod. If we used K-mod, the category of finite
dimensional K-vector spaces, it would be a natural isomorphism.

(2) Any morphism 0 : X — Y in a category C defines a natural trans-
formation of representable functors ® : Hom(Y,—) — Hom(X,—), with
®, - Hom(Y,Z) — Hom(X,Y), f — f6. Also it defines a natural transfor-
mation of contravariant representable functors Hom(—, X)) — Hom(—,Y").

(3) A map of R-S-bimodules M — N gives natural transformations
(i) Homg(N, —) — Hompg(M, —) of functors R-Mod — S-Mod,

(ii) Homg(—, M) — Hompg(—, N) of functors R-Mod” — S°’-Mod,
(i) M ®s — — N ®g — of functors S-Mod — R-Mod, etc.

4) If M is an R-S-bimodule, X an R-module and Y an S-module, one gets
a map

Hompg (X, M) ®sY — Homgp(X, M ®sY).
It is natural in X and Y, so defines natural transformations
Hompg (X, M) ®s — — Hompg (X, M ®g —) of functors S-Mod — K-Mod, or
Homp(—, M) ®s Y — Hompg(—, M ®sY) (R-Mod” — K-Mod), or
Homp(—, M) ®s — — Hompg(—, M ®s —) (R-Mod” x S-Mod — K-Mod).

Yoneda’s Lemma. For a functor F' : C' — Sets and X € ob(C') there is a
1-1 correspondence between natural transformations Hom(X,—) — F and
elements of F/(X).

Proof. A natural transformation ® : Hom(X,—) — F gives a map ®x :
Hom(X, X) — F(X), and hence an element ®x(idx) € F(X). Conversely,
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given f € F(X) and Y € 0b(C) we get a map ®y : Hom(X,Y) — F(Y),
0 — F(0)(f). This defines a natural transformation ®. These constructions
are inverses.

>~

Corollary 1. Any natural isomorphism of representable functors Hom(X, —)
Hom(Y, —) is induced by an isomorphism Y = X.

Proof. If ® : Hom(X,—) = Hom(Y,—) is a natural isomorphism, it corre-
sponds to an element of f € Hom(Y, X).

Now ®y : Hom(X,Y) — Hom(Y,Y), # — 6f is an isomorphism in the
category of sets, so a bijection. Thus there is some g € Hom(X,Y') with
gf = idy.

Also ®x : Hom(X, X) — Hom(Y, X), ¢ — ¢f is a bijection, and sends both
fg and idx to f, so fg =1idx.

Proposition/Definition. If C, D are categories, with C' skeletally small, then
there is a category Fun(C, D) whose objects are the functors C' — D and
whose morphisms are the natural transformations. The isomorphisms are
the natural isomorphisms.

Proof. It is straightforward to define the composition of natural transfor-
mations F' — G and G — H. The characterization of isomorphisms is also
straightforward.

The only difficulty is to be sure that the Hom spaces are sets. Since C'
is a skeletally small category, every object is isomorphic to an object in a
set S. Let F,G : C — D functors. A natural transformation ® : F' —
G is determined by the morphisms ®x for X € S, for if 8 : ¥ — X is
an isomorphism, then &y = G(0~)PxF(0) € D(F(Y),G(Y)). The result
follows.

Corollary 2. We get a full and faithful functor C? — Fun(C, Sets), X
Hom(X, —).

3.5 Adjoint functors

Definition. Given functors F': C' — D and G : D — C, we say that (F,G)
is an adjoint pair, or that F' is left adjoint to G or G is right adjoint to F
if there is a natural isomorphism ® : Hom(F(—),—) = Hom(—,G(—)) of
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functors C? x D — Sets.
Thus one needs bijections
®xy : Hom(F(X),Y) = Hom(X,G(Y))

for all X € ob(C) and Y € 0b(D), such that

Hom(F(X"),Y) -, Hom(X',G(Y))
-F(é))l -el
Hom(F(X),Y) —* Hom(X,G(Y))

commutes for all 6 : X — X', and

Hom(F(X),Y) —* Hom(X,G(Y))
d>l G(é)i
Hom(F(X),Y") - Hom(X,G(Y"))
commutes for all ¢ : Y — Y.
Examples. (1) (Hom tensor adjointness) If M is an R-S-bimodule then
Hompg(M ®5 X,Y) = Homg (X, Homg(M,Y))

for X an S-module and Y an R-module, so (M ®g —, Homg(M, —)) is an
adjoint pair between R-modules and S-modules.

(2) Free algebras and free modules. For K a commutative ring,
Homp a15(K(X), R) = Homges (X, R),

for X from the category of sets and R from the category of K-algebras, so
(X — K(X), Forget) is an adjoint pair between K-algebras and sets. For R
a ring

Homp(RYX), M) = Homgs(X, M)

for X from the category of sets and M from the category of R-modules, so
(X = R™)_ Forget) is an adjoint pair between R-modules and sets.
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3.6 Equivalence of categories

Definition. A functor F' : C' — D is an equivalence if there is G : D — C
such that FF'G = 1p and GF = 1.

Remark. F' is an isomorphism if there is G giving equalities of functors
FG =1p and GF = 1¢. This is not such a useful concept.

Theorem. F'is an equivalence if and only if it is full, faithful and dense.

Proof. Suppose there is a G and natural isomorphisms ® : GF — 1o and
U:FG — 1p. For0 € C(X,Y) we get 0@x = &y G(F(0)) soif F(0) = F(¢)
then 0@y = 0'®x, so 0 = &' since @y is an isomorphism. Thus F' is faithful.
Similarly G is faithful. Suppose ¢ € D(F(X), F(Y)). Let 0 = ®yG(¢)®y' €
C(X,Y). Then 0®x = &y G(F(9)) gives G(¢) = G(F(0)), so ¢ = F(0), so
F is full. Also any Y € ob(D) is isomorphic to F(G(Y)), so F is dense.

On the other hand, if F' satisfies the stated conditions, for each Z € 0b(D)
choose G(Z) € ob(C) and an isomorphism 1z : Z — F(G(Z)). We extend it
to a functor G : D — C by defining G(0) for 6 € D(Z,W) to be the unique
morphism o € C(G(Z),G(W)) with F(a) = nwon,".

Examples. (i) If K is a field, there is an equivalence of categories from the
category with objects N and Hom(m,n) = M, v, (K) to the category K-mod
of finite dimensional K-vector spaces, sending n to K™ and a matrix A to
the corresponding linear map.

(ii) The following three categories are equivalent for a quiver Q).
(1) KQ-Mod.

(2) The category of K-representations of )

(3) The functor category from the path category of @ to K-Mod.
(
t

iii) If R is a graded ring, the category of graded R-modules is equivalent to
he category of modules for the associated catalgebra.

3.7 K-categories and catalgebras

Let K be a commutative ring.

Definition. A K-category is a category C' with the additional structure that
each of the sets Hom(X,Y') is a K-module, in such a way that composition
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Hom(Y, Z) x Hom(X,Y) — Hom(X, Z) is K-bilinear. In particular each set
Hom(X,Y') contains a distinguished element, the zero element.

A functor F : C — D between K-categories is K -linear, if all of the maps
C(X,Y)— D(F(X),F(Y)) are K-module maps.

One uses the terminology pre-additive category and additive functor if these
hold for some K (equivalently for K = 7).

Examples.

(i) K-Mod is a K-category. If R is a K-algebra, then R-Mod is a K-category.
(ii) The K-linear path category of a quiver Q).

(iii) Warning. The category of K-algebras is NOT a K-category.

Remark/Definitions. If C' is a K-category, then the representable functor
Hom(X, —) can be considered as a K-linear functor C' — K-Mod. Yoneda’s
lemma still works for K-linear functors C — K-Mod. If D is another K-
category and C'is skeletally small, there is a category Fung(C, D) of K-linear
functors C — D.

Proposition. There is a 1-1 correspondence (an equivalence of categories)
between

(i) small K-categories C', and

(ii) K-catalgebras R equipped with a complete family of orthogonal idempo-
tents (€;)ier-

For C corresponding to R, there is an equivalence between Funy(C, K-Mod)
and R-Mod.

Proof. Given a small category C, let I be the set of objects, let R =
D, e C(4,7). We think of the elements r € R as matrices whose entry
rij € C(j,1). It becomes an algebra by matrix multiplication

(rr')ig = D riariy

k

and let e; = 1; € C(7,7) C R. Conversely, given R and (e;);cr, let C have set
of objects I and C(j,1) = e;Re;, with composition induced by multiplication
in R.

Given a K-linear functor F' : C' — K-Mod we define M = P
turn it into an R-module via

(rm)i =Y F(rij)(m;) € F(i)

jel

F(i) and

el
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Conversely given M, the unital condition guarantees that M = @, ., e; M.
We define F' by F(i) = e;M and for r € C(j,i) = e;Rej, F(r) : e;M — e; M
is multiplication by r.

Example. The K-linear path category of a quiver () corresponds to the path
algebra K@) with the trivial paths e;.

3.8 Limits and colimits

Let C' be a category.
Definition 1. Let J be a small category.

Given an object X in C| the constant functor cy : J — C sends every object
of J to X and every morphism to idx.

There is a functor ¢ : J — Fun(J,C) sending any object X to cx, and any
morphism 6 : X — Y to the natural transformation ® : cxy — ¢y with ®; =6
for all objects 7 in J.

Given a functor F': J — C, a limit for F is an object X in C' and a natural
isomorphism Home(—, X) = Hompyys,cy(c(—), F). If F has a limit, it is
unique up to a unique isomorphism, so we can talk about ‘the limit’.

Special cases 1. Taking taking J to the path category of a suitable quiver
gives the following notions.

(a) A product of a family of objects X; (i € I) is an object X equipped
with morphisms p; : X — X, such that for any object X’ and morphisms
¢; : X' — X, there is a unique morphism 0 : X’ — X with ¢; = p;0, that is,
the map Hom(X’, X) — [[, Hom(X', X;), 0 — (p;0) is a bijection.

Take the quiver with vertex set I and no arrows. A functor F' : J — C is
given by a collection of objects X; (i € I). By Yoneda’s Lemma, natural
transformations Home (—, X)) — Hompyp(scy(c(—), F') correspond to collec-
tions of morphisms X — X for i € I.

(b) An equalizer of a pair of morphisms f,g : U — W consists of an object
X and a morphism p : X — U with fp = gp and the universal property, that
for all p’ : X! — U with fp’ = gp’ there is a unique 0 : X’ — X with p’ = p#.
The quiver is o — o.
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In a K-category, the kernel of a morphism f : U — W is the equalizer of f
and 0. Thus it is an object X and a morphism p : X — U with fp = 0, such
that for any morphism p' : X’ — U with fp’ = 0 there is a unique morphism
0: X" — X with p’ = pf. Conversely the equalizer of f, g = kernel of f — g.

(c) A pullback of a pair of morphisms f: U — W and g : V — W, consists of
an object X and morphisms p: X — U and ¢ : X — V giving a commutative
square

X ‘> U

L]

Vv 2 W
and which is univeral for such commutative squares, that is for any X',
p W — X, ¢ : W — Y with fp' = gq¢ there is a unique 0 : X’ — X with
p' = ph and ¢ = ¢b.

Examples 1. In the category Sets, K-algebras or R-modules, all limits exist.
The product is the usual one.

The kernel of f: U — W in R-Mod is Ker f — U.

The pullback is {(u,v) € U x V : f(u) = g(v)}, etc.

Lemma. In an equalizer, p is mono. In a pullback, if f is mono, so is q.

For the equalizer, suppose a, 5 : X’ — X and pa = pf = p'. Since fp' = gp/,
there is a unique 6 : X’ — X with p’ = pf. But both § = o and 6 = [ satisfy
this, so a = .

For the pullback. Suppose o, 5 : X' — X with qa = ¢B. Then gqa = gqp3,
so fpa = fpp. Since f is mono, pa = pB. Thus by the uniqueness part of
the universal property for a pullback, a = 5.

Definition 2. Colimits in C are the same as limits in C°P.

Special cases 2.

(a) A coproduct of a family of objects X; (i € I) is an object X equipped
with morphisms i; : X; — X such that for any object X’ and morphisms
ji + X; — X' there is a unique morphism ¢ : X — X’ with j; = 0i;, that is,
the map Hom(X, X’) — [[, Hom(X;, X"), 6 — (6i;) is a bijection.

(b) A coequalizer of a pair of morphisms f,g: U — W consists of an object
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X and a morphism p : W — X with pf = pg and the universal property.

In a K-category, the cokernel of a morphism f : U — W is the coequalizer
of f and 0.Thus it is an object X and a morphism p: W — X with pf = 0,
such that for any morphism p’ : W — X’ with p'f = 0 there is a unique
morphism 6 : X — X’ with p’ = 0p.

(c) A pushout of a pair of morphisms f: W — U and g : W — V, consists of
an object X and morphisms p: U — X and ¢ : V — X giving a commutative
square pf = qg, and which is univeral for such commutative squares, that
is for any X', p' : U — X', ¢ : V — X’ with p'f = ¢/g there is a unique
0:X — X' with p/ = 0p and ¢ = 0q.

Examples 2. (i) In the category Sets and R-Mod all colimits exist.
Coproducts: disjoint union |J X;, direct sum € X;.
The cokernel of a morphism f: U — W in R-Mod is W — W/ Im f.

Pushouts: UUV/ ~ where ~ is the equivalence relation generated by f(w) ~
g(w) for w € W, and (U & V)/Im6, where § : W — UV is (w) =

(f(w), —g(w)).

(ii) In the category of commutative K-algebras / all K-algebras we have
finite coproducts. For the first, the coproduct of U and V is U ®f V. For
the second, the coproduct is U %k V. For example if U = K(X)/I and
V=K({)/J, then UxgV=K(XUY)/(IUJ).

3.9 Additive categories

Proposition 1. For objects X, Xi,..., X, (n > 0) in a K-category the
following are equivalent

(i) X is the product of X7, ..., X,, for some morphisms p; : X — Xj

(ii) X is the coproduct of Xj, ..., X, for some morphisms i; : X; — X,

(iii) There are morphisms p; : X — X; and 4; : X; — X with p;i; = idy,,
pii; =0 for i # jand Y | i;p; = idx.

In this case we write X = @, X; and call it a direct sum.

Proof. (i)=(iii) For any object X’ we have a bijection Hom(X", X) —
[I-, Hom(X", X;), ¢ — (pi¢). For Z = X, in the RHS we take the identity
endomorphism of X; and the zero maps in Hom(X;, X;) for i # j. This
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gives a map ¢; : X; — X. These satisfy the conditions. For example if
¢ = iy ipi then pjo =370 pyiipi = > 045 1pi = pj, 50 ¢ = idx.

(ili)=(i) For any X' one has inverse bijections

(O(Z)'—)Z iiai n
Hom(X', X) & [[Hom(X' X))
d=(pi¢) =1

so the p; turn X into a product.
(il)<(iii) Dual.

Special case. In a K-category, X is a product or coproduct of no objects <
Hom(X, X) = 0. Such an object is called a zero object, denoted 0.

Definition. A category is additive if it is a K-category for some K (equiv-
alently for K = Z), if it has a zero object and every pair of objects has a
direct sum (equivalently it has all finite direct sums).

Example. R-Mod, R-mod, the category of free R-modules.

Proposition 2.. If F'is a K-linear functor between additive K-categories, then
F preserves finite direct sums, so F(0) =0 and F(X&Y) = F(X) & F(Y).

Proof. Apply F' to the morphisms in part (iii) of Proposition 1.

3.10 Abelian categories and exact functors

Definition. A category is abelian if

(1) it is additive,

(ii) every morphism has a kernel and cokernel,

(iii) every morphism factors as an epi followed by a mono, and

(iv) every mono is the kernel of its cokernel and every epi is the cokernel of
its kernel.

Example. R-Mod. Also the category R-mod of finitely generated modules,
for R a left noetherian ring. (The noetherian hypothesis ensures that the
kernel of a morphism between f.g. modules is f.g.)

Definitions. A subobject of an object X in an abelian category is an equiva-
lence class of monos to X, where a: U — X is equivalent to o : U' — X &
a = /0 for some isomorphism ¢ : U — U'.
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[There is possibly a set-theoretic problem here, which we ignore.]
Given a subobject U — X we write X/U for its cokernel.

Given a morphism 6 : X — Y, the kernel of 6 gives a subobject Ker @ of X,
and the kernel of the cokernel of 8 gives a subobject Im 6 of Y.

We get analogues of the isomorphism theorems - details omitted.

Recall that a sequence of modules

s xLhys gz

is exact at Y if Im f = Ker g. This makes sense for an abelian category too.

A short exact sequence is an exact sequence 0 — X i) Y & Z = o.
Equivalently f the kernel of g, and g is the cokernel of f.

A short exact sequence is split exact if it satisfies the following equivalent
conditions
(i) g has a section, a morphism s : Y — E with gs = idy.
(ii) f has a retraction, a morphism r : £ — X with rf = idy.
(iii) There are
r g
— o
X 7} E._Y
with gs =idy, gf =0,rs =0, rf =idx and sg+ fr =idg,so E=Z X pY.
Definition. If F' is an additive functor between abelian categories, we say
that F'is exact (respectively left exact, respectively right exact) if given any

short exact sequence
0=-X—=Y—=2-0

the sequence
0—F(X)—=FY)—>F(Z)—0

is exact (respectively 0 — F(X) — F(Y) — F(Z) is exact, respectively
F(X) — F(Y) - F(Z) — 0 is exact). Similarly, if F' is a contravariant
functor, we want the sequence

0—-F(Z)—-FY)—=>FX)—0
to be exact (respectively 0 — F(Z) — F(Y) — F(X) exact, respectively
F(Z)— F(Y) = F(X) — 0 exact).
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Notes. (i) Any additive functor between abelian categories sends split exact
sequences to split exact sequences.

(ii) An exact functor sends any exact sequence (not just a short exact se-
quence) to an exact sequence. A left exact functor sends an exact sequence
0 - X — Y — Z to an exact sequence 0 — F(X) — F(Y) — F(Z).
Similarly for right exact.

Proposition. For an abelian category, Hom(—, —) gives a left exact functor
in each variable. That is, if M is an object and 0 - X — Y — Z — 0 is
exact, then so are

0 — Hom(M, X) - Hom(M,Y) — Hom(M, Z)

and
0 — Hom(Z, M) — Hom(Y, M) — Hom(X, M).

Proof. The first sequence is exact at Hom(M,Y) since X — Y is a kernel
for Y — Z, and it is exact at Hom(M, X) since X — Y is a mono.

Lemma. For morphisms f: U — W and ¢ : V — W in an abelian category,
the pullback

X > U

AR

V 2 W

exists. Moreover, if g is part of an exact sequence 0 — Z 5V 4 W — 0
one gets a commutative diagram with exact rows

0 v 7 2 x Po U —50
I —
0 Z 25V 2 sW ——0

Dually, for morphisms f: W — U and g : W — V, the pushout

(/N v
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exists. Moreover, if g is part of an exact sequence 0 — W %V % Z — 0
one gets a commutative diagram with exact rows

0 s W 2 v 25 7 s 0

0 U —— X Z > 0
Proof. We have morphisms
pu pv
— —
U AN UV — V.
i iy

Let 0 = fpy + gpy : U &V — W. This morphism has a kernel, say X LA
UadV. Let p=pyk and ¢ = —pyk. Now 0 = 0k = (fpu + gpv)k = fp—gq,
so fp = gq. Moreover given morphisms p’ : X’ — U and ¢’ : X' — V with
fr = gq, we get a morphism ¢ = iyp’ —iyq : X' = U @&V with ¢ = 0.
Thus ¢ factors uniquely as k¢’ for some ¢ : X’ — X. This means that

P = pud = prkd = pd and ¢ = —py¢ = —pykd = q¢’, which is the
universal property for a pullback.

We have already shown that if f is mono, so is gq.

Conversely, if ¢ is mono, so is f. Namely, suppose a : Z — U is a morphism
with fa = 0. Consider the zero map Z — V. By the pullback property there
is a morphism ~ : Z — X with py = a and ¢y = 0. Since ¢ is mono, v = 0.
Thus o = 0.

Dually there are pushouts.

Now suppose that g : V' — W belongs to an exact sequence. The morphism
a : Z — V together with the zero morphism Z — U give a morphism
B :7Z — X. We need to show 0 - Z — X — U — 0 is exact.

Since ¢ is an epi, so is . Thus the sequence
0 XSBUaviwoo

is exact. Thus 6 is the cokernel of k. Thus W is the pushout of p and q.
Thus by properties of pushout, dual to pullbacks, since ¢ is epi, so is p.

It remains to see that [ is a kernel for p. This is straightforward.
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3.11 Projective modules

Proposition/Definition. An object P in an abelian category is projective if it
satisfies the following equivalent conditions.

(i) Hom(P, —) is an exact functor.

(ii) Any short exact sequence 0 - X — Y — P — 0 is split.

(iii) Given an epimorphism 6 : Y — Z, any morphism P — Z factors
through 6.

Proof. (i)=-(ii) Hom(P,Y) — Hom(P, P) is onto. A lift of idp is a section.

(ii)=(iii) Take the pullback along the map P — Z. The resulting exact
sequence has P as third term, so is split. This gives a map from P to the
pullback. Composing with the map to Y gives the map P — Y.

(iii)=(i) Clear.

Lemma 1. Given sequences 0 — X; — Y; — Z; — 0 (i € I) of R-modules,
the following are equivalent.

(i) The sequences are exact for all i € I.

i) 0 =L Xi = [L,Y: = I, Zi — 0 is exact.

(ili) 0 = B, X; — B, Y: = P, Z; — 0 is exact.

Proof. Straightforward.

Proposition. A direct sum of modules €, M; is projective < all M, are
projective.

Proof. Hom(, M;, —) = [ [, Hom(M;, —), so @, M, is projective

< 0 — Hom(p, M;, X) — Hom(P, M;,Y) — Hom(P, M;, Z) — 0 exact
foral0 = X =Y =2 —=0

& 0— [[, Hom(M;, X) — [, Hom(2;,Y) — [ [, Hom(M;, Z) — 0 exact

< all 0 —» Hom(M;, X) — Hom(M,;,Y) — Hom(M;, Z) — 0 are exact

& all M; are projective.

Theorem. Any free module is projective, and any module is a quotient of a
free module. A module is projective if and only if it is a direct summand of
a free module.

Proof. Homg(R,X) = X, so R is a projective module, hence so is any direct
sum of copies of R. If F' — P is onto with F' free and P projective, then P
is isomorphic to a summand of F.
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Examples.

(i) If R is a semisimple f.d. algebra, then every submodule is a direct sum-
mand, so every short exact sequence is split, so every module is projective.
(ii) For a principal ideal domain, any finitely generated projective module is
free. This follows from the usual classification of f.g. modules for a pid.

(iii) If e € R is an idempotent, then R = Re & R(1 — e), so Re is a direct
summand of zR, so it is projective. Conversely any direct summand [ of
r is of the form Re for some idempotent e, for the projection onto I is an
idempotent e € Endgr(R) = R, so gives an idempotent e € R with [ = Re.

Notation. We write R —proj for the category of finitely generated projective
left R-modules. Note that an R-module is finitely generated projective if and
only if it is isomorphic to a direct summand of a free module R™ for some n.

Lemma 2. The functor Homg(—, R) defines an antiequivalence between R —
proj and RP — proj.

Proof. There is a natural transformation
X — Homg(Hompg(X, R),R), x> (0 — 0(x)).

It is an isomorphism for X = R, so for finite direct sums of copies of R, so
for direct summands of such modules.

Lemma 3. If M is an R-S-bimodule, then there is a natural transformation
Homp(X, M) ®sY — Homg(X, M ®sY), 0y~ (z+— 0(x)Ry)

for X an R-module and Y an S-module. It is an isomorphism if X is finitely
generated projective. Moreover, if idx is in the image of the natural map
Homp (X, R) ®p X — Endg(X), then X is finitely generated projective.

Proof. For the first part, reduce to the case of X = R. Say idx comes from
>, 0; ® z;, then the composition of the maps

6, pn @,

X R" X

is the identity.

3.12 Injective modules

Proposition/Definition. An object I in an abelian category is injective if it
satisfies the following equivalent conditions.
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(i) Hom(—, I) is an exact functor.
(ii) Any short exact sequence 0 — I — Y — Z — 0 is split.
(iii) Given an injective map 6 : X — Y, any map X — [ factors through 6.

Proof. This is the opposite category version of the result for projectives.

Definition 1. An inclusion of R-modules M C N is an essential extension of
M if every non-zero submodule S of N has SN M # 0.

Theorem 1. For an R-module I, following conditions are equivalent.

(a) I is injective.

(b) (Baer’s criterion) Every homomorphism f : J — I from a left ideal J of
R can be extended to a homomorphism R — 1.

(c) I has no non-trivial essential extensions

Proof. (a)=>(b) is trivial.

(b)=-(c) Let I C L be a non-trivial essential extension and fix £ € L\ I. We

consider the pullback
J — R

L]

I — L
where R — L is the map r — r{. Then J — R is injective, so J is identified
with a left ideal in R. By (b), the map J — I lifts to a map R — I, say
sending 1 to i. Then if (¢ — i) € I, then ¢ € I, so r € J, so rl = ri, so
r(¢ —i) = 0. Thus I N R({ —i) = 0 and R(¢ — i) # 0, contradicting that
I C L is an essential extension.

(c)=>(a). Given I C Y, we need to show that I is a summand of Y. By
Zorn’s Lemma, the set of submodules in Y with zero intersection with I has
a maximal element C'. If [+ C =Y, then C'is a complement. Otherwise, I =
(I+C)/C CY/C is a non-trivial extension. By (c) it cannot be an essential
extension, so there is a non-zero submodule U/C' with zero intersection with
(I+C)/C. Then UN(I+C)=C,s0UNICCNI=0. This contradicts
the maximality of C.

Proposition. A direct product of modules [[;, M; is injective < all M; are
injective

Proof. Use that Hom(—, [[, M;) = [[, Hom(—, M;).

Definition 2. If K is an integral domain, then a K-module M is divisible if
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and only if for all m € M and 0 # a € K there is m’ € M with m = am/.
Observe that if M is divisible, so is any quotient M/N.

Theorem 2. If K is an integral domain, then any injective module is divisible.
If K is a principal ideal domain, the converse holds.

Proof. Divisibility says that any map Ka — M lifts to a map K — M. If
K is a pid these are all ideals in K.

Now suppose that K is a field or a principal ideal domain. We define (—)* =
Hompg(—, E), where

K (if K is a field)
| F/K (if K is a pid with fraction field F # K)

Then FE is divisible, so an injective K-module, so (—)* is an exact functor. It
gives a functor from R-modules on one side to R-modules on the other side.

Lemma. If M is a K-module, the map M — M**, m — (0 — 6(m)) is
injective. (It is an isomorphism if K is a field and M is a finite-dimensional
K-vector space).

Proof. Given 0 # m € M it suffices to find a K-module map f: Km — E
with f(m) # 0, for then since E is injective, f liftstoamap: M — E. If K
is a field there is an isomorphism K'm — E. If K is a principal ideal domain,
choose a maximal ideal Ka containing ann(m) = {z € K : am = 0}. Then
there is a map Km — E sending xm to K + x/a.

If K is a field, and M is of dimension d, then so is M*, and so also M** so
the map M — M™** must be an isomorphism.

Theorem 3. Any R-module embeds in a product of copies of R*, and such a
product is an injective R-module. A module is injective if and only if it is
isomorphic to a summand of such a product.

Proof. We have R* injective since Hompg(—, R*) = (—)* is exact. Thus
any product of copies is injective. Now choose a free right R-module and a
surjection R — M*. Then M embeds in M** and this embeds in (R*X))* =
(R*)X. The last part is clear.

Corollary. Any module over any ring embeds in an injective module.

Proof. Apply the last result with K = Z.
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3.13 Flat modules

If M is an S-R-bimodule, then by a lemma in the section on tensor products,
M ®p— defines a right exact functor from R-Mod to S-Mod which commutes
with direct sums,

M ®gr (@Xz) g@(M(@RXi).

i€l i€l

Eilenberg-Watts Theorem. Any right exact functor from R-Mod to S-Mod
which commutes with direct sums is naturally isomorphic to a tensor product
functor for some bimodule.

Proof. Suppose that F'is a right exact functor from R-Mod to S-Mod. Then
F(R) is an S-module, and it becomes an S-R-bimodule via the map

R = Endg(R)” 5 Endg(F(R))%.
Now for any R-module X there is a R-module map
X 5 Hompg(R, X) & Homg(F(R), F(X)).

By hom-tensor adjointness this gives an S-module map F(R)®r X — F(X).
This is natural in X, so it ®x for some natural transformation ® : F(R) ®g
— — F. Clearly ®p is an isomorphism. Then for any free module RY) we
have F(RY) = F(R)D) = F(R)® RY), so ® ) is an isomorphism. Then for
any module X there is a presentation RY) — RY) — X — 0 and the first
two vertical maps in the diagram

FR)@ RY) —— F(R)® RY) —— F(R)® X —— 0

QL l PR l <I>xl

F(RDY —— FRY) —s FX) —0

are isomorphisms. Also the rows are exact. Hence the third vertical map is
an isomorphism. Thus ® is a natural isomorphism.

Definition 1. A right R-module is flat if M ®g — is an exact functor (from
R-Mod to K-Mod).

Properties.
(i) A direct sum of modules is flat if and only if each summand is flat, since
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M @g (B, Xi) = D, M ®@r X;.
(ii) Any projective module is flat, for R @z X = X, so R is flat. Now use
the previous result.

Proposition 1. If K is a field or a pid, then an R-module M is flat if and
only if M* is injective.

Proof. We have Hompg(X, M*) = (M ®r X)*. If M is flat, then the right
hand functor is exact, so M* is injective. Conversely, if M* is injective then
the right hand functor is exact. Suppose M is not flat. Given an exact

sequence
0—-X—-Y—>272—-0

we get
0—=L->MIrX > M®gY - M®r 24— 0.

Then get

Thus L* = 0. But L embeds in L**, so L = 0.

Proposition 2. A module Mp is flat if and only if the multiplication map
M ®g I — M is injective for every left ideal I in R.

Proof. If flat, the map is injective. For the converse we can work over K = Z.
If the map is injective, then the map M* — (M ®gr I)* is surjective. We
can write this as Hompg(R, M*) — Hompg(I, M*). By Baer’s criterion M* is
injective. Thus M is flat.

Example. A Z-module is flat if and only if it is torsion-free. If I = Zn then
M ® I — M is injective if and only if multiplication of M by n is injective.
For example Q is a flat Z-module.

Proposition 3. If S is a left reversible left Ore set in R then the assignment
M ~ S7IM defines an exact functor which is naturally isomorphic to the
tensor product functor M ~~ Rg ®r M, so Rg is a flat as a right R-module.

Proof. Combine Eilenberg-Watts with results from section 2.6.

Definition 2. A module M is finitely presented if it is a quotient of a finitely
generated free module by a finitely generated submodule. Equivalently if
there is an exact sequence R™ — R" — M — 0.

Any f.g. projective module is finitely presented. If R is left noetherian, any
finitely generated left R-module is finitely presented.
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Lemma. If M is an R-S-bimodule, the natural transformation
Hompg (X, M) ®s Y — Homg(X, M ®sY)
is an isomorphism if X is finitely presented and Y is flat.

Proof. It is clear for X = R. Then it follows for X = R". In general there is
an exact sequence R™ — R"™ — X — 0, and in the diagram

0 —— HOIDR(X, M) ®SY e HOIIlR(PLn,M) ®SY E— HOIIlR<Rm,M) ®5Y

! l !

0 —— HomR(X,M(X)S Y) — HOHlR(Rn,M@S Y) e HomR(Rm,M®5 Y)

the rows are exact and the right two vertical maps are isomorphisms, hence
so is the first.

Proposition 4. A finitely presented flat module is projective.

Proof. The natural map Hompg(X, R) ®g X — Endg(X) is an isomorphism
by the last lemma. Thus idx is the image of some element ) " | f; ® ;.
Then the f; and x; define maps f: R* — X and g : X — R" with fg = idx,
so X is a direct summand of R".

3.14 Envelopes and covers

Suppose C is a full subcategory of R-Mod, closed under finite direct sums
and direct summands.

Definition. If M is an R-module, a C-preenvelope is a homomorphism 6 :
M — C with C' in C, such that any ' : M — C’ with " in C factors as
0" = ¢ for some ¢ : C — C'. It is a C-envelope if in addition, for any
¢ € Endg(C), if 0 = 0, then ¢ is an automorphism.

If a C-envelope exists, it is unique up to a (non-unique) isomorphism.

Dually, if M is an R-module, a C-precover is a homomorphism 6 : C' — M
with C' in C, such that any C' — M factors through C' — M. It is a C-cover
if in addition, for any ¢ € Endg(C), if 8¢ = 0, then ¢ is an automorphism.

If a C-cover exists, it is unique up to a (non-unique) isomorphism.
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Theorem 1. Every module M has an injective envelope, M — E(M). More-
over 6 : M — I is an injective envelope if and only if § is a monomorphism,
I is injective and Im 6 C [ is an essential extension.

Proof. Any module M embeds in an injective module E. Zorn’s Lemma
implies that the set of submodules of £ which are essential extensions of M
has a maximal element I.

Suppose that I C J is a non-trivial essential extension. Then M C J is an
essential extension. Since FE is injective the inclusion I — FE can be extended
toamap g:J — E. Clearly M N Kerg = 0, so since M is essential in J it
follows that Kerg = 0. Thus we can identify J with g(J). But then M is
essential in J, contradicting the maximality of /.

Thus I has no non-trivial essential extensions, so [ is injective.

Thus the inclusion 0 : M — [ satisfies the stated conditions. We show it is
an injective envelope. Clearly it is a preenvelope.

Say ¢f = 6 for some ¢ : I — I. Then M NKer¢ = 0, so Ker¢p = 0. Then
¢ : I — I is a monomorphism, so I = Im ¢ @ C for some complement C'. But
then M NC =0, so C'=0. Thus ¢ is an automorphism.

Corollary. Suppose R is a f.d. algebra over a field. If M is a f.d. module, so
is £(M). If I is an indecomposable injective module then it has a unique
simple submodule S and I = E(S). This gives a 1:1 correspondence between
indecomposable injective modules and simple modules.

Proof. If M is f.d., then M* is a f.d. R°-module, so f.g., so is there is a
surjection (R?)" — M*, so M = M*™ — (R*)", so M embeds in a f.d.
injective, so E(M) is f.d.. The rest is straightforward.

Theorem 2. Suppose R is a f.d. algebra over a field. Every module M
has a projective cover P(M) — M. If M is f.d., so is P(M). If P is
an indecomposable projective module, it has a unique simple quotient S,
and P = P(S). This gives a 1:1 correspondence between indecomposable
projective modules and simple modules.

Sketch. Let J = J(R). If M is any R-module then M/JM is an R/J-module,

so semisimple.

Any endomorphism ¢ : P — P induces an endomorphism ¢ : P/JP —
P/JP. If P is a projective module, the ring homomorphism Endg(P) —
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Endgr(P/JP) sending ¢ : P — P to ¢ is surjective. Moreover the kernel
is L = Homg(P,JP). Now L*¥ C Homg(P, J*P) for any k, so since J is
nilpotent, so is L.

If P is indecomposable projective, then Endz(P) has no non-trivial idempo-
tents. Since idempotents lift modulo nilpotent ideals, Endz(P/JP) has no
non-trivial idempotents, so P/.J P is indecomposable, and since it is semisim-
ple, it must be simple.

Now we want to see that every simple module occurs as P/JP for some
indecomposable projective. Writing g R as a direct sum of indecomposables
@D;_, P, we have R/J = @;_, P;/JP,. Since all simple modules occur as a
summand of R/J, they all occur from some P;.

Now any homomorphism 6 : P — M induces a homomorphism 6 : P/JP —
M/JM. We show that if 6 : P — M is a homomorphism with P projective
and such that # is an isomorphism, then 6 is a projective cover. Since 6 is
surjective, M = JM + Im(0) = J(JM + Im(0)) + Im(0) = J°M + Im(f) =
oo = J*M + Im(0) for all k. Since J is nilpotent, M = Im(f), so 0 is
surjective. It follows that it is a projective precover.

Now if ¢ € Endg(P) and ¢ = 6, then 0 é = 0, and since 0 is an isomorphism
we deduce that ¢ = 1. Thus ¢ —1 = 0. Thus ¢ — 1 € L, so it is nilpotent,
and hence ¢ is an automorphism. Thus 6 is a projective cover.

In general, given any module M, write M/JM = &,.,S;, and consider
P(M) = @,., P(S;) = M/JM. This lifts to a map 6 : P(M) — M with 6
an isomorphism. Thus 6 is a projective cover of M.

Remark. The ring for which all modules have projective covers are the ‘left
perfect rings’. They are also the rings for which flat = projective, so the best
generalization of Theorem 2 is

Theorem of Bican, El Bashir and Enochs 2001. FEvery module has a flat
cover.

Proof is much harder.
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3.15 Morita Equivalence

I ONLY BRIEFLY DISCUSSED THIS SECTION IN LECTURES.

Definitions. An abelian category A is cocomplete if it has arbitrary coprod-
ucts, or equivalently arbitrary colimits. If so, then an object P is finitely
generated if Hom(P,—) preserves coproducts, and P is a generator if for
every object M there is an epimorphism P — M.

Note that a module category R-Mod is cocomplete, finitely generated is the
same as the usual definition, and R is a projective generator.

Theorem 1. If A is an abelian category and R is a ring, then A is equivalent
to R-Mod if and only if A is cocomplete, and it has a finitely generated
projective generator P with R = End(P)%.

Proof. The module category R-Mod has these properties, with P = R. For
sufficiency, consider the functor F' = Hom(P, —) from A to R-Mod. Given
objects X and Y choose epimorphisms px : PY — X and py : P) = Y.
Given 0 : X — Y, if F() =0, then the composition P¥) — X — Y is zero,
so 0 is zero. Thus F' is faithful.

Applying F one gets RY) — F(X) and RY) — F(Y). Any R-module map
a: F(X) — F(Y) lifts to an R-module map RY) — R). This corresponds
to an element of Hom(P"), P())). Now the composition Kerpy — PY —
PY) Y is sent by F' to zero, so since F' is faithful, it is zero itself. Thus
there is an induced morphism 6 : X — Y giving a commutative square. Thus
F(0) gives a commutative square with the map R0 — RY). Thus a = F(0).
Thus F is full.

Now for any R-module M there is a presentation RY) — RY) — M — 0.
The first map comes from a morphism P) — P())_ Let this have cokernel X .
Then since F is exact, we get RY) — R() — F(X) — 0. Thus M = F(X).
Thus F' is dense.

Theorem 2. Let R and S be two rings. The following are equivalent.

(i) The categories R-Mod and S-Mod are equivalent

(ii) There is an S-R-bimodule M such that M ®p — gives an equivalence
R-Mod to S-Mod

(iii) S = Endg(P)° for some finitely generated projective generator P in

R-Mod.
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Proof. (i)« (iii) follows from the theorem.

(ii)=(i) is trivial. For (i)=-(ii) note that an equivalence is exact, and pre-
serves direct sums, so it must be a naturally isomorphic to a tensor product
functor.

Examples. (i) R is Morita equivalent to M,,(R) for n > 1. Namely the module
R™ is a finitely generated projective generator in R-Mod with Endg(R™)% &
M, (R).

(i) If e € R isidempotent, and ReR = R, then R is Morita equivalent to e Re.
Namely, the condition ensures that the multiplication map Re ®.g. eR — R
is onto. Taking a map from a free eRe-module onto eR, say eRe!) — eR,
we get a map Re!) — R, so Re is a generator. Then Endg(Re) = eRe.

Corollary. Any f.d. algebra over a field is Morita equivalent to one with
R/J(R) = Dy x -+ x D,, a product of division algebras.

In particular if K is algebraically closed, any f.d. algebra is Morita equivalent
to KQ/I for some quiver () and admissible ideal I.

Sketch. Write g R as a direct sum of indecomposable projectives, and collect
isomorphic summands, say

rRR= Pl @ - - @ Plr|™.

Then P = P[1] @ --- @ PJr| is a f.g. projective generator, so R is Morita
equivalent to S = Endg(P)°?. One can show that

J(End(P[1])) Hom(P[2], P[1])
J(S) = | Hom(P1], P[2])  J(End(P[2]))

so S/J(S) = [[;_, End(P[:])/J(End(P[i])), a product of division algebras.
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4 Homological algebra

Recommended book: C. A. Weibel, An introduction to homological algebra.

4.1 Complexes

Definition 1. Let R be a ring. A chain complex C (or C. or C,) consists of
R-modules and homomorphisms

d d d, d_
...—>C’2—2—>C’1—1—>C’0—0—>C’_1—1—>C_2%...

satisfying d,d,.1 = 0 for all n. The elements of C,, are called chains of
degree n or n-chains. The maps d,, are the differential.

If C' is a chain complex, then its homology is defined by
H,(C) =Ker(d,)/Im(d, 1) = Z,(C)/B,(C).

The elements of B,,(C) are n-boundaries. The elements of Z,(C') are n-cycles.
If z is an n-cycle we write [z] for its image in H,,(C).

A chain complex C is acyclic if H,(C) = 0 for all n, that is, if it is an exact
sequence. It is non-negative if C,, = 0 for n < 0. It is bounded if there are
only finitely many nonzero C,.

Definition 2. A cochain complex C (or C" or C*) consists of R-modules and
homomorphisms

_9 d2 _1 dt d° dt
I o b NNy g NN -G LNy LI

satisfying d"d"~! = 0 for all n. The elements of C™ are called cochains of
degree n or n-cochains.

The cohomology of a cochain complex is defined by
H"(C) = Ker(d")/Im(d"™ ") = Z™(C)/B"(O).

The elements of B™"(C) are n-coboundaries. The elements of Z"(C) are n-
cocycles.

Remarks. (i) There is no difference between chain and cohain complexes,
apart from numbering. Pass between them by setting C" = C_,,.
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(ii) Many complexes are zero to the right, so naturally thought of as non-
negative chain complexes, or zero to the left, so naturally thought of as
non-negative cochain complexes.

(iii) More generally we could replace R-modules by objects in an abelian
category.

Definition 3. The category of cochain complexes C(R-Mod) has as objects
the cochain complexes. A morphism f : C' — D is given by homomorphisms
f™ . C™ — D™ such that each square in the diagram commutes

ot 4 on 4y omit 4
fnfll fnJ/ fn+1J(
Yy prt 4 pn 4 peit 4

There is a shift functor [i] : C(R-Mod) — C(R-Mod) defined by C[i]" = C"**
with the differential de = (—1)"de.

The category C'(R-Mod) is abelian. (It can be identified with the category
of graded R[d]/(d?*)-modules, where R has degree 0 and d has degree 1, so it
is the category of modules for a catalgebra.)

Direct sums are computed degreewise, (C@& D)™ = C"@® D™. Also kernels and
cokernels are computed degreewise. Thus a sequence 0 - C — D — E — 0
is exact if and only if all 0 - C™ — D™ — E™ — 0 are exact.

Lemma. A morphism of complexes f : C' — D induces morphisms on coho-
mology H"(C') — H"(D), so H" is a functor from C'(R-Mod) to R-Mod.

Proof. An arbitrary element of H"(C') is of the form [z] with x € Z"(C) =
Kerd". We send it to [f"(z)] € H"(D).

Definition 4. A morphism of complexes f : C' — D is a quasi-isomorphism
if the map H"(C') — H"(D) is an isomorphism for all n.

Example. Morphism from Z % Z to 0 — Z/aZ for a # 0.

Theorem. A short exact sequence of complexes 0 — C — D — E — 0
induces a long exact sequence on cohomology

o= H"YE) - H"(C) — H"(D) — H"(E) — H""Y(C) — H""Y(D) — ...

for suitable connecting maps ¢ : H*(E) — H""(C).
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Proof. For all n we have a diagram
O— ¢" — D" —— E" — 0

dgl d%l d%l

0 — C"! —— Dl —— prfl 5
and the easy part of the snake lemma gives exact sequences on kernels of the
vertical maps

0—2"(C)— Z"(D) — Z"(FE)
and on cokernels
c"t /B (C) — D"/ B"Y(D) — E™/B"TYHE) — 0

This holds for all n, so shows that the rows in the following diagram are
exact

C"/BY(C) —— D"/BY(D) ——s E"/BY(E) —— 0
%l @l @l
0 —— Z"0) — ZMY(D) —— Z™N(E).

Here the vertical maps are induced by df, d}, and d}, so the diagram com-
mutes. Thus by the snake lemma one gets an exact sequence

Ker(dy) — Ker(dp) — Ker(dy) — Coker(dy,) — Coker(dy,) — Coker(dy,)
That is,
H"(C) — H"(D) = H*(E) — H"*Y(C) — H""(D) — H""'(E)

as required.

4.2 Ext

Definition 1. If M is an R-module, then a projective resolution of M is an
exact sequence

PP RS M0
with the P; projective modules. It is equivalent to give a non-negative chain
complex P of projective modules and a quasi-isomorphism P — M (with M
considered as a chain complex in degree 0),

da

)PQ P1 dl)P[) > 0 >
> 0 0 > M > 0 b
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Note that every module has many different projective resolutions. Choose
any surjection € : Py — M, then any surjection d; : P, — Kere, then any
surjection dy : P, — Kerdy, etc.

If one fixes a projective resolution of M then the syzygies of M are the
modules Q"M =TIm(d : P, — P,_1) (and Q"M = M). Thus there are exact
sequences

0— Q"M - P, - Q"M — 0.

Dually an injective resolution of a module X is an exact sequence

0= X 1" STt —>1% . ..

with the I™ injective modules. The cosyzygies are Q"X = Im([""! — I™)
(and 2°X = X), so

0O "X 5" QDX 4

Definition 2. Given modules M and X, choose a projective resolution P, —
M of M. We define Ext; (M, X) = H"(Homg(P,, X)), the nth cohomology
of the cochain complex of K-modules Hompg(P,, X), which is

50— 0 — Homp(Py, X) 2 Homp(Pr, X) 2 Homp(Py, X) — ...
where Hompg(P,, X) is in degree n.

Properties. (i) Ext’(M, X) is a K-module, it is zero for n < 0, and Ext% (M, X) =
Hom(M, X)) since the exact sequence P, — Py — M — 0 gives an exact se-

quence
0— HOHIR<M, X) — HOHIR(P(),X) — HOHIR(Pl,X).

(ii) This definition depends on the choice of the projective resolution. But we
will show that Ext', (M, X) can also be computed using an injective resolution
of X, and that will show that it does not depend on the projective resolution
of M.

(iii) Exth(M,X) = 0 for n > 0 if X is injective. Namely, the sequence
-+ — Py — P, — P, is exact, hence so is the sequence

Hom(Py, X) — Hom(P;, X) — Hom(P, X) — ...

Lemma. A map X — Y induces a map Ext; (M, X) — Exti(M,Y), and in
this way the assignment X ~» Extj(M, X) is a K-linear functor.
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Proof. It induces a map of complexes Homg(P;, X) — Homg(P,,Y), and
that induces a map on cohomology.

Proposition 1. A short exact sequence 0 - X — Y — Z — 0 induces a long
exact sequence

0 — Hompg(M, X) — Homg(M,Y) — Homg(M,Y)

— Exth(M, X) = Extp(M,Y) — Exty(M, Z)
— Exth(M, X) — Ext%(M,Y) — Exth(M, Z) — ...

Proof. One gets a sequence of complexes
0 — Hompg(P., X) — Hompg(P,,Y) - Hompg(Ps, Z) — 0.

This is exact since each P, is projective. Thus it induces a long exact sequence
on cohomology.

Proposition 2. If 0 — X — I® — I' — I? — ... is an injective resolution of
X, then one can compute Extz (M, X) as the nth cohomology of the complex
Hompg(M, I*) if K-modules:

0 — Homp(M, I?) — Homp(M, I') — Homp(M, I?)...

Proof. Break the injective resolution into exact sequences
05 Q7'X 5 I' 5 QX 0
for i > 0 where Q2°X = X. One gets long exact sequences
0 — Homp(M, Q7' X) — Hompg(M, I') — Hompg(M,Q +DX)
— Exth(M,Q7°X) = 0 — ExthL(M,Q (+)X)
— Ext%(M,Q7°X) = 0 — Ext3(M,Q (VX)) ...

S0
Exth(M, Q7" X) 2 Coker(Hompg(M, I') — Homp (M, Q~FD))

and
Ext?,(M, Q- D X) = Ext? ™ (M, Q7 X)

for j > 1. Thus (it is called dimension shifting)

EXJE%(M, X) > Ext?z—l(M, Q_lX) ~ o EXt}%(M7 Q—(n—l)X)
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= Coker (Homp(M, I"™") — Homp(M,Q " X))
Now 0 — QX — I™ — ™" is exact, hence so is
0 — Homp(M,Q "X) — Homp(M, I") — Homp(M, I"*)
It follows that Extl; (M, X) is the cohomology in degree n of the complex
<o+ — Hompg(M, I"™') — Hompg (M, I") — Homp (M, I""') — ...
as required.

Remarks. (i) As mentioned, it follows that Ext, (M, X) does not depend on
the projective resolution of M.

(i) Using the description in terms of an injective resolution of X it follows
that the assignment M ~» Ext"(M, X) is a contravariant K-linear functor.

Also, if 0 - L - M — N — 0 is an exact sequence and [* is an

injective resolution of X, then one gets an exact sequence of complexes
0 — Homg(N, I*) — Hompg(M, I*) — Hompg(L, I*) — 0, and hence a long
exact sequence

0 — Hompg(N, X) — Homg(M, X) — Homg(L, X)
— Exth(N, X) — Exth(M, X) — Extp(L, X)

— Exth(N, X) — Exth(M, X) — Exti(L, X) — ...

Example 0. If R is a field, or more generally a finite-dimensional semisimple
algebra over a field, then all short exact sequences of R-modules are split
exact, so all modules are projective and injective. Thus

Bxt(M, X) = {OHomR<M,X> =0

Example 1. If 0 # a € Z then Z/aZ has projective resolution 0 — Z % Z —
Z/aZ — 0. Thus Ext}(Z/aZ, X) is the cohomology of the complex

o —0— Hom(Z, X) % Hom(Z, X) =0 — ...

that is,
s 0 X B X 50—

89



so Bxty(Z/aZ,X) = Hom(Z/aZ,X) = {z € X : ar = 0}, Ext}(Z/aZ, X) =
X/aX and Exty(Z/aZ,X) = 0 for n > 1.

Example 2. Let R = K|z]/(2?) with K a field. Any finitely generated module
is a direct sum of copies of K (with = acting as 0) and R. The module K
has projective resolution

RE5RS5R—>K—O0.

Now Hompg (R, K) = K, and we get Extl;(K, K) = K for all n > 0.

Example 3. Consider the algebra R = K@/ given over a field K by a quiver
@ and an admissible ideal I. For example

1590535 4%5

and I = (cba,dc). Let S[i] be the simple module at vertex i. The corre-
sponding indecomposable projective module is P[i] = Re;. It has basis the
paths starting at ¢+ modulo the relations. This gives representations

S1}:K—-0—-0—-0—0, P[1]:K—-K—K—0—0,

S2:0-K—-0—-0—0, P2:0->K—K—K—0,

SB:0-0—-K—=0—0, PB:0-0—K—K—=0,

S4:0-0—-0—-K —0, P4:0-0—-0— K — K,
] [5]

SBH:0-0—-0—-0—-K, P5:0-0—-0—->0—K.

The simples have projective resolutions:

0 — P[5] —S[5] — 0,

0 — P[5] — P[4] —S[4] — 0,

0 — P[5] — P[4] — P[3] =S[3] — 0,

0 — P[3] — P[2] —»S[2] — 0,

0 — P[5] — P[4] — P[2] — P[1] =»S[1] — 0.

We can compute Ext',(S]i], S[j]) as the cohomology of the complex Hompg (P, S[j])
where P, is a projective resolution of S[i]. Use that

Homp(Pli], S[j]) = Homg(Res, S[j]) = e:S[j] {K (i=17)

For example for Ext"(S[1], S[4]) we have
0 — Hom(/P, S[4]) — Hom(P;, S[4]) — Hom(FP,, S[4]) — Hom(Ps, S[4]) — ...
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which is
0 — Hom(P[1], S[4]) — Hom(P[2], S[4]) — Hom(P[4], S[4]) — Hom(P[5],S[4]) = 0 — ...

which is
0—-0—-0—-K—=0—-0—...

SO

Ext(S[1], S[4]) = {

4.3 Description of Ext! using short exact sequences

Definition 1. Two short exact sequences &, &’ with the same end terms are
equivalent if there is a map 6 (necessarily an isomorphism) giving a commu-
tative diagram

£€:0 y L y M y N y 0
|l
€0 y L M y N 0

It is easy to see that the split exact sequences form one equivalence class.
Definition 2. For any short exact sequence of modules

E:0—=-L—->M—=>N=0

we define an element ¢ € ExthL(N, L) as follows. The long exact sequence
for Homp(N, —) gives a connecting map Homg(N, N) — Extp(N, L) and &
is the image of idx under this map.

Theorem 1. The assignment & —» é gives a bijection between equivalence
classes of short exact sequences 0 — L — M — N — 0 and elements
of Extp(N,L). The split exact sequences correspond to the element 0 €
Extp(N, L).

Proof. Fix a projective resolution of N, and hence an exact sequence

0 QNS P S NS o.
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An exact sequence £ gives a commutative diagram with exact rows and
columns

Hom(N, N)

0 — Hom(F,L) —— Hom(F,M) —— Hom(F),N) —— 0

, |

0 —— Hom(Q'N,L) —— Hom(Q'N, M) —— Hom(Q'N, N)

Ext'(N, L)

0

and the connecting map Hom(N, N) — Ext'(N, L) is given by diagram chas-
ing, so by the choice of maps «, 8 giving a commutative diagram

0 —— QN > Py N > 0

Lol

€0 —s L Lo m 2N y 0.

Then £ = [a] where [...] denotes the map Hom(Q'N, L) — Ext!(N, L).

Any element of Ext'(N, L) arises from some . Namely, write it as [a] for
some a € Hom(2'N, L). Then take £ to be the pushout

0 — QN y P, N y 0
£:0 —s L y M N y 0.
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Now if £, & are equivalent exact sequences one gets a diagram

0 —— QN s B s N s 0
S A

E:0 —— L > M > N > 0

&:0 —— L > M’ > N > 0.

so & and ¢ correspond to the same map a, so & = &. If two short ex-
act sequences &, £ give the same element of Ext!(N, L) there are diagrams
with maps «, 8 and o/, 3 and with @ — o/ in the image of the map 6* :
Hom(FPy, L) — Hom(Q'N, L). Say a — o’ = ¢f with ¢ : Py — L. Then there
is also a diagram

0

0 —— QN > Py > N > 0

el

Y N s 0.

E:0 — L

This is a pushout, so by the uniqueness of pushouts, £ and & are equivalent.

Remark. Homomorphisms L — L' and N” — N induce maps Ext'(N, L) —
Ext'(N, L') and Ext'(N, L) — Ext'(N”,L). One can show that these maps
correspond to pushouts and pullbacks of short exact sequences. For pushouts
this follows directly from the definition. For pullbacks it needs more work -
omitted.

Theorem 2. The following are equivalent for a module M.
(i) M is projective

(i) Ext"(M,X) =0 for all X and all n > 0.

(iii) Ext'(M, X) = 0 for all X.

The following are equivalent for a module X.
(i) X is injective

(ii) Ext™(M,X) = 0 for all M and all n > 0.
(iii) Ext' (M, X) = 0 for all cyclic modules M.

Proof. (i)=(ii)=-(iii) are clear. (iii)=(i) using the characterization of a
projective or injective module as one for which all short exact sequences
ending or starting at the module split. In the injective case we use Baer’s
criterion: if I is a left ideal in R, the pushout of a sequence 0 — I — R —
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R/I — 0 along any map I — X spits. Using the splitting one gets a lift of
the map to a map R — X, and then by Baer’s criterion X is injective.

4.4 Global dimension

Proposition/Definition 1. Let M be a module and n > 0. The following are
equivalent.

(i) There is a projective resolution 0 = P, — -+ = Py - M — 0

(i) Ext™(M,X) =0 for all m > n and all X.

(iil) Ext"™ (M, X) = 0 for all X.

(iv) For any projective resolution of M, we have Q"M projective.

The projective dimension, proj.dim M, is the smallest n with this property
(or oo if there is none).

Let X be a module and n > 0. The following are equivalent.

(i) There is an injective resolution 0 - X — I — --- — " — 0

(ii) Ext™(M, X ) = 0 for all m > n and all X.

(iii) Ext"™ (M, X) = 0 for all cyclic M.

(iv) For any injective resolution of X, we have Q27 "X injective.

The injective dimension, inj.dim X, is the smallest n with this property (or
oo if there is none).

Proof (i)=-(ii)=-(iii) are trivial. For (iii)=-(iv) let P, — M be a projective
resolution. For any X, dimension shifting gives

0 =Ext"™(M, X) =2 Ext"(Q'M, X) = ... 2Ext' (Q"M, X),
so 2" M is projective. Then
0—-Q"M—-PFP, 1 —--—>F—>M-=0
is also a projective resolution of M, giving (i).
Lemma. If 0 - L - M — N — 0 is exact, then
proj. dim M < max{proj.dim L, proj. dim N},

inj. dim M < max{inj.dim L, inj. dim N}.

Proof. For any X the long exact sequence for Hom(—, X) gives an exact

sequence
Ext"™ (N, X) — Ext""(M, X) — Ext""!(L, X)
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and the outer terms are zero for n = max.

Definition. The (left) global dimension of R (in NU {oo}) is
gl. dim R = sup{proj.dim M : M € R — Mod}
= inf{n € N: Ext"" (M, X) = OVM, X}
= sup{inj.dim X : X € R — Mod}
=inf{n € N: Ext"™ (M, X) = OVYM, X, M cyclic}
= sup{proj. dim M : M cyclic}.

Example. gl.dim R = 0 < all modules are projective < all short exact
sequences split < every submodule has a complement < R is semisimple
artinian.

Proposition/Definition 2. A ring R is said to be (left) hereditary if it satisfies
the following equivalent conditions

(i) gl.dim R < 1.

(ii) Every submodule of a projective module is projective.

(iii) Every left ideal in R is projective.

Proof of equivalence. (i)=-(ii) If IV is a submodule of P then for any X, by
the long exact sequence, Ext' (N, X) = Ext*(P/N, X) = 0.

(ii)=>(iii) Trivial.

(iii)=>(i) For any X and left ideal I we have Ext*(R/I, X) = Ext'(I, X) = 0,

so X has injective dimension < 1.

Examples. A principal ideal domain is hereditary. If K is a field and @) is a
quiver, then one can show that any K(Q-module M has a standard resolution

0= P KQenw) Ok enwM L @ KQei® eM % M — 0
aeQ 1€Qo

where g(z; ® m;) = x;my, and f(x, ® my) = x40 @ My — 4 @ am,. Thus
proj.dim M <1, so K( is hereditary.

Proposition. If R is a f.d. algebra over a field, then

gl.dim R = max{proj.dim S : S is a simple module}.

Proof. We show by induction on dim M that any f.d. module M has pro-
jective dimension < m, where m is the maximum of the projective dimen-

sions of the simples. Namely if M is simple, this hold by definition. If
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not, it has a non-trivial proper submodule X. Now in the exact sequence
0— X — M — M/X — 0, the end terms have smaller dimension, so projec-
tive dimension at most m, hence proj. dim M < m by the lemma. Now every
cyclic module is f.d., so has projective dimension < m, hence gl. dim R = m.

Examples. In Example 3 of §4.2, the simple module S[1] has projective
resolution

0—>Py—P,—P —FP—S[1]—0
where P; = P[5], P, = P[4], P, = P[2| and P, = P[1], so proj.dim S[1] < 3.
In fact we have equality—for example the methods in the example show that

Ext?(S[1], S[5]) # 0. The other simples have projective dimension < 2. Thus
gl.dim R = 3.

For the commutative square algebra in §3.14, the simple module S[1] has
projective resolution

0— P[4 — P2]® P[3] = P[1] = S[1] = 0

so proj.dim S[1] = 2, and the other simples have projective dimension < 1,
so gl.dim R = 2.

Theorem. Consider a skew polynomial ring S = R[z;0,0] with o an auto-
morphism of R and ¢ a o-derivation.
(i) For any S-module M there is a an exact sequence

0= S®r (M) L SorM L M0

where ¢ is multiplication and f(s ® m) = sz @ m — s ® xm.
(i) gl. dim S < 1+ gl. dim R.
(iii) gl. dim S = 1 + gl. dim R if § = 0.

Proof. (i) Since o is an automorphism, S is a free right R-module with basis
{1,z,2% ...}, so for any R-module N, the elements of S®x N can be written
uniquely as expressions Y ' ® n;.

The map f is well-defined: define f': S®@x M — S ®r M by f'(s®@m) =
st ®@m — s ®xm. Then since xr = o(r)z + 0(r) we get

flisr@m)—f(s@c (rym)=sre@m —sr@zm—sr@c (r)m+s®@zo (r)m
=s(re —xo (r) @m+s® (zo H(r) —rx)m

=—s0(c ' (r)@m+s®d8(c ' (r))m=0.

Thus f" descends to a map f.
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Exact in middle: clearly gf = 0. Choose an element of Ker g of the form
' ® m+ lower powers of z, with m # 0 and ¢ minimal. Then i = 0, for
otherwise one can cancel the leading term by subtracting f(z*~! ® m). Thus
the element is 1 ® m. But then since the element is in Ker g, it is zero.

Exact on left: an element of the form z* ® m+ lower powers of x with m # 0
is sent by f to 2™ ® m+ lower powers of x, which cannot be zero.

(ii) Sg is free, so flat, so a projective resolution P, — N of an R-module
N gives an S-module projective resolution S ®r P, — S ®r N. Using that
Homg (S ®r —, X) = Homp(—, X) for an S-module X, it follows that

Exte(S ®r N, X) = Exti(N, X). (%)

By the long exact sequence for Homg(—, X') we get

Ext%(S®M, X) L Ext(S®,-1 M, X) — Extt (M, X) — Ext? ! (S@M, X).

For n > gl.dim R, the second and fourth terms are zero, so also the third
term is zero, so gl.dim §' < 1+ gl. dim R.

(iii) Let X be an R-module and X — I* an injective resolution. We get
cosyzygies 0 — Q 0"DVX — ' — Q7'X — 0. Since § = 0, we can consider
all of these as S-modules with = acting as 0, so for any S-module U, we get
a long exact sequence

0 — Homg(U,Q "V X) = Homg(U, I') = Homg(U, Q' X) — ExtL(U,Q VX)) - ..

Now suppose U = S @ N. If j > 0 we have Ext’,(U, I') = Ext},(N, I') = 0,
so as in dimension shifting, we get

Homg(U, Q" X) — Ext5(U, Q" " YX) = =Ext?(U,X).
Applying this to the map f we get a commutative square

Homg(S® M,Q"X) —— Extg(S® M,X)

| |
Homg(S ® ;-1 M, Q27" X) —— Ext4(S® 1M, X)

where f’ is composition with f.

Since z acts as zero on M and "X it follows that f’ is zero. Namely
f (@) (s@m) = of(s®@m) = ¢p(szt@m—s@zm) = ¢(sz@m) = szp(lem) = 0.
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Since the horizontal maps are onto, h is zero. Thus for n = gl.dim R we
get Extit (M, X) = Ext}(,-1 M, X), and for suitable M, X this is non-zero.
Thus gl.dim S =1 + gl. dim R.

Corollary. If K is a field, then gl. dim Klz1,...,z,] = n.

4.5 Tor

Given a right R-module M and a left R-module X, choose a projective
resolution P, — M (or more generally a flat resolution, where we only require
the P, to be flat). We define Tor?(M, X) to be the nth homology of the
complex

PRRrX:. - - —>FPBQrX—>PQrX >FBrX —0

Since the tensor product is a right exact functor, it follows that Torg(M ,X) X
M ®gr X. Moreover a short exact sequence 0 - X — Y — Z — 0 gives a
long exact sequence

coo = Torf (M, Z) — Torf (M, X) — Torf(M,Y) — Tor{'(M, Z) —

- MIrX > MQRrY - M®rZ — 0.

Using this one can show that Tor can be computed using a projective or flat
resolution of X. Thus the two modules M, X play a symmetrical role; Tor,
is a covariant functor in both arguments. This shows independence of the
resolution.

Theorem. The following are equivalent for a module M.
(i) M is flat

(ii) Tor® (M, X) = 0 for all X and all n > 0.

(iii) Torf(M, X) = 0 for all X.

Proposition/Definition. Let M be a module and n > 0. The following are
equivalent.

(i) There is a flat resolution 0 - P, — -+ - P — M — 0

(ii) Tor® (M, X) = 0 for all X and m > n

(ili) Tor , (M, X) = 0 for all X.

(iv) For any flat resolution of M, we have Q"M flat.

The flat dimension flatdim M is the smallest n with this property (or oo if
there is none).
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Definition. The weak dimension of R is
w.dim R = sup{flatdim M : VM } = inf{n € N: Tor[,, (M, X) = OVM, X }.

It is left /right symmetric.

4.6 Global dimension for noetherian rings

Proposition. (i) For M a left R-module, flatdim M < proj.dim M, with
equality if M is finitely generated and R is left noetherian.

(ii) w.dim R < gl. dim R, with equality if R is left noetherian.

(iii) If R is (left and right) noetherian, the left and right global dimensions
or R are equal.

Proof. (i) The inequality holds since any projective resolution is also a flat
resolution. If R is left noetherian and M is f.g., we have a projective resolu-
tion with all P, finitely generated. Then flatdim M < n implies 2" M is flat.
Since it is also finitely presented, it is projective. Thus proj.dim M < n.

(ii) Use that gl. dim R = sup{proj.dim M : M cyclic}.
(iii) Clear.

THE REMAINING MATERIAL WAS ONLY BRIEFLY DISCUSSED IN
THE LAST LECTURE.

Let K be a field. Recall that the first Weyl algebra is
R = Ay(K) = Kla]ly; d/de] = K{z,y)/(yx — zy — 1).
We know gl. dim R < 2. In fact more is true.

Theorem. Let K be a field of characteristic zero, and for simplicity suppose
it is algebraically closed. In this case the first Weyl algebra is hereditary.

Lemma 1. S = k[z] \ {0} is a left and right Ore set in R and Rg =
K(x)[y;d/dz]. Thus gl. dim Rg < 1.

Proof. To show S is a left Ore set, given a € R and s € S we need to find
a',s" with a’s = s'a. We do this by induction on the order of a as a differential
operator. Now [a, s| has smaller order, so there is a”, s” with a”s = §"[a, s].
Then (s"a — a")s = s"sa, so we can take @' = s"a — a” and s’ = s”s. The
rest is straightforward.
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Lemma 2. If M is a finitely generated R-module which is torsion-free as a
k[x]-module, then proj.dim M < 1.

Proof. Since M is torsion-free over k[z|, the natural map M — S™'M is
injective. Now S™'M is a module for K(x)[y;d/dz] so it has a projective
resolution 0 — Q1 — Qp — S™'M — 0. As Rg is flat as left R-module, @
and @, are flat R-modules, so flatdimp S~*M < 1.

Now M embeds in S™'M and w.dim R = gl.dim R < 2, so for any L the
long exact sequence gives an exact sequence

— Torf (L, (S™'M) /M) — Tor¥(L, M) — Torf(L, S~ M) —

The outside terms are zero, so flatdim M < 1. Now use that M is finitely
generated.

Lemma 3. If A € K, then the R-module Sy = R/R(x — \) is simple and
proj.dim Sy < 1.

Proof. Any element of R can be written uniquely as a sum ) y"p,(x), so
as a K-linear combination of elements y"(x — A)™. Thus Sy can be identified
with K[y], with y acting by multiplication and the action of x given by

2q(y) = Aa(y) — ' (v)-
To show simplicity, note that the action of (A—z) on K|y] is as differentiation

by y, so the submodule generated by any non-zero element of K[y] contains
1, and hence this submodule is all of K[y].

Now we have projective resolution 0 — R M R— S\ —0.
Proof of the theorem. It suffices to show that proj.dim M <1 for M cyclic.

If M is not torsion-free over K|x], then some non-zero element of M is
killed by a non-zero polynomial p(z). Since K is algebraically closed, we can
factorize this polynomial, and hence find 0 # m € M and A € K with (z —
A)m = 0. Then m generates a submodule of M isomorphic to Sy. Repeating
with the quotient module, we get an ascending chain of submodules of M,
and since M is noetherian this terminates. Thus we get submodules

O=MyC M C---CMCM
such that each M;/M,;_y = S\, and M/Mj, is torsion-free as a K|[x]-module.

The quotients M;/M; 1 and M /M, all have projective dimension < 1, and
hence proj.dim M < 1.
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Some other facts about noetherian rings.

(i) R is left noetherian < any direct sum of injective modules is injective
< any injective module is a direct sum of indecomposable modules. See for
example Lam, Lectures on modules and rings.

(ii) (Chase) Any product of flat right modules is flat if and only if R is
left coherent, which means that any finitely generated left ideal is finitely
presented. In particular this holds if R is left noetherian or left hereditary.

(iii) If R is left noetherian ring and gl. dim R < oo then
gl. dim R = sup{proj.dim S : S simple}.

For a proof see McConnell and Robson, Noncommutative noetherian rings,
Corollary 7.1.14.
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