Universität Bielefeld SoSe 2023

Lineare Algebra II 7. Übungsblatt

William Crawley-Boevey

Abgabe: Bis zum 26.05.23 um 10:00h im Postfach Ihres Tutors

Aufgabe 7.1. (2+2) (i) Angenommen, die Matrix eines Endomorphismus $f \in \text{End}(V)$ bezüglich einer Basis (v_1, v_2, \dots, v_n) von V oberes Dreieck ist. Zeigen Sie, dass die Matrix von f bezüglich (v_n, \ldots, v_2, v_1) unteres Dreieck ist.

(ii) Zeigen Sie direkt, dass die obere Dreiecksmatrix

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ 0 & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{pmatrix}$$

der unteren Dreiecksmatrix

$$\begin{pmatrix} a_{nn} & \cdots & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ a_{2n} & \cdots & a_{22} & 0 \\ a_{1n} & \cdots & a_{12} & a_{11} \end{pmatrix}$$

ähnlich ist.

Aufgabe 7.2. (4) Sei V ein Vektorraum über K und sei U ein Unterraum von V. Wenn (u_1,\ldots,u_r) eine Basis von U und $(U+v_1,\ldots,U+v_s)$ eine Basis von V/U sind, zeigen Sie, dass $(u_1, \ldots, u_r, v_1, \ldots, v_s)$ eine Basis von V ist. [Dies ist Lemma 3 in §9.1. Natürlich hätte es in LA I in §5.3 sein sollen.]

Aufgabe 7.3. (1+1+1+1) Das Exponential einer nilpotenten Matrix $A \in M_n(\mathbb{C})$ ist

$$e^A = \sum_{j=0}^{\infty} \frac{1}{j!} A^j \in M_n(\mathbb{C}).$$

Da A nilpotent ist, sind nur endlich viele Terme in der Summe ungleich Null. Beweisen Sie:

- (i) $e^{0_n}=I_n$, wobei 0_n und I_n die Nullmatrix und Einheitsmatrix in $M_n(\mathbb{C})$ sind. (ii) $e^{A+B}=e^Ae^B$ für nilpotente Matrizen A,B mit der Eigenschaft AB=BA.
- (iii) e^A und e^B sind ähnlich, falls die Matrizen A und B ähnlich sind.
- (iv) e^A ist invertierbar mit $(e^A)^{-1} = e^{-A}$ und $det(e^A) = 1$.

[Sie können den Binomialsatz $(A+B)^n = \sum_{i=0}^n \binom{n}{i} A^i B^{n-i}$ für Matrizen A,B mit AB=BAohne Beweis verwenden. Die gleiche Definition des Exponentials kann für nicht nilpotente Matrizen verwendet werden, aber dann ist Analysis erforderlich.

Mehr...

Aufgabe 7.4. (2+2) Sei V endlichdimensional. Ein Endomorphismus $f \in \text{End}(V)$ heißt halbeinfach, wenn jeder f-invariante Unterraum U von V ein f-invariantes Komplement hat. Beweisen Sie:

- (i) f diagonalisierbar $\Rightarrow f$ halbeinfach.
- (ii) f halbeinfach und $\chi_f(X)$ zerfällt in lineare Faktoren $\Rightarrow f$ diagonalisierbar.

[Hinweis: Ein Komplement zu U in V ist ein Unterraum C von V mit $V = U \oplus C$, sehen Sie LA I, §4.4. Möglicherweise benötigen Sie Folgendes: Sei $B = (v_1, \ldots, v_n)$ eine Basis von V. Jedes linear unabhängige Tupel (u_1, \ldots, u_r) von Vektoren in V kann mit Vektoren in V eine Basis $(u_1, \ldots, u_r, v_{i_1}, \ldots, v_{i_s})$ erweitert werden. Dies wurde im zweiten Satz in LA I §4.3 bewiesen, aber nicht vollständig erklärt.]