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Masters course: Homological algebra

Homological algebra is the algebra that was invented in order to define and study
the homology and cohomology of topological spaces, but it has applications all over
mathematics.

My aim is to cover the properties of projective, injective and flat modules, com-
plexes of modules and Ext and Tor groups, homological dimensions, homology and
cohomology of groups, and more abstractly, abelian and triangulated categories.

Students are expected to already have some familiarity with rings and modules.

Some suggested books:
e C. A. Weibel, An introduction to homological algebra, CUP 1994.

e J. J. Rotman, An introduction to homological algebra, Springer 2009.
e M. S. Osborne, Basic homological algebra, Springer 2000.

e S. [. Gelfand and Yu. I. Manin, Methods of homological algebra, 2nd ed.,
Springer 2010.

e H. Krause, Homological theory of representations, CUP 2022.

The Stacks Project, https://stacks.math.columbia.edu/
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1 Abelian categories

The basic setting setting for homological algebra, for example used in the book by
Henri Cartan and Samuel Eilenberg, ‘Homological algebra’, 1956, is complexes of
additive groups, or more generally modules for a ring R.

Algebraic geometers also want to work with complexes of sheaves on an algebraic
variety, and in his paper ‘Sur quelques points d’algébre homologique’, Tohoku
Math. J. 9 (1957), 119-221, Alexander Grothendieck showed that you can unify
the two settings by working with abelian categories.

Although we won’t work with sheaves, it is good to start with abelian categories:
modern homological algebra uses triangulated categories and other concepts, and
abelian categories are a necessary preparation.

We begin with the language of categories, although many students will have seen
this already.

1.1 Categories and functors

Definition. A category C consists of
(i) a collection ob(C) of objects

(ii) Forany X,Y € ob(C), aset Hom(X,Y") (also denoted C(X,Y") or Hom¢(X,Y))
of morphisms 6 : X — Y, and

(iii) For any X,Y,Z € ob(C), a composition map Hom(Y, Z) x Hom(X,Y) —
Hom(X, 2), (6, ) — 06.

satisfying
(a) Associativity: (0¢)y = 0(¢) for X Yy bz b W, and

(b) For each object X there is an identity morphism Idx € Hom(X, X), with
Idy# =60 =0Idx forall0: X — Y.

An isomorphism is a morphism 6 : X — Y with an inverse, that is, if there is
some ¢ : Y — X, 0¢p = Idy, ¢ = Idx. If so, then ¢ is uniquely determined, and
denoted 071,

Examples. (1) The categories of Sets, Groups, Rings, etc. The category R-Mod
of (left) R-modules for a ring R. These are concrete categories: the objects are
sets, possibly with extra structure, and the morphisms are maps of sets preserving
the extra structure.



(2) If C is a category, the opposite category C° is given by ob(C%) = ob(C) and
Homeer (X, Y) = Home (Y, X), with composition derived from that in C.

(3) If C and D are categories, the product C x D is the category with ob(C x D) =
ob(C) x ob(D) and Hom((X,U), (Y,V)) = Hom¢(X,Y') x Homp(U, V).

(4) Given a group G or a ring R, there is a category with one object %, Hom(x, ) =
G or R and composition given by multiplication.

(5) A partially ordered set (S, <) gives a category with objects s € S and

)iw (s <)
Hom(s,t) = {@ (5 £ 1)

The composition must be given by 4,04 = ig, for s <t < wu, so Id, = ig.

(6) A quiver @ = (Qo, @1, s,t) consists of a set @y of vertices, a set @)1 of arrows
and mappings s,t : ()7 — ) giving the source and target of each arrow, so
s(a) % t(a). It is like a category without a composition. The path category of a
quiver has objects the vertices, and the morphisms ¢ — j are the paths a,, ...asay
given by sequences of arrows

. . al . a9 an - .
1= —1 —2 ... =y =17

There is also a trivial path Id; for each vertex 7. Composition is given by concate-
nation. For example the category given by the poset (N, <) is isomorphic to the
path category of the quiver 0 -1 —2 — ....

Definition. Because of Russell’s paradox, there is no set of all sets. One solution
is to allow normal sets and ‘big sets’ called classes. There is a class of all sets.

e Normal category: ob(C) is a class, Hom(X,Y') are sets. For example the
concrete categories above.

e BIG category: ob(C) is a class, Hom(X,Y') are classes. We only rarely need
this.

e Small category: ob(C) is a set, Hom(X,Y) are sets. For example the category
given by a partially ordered set.

o Skeletally small category: A normal category, such that there is a set S of
objects such that every object is isomorphic to one in S.

Definition. A subcategory of a category C is a category D such that
e ob(D) is a subclass of ob(C).



e Homp(X,Y) C Home(X,Y) for all X, Y € ob(D).
e 1d$; € Homp (X, X) for all X € ob(D).
e Composition in D is the same as composition in C.

It is a full subcategory if Homp(X,Y) = Home(X,Y) for all X, Y € ob(D). Thus
a full subcategory of C is determined by a subclass ob(D) of ob(C).

Examples. (a) The category Ab of abelian groups is a full subcategory of the
category of all groups.

(b) The category R-mod is a of finitely generated R-modules is a full subcategory
of R-Mod. It is skeletally small, with S = {R"/U :n € N,U C R"}.

(c) The category whose objects are sets and with Hom (X, Y') = the injective func-
tions X — Y is a subcategory of the category of sets.

Definition. A monomorphism in a category is a morphism 0 : X — Y such that
for all pairs of morphisms «, 5 : Z — X, if fa = 6 then a = f3.

An epimorphism is a morphism 6 : X — Y such that for all pairs of morphisms
a,B:Y — 7, if af = 560 then a = (.

Examples. (1) In the categories of sets or of R-modules, monomorphism = injec-
tive map, epimorphism = surjective map. For example we show epi = surjection
for modules. Say 6 : X — Y is surjective and afl = 6. Since 6 is surjective, for all
y € Y thereis x € X with 6(z) = y. Then a(y) = a(6(z)) = B(0(x)) = B(y). Thus
a = (. Say 0 : X — Y is an epimorphism. The natural map ¥ — Y/Im6 and the
zero map have the same composition with 6, so they are equal. Thus Im6 =Y.

(2) In the category of rings, the inclusion map 0 : Z — Q is not surjective, but it
is an epimorphism.

Definition. Let C, D be categories, a (covariant) functor F : C — D is given by
e For each object X € ob(C), an object F(X) € ob(D), and
e For each morphism 6 : X — Y in C, a morphism F(0) : F(X) — F(Y) in D

such that F(Idx) = Idpx) for all X € ob(C) and F(0¢) = F(0)F(¢) for compos-
able morphisms X %y b g

A contravariant functor F : C — D is the same thing as a covariant functor
C? — D. Thus it is an assignment of

e For each object X € ob(C), an object F'(X) € ob(D), and

3



e For each morphism 6 : X — Y in C a morphism F(0) : F(Y) — F(X) in D,
such that F(Idx) = Idpx) and F(0¢) = F(¢)F(0) for composable morphisms
x&yLz
A functor F' : C — D is:

o faithful if the map F' : Home(X,Y) — Homp(F(X), F(Y)) is injective for
all X, Y € ob(C),

e full if the map F' : Home(X,Y) — Homp(F(X), F(Y)) is surjective for all
X,Y € ob(C),

e dense if every object in D is isomorphic to F(X) for some object X in C.

e An isomorphism if it has an inverse, or equivalently if it is full, faithful and
a bijection on objects.

e An equivalence if it is full, faithful and dense.

Examples. (1) The inclusion functor of a subcategory, for example Ab to Group,
is always faithful. It is full if and only if the subcategory is full.

(2) A composition of functors is a functor. (Thus there is a category of small
categories.)

(3) There are many examples of forgetful functors for concrete categories, which
forget some structure. For example Group — Set, or R-Mod — Ab. They are
faithful.

(4) Given a ring homomorphism 6 : R — S, restriction defines a faithful functor
S-Mod — R-Mod. [It is full if and only if € is a epimorphism in the category of
rings, but that is another story.|

(5) If K is a field, then duality V' ~» V* = Homg(V, K) gives a contravariant
functor K-Mod to K-Mod.

Definition. Let C be a category and let Hom(X,Y) denote the Hom sets for C.
Fix an object X € ob(C). The representable functor ' = Hom(X,—) is the
functor C' — Set sending an object Y to F(Y) = Hom(X,Y), and sending a
morphism 6 € Hom(Y, Z) to the mapping F'(#) : Hom(X,Y) — Hom(X, Z) defined
by F(0)(¢) = 0¢.

Dually, fixing Y, we get a contravariant functor Hom(—,Y") from C to Set.

Varying both X and Y, we get a functor Hom(—, —) : C%? x C — Set.



1.2 Natural transformations and functor categories

Definition. Let F, G be functors C — D. A natural transformation o : F' — G is
given by morphisms ax : F(X) — G(X) for all X € ob(C) such that G(8)ax =
ay F(0) for every morphism 6 : X — Y in C.

It is a natural isomorphism if all ax are isomorphisms in D.

Examples. (1) Clearly we have an identity natural transformation Idgp : F —

F and a composition Sa of natural transformations F % G B H is a natural
transformation.

(2) If K is a field and V is a K-vector space, there is a natural map V — V**,
v+ (0 — O(v)). This is a natural transformation Id — (—)** of functors from
K-Mod to K-Mod. If we used K-mod, it would be a natural isomorphism.

Lemma (Yoneda’s Lemma). For a functor F': C — Set and X € ob(C) there is
a 1-1 correspondence between natural transformations o : Hom(X,—) — F and
elements f € F(X).

Proof. A natural transformation « gives a morphism ax : Hom(X, X) — F(X),
and hence an element f = ax(Idx) € F(X). Conversely, given f € F(X) and
Y € ob(C) we get a morphism oy : Hom(X,Y) — F(Y), 6 — F(0)(f). This
defines a natural transformation . These constructions are inverses. O

Definition. The functor category Fun(C, D) has objects the functors F': C — D.
The morphisms are the natural transformations.

Remarks. (1) In general this is a BIG category. To get a normal category, we
can take C small, or more generally skeletally small. We need to check that the
collection of natural transformations F' — G is a set. Every object in C is isomor-
phic to an object in a set S. A natural transformation o : F — G is determined
by the morphisms ayx for X € S, for if § : Y — X is an isomorphism, then
Qy = G(Q_l)@xF<9)

(2) The natural isomorphisms F' — G are the isomorphisms in this category, e.g.

if o is a natural isomorphism, it has inverse a™! defined by (a™1)x = (ax)™ !

(3) Any morphism 6 : X — Y in C defines a natural transformation of representable
functors Hom(#, —) : Hom(Y, —) — Hom(X, —), sending f € Hom(Y, Z) to f0 €
Hom(X, Z). Thus we get a functor C®? — Fun(C, Set), sending X € ob(C) to
Hom(X,—) and sending # : X — Y in C to Hom(¢,—). By Yoneda’s Lemma
this functor is full and faithful. Thus two representable functors Hom (X, —) and
Hom(Y, —) are naturally isomorphic if and only if X and Y are isomorphic.



Definition. Given functors F' : C — D and G : D — C, we say that (F,G)
is an adjoint pair, or that F is left adjoint to G or G is right adjoint to F' if
there is a natural isomorphism « : Hom(F(—),—) — Hom(—, G(—)) of functors
C? x D — Sets.

Thus one needs bijections
axy : Hom(F(X),Y) — Hom(X,G(Y))
for all X € ob(C) and Y € ob(D), such that

axly

Hom(F(X'),Y) —— Hom(X',G(Y))
~F(6)l ‘91
Hom(F(X),Y) —X Hom(X,G(Y))

commutes for all §: X — X', and

Hom(F(X),Y) —% Hom(X,G(Y))

¢>i G(¢)i

Hom(F(X),Y") = Hom(X,G(Y"))
commutes for all ¢ : Y — Y.

Examples. (1) Let R be a ring. We have a forgetful functor Forgety : R-Mod —
Sets. Given a set X, let Freer(X) be the free left R-module with basis X. Thus

Freeg(X) = {Z rex 1y € R for x € X, all but finitely many zero}.
zeX

Any mapping ¢ : X — Y gives a module homomorphism Freeg(X) — Freeg(Y).
This gives a functor Freeg : Sets — R-Mod. For M a left R-module, we have a
bijection

ax .y : Hompg(Freeg(X), M) — Homges (X, Forgetr(M))
This is natural in both X and M, so it turns (F'reeg, Forgetg) into an adjoint pair

of functors.

(2) By defining things with morphisms in the natural way, we get adjoint functors
(Path, Forget) where Forget is the functor from small categories to quivers which
forgets the composition and Path sends a quiver to its path category.



Theorem. A functor F' : C — D s an equivalence if and only if there is functor
G : D — C such that FG = 1dp and GF = Id¢. In this case the pairs (F,G) and
(G, F) are adjoint pairs.

The first part is proved in §1.3 of my Algebra II notes. Now for example if X &€
ob(C) and Y € ob(D) then since G is full and faithful, we get Homp(F'(X),Y) =
Hom¢(GF(X),G(Y)), and since GF = Idc this is in bijection with Homp (X, G(Y)).

1.3 Limits and colimits

Definition. Let C be a category. Let Z be a small category. An Z-diagram in C
is a functor M : Z — C. For ¢ € ob(Z), we write M; instead of M (i) and for a
morphism a : ¢ — j in Z, we write M, for the morphism M; — M;.

Given an object X in C, the constant functor cx : T — C sends every object of
7 to X and every morphism to Idyx. A morphism # : X — Y induces a natural
transformstion ¢y : cx — c¢y. Thus we get a functor ¢ : C — Fun(Z,C).

Given an Z-diagram M, a limit for M is an object
i€
together with a natural transformation « : ¢, — M such that any natural trans-

formation (3 : cx — M factors as acy for a unique 6 : X — L.

In other words, a limit is an object L equipped with morphisms «; : L — M; for
each ¢ € ob(Z) such that o; = M,a; for any a : i — j and such that if X € ob(C)
and §; : X — M, satisty 5, = M,(; for any a : ¢ — j, then there is a unique
0 : X — L such that ; = a;0 for all 7.

If M has a limit, it is unique up to a unique isomorphism, so we can talk about
the limit.

Remarks. (1) The limit L = lim;cz M; is an object giving a bijection
Home (X, L) = Hompun(z,0)(cx, M)

which is a natural isomorphism Home(—, L) = Hompuz,e)(c(—), M), so to say
that the limit exists is to say that the contravariant functor Hompunz,c)(c(—), M)
is representable.

(2) Suppose ¢ : M — N is a natural transformation between Z-diagrams, and
suppose that lim;c7 M and lim;c7 N; both exist. Then for each ¢ we get a morphism

aM Y
i€



and these morphisms are compatible with the morphisms N,. Thus we get a unique
morphism

lim ¢; : lim M; — lim N;
i€l i€ i€l

such that for any 7 the diagram

. al
hmiez M, —— M;

lim;ez ¢iJ/ ¢iJ/

N
. a
hmiezNi e N;
commutes.

Examples. (a) Let I be a set. A product of a family of objects M; € ob(C) (i € I)
is an object P = [],.; M; € ob(C) equipped with morphisms p; : P — M; such
that for any object X and morphisms ¢; : X — M, there is a unique morphism
0 : X — P with ¢; = p#, that is, the map

Hom(X, P) — [ [Hom(X, M), 60— (pif)

is a bijection. Here we take the category Z with object set I and only identity
morphisms.

(b) A terminal object in a category C is an object T' such that for every object X
there is a unique morphism X — 7. This is the same thing as a product of objects
indexed by the empty set or a limit over an empty category.

(¢) An equalizer of a pair of morphisms f,g: U — W consists of an object £ and
a morphism p : F — U with fp = gp and with the universal property, that for all
q: X — U with fq = gq there is a unique 0 : X — E with ¢ = pf. Here 7 is the
category

oo
with two objects and two non-identity morphisms.
(d) A pullback of a diagram

U

/|
Vv S5 W
of objects and morphisms in C consists of an object X and morphisms p, ¢ giving

a commutative square
X LU



and which is universal for such commutative squares, that is for any X', p’' : X’ —
U, ¢ : X' =5 V with fp’ = g¢' there is a unique 0 : X’ — X with p’ = pf and
q =qb.

Theorem. A category C is (finitely) complete, meaning that for all (finite) small

categories T and L-diagrams M the limit exists in C if and only if C has products
indexed by any (finite) set and equalizers.

Proof. We will need the explicit construction of limits. Suppose M is an Z-diagram
in C. Consider the products and associated morphisms

11 M= HMt 2o My
i€ob(7)

where the second product is indexed by the morphisms a in Z and s(a),t(a) are
the source and target of a. By the universal property of the second product, there
are unique morphisms

¢
H M; : H M(a)
i€ob(7) ¢ a

with pya) = pa® and Mupga) = pa¥. Then the equalizer E of this diagram,
equipped with the morphisms

ESL T M2 M
i€ob(7)
is lim;cz M;. This is straightforward. ]
Examples. The categories Set and R-Mod are complete. The product is the usual

one. The terminal object is a one-point set or the zero module. The equalizer of
f,g: U — W is the inclusion

{ueU: f(u) =g(u)} — U.
For R-modules this is the same as Ker(f — g). The pullback is {(u,v) € U x V :
f(u) = g(v)}, ete.
Lemma. In an equalizer, p is mono. A pullback of a mono is a mono, that is, in
a pullback diagram, if f is mono, so is the parallel morphism q.

Proof. For the equalizer, suppose «, f : X — E and pa = pf = p'. Since fp' = gp/,
there is a unique 6 : X — E with p’ = pf. But both # = « and 0 = [ satisfy this,
so a = f.

For the pullback. Suppose o, 5 : X' — X with g = ¢8. Then gga = gqf, so
fpa = fpB. Since f is mono, paw = pB. Thus by the uniqueness part of the
universal property for a pullback, a = 3. O



Now we do the dual notion.

Definition. A colimit of a diagram M : Z — C is the same thing as a limit of M
considered as a functor Z°? — C°. Thus it is an object

C = colim M; € ob(C)
€T

equipped with a natural transformation « : M — ¢ such that any natural trans-
formation 3 : M — cx factors as cya for a unique 6 : C' — X.

In other words, a colimit is an object C' equipped with morphisms «; : M; — C for
each ¢ € ob(Z) such that o;M, = «; for any a : i — j and such that if X € ob(C)
and 3; : M; — X satisty 8;M, = f; for any a : ¢ — j, then there is a unique
0 : C — X such that g; = 0q; for all i.

Examples. (a) A coproduct of a family of objects M; (i € I) is an object C' =
[Lic; M; equipped with morphisms ¢; : M; — C such that for any object X and
morphisms j; : M; — X there is a unique morphism 6 : C' — X with j; = 0i,.
That is, the map

Hom(C, X) — HHOm<Mi7X>a 0 — (0i;)

is a bijection.

(b) An initial object is an object X with a unique morphism to any other object.
It is a coproduct over the empty set or colimit over the empty category.

(c) A coequalizer of a pair of morphisms f, g : U — W consists of an object X and
a morphism p : W — X with pf = pg and the universal property.

(d) A pushout of a pair of morphisms f: W — U and g : W — V| consists of an
object X and morphisms p: U — X and ¢ : V — X giving a commutative square
pf = qg, and which is univeral for such commutative squares, that is for any X',
p:U— X' ¢ :V — X" with p'f = ¢'g there is a unique 0 : X — X’ with p’ = 0p
and ¢ = fq.

Definition. A category C is (finitely) cocomplete if all (finite) colimits exist. It is
equivalent that C has all (finite) coproducts and coequalizers.

Examples. (i) The categories Set and R-Mod are cocomplete.

For Sets the coproduct is the disjoint union
Jx.
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The initial object is the empty set. The coequalizer of morphisms f,g: U — W is
W — W/ ~ where ~ is the smallest equivalence relation with f(u) ~ g(u) for all
u € U. The pushout of morphisms f: W — U and g : W — V is UUV/ ~ where
~ is the equivalence relation generated by f(w) ~ g(w) for w € W.

For R-Mod coproducts are direct sums

@Xi ={(z;) € HXZ- : all but finitely many x; = 0

i€l el

The initial object is the the zero module 0. The coequalizer of morphisms f,g :
U — W in R-Mod is the map W — W/Im(f — ¢g). The pushout of morphisms
f:W —sUandg: W = Vis(U®V)/Im6, where 6 : W — UaV is

O(w) = (f(w), —g(w)).

Lemma. A pushout of an epi is an epi, that is, in a pushout diagram, if f is epi,
so is the parallel morphism q.

Proposition. If (L, R) is a pair of adjoint functors, L :C — D, R:D — C, then
L preserves colimits and R preserves limits, if they exist.

Proof. Suppose M is an Z-diagram in D and suppose that lim;cz M; exists in D.
This gives a bijection

Homp (X, l’irg M;) = Hompuy(z,p)(cx, M)
1€

which is natural in X. Now for Y € ob(C) we get
Home (Y, R(lzlerg M;)) = Homp(L(Y), 11161% M;) = Hompun(z,p) (Cr(vy, M).
Now cryy = Ley and it is easy to see that
Hompun(z,p)(Ley, M) =2 Hompyy(z,0y(cy, RM)

This is natural in Y, so it shows that lim;cz(RM); exists and is isomorphic to
R(lim;ez M;). Now the statement for L is dual, using that (R, L) is an adjoint pair
of functors between D and C. O

1.4 Additive categories

Definition. Let K be a commutative ring. A K -category is a category C with the
extra structure that the sets Hom(X,Y) are K-modules for all X,Y € ob(C) and
the multiplication maps

Hom(Y, Z) x Hom(X,Y) - Hom(X, Z), (0,¢)+— 6¢

11



are K-bilinear. In particular, for any objects X,Y € ob(C), there is a zero mor-
phism 0 € Hom(X,Y).

Recall that a Z-module is the same thing as an additive group. A Z-category is
also called a preadditive category, so any K-category is preadditive.

Examples. The category Ab of abelian groups is preadditive. So is R-Mod for a
ring R. If R is a K-algebra, then R-Mod is a K-category.

Definition. If C and D are K-categories, a functor F' : C — D is said to be
K-linear if the mapping

F :Home(X,Y) — Homp(F(X), F(Y))

is a homomorphism of K-modules for all X,Y € ob(C). A Z-linear functor is also
called an additive functor.

If C and D are K-categories, we denote by Fung (C, D) the category whose objects
are the K-linear functors C — D and whose morphisms are natural transforma-
tions. It is naturally a K-category: if a,«’ : FF — G are natural transformations
and A\, N € K, we define (Aa + Na')x = dax + Ny € Homp(F(X), G(X)).

Example. Let R be a ring, and consider it as a category with one object. It is
preadditive, and
Funz(R, Ab) = R-Mod.

Remark. If C is a preadditive category and X € ob(C), then the representable
functor Hom(X, —) gives an additive functor C — Ab, so an object in Fungz(C, Ab).
An appropriate version of Yoneda’s Lemma gives that if F': C — Ab is an addi-
tive functor, then there is a 1-1 correspondence between natural transformations
Hom(X, —) — F and elements f € F(X).

Definition. The kernel of a morphism f : U — W in a preadditive category is
the equalizer of f and 0. Thus it is an object X and a morphism p : X — U with
fp = 0, such that for any morphism p’ : X’ — U with fp’ = 0 there is a unique
morphism 0 : X’ — X with p’ = pf. Conversely the equalizer of f,g = kernel of
f—g

The cokernel of a morphism f : U — W in a preadditive category is the coequalizer
of f and 0. Thus it is an object X and a morphism p : W — X with pf = 0,
such that for any morphism p’ : W — X’ with p/ f = 0 there is a unique morphism
0: X — X' with p/ = 0p.

For example the cokernel of a morphism f: U — W in R-Mod is W — W/Im f.

Theorem. For objects X, Xy,...,X,, (n > 0) in a preadditive category the fol-
lowing are equivalent
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(1) X is the product of Xy,..., X, for some morphisms p; : X — X;
(1) X is the coproduct of Xy,..., X, for some morphisms i; : X; — X,
(11i) X is a biproduct of X, ..., X, meaning that there are morphisms p; : X —
X; and i; - X; — X with pii; = Idx,, pii; =0 fori# j and Y i;p; = ldx.
In this case we write X = @, X; and call it a direct sum.

Proof. (i)=-(iii) For any object X’ we have a bijection

Hom(X', X) — [[Hom(X", X;), ¢ (p;9).
i=1

In particular, taking X’ = X, there is a morphism 4, : X; — X such that

. IdXi (l = ])

pit; = .
0 (@#))

Now if ¢ = > | i;p; then pj¢ = > pji;p; = p;, so ¢ = Idx by the uniqueness
part of the definition of a product.
(iii)=-(i) For any X' one has inverse bijections

(OLZ)D—)Z iiai n
Hom(X', X) HHom(X',Xi)
= (pid) =1

so the p; turn X into a product.
(i)« (iii) Dual. O
Remark. The case n = 0 gives the following. In a preadditive category, an object

X is terminal if and only if it is initial if and only if Idx = 0. This is called a zero
object, and denoted 0.

Definition. A category is additive if it is preadditive, it has a zero object and
every pair of objects has a direct sum (equivalently it has all finite direct sums).

Examples. (1) Ab, R-Mod, R-mod.

(2) If C is a preadditive category and D is additive, then Funz(C,D) is additive.
The direct sum of functors Fi, ..., F), is the functor F' with

FX)=FR(X)® - & F,(X)
for X € ob(C).

Corollary. If F is an additive functor between additive categories, then F' preserves
finite direct sums, so F(0) =0 and F(X @Y )= F(X)® F(Y).

Proof. If X is a biproduct of Xj,...,X,, then clearly F(X) is a biproduct of
F(Xy),...,F(X,). [
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1.5 Abelian categories
Definition. A category is abelian if
(i) it is additive,
(ii) every morphism has a kernel and a cokernel,
(iii) every epi is a cokernel and every mono is a kernel.

Remarks. (1) The opposite of an abelian category is abelian. This saves work in
proofs.

(2) An abelian category has all finite limits and colimits.

(3) Every mono is the kernel of its cokernel and every epi is the cokernel of its
kernel. For example, suppose f : X — Y is mono, say a kernel of g : Y — W, and
suppose f has cokernel ¢ : Y — Z. Then g = kc for some k : Z — W. Now if
s: U — Y is a morphism with ¢s = 0, then gs = kes = 0, so s factors through f.
It follows that f is a kernel of c.

Lemma. In an abelian category a pullback of an epi is an epi and a pushout of a
mono 1S a Mmono.

Proof. Say

7 s w
is a pullback with d epi. We want to show that a is epi. We have morphisms
x Uy gz ety

where (¢ d) comes from considering Y & Z as the coproduct of Y and Z and (%)
comes from considering Y & Z as the product of Y and Z. Since the square is
a pullback, () is the kernel of (¢ d). Since d is an epi, so is (¢ d). Thus by
the remark above, (¢ d) is the cokernel of (a — b). Thus the square is a pushout.
Suppose f : Y — U is a morphism with fa = 0. Since fa = 0 = 0b, by the pushout
property there is a unique morphism h : W — U with hc = f and hd = 0. Since d
is epi, h = 0. Thus f = 0. O

Lemma. FEvery morphism f: X — Y in an abelian category factors as a product
f = gh where h is an epi and g is a mono, and this decomposition is unique up
to isomorphism, in fact h is a cokernel of the kernel of f and g is a kernel of the

cokernel of f.

14



Proof. Let k: U — X be a kernel of f and let h : X — Z be a cokernel of k. Let
h : X — Z be a cokernel of the kernel & : U — X of f. Then f factors as gh
for some g : Z — Y. We show that ¢ is mono, so suppose that s : W — Z is a
morphism with gs = 0. Take the pullback

P -2y x

A

w = Z
By the previous result, ¢ is an epi. Now gsq = 0, so ghp =0, so fp =0, so p = kr
for some r : P — U. Then sq = hp = hkr =0, so s = 0.

For uniqueness suppose that f factors as X I 7 % Y with h an epi and g a mono.
Since g is mono, the a kernel of f is also a kernel of h, so h is a cokernel of this.
Similarly for g. m

Lemma. A morphism in an abelian category is an isomorphism if and only if it
1s mono and epi.

Proof. If f : X — Y is mono, then its kernel is 0 — X, and the cokernel of this is
X = X. O

Examples. (1) Ab is abelian and R-Mod is abelian. If R is a left noetherian ring,
the category R-mod of finitely generated left modules is abelian. (The noetherian
hypothesis ensures that the kernel of a morphism between f.g. modules is f.g.)

(2) If C is a preadditive category then Funz(C, Ab) is abelian. Kernels and cokernels
are computed objectwise: if o : F' — G is a natural transformation, then

(Kera)(X) = Ker(F(X) - G(X)), (Cokera)(X) = Coker(F(X) — G(X)).

Remark. A subobject of an object X in an abelian category is an equivalence class
of monos to X, where o : U — X is equivalent to o/ : U' — X & a = o/f for some
isomorphism ¢ : U — U’. |There is possibly a set-theoretic problem here, which
we ignore.|

Given a subobject U — X we denote its cokernel by X — X/U.

Given a morphism 6 : X — Y, the kernel of 0 gives a subobject Ker# of X. The
image Im @ is the subobject of Y given by the morphism g in a factorization 6 = gh
with h epi and g mono.

We get analogues of the isomorphism theorems - details omitted.
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1.6 Exact sequences
We work in an abelian category.

Definition. A sequence of objects and morphisms

s L L MO N

is said to be exact at M if Im f = Kerg. The sequence is ezact if it is exact at
every place where morphisms come in and out. A short exact sequence is an exact
sequence of the form

0-LLMEH N0
Remarks. (1) Write f and ¢ as compositions ba and dc with

LiImf&M;Img(iN

Then we have: exact at M

< b is a kernel for g (this is the definition)

< b is a kernel for ¢ (d is mono, so g and ¢ have the same kernel)

< c is a cokernel for b (since any epi is a cokernel for it kernel and any mono is a
kernel for its cokernel)

& c is a cokernel for f (since a is epi)

(2) 0 = M 2 N is exact at M if and only if ¢ is a mono and L Iy M = 0 is exact
at M if and only if f is an epi.

(3) A sequence 0 — L Iy M % N is exact if and only if f is a kernel for g. A
sequence L Iy M % N = 0 is exact if and only if g is a cokernel for f.

(4)0— L Iy M % N = 0is a short exact sequence if and only if f is a kernel for
g and ¢ is a cocernel for f.

(5) Any subobject U — M gives a short exact sequence 0 - U — M — M/U — 0.

(6) Any morphism f : M — N gives an exact sequence

O—>Kerf—>Mi>N—>Cokerf—>O
with Coker f = N/Im f and short exact sequences
0—-Kerf->M-—>Imf—-0 and 0— Imf— N — Coker f — 0.

(7) If L and N are objects, their direct sum has morphisms

2N AN
L__LeNTSN
prL PN

16



and the sequence .
0L LN N0,

is exact. For example, if 0 : L & N — X is a morphism with #i;, = 0, then
0 =0 1dren = 0(iLpr +inpy) = Oinpy
so 6 factors through py.

Lemma. For a short exact sequence

0=LLME NSO

in an abelian category, the following conditions are equivalent, in which case the
sequence 1s said to be split.

(1) f is a split monomorphism, meaning that it has a retraction, a morphism
r:M — L withrf=1d.

(11) g is a split epimorphism, meaning that it has a section, a morphism s : N —
M with gs = Idy.

(i1i) There are morphisms
r g
— oy —
L 7 M N
turning M into a biproduct of L and N.

(iv) There is an isomorphism 0 : M — L & N giving a commutative diagram

0 —s L s M 23N _—30

[ H

0 s [ s LN Py N s 0.

Proof. (1)=(iii). We have (Idy; — fr)f = f — frf = f — f = 0. Thus since g is a
cokernel for f we have Idy; — fr = sg for some s : N — M. Now gsg = g(Idy —
fr) =g =1Idng, so gs = Idy since g is epi. Also rsg =r(Idy — fr)=r—r =0,
so rs = 0 since g is epi.

(ii)=>(iii) is dual.
(iii)=(iv) is clear, since M is identified with L & N.
(iv)=-(i) and (ii) taking r = pr6 and s = 0 iy. O
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Lemma (Snake Lemma). Given a commutative diagram with exact rows

0 s M 25 N —— 0
A B!
0 s L L N —— 0)

there is a morphism c : Ker~y — Coker a giving an exact sequence
(0 —) Ker o — Ker 8 — Kery — Coker a — Coker 3 — Coker y(— 0).

Lemma (Five Lemma). Given a commutative diagram with exact rows

A s B s C s D —— F
S B !
A B’ e D —— FE

If o, 8,6, € are isomorphisms, so is 7.

Proof. For the category R-Mod, these are most easily proved by diagram chasing.
For proofs in general, see §1 of B. Iversen, Cohomology of sheaves, Springer 1986.
Alternatively, in the exercises starting on page 118 of Gelfand and Manin, Methods
of Homological Algebra, Springer 2002, the results are proved by a generalized type
of diagram chasing. O]

Lemma. Given a short exact sequence

0 LLMES N0

The pullback of g along a morphism 6 : N' — N fits in a commutative diagram
with exact rows

f/

0 y L s M L N

I -
f g
0 s L s M s N —— 0

and the pushout of f along a morphism ¢ : L — L" fits in a commutative diagram
with exact rows




Proof. Given 0 there is a pullback given by ¢’ and 6’ and we have already seen that
g’ is epi. By the pullback property there is f’ such that ¢'f’ = f and ¢'f" = 0.
Now f’ is clearly mono. It is a kernel for ¢/, for if h : X — M’ and ¢’h = 0 then
g0'h =0g'h =0, so 'h = fk for some k : X — L. Thus &' f'k = 0'h. Now f'k=h
by the uniqueness property of the pullback. O

1.7 Exact functors

Definition. If F' is an additive functor between abelian categories, we say that F
is exact (respectively left exact, respectively right ezact) if given any short exact
sequence

0=-X—=>Y—=>2-0

the sequence
0> FX)—=FY)—=F(Z)—0

is exact (respectively 0 — F(X) — F(Y) — F(Z) is exact, respectively F(X) —
F(Y) — F(Z) — 0 is exact).

Similarly, if F' is a contravariant functor, we want the sequence
0= FZ)—-FY)—F(X)—0

to be exact (respectively 0 — F(Z) — F(Y) — F(X) exact, respectively F(Z) —
F(Y) — F(X) — 0 exact).

Remarks. (i) Any additive functor between abelian categories sends split exact
sequences to split exact sequences.

(ii) An exact functor sends any exact sequence (not just a short exact sequence)
to an exact sequence.

(iii) A left exact functor sends an exact sequence 0 — X — Y — Z to an exact
sequence 0 — F(X) — F(Y) — F(Z). Similarly for right exact.

Lemma. For an abelian category, Hom(—, —) gives a left exact functor in each
variable. That is, if M is an object and 0 — X — Y — Z — 0 is exact, then so
are

0 — Hom(M, X) - Hom(M,Y) — Hom(M, Z)

and
0 — Hom(Z, M) — Hom(Y, M) — Hom(X, M).

Proof. The first sequence is exact at Hom(M,Y) since X — Y is a kernel for
Y — Z, and it is exact at Hom(M, X)) since X — Y is a mono. O
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Lemma. If (L, R) are a pair of adjoint functors between abelian categories, L :
C— D, R:D —C, then L is right exact and R is left exact.

Proof. R is a right adjoint, so preserves limits, so preserves kernels, so it is left
exact. Dually L is a left adjoint, so preserves colimits, so preserves cokernels, so it

is right exact. More explicitly, suppose X 5y % 7 5 0is exact. For any object
U in D, the sequence

0 — Home(Z, R(U)) — Home (Y, R(U)) — Home (X, R(U))
is exact. Hence so is
0 — Hom¢(L(Z),U) — Home(L(Y),U) — Home(L(X), U).

Thus L(g) is a cokernel of L(f), so L(X) — L(Y) — L(Z) — 0 is exact. Thus L
is right exact. [

1.8 Filtered colimits

Remark. A poset (I, <) is directed if it is non-empty and for all x,y € I there
exists z € I with x < z and y < 2. For example the poset N is directed.

An inverse limit is a limit over the opposite of a directed poset. For example the

ring of p-adic integers is

Z,=MmZ/Zp" where ---— Z/Zp’ — L/Zp* — L/Zp — LZ1.

neN

On the other hand, a direct limit is a colimit over a directed poset. For example

colimZ/Zp" where Z/Z1 = L[Zp = L/Zp* = L|Zp® — ...

neN

[a¥)

is the union of the groups, the Priifer group Z,~ = Z[1/p]/Z.

More generally we shall consider colimits over small filtered categories. In fact any
filtered colimit can be turned into a direct limit, see Proposition 8.1.6 in Exposé
I of SGA 4 or H. Andréka and I. Németi, Direct limits and filtered colimits are
strongly equivalent in all categories, Banach Center Publications 1982.

Definition. A category Z is filtered if
e it is non-empty

e for any objects 7, j are is an object k and morphisms ¢ — k and j — k, and
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e for any morphisms a,b : ¢ — j there is a morphism ¢ : 7 — k with ca = cb.

Lemma. Let Z be a small filtered category and M an Z-diagram in R-Mod. On
the disjoint union '
U M

i€ob(Z)

consider the equivalence relation ~ generated by the condition that M,(m) ~ m
whenever a : i — j is a morphism in L and m € M;. Then

(1) colimjer M = C' := <Uieob(I)Mi)/ ~, equipped with the mappings o; : M; —
C, m — [m].

(ii) m € M; ~m' € M; < there exist i — k & jin T with M,(m) = My(m/).

In particular, if m € M;, then [m] = 0 if and only if there is a morphism
a:i—kinZ such that M,(m) = 0.

The same thing works for filtered colimits in the category of sets.

Proof. (ii) Consider the relation R defined by this condition. It is clearly reflexive
and symmetric. It suffices to show that it is transitive. Suppose mRm’ and m' Rm”
with m € M;, m" € M;, m"” € M. By filteredness there are

. a b . c d
1= p—J]—=q—k

with M,(m) = My(m') and M.(m’) = My(m”). By filteredness there are mor-
phisms p LINCE g. And then a'b and d’'c are morphisms j — r, so there is a
morphism f :r — s with fa'b = fd'c. Then Myo(m) = Mpgp(m') = Mig.(m') =
Mygq(m”), so mRm”.

(i) We turn C into an R-module as follows:

-If m € M; and r € R, then r[m| := [rm)].

-If m € M; and m’ € M; then

[m] + [n] := [Ma(m) + My(m)]

for morphisms i = k i jin Z.

Using filteredness one can show that this is well-defined. For example if ¢ : 7 — ¢’

we have [m] = [M.(m)], and we want

[Ma(m) + My(m')] = [Mao (Mc(m)) + My (m')]
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where i % k' & j. By filteredness there is are k 9 s &k and then fis—t
such that fda = fd'a’c and fdb = fd't/. Then

[Mar (Me(m)) + My (m)] = [Ma(Mare(m) + My (m"))] = [Myaarc(m) + Mgay (m')]

= [Myaa(m) + Mpap(m')] = [Msa(Ma(m) + My(m'))] = [Ma(m) 4 My(m”)].

Clearly this turns C' into an R-module and the «; are homomorphisms. We show
it is a colimit for M. Clearly, if a : ¢ — j then o; M, = a;. Given a module X and
homomorphisms §; : M — X satisfying 8;M, = 5, for all a : ¢ — j, the §; give a
mapping

U M, — X
i€ob(T)

and it is constant on equivalence classes, so it defines a homomorphism 6 : C' — X
satisfying 6a; = [3; for all . Clearly 6 is uniquely determined. Thus we have the
universal property. O

Theorem. The category R-Mod has exact filtered colimits. That is, suppose T 1is
a small filtered category. Let L, M, N be Z-diagrams in R-Mod and let o : L — M
and B : M — N be natural transformations. If for all i the sequences of R-modules

0— L; &5 M; &5 N, — 0
are exact, then so is the induced sequence
0 — colim L — colim M — colim N — 0.
i€ i€ i€

Proof. Follows directly from the lemma. Take an element x € colim;cz M sent
to zero in colim;ez N. Now z is represented by an element m € M;. But (;(m)
represents the zero element, so there is some a : i — j such that N,(5;(m)) = 0.
Thus 5;(M,(m)) = 0. Thus M,(m) = «;(¢) for some ¢ € L;. But then z is the
image of the element in colim;c7 L represented by /. O

Definition. A Grothendieck category is an abelian category with the following
additional properties:

e It is cocomplete. (Since it is abelian, it is equivalent that it has arbitrary
coproducts, which is (AB3) in Grothendieck’s terminology.)

e [t has a generator that is, an object GG such that for any object X there is
an epimorphism from a coproduct of copies of G to X.

e It has exact filtered colimits (or equivalently, in Grothendieck’s terminology,

(AB5)).
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Examples. Module categories are Grothendieck categories. As are functor cate-
gories with values in a Grothendieck category, such as Ab. Also categories of graded
modules. Also the category of quasicoherent sheaves on a noetherian scheme.

Remarks. (1) Given exact sequences 0 — X; — Y; — Z; — 0 (i € I), the natural
sequence

0—>HX¢—>HY2—>HZi—>0
is in general only right exact, and the sequence

0—>HX¢—>HY2—>HZi—>0

is in general only left exact.
(2) Finite products and coproducts are the same, so we have exactness.
(3) In the category of R-modules, arbitrary products and coproducts are exact.

(4) In a cocomplete abelian category with exact filtered colimits, the sequence of
coproducts is exact, since

L= ot 11
i€l i€l
where the colimit is over the directed poset of finite subsets F' of I.

Definition. An R-module M is finitely presented (f.p.) if it is a quotient of a
finitely generated free module by a finitely generated submodule. Equivalently if
there is an exact sequence R™ — R" — M — 0.

Any quotient of a f.p. module by a f.g. submodule is f.p. If R is left noetherian,
any f.g. left R-module is f.p.

Theorem. Fvery R-module is a filtered colimit of f.p. modules. More generally, if
M is a module and C is a full subcategory of the category of f.p. R-modules such
that every map from a f.p. module to M factors through a module in C, then M is
a filtered colimit of modules in C.

Proof. We may assume that C is small. Let Z be the category with:
e Objects are pairs (X, f) with X € ob(C) and f € Hom(X, M).

e Morphisms (X, f) — (X', f) are morphisms 6 : X — X’ with f'6 = f.
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This category is usually denoted C/M. It is filtered:
- It is nonempty since the zero map 0 — M must factor.
- Given objects (X, f) and (X', f’), the morphism

(ffMH:XeX - M
factors through an object in C, say as

Xeox WO xr Ly
Then we have morphisms g : (X, f) = (X", f") and ¢' : (X', f') — (X", f").
- Given morphisms «, 5 : (X, f) — (X', f'), we have f'(a — ) = 0, so taking the
cokernel
X 2% X' 2 Coker(a — 8) — 0,

we get ' = hy for some h : Coker(aw — 3) — M. But then h factors through an
object X" in C

Coker(a — f3) Soxn I
Then ¢y : (X', f) = (X", f") and ¢ya = 5.
Let ' : T — R-Mod be the Z-diagram sending an object (X, f) to X and a
morphism 6 to . Let

L = colim F(X, f) = colim X.
(X,f)eT (X,f)ez

It is equipped with morphisms o (x sy : X — L for each (X, f). For each object
(X, f) in Z, we have the morphism f : X — M. Thus by the universal property,
there is a unique morphism §: L — M such that SBox ) = f for each (X, f). We
want to show [ is an isomorphism.

For an element x in a module X we write 2 for the map R — X, r — rz. For any
m € M, the map m : R — M factors through an object X in C, say as

REHX LM
Then (X, f) is an object in Z and

m = f(x) = Blax,pn(r)) € Im(B)

so [ is surjective. Suppose ¢ € L and (¢) = 0. Then /¢ is represented by an
element € X for an object (X, f) € ob(Z). Since it is sent to 0 in M, we have
f(z) = 0. Taking the cokernel

RE X % Coker(i) — 0
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we have f = h¢ for some h : Coker(z) — M. Then h factors as
Coker(#) % X' L5 M

with X’ in C. Then go¢ : (X, f) — (X', f) and g¢(z) = 0, so z represents the zero
element in the colimit, that is, £ = 0. O

Proposition. A module X is finitely presented if and only if Hom (X, —) commutes
with filtered colimits, that is, for any filtered category L and Z-diagram M, the map

colim Hom (X, M;) — Hom(X, chiIm M;)
1€

i€T
is bijective.

Proof. Given a presentation R™ — R"™ — X — 0, since filtered colimits preserve
exact sequences we get a commutative diagram with exact rows

0 —— Hom(X, colim M;) —— Hom(R", colim M;) —— Hom(R™, colim M;)

| l l

0 —— colim Hom(X, M;) —— colim Hom(R", M;) —— colim Hom(R™, M)

Now the right hand vertical maps are isomorphisms (this follows easily from first
lemma in this section), hence so is the left hand vertical map by the Five Lemma.

Conversely, suppose that Hom (X, —) commutes with filtered colimits. Write X =
colim;ez M;, a filtered colimit of f.p. modules. Then

Idx € Hom(X, X) = Hom(X, CQIiIm M;) = CQIiIm Hom(X, M;).
1€ 1€

This is a colimit of Z-modules, so Idy is represented by some element of Hom (X, M;).
This means that Idx can be factored as the composition X — M; — colim;ez M; =
X. This means that X is a direct summand of M;. Now M; is f.p. and hence so
is X. ]
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2 Projective, injective and flat modules

2.1 Projective modules

Proposition/Definition. An object P in an abelian category is projective if it
satisfies the following equivalent conditions.

(i) Hom(P, —) is an ezact functor.

(i1) Any short exact sequence 0 — X — Y — P — 0 is split.

(111) Given an epimorphism 6 :Y — Z, any morphism P — Z factors through 6.

Proof. (i)=-(ii) Hom(P,Y) — Hom(P, P) is onto. A lift of Idp is a section.
(ii)=(iii) Take the pullback along the map P — Z. The resulting exact sequence
has P as third term, so is split. This gives a map from P to the pullback. Com-

posing with the map to Y gives the map P — Y.
(iii)=(i) Clear. O

Proposition. A coproduct [[, M; is projective < all M; are projective.

Proof. 1], M, is projective

& the functor Hom(] [, M;, —) = [[, Hom(M;, —) is exact

< 0 — Hom(][, M;, X) — Hom([ [, M;,Y) — Hom([[, M;, Z) — 0 exact for all
exact sequences 0 > X - Y - 7 —0

& 0— [[, Hom(M;, X) — [[, Hom(;,Y) — [ [, Hom(M;, Z) — 0 exact

< 0 — Hom(M;, X) — Hom(M,;,Y) — Hom(M;, Z) — 0 are exact. (Recall that
in the category of additive groups, or R-Mod, products of exact sequences are
exact. The reverse implication is easy.)

< all M; are projective. O

Theorem. Let R be a ring. An R-module is projective if and only if it is a direct
summand of a free module. A finitely generated module is projective if and only if
it is a direct summand of a finitely generated free module R", for some n. Any f.g.
projective module is f.p.

Proof. Homg(R, X) = X, so R is a projective module, hence so is any direct sum
of copies of R. If F' — P is onto with F' free and P projective, then P is isomorphic
to a summand of F'. O

We write R-proj for the category of finitely generated projective left R-modules.

Lemma. The functor Homg(—, R) defines an antiequivalence between R-proj and
R°P-proj.
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Proof. Observe that if M is a left R-module, then Homp(M, R) is naturally a right
module, and if M is free of rank n, then

Hompg(M, R) =2 Homg(R", R) = Homg(R, R)" = (Rg)"

is a free right R-module of rank n. If P is f.g. projective, then there is ) with
P& Q= R" Then

Hompg (P, R) @ Homg(Q, R) = (Rg)"

so Homg(P, R) is f.g. projective. The inverse equivalence is given by the same
construction, but for right R-modules. There is a natural transformation

X — Hompg(Hompg(X, R),R), x+ (0 — 0(x)).

It is an isomorphism for X = R, so for finite direct sums of copies of R, so for f.g.
projective modules. m

Examples. (i) Every R-module is projective < Every short exact sequence is split
& every submodule of a module has a complement < Every module is semisimple
< R is a semisimple (artinian) ring R < (the Artin-Wedderburn Theorem) R is
a finite direct sum of matrix rings over division rings.

(ii) If R is a principal ideal domain, a standard theorem says that any f.g. module
is a finite direct sum of cyclic modules. Now if 0 # a € R, then

Homg(R/Ra,R)={re€e R:ra=0} =0
so R/Ra cannot be projective (unless it is 0). Thus every f.g. projective module

is a direct sum of copies of R, so it is free.

(iii) If e € R is an idempotent (that is, e? = ¢), then R = Re & R(1 — ¢), so
Re is a direct summand of zR, so it is projective. Conversely any direct sum
decomposition of R = P @ () arises in this way from an idempotent element of R,
since the projection onto P is an idempotent e € Endg(R) = R.

In R = M, (K) the idempotents E* give the decomposition
R=RE"®..RE"=C @ - ®C,

where C; is the matrices living in the ith column. Since E¥E/¢ = E% and E/*EY =
EJ1 right multiplication by E% gives an isomorphism C; — C.
Let R be the ring of 2 x 2 upper triangular matrices with entries in K. Then

o 11 22 KO OK
R=RE" & RE _(O O@OK'
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Now the two summands are not isomorphic.

(iv) Let
R = {continuous [ : [0,7] — R : f(0) = f(m)}.

If f € R is idempotent, then f(x)?> = f(z) for all z, so f(z) € {0,1}. So by
continuity f = 0 or 1. Let

P = {continuous f : [0,7] = R: f(0) = —f(m)}.

It is naturally an R-module. Now R 2 P since if there is an isomorphism sending
1 € Rto g € P, then it sends any f to fg. By the Intermediate Value Theorem
g(x) =0 for some 0 < x < m. But then every element of P vanishes at z, which is
nonsense. On the other hand, there are inverse isomorphisms between R? and P?

given by
sinx coszx
(f g) — (f g) (cosx —Sinx>

(See page 28 of T.-Y. Lam, Lectures on Modules and Rings, Springer 1999.) This
is an example of the following theorem, with X the circle and the vector bundle
given by the Mobius band.

Swan’s Theorem (1962). The global section functor gives an equivalence between
the category of topological vector bundles on a compact Hausdorff topological space
X and the category of f.g. projective modules for its ring of continuous functions

C(X).
(v) Earlier was:

Serre’s Theorem (1955). The global section functor gives an equivalence between
the category of vector bundles on an affine variety X and the category of f.g.
projective modules for its coordinate ring K[X].

(vi) Quillen-Suslin Theorem (1976). Every f.g. projective module for a polynomial
ring K[X,...,X,] with K a field is free (so every vector bundle on affine n-space
is trivial).

(vii) Beginnings of K-Theory. The Grothendieck group Ky(R) of a ring R is the

Z-module generated by the isomorphism classes [P] of f.g. projective R-modules
P, subject to the relations [P & Q] = [P] + [Q)] for all P, Q.

(viii) Suppose R is an integral domain (commutative) with field of fractions K. A
fractional ideal is a nonzero R-submodule I of K such that I C d 'R for some
nonzero d € R. For example any nonzero ideal in R is a fractional ideal. If I and
J are fractional ideals, then

1J = {Zziyi:nz(),xief,yie J}

i=1
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is another fractional ideal and so is

I'''={ye K:IyC R}.

For example in R = Z[y/—5] consider the ideal
I=2,1+v-5) ={a+b/=5:a,b€ Z,a =b(mod2)}.

We have
I''={r=a+by/=5:a,b€Q,27,(1++V-5)xr € R}
={z=a+bv—=5:2a,2b,a —5b,a+b € Z}
1 1++v/—
_ Ll _piypitVR
2 2
and

1:(1+\/C3)-(1--1—i%/3E

So II7!' = R. The next lemma shows that I is a projective module, but it is not
a principal ideal, and in fact not a free module.

)—2-1ell™.

Lemma. For a nonzero ideal I, the following are equivalent:
(a) I is invertible, meaning that II~* = R.

(b) 1 is f.g. projective

(c¢) I is projective

Proof. For (a)=-(b), write 1 = >  x;y; with 2; € [ and y; € I"'. Then the
composition
I ai—)(ayi)\ R" (ra)—=> 0y TiTi I

is Id[
(b)=(c) is trivial, and for (¢) =>(a), for some indexing set A there are maps

] a»—)(f,\(a)) R(A) (T)\)'_)Z)\EAT)\mA/ I

with composition 1. Choose 0 # a € I. Only finitely many f)(a) are nonzero. Let
yr = a 'fi(a) € K. For any b € I we have

b =a ' fr(a)b=a"' fr(ab) = a lafr(b) = fi(b) € R.
Thus y\ € I1. Also

Zx,\y)\ = Zm,\a_lf,\(a) =ala=1.

AEA AEA

so II7'=R. ]
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Remark. A Dedekind domain is an integral domain with Krull dimension < 1
(that is, all non-zero prime ideals are maximal) and integrally closed in its field of
fractions. For example the ring of integers of a number field.

One can show that an integral domain is a Dedekind domain if and only if all
nonzero ideals are invertible, or equivalently all fractional ideals are invertible.

In this case Ko(R) = Z @ CI(R), where CI(R) is the ideal class group, the group
of fractional ideals modulo the subgroup of principal fractional ideals.

2.2 Tensor products

If X is a right R-module and Y is a left R-module, the tensor product X ®z Y is
a Z-module X ®p Y equipped with a mapping

X XY =5 X®rY, (r,yy—zRy

such that the mapping is a homomorphism of additive groups in each argument,
and R-balanced, meaning that

Ir@®Y =TTy

for all x € X, y € Y and r € R, and such that it is universal for this property,
that is, if
f: X XY —>M

is additive in each argument and R-balanced, then there is a unique Z-module
homomorphism « : X ®g Y — M such that f(z,y) = a(z @ y).

Theorem. (i) The tensor product exists and it is unique up to isomorphism.
(i1) Any element can be written (non-uniquely) as a finite sum

T1RQUY+ -+ Ty @ Yp.

(i1i)) X @ R= X and RRrY =Y via the maps x @+ xr and r @y — ry.
() If 0 : X — X' and ¢ : Y — Y' are module homomorphisms, then there is a
unique Z-module homomorphism

9®¢IX®RY—>X/®RY/

with (6 @ ¢)(x @ y) = 0(x) ® ¢(y).
(v) We can identify X @rY with Y Qpor X.

For a proof see my Algebra II notes.
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Definition. If S and R are rings, an S-R-bimodule X is given by a left S-module
and a right R-module with the same underlying additive group, and such that the
actions commute: (sz)r = s(zr).

Theorem. Let X be an S-R-bimodule. If Y is a left R-module, then X QrY
becomes an S-module via s(x @ y) = (sz) ®y. This gives a tensor product functor

X ®p — : R-Mod — S-Mod.

If Z is an S-module, then Homg(X, Z) becomes an R-module via (r8)(z) = 0(xr).
This gives a functor

Homg (X, —) : S-Mod — R-Mod.
Moreover there is an isomorphism of additive groups
Homg(X ®r Y, Z) = Homg(Y, Homg(X, 7))

which is natural in'Y and Z. Thus (X ®g —, Homg(X, —)) is an adjoint pair of
functors.

Proof. The first parts are straightforward. Given # € Homg(X ®g Y, Z) we get
¢ € Hompg(Y,Homg (X, Z)) by ¢(y)(z) = 0(x ® y), and given ¢ we get 6 by the
same formula. m

After the results about adjoint functors, we get.

Corollary. If X is an S-R-bimodule, then the tensor product functor X ®pr — :
R-Mod — S-Mod preserves colimits, so it is right exact and commutes with direct

sums (coproducts):
X ®g (@Y> ~P (X @rY).

iel iel
(Similarly for the functor — @r Y : Mod-R — Mod-T' for an R-T-bimodule Y".)

Theorem (Eilenberg, Watts). Any functor F': R-Mod — S-Mod which preserves
colimits, that is, is right exact and commutes with direct sums, is naturally iso-
morphic to a tensor product functor X Qg — for some S-R-bimodule X .

Proof. F(R) is an S-module, and it becomes an S-R-bimodule via the map
R = Endg(R) 5 Ends(F(R)).
Now for any R-module Y there is a R-module map

Y 5 Homg(R,Y) & Homg(F(R), F(Y)).
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By Hom-Tensor adjointness this corresponds to an S-module map F(R) @z Y —
F(Y). This is natural in Y, so it is ®y for some natural transformation & :
F(R)®g— — F. Clearly ®p is an isomorphism. Then for any free module RY) we
have F(RY) = F(R)D = F(R) ® RY), so ®p) is an isomorphism. Then for any
module Y there is a presentation R) — R) — Y — 0 and the first two vertical
maps in the diagram

F(R) @ RY —— F(R) @ RY) —— F(R)®Y —— 0

%(I)l %ml <I>Yl

F(RD)y —— FRY)) —— FY) —0

are isomorphisms. Also the rows are exact. Hence the third vertical map is an
isomorphism. Thus ® is a natural isomorphism. ]

Lemma. If X is an S-R-bimodule, then there is homomorphism of additive groups
¢uy  Homg(U, X) ®p Y — Homg(U, X ®rY), 00y~ (ur— 0(u) ®y)

for U an S-module and Y an R-module, which is a natural transformation in U
and Y . It is an isomorphism if U is f.q. projective. Conversely, taking X = R =5,
if Idy is in the tmage of the map

¢up - Homg(U, S) ®s U — Homg(U, S ®s U) = Endg(U),
then U 1is finitely generated projective.

Proof. The first part is clear. The map ¢gy is an isomorphism since it is identified
with the identity map since Homg(S, X) ®z Y and Hom(S, X ®x Y') can both be
identified with X ® Y. Now given a direct sum U =U; & - - - ® U,, we get

Homs(U, X) @z Y = @ (Homs(U;, X) @ Y)
i=1
and .
Homs(U, X ®5Y) = @) Homg(U;, X @5 Y)
i=1
so ¢uy corresponds to the mapping whose components are ¢p,y, so ¢yy is a

bijection if and only if all ¢y, y are bijections. Thus Hom(S™,Y) is an isomorphism,
and hence so is ¢y y for any direct summand U of a f.g. free module S™.

Say Idy comes from ), 6; ® u;, then the composition of the maps

v Ly gn W g

is the identity, so U is a direct summand of S™, so f.g. projective. O
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2.3 Morita equivalence

Recall that an R-module P is a generator if for any module M there is an epi from
a direct sum of copies of P to M, P — M.

Theorem (Morita equivalence). Let R and S be rings. The following are equiva-
lent.

(i) The categories R-Mod and S-Mod are equivalent

(i1) There is an S-R-bimodule X giving an equivalence X @ g — : R-Mod — S-Mod.
(111) R = Endg(X) for some f.g. projective generator X in S-Mod.

Proof. (1)=(iii) Let F' : R-Mod — S-Mod be an equivalence and let X = F(R).
Since F is full and faithful we have R = Endg(X)°. Since F' is an equivalence,
X is projective. Now Homp(R, —) commutes with coproducts. Thus Homg (X, —)
commutes with coproducts. Since X is projective, it is a summand of a free module
S The inclusion is in Homg(X, SY) 2 Hom(X, S)?), so only finitely many of
the components X — S are nonzero. It follows that X is a summand of a f.g. free
S-module, so it is a f.g. S-module.

(iii)=(ii) For any S-module T" we have a mapping

X ®@g Homg(X,T) - T, 2®0— 0(zx)
This is natural in 7', and it is an isomorphism for 7" = X. Thus it is an isomorphism
for T'= X". Thus it is an isomorphism for 7" any summand of X". Now X is a
generator as an S-module, and ¢S is finitely generated, so there is an epimorphism

X" — § for some n. Then since ¢S is projective, .S is isomorphic to a summand
of X™. Thus we get an isomorphism

X ®r Homg(X,S) = S5, 2®6+— 0(x)

This is an isomorphism of S-S-bimodules. Also, by the lemma above applied to
the S-S-bimodule S, we have an isomorphism

Homg(X, S) ®¢ X — Homg(X,S ®s X) = R

and this is an isomorphism of R-R-bimodules. Thus the functors X ®p — :
R-Mod — S-Mod and Homg(X,S) ®s — : S-Mod — R-Mod are inverses (up
to natural isomorphisms) so they are equivalences.

(ii)=(i) is trivial O
Examples. (i) R is Morita equivalent to M, (R) for n > 1. Namely the module R™
is a finitely generated projective generator in R-Mod with Endg(R")”” = M, (R).

(ii) If e € R is idempotent, and ReR = R, then R is Morita equivalent to eRe.
Namely, the condition ensures that the multiplication map Re ®.g. eR — R is
onto. Taking a map from a free eRe-module onto eR, say eRe!) — eR, we get a
map Re) — R, so Re is a generator. Then Endg(Re)” 2 eRe.
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2.4 Injective modules

Proposition/Definition. An object E in an abelian category is injective if it
satisfies the following equivalent conditions.

(i) Hom(—, E) is an ezxact (contravariant) functor.

(i1) Any short exact sequence 0 — E — Y — Z — 0 is split.

(111) Given an injective map 6 : X — Y, any map X — E factors through 6.

Proposition. A product [[,.; M; is injective < all M; are injective. Thus a finite
direct sum is injective if and only if each term is injective.

Proof. This is the opposite category version of the result for projectives. Then a
finite direct sum is the same as a finite product. n

Definition. An inclusion of R-modules M C N is an essential extension of M if
every non-zero submodule S of N has SN M # 0.

Theorem. For an R-module M, following conditions are equivalent.

(a) M is injective.

(b) (Baer’s criterion) Every homomorphism f : I — M from a left ideal I of R
can be extended to a homomorphism R — M.

(¢) M has no non-trivial essential extensions

Proof. (a)=-(b) is trivial.

(b)=(c) Let M C N be a non-trivial essential extension and fix v € N\ M. We

consider the pullback
I — R

[

M — N
where R — N is the map r + rx. Then I — R is injective, so [ is identified with
a left ideal in R. By (b), the map I — M lifts to a map R — M, say sending 1 to
m.

Suppose r € R satisfies (z —m) € M. Then rx € M, and it follows that r € .
Then rz = rm, so r(x —m) = 0. Thus M N R(x —m) = 0 and R(z —m) # 0,
contradicting that M C N is an essential extension.

(c)=(a). Given an inclusion M C N, we need to show that M is a direct summand
of N. By Zorn’s Lemma, the set of submodules in N with zero intersection with
M has a maximal element C. If M +C = N, then C' is a complement. Otherwise,
M = (M + C)/C C N/C is a non-trivial extension. By (c) it cannot be an
essential extension, so there is a non-zero submodule U/C with zero intersection
with (M +C)/C. Then UN(M+C) =C,soUNM C CNM = 0. This contradicts
the maximality of C'. O
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Definition. If R is an integral domain and M is an R-module, then

- M is divisible if for all m € M and 0 # a € R, there is m' € M with m = am/.
For example the field of fractions of R is divisible.

- M is torsion-free if am # 0 for all nonzero a € R and m € M. For example R
and its field of fractions are torsion-free.

Lemma. If R is an integral domain, then any injective module is divisible. If R
15 a principal ideal domain, then any divisible module is injective.

Proof. Divisibility says that any map Ra — M lifts to a map R — M. If Ris a
pid these are all ideals in R. O

Definition. For the rest of this section we assume that R is a K-algebra, where

K is a field or a principal ideal domain. In particular, we can consider any ring R
as a K-algebra with K = 7Z.

We define (—)* = Homg(—, Fi), where

K (if K is a field)
TV F/K  (if K is a pid with fraction field F # K)

For example Ey = Q/Z.

Lemma. (i) Ex is an injective K-module, and (—)* defines an exact functor from
R-modules on one side to R-modules on the other side.

(i1) If M is an R-module, the map M — M™*, m +— (0 — 0(m)) is an injective map
of R-modules. (It is an isomorphism if K is a field and M is a finite-dimensional
K -vector space).

Proof. (i) Any R-module M also gets an action of K via Am = (Alg)m, and these
two actions commute, so M* = Homg (M, Ex ) becomes an R-module on the other
side.

Now any quotient of a divisible module is clearly divisible, so Fx is a divisible
K-module, so an injective K-module, so (—)* is an exact functor.

(ii) Given 0 # m € M, let K'm be the cyclic K-submodule of M generated by m.
It suffices to find a K-module map f : Km — Ex with f(m) # 0, for then since
E¥ is injective, f lifts to a map 0 : M — Ek.

If K is a field there is an isomorphism Km — Ey.

If K is a principal ideal domain and not a field, choose a maximal ideal Ka con-
taining ann(m) = {x € K : xm = 0}. Since K is not a field, @ # 0. Then there
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is a map Km — Ex sending xm to K + a 'z € F/K. This is well-defined since

if xm = 2'm, then © — 2’ € ann(m), so x — 2’ = ba for some b € K, and then

alvr —a a2’ =be K. Tt is clearly a K-module homomorphism. Now it sends m

to K 4 a~'. If this is zero, then a=! € K, so a is invertible in K, so Ka = K,
contradicting that Ka is a maximal ideal.

If K is a field, and M is K-vector space of dimension d, then so is M*, and so also
M**, so the map M — M** must be an isomorphism. O

Theorem. Any R-module embeds in a product of copies of R*, and such a product
is an injective R-module. An R-module is injective if and only if it is isomorphic
to a direct summand of such a product.

Proof. We have natural isomorphisms of functors R-Mod — Ab,
HOHIR(—7 R*) = HOIIIR<—, HOIHK(R, EK)) = HOIHK<R QR —, EK)
= Homp(—, Ex)" = (—)",
which is exact, so R* injective. Thus any product of copies of R* is injective.

If M is any R-module, then M embeds in M**. Now M* is a right R-module, so
can be written as a quotient of a free right R-module, say R™X). Then

M — M** «— (R¥))* = Homg (R™), Ex) & Homg (R, Ex)* = (R*)X.
The last part is clear. O
Corollary. Any module over any ring embeds in an injective module.

Remark. More generally one can show that any object in a Grothendieck category
has a monomorphism to an injective object.

Theorem (Bass, Papp). For a ring R the following are equivalent
(1) R is left noetherian

(i1) Any filtered colimit of injective left R-modules is injective

(11i) Any direct sum of injective left R-modules is injective.

Proof. (1)=(ii). Let M = colim;ez M; be a filtered colimit of injective modules.
Suppose [ is a left ideal in R. It gives an exact sequence 0 - [ — R — R/I — 0.
Since the M; are injective, we get exact sequences

0 — Hom(R/I, M;) — Hom(R, M;) — Hom(I, M;) — 0.
A colimit of exact sequences is exact, so

0— Colizm Hom(R/I, M;) — chiIm Hom(R, M;) — colim Hom(I, M;) — 0
(1S S

i€T
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is exact. Since the modules R/I, R and [ are finitely presented, this is isomorphic
to
0 — Hom(R/I, M) — Hom(R, M) — Hom(/, M) — 0.

Thus by Baer’s criterion M is injective.
(ii)=(iii). We have

@ M, = colim M; = colim | | M;
JCI JCI
icl jeJ jeJ

where J runs over the finite subsets of I, a filtered colimit of injective modules.

(iii)=-(i). Consider an ascending chain of left ideals
LCLbC---CR.

Let I be their union. For each n > 1, choose an embedding ¢,, : R/I,, — E, with
E,, injective. We have a well-defined map

0:1—E:=@DE, 0(a),=¢u(l,+a)

n=1

Since F is injective, 6 extends to a map R — E. Let that map send 1 to e € E.
Then 6(a) = ae for a € R. But e only has finitely many non-zero components, so
there is some n such that e, = 0. Then 6(a), = 0 for all a € I, so a € I,,. Thus
I = I,,, so the chain of ideals stabilizes. Thus R is left noetherian. m

2.5 Flat modules

In this section R is a K-algebra and K is a field or pid, for example R is a ring
and K = 7Z.

Definition. A right R-module X is flat if X ®g — is an exact functor, either
considered as a functor R-Mod — Z-Mod or equivalently as a functor R-Mod —
K-Mod.

Remark. (i) A direct sum of modules is flat if and only if each summand is flat,
since if X; are right R-modules and 0 - L — M — N — 0 is an exact sequence
of left R-modules, then

iel iel iel
is exact if and only if it is exact for each sequence
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is exact.
(ii) Any projective module is flat, for R®@r X = X so R is flat.

(iii) Any filtered colimit of flat modules is flat. If Z is a small filtered category, X
is an Z-diagram of flat right R-modules and 0 — L — M — N — 0 is an exact
sequence of left R-modules, then since the X; are flat, we get exact sequences

0—>X;,®r L —>X;,p M — X; ®r N — 0.
Since R-Mod has exact filtered colimits, the sequence
0— C(i)éiIm(Xi ®r L) — c?éizm(Xi ®@r M) — C?éizm(Xi ®rN)—0
is exact. Since tensor products commute with colimits, this is

0— (C?élzm X;)®r L — (C?élzm X;) @r M — (C?élzm X;)®r N =0

so colim;c7 X; is flat.
Proposition. A right R-module X s flat if and only if X* is injective.

Proof. If Y is a left R-module, then Hompg(Y, X*) =2 (X @z Y)*. If X is flat, then
this is exact as a functor of Y, so X* is injective. Conversely, if X* is injective
then again this is exact as a functor of Y. Suppose X is not flat. Given an exact
sequence of left R-modules

O—L—M-—=N=—=0

we get
0—-H—>X®rL—>XQQrM — XKRrN —0.
Then we get
Thus H* = 0. But H embeds in H**, so H = 0. O

Proposition. A module Xg is flat if and only if the multiplication map X Qrl —
X is injective for every left ideal I in R.

Proof. 1If X is flat, tensoring it with the exact sequence 0 - I — R — R/I — 0
shows that the map is injective.

If the map is injective, then the map X* — (X ®pr I)* is surjective. We can write
this as Homg(R, X*) — Hompg (I, X*). By Baer’s criterion X* is injective. Thus
X is flat. [l
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Example. If R is an integral domain, then any flat right R-module X is torsion-
free, that is, if x € X and @ € R and za = 0, then x = 0 or a = 0. Namely, if
I = Ra with 0 # a € R, then the map X ® I — X is the identified with the map
X — X of multiplication by a.

If R is a pid, then a right module X is flat if and only if it is torsion-free, since
any non-zero ideal in R is of this form.

Thus Q is a flat Z-module. This also follows from the next construction.

Example. Let R be a commutative ring. A subset S C R is multiplicative if 1 € S
and st € S for all s,t € S. The localization of an R-module M with respect to S
is

STIM =8 x M/ ~

where ~ is the equivalence relation given by

(s,m) ~ (s',m") < t(sm' — s'm) =0 for some t € S
It is equivalent that um = u'm’ for some u, v’ € S with us = u's’. To see this, take
t=wus or u=ts and u' =ts.

The equivalence class containing (s, m) is denoted s~'m. Now S™'M has an addi-
tion given by the usual formula for adding fractions

s7tm 4+t n = (st) " (tm + sn).

Moreover S~'R becomes a ring and S~'M becomes an S~!R-module with the
usual formula for multiplication

(s7ta)(t™'b) = (st)"'(ab).

This was all on an exercise sheet for Algebra II. It was also shown on the exercise
sheet that S™1M =~ S™'R ®p M. We can deduce this here from Eilenberg-Watts.
The construction gives a localization functor

R-Mod — S™'R-Mod, M + S™'M.

and it is easy to see that this is an exact functor. It is easy to see that an exact
sequence 0 - L —- M — N — 0 of R-modules gives an exact sequence

0—S'L—>S'M—>S5'N—=0

so this functor is exact. It also commutes with arbitrary direct sums. Thus by the
Eilenberg-Watts theorem,
STM X ®rM
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for all M, for some bimodule X. Then X = S~!'R considered as a left S™!'R

module in the usual way, and as a right R-module via (s7'r)r’ = s7!(rr’). Thus

STIM =S 'R®r M.

Since the localization functor is exact, S™!'R is a flat R-module. Here is another
way to see this. Consider S as a the set of objects in a category, with

Hom(s,t) ={u € S:us =t}

It is filtered since it has object 1, if s,s" € S then they both have morphisms to

ss', and if w,u : s — ¢, then t = us = u's. Thus considering s as a morphism

t — st, the compositions with v and v’ are equal.

Consider the functor S — R-Mod sending all s € S to My = M and u € Hom(s, t)
to multiplication by u. Then our description of the colimit gives

colim M, = _ M/~ = (5x M)/ ~

where (s,m) ~ (s',m’) < there are morphisms v : s — v and v’ : s — v with
um = u'm’. Thus
S™IM = colim M,
seS

Thus if M is a flat R-module, so is S'M. In particular SR is flat.

Lemma. Let X be an S-R-bimodule. If U is a f.p. left S-module and Y s a flat
left R-module, then the natural map

Homg(U, X) ®g Y — Homg(U, X ®rY)
1S an isomorphism

Proof. Tt is clear for U = S. Then it follows for U = S™. In general there is an
exact sequence S™ — S™ — U — 0, and in the diagram

0 —— Homg(U,X)®grY —— Homg(S", X)®grY —— Homg(S™, X)®grY

! | l

0 —— Homg(U,X ®gY) —— Homg(S", X ®gY) —— Homg(S™, X ®grY)

the rows are exact and the right two vertical maps are isomorphisms, hence so is
the first. O

Recall that any f.g. projective module is finitely presented.
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Theorem. (i) A finitely presented flat module is projective.
(i1) (Lazard, Govorov) Any flat module is a filtered colimit of finitely generated
projective (even free) modules.

Proof. (i) If Y is a f.p. flat left R-module, then the natural map Hompg (Y, R) ®g
Y — Endg(Y) is an isomorphism by the last lemma. Thus by the last lemma in
the section on projective modules, Y is f.g. projective.

(i) If M is a flat left R-module and X is f.p., then the map Hom(X, R) @ M —
Hom(X, M) is an isomorphism. It follows that any map f : X — M can be
factored as

X% RS M,

Now use the result in the section on filtered colimits. O

2.6 Envelopes and covers

Definition. Suppose C is a full subcategory of R-Mod. If M is an R-module, a
homomorphism 0 : M — C with C in C is a C-envelope if

e 0 is a C-preenvelope, meaning that any 6’ : M — C’ with C” in C factors as
0" = ¢0 for some ¢ : C' — C’, and

e 0 is left minimal, meaning that if ¢ € Endg(C) and ¢f = 6, then ¢ is an
automorphism.

Dually, a homomorphism 6 : C' — M with C in C is a C-cover if

e 0 is a C-precover, meaning that any 6’ : ¢ — M with C’ in C factors as
0" = ¢ for some ¢ : C" — C, and

e 0 is right minimal, meaning that if ¢ € Endz(C) and 8¢ = 0, then ¢ is an
automorphism.

Note that if M has an envelope or cover, it is unique up to a (non-unique) isomor-
phism.

Theorem. Tuke C to be the category of injective modules.

(i) A morphism 6 : M — E with E injective is an injective preenvelope if and
only if 0 is injective. If so, identifying M as a submodule of E, it is an injective
envelope if and only if the inclusion M C E is an essential extension.

(ii) Every module has an injective envelope M — E(M).
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Proof. (i) If E is injective and 6 is injective, then clearly it is a preenvelope. Con-
versely if 0 is a preenvelope then F is injective and, since there is an embedding
M — E’ with E’ injective, we must have # injective.

Now suppose M C FE is an essential extension. Suppose ¢ € Endg(FE) satisfies
¢80 = 0. That is, ¢(m) = m for all m € M. Then M NKer¢ = 0. Thus Ker¢ = 0.
Thus ¢ is injective. Now Im ¢ = FE is injective, so it is a direct summand of E, so
E =1Im¢ & C for some complement C. But M C Im¢, so MNC =0, so C =0,

S0 ¢ is an automorphism.
We do the other direction later.

(ii) Any module M embeds as a submodule of an injective module F' and Zorn’s
Lemma implies that the set of submodules of F' which are essential extensions of
M has a maximal element F.

Suppose that £ C N is a non-trivial essential extension (with N not necessarily
contained in F). Since F' is injective the inclusion £ — F' can be extended to a
map g: N — F.

Since M C E and E C N are essential extensions, so is M C N. Clearly M N
Kerg = 0, so since M is essential in N it follows that Kerg = 0. Thus we can

identify N with g(N). But then M is essential in N, contradicting the maximality
of E.

Thus E has no non-trivial essential extensions, so F is injective. Thus by (i)
0 : M — FE is an injective envelope.

Completion of (i). By uniqueness, any injective envelope M — E is isomorphic to
the one we just constructed, so E' is an essential extension of M. O

Theorem. Suppose R is a f.d. algebra over a field.

(1) The injective envelopes of simples are f.g., and every injective module is a direct
sum of injective envelopes of simples.

(2) Every module M has a projective cover P(M), the projective covers of simples
are f.g., and every projective modules is a direct sum of projective covers of simples.
(3) Every flat module is projective.

Proof. We will need properties of the Jacobson radical of R
J={re€ R:rS =0 for all simple R-modules S}.

Equivalently it is the intersection of all maximal left ideals in R. It is a two sided
ideal in R. Since R is f.d. we have

(a) R/J is semisimple.
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(b) J is nilpotent, J" = 0 for some n.
(c) If M is any module with JM = M, then M = 0.

Namely, since R is f.d., J(R) is a finite intersection of maximal left ideals, say
J=LN---N1I

and then R/J embeds in R/I} & --- @& R/I, so R/J is a semisimple R-module, so
a semisimple R/.J-module, so R/J is a semisimple ring. Also, since R is f.d., we
can choose a chain of submodules

0=RyCRi,C---CR,=R

as long as possible. Then each R;/R; 1 is simple. Thus JR; C R; ;. Thus J"R =0
so J" = 0. Now if M is a module with M = JM, then by induction M = J"M,
so M = 0.

Clearly f.g. R-modules are the same as f.d. modules. Duality (—)* gives an antiequiv-
alence between R-mod and mod-R.

(1) If M is a f.g. module, then M* is f.g, so a quotient of R", so M is a submodule
of (R*)™. Thus M embeds in a f.g. injective module, so its injective envelope is f.g.

The socle of an arbitrary module M is the sum of its simple submodules. For R
f.d., we have
socM ={me M:Jm=0}

and it is an essential submodule of M since any nonzero submodule contains a
nonzero f.g. submodule, and any submodule of this of minimal dimension is simple,
so meets soc M. Thus E(M) = E(soc M).

Now soc M is semisimple, so a direct sum of simples, so
M= S, — EPES = E.
A A

and

socE ={x € @E(S,\) : Jr =0}

so F = E(M). Taking M to be injective gives M = F.
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(2) If M is a f.g. module, then so is M*, so it has an injective envelope M* — E(M*)
with E(M*) f.g. Now P(M) = E(M*)* is flat since its dual is injective, so it is
projective, since it is f.p.. Now the map P(M) — M is surjective and a projective
cover.

If M is any R-module then M/JM is an R/J-module, so semisimple. Write
M/JM = @, S;, a direct sum of simples, and let P = @, P(S;). The map

7

P — M/JM lifts to a map 6 : P — M, and it must be surjective, since
J(M/Im(0)) = M/Im(f). Now by construction of P, the map P/JP — M/JM
is an isomorphism. It follows that if &« € End(P) is a map with fov = 6, then @ = 1
in End(P/JP). Then ¢ = a — 1 € End(P) has image contained in JP. Thus ¢ is
nilpotent, so a = 1 + ¢ is invertible. Thus 6 : P — M is a projective cover.

Apply this with M projective, and we see that M is isomorphic to a direct sum of
projective covers of simples.

(3) If F is a flat left R-module, take a projective cover 6 : P — F and let L be the
kernel. Thus we have an exact sequence

0—-+L—-P—=F—=0. (1)
Dualizing, we get an exact sequence of right R-modules
0—F"— P —L"—0.

Since F' is flat, F™* is injective, so this sequence splits, so considering R/.J as a right
R-module, the sequence

0 — Homg(R/J, F*) — Homg(R/J, P*) — Homg(R/J,L*) — 0
is exact. By Hom-tensor adjointness, for any right R-module, we get
Homg(R/J, M*) = ((R/J)®@r M) = (M/JM)*.
Thus we have an exact sequence
0— (F/JF)" — (P/JP)" — (L/JL)" — 0.

But by the construction above, the map P/JP — F/JF is an isomorphism. Thus
(L/JL)* =0,s0 L/JL =0,s0 L =0. Thus F = P is projective. (Alternatively,
using that F' is flat, the long exact sequence for Tor, which comes later, implies
that the sequence obtained by tensoring (t) with R/J is exact, so 0 — L/JL —
P/JP — F/JF — 0 is exact. But P/JP — F/JF is an isomorphism, so L/JL =
0,s0 L=0.) O

Remark. The rings for which all left modules have projective covers are the ‘left
perfect rings’. They are also the rings for which flat = projective, so the best
generalization of the last theorem is a theorem of Bican, El Bashir and Enochs
2001, that every module has a flat cover. The proof is much harder.
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3 Complexes

3.1 Chain and cochain complexes

Definition. Let R be a ring. A chain complex C (or C. or C,) of R-modules
consists of modules and homomorphisms

...-)ng—2>01d—l>C0d—O>C_1d;l>C_2—>...
satisfying d,,_1d,, = 0 for all n. The elements of C,, are called chains of degree n
or n-chains. The morphisms d,, are the differential, also denoted d or d<.

If C is a chain complex, then its homology is defined by
H,(C) =Ker(d,)/Im(d,+1) = Z,(C)/Bn(C).

The elements of B, (C') are n-boundaries. The elements of Z,,(C') are n-cycles.

A chain complex C' is non-negative if C,, = 0 for n < 0. It is bounded if there are
only finitely many nonzero C,,. It is acyclic if H,(C) = 0 for all n, that is, if it is
an exact sequence.

Definition. A cochain complex C' (or C" or C*) consists of R-modules and homo-
morphisms

Y Ny Ny 6 N o oL B
satisfying d"*'d" = 0 for all n. The elements of C™ are called cochains of degree n

or n-cochains. The differential is also denoted d.

The cohomology of a cochain complex is defined by
H"(C) = Ker(d")/Im(d"™ ") = Z™(C)/B"(O).

The elements of B"(C') are n-coboundaries. The elements of Z"(C') are n-cocycles.

A cochain complex C' is non-negative if C™ = 0 for n < 0. It is bounded if there
are only finitely many nonzero C". It is acyclic ift H"(C') = 0 for all n.

Remarks. (i) There is no difference between chain and cohain complexes, apart
from numbering. Pass between them by setting C" =C_,,, d" =d_,,.

(ii) Many complexes are zero to the right, so naturally thought of as non-negative
chain complexes, or zero to the left, so naturally thought of as non-negative cochain
complexes.
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Definition. If C'is a chain complex of right R-modules and M is a left R-module,
the homology of C' with coefficients in M is

H,(C; M) := H,(C®gr M)
where C' @z M is the chain complex with

(CRr M)y =C,@r M, di*M =dJ @1Idy.

If C is a chain complex of left R-modules and M is a left R-module M, the
cohomology of C' with coefficients in M is

H™"(C; M) := H"(Hom(C, M))

where Hom(C, M) is the cochain complex of Z-modules (or R-modules if R is
commutative, or K-modules if R is a K-algebra) with

Hom(C, M)" = Hompg(C,,, M)
and differential
Hom(c,n) * Homp(Ch, M) — Homp(Cri1, M), dfiom(ean(0) =0 dys1-
Note that other conventions are possible, for example
71—110m(C,M)(9) = (_1)n+1‘9 dgﬂ-
Example. If C' is the acyclic chain complex
0-Z237Z—7Z)72—0
with Z /72 in degree 0, then C ®y (Z/72) is the chain complex
0— Z/72 > Z)7.2 = )72 — 0
so Hy(C,Z/72) = 7,)7Z2, and Hom(C,Z) is the cochain complex
0502Z37Z 0

with Z in degrees 1 and 2, so H*(C;Z) = Z]7.2.
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3.2 Examples from algebraic and differential topology

Example (Simplicial homology). If vy, ..., v, are n + 1 points in RY, and the
vectors v; —y, . . . , v, —Vg are linearly independent, then the n-simplex with vertices
Voy .+« oy Up 1S

[vo, - .., ] := {convex span of the v;} = {Z Aivi = A >0, Z/\i = 1} :

=0 =0

It is a closed subset of RY and its vertices are uniquely determined as the extremal
points. A O-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a
triangle, a 3-simplex is a tetrahedron, etc.

A face of a simplex is a simplex given by a subset of its vertices. A simplicial
complex in RY is a finite set K of simplices, satisfying

(1) If s € K then so is every face of s.
(2) If s,t € K, then their intersection is either empty or it is a face of s and t.

An oriented simplicial complex is a simplicial complex together with a total order-
ing on its vertices. We can do this by labelling its vertices 1,2,3,.... If K is an
oriented simplicial complex, its chain complex C' = C(K) is

C, = free Z-module on the n-simplices in K.

with differential

n

dn([v0, -, va]) = Y (=1)'vo, - Biy -, 0

1=0

for vy < - -+ < v,, where the hat means to omit that term. This is a chain complex,
for example

d2d3[U0>U17U27 U3] = d2[U1, Vg, 1)3] - d2[U07U27 U3] + dz[Uo,Uh d3] - d2[U07 U1, 112}

= 0.
The simplicial homology of K is H,(C(K)).
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The naming of cycles and boundaries can be explained as follows. Let K be a
oriented simplicial complex, for simplicity in R%2. A path along the edges gives an
element of C';. The path is a cycle if it returns to its starting point. The path is a
boundary if you can fill its interior with 2-simplices.

For example suppose K is given by vertices 1,2,3,4, with edges 1-2-3-4-1-3, and a
triangle 1-2-3-1. Then Cj free on [1], [2], [3], [4], C\ is free on [12], [13], [14], [23], [34],
Cy is free on [123]. We have d([123]) = [23] — [13] + [12], d([12]) = [2] — [1],
d([13]) = [3] = [1], d([14]) = [4] = [1], d([23]) = [3] = [2], d([34]) = [4] —[3]. We have
Zy(C) = Cp and

By(C) = Z-span([2] — 1], [3] — [1], [4] — [1], [3] — [2], [4] — [3])

= {a[l] + 521 + 73] +-0[4] : a + B+ v+ 0 =0},
so Hy(C) = Z. Now Z;(C) is the set of a[12] 4+ S[13] + v[14] 4 §[23] + €[34] such
that
(—a=B=[]+ (=R +(B+-eB]+ (v +€)[4] =0
and B;(C) = Z([23] — [13] 4+ [12]). Then
Z1(C) = By(C) ® Z([13] — [14] + [34])
so Hi(C) = Z. Also Z5(C) =0, so Hy(C) = 0.

Example (de Rham cohomology). Let M be a smooth manifold. The de Rham
complex is the cochain complex

C 0= QM) S QM) L (M) - ..

where Q°(M) is the set of smooth functions M — R (that is all partial derivatives
exist and are continuous), " (M) is the space of differential n-forms and d is the
exterior derivative. The de Rham cohomology is H},z(M) = H"(2(M)).

For example if M is an open subset of R? then:

Q' (M) ={w = pdx + qdy : p,q smooth functions on M},
Q*(M) ={hdz dy : h a smooth function on M.}

For f € Q% M) we have

of of 4
d dr + —
(f) =5, 7+ 5,
For w = pdx + qdy € Q'(M) we have
_0q Op
dw = (ax—ay)da:dy
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*f _ Pf

0xdy  Oydz’

The spaces of cocycles and coboundaries are:

Z'={w € QYM) : dw = 0}, the set of closed 1-forms.
B = {df : f € Q°%(M)}, the set of exact 1-forms.
Thus H}z(M) = {closed 1-forms}/{exact 1-forms}.

We have d? = 0 since

The Poincaré¢ Lemma implies that H},5z(M) = 0 if M is an open disc in R?, or
more generally simply connected. On the other hand H7,5(R?\ {0}) # 0 since one
can show that the 1-form

—Y x 12

is closed but not exact.

Example (Singular homology and cohomology). Let X be a topological space.
For each n, let A™ = [vg,...,v,] be an n-simplex. Let C, be the free Z-module
with basis the set of continuous maps o : A" — X. The image of the map might
look like a deformed simplex, but it might be singular, hence the name. We can
make the C,, into a chain complex via

where we must consider the restriction U|[vo ,,,,, #;,....vn] @S @ Mapping A" 5 X so
an element of C),,_;. We get singular homology and cohomology.

(1) Suppose K is an ordered simplicial complex and | K| is the union of its simplices.
Then simplicial homology of K and singular homology of | K| coincide.

(2) Suppose M is a manifold, then singular cohomology of M with coefficients in
R and de Rham cohomology of M coincide (de Rham’s theorem).

The proofs use results from topology and also about complexes. We shall develop
the latter only.

3.3 The category of complexes

We shall work with cochain complexes. The definitions work for an abelian category
A, and some more generally for A an additive or preadditive category. But we do
most proofs only for R-Mod.
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Definition. Let A be a preadditive category (usually abelian, or at least additive).
The category of complexes C(A) has as objects the cochain complexes of objects
and morphisms in A

o d2 1 d? do dt
NGt R ENYG et NG g LNy g

satisfying d"d"~! = 0 for all n. We denote the differential also by d% or just d. A
morphism f : C' = D is given by morphisms f" : C" — D" for n € Z such that
each square in the diagram commutes

d271 dan

Q
3
Q

‘ on-1 s Ol .

fnfll fnl fn+1J{

n—1 m
D opn M, pr

y anl

Composition of morphisms is done degreewise.

For i € Z there is a shift functor X' : C(A) — C(A) defined on objects by
(0P = O, e = (1)
and on morphisms f : C'— D by
() =

This is an automorphism of the category. It is the ith power of the functor ¥ = X!,
Other notation is C[i] or T*C'. Other names are suspension and translation.

If A is an abelian category, then we get the cohomology
H"(C) = Ker(d")/Im(d"™*) = Z"(C)/B"(C) € ob(A).

Lemma. C(A) is a preadditive category. If A is additive or abelian, so is C(A).
In the last case, a sequence of complexes

0—-C—=D—=E—=0
15 exact if and only if the sequence in each degree
0—-C"—=D"—=FE"—0

18 exact.
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Proof. Sums of morphisms, direct sums, kernels and cokernels are computed ‘de-
greewise’:

(f+9"=f"+g", (CoD)"=C"®D", (Kerf)"=Ker(f")
etc. ]

Lemma. A morphism of complexes f : C — D for an abelian category A in-
duces morphisms on cohomology H"(f) : H*(C) — H"(D), giving a functor
H":C(A) — A.

Proof. We do it for A = R-Mod. An arbitrary element of H"(C') is of the form
[z] with z € Z"(C) = Kerdg. Then f"(z)Kerd}, = Z"(D), so induces an ele-
ment [f"(z)] € H"(D). This is well-defined, for if z € B"(C) = Imd} ", then
z = dy'(y) for some y € C™ 1 but then f*(z) = fdy'(y) = dp ' f" () €
Imd}* = B"(D). Thus we get a mapping H"(f) : H*(C) — H™(D). It is easy to
see that this defines a functor. ]

Definition. A morphism of complexes f : C' — D for an abelian category A is a
quasi-isomorphism if the morphism H"(C') — H™(D) is an isomorphism for all n.

Example. For 0 # a € Z, there is a quasi-isomorphism of complexes of Z-modules

> 0 sy 7 —— 7 > 0 )
> 0 > 0 y L] Za > 0 :

where 7 is the projection.

Theorem. A short exact sequence of complexes 0 — C' — D — E — 0 for an
abelian category A induces a long exact sequence on cohomology

oo H"YE) - H"(C) — H*(D) — H"(E) — H""™(C) — H"™ (D) — ...
for suitable connecting morphisms ¢ : H"(E) — H"(C).
Proof. For all n we have a diagram
0O— ¢ — D" — E" —— 0
%l %l %J
0 — C"*t —— D" —— Ertl — 0

and the easy part of the Snake Lemma gives exact sequences on kernels of the
vertical maps

0—2"C)—Z2"(D)— Z"(E)
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and on cokernels
c"t/ Bt (C) — D"/ B"Y(D) — E"/BMTHE) — 0
This holds for all n, so shows that the rows in the following diagram are exact
cv/p"(C) —— D"/B"(D) —— E"/B"(E) —— 0
agl agl & l
0 — 2Z2"YC) —— Z""YD) —— Z"Y(E).

Here the vertical maps are induced by di%, d7, and d}, so the diagram commutes.
Thus by the snake lemma one gets an exact sequence

Ker(dy) — Ker(dp) — Ker(dy) — Coker(dy,) — Coker(dy,) — Coker(dy,)
That is,
H"(C) — H"(D) = H*(E) — H"*Y(C) — H""(D) — H""'(E)

as required. O

3.4 Mapping cones

Definition. The mapping cone of a morphism of complexes f: B — C in C'(A),
with A an additive category, is the complex cone(f) with

cone(f)" = (XB)" @ C" = B"" @ O™,

iy, 0 —dstt 0
d* = (fr?—i—Bl dg) = ( fn?—l dg) B e Ccr — B g Cmt!

That is, for complexes of R-modules,
4 (b, ¢) = (—d5(b), F™H(B) + di(c)).
Observe that cone(0 — C') = C and cone(B — 0) = ¥B.
Proposition. There is a sequence of complexes
0 — C — cone(f) > XB —0
which in degree n is the split exact sequence
0 — " € prtl gy om Pty prtl

Thus if A is abelian, it is an exact sequence of complexes. In the corresponding
long exact sequence on cohomology, the connecting morphism

H™(B) = H"Y(SB) — H"(C)
is equal to H"(f).
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Proof. The first part is straightforward. We do the second part for R-Mod. The
connecting map H"™(B) — H"(C) is given by the Snake Lemma from the
diagram

H™(B)

C"/B"(C) —— cone(f)"/B"(cone(f)) — B"™'/B""Y(B) —— 0

0 — Z"YC) —— Z" 1 (cone(f)) ——  Z""%(B)
H"(C)
0

Now an element [b] of H"(B) lifts to an element [(b, 0)] of cone(f)™/B"(cone(f)),
and applying the differential of cone(f) it gives [(0, f*T1(b))] € Z""!(cone(f)),
which comes from [f"*1(b)] in H"*1(C). O

Corollary. If A is abelian, then a morphism f : B — C of complexes is a quasi-
isomorphism if and only if cone(f) is acyclic.

Proof. Follows from the long exact sequence on cohomology

.o — H" *(cone(f)) = H"(B) — H"(C) — H"(cone(f)) — H"™(B) — H"™(C) — ...

]

3.5 The homotopy category

Definition. An ideal in a preadditive category A is a class of morphisms 7 in A
such that

e [(X,Y) :=InNHomu(X,Y) is an additive subgroup of Hom 4(X,Y") for all
XY, and

eIt X LY % 7 are morphisms in A, and f or ¢ is in I, then so is gf.
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If I is an ideal in A, then there is a quotient category A/I, with the same objects
as A and
Hom4,;(X,Y) = Homu(X,Y)/I(X,Y).

If A is an additive category, so is A/I.

Definition. A morphisms f : C' — D of complexes is null-homotopic if there are
morphisms A" : C™ — D"~ ! for all n € Z such that

fn — hn+1d2« =+ d%—lhn
for all n € Z. Two morphisms f, g : C — D of complexes are homotopic if f — g is
null-homotopic.

Proposition/Definition. The null-homotopic morphisms form an ideal in the
category of C(A), so we get the quotient category

K(A) := A/{null-homotopic morphisms}
is called the homotopy category of A. The morphisms are the homotopy classes of
morphisms in C(A). If A is additive, so is K(A).

Proof. We need to show that if C' 5D % E are morphisms of complexes and f
or g is null-homotopic, then so is gf. If f is null-homotopic with morphisms A",
then

= gnhn+1)d7cz’ T gndrlz)flhn
= (¢"h" ) de + di (g "),
Similarly if ¢ is null-homotopic. [

Lemma. If A is abelian, then homotopic morphisms f,g : C — D induce the same
morphism on cohomology H"(f) = H"(g) : H"(C) — H"™(D). Thus cohomology
induces a functor on the homotopy category

H":K(A) — A
also denoted by H™.

Proof. 1t suffices to show that null-homotopic morphisms induce the zero morphism
on cohomology. We do it for R-modules. Thus suppose

fn — thrldré 4 drll)flhn

An element of H"(C') is represented by an element z € Z"(C) = Kerdg. Then
(@) = di (@) € m(dy) = BY(D), so HM(f)([a]) = [f"(x)] is zero in
H™(D). O
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Definition. A morphism f : C — D is a homotopy equivalence if its image in
K(A) is an isomorphism. Equivalently, there is a morphism g : D — C' such that
fg is homotopic to Idp and ¢gf is homotopic to Idc.

Lemma. If A is abelian, then a homotopy equivalence is a quasi-isomorphism.

Proof. A homotopy equivalence gives an isomorphism in K (A), so it is sent to an
isomorphism by H™. ]

Lemma. An additive functor F : A — B induces a functor
F:C(A) = CB), F(C)" = F(C), die = F(d2).

and this induces a functor F : K(A) — K(B). Similarly an additive functor
F : A®? — B induces a functor

F:C(A)" = C(B), F(C)"=F(C™), di) = F(d"™),
and this induces a functor F : K(A)? — K(B).
Proof. If f:C — D is null-homotopic, then
= h"ta 4+ dy

SO
F(f") = F(h" ) djy o) + dippy F(R),
so F'(f) is null-homotopic. O

Corollary. If F': A — B is an additive functor and f : C — D is a homotopy
equivalence in C(A), then F(f) : F(C) — F(D) is a homotopy equivalence. In
particular, if B is abelian, then F(f) is a quasi-isomorphism. Similarly for a
contravariant functor.

Proof. f becomes an isomorphism in K (A), so F(f) is an isomorphism, but this

is the image of F'(f) in K(B). O

Remark. If M is a left R-module and f : C' — D is a homotopy equivalence of
complexes of right R-modules, taking ' = — ®r M, one gets an isomorphism

H,(C;M)— H,(D;M)

on homology with coefficients. Similarly if C' — D is a homotopy equivalence of
complexes of left R-modules, one get an isomorphism

H"(D; M) — H"(C; M)

on cohomology with coefficients.
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Definition. A complex C'is contractible if it is homotopy equivalent to the zero
complex, or equivalently if Ids is null-homotopic.

Proposition. If A is abelian, a complex is contractible if and only if it is acyclic
(i.e. exact) and all of the short exact sequences

0= 27(C) 5 cm %y grri(oy S 0
are split.

Proof. We do it for R-Mod. If C'is contractible, then it is quasi-isomorphic to the
zero complex, so it is acyclic. Now Id¢ is null-homotopic, so there are h™ : C™ —
C"! with

Iden = K" g + d ' R"

Let s"*!: B"T(C) = Z"™(C) — C™ be the restriction of h"*!. If x € B"(C),
then

= ldenii(w) = ("2dEH + deh™) (x) = dgh™ ! (2) = dgs™ (z)

so s"T! is a section for the short exact sequence 0 — Z"(C) — C™ — B"*}(C) — 0.
Now suppose that C' is acyclic and the short exact sequences are all split, with
sections s"t!: B"T(C) — C™. If x € C", then x — s"T'd}(x) € Z™(C) = B"(C),
so we can define a homomorphism A" : C"* — C"~! by

R (z) = s"(x — " T dR(2)).
Then
(W1 4 i ) (o) = 5 (d(x) — 25 (d ) + di s (o — 5 ()

= s"MdL(2) + (v — " R (2) = .

Thus C is contractible. O
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4 Resolutions, Ext and Tor

4.1 Projective and injective resolutions

Definition. We suppose that A is an abelian category which has enough projec-
tives, meaning that for every object M there is an epimorphism from a projective
object to M, for example R-Mod.

A projective resolution of M is an exact sequence

PP RS M0

with the P; projective. It is equivalent to give a non-negative chain complex P
of projectives and a quasi-isomorphism P — M (with M considered as a chain
complex in degree 0),

> P > P )PU 0 >
> 0 > 0 > M > 0 > L

The syzygies of M with respect to this projective resolution are the objects

Ker(e : Py — M) (n=1)

Q.M =1Im(d, : P, - P,_1) =
Ker(dn_l N A Pn_g) (n > 1)

and QoM = M. Thus there are exact sequences
0— QM — P, —Q,M — 0.

Note that object module has many different projective resolutions. Choose any
epimorphism € : Py — M. This gives ;M. Then choose any epimorphism d; :
P, — Ker Q, M, then any epimorphism dy : P, — QoM etc.

Dually, suppose that A has enough injectives, meaning that every object has a
monomorphism to an injective object. An injective resolution of an object X is an
exact sequence

0—=X—=1"=>T" =1 — ..

with the I" injective. The cosyzygies are Q"X = Im(I"~! — I") (and ), so
0— Q"X — I"— Q"X — 0.

Injective resolutions in A are exactly the same as projective resolutions in A.
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Theorem (Comparison Theorem). Given projective resolutions € : P — M and
¢ : P'— M', any morphism f : M — M’ can be lifted to a morphism of projective
resolutions

p—2sp 2y p s M > 0
921 91\]/ gol fl
Pt om0

or equivalently to a morphism of complexes g : P — P’ with € g0 = fe. Moreover
g 1s unique up to homotopy.

Proof. Consider the diagram with exact rows

0 — WM > By > M > 0
ngl Qol fl
0 —— M > P} M’ > 0.

Since P, is projective and Pj — M’ is an epimorphism, there is a morphism g
making the right hand square commute. Then there is an induced morphism €2,g¢
making the left hand square commute.

Now the same argument gets g, and {2y¢:
0 —— QoM > Py >y OO M —— 0

S

0 —— QuM’ > P/ s WM —— 0

ete.

To show that any two lifts are homotopic, it is equivalent to show that any lift ¢
of the zero morphism M — M’ is null-homotopic. Say

p-%2.p "y p v M s 0
gzl gll gol OJ
P2 p O 0

Since €go = 0 we have Im(gg) € Ker(¢’) = Q. M’, then since P{ — M’ is an
epimorphism, gg lifts to a morphism hq : Py — P with d{hg = go. By induction
we find morphisms h,, : P, — P, for n > 0 with g, = d,, by + hy_1d,. Having
found hq, ..., h,_1, we have

dfn(gn - hn—ldn) = gn—ldn - d;hn—ldn == (gn—l - d;lh'n—l)dn

58



This is zero both if n = 1 or n > 1. Thus Im(g,, — hy,—1d,,) € Q1 M’. Thus it lifts
to a morphism g, : P, — P} ;. O

Corollary. If e : P — M and € : P' — M are projective resolutions of M, then
there is a homotopy equivalence g : P — P" with € gg = €. Moreover g is unique up
to homotopy.

Proof. The identity Id,; lifts to a morphism ¢ : P — P’ and to a morphism
g : PP — P. Now ¢'g — Idp is a lift of the zero morphism M — M, so is null-
homotopic, and so is g¢’ — Idp:. O

Lemma (Horseshoe Lemma). Given a short exact sequence
0= ML ML M -0

and projective resolutions P' — M' and P" — M", we can find a commutative
diagram

0 0 0
— P — P SV 0
() (5) /
— s PleP! — PioP) M 0
0 1) 0 1) g
— o — P L y 0
0 0 0

in which the middle row is a projective resolution of M.

Proof. Since g is an epimorphism and P is projective, we have €’ = gh for some
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h: Py — M. Then we get a commutative diagram

0 0
P <M » 0
ol i
PPy YNy » 0
© % g
pr s M ——0
0 0

By the snake lemma, the sequence of syzygies 0 — QM — QM — QM — 0 is
exact. Now iterate. O]

4.2 Derived functors

Definition. Suppose F': A — B is a right exact functor between abelian categories
and A has enough projective. For any M € ob(.A), we fix a projective resolution
P — M. For n > 0, the nth left derived functor of F' is the functor L,F : A — B
given by

L.F(M) = H,(F(P)),

the nth homology of the chain complex
o> F(Py) = F(P) —» F(Py) — 0

A morphism f : M — M’ lifts to a morphism of projective resolutions g : P — P/,
unique up to homotopy. Then F(g) is a morphism : F(P) — F(P’), unique up
to homotopy, so it induces unique morphisms H,(F(P)) — H,(F(P')), that is
L,F(M)— L,F(M’). This makes L,F a functor.

Proposition. (i) L,F(M) is independent of the projective resolution of M.

(i) L, F(M) =0 forn <0 and LoF(M) = F(M).

(i1i) L,F(M) =0 for M projective and n > 0.

(iv) Any short exact sequence 0 — M' — M — M" — 0 induces a long exact
sequence

oo LyF(M”) = LiF(M') = LiF(M) = LiF(M") = F(M') = F(M) = F(M")
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Proof. (i) Any two projective resolutions P, P’ of M have a homotopy equivalence
P — P'. Thus F(P) — F(P’) is a homotopy equivalence, so a quasi-isomorphism.
Thus H,(F(P)) = H,(F(P")).

(ii) Since P is a non-negative chain complex, so is F(P), so L,F(M) = 0 for
n < 0. Since F' is right exact, the exact sequence P, - Py — M — 0 gives an

exact sequence
F(P)— F(P) — F(M) — 0,

so Hy(F(P)) 2 F(M).
(iii) If M is projective it has a projective resolution with Py = M and P; = 0 for
1> 0.

(iv) Given an exact sequence 0 — M’ — M — M"” — 0, by the Horseshoe Lemma
we get an exact sequence of projective resolutions 0 — P* — P — P” — 0. Since
the sequences 0 — P! — P, — P! — 0 are split, they stay exact under F', so we
get an exact sequence of complexes

0— F(P')— F(P)— F(P")—=0
and hence the long exact sequence on homology. O]

Remark. Variations. Replacing A by A% and/or B by B, and noting that a
functor A°? — B is the same thing as a functor A — B, we get the following
variants.

Right exact Left exact
Covariant, F': A — B done (b)
Contravariant, F' : A% — B (a) (c)

(a) If F': A°? — B is a right exact functor and A has enough injectives, then the
nth left derived functor L, F : A°? — B is defined by L, F'(M) = H,(F(I)) where
M — I is a fixed injective resolution of X. A short exact sequence 0 — M’ —
M — M" — 0 induces a long exact sequence

coo = LoF (M) = LiF(M") = LiF(M) = LiF(M') —» F(M") = F(M) — F(M') — 0.
(b) If F: A — B is a left exact functor and A has enough injectives, then the
nth right derived functor R"F : A — B is defined by R"F (M) = H"(F(I)) where

M — I is a fixed injective resolution of X. A short exact sequence 0 — M’ —
M — M"” — 0 induces a long exact sequence

0— F(M)— FM)— F(M") = R'FM') = R'F(M) - R*"F(M") — R*F(M') — ...
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(c) If F: A% — B is a left exact functor and A has enough projectives, then the
nth right derived functor R"F' : A% — B is defined by R"F(M) = H"(F(P))
where P — M is a fixed projective resolution of M. A short exact sequence
0—> M — M — M"” — 0 induces a long exact sequence

0— F(M")— F(M)— F(M') = R'F(M") - R'F(M) — R'"F(M') = R*F(M") — ...

Example. If X is topological space, there is a category Sh(X) of sheaves of abelian
groups on X. It is a Grothendieck category, so has enough injectives. The global
section functor

I'(X,—): Sh(X) = Ab

is left exact, so it has right derived functors H"(X, —) = R"I'(X, —). This is sheaf
cohomology. For a nice enough topological space (locally contractible), one has

H™(X,Zx) = H"

sing

(X;7Z),

where Zx is the constant sheaf on X and the right hand side is singular cohomology
with coefficients in Z.

4.3 Ext

Definition. For each R-module M, fix a projective resolution P — M. Given an
R-module X, we define Ext, (M, X) to be the cohomology of the cochain complex

-+ — 0 — Hompg(Fy, X) — Homg (P, X) — Homg(P, X) — ...
That is,
Exty(M,X) = H"(P; X) = H"(Homg(P, X)) = (R" Homg(—, X))(M)
using the right derived functors of the left exact functor
Homp(—, X) : R-Mod” — Ab.
The results about derived functors give:

Proposition. (i) Ext% (M, X) is independent of the projective resolution of M.
(ii) Ext% (M, X) = Homg(M, X).

(111) Extly (M, X) =0 for M projective and n > 0.

(iv) Any short exact sequence 0 — M' — M — M" — 0 induces a long exact
sequence

0 — Homg(M", X) — Homg(M, X) — Homg(M', X) —
Exty(M”, X) — Extp(M, X) — Exth(M', X) — Exth(M”, X) — ...
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Further properties.

Proposition. (i) By definition Extl (M, X) is a contravariant functor in M, but
it is also a covariant functor in X. If R is a K-algebra (e.g. K =7 for a ring),
we get a bifunctor

Ext}(—,—) : R-Mod” x R-Mod — K-Mod

which is K-linear in each argument.
(11) Exth (M, X) =0 forn >0 and X injective.
(111) A short exact sequence 0 — X' — X — X" — 0 induces a long exact sequence

0 — Hompg (M, X') — Hompg(M, X) — Homg(M, X") —
Extp(M, X') — Exty(M, X) — Extp(M, X") — Exth(M, X') — ...

Proof. (i) Let P — M be a projective resolution of M. A morphism X — X’
induces a morphism of complexes Hompg(P, X) — Hompg(P, X’), and hence mor-
phisms Extp, (M, X) — Extj(M, X’).

If R is a K-algebra, then any space Homg (M, X) is a K-module, and an morphism
M — M'" or X — X' induces a morphism of K-modules. Now we need that if
X — X' and if M — M’, then the square

Ext"(M', X) —— Ext"(M, X)
Ext™(M', X) —— Ext™(M, X')

commutes. This holds because if P — P’ is a lift of M — M’, then the square of

complexes
Hom(P', X) —— Hom(P, X)

| l

Hom(P', X') —— Hom(P, X")
commutes.
(ii) Holds since Homp(—, X) is exact.

(iii) If P — M is a projective resolution, then since each P, is projective, one gets
an exact sequence of complexes

0 — Homp(P, X') — Homp(P, X) — Hompg(P, X") — 0.

This induces a long exact sequence on cohomology. O
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Theorem. If0 — X — I° — I' — I? — ... is an injective resolution of X, then
one can compute Ext, (M, X) as the nth cohomology of the complex Hompg(M, I):

0 — Homp(M, I°) — Homp(M, I') — Homp(M, I?) — ...
Proof. Break the injective resolution into exact sequences
02X ="' QMY =0
for i > 0 where Q°X = X. One gets long exact sequences
0 — Homp(M, Q' X) — Homp(M, I') — Homp(M, Q" X)
— Extp(M,Q'X) — 0 — Extp(M, Q" X)

— Exth(M, Q' X) = 0 — Exth(M, Q7 X) ...

SO
EXt}%(Ma QlX) = COker(HomR(M, Il) — HOInR(M, QZ+1X))

and ' '
Ext’, (M, Q1 X) = Ext}H (M, Q'X)

for j > 1. Thus (it is called dimension shifting)
Exth (M, X) = Ext™ (M, Q'X) = ... = Exth(M, Q"' X)

=~ Coker (Homp(M, I"™") — Hompg(M, Q" X))

B Homp (M, Q" X)
~ Im(Hompg(M, I"~1) — Homp(M,Q"X))

Now 0 — Q"X — I™ — I""! is exact, hence so is

0 — Homp(M, Q" X) — Homp(M, I") — Homg(M, I"),
so we can identify

Ker(Hompg (M, I") — Hompg (M, I"*1))

Ext™ (M, X)
<M ) = A Homp(M, 1) = Homp (M, I7))

which is the cohomology in degree n of the complex Hompg (M, I). O]

Remark. We have defined Ext; (M, X) as the right derived functor R" Hompg(—, X)
applied to M. Instead one can consider the right derived functor R" Homg(M, —)
applied to X. The theorem shows that you get the same result. With more care
one can show that the resulting bifunctors are isomorphic.
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Examples. (1) If R is a semisimple (artinian) ring then all short exact sequences
of R-modules are split exact, so all modules are projective and injective. Thus

R e

(2) If R is a pid and 0 # a € R then R/Ra has projective resolution 0 — R =
R — R/Ra — 0. Thus Ext;(R/Ra, X) is the cohomology of the complex

o= 0— Hom(R, X) % Hom(R, X) =0 — ...
that is,

= 0= X B X 50—

so Ext%(R/Ra,X) = Hom(R/Ra,X) = {z € X : ar = 0}, Extp(R/Ra, X) =
X/aX and Exty(R/Ra, X) =0 for n > 1.

(3) Let R = K[z]/(2*) with K a field. Any finitely generated module is a direct
sum of copies of K (with = acting as 0) and R. The module K has projective
resolution

RS RS R— K —0.

Now Hompg(R, K) = K, and we get Extly (K, K) = K for all n > 0.

4.4 Description of Ext! using short exact sequences

Definition. Two short exact sequences &, ¢’ with the same end terms are equivalent
if there is a map 6 (necessarily an isomorphism) giving a commutative diagram

£:0 y L M y N 0
|l
€0 y L M y N y 0

It is easy to see that the split exact sequences form one equivalence class.

Definition. For any short exact sequence of modules
E:0—=L—->M—=>N-=0

we define an element f € Ext'(N, L) as follows. The long exact sequence for
Hom(N, —) applied to & gives a connecting map Hom(N, N) — Ext'(N, L), and &
is the image of Id under this map.

One can show that é is also the image of Id;, under the connecting map Hom(L, L) —
Ext!(N, L) in the long exact sequence obtained by applying Hom(—, L) to &.
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Theorem. The assignment £ — é gives a bijection between equivalence classes of
short exact sequences 0 — L — M — N — 0 and elements of Extp(N, L). The
split exact sequences correspond to the element 0 € Extlllz(]\f7 L).

Proof. Fix a projective resolution of N, and hence an exact sequence
0 UNL P SN

An exact sequence £ gives a commutative diagram with exact rows and columns

0
Hom(N, N)
0 —— Hom(PR,L) —— Hom(Py, M) —— Hom(Py,N) — 0

” |

0 —— Hom(4 N, L) —— Hom(QyN, M) —— Hom({4 N, N)

Ext'(N, L)

0

and the connecting map Hom(N, N) — Ext'(N, L) is given by diagram chasing,
so by the choice of maps «, § giving a commutative diagram

0 —— 4N > Py N > 0

S

Ty —2 s N s 0.

E:0 —— L

Then € = [a] where [...] denotes the map Hom(Q,N, L) — Ext'(N, L).

Any element of Ext!(IV, L) arises from some &. Namely, write it as [a] for some
a € Hom(2, N, L). Then take £ to be the pushout

0 — N y P, N y 0
£:0 —s L y M N y 0.
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Now if &, & are equivalent exact sequences one gets a diagram

0 —— N > By s N > 0
Lol

E:0 —— L M > N > 0

&:0 —— L > M’ > N > 0.

so £ and & correspond to the same map «, so é = é’ . If two short exact sequences
¢, ¢ give the same element of Ext'(N, L) there are diagrams with maps «, 5 and
o/, and with o — o/ in the image of the map 6* : Hom(P,, L) — Hom({2; N, L).
Say a — o’ = ¢0 with ¢ : Py — L. Then there is also a diagram

0

0 —— 4N > By > N > 0

el

€0 —s L Lo , N » 0.

This is a pushout, so by the uniqueness of pushouts, £ and & are equivalent. [

Remark. Homomorphisms L — L' and N” — N induce maps Ext'(N,L) —
Ext'(N, L') and Ext'(N,L) — Ext'(N”,L). One can show that these maps cor-
respond to pushouts and pullbacks of short exact sequences. For pushouts this
follows directly from the definition. For pullbacks it needs more thought.

Theorem. The following are equivalent for a module M.
(i) M is projective

(i1) Ext"(M, X) =0 for all X and all n > 0.

(iii) Ext' (M, X) = 0 for all X.

The following are equivalent for a module X .
(1) X is injective

(11) Ext" (M, X) =0 for all M and all n > 0.
(i1i) Ext' (M, X) = 0 for all cyclic modules M.

Proof. (i)=-(ii)=-(iii) are clear.

(iii)=-(i) using the characterization of a projective module as one for which all short
exact sequences ending at the module split. If Ext'(R/I, X) = 0 for all left ideals
R, then by the long exact for Hom(—, X) applied to 0 - I — R — R/I — 0,
we get a surjective map Hom(R, X) — Hom(/, X), so X is injective by Baer’s
criterion. [l
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4.5 Projective, injective and global dimensions

Proposition/Definition. Let M be a module and n > 0. The following are
equivalent.

(i) There is a projective resolution 0 — P, — -+ — Py — M — 0

(11) Ext™(M, X) =0 for allm > n and all X.

(iii) Ext" ™ (M, X) = 0 for all X.

(iv) For any projective resolution of M, we have 0, M projective.

The projective dimension, proj.dim M, is the smallest n with this property (or oo
if there is none).

Let X be a module and n > 0. The following are equivalent.

(i) There is an injective resolution 0 — X — I° — -+« — [" — (

(i1) Ext™(M, X) =0 for allm >n and all X.

(i4i) Ext" ™ (M, X) = 0 for all cyclic M.

(iv) For any injective resolution of X, we have Q"X injective.

The injective dimension, inj.dim X, is the smallest n with this property (or oo if
there is none).

Proof. (i)=-(ii)=-(iii) are trivial. For (iii)=-(iv) let P — M be a projective resolu-
tion. For any X, dimension shifting gives

0= Ext"™ (M, X) = Ext"(, M, X) = ... =2 Ext'(Q,M, X),
so 2, M is projective. Then
0—-QM—>PFP, 1y —--—>F—>M-=0
is also a projective resolution of M, giving (i). O
Lemma. If0 — L — M — N — 0 is ezxact, then
proj. dim M < max{proj.dim L, proj. dim N},
inj. dim M < max{inj.dim L, inj. dim N }.
Proof. For any X the long exact sequence for Hom(—, X') gives an exact sequence
oo = BExt"H(NV, X)) — Ext"™ (M, X) — Ext"™(L, X) — ...
and the outer terms are zero for n = max. O]
Definition. The (left) global dimension of R (in NU {oco}) is
gl.dim R = sup{proj.dim M : M € R-Mod}
=inf{n € N: Ext""" (M, X) =0V M, X}
= sup{inj.dim X : X € R-Mod}
=inf{n € N: Ext"*' (M, X) =0V M, Xwith M cyclic}
= sup{proj.dim M : M cyclic}.
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Examples. (1) gl. dim R = 0 < all modules are projective < all short exact se-
quences split < every submodule has a complement < R is a semisimple (artinian)
ring.

(2) If R is a f.d. algebra over a field, then
gl. dim R = max{proj.dim S : S is a simple module}.

Namely, call the maximum m. Using the lemma and induction on dim M we get
proj.dim M < m for any f.d. M. Thus proj.dim M < m for all cyclic M. Thus
gl.dim R < m. But clearly m < gl. dim R.

(3) Let R = Klx]/(x?) with K a field. Then K becomes an R-module with z acting
as 0, and we saw that Extj (K, K) = K for all n > 0. Thus proj. dim K = oo, so
also gl. dim R = oo.

Proposition/Definition. A ring R is said to be (left) hereditary if it satisfies
the following equivalent conditions

(1) gl.dim R < 1 (left global dimension).

(i1) Every submodule of a projective (left) module is projective.

(111) Every left ideal in R is projective.

Proof. (1)=(ii) If N is a submodule of P then for any X, by the long exact sequence,
Ext'(N, X) = Ext*(P/N, X) = 0.

(if)=(iii) Trivial.

(iii)=-(i) For any cyclic module R/I we have proj.dim R/I < 1. O
Example. A principal ideal domain is hereditary. As discussed in the section on
projective modules, if R is an integral domain, then a non-zero ideal is projective
if and only if it is invertible. Thus R is hereditary if and only if every nonzero

ideal is invertible, and as mentioned before, this is if and only if R is a Dedekind
domain.

Definition. Let @ = (Qo, @1, s,t) be a quiver with finite vertex set Qo. If R is a
commutative ring, the path algebra R() is the free R-module with basis the paths
in @), including a trivial path e; for each vertex. For example the quiver

14592253

has paths ey, es, €3, a,b,ba. It becomes an R-algebra with multiplication given by
concatination of paths, or zero if they are not compatible. For example



b'egzb, b'€1:0,
€€ = €1, 61'62:0.
Thus the e; are orthogonal idempotents and the 1 is Zier €;.

Note that if i € @y then RQe; is an R(Q-R-bimodule, and it is a projective left
R@Q-module.

Proposition. If M is a left RQ-module, there is an exact sequence of RQ)-modules

0= @D RQeva) ®r esiyM L+ @ RQe; @r e;M L M — 0

acQ1 i€Qo

where t@m € RQe; @ e;M 1s sent by g to xm and where x @m € RQeyq) @ eyq) M
is sent by f to xa®@m —x @ am, where the summands are in RQegq) @ eya)M and

RQeya) ® eiq) M.
In particular, if R is a field, this is a projective resolution of M, so gl. dim RQ) < 1.

Proof. Clearly gf = 0. We show that it is contractible as a complex of R-modules.
Let the middle term be Cj and the left hand term C4. Consider the R-module
maps s : M — Cy and r : Cy — C given by

s(m) = Z e; ® e;m
1€Qo
and for m € e;M and a path starting at ¢, by r(e; ® m) = 0 and

n

r(ajas...a, ® m) = Z(al 1 ® Qg .. Ay,
=1

where the jth term is an element of RQeéyq,) ®r €sa;)M. It is straightforward to
check that gs = Idy;, fr+ sg =1dg, and rf = Id¢,. O

Lemma (a version of Shapiro’s Lemma). If R — S is a ring homomorphism and
Sk is flat, then for an R-module M and an S-module X we have

Ext?(S @ M, X) = Ext’ (M, pX).

Proof. If P is a projective R-module, say a direct summand of RY), then S ®p P
is direct summand of S ®z RY = SU) 50 S ®p P is a projective S-module.
Now if

o= P> F—=M-=0

is an R-module projective resolution of M, then

= SOr P = SQrFPh =+ S®rM —0
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is an S-module projective resolution of S ®pg M. Thus Exts(S ®xr M, X) is the nth
cohomology of the complex

HOIIls(S QR P, X) = HOIIlR(P, HOII15<S, X)) = HOIIIR(P, RX)
which is Ext’ (M, zX). O

Theorem (Hilbert’s Syzygy Theorem). For any (commutative) ring R we have
gl. dim R[z| = gl. dim R+1. In particular, if K is a field, gl. dim K|xq, ..., 2, = n.

Proof. (i) Let S = R[z]. For any S-module M there is an exact sequence

05 S@OrML SopME M0

where ¢ is multiplication and f(s ® m) = sz ® m — s ® xm. This is the case of a
path algebra given by a loop.

(i) gl. dim S < 1+ gl.dim R. If M and X are S-modules, the long exact sequence
for Homg(—, X) applied to the exact sequence of (i) gives

Ext%(S @p M, X) — Extd(S ®p M, X) —— Ext (M, X) —— Ext?™(S ®r M, X)
Extph(M, X) Extph(M, X) Ext™ (M, X)

Thus ExtZt' (M, X) =0 for n > gl.dim R, so gl.dim S < 1 + gl. dim R.

(iii) gl.dimS = 1+ gl.dim R. Let M and X be R-modules, considered as S-
modules with = acting as 0. Let X — [ an R-module injective resolution. We get
cosyzygies 0 — QX — I' — Q71X — 0. We consider these also as S-modules
with = acting as 0. If U is an S-module, applying Homg(U, —) gives long exact
sequences

0 — Homg (U, Q2 X) — Homg(U, I') — Homg(U, Q"+ X)

— Extg(U, Q' X) — Extg(U, I') — BExts (U, Q1 X)
— ExtZ(U, Q' X) — Ext3(U, 1) — ...

Thus we get morphisms
Homg (U, Q" X) — Extg(U, Q"' X) — Ext3(U, Q" ?X) — .-+ — Exta(U, X).
This gives a natural transformation of contravariant functors

Homg(—, Q2" X) — Extg(—, X).
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Now if U = S @ M then Extl(U, I') = Ext?,(M, I'), which is zero for j > 0,
and then the morphism Homg(U,Q"X) — Ext§(U, X) is surjective since, as in
dimension shifting, it is a composition

Homg (U, Q" X) — ExtL(U, Q" 1X) = Ext3(U, Q" 2X) = ... = Ext?(U, X).
Thus the map f gives a commutative square
Homg(S ®@ M,Q"X) —— Exte(S® M, X)
| |
Homg(S ®@ M,Q"X) —— Ext3(S® M, X)

with surjective horizontal maps, where f’ is composition with f and where A is the
morphism in (ii). Now

f(@)s@m) =of(s®@m) = d(sz @m — 5@ wm) = ¢p(xs @m) = zd(s ©m) =0

since = acts as zero on M and Q"X. Thus f’ is zero. Since the horizontal maps
in the square are surjective, h is zero. Thus the exact sequence in (ii) gives an
embedding

Exth(M, X) = Ext(S @ M, X) — Exta™ (M, X)

so if gl. dim S = n, then gl.dim R < n — 1, that is, gl. dim S > 1 4 gl. dim R. O

4.6 Tor

Definition. Given a right R-module M, a flat resolution of M is an exact sequence
o= P =P =P —=M—=0

with the P; flat, or equivalently a non-negative chain complex P of flat right R-
modules and a quasi-isomorphism P — M.

Given a flat resolution P of M and a left R-module X, we can consider H,(P; X) =
H, (P ®g X), nth homology of the complex

3> PR X 5> PLRr X > Fbr X — 0.

Since any projective module is flat, any projective resolution of M is a flat resolu-
tion. Fixing a projective resolution P — M, we define

Tor}(M, X) := H,(P; X) = Hy(P ©r X) = (Ly(— @ X))(M),
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the nth left derived functor of the functor
— ®pr X : Mod-R — Ab

evaluated at M. In general Tor®(M, X) is a Z-module. If R is a K-algebra, it is
a K-module. If R is a commutative ring, it is an R-module.

Remarks. (1) Since Tor (M, X) is a left derived functor, we know that it is
functorial in M, so a morphism M — M’ of right R-modules induces a morphism
Torf (M, X) — Torf(M’', X). Also Torf(M,X) = M ®x X, and a short exact
sequence 0 = M’ — M — M" — 0 of right R-modules gives a long exact sequence
oo = Torf(M", X)) — Tor®(M', X) — Torf (M, X) — Tor®(M", X) —
—)M/®RX—>M®RX—>M”®RX—>O.

(2) If P is the chosen projective resolution of M, then a homomorphism X — X’ of
left R-modules induces a morphism PRr X — P®r X' of complexes of Z-modules,
and hence a morphism Tor(M, X) — Tor®(M, X'), so Tor®(M, X) is functorial
in X. Also, a short exact sequence 0 — X’ — X” — 0 of left R-modules induces
a short exact sequence

0 PRpX - P X >PerX"—=0
of complexes of Z-modules, and hence a long exact sequence on homology
oo = Torf (M, X") — Torf(M, X') — Torf(M, X) — Torf(M, X") —
S MpX' - MrX —- MerpX"—0.

(3) If @ — X is a flat resolution of X, then analogous to the theorem in section
4.3 showing that Ext is a derived functor of its second argument, we get

Torf(M, X) = H,(M ®r Q).
In particular, taking () to be a projective resolution of X, this shows that

Tor, (M, X) = (Lu(M ®p —))(X).

(4) Comparing (3) with the definition of Tor, it follows that Tor is symmetrical with
respect to the two arguments. We can state this formally as a natural isomorphism

Torf (M, X) = Tor®™" (X, M)
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where X is a left R-module, or equivalently a right R°’-module and M is a right
R-module, or equivalently a left R°’-module.

(5) It follows from (3) and (4) that
Tor® (M, X) = H,(P ®r X)
where P is any flat resolution of P of M.

Theorem. The following are equivalent for a right R-module M.

(i) M is flat

(ii) Tor® (M, X) = 0 for all X and all n > 0.

(ii) Torf (M, X) = 0 for all X.

Proof. (i)=-(ii) since M is its own flat resolution. (ii)=-(iii) is trivial. (iii)=(i) The
long exact sequence shows that M is flat. O
Proposition /Definition. Let M be a right R-module and n > 0. The following
are equivalent.

(1) There is a flat resolution 0 — P, — -+ — Py — M — 0

(i) Tor® (M, X) =0 for all X and m >n

(iii) Torf 1 (M, X) =0 for all X.

(iv) For any flat resolution of M, we have 2, M flat.

The flat dimension flatdim M is the smallest n with this property (or oo if there is
none).

Proof. As for projective dimension. n
Definition. The weak dimension of R is

w.dim R = sup{flatdim M : YM} = inf{n € N: Torf (M, X) =0V M, X}.
It is left /right symmetric.

Proposition. (i) For M a left R-module, flatdim M < proj.dim M, with equality
if M is finitely generated and R is left noetherian.

(i1) w.dim R < gl. dim R, with equality if R is left noetherian.

(11i) (Auslander) If R is left and right noetherian, the left and right global dimen-
sions of R are equal.

Proof. (i) The inequality holds since any projective resolution is also a flat reso-
lution. If R is left noetherian and M is f.g., we have a projective resolution with
all P, finitely generated. Then flatdim M < n implies €2, M is flat. Since it is also
finitely presented, it is projective. Thus proj.dim M < n.

(ii) The inequality follows from the first part of (i). For equality use that
gl. dim R = sup{proj.dim M : M cyclic} = sup{flatdim M : M cyclic} < w.dim R
(iii) Clear. O

74



Recall that if R is an integral domain, then any flat R-module is torsion-free (and
these are equivalent if R is a pid). We also have the following (possibly justifying
the name “Tor”).

Proposition. If R is an integral domain, then Torf(M, X) is a torsion R-module
for any R-modules M and X.

Proof. Note that since R is commutative, Torf(M, X) is an R-module.

Recall that a left R-module T is torsion if there is some 0 # ¢t € T and some
0 # a € R with at = 0. In fact T is torsion & K ®g T = 0 where K is the field
of fractions of R. Namely, suppose 0 # t € T. If at = 0 with a # 0, then for
any A € K we have A®t = A\a™! ® at = 0. Conversely if there is no such a, then
the map R — M, r — rt is injective. Since K is flat as an R-module we get an
injection K = K Q@R - K®T,s0 K®T #0.

Now let 0 = L — F — X — 0 be exact with F' flat. Then we get
0— Torf (M, X) > M®rL - MrF - M®®rX — 0.
Thus since K is flat over R we get an exact sequence
0= K@pTorf(M,X) > K@M ®rL - KQrM@rF — K®@r Mo X — 0.

But K ®z M is K-module, with K a field, so it is isomorphic to a direct sum of
copies of K, so flat over R, so the sequence

0> KRQrRMIRL > KR MQQrF — K®r M ®r X — 0.

18 exact. O

4.7 Universal coefficient theorem

Lemma. Fvery complex of projective modules for a hereditary ring is a direct sum
of complexes of the form

...0%P$Q—>O—>...
with P and @ projective and 6 injective.
Proof. Given a complex C, the exact sequence
0— 2"(C) = ™ L BH(C) - 0

splits since B"™(C') C C™*!) so it is projective. Thus C™ = Z™(C) @ U™ for some
complement U". Then C' is the direct sum of the complexes

s 0 U 2N C) 50
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Theorem. If R is left hereditary, C' is a chain complex of projective left R-modules
and M 1is a left R-module, then there are split exact sequences

0 — Exty(H, 1(C), M) — H"(C; M) — Hompg(H,(C), M) — 0.

If R is right hereditary, C is a chain complex of projective right R-modules and M
15 a left R-module, then there are split exact sequences

0— H,(C)®r M — H,(C; M) — Torf(H,_,(C), M) — 0.

Proof. We prove the result for homology with coefficients. We write the cycles,
boundaries and homology of the chain complex C' as Z,, B, and H,. Tensor
products are over R.

(1) There is a natural map H, ® M — H,(C ® M). The composition

Zoa M2 oM 22 0 oM
is zero, so we get a natural map

Now we have an exact sequence

B, M —7Z, M — H, M — 0
and the composition

B,oM— Z,M — H,(C® M)

is zero, so we get a map

H,(C)® M — H,(C® M), Z[CZ] ® m; — [Z ¢ @ my).

% %

(2) There is a natural map H,,(C; M) — Torf(H,_,, M). As in the lemma above,
B,,_5 is a submodule of C,,_5, so projective, so the exact sequence

0—>Z,-1— Cn—l dn—71) B, —0

splits. Thus the map
Zn—l ® M — Cn—l X M
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is injective. Also Z,_; is projective and
0—-B,1—~%2,.1—H,.1—0
is exact, so we get an exact sequence
0 — Torf(H,_\,M) = By_1 ®M = Z, 1 @M — H,_y @ M — 0.

Thus we can identify Tor®(H,_,, M) with the kernel K of the natural map B,_; ®
M — Z, 1 ® M. We get a map

Namely >, d,(¢;) ®m; =0in C,,_y ® M. Thus ) . d,(¢;) ®m; =01in Z,,_; ® M.
Thus, considered as an element of B,_; ® M, it is an element of K. This induces
a map

H,(C@M) =K, [) c@ml—Y dc)@m

since B, (C'® M) is spanned by elements of the form d,,11(c) ® m, and this is sent
to 0.

(3) By the lemma, any chain complex is a direct sum of two term complexes, so it
suffices to prove the result for C' of the form

---—>O—>Pi>Q—>O—>...

with P and () projective and 6 injective. Say P is in degree ¢ and @) in degree i — 1.

We have an exact sequence
0O—-P—>Q—>H,_1—0

SO
0— Torf(H;_y,M) = POM - Q&M — Hi_1 ® M — 0.

Now the wanted sequence
0— H,®M — H,(C; M) — Torf(H,_,, M) =0
is as follows: for n =i it is
0 — 0 — Torf(H;_y, M) — Torf(H;_,, M) — 0.

forn=17—11tis
0O—>H,_ 1M —-H, 1M —0—0

and for all other n it has all terms zero. This is split exact in each case. O
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5 Applications to commutative algebra and group
actions

5.1 Some preliminary results on prime ideals

We begin with some generalities for a commutative ring R.
Lemma (Prime avoidance). If J and I; are ideals with
J C U I;
i=1
and at least n — 2 of the I; are prime, then J C I; for some 1.
For a proof, search the internet for “Stacks project Lemma 10.15.2”.

Lemma (Support). Suppose M is a f.g. R-module and P is a prime ideal in R.
Let Rp and Mp be the localizations with respect to the multiplicative set S = R\ P.
Then Mp # 0 if and only if Ann(M) C P.

Proof. If Ann(M) ¢ P, there is some element € Ann(M) \ P. Then r kills Mp,
but it is invertible in Rp, so Mp = 0.

If Ann(M) C P, then we have an epi R/ Ann(M) — R/P. A generating set of
M gives a mono R/ Ann(M) — M". Localizing at P and using exactness, we get
Mp #0. O

Definition. Recall that the height of a prime ideal P in R is
ht P = sup{d > 0 : there are distinct prime ideals Py, C P, C --- C Py =P }
The Krull dimension of R is
Kdim R = sup{ht P : P a prime ideal in R}
The Krull dimension of a f.g. R-module M is defined to be
Kdim M = Kdim(R/ Ann(M)).

Theorem (Krull’s height theorem). In a noetherian ring, any minimal prime over
an ideal generated by n elements has height < n. Conversely any prime of height
n 18 minimal over some ideal generated by n elements.
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Proof. The first part is proved in my Algebra II notes, or Stacks project Lemma
10.60.12. (Note that every prime ideal containing an ideal I contains a minimal
prime over I, and in a noetherian ring there are only finitely many minimal primes
over I, see my Algebra II notes, or Stacks project Lemma 10.17.2 and Lemma
10.31.6.)

For the second part, for 0 < r < n we find by induction an ideal (z1,...,2,) C P
such that any minimal prime over it has height . This is clear for r = 0. Given
(1,...,2,_1), by prime avoidance there is an element z, € P not contained in
any of the (finitely many) minimal primes over (z1,...,2,_1). Then any minimal
prime over (z1,...,z,) has height < r by Krull’s height theorem, and height > r
since it properly contains a minimal prime over (z1,...,z,_1). O

Lemma (Associated primes). If R is noetherian and M is a f.g. R-module, then
the set of associated primes

Ass(M) := {P prime ideal in R : R/ P is isomorphic to a submodule of M}

is finite and contains the minimal primes over Ann(M). (In particular, if M # 0
then Ass(M) #0.)

For a proof see Stacks project Lemmas 10.63.5 and 10.63.8.

5.2 Regular sequences for local noetherian commutative rings

Throughout this section R is a local noetherian commutative ring with unique
maximal ideal m and residue field £ = R/m. Thus Kdim(R) is the height of m.
Also every element of R\ m is invertible, since the ideal it generates must be R.

Examples. (a) If S is a noetherian ring and P is a prime ideal in S, then the
localization R = Sp is a local noetherian ring with maximal ideal m = PSp. The
residue field R/m is the field of fractions of S/P.

For example if K is afield, S = K{z1,...,z,] and P is the maximal ideal (z1, ..., z,),
then
R=Sp={f/g: f,g€ K[xq,...,2,],9(0,...,0) # 0}.

(b) A formal power series ring K{[z1,...,z,]]. The maximal ideal is (z1,...,z,),
the set of power series with constant term 0.

(c¢) The ring of p-adic integers Zp. The maximal ideal is (p). The residue field is
7] Zp, the field with p elements.

(d) Any factor ring of a local noetherian ring is again a local noetherian ring.

Lemma (Nakayama). If M is a f.g. R-module and mM = M, then M = 0.
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Proof. In general Nakayama’s Lemma says that if M is a f.g. R-module for any
ring R and JM = M, where J is the Jacobson radical, then M = 0. Now J is the
intersection of the maximal left ideals, so in this case it is m. The proof is easy.
Suppose M # 0. Since M is f.g., by Zorn’s lemma it has a maximal submodule N.
Then M/N is simple, so J(M/N) = 0. Thus JM C N. O

Lemma (Projective covers). (i) Any f.g. module M has a projective cover.
(ii) Every f.g. projective module is free.
(111) Any f.g. module M has a projective resolution

o= P> F—-M-=0

which is minimal, in the sense that each map P; — ;M is a projective cover. It
has the property that in the complex k @r P

%Pl/mP1—>Pg/mP0—>0

the maps are all zero.
(iv) If M is f.g. R-module, then proj.dim M < n < Tor’, ,(k, M) = 0.

Proof. (i) Take a basis of M /mM as a k-vector space, and lift it to elements of M.
They give a map 6 : R* — M with the property that  : R*/mR" = k™ — M /mM
is an isomorphism. Thus M = Im(#) + mM, so 6 must be onto. Now suppose
¢ € End(R") satisfies ¢ = 6. Tensoring with k we get ¢ € End(k") with 0¢ = 0.
This implies that ¢ = 1. Now det ¢ € R and det¢ = det = 1 € k, so det ¢ ¢ m,
so det ¢ is invertible in R, so ¢ is invertible.

(ii) The projective cover of a projective module is itself, but by (i) it is free.

(iii) Construct the resolution iteratively, taking P; — €; M to be a projective cover.
Then the sequence
Py — P —QM—0

is exact, hence so is

but the map £ ® P, — k ® ;M is an isomorphism, so k ® P,y 1 — k ® P; is zero.

(iv) If proj.dim M < n, then there is a projective resloution of length n, so
Tor®, (k, M) = 0. Conversely, using a minimal projective resolution of M we

n+1
see that
0= Torf,,(k, M)  Pyy /mPoiy
so P11 =0, so proj.dim M < n. O
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Definition. Let M be a nonzero f.g. module. An element z € m is regular for M
if it is not a zero divisor on M, that is, if zm = 0 with m € M, then m = 0.

Note that since R is commutative, M is a submodule of M.

A sequence 1, xo,...,x, of elements of m is a reqular sequence for M if, for all 4,
x; is regular for the module

M/(x: M+ +z M) = M/(z1, ..., 2i-1) M.

A regular sequence is one which is regular for R.

Definition. Given z1,...,z, in R the Koszul complex C = K(x1,...,x,) is given
as follows. Let F' be the free R-module with basis by,...,b,. Then C; = A'F, the
1th exterior power of F', with basis

bj, N+ Nbj,
for j; < --- < J;, and the differential is given by
d(bj, A---Nbj,) = Z(—l)r_ll’jrbﬁ Ao Nbj Ao Aby,.
r=1

If M is an R-module, then clearly Ho(C; M) = M/(x1, ..., x,) M.

Theorem. If xy,...,x, is a reqgular sequence on M, then H;(C; M) =0 fori >0
(and the converse holds if M is f.g. nonzero and z; € m).

Proof. We just do the cases n = 1 and n = 2. We won’t need the result later. In
case n = 1, the Koszul complex C' is

0— Ry 2 R1—0

so C ®gr M is the complex
0—- M M—0,

and the assertion is clear.

In case n = 2, the Koszul complex C' is

with bl N bg — C(]lbg — ZEle, b1 — 21 and bg — Igl, so the complex C Xpr M is
0sML Mo Mo
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with f(m) = (—zom,zym) and g(mq, mg) = x1my + Toms.

Suppose that x1, x5 is a regular sequence for M. If f(m) = 0, then xym = 0 so
m = 0. If g(mq,mg) = 0, then zymy + xomg = 0. Thus xo(z1M + ms) = 0. Thus
mg € x1 M. Thus my = xym for some m. Then xi(m; +xom) = 0, so m; = —xom,
so (mqy,my) = f(m), so the complex is acyclic.

Now suppose the complex is acyclic, M is f.g. and x; € m. Let U = {m € M :
xym = 0}, a submodule of M, which by f.g. since R is noetherian. If m € U, then
g(m,0) =0, so (m,0) = f(m') for some m/, that is, m = —zom’ and zym’ = 0.
Thus m € zU. Thus U C 22U C mU. Thus U = 0 by Nakayama’s Lemma. Thus
x1 is regular on M.

Next suppose that m € M and xo(x1M +m) = x1M +0. Then xom € x; M. Thus
xom = xym’ for some m’. Then g(—m’,m) = 0. Thus (—m’,m) = f(m”) for some
m”. Thus m = xym”, so ;M +m = 1M + 0. Thus x5 is regular on M/x; M. O

Lemma (Existence of a regular element). Let M be a nonzero f.g. module.

(i) If v € m, then x is reqular on M if and only if it is not contained in any
associated prime of M.

(i1) There is some x € m which is reqular on M if and only if m is not an asso-

ciated prime of M. (Equivalently M has no submodule isomorphic to k, or also
Hom(k, M) =0.)

Proof. (i) If x € P and R/P is a submodule of M, then x(R/P) = 0, giving a
nonzero element m € M with xm = 0. Conversely, if = is not regular on M, then
N ={m € M : xm = 0} is a nonzero submodule of M, so has an associated prime
P. But then P is an associated prime of M. Now zN = 0, so z(R/P) = 0 so
x € P.

(ii) Follows from prime avoidance. O
Lemma. If M is a nonzero f.g. R-module and x1,...,x, is a reqular sequence for
M, then

Hompg(k, M/(x1,. .., x,) M) = Exthy(k, M).

Proof. We prove this for all M and all regular sequence by induction on n. The
case n = 0 is empty, so suppose n > 0. By induction

Ext}y ' (k, M) = Homg(k, M/(21, ..., 20 1)M)

and this is zero by the lemma, since z,, is regular on M/(z1,...,2,_1)M. Thus
the sequence

0—+MZM— M/xyM — 0
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gives
0 = Extly '(k, M) — Extly ' (k, M /2, M) — Ext}y(k, M) — Ext’}(k, M)
The last map is induced by multiplication by x; on M, but z; kills k, so it is zero.

Thus Ext"(k, M) = Ext™ (k, M/x,M). Again, by induction, since x5, ..., z, is a
regular sequence for M /xy M, this is Hom(k, M /(z1, ..., x,)M). O

Theorem. If x € m and M is a f.g. R-module, then
Kdim(M/xM) > Kdim(M) — 1,

with equality if x 1s reqular on M.

Proof. Let I = Ann(M) C Ann(M/xM) = J. We want
Kdim(R/I) < Kdim(R/J) + 1.

Clearly we have (I,z) C J, and in fact if P is a prime ideal containing (7, x), then
P contains J, so that Kdim(R/J) = Kdim(R/(I,z)). Namely, P contains I, so
Mp # 0. But z is an element of the maximal ideal of Rp, so Mp/xMp # 0. Thus
(M/zM)p #0,s0 J C P.

Let Kdim(R/J) = n. Thus the ideal m/(I,z) in R/(I,x) has height n. Then by
Krull’s height theorem, it is minimal over some ideal (71, ...,%,) with y; € R/I
and y; € R/(I,z). Now the ideals of R/I containing Z := [ +x are in bijection with
the ideals of R/(I,x), so the ideal m/I in R/I is minimal over (Z,yi,...,Yn), SO by
Krull’s height theorem again, m/I has height <n + 1. Thus Kdim(R/I) < n + 1.

Now suppose x is regular on M. Then x is not contained in any associated prime of
M. Thus by the lemma about associated primes, x is not contained in any minimal

prime over I = Ann(M). Thus Kdim(R/(/,z)) < Kdim(R/I). O
Corollary. Any regular sequence x1, . .., x, for a nonzero f.g. module M has length
n < Kdim M.

Definition. The depth of a nonzero f.g. module M, is the maximal length of a
regular sequence for M.

Clearly M is an R/I-module for an ideal I, then depthp,; M = depthy M.
Theorem (Rees). If M is a nonzero f.g. R-module, then
depth M = min{i > 0 : Ext'(k, M) # 0}.

Moreover any reqular sequence x1,...,x; for M can be extended to a regular se-
quence x1,...,x, of length n = depth M, so

depth M /(x1,...,x;)M = depth M — i.
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Proof. Tt suffices to show that if x4, ..., x, is a regular sequence for M which cannot
be extended to one of length n+ 1, then n is given by the formula. By assumption,
no element of m is regular on M/(z1,...,2,)M, so by the lemma on existence of
a regular element, Hom(k, M/(xq,...,2,)M) # 0, and so Ext"(k, M) # 0. On
the other hand, for i < n, the element z;y; is regular on M/(z1,...,x;)M, so
Hom(k, M/(x1,...,2;)M) = 0, so Ext'(k, M) = 0. O

Lemma (Regular elements preserve acyclicity). If C' is an acyclic chain complex
of R-modules and x is reqular on each C;, then the complex R/(x) ®g C is also
acyclic.

Proof. The complex is

e Ot J2Co Y O 2 s O J2Cy =

Say ¢ € C, and d,(¢) = 0. Then d(c) € 2C,_1, so d(c) = xc for some ¢’ € C,_;.
Then zd(c') = d(xd) = d*(c) = 0, so since z is regular on C,,_; we have d(c') = 0.
Thus since C' is acyclic, ¢ = d(c") for some ¢’ € C,. Then d(c — zc”) = 0. Thus

c—ac" =d(c") for some " € C),11. Then ¢ = d,, 41 (). O

Theorem (Auslander-Buchsbaum formula). If M is nonzero f.g. R-module and
proj.dim M < oo, then proj.dim M + depth M = depth R.

Proof. We prove this by induction on depth R. Say depth R = 0, so there is an
embedding ¢ : K — R. If proj.dim M = n > 0, then the last terms in a minimal
projective resolution of M are a monomorphism 6 : P, — P,_; with P, # 0. This
gives a commutative square

ko P, 4% prop |

i®1l i®1l

R & Pn M R X Pn—l
Now the bottom and the vertical maps are injective, hence so is the top map.
But since we used a minimal projective resolution, the top map is zero (as in the
proof of the lemma about projective covers). Also k ® P, = P,/mP, is nonzero
by Nakayama’s Lemma. Contradiction. Thus M is projective, so free, so also has
depth 0, and the formula holds.

Now suppose depth R > 0. Suppose depth M = 0. Applying Hom(k, —) to the
exact sequence 0 — )M — Py — M — 0 gives an exact sequence

0 — Hom(k, QM) — Hom(k, Py) — Hom(k, M) — Ext'(k, M)
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and we have Hom(k, P)) = 0 and Hom(k, M) # 0, so Hom(k, ;M) = 0 and
Ext!(k, QM) # 0, so by Rees’ Theorem, depth Q; M = 1. Also M is not projective,
and proj. dim ;M = proj.dim M — 1. Thus it suffices to prove the result for 2, M.

Thus we may assume that depth M > 0. Then Hom(k, R & M) = 0, so m contains
an element x which is regular for R & M, so for R and for M. Take a minimal
projective resolution

O—-F, = =F—=M=0

with P, # 0. Tensoring with R/(x), it stays exact by the lemma, so gives a minimal
projective resolution

0— P,/zP, — -+ — Py/xPy — M/xM — 0
of M/xM as an R/(x)-module. Thus
proj. dimp ,y(M/xM) = n = proj. dimz M < 0o

Also
depthp,) M/xM = depthp M/xM = depthp M — 1

by Rees’ Theorem, and
depthp(,) R2/(x) = depthy R/(x) = depthy R — 1.
Then by induction
proj. dimp .,y M/xM + depthp .,y M/xM = depthp ,, R/(z)

SO
proj.dimp M + depthpy M — 1 = depthp R — 1

giving the result. O]

5.3 Regular local rings

R is still a local noetherian commutative ring.

Proposition /Definition. Elements z1,...,z, generate m as an ideal if and only
if they span m/m? as a k-vector space, so

dimy (m/m?) = minimal number of generators of m > Kdim R.

If equality holds, R is said to be a regular local ring.
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Proof. Let I = (xy,...,1,). If I =m, then the map I — m/m? is surjective, and
since it kills any multiple az; with a € m, it follows that the x; span. Conversely,
if the z; span m/m?, then m?> + I = m. But then m(m/I) = m/I, so m/I = 0 by

Nakayama’s Lemma. The last inequality is Krull’s height theorem. ]
Example. The ring K[[zy,...,,]] is regular since it has Krull dimension n and
m = (i[)l, . ,l'n).

Lemma. (i) Any regular local ring R is an integral domain.
(i1) R is a regular local ring < m is generated by a reqular sequence.

Proof. For (ii)(<), suppose that m is generated by a regular sequence of length
n. Then n < depth R < Kdim R. On the other hand, ht m < n by Krull’s height
theorem. Thus Kdim R = n and R is a regular local ring.

We prove (i) and (ii)(=-) by induction on n = Kdim R. If n = 0, then m = 0, and
both are clear, so suppose n > 0. By Nakayama, m? # m, so by prime avoidance,
there is some element € m which is not contained in m? or any minimal prime
of R. Then m = (z,x,,...,x,) for suitable xs,...,z,. Then the maximal ideal
m/(z) of R/(z) is generated by Zs,...,T,, so Kdim R/(z) < n — 1. But by the
theorem about the Krull dimension of M/zM, we have Kdim R/(z) > n—1. Thus
Kdim R/(x) =n —1 and R/(z) is a regular local ring.

(i) Thus by induction R/(z) is a domain, so (z) is a prime ideal, so it contains a
minimal prime ideal P. Now P = zP, for if y € P, then y = ax for some a € R,
and then since x ¢ P, we must have a € P. Thus by Nakayama, P =0, so R is a
domain.

(ii) By induction m/(x) is generated by a regular sequence (41, ..., Jn—1). Also z is
regular on R by (i), so m is generated by the regular sequence (z,y1,...,y,—1). O

Lemma. If z € m\ m?, then m/(z) is isomorphic to a direct summand of m/zm.

Proof. Let z,y1, ...,y give a basis of m/m? and let [ = (y1,...,yx). Then [+(x) =
m and x ¢ I. Observe that (I +azm) N (z) = zm, for if rz =i+ xa with i € I and
a € m, then (r —a)x € I, so r — a is not invertible, so 7 — a € m (otherwise the
ideal it generates must be R), so also r € m. Thus

m 4+ zm  (x)
= S

rm rm rm
Now
m I+, I I _IT+am
(z)  (¥) INn(x) Inazm  zm
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Theorem ((Auslander-Buchsbaum-)Serre). The following are equivalent
(i) R is a regular local ring

(i) proj.dim k < oo.

(117) gl. dim R < oo

If so, then proj.dimk = gl. dim R = Kdim R = depth R.

Proof. (1)=(ii) We could use the Koszul resolution. Alternatively use the following.
If z € m is regular on M and Y is an R-module, applying Hom(—,Y") to the short
exact sequence

0—MS M— M/zM — 0

gives an exact sequence
oo = Ext"(M,Y) — Ext"™ (M /aM,Y) — Ext"™(M,Y) — ...

and if n > proj. dim M, then the outer two terms vanish, hence so does the middle,

SO
proj.dim M /xM < proj.dim M + 1.

Now m is generated by a regular sequence zq, ..., x,. By induction on ¢, this shows

that proj.dimy R/(z1,...,2;) < i. Thus proj.dimk = proj.dim R/(xy,...,x,) <

n.

(ii)=>(iii) If proj.dimk < n, then for any module M we have Tor? (M, k) = 0,
so by the lemma about projective covers, if M is f.g., then proj.dimM < n. It
follows that gl. dim R < n, since it is the supremum of the projective dimensions
of cyclic modules.

(iii)=-(i) We prove this by induction on the Krull dimension of R. Let n =
gl.dimR < oco. If n = 0, then R is semisimple, so a field (since it is commu-
tative), so a regular local ring. Thus we may suppose that n > 0. Now there is
a cyclic module M with proj.dim M = n. By the lemma about projective covers,
it follows that Torf;3 (M, k) # 0. Thus proj.dimk = n, so by the same argument
Tor(k, k) # 0.

Now m is not an associated prime of R, for if R has a submodule isomorphic to
k, we have an exact sequence 0 — k — R — R/k — 0. The long exact sequence
gives

0 = Tor,.1(R, k) — Tor,41(R/k, k) — Tor,(k, k) — Tor, (R, k) =0

But Tor,,(k, k) # 0, so Tor,,+1(R/k, k) # 0, and this is impossible since gl. dim R =
n. Contradiction.

By prime avoidance, there is some element x € m not contained in m? or in any
associated prime of R. In particular z is regular on R. Let

O—=+PFP, = =F—-m—=0
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be a projective resolution of m. Now x is regular on m and on any projective
R-module, so the sequence

0= R/(z)®@P,— = R/(x) @ Py = R/(z) @m — 0

is still exact by the lemma that regular elements preserve acyclicity. Thus it is a
projective resolution of m/rm as an R/(z)-module. Thus proj.dimp,,(m/zm) <
oo. By the lemma, m/(z) is isomorphic to a direct summand of m/zm, and hence
proj. dimp .,y m/(r) < oo. Now if

0= Qm—-—Qy—m/(x) =0
is a projective resolution of m/(x) as an R/(z)-module, then
0=>Qn—-—>Qy— R/(z) > k—0

is a projective resolution of k as an R/(x)-module. Thus as in (ii)=-(iii) we have
gl.dim R/(z) < oo. Now since z is regular on R, we have Kdim R/(z) = Kdim R —
1, so by induction R/(x) is a regular local ring, say with maximal ideal generated
by a regular sequence ¥1,...,y,—1. Then m is generated by the regular sequence
TyYls .-, Yn_1, SO R is a regular local ring.

Finally, if the conditions hold, the implication (i)=>(ii) shows proj. dim k£ < Kdim R,
(ii)=>(iii) shows gl. dim R = proj. dim k, and Rees’ theorem shows that depth R <
gl.dim R. But since R is regular local, depth R = Kdim R, so all are equal. O

Corollary. A localization Rp of a regular local ring is reqular local.

Proof. If M is an Rp-module, we can consider it as an R-module by restriction.
Then it has a finite projective resolution. Applying localization, this stays exact,
and it is an Rp-module projective resolution of Mp = M. O

Theorem (Auslander-Buchsbaum, 1959). Any reqular local ring is a UFD.

This was one of the early achievements of homological algebra. The statement
does not involve homological algebra, but the proof does. Unfortunately the proof
is too long for us.

5.4 Cohen-Macaulay rings (omitted)

Due to lack of time, this section will be omitted.

R is still a local noetherian commutative ring.

Definition. R is Cohen-Macaulay (CM) if depth R = Kdim R.
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Examples. (i) Any regular local ring.

(i) If R is an integral domain and Kdim R = 1, then R is CM, since any nonzero
element of m is a regular sequence.

(iii) If R is CM of Krull dimension n and x1,...,z; is a regular sequence on R,
then R/(xy,...,x;) is CM of dimension n — i, as in Rees” Theorem.

Lemma (Additional lemma to add at end of §5.1). If R is a commutative noethe-
rian ring and M is a f.g. R-module, then there is a chain of submodules

O=MyCcMyC---CM,=M

such that each quotient M;/M; 1 is isomorphic to R/P; for some prime ideal P;.
Moreover Kdim M = max{Kdim R/P; : 1 <i < n}.

Proof. 1If M = 0 then this holds trivially. If not, then M has an associated prime,
so a submodule M; = R/P,. Now M/M; is either zero, or it has a submodule
My/M; = R/P,. This gives an ascending chain of submodules of M which must
stabilize, so M,, = M for some n. Now the primes P with Mp # 0 are those with
(R/P;)p # 0 for some i, so with P, C P. Thus a maximal chain of primes ideals P
with Mp # 0 will start with some P; and increase up to m. [

Using this lemma, we can prove another result about depth.

Lemma (Ischebeck). If M and N are nonzero f.g. R-modules then
Ext(N, M) =0

if 1 + Kdim N < depth M.

Proof. We prove this by induction on » = Kdim N. Now N has a filtration by
modules of the form R/P;, so we reduce to the case when N = R/P. If r = 0, this
is Rees’” Theorem, so suppose 7 > 0. Choose z € m\ P. We get an exact sequence

0= N5 N— N —0.
where N = N/zN = R/(x, P), which has Krull dimension < r, so by induction

Ext/(N',M) = 0 if j + (r — 1) < depth M. Thus if i +r < depth M, we get an
exact sequence

Ext'(N, M) 5 Ext'(N, M) — Ext™""(N', M) = 0

so by Nakayama’s Lemma, Ext’(N, M) = 0. O
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Theorem. Suppose R is a CM ring.

(1) If P is an associated prime of R, then Kdim R/P = Kdim R. Thus the associ-
ated primes of R are the minimal primes.

(i1) Any two mazimal chains of distinct prime ideals in R have the same length.
Equivalently, for any prime ideal P, we have

ht P + Kdim R/P = Kdim R

Proof. (i) If P is an associated prime of R, then Hom(R/P, R) # 0. Thus by
Ischebeck’s Lemma,

depth R < 0+ Kdim R/P < Kdim R = depth R

so Kdim R/P = Kdim R, and clearly P must be a minimal prime. Conversely We
already know that, in general, any minimal prime is an associated prime of R.

(ii) We prove this by induction on n = Kdim R. Suppose ht P = h. If h = 0 this
is (i), so suppose h > 0. Then there is a chain of distinct prime ideals

PyC--CP,=P

and Py is a minimal prime. By prime avoidance there is some x € P; not contained
in any minimal prime. Then z is regular on R, so R/(z) is CM of Krull dimension
n—1. Now P;/(x) is a minimal prime in R/(x), so P/(x) has height h — 1. Thus
by induction

n—1=KdimR/(x) = ht(P/(z)) + Kdim(R/(x))/(P/(x)) = h — 1+ Kdim R/P
giving the result. [l

Theorem. The following are equivalent

(i) R is a regular local ring

(i) R is a CM ring and every nonzero f.g. module M with depth M = depth R is
projective (so free).

Proof. (i)=-(ii) m is generated by a regular sequence, so R is CM. Then use the
Auslander-Buchsbaum formula.

(ii)=(i) Let M be nonzero and f.g. We show by descending induction on d =
depth(M) that proj.dimM < oo. If depth(M) = depth(R), then M is pro-
jective by hypothesis. If depth(M) < depth(R), then the long exact sequence
gives depth(2; M) = depth(M) + 1, so by induction proj.dim M < oo, so
proj.dim M < oc. O]
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Remark. A local noetherian commutative ring R is said to be Gorenstein if
inj.dim R < oo. Thus clearly a regular local ring is Gorenstein. It can be shown
that if R has Krull dimension n, then R is Gorenstein if and only if it is CM and
Ext"(k, R) = k. It follows that if z1,...,z; is a regular sequence for R, then R is
Gorenstein if and only if R/(z1,...,x;) is Gorenstein. If you are interested, there
is a reasonably accessible treatment in §18 of H. Matsumura, Commutative rings,
CUP 1986.

5.5 Group homology and cohomology
Definition. Let K be a commutative ring and let G be a group. Recall that the
group algebra K'G has elements

D9

geqG

with a, € K, at most finitely many nonzero. It is a ring with

Z agg + Z beg = Z(ag +bg)g

geG geqG geqG

(Z agg)(z bgg) = chga Cg = Z apby.

geG geG geG hk=g

The augmentation is the ring homomorphism

e: KG — K, Zaggl—> Zag.
geG geG
The augmentation ideal is A(G) = Ker(e).
Lemma. A(G) =3 ., K(9—1)

Proof. Clearly the right hand side is contained in the left. Conversely if z =
deG azg9 € A(G), then

r=x—e(@)l = Z(agg —agl) = Zag(g - 1).

geG geG

]

Remarks. (a) To give a left KG-module M it is equivalent to give a K-module
M and a group homomorphism 6 : G — Autyx(M). Namely, given 6, we define

(Z agg)m = Z agf(g)(m).

geG geqG
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Alternatively, a KG-module is given by K-module M and a map
p:GxXM—M

which:

- is an action of G on M, meaning that p(gg’,m) = p(g, p(¢'m)) and p(1,m) = m,
and

- is K-linear for fixed g € G, that is p(g,am + bm') = ap(g,m) + bp(g, m’) for all
a,b € K and m,m' € M.

(b) We can turn any K-module M into a KG-module by making G act trivially,
so gm = m for all ¢ € G and m € M. In particular the trivial KG-module is K
with G acting trivially. We just denote it as K.

(¢) Any left KG-module becomes a right K G-module via

m(z agg) = (Z agg~t)m

geG geqG
and conversely. (You can’t do this for rings in general!) Namely,
(mg)h = (¢~ 'm)h = h™"'g"'m = (gh)"'m = m(gh).

This gives an isomorphism of categories between K G-Mod and Mod-KG. Thus,
for example, M is projective as a left KG-module if and only if it is projective as
a right KG-module.

For most purposes we can actually take K = Z.
Proposition/Definition. Let M be a ZG-module. The set of invariants
MC® ={me M :gm=m}

s the unique largest submodule of M on which G acts trivially. The set of coin-
variants

Mg = M/Sy, Sy = submodule generated by gm — m for g € G and m € M,

s the unique largest quotient module of M on which G acts trivially. They give
functors =% and —¢ from ZG-Mod to Ab.

Proof. The first part is clear. If S is a submodule of M, then G acts trivially on
M/S if and only if g(S +m) = S + m for all g, m, that is, gm —m € S.

It is clear that any homomorphism M — N restricts to a map M¢ — N¢. More-
over it sends Sy, into Sy, so induces a map Mg — Ng. O
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Lemma. (i) There is a natural isomorphism MY = Homgg(Z, M) and —© is left
exact.

(ii) There is a natural isomorphism Mg = 7 Qzc M and —¢ is right ezact.

Proof. (i) is clear. For (ii) the exact sequence
0= AG) = 2G—7Z—0
gives an exact sequence
AG) ®za M — ZG ®z6 M — 7 Qz6 M — 0

Now we can identify ZG ®zc M with M, and then since A(G) = ., Z(g — 1),
the image of the map from A(G) ®z¢ M is identified with Sy,. O

Definition. The homology of G with coefficients in a ZG-module M is
(G5 M) = Lu(~c)(M) = Tor%(z, M),

The cohomology is
H™(G; M) := R"(=) (M) = Exty(Z, M).

Thus H(G; M) = M€ and Hy(G; M) = Mg. A short exact sequence 0 — L —
M — N — 0 of ZG-modules gives long exact sequences

-+« — Hy(G;N) - H{(G; L) - Hi(G; M) - H(G;N) - Lg - Mg — Ng — 0
0— L% =M%= NY— HYG;L) = H'(G; M) — H*(G;N) = H*(G; L) — ...

Example. (1) If G = 1 then MY = M = Mg so —g and —¢ are exact functors,
so H"(G; M) =0 and H,(G; M) =0 for n > 0.

(2) If G = Cy, an infinite cyclic group with generator o, we have a projective
resolution

072G 7572657 >0,

SO

HY(G; M) = M% = Hy(G; M),  Hy(G; M) = Mg = H'(G; M),
and H"(G; M) = H,(G; M) = 0 for n > 1.

(3) If G = C,,, a finite cyclic group of order m with generator o, we have a periodic
projective resolution

0265726 5 726 76 ZL G 5750
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where N = 1+ 0+ 02+ -+ + 0™ L. Thus H"(G; M) is the cohomology of the
complex

0= M5 =

S0
MC% ={me M :om=m} (n=0)

H"(G;M)=<{meM: Nm=0}/(c —1)M (n=1,3,5,...)
MY/NM (n=2,4,6,...).

Proposition. If K is a commutative ring and M is a KG-module, then
Tor®C (K, M) = Tor2%(Z, M) and Ext}o(K, M) = Ext},(Z, M)
where K is the trivial KG-module.

Proof. Observe that if X is a ZG-module, then K ®z X is naturally a K G-module,
with the action of K on K and the actionof Gon X. Let --- > P, - Py —Z — 0
be a resolution of Z by free ZG-modules. Clearly each P; is free as a Z-module.
Since (2yZ = 7 is projective as a Z-module, an induction on n shows that 2,7 is
projective as a Z-module and the sequence

0— Q17— P, —Q,Z — 0
splits as a sequence of Z-modules. It follows that the tensor product sequence
=2 K@z PP K®y Phy— K—=0

is exact, so it is a resolution of the trivial KG-module by free K G-modules. Now
if M is a KG-module, we have a natural isomorphism of additive groups

Homgq(K ®z P,, M) = Homyq(P,, M)
so taking cohomology we get Ext} (K, M) = Exty.(Z, M). Similarly for Tor. O

Corollary. If G is a finite group and |G| acts invertibly on M, then H™(G; M) =
H,(G; M) =0 forn> 0.

Proof. Let K be obtained from Z by inverting the multiplicative set
S =1{1,|G|,|G]% |G, ... }.
We write K = Z[1/|G|]. We can consider M as a KG-module. Now the map
1
K—KG, 1~ e > g

geqG

is a KG-module map, and a section for the augmentation €, so K is a projective
KG-module. (cf. Maschke’s Theorem.) O
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Definition. The bar resolution for G is the sequence

PP P ST 50

where:

- P, is the free Z-module with basis the elements [go|g1] - - - |gn] With go, . ..

considered as a ZG-module with the action given by

glgolgnl - - 1gn] = 99019911 - - - 199n]
- € is the homomorphism sending each basis element [go] to 1.
-d, : P, — P,_1 is given by

n

du(lg0lg1] - -19a]) = D (=190l --- 13 - - - 1ga]-

=0

gn € G,

Proposition. The bar resolution is a projective resolution for Z as a ZG-module.

Proof. Clearly P, is a free ZG-module with basis the elements [1|g1]...|gn]. It
is easy to check that ¢ and the d,, are homomorphisms and give a complex. For
exactness, we set P.y = Z and dy = € and use that the resulting complex is

contractible as a complex of Z-modules, using the homotopy h given by

h_l IZ:P_l —>P0, h_1(1>: [].]
and for n > 0,

ho = Py = Pagas g0l - gn] = [1go] - - |gn].

]

Definition. Given a ZG-module M, we denote by C(G, M) the cochain complex

C of additive groups
0 1
BN BN LN LN L SN

where

C" = {functions f : G" — M}

considered as an additive group by pointwise addition, and

()91 gnr1) = 0 (G202 gnr) + D (=1 (g1, Gigisn, - -
=1

+<_1)n+1f<gla s 7gn)

The elements of C™ are n-cochains of G with values in M
Z"(G, M) = Ker(d") = n-cocycles of G with values in M
B"(G, M) = TIm(d"™') = n-coboundaries of G with values in M.
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Theorem. If M is a ZG-module, then C(G, M) = Hom(P, M) where P is the bar
resolution, so

HY(G, M) = H(C(G, M)) = %

Proof. P, is a free ZG-module with basis the elements [1|g;]|...|g,] wWith ¢g; € G.
Thus it also has basis the elements [1|hq|hihs|...|h1 ... h,] with h; € G. We get
an isomorphism

Hong(Pn,M) —)Cm, 0*—).]0

where

F(hus. . b)) = 0L haha| . R .. ).

Now if f corresponds to 6, then d"( f) corresponds to 0d,, 1 where d,,1 : P11 — P,
is in the bar resolution. Thus

dn(f)(hlv R hn+1) = edn+1([1|h1|h1h2’ . |h1 C.. thrl])

- 9<[h1’h1h2| cee ’hl Ce hn+1]

n

A (=0 W] Rl ]

i=1

+(=1)" 1|y Ry hn])

= h1f<h27 LR hn-‘rl) + Z(_l)zf(h'la R hihi+17 s 7hn+l) + (_1)n+1f(h1a ) hn)
=1

]

Example. (i) A 1-cocycle f : G — M is called a crossed homomorphism. It must
satisfy f(g192) = 91f(92) + f(g1). A l-coboundary is called a principal crossed
homomorphism. It is of the form f(g) = gm — m for some m € M. Thus

HY(G: M) = ZNG, M) crossed homomorphisms
7 - BY(G,M) principal crossed homomorphisms’

For example if M has trivial G-action, then H'(G; M) is identified with the set of
group homomorphisms G — M. Thus if G is finite, then H*(G;Z) = 0.

(ii) A 2-cocycle f: G x G — M must satisfy

91f(92,93) — f(9192,93) + f(91,9293) — f(91,92) = 0.
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The 2-coboundaries are those of the form

flg1,92) = (d' @) (g1, 92) = qra(g2) — (g1g2) + alg1)
for some function o : G — M. Then
Z*(G, M) 2-cocycles

H2 M — = .
(G; M) B%(G,M)  2-coboundaries

5.6 Second cohomology classifies group extensions

Definition. If M and G are groups, then a group extension

1—>M$E$G—>1

is given by a group F, an injective group homomorphism ¢ and a surjective group
homomorphism ¢ with Im(#) = Ker(¢). Two extensions of M and G are equivalent
if there is an isomorphism 7 giving a commutative diagram

0

1 s M E -5 ¢ y 1
1 s M B Y g 1

Now suppose that M is an additive group. It becomes a ZG-module as follows. Let
m € M and g € G. Choose e € E with ¢(e) = g. Then gm is the unique element
of M with 6(gm) = ef(m)e~'. This does not depend on the choice of e since M is
abelian. Also, equivalent extensions induce the same ZG-module structure.

For example a central extension is one with Im(6) C Z(FE), or equivalently G acts
trivially on M.

Theorem. If M is a ZG-module, then H?(G; M) classifies the group extensions

1sMY5ESa 51

inducing the given ZG-module structure on M, up to equivalence. The zero element
corresponds to the semidirect product

E=MxG, (m,g)(m',¢)=m+gm’ gq),0(m)=(m,1),¢(m,g)=g.

Proof. (1) Given an extension, choose a map of sets s : G — E which is a section
for ¢. If g,h € G, then ¢(s(g)s(h)) = gh = ¢(s(gh)), so there is a uniquely
determined f : G x G — M with

0(f(g.h)) = s(g)s(h)s(gh)~".
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It is called the factor set associated to the extension E and s. It is a 2-cocycle. It
follows that f(g,1) = ¢gf(1,1) and f(1,h) = f(1,1) for all g,h € G. (Usually one
chooses s with s(1) = 1. Then f is normalized, meaning that f(1,1) =0.)

(2) Any other section s’ is given by

for some oo : G — M. Let f, f’ be the factor sets given by s,s’. Then
0(f'(g.h)) = s'(g)s'(h)s'(gh) ™"

= 0(a(g))s(9)0(a(h))s(h)s(gh) " 6(—a(gh))
= 0((9))0(ga(h))s(g)s(h)s(gh)~0(—a(gh))
= 0(a(g)0(ga(h))0(f (g, 1))0(—a(gh))
= 0(a(g) + ga(h) + f(g,h) — a(gh))
=0(f(g,h) + (d'@)(g, h)).

so f' = f+d'a, so f and f’ give the same element of H*(G; M). Thus the extension
gives a well-defined element of H*(G; M).

(3) Suppose two extensions, give the same element of H?(G; M). The element is
given by factor sets f, f’ associated to sections s : G — F and s’ : G — E’, and by
modifying one of them as in (2), we may assume that f = f’.

Any element of E can be written uniquely in the form 6(m)s(g) with m € M and
g € G. Define 7: E — E’ be

7(0(m)s(g)) = 0'(m)s'(g).

Provided 7 is a group homomorphism, it shows that the extensions are equivalent.
Now the product of two elements of E' is

= 0(m)0(gm")0(f(g,9))s(99)
=0(m+gm' + f(g,9"))s(g99)

Then
7(0(m)s(g) 0(m")s(q')) = T(0(m + gm’ + f(g,9))s(g9"))

= 0'(m+gm’ + f(9,9))s'(99") = 0'(m)s'(g) 6'(m")s'(g")
= 7(0(m)s(g)) 7(0(m")s(g))-
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(4)If f: G xG — M is 2-cocycle, then E = M x G becomes a group with the
operation

(m,g) - (m',g") = (m+gm’ + f(g9,9), 99,
identity element (—f(1,1),1), and

(m,g) " = (=g "(m+ f(LD)+ flg,97"),97").

We get an extension with (m) = (m — f(1,1),1) and ¢(m,g) = g. Using the
section s(g) = (0, g) one recovers f, since

(0,9)(0,h)(0,gh)~" = (f(g, h), gh)(0, gh)~!

= (f(ga h) - f(17 1)7 1)(O7gh>(ovgh)il = (f(ga h) - f(17 1)7 1) = e(f(ga h))
O

5.7 Cohomology with nonabelian coefficients
Some low degree cohomology can be generalized to the nonabelian case.

Definition. Let G be a group. A multiplicative G-module is a group M, written
multiplicatively, together with a homomorphism p : G — Aut(M). If g € G and

x € M we write gz for p(g)(z). Thus g(zy) = (9z)(g9y) and g(z~!) = (gz)~L.

A homomorphism of multiplicative G-module 6 : M — M’ is a group homomor-
phism with §(gm) = gf(m) for all g, m.

An abelian multiplicative G-module is the same as a ZG-module, just written
multiplicatively.

If M is a multiplicative G-module, we define:
-MY={meM:gm=mV ge G} Itisasubgroup of M.

- A mapping f : G — M is a crossed homomorphism if f(g192) = f(g1)(91f(92))
for all g1, 92 € G.

- Two crossed homomorphisms f, f' are equivalent if there is some m € M with
f'(g) = m~"f(g)(gm) for all g € G.

- A crossed homomorphism f is principal if there is m € M with f(g) = m™(gm)
for all ¢ € GG. The principal crossed homomorphisms form one equivalence class.

- Let H'(G; M) be the set of equivalence classes of crossed homomorphisms. It
is a pointed set, that is, a set with a distinguished element, corresponding to the
principal crossed homomorphisms.

Let L and M be pointed sets with distinguished element *; and *,;. A morphism
of pointed sets f : L — M is a mapping with f(xy) = *,;. A sequence

VN

99



is exact at M if Im(f) = ¢'(xx). A group is a pointed set with distinguished
element the identity element.

The long exact sequence in cohomology extends to multiplicative G-modules.

Theorem. Let
1 L5 MES NS

be a central extension of multiplicative G-modules (so L is abelian, so a ZG-
module). Then there is a natural exact sequence of pointed sets

1— L% = MY = N® - HY(G;L) - H(G;M) - H'(G;N) — H*(G; L).

Proof. T'll define the maps. The exactness is straightforward.
The maps LE — M% — N¢ are the restrictions of the homomorphisms 6 and ¢.

The maps H'(G; L) — H'(G; M) — H'(G; N) are given by composing a crossed
homomorphism with 6 or ¢.

The connecting map N — HY(G; L) is given as follows. If x € N choose
m, € ¢~ Yz). If g € G, then ¢p(m;' (gm,)) = z7' (gx) = 1, so there is a
unique mapping f, : G — L with 0(f.(g)) = m;* (gm,). Now f, is a crossed
homomorphism, since

0(f2(91)91f2(92)) = 0(f2(91))910(f2(g2)) = my " (g1ma) g1 (my ' (g2mna))

= my (g1ma)(g1ma) " (g192ma) = my (g192ma) = 0(f2(9192))

and the image of x is the corresponding equivalence class in H'(G; L). This doesn’t
depend on the choice of m,.

The connecting map H'(G; N) — H?*(G; L) is given as follows. An element of
H'(G; N) is represented by a crossed homomorphism f : G — N. For each g € G,
choose m, € ¢'(f(g)). For g, h € G, note that

¢(my (gmp) myy) = f(g) (9f(h)) flgh)™ =1
since f is a crossed homomorphism. Thus there is a mapping o : G X G — L with

0(a(g, b)) = myg (gmn) myy .

Then 6 is a 2-cocycle, so induces an element of H*(G; L). O
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5.8 Projective representations of groups
Definition. Let K be a field and n > 1. It is easy to see that
Z(GL,(K)) ={\ : A e K*}.
The quotient group
PGL,(K) := GL,(K)/Z(GL,(K))
is called the projective linear group.

Remark. Projective space P""1(K) is the set of equivalence classes of n-tuples
(x1,...,2,) with z; € K, not all zero, under the equivalence relation ~ with

(X1, oy Tp) ~ (AT, ..y ATy)

for A € K*. The group GL,(K) acts on K™ and induces an action on P"~1(K). If
A € GL,(K), then

A acts trivially on P""! < Az is a multiple of x for all z € K™\ 0

< Every z is an eigenvector for A
< A= M for some A € K*

so PGL,(K) acts faithfully on P"(K).

Definition. Let G be a group. An (ordinary) matrixz representation of G of degree
n is a group homomorphism

p:G— GL,(K).
Two representations p, p’ are equivalent if there is a matrix A € GL,(K) with
p'(g) = A" p(g)A

for all g € G. Matrix representations of degree n up to equivalence correspond to
isomorphism classes of n-dimensional K G-modules.

A projective representation of GG is a group homomorphism
o:G — PGL,(K).

This is in the sense of Schur, it has nothing to do with projective modules! Two
projective representations o, ¢’ are equivalent if there is A € PGL, (K) with

o'(g) = Alo(g)A

for all g € G.
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Any ordinary representation p gives a projective representation as the composition
G % GL,(K) — PCL,(K).
Which projective representations lift to ordinary representations?

Example. Suppose p : SUy — GL,(C) is an ordinary representation which is
irreducible, so corresponds to a simple module for C SUy. Now Z(SUy) = {I, -1},
and any eigenspace of p(—1), say

Vi={v e C":p(—1I)v= v},
is a subrepresentation of p, since if v € V), then

p(=1)p(g)v = p(g)p(—1)v = Ap(g)v

so p(g)v € V). Thus by irreducibility V), = C™ for some A\. Thus p(—I) = Al.
Thus p induces a projective representation

SO3(R) = SU, /{1, -1} — PGL,(C).

Now if p is the natural representation (sending any g € SU; to itself in GLy(C)),
then p(—I) = —I, and I don’t think that the corresponding projective represen-
tation lifts to an ordinary representation of SO3(R). (Using the representation
theory of Lie groups, one can see that it doesn’t lift to a representation of SO3(RR)
as a Lie group.)

Theorem. (i) Given a projective representation o : G — PGL,(K), there is a
natural way to define an element c(o) € H*(G; K*), the obstruction, so that G
lifts to an ordinary representation if and only if ¢(o) = 0.

(i1) If K is algebraically closed and the Schur muultiplier Ho(G;Z) of G is zero,

then every projective representation lifts.

Proof. (i) If we consider GL,,(K) and PGL, (K) as multiplicative G-modules, with
G acting trivially, then clearly

HY(G: GL, (K)) = matrix representations G — GL,,(K)

equivalence

HY(G: PGL, (K)) = projective representations G — PGL,,(K)

equivalence

Now the central extension of groups

1— K* — GL,(K) - PGL,(K) — 1,
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gives an exact sequence
HY(G; GLy(K)) & HY(G; PGL,(K)) < H2(G; K*).

Thus a projective representation o lifts to an ordinary representation if and only
if ¢(o) is zero.

(i) If P is a projective resolution of the trivial ZG-module, then

H*(G; K*) = H?(Homgg (P, K*)) by definition of cohomology with coefficients
>~ H?*(Homg(Pg, K*)) since G acts trivially on K™
>~ [*(Homg(P ®z¢ Z, K*)) since Mg = M Qg Z
= H*(P ®z¢ Z; K*) by definition of cohomology with coefficients.

Since K is algebraically closed, K* is divisible, hence injective, as a Z-module.
Also P ®z¢ 7 is a complex of projective Z-modules, so by the Universal Coefficient
Theorem

H?*(P ®z¢ Z; K*) = Homg(Hs (P ®z¢ Z), K*) = Homz(Hy(G; Z), K*).

Thus if Hy(G;Z) =0, then H*(G; K*) =0, so ¢(o) = 0 for all o. O

5.9 Galois descent

Due to lack of time, the first theorem and the proof of the second
theorem will by omitted. A possible reference for this section is §2.3 of P. Gille
and T. Szamuely, Central simple algebras and Galois cohomology, CUP 2006.

Definition. Let K be a field. We consider the category whose objects are pairs
(V, ¢) where V' is a K-vector space and ¢ is some additional structure, for example:
- An associative multiplication V @ V — V

- A bilinear form V @V — K

- An A-module structure A @ V' — V where A is a fixed K-algebra.

A morphism (V,¢) — (V',¢') is a K-linear map 6 : V' — V'’ compatible with the
additional structures ¢ and ¢'.

Aut(V, ¢) is the group of automorphisms of (V, ¢).

If L/K is a field extension, then there is an induced L-vector space VE = L ®g V,
and there is an induced structure ¢* on V', For example

- A multiplication V ®x V — V gives a multiplication V¥ @, VF — VE.

- A bilinear form V ®x V — K gives a bilinear form V¥ @, V¥ — L.

- An A-module structure A®@x V — V gives an A“-module structure A" @V —
VE
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If (W, ) is an L-vector space with additional structure and K is subfield of L, a K -
form of (W, 1)) is a K-vector space with additional structure (V, ¢) with (V% ¢F) =
(W, ).

If (V,¢) and (V',¢') are K-vector spaces with additional structure, we say that
(V' ¢') is a twisted form of (V,¢) split by a field extension L/K if (V)L (¢')F) =
(VE, o").

Theorem. Let L/K be a Galois field extension with group G and let W be an
L-vector space. There is a bijection between

(i) K-subspaces V' of W such that the multiplication map m : L @V — W is an
1somorphism, and

(i1) group homomorphisms « : G — Autg (W) such that a(g) is a g-semilinear
map for each g € G, meaning that a(g)(Aw) = g(N)a(g)(w) for all X € L and
weW.

Proof. Given V. .C W as in (i), define a by a(g)(w) = m(g ® 1)m~'(w). It has the
properties in (ii). Conversely, given « as in (ii), define

V=A{weW:alg)(w)=wVYge G}.

This is a K-subspace of W. Let m : L ® V — W be the multiplication map.

Let g1,. .., gn be the elements of G and Ay, ..., \, a basis of L over K (same n, since
L/K is Galois). Suppose Y " ; \; ® v; is in the kernel of m. Then > 7 | A\jv; = 0.
Applying a(g;) we get 1, g;(A;)v; = 0. By Dedekind’s Independence Theorem,
the matrix (g;(\;)) € M,,(L) is invertible. Thus v; = 0 for all i. Thus m is injective.

If w € W, then clearly 37, a(g;)(w) € V. Applying this to the elements \;w, we
obtain elements v, € V with

vi= alg)aw) =Y gi(A)alg)(w)
j i
Now if (b;;) € M, (L) is the inverse of the matrix (g;();)), then

a(gy)(w) = Z bjiv; € Im(m),

so in particular w = a(1)(w) € Im(m). Thus m is an isomorphism.

Now it is easy to see that the constructions are inverse. O
Theorem. Let L/K be a Galois field extension with group G. Given a K -vector
space with additional structure (V,¢), the group Aut(VE, ¢r) is naturally a mul-

tiplicative G-module and the twisted forms of (V,¢) split by L/K are in bijection
with HY(G; Aut(VE, oh)).
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Proof. We consider Aut(V%, ¢') as a multiplicative G-module as follows. If 6 €
Aut(VL ¢l) and g € G, let gf be the composition

LoV i LoV S LoV LY LoV,

By construction it is a K-linear map, and in fact it is L-linear, since the twists by
g~ ! and ¢ cancel out. Moreover gf preserves the additional structure. For example
if the extra structure is a multiplication ¢ : V ®x V — V, then

PF VERQLVE S VE A®0)@(A0v) = AN @ ¢lv @),
and

" ((g9) (A @ v) ® (g0)(N @) o™ (0(g'(N) @ v) @ (g~ (X) ®v')))

(9©
=(g®1)0(g " (Ng (V) ® p(v @)
= (
= (

g0) (AN ® ¢(v @)
90)o" (A @ v) @ (N @v')).

A twisted form (V', ¢') of (V, ¢) gives a crossed homomorphism as follows. Choose
an isomorphism f: (V/)E (¢/)F) — (VE, ¢L). If g € G, let ps(g) be the composi-
tion )

LoxV LoV islerV &5 eV S Lok V.

Then ps(g) is L-linear and belongs to Aut(VL, o). Also

pr(99") = flggd @ ) (¢) gt @1)
=flgo)(@eDf @) o)y el)
=flge)f (¢ e 1)(9 @Df(de)f ¢ el el
= pr(9)(g @ Dps(d) g™ @ 1)
= ps(9)(grs(9))

80 py is a crossed homomorphism G — Aut(VE, ¢%).

Now if f": (V)E, (¢/)) — (VE, ¢%) is another isomorphism, then § = f(f/)~! €
Aut(VE ¢F), and
pr(9)=0"ps(9)(g0)

so py and py are equivalent, so determine one element in H'(G, Aut(VE, ¢L)).

Conversely a crossed homomorphism p : G — Aut(VE, ¢L) gives a twisted form V,
as follows. The map o : G — Autg (V%) given by

a(g) = p(g)(g®1)
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satisfies the conditions of the previous theorem, so
={weV':p(g)((g@Nw)=wV g e G}

is a K-form for V¥ as a vector space. Moreover the additional structure on V*
restricts to an additional structure ¢, on V,. For example if ¢ is a multiplication
and w,w’ € L ® V, then

P(9)((g® " (w @ w )) 99" (9@ Nw e (9@ u)
0" (p(9)(g ® Dw @ p(g)((g ® Dw))
since p(g) € Aut(VE, ¢*). Thus if w,w' € V,, so is ¢*(w @ w’).

Now it is easy to check that if p and p’ are equivalent crossed homomorphisms, then
(X,, ¢,) = (Vy, ¢,) and that the constructions (X,, ¢,) and p; are inverse. O

Corollary. Let L/K be a Galois field extension with group G. Considering GL,, (L)
as a multiplicative G-module with action

g(aij) = (g(aij))a g€ Ga (aij) € GLN(L)7
the set H'(G,GL,(L)) = 0 has only one-element; in particular H' (G, L*) = 0.

Proof. Take V = K™ with no additional structure, we have Aut(V%) = GL, (L),
and the G-module structure is as indicated. Since a vector space is determined up
to isomorphism by its dimension, all twisted forms of V' are isomorphic to V. [

Theorem (Hilbert’s Theorem 90). Suppose L/K is a Galois field extension whose
group G is cyclic of order n, say generated by o. Let N be the norm for L, so

N(z) =zo(x)o*(z) ... c" ().
Then x € L* is of the form y~to(y) for some y € L if and only if N(z) = 1.

Proof. Observe that N(zz') = N(z)N(2') and N(o(z)) = N(x). It follows that if
x has the indicated form, then N(z) = 1. Now suppose that N(z) = 1. Define a
map p: G — L* by

p(0") = zo(x)o*(x) ... o ().
for ¢ > 0. This is well-defined since N(z) = 1. It is a crossed homomorphism since
p(o"™) =xo(x)o*(z) ... ot = p(a') - o'p(c?).

Thus it is principal, so of the form
p(o') =y~ o' (y)
for some y € L*. Taking i = 1 gives z = y'o(y). O
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6 Triangulated categories and derived categories

Unfortunately there is no time to do this properly. I just discuss a few basics,
without proofs. A good reference (but in French) is P.-P. Grivel, Catégorie dérivées
et Foncteurs dérives, chapter I of A. Borel et. al., Algebraic D-modules, Academic
Press, 1987.

6.1 Triangulated categories

We consider an additive category C equipped with an additive functor ¥ which is
an automorphism. A triangle is a collection of objects and morphisms

X5Y 575 %X,
It is sometimes written with X, Y, Z at the vertices of a triangle, and the edges

given by arrows u : X — Y, v :Y — Z, and w represented as a arrow Z — X
labelled with X.

A morphism of triangles from X Y 57 55X to X' S Y 5 7/ Y NX s

given by a commutative diagram

X 5y 25 7 2 uX

T

/

X ey M Y v

A triangulated category is given by an additive category C with an additive auto-
morphism 3 and a collection of distinguished triangles satisfying the following.

TR1. (a) Every triangle isomorphic to a distinguished triangle is distinguished.
(b) Every morphism u : X — Y can be included in a distinguished triangle.

(c) The triangle X 5 X 50 NX s distinguished.
TR2. The triangle
X5Y 3Z5%X
is distinguished if and only if its rotation
| A=) =i 5)
is distinguished.
TR3. Given a commutative diagram

X “sy Y5 7 Y wx

I

X ey MY v
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in which the rows are distinguished triangles, there is some h : Z — Z’ (not
necessarily unique) turning it into a morphism of triangles.

X “5svy Y5 7 Y wux

R

u’ v’ w’
X' s Y’ s 7' s DX/

TR4. (Octahedral axiom) Given three distinguished triangles
X%y Lz 5vx
Y 57X —53%Y

X5 Z5Y 52X

there is a distinguished triangle
7' =Y - X' - 37

such that on the octahedron, whose top front and back, and bottom left and right
faces are given by the triangles,
- the other four faces commute,
- the compositions from bottom to top via Z and Z’ give the same map Y — Y.
- the compositions from top to bottom via X and X’ give the same map Y’ — XY
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Remarks. (i) In fact TR3 follows from the other axioms, and one only needs to
show one direction of TR2, see J. P. May, The additivity of traces in triangulated
categories, Adv. Math. 163 (2001), 34-—73.

(ii) As suggested in May’s article, another way to draw the octahedral axiom is as
a commutative “braid” or “sine wave diagram’:

/\f\,’
X N \,/%

. x
o . . N —

/
" Y
P \ 3
— j\z’r JS/

(iii) Pretending that we are in an abelian category and that X and Y are subobjects
of Z with X CY C Z, we might label the three given triangles as

X—=Y-=Y/X XX
Y—-Z—-2Z/Y -3%Y
X—=Z—->7Z/X—=XX

and then the last one is
Y/X - Z/X - Z]Y = 3X(Y/X)

corresponding to the isomorphism Z/Y = (Z/X)/(Y/X) we would have in the
abelian category.

(iv) Note that in TR3, the morphism A is not unique. A. Neeman, Some new
axioms for triangulated categories, J. Algebra 139 (1991), 221-255, has pointed
out that some choices of h are better than others. This leads to problems with
higher K-theory for triangulated categories. (As a preprint, Neeman’s paper was
called ‘Triangulated categories are all wrong’). In modern work, the problems are
tackled by working with ‘algebraic triangulated categories’, or DG-categories or
oo-categories.

Definition. Let C and C’ be triangulated categories with automorphisms > and
Y. A functor F': C — (' is a triangle functor if it is additive, ¥'F = F'¥, and it
sends distinguished triangles to distinguished triangles.
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If C is a triangulated category, a full additive subcategory B is a triangulated
subcategory if

- X € ob(B) & XX € ob(B).

-If X Y — Z — ¥X is a distinguished triangle in C and X,Y € ob(B), then
Z € ob(B).

In this case B is a triangulated category and the inclusion is a triangle functor.

B is a thick or épaisse subcategory if in addition it is closed under direct summands,
that is, if X is isomorphic to a direct summand of Y in C and Y € ob(B), then
X € ob(B).

Proposition. (i) The composition of two morphisms in a distinguished triangle is
zero.
(11) If M is an object, a distinguished triangle gives a long exact sequence

.-+ = Hom(M, % 'Z) — Hom(M, X) — Hom(M,Y) — Hom(M, Z) —
Hom (M, ¥X) — Hom(M,XY) — Hom(M,XZ) — Hom(M, X2X) — ...

and similarly for Hom(—, M).
(11i) Given a morphism of distinguished triangles

X “5 Y s 7 Y3 ¥vX
fl gl hl Efl
X ey VY vy

if two of f, g, h are isomorphisms, so is the third.

Proof. (i) We have a commutative diagram whose rows are distinguished triangles

Idx 0 0

X X

X —Y —— 7 —5 33X
By TR3 this extends to a morphism of triangles, via a morphism A : 0 — Z which
must be zero. Since the middle square commutes, we get vu = 0. Using TR2 one
gets that also wv = 0 and Xuow = 0.
(ii) Suppose f € Hom(M,Y) is sent to 0 in Hom(M, Z), that is, vf = 0. Then we
have a commutative diagram

0 YX

0 0 —Id

M ) s M SM
A
Yy Yy 7 Y, vx 2N sy
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whose rows are rotations of distinguished triangles, so distinguished. Thus it can be
completed to a morphism of triangles with a morphism h : XM — ¥X. Since the
right hand square is commutative, we have ¥ fo(—Id) = (—=Xu)oh, so f = uoX'h,
so f is in the image of the map Hom(M, X)) — Hom(M,Y’). Thus the sequence is
exact at Hom(M,Y'). By considering rotations, we get exactness at all places.

(iii) By considering rotations, we may suppose that f and g are isomorphisms, and
want to show that h is an isomorphism. For any M, by (ii) we get a commutative
diagram with exact rows

Hom(M,X) —— Hom(M,Y) —— Hom(M,Z) — Hom(M,$X) —— Hom(M,XY)

! l ! ! !

Hom(M, X') —— Hom(M,Y’) —— Hom(M, Z') —— Hom(M,¥X') —— Hom(M, TY")

Now the 1st, 2nd, 4th and 5th vertical maps are induced by f, g, > f, ¥g, so they
are isomorphisms. Thus by the five lemma, the middle vertical map is an isomor-
phism. Thus h induces an isomorphism of representable functors Hom(—, Z) —
Hom(—, Z"). Thus by Yoneda’s Lemma, h is an isomorphism. ]

Recall that if A is an additive category, we have a category of complexes C'(A) and
the homotopy category K (.A). Both have a shift automorphism Y. Recall that if
f: B — Cis a morphism in C(A), it has a mapping cone cone(f) and there is a
sequence of complexes

0—>Ci>cone(f)£>EB—>0
which is split exact in each degree.

Theorem. K(A) becomes a triangulated category, where the the distinguished tri-
angles are those isomorphic to one of the form

Lo cone(f) & ¥B.
The proof is omitted. For example we need to know that the rotation
C L cone(f) & B = ye
is isomorphic to the mapping cone triangle
C 5 cone(f) — cone(i) — XC.

Of course this is not true in C(A), only in K(A). (It is related to the “mapping
cylinder” construction.)
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Proposition. If A is an abelian category, the cohomology functor H® : K(A) — A
sends triangles to long eract sequences

= H(XT'Z) = HY(X) — HYY) = HY(Z) —

HY(EX) — HOSY) - HY(SZ) — H(X2X) — ...
Since H*(X"(X) = H™(X), we can also write this as

o H Y Z) = HY(X) = HY) —» H°(Z) —
HY(X)— HYY) — H' (Z) —» H*(X) — ...

Example. The full subcategory K®(A) of K(A) consisting of the bounded com-
plexes is a triangulated subcategory, so triangulated itself. Similarly K~ (.A), con-
sisting of the bounded above complexes. Also, if A is abelian, the category K —*(A)
of the bounded above complexes X which have bounded cohomology, that is, with
H{(X) = 0 for all but finitely many i. There are many other variations.

6.2 Localization of categories

In the homotopy category K(R-Mod), we can consider any module M as a stalk
complex, and a projective resolution gives a quasi-isomorphism P — M from a
complex of projectives. We would like to construct a ‘derived category’ D(R-Mod)
from K(R-Mod) in which the quasi-isomorphisms become isomorphisms. We do
this by explicitly inverting them.

Definition. Let C be a category and S a class of morphisms in C. One says that
S has a calculus of left fractions if
(i) S contains all identity morphisms and is closed under composition.
(ii) Any diagram
X — Y

|
X/
with s € S can be completed to a commutative square
X — Y
L
X — Y
with t € S.
(iii) If f,g € Hom(X,Y) and fs = gs for some s € S, then tf = tg for some ¢t € S.
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Remark. If R is a ring, considered as a category with one object, and S is a
subset of R, then (i) is the condition for S to be a multiplicative subset of R. If
R is a commutative ring, this is enough to construct a localization S™'R. If R is
noncommutative, it is not enough. One also needs the left Ore condition (ii) and
left reversibility (iii).

Proposition. If S admits a calculus of left fraction, then there is a (BIG) category
S=IC with

- objects as in C,

-Hom(X,Y) ={(f,s): X Ly &y andse S}/ ~ where

QLI T/ APIL A Y
(f1,51) ~ (f2, 82) & Jecommutative diagram X Y] 22— Ywith s3 € S

T

X f2 Yv2/ 52 Yy

A

The equivalence class of (f,s) is denoted s~1f.
- The composition of s f : X =Y and (8)"'(f"): Y — Z is (ts') " (gf) where

Z
y L 7
Lo

D

where the square is given by part (ii) of the definition

There is a natural functor i : C — S™'C sending a morphism f: X —Y to 1, f.
If f €S, then i(f) is invertible with inverse f~'1y, and it sends elements of S to
invertible morphisms.

Moreover any functor F' : C — D sending the elements of S to invertible morphisms
factors as Gi for a unique functor G : S7'C — D.

Remark. We say that S has a calculus of right fractions in C if it has a calculus
of left fractions in C?. If so, we define CS™! = (S~1C)%. If S has calculi of left
and right fractions, then we can identify S~*C and CS~!.
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Definition. Suppose C is a triangulated category and S has calculi of left and
right fractions. We say that S is compatible with the triangulated structure of C if
-se S e X(s)e S, and

- In the situation of axiom TR3, if f,g € S, there is some h € S giving a morphism
of triangles.

Theorem. Suppose C is a triangulated category, S has calculi of left and right
fractions and it is compatible with the triangulated structure, then S™'C has the
structure of a triangulated category in which the distinguished triangles are those
isomorphic to the image of a distinguished triangle in C. Moreover the functor
i:C — STIC is a triangle functor.

Theorem. Suppose C is a triangulated category and B is a (full additive) triangu-
lated subcategory of C. Let S be the collection of morphisms u : X — 'Y such that
there is a distinguished triangle

X5Y 575 %X.
in C with Z isomorphic to an object in B. Then S has calculi of left and right

fractions and it is compatible with the triangulated structure.

The category S™!C in this case is denoted C/B and called the Verdier quotient.

6.3 Derived categories
Definition. Let A be an abelian category. If
X5Y 3 Z5%X
is a distinguished triangle in K (.A), then the sequence
-5 HY(Z) = H'(X) - H(Y) - H(Z) —

HY(X)— HYY) = HY(Z) = H*(X) — ...

is exact. It follows that the full subcategory K (A),. of K(A) consisting of acyclic
complexes is a triangulated subcategory.

Let S be the collection of all quasi-isomorphisms in K (.A4). The long exact sequence
also shows that in a triangle as above, u € S if and only if Z is acyclic. Thus S is
the collection of morphisms arising from the subcategory K (.A)q., so it has calculi
of left and right fractions and is compatible with the triangulated structure.

The derived category is the triangulated category
D(A) = K(A)/K(A)ae = ST K (A).
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Remark. The bounded derived category D°(A) can be defined in several ways:

- K2(A)/(K°(A) N K (A)ae) = (S N K°(A)) " KP(A).

- The full subcategory of D(A) given by the bounded complexes.

- The full subcategory of D(.A) given by the complexes with bounded cohomology.

These give triangle equivalent categories, see Stacks Project Lemma 13.11.6. Sim-
ilarly for D*(A) and D~ (A).

This uses that if X is any complex and n € Z, then there is a morphism from a
truncation 7<, X — X

L — X! —— Ker(d®) —— 0 —— ...

l | |

L— X X" — s X

which is an isomorphism on cohomology H® with ¢ < n, and a morphism to a
truncation X — 75, X

L— Xl X" — X —

| l |

— 0 — X"/Im@d!) —— X" —— .
which is an isomorphism on cohomology H*® with i > n.

Example. Consider the derived category D(R-Mod). We can consider any module
M as a complex in degree 0. If

0—=M-—=1°—=1"— ...
is an injective, then M is isomorphic in the derived category to the complex I:
Y A =
Any complex I of injectives which is bounded below is K-injective, meaning that
Homg (r-moay (X, 1) =0

for any acyclic complex X, see Stacks project Lemma 13.31.4. Moreover, [ is
K-injective if and only if the natural map

Hom g (r-mody (X, I) — Homp(rmod) (X, I)

is an isomorphism for all X, see Stacks project Lemma 13.31.2.
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Now if N is an R-module, considered as a stalk complex in degree 0, then a
homomorphism N — ™[ is given by a diagram

. —— 0 s N s 0 — ...
. —— 1 K s [t

and taking into account homotopies, we see that
Hom g (g-moa) (N, 1) = H"(Hom(N, I)) = Ext"(N, M).
Thus
Hom p(p-mody (N, M) = Homp(r-mody(IV, I) = Hom g (r-moay(IV, I) = Ext"™ (N, M).

In general any complex X which is bounded below has a quasi-isomorphism X — [
with I a complex of injectives which is bounded below, see Stacks project Lemma
13.19.3. If X is not bounded below, by Spaltenstein’s work, there is still a quasi-
isomorphism to a K-injective complex, see Stacks project Lemma 13.34.6.

Example. If R is hereditary, then we saw in the section on the universal coefficient
theorem that any complex of projectives is isomorphic to a direct sum of two term
complexes 0 — P LN () — 0 with 0 injective, and this is quasi-isomorphic to the
stalk complex Coker(#) in the same degree as (). Now any bounded above complex
is quasi-isomorphic to a bounded above complex of projectives (this is dual to
the statement about bounded below complexes and injectives), so isomorphic in
D(R-Mod) to a direct sum shifts of stalk complexes.
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