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Homological algebra is the algebra that was invented in order to define and study
the homology and cohomology of topological spaces, but it has applications all over
mathematics.
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plexes of modules and Ext and Tor groups, homological dimensions, homology and
cohomology of groups, and more abstractly, abelian and triangulated categories.
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1 Abelian categories
The basic setting setting for homological algebra, for example used in the book by
Henri Cartan and Samuel Eilenberg, ‘Homological algebra’, 1956, is complexes of
additive groups, or more generally modules for a ring R.

Algebraic geometers also want to work with complexes of sheaves on an algebraic
variety, and in his paper ‘Sur quelques points d’algèbre homologique’, Tohoku
Math. J. 9 (1957), 119–221, Alexander Grothendieck showed that you can unify
the two settings by working with abelian categories.

Although we won’t work with sheaves, it is good to start with abelian categories:
modern homological algebra uses triangulated categories and other concepts, and
abelian categories are a necessary preparation.

We begin with the language of categories, although many students will have seen
this already.

1.1 Categories and functors

Definition. A category C consists of

(i) a collection ob(C) of objects

(ii) For anyX, Y ∈ ob(C), a set Hom(X, Y ) (also denoted C(X, Y ) or HomC(X, Y ))
of morphisms θ : X → Y , and

(iii) For any X, Y, Z ∈ ob(C), a composition map Hom(Y, Z) × Hom(X, Y ) →
Hom(X,Z), (θ, ϕ) 7→ θϕ.

satisfying

(a) Associativity: (θϕ)ψ = θ(ϕψ) for X ψ−→ Y
ϕ−→ Z

θ−→ W , and

(b) For each object X there is an identity morphism IdX ∈ Hom(X,X), with
IdY θ = θ = θIdX for all θ : X → Y .

An isomorphism is a morphism θ : X → Y with an inverse, that is, if there is
some ϕ : Y → X, θϕ = IdY , ϕθ = IdX . If so, then ϕ is uniquely determined, and
denoted θ−1.

Examples. (1) The categories of Sets, Groups, Rings, etc. The category R-Mod
of (left) R-modules for a ring R. These are concrete categories : the objects are
sets, possibly with extra structure, and the morphisms are maps of sets preserving
the extra structure.

1



(2) If C is a category, the opposite category Cop is given by ob(Cop) = ob(C) and
HomCop(X, Y ) = HomC(Y,X), with composition derived from that in C.
(3) If C and D are categories, the product C ×D is the category with ob(C ×D) =
ob(C)× ob(D) and Hom((X,U), (Y, V )) = HomC(X, Y )× HomD(U, V ).

(4) Given a group G or a ring R, there is a category with one object ∗, Hom(∗, ∗) =
G or R and composition given by multiplication.

(5) A partially ordered set (S,≤) gives a category with objects s ∈ S and

Hom(s, t) =

{
ist (s ≤ t)

∅ (s ̸≤ t).

The composition must be given by ituist = isu for s ≤ t ≤ u, so Ids = iss.

(6) A quiver Q = (Q0, Q1, s, t) consists of a set Q0 of vertices, a set Q1 of arrows
and mappings s, t : Q1 → Q0 giving the source and target of each arrow, so
s(a)

a−→ t(a). It is like a category without a composition. The path category of a
quiver has objects the vertices, and the morphisms i→ j are the paths an . . . a2a1
given by sequences of arrows

i = i0
a1−→ i1

a2−→ . . .
an−→ in = j.

There is also a trivial path Idi for each vertex i. Composition is given by concate-
nation. For example the category given by the poset (N,≤) is isomorphic to the
path category of the quiver 0→ 1→ 2→ . . . .

Definition. Because of Russell’s paradox, there is no set of all sets. One solution
is to allow normal sets and ‘big sets’ called classes. There is a class of all sets.

• Normal category: ob(C) is a class, Hom(X, Y ) are sets. For example the
concrete categories above.

• BIG category: ob(C) is a class, Hom(X, Y ) are classes. We only rarely need
this.

• Small category: ob(C) is a set, Hom(X, Y ) are sets. For example the category
given by a partially ordered set.

• Skeletally small category: A normal category, such that there is a set S of
objects such that every object is isomorphic to one in S.

Definition. A subcategory of a category C is a category D such that

• ob(D) is a subclass of ob(C).
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• HomD(X, Y ) ⊆ HomC(X, Y ) for all X, Y ∈ ob(D).

• IdCX ∈ HomD(X,X) for all X ∈ ob(D).

• Composition in D is the same as composition in C.

It is a full subcategory if HomD(X, Y ) = HomC(X, Y ) for all X, Y ∈ ob(D). Thus
a full subcategory of C is determined by a subclass ob(D) of ob(C).

Examples. (a) The category Ab of abelian groups is a full subcategory of the
category of all groups.

(b) The category R-mod is a of finitely generated R-modules is a full subcategory
of R-Mod. It is skeletally small, with S = {Rn/U : n ∈ N, U ⊆ Rn}.

(c) The category whose objects are sets and with Hom(X, Y ) = the injective func-
tions X → Y is a subcategory of the category of sets.

Definition. A monomorphism in a category is a morphism θ : X → Y such that
for all pairs of morphisms α, β : Z → X, if θα = θβ then α = β.

An epimorphism is a morphism θ : X → Y such that for all pairs of morphisms
α, β : Y → Z, if αθ = βθ then α = β.

Examples. (1) In the categories of sets or of R-modules, monomorphism = injec-
tive map, epimorphism = surjective map. For example we show epi = surjection
for modules. Say θ : X → Y is surjective and αθ = βθ. Since θ is surjective, for all
y ∈ Y there is x ∈ X with θ(x) = y. Then α(y) = α(θ(x)) = β(θ(x)) = β(y). Thus
α = β. Say θ : X → Y is an epimorphism. The natural map Y → Y/ Im θ and the
zero map have the same composition with θ, so they are equal. Thus Im θ = Y .

(2) In the category of rings, the inclusion map θ : Z → Q is not surjective, but it
is an epimorphism.

Definition. Let C,D be categories, a (covariant) functor F : C → D is given by

• For each object X ∈ ob(C), an object F (X) ∈ ob(D), and

• For each morphism θ : X → Y in C, a morphism F (θ) : F (X)→ F (Y ) in D

such that F (IdX) = IdF (X) for all X ∈ ob(C) and F (θϕ) = F (θ)F (ϕ) for compos-
able morphisms X ϕ−→ Y

θ−→ Z.

A contravariant functor F : C → D is the same thing as a covariant functor
Cop → D. Thus it is an assignment of

• For each object X ∈ ob(C), an object F (X) ∈ ob(D), and
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• For each morphism θ : X → Y in C a morphism F (θ) : F (Y )→ F (X) in D,

such that F (IdX) = IdF (X) and F (θϕ) = F (ϕ)F (θ) for composable morphisms
X

ϕ−→ Y
θ−→ Z.

A functor F : C → D is:

• faithful if the map F : HomC(X, Y ) → HomD(F (X), F (Y )) is injective for
all X, Y ∈ ob(C),

• full if the map F : HomC(X, Y ) → HomD(F (X), F (Y )) is surjective for all
X, Y ∈ ob(C),

• dense if every object in D is isomorphic to F (X) for some object X in C.

• An isomorphism if it has an inverse, or equivalently if it is full, faithful and
a bijection on objects.

• An equivalence if it is full, faithful and dense.

Examples. (1) The inclusion functor of a subcategory, for example Ab to Group,
is always faithful. It is full if and only if the subcategory is full.

(2) A composition of functors is a functor. (Thus there is a category of small
categories.)

(3) There are many examples of forgetful functors for concrete categories, which
forget some structure. For example Group → Set, or R-Mod → Ab. They are
faithful.

(4) Given a ring homomorphism θ : R → S, restriction defines a faithful functor
S-Mod → R-Mod. [It is full if and only if θ is a epimorphism in the category of
rings, but that is another story.]

(5) If K is a field, then duality V ⇝ V ∗ = HomK(V,K) gives a contravariant
functor K-Mod to K-Mod.

Definition. Let C be a category and let Hom(X, Y ) denote the Hom sets for C.
Fix an object X ∈ ob(C). The representable functor F = Hom(X,−) is the
functor C → Set sending an object Y to F (Y ) = Hom(X, Y ), and sending a
morphism θ ∈ Hom(Y, Z) to the mapping F (θ) : Hom(X, Y )→ Hom(X,Z) defined
by F (θ)(ϕ) = θϕ.

Dually, fixing Y , we get a contravariant functor Hom(−, Y ) from C to Set.

Varying both X and Y , we get a functor Hom(−,−) : Cop × C → Set.

4



1.2 Natural transformations and functor categories

Definition. Let F,G be functors C → D. A natural transformation α : F → G is
given by morphisms αX : F (X) → G(X) for all X ∈ ob(C) such that G(θ)αX =
αY F (θ) for every morphism θ : X → Y in C.

It is a natural isomorphism if all αX are isomorphisms in D.

Examples. (1) Clearly we have an identity natural transformation IdF : F →
F and a composition βα of natural transformations F α−→ G

β−→ H is a natural
transformation.

(2) If K is a field and V is a K-vector space, there is a natural map V → V ∗∗,
v 7→ (θ 7→ θ(v)). This is a natural transformation Id → (−)∗∗ of functors from
K-Mod to K-Mod. If we used K-mod, it would be a natural isomorphism.

Lemma (Yoneda’s Lemma). For a functor F : C → Set and X ∈ ob(C) there is
a 1-1 correspondence between natural transformations α : Hom(X,−) → F and
elements f ∈ F (X).

Proof. A natural transformation α gives a morphism αX : Hom(X,X) → F (X),
and hence an element f = αX(IdX) ∈ F (X). Conversely, given f ∈ F (X) and
Y ∈ ob(C) we get a morphism αY : Hom(X, Y ) → F (Y ), θ 7→ F (θ)(f). This
defines a natural transformation α. These constructions are inverses.

Definition. The functor category Fun(C,D) has objects the functors F : C → D.
The morphisms are the natural transformations.

Remarks. (1) In general this is a BIG category. To get a normal category, we
can take C small, or more generally skeletally small. We need to check that the
collection of natural transformations F → G is a set. Every object in C is isomor-
phic to an object in a set S. A natural transformation α : F → G is determined
by the morphisms αX for X ∈ S, for if θ : Y → X is an isomorphism, then
αY = G(θ−1)αXF (θ).

(2) The natural isomorphisms F → G are the isomorphisms in this category, e.g.
if α is a natural isomorphism, it has inverse α−1 defined by (α−1)X = (αX)

−1.

(3) Any morphism θ : X → Y in C defines a natural transformation of representable
functors Hom(θ,−) : Hom(Y,−) → Hom(X,−), sending f ∈ Hom(Y, Z) to fθ ∈
Hom(X,Z). Thus we get a functor Cop → Fun(C, Set), sending X ∈ ob(C) to
Hom(X,−) and sending θ : X → Y in C to Hom(θ,−). By Yoneda’s Lemma
this functor is full and faithful. Thus two representable functors Hom(X,−) and
Hom(Y,−) are naturally isomorphic if and only if X and Y are isomorphic.
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Definition. Given functors F : C → D and G : D → C, we say that (F,G)
is an adjoint pair, or that F is left adjoint to G or G is right adjoint to F if
there is a natural isomorphism α : Hom(F (−),−) → Hom(−, G(−)) of functors
Cop ×D → Sets.

Thus one needs bijections

αX,Y : Hom(F (X), Y )→ Hom(X,G(Y ))

for all X ∈ ob(C) and Y ∈ ob(D), such that

Hom(F (X ′), Y )
αX′,Y−−−→ Hom(X ′, G(Y ))

·F (θ)

y ·θ
y

Hom(F (X), Y )
αX,Y−−−→ Hom(X,G(Y ))

commutes for all θ : X → X ′, and

Hom(F (X), Y )
αX,Y−−−→ Hom(X,G(Y ))

ϕ·
y G(ϕ)·

y
Hom(F (X), Y ′)

αX,Y ′
−−−→ Hom(X,G(Y ′))

commutes for all ϕ : Y → Y ′.

Examples. (1) Let R be a ring. We have a forgetful functor ForgetR : R-Mod→
Sets. Given a set X, let FreeR(X) be the free left R-module with basis X. Thus

FreeR(X) = {
∑
x∈X

rxx : rx ∈ R for x ∈ X, all but finitely many zero}.

Any mapping ϕ : X → Y gives a module homomorphism FreeR(X)→ FreeR(Y ).
This gives a functor FreeR : Sets → R-Mod. For M a left R-module, we have a
bijection

αX,M : HomR(FreeR(X),M)→ HomSets(X,ForgetR(M))

This is natural in both X and M , so it turns (FreeR, ForgetR) into an adjoint pair
of functors.

(2) By defining things with morphisms in the natural way, we get adjoint functors
(Path, Forget) where Forget is the functor from small categories to quivers which
forgets the composition and Path sends a quiver to its path category.
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Theorem. A functor F : C → D is an equivalence if and only if there is functor
G : D → C such that FG ∼= IdD and GF ∼= IdC. In this case the pairs (F,G) and
(G,F ) are adjoint pairs.

The first part is proved in §1.3 of my Algebra II notes. Now for example if X ∈
ob(C) and Y ∈ ob(D) then since G is full and faithful, we get HomD(F (X), Y ) ∼=
HomC(GF (X), G(Y )), and sinceGF ∼= IdC this is in bijection with HomD(X,G(Y )).

1.3 Limits and colimits

Definition. Let C be a category. Let I be a small category. An I-diagram in C
is a functor M : I → C. For i ∈ ob(I), we write Mi instead of M(i) and for a
morphism a : i→ j in I, we write Ma for the morphism Mi →Mj.

Given an object X in C, the constant functor cX : I → C sends every object of
I to X and every morphism to IdX . A morphism θ : X → Y induces a natural
transformstion cθ : cX → cY . Thus we get a functor c : C → Fun(I, C).
Given an I-diagram M , a limit for M is an object

L = lim
i∈I

Mi ∈ ob(C)

together with a natural transformation α : cL → M such that any natural trans-
formation β : cX →M factors as αcθ for a unique θ : X → L.

In other words, a limit is an object L equipped with morphisms αi : L → Mi for
each i ∈ ob(I) such that αj = Maαi for any a : i→ j and such that if X ∈ ob(C)
and βi : X → Mi satisfy βj = Maβi for any a : i → j, then there is a unique
θ : X → L such that βi = αiθ for all i.

If M has a limit, it is unique up to a unique isomorphism, so we can talk about
the limit.

Remarks. (1) The limit L = limi∈IMi is an object giving a bijection

HomC(X,L) ∼= HomFun(I,C)(cX ,M)

which is a natural isomorphism HomC(−, L) ∼= HomFun(I,C)(c(−),M), so to say
that the limit exists is to say that the contravariant functor HomFun(I,C)(c(−),M)
is representable.

(2) Suppose ϕ : M → N is a natural transformation between I-diagrams, and
suppose that limi∈IM and limi∈I Ni both exist. Then for each i we get a morphism

lim
i∈I

Mi

αM
i−−→Mi

ϕi−→ Ni
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and these morphisms are compatible with the morphisms Na. Thus we get a unique
morphism

lim
i∈I

ϕi : lim
i∈I

Mi → lim
i∈I

Ni

such that for any i the diagram

limi∈IMi

αM
i−−−→ Mi

limi∈I ϕi

y ϕi

y
limi∈I Ni

αN
i−−−→ Ni

commutes.

Examples. (a) Let I be a set. A product of a family of objects Mi ∈ ob(C) (i ∈ I)
is an object P =

∏
i∈IMi ∈ ob(C) equipped with morphisms pi : P → Mi such

that for any object X and morphisms qi : X → Mi there is a unique morphism
θ : X → P with qi = pθ, that is, the map

Hom(X,P )→
∏
i

Hom(X,Mi), θ 7→ (piθ)

is a bijection. Here we take the category I with object set I and only identity
morphisms.

(b) A terminal object in a category C is an object T such that for every object X
there is a unique morphism X → T . This is the same thing as a product of objects
indexed by the empty set or a limit over an empty category.

(c) An equalizer of a pair of morphisms f, g : U → W consists of an object E and
a morphism p : E → U with fp = gp and with the universal property, that for all
q : X → U with fq = gq there is a unique θ : X → E with q = pθ. Here I is the
category

◦ −→−→ ◦
with two objects and two non-identity morphisms.

(d) A pullback of a diagram
U

f

y
V

g−−−→ W
of objects and morphisms in C consists of an object X and morphisms p, q giving
a commutative square

X
p−−−→ U

q

y f

y
V

g−−−→ W
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and which is universal for such commutative squares, that is for any X ′, p′ : X ′ →
U , q′ : X ′ → V with fp′ = gq′ there is a unique θ : X ′ → X with p′ = pθ and
q′ = qθ.

Theorem. A category C is (finitely) complete, meaning that for all (finite) small
categories I and I-diagrams M the limit exists in C if and only if C has products
indexed by any (finite) set and equalizers.

Proof. We will need the explicit construction of limits. Suppose M is an I-diagram
in C. Consider the products and associated morphisms∏

i∈ob(I)

Mi
pi−→Mi,

∏
a

Mt(a)
pa−→Mt(a)

where the second product is indexed by the morphisms a in I and s(a), t(a) are
the source and target of a. By the universal property of the second product, there
are unique morphisms

∏
i∈ob(I)

Mi

ϕ
−→
−→
ψ

∏
a

Mt(a)

with pt(a) = paϕ and Maps(a) = paψ. Then the equalizer E of this diagram,
equipped with the morphisms

E
p−→

∏
i∈ob(I)

Mi
pi−→Mi

is limi∈IMi. This is straightforward.

Examples. The categories Set and R-Mod are complete. The product is the usual
one. The terminal object is a one-point set or the zero module. The equalizer of
f, g : U → W is the inclusion

{u ∈ U : f(u) = g(u)} → U.

For R-modules this is the same as Ker(f − g). The pullback is {(u, v) ∈ U × V :
f(u) = g(v)}, etc.

Lemma. In an equalizer, p is mono. A pullback of a mono is a mono, that is, in
a pullback diagram, if f is mono, so is the parallel morphism q.

Proof. For the equalizer, suppose α, β : X → E and pα = pβ = p′. Since fp′ = gp′,
there is a unique θ : X → E with p′ = pθ. But both θ = α and θ = β satisfy this,
so α = β.

For the pullback. Suppose α, β : X ′ → X with qα = qβ. Then gqα = gqβ, so
fpα = fpβ. Since f is mono, pα = pβ. Thus by the uniqueness part of the
universal property for a pullback, α = β.
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Now we do the dual notion.

Definition. A colimit of a diagram M : I → C is the same thing as a limit of M
considered as a functor Iop → Cop. Thus it is an object

C = colim
i∈I

Mi ∈ ob(C)

equipped with a natural transformation α : M → cC such that any natural trans-
formation β :M → cX factors as cθα for a unique θ : C → X.

In other words, a colimit is an object C equipped with morphisms αi :Mi → C for
each i ∈ ob(I) such that αjMa = αi for any a : i→ j and such that if X ∈ ob(C)
and βi : Mi → X satisfy βjMa = βi for any a : i → j, then there is a unique
θ : C → X such that βi = θαi for all i.

Examples. (a) A coproduct of a family of objects Mi (i ∈ I) is an object C =∐
i∈IMi equipped with morphisms ii : Mi → C such that for any object X and

morphisms ji : Mi → X there is a unique morphism θ : C → X with ji = θii.
That is, the map

Hom(C,X)→
∏
i

Hom(Mi, X), θ 7→ (θii)

is a bijection.

(b) An initial object is an object X with a unique morphism to any other object.
It is a coproduct over the empty set or colimit over the empty category.

(c) A coequalizer of a pair of morphisms f, g : U → W consists of an object X and
a morphism p : W → X with pf = pg and the universal property.

(d) A pushout of a pair of morphisms f : W → U and g : W → V , consists of an
object X and morphisms p : U → X and q : V → X giving a commutative square
pf = qg, and which is univeral for such commutative squares, that is for any X ′,
p′ : U → X ′, q′ : V → X ′ with p′f = q′g there is a unique θ : X → X ′ with p′ = θp
and q′ = θq.

Definition. A category C is (finitely) cocomplete if all (finite) colimits exist. It is
equivalent that C has all (finite) coproducts and coequalizers.

Examples. (i) The categories Set and R-Mod are cocomplete.

For Sets the coproduct is the disjoint union⋃̇
Xi.
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The initial object is the empty set. The coequalizer of morphisms f, g : U → W is
W → W/ ∼ where ∼ is the smallest equivalence relation with f(u) ∼ g(u) for all
u ∈ U . The pushout of morphisms f : W → U and g : W → V is U ∪ V/ ∼ where
∼ is the equivalence relation generated by f(w) ∼ g(w) for w ∈ W .

For R-Mod coproducts are direct sums⊕
i∈I

Xi = {(xi) ∈
∏
i∈I

Xi : all but finitely many xi = 0

The initial object is the the zero module 0. The coequalizer of morphisms f, g :
U → W in R-Mod is the map W → W/ Im(f − g). The pushout of morphisms
f : W → U and g : W → V is (U ⊕ V )/ Im θ, where θ : W → U ⊕ V is
θ(w) = (f(w),−g(w)).

Lemma. A pushout of an epi is an epi, that is, in a pushout diagram, if f is epi,
so is the parallel morphism q.

Proposition. If (L,R) is a pair of adjoint functors, L : C → D, R : D → C, then
L preserves colimits and R preserves limits, if they exist.

Proof. Suppose M is an I-diagram in D and suppose that limi∈IMi exists in D.
This gives a bijection

HomD(X, lim
i∈I

Mi) ∼= HomFun(I,D)(cX ,M)

which is natural in X. Now for Y ∈ ob(C) we get

HomC(Y,R(lim
i∈I

Mi)) ∼= HomD(L(Y ), lim
i∈I

Mi) ∼= HomFun(I,D)(cL(Y ),M).

Now cL(Y )
∼= LcY and it is easy to see that

HomFun(I,D)(LcY ,M) ∼= HomFun(I,C)(cY , RM)

This is natural in Y , so it shows that limi∈I(RM)i exists and is isomorphic to
R(limi∈IMi). Now the statement for L is dual, using that (R,L) is an adjoint pair
of functors between Dop and Cop.

1.4 Additive categories

Definition. Let K be a commutative ring. A K-category is a category C with the
extra structure that the sets Hom(X, Y ) are K-modules for all X, Y ∈ ob(C) and
the multiplication maps

Hom(Y, Z)× Hom(X, Y )→ Hom(X,Z), (θ, ϕ) 7→ θϕ
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are K-bilinear. In particular, for any objects X, Y ∈ ob(C), there is a zero mor-
phism 0 ∈ Hom(X, Y ).

Recall that a Z-module is the same thing as an additive group. A Z-category is
also called a preadditive category, so any K-category is preadditive.

Examples. The category Ab of abelian groups is preadditive. So is R-Mod for a
ring R. If R is a K-algebra, then R-Mod is a K-category.

Definition. If C and D are K-categories, a functor F : C → D is said to be
K-linear if the mapping

F : HomC(X, Y )→ HomD(F (X), F (Y ))

is a homomorphism of K-modules for all X, Y ∈ ob(C). A Z-linear functor is also
called an additive functor.

If C and D are K-categories, we denote by FunK(C,D) the category whose objects
are the K-linear functors C → D and whose morphisms are natural transforma-
tions. It is naturally a K-category: if α, α′ : F → G are natural transformations
and λ, λ′ ∈ K, we define (λα + λ′α′)X = λαX + λ′α′X ∈ HomD(F (X), G(X)).

Example. Let R be a ring, and consider it as a category with one object. It is
preadditive, and

FunZ(R,Ab) ∼= R-Mod.

Remark. If C is a preadditive category and X ∈ ob(C), then the representable
functor Hom(X,−) gives an additive functor C → Ab, so an object in FunZ(C,Ab).
An appropriate version of Yoneda’s Lemma gives that if F : C → Ab is an addi-
tive functor, then there is a 1-1 correspondence between natural transformations
Hom(X,−)→ F and elements f ∈ F (X).

Definition. The kernel of a morphism f : U → W in a preadditive category is
the equalizer of f and 0. Thus it is an object X and a morphism p : X → U with
fp = 0, such that for any morphism p′ : X ′ → U with fp′ = 0 there is a unique
morphism θ : X ′ → X with p′ = pθ. Conversely the equalizer of f, g = kernel of
f − g.
The cokernel of a morphism f : U → W in a preadditive category is the coequalizer
of f and 0. Thus it is an object X and a morphism p : W → X with pf = 0,
such that for any morphism p′ : W → X ′ with p′f = 0 there is a unique morphism
θ : X → X ′ with p′ = θp.

For example the cokernel of a morphism f : U → W in R-Mod is W → W/ Im f .

Theorem. For objects X, X1, . . . , Xn (n ≥ 0) in a preadditive category the fol-
lowing are equivalent

12



(i) X is the product of X1, . . . , Xn for some morphisms pi : X → Xi

(ii) X is the coproduct of X1, . . . , Xn for some morphisms ii : Xi → X,

(iii) X is a biproduct of X1, . . . , Xn, meaning that there are morphisms pi : X →
Xi and ii : Xi → X with piii = IdXi

, piij = 0 for i ̸= j and
∑n

i=1 iipi = IdX .

In this case we write X =
⊕n

i=1Xi and call it a direct sum.

Proof. (i)⇒(iii) For any object X ′ we have a bijection

Hom(X ′, X)→
n∏
i=1

Hom(X ′, Xi), ϕ 7→ (piϕ).

In particular, taking X ′ = Xj, there is a morphism ij : Xj → X such that

piij =

{
IdXi

(i = j)

0 (i ̸= j).

Now if ϕ =
∑n

i=1 iipi then pjϕ =
∑n

i=1 pjiipi = pj, so ϕ = IdX by the uniqueness
part of the definition of a product.
(iii)⇒(i) For any X ′ one has inverse bijections

Hom(X ′, X)
(αi)7→

∑
iiαi←−

−→
ϕ 7→(piϕ)

n∏
i=1

Hom(X ′, Xi)

so the pi turn X into a product.
(ii)⇔(iii) Dual.

Remark. The case n = 0 gives the following. In a preadditive category, an object
X is terminal if and only if it is initial if and only if IdX = 0. This is called a zero
object, and denoted 0.

Definition. A category is additive if it is preadditive, it has a zero object and
every pair of objects has a direct sum (equivalently it has all finite direct sums).

Examples. (1) Ab, R-Mod, R-mod.
(2) If C is a preadditive category and D is additive, then FunZ(C,D) is additive.
The direct sum of functors F1, . . . , Fn is the functor F with

F (X) = F1(X)⊕ · · · ⊕ Fn(X)

for X ∈ ob(C).
Corollary. If F is an additive functor between additive categories, then F preserves
finite direct sums, so F (0) = 0 and F (X ⊕ Y ) ∼= F (X)⊕ F (Y ).

Proof. If X is a biproduct of X1, . . . , Xn, then clearly F (X) is a biproduct of
F (X1), . . . , F (Xn).
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1.5 Abelian categories

Definition. A category is abelian if

(i) it is additive,

(ii) every morphism has a kernel and a cokernel,

(iii) every epi is a cokernel and every mono is a kernel.

Remarks. (1) The opposite of an abelian category is abelian. This saves work in
proofs.

(2) An abelian category has all finite limits and colimits.

(3) Every mono is the kernel of its cokernel and every epi is the cokernel of its
kernel. For example, suppose f : X → Y is mono, say a kernel of g : Y → W , and
suppose f has cokernel c : Y → Z. Then g = kc for some k : Z → W . Now if
s : U → Y is a morphism with cs = 0, then gs = kcs = 0, so s factors through f .
It follows that f is a kernel of c.

Lemma. In an abelian category a pullback of an epi is an epi and a pushout of a
mono is a mono.

Proof. Say
X

a−−−→ Y

b

y c

y
Z

d−−−→ W

is a pullback with d epi. We want to show that a is epi. We have morphisms

X
( a
−b)−−→ Y ⊕ Z (c d)−−→ W

where (c d) comes from considering Y ⊕ Z as the coproduct of Y and Z and
(
a
−b

)
comes from considering Y ⊕ Z as the product of Y and Z. Since the square is
a pullback,

(
a
−b

)
is the kernel of (c d). Since d is an epi, so is (c d). Thus by

the remark above, (c d) is the cokernel of (a − b). Thus the square is a pushout.
Suppose f : Y → U is a morphism with fa = 0. Since fa = 0 = 0b, by the pushout
property there is a unique morphism h : W → U with hc = f and hd = 0. Since d
is epi, h = 0. Thus f = 0.

Lemma. Every morphism f : X → Y in an abelian category factors as a product
f = gh where h is an epi and g is a mono, and this decomposition is unique up
to isomorphism, in fact h is a cokernel of the kernel of f and g is a kernel of the
cokernel of f .
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Proof. Let k : U → X be a kernel of f and let h : X → Z be a cokernel of k. Let
h : X → Z be a cokernel of the kernel k : U → X of f . Then f factors as gh
for some g : Z → Y . We show that g is mono, so suppose that s : W → Z is a
morphism with gs = 0. Take the pullback

P
p−−−→ X

q

y h

y
W

s−−−→ Z

By the previous result, q is an epi. Now gsq = 0, so ghp = 0, so fp = 0, so p = kr
for some r : P → U . Then sq = hp = hkr = 0, so s = 0.

For uniqueness suppose that f factors as X h−→ Z
g−→ Y with h an epi and g a mono.

Since g is mono, the a kernel of f is also a kernel of h, so h is a cokernel of this.
Similarly for g.

Lemma. A morphism in an abelian category is an isomorphism if and only if it
is mono and epi.

Proof. If f : X → Y is mono, then its kernel is 0→ X, and the cokernel of this is
X → X.

Examples. (1) Ab is abelian and R-Mod is abelian. If R is a left noetherian ring,
the category R-mod of finitely generated left modules is abelian. (The noetherian
hypothesis ensures that the kernel of a morphism between f.g. modules is f.g.)

(2) If C is a preadditive category then FunZ(C,Ab) is abelian. Kernels and cokernels
are computed objectwise: if α : F → G is a natural transformation, then

(Kerα)(X) = Ker(F (X)→ G(X)), (Cokerα)(X) = Coker(F (X)→ G(X)).

Remark. A subobject of an object X in an abelian category is an equivalence class
of monos to X, where α : U → X is equivalent to α′ : U ′ → X ⇔ α = α′θ for some
isomorphism ϕ : U → U ′. [There is possibly a set-theoretic problem here, which
we ignore.]

Given a subobject U → X we denote its cokernel by X → X/U .

Given a morphism θ : X → Y , the kernel of θ gives a subobject Ker θ of X. The
image Im θ is the subobject of Y given by the morphism g in a factorization θ = gh
with h epi and g mono.

We get analogues of the isomorphism theorems - details omitted.
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1.6 Exact sequences

We work in an abelian category.

Definition. A sequence of objects and morphisms

· · · −→ L
f−→M

g−→ N −→ · · ·

is said to be exact at M if Im f = Ker g. The sequence is exact if it is exact at
every place where morphisms come in and out. A short exact sequence is an exact
sequence of the form

0 −→ L
f−→M

g−→ N −→ 0.

Remarks. (1) Write f and g as compositions ba and dc with

L
a
↠ Im f

b
↪→M

c
↠ Im g

d
↪→ N

Then we have: exact at M
⇔ b is a kernel for g (this is the definition)
⇔ b is a kernel for c (d is mono, so g and c have the same kernel)
⇔ c is a cokernel for b (since any epi is a cokernel for it kernel and any mono is a
kernel for its cokernel)
⇔ c is a cokernel for f (since a is epi)

(2) 0→M
g−→ N is exact at M if and only if g is a mono and L f−→M → 0 is exact

at M if and only if f is an epi.

(3) A sequence 0 → L
f−→ M

g−→ N is exact if and only if f is a kernel for g. A
sequence L f−→M

g−→ N → 0 is exact if and only if g is a cokernel for f .

(4) 0 −→ L
f−→M

g−→ N −→ 0 is a short exact sequence if and only if f is a kernel for
g and g is a cocernel for f .

(5) Any subobject U →M gives a short exact sequence 0→ U →M →M/U → 0.

(6) Any morphism f :M → N gives an exact sequence

0→ Ker f →M
f−→ N → Coker f → 0

with Coker f = N/ Im f and short exact sequences

0→ Ker f →M → Im f → 0 and 0→ Im f → N → Coker f → 0.

(7) If L and N are objects, their direct sum has morphisms

L
iL−→
←−
pL

L⊕N
iN←−
−→
pN

N
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and the sequence
0→ L

iL−→ L⊕N pN−→ N → 0,

is exact. For example, if θ : L⊕N → X is a morphism with θiL = 0, then

θ = θ IdL⊕N = θ(iLpL + iNpN) = θiNpN

so θ factors through pN .

Lemma. For a short exact sequence

0 −→ L
f−→M

g−→ N −→ 0,

in an abelian category, the following conditions are equivalent, in which case the
sequence is said to be split.

(i) f is a split monomorphism, meaning that it has a retraction, a morphism
r :M → L with rf = IdL.

(ii) g is a split epimorphism, meaning that it has a section, a morphism s : N →
M with gs = IdN .

(iii) There are morphisms

L
r←−
−→
f

M
g−→
←−
s

N

turning M into a biproduct of L and N .

(iv) There is an isomorphism θ :M → L⊕N giving a commutative diagram

0 −−−→ L
f−−−→ M

g−−−→ N −−−→ 0∥∥∥ θ

y ∥∥∥
0 −−−→ L

iL−−−→ L⊕N pN−−−→ N −−−→ 0.

Proof. (i)⇒(iii). We have (IdM − fr)f = f − frf = f − f = 0. Thus since g is a
cokernel for f we have IdM − fr = sg for some s : N → M . Now gsg = g(IdM −
fr) = g = IdNg, so gs = IdN since g is epi. Also rsg = r(IdM − fr) = r − r = 0,
so rs = 0 since g is epi.

(ii)⇒(iii) is dual.

(iii)⇒(iv) is clear, since M is identified with L⊕N .

(iv)⇒(i) and (ii) taking r = pLθ and s = θ−1iN .
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Lemma (Snake Lemma). Given a commutative diagram with exact rows

(0 −−−→ )L
f−−−→ M

g−−−→ N −−−→ 0

α

y β

y γ

y
0 −−−→ L′

f ′−−−→ M ′ g′−−−→ N ′( −−−→ 0)

there is a morphism c : Ker γ → Cokerα giving an exact sequence

(0→)Kerα→ Ker β → Ker γ
c−→ Cokerα→ Coker β → Coker γ(→ 0).

Lemma (Five Lemma). Given a commutative diagram with exact rows

A −−−→ B −−−→ C −−−→ D −−−→ E

α

y β

y γ

y δ

y ϵ

y
A′ −−−→ B′ −−−→ C ′ −−−→ D′ −−−→ E ′

If α, β, δ, ϵ are isomorphisms, so is γ.

Proof. For the category R-Mod, these are most easily proved by diagram chasing.
For proofs in general, see §1 of B. Iversen, Cohomology of sheaves, Springer 1986.
Alternatively, in the exercises starting on page 118 of Gelfand and Manin, Methods
of Homological Algebra, Springer 2002, the results are proved by a generalized type
of diagram chasing.

Lemma. Given a short exact sequence

0→ L
f−→M

g−→ N → 0

The pullback of g along a morphism θ : N ′ → N fits in a commutative diagram
with exact rows

0 −−−→ L
f ′−−−→ M ′ g′−−−→ N ′ −−−→ 0∥∥∥ θ′

y θ

y
0 −−−→ L

f−−−→ M
g−−−→ N −−−→ 0

and the pushout of f along a morphism ϕ : L→ L′′ fits in a commutative diagram
with exact rows

0 −−−→ L
f−−−→ M

g−−−→ N −−−→ 0

ϕ

y ϕ′

y ∥∥∥
0 −−−→ L′′

f ′′−−−→ M ′′ g′′−−−→ N −−−→ 0.
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Proof. Given θ there is a pullback given by g′ and θ′ and we have already seen that
g′ is epi. By the pullback property there is f ′ such that θ′f ′ = f and g′f ′ = 0.
Now f ′ is clearly mono. It is a kernel for g′, for if h : X → M ′ and g′h = 0 then
gθ′h = θg′h = 0, so θ′h = fk for some k : X → L. Thus θ′f ′k = θ′h. Now f ′k = h
by the uniqueness property of the pullback.

1.7 Exact functors

Definition. If F is an additive functor between abelian categories, we say that F
is exact (respectively left exact, respectively right exact) if given any short exact
sequence

0→ X → Y → Z → 0

the sequence
0→ F (X)→ F (Y )→ F (Z)→ 0

is exact (respectively 0 → F (X) → F (Y ) → F (Z) is exact, respectively F (X) →
F (Y )→ F (Z)→ 0 is exact).

Similarly, if F is a contravariant functor, we want the sequence

0→ F (Z)→ F (Y )→ F (X)→ 0

to be exact (respectively 0→ F (Z)→ F (Y )→ F (X) exact, respectively F (Z)→
F (Y )→ F (X)→ 0 exact).

Remarks. (i) Any additive functor between abelian categories sends split exact
sequences to split exact sequences.

(ii) An exact functor sends any exact sequence (not just a short exact sequence)
to an exact sequence.

(iii) A left exact functor sends an exact sequence 0 → X → Y → Z to an exact
sequence 0→ F (X)→ F (Y )→ F (Z). Similarly for right exact.

Lemma. For an abelian category, Hom(−,−) gives a left exact functor in each
variable. That is, if M is an object and 0 → X → Y → Z → 0 is exact, then so
are

0→ Hom(M,X)→ Hom(M,Y )→ Hom(M,Z)

and
0→ Hom(Z,M)→ Hom(Y,M)→ Hom(X,M).

Proof. The first sequence is exact at Hom(M,Y ) since X → Y is a kernel for
Y → Z, and it is exact at Hom(M,X) since X → Y is a mono.
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Lemma. If (L,R) are a pair of adjoint functors between abelian categories, L :
C → D, R : D → C, then L is right exact and R is left exact.

Proof. R is a right adjoint, so preserves limits, so preserves kernels, so it is left
exact. Dually L is a left adjoint, so preserves colimits, so preserves cokernels, so it
is right exact. More explicitly, suppose X f−→ Y

g−→ Z → 0 is exact. For any object
U in D, the sequence

0→ HomC(Z,R(U))→ HomC(Y,R(U))→ HomC(X,R(U))

is exact. Hence so is

0→ HomC(L(Z), U)→ HomC(L(Y ), U)→ HomC(L(X), U).

Thus L(g) is a cokernel of L(f), so L(X) → L(Y ) → L(Z) → 0 is exact. Thus L
is right exact.

1.8 Filtered colimits

Remark. A poset (I,≤) is directed if it is non-empty and for all x, y ∈ I there
exists z ∈ I with x ≤ z and y ≤ z. For example the poset N is directed.

An inverse limit is a limit over the opposite of a directed poset. For example the
ring of p-adic integers is

Ẑp = lim←
n∈N

Z/Zpn where · · · → Z/Zp3 → Z/Zp2 → Z/Zp→ Z/Z1.

On the other hand, a direct limit is a colimit over a directed poset. For example

colim→
n∈N

Z/Zpn where Z/Z1 p−→ Z/Zp p−→ Z/Zp2 p−→ Z/Zp3 → . . .

is the union of the groups, the Prüfer group Zp∞ ∼= Z[1/p]/Z.

More generally we shall consider colimits over small filtered categories. In fact any
filtered colimit can be turned into a direct limit, see Proposition 8.1.6 in Exposé
I of SGA 4 or H. Andréka and I. Németi, Direct limits and filtered colimits are
strongly equivalent in all categories, Banach Center Publications 1982.

Definition. A category I is filtered if

• it is non-empty

• for any objects i, j are is an object k and morphisms i→ k and j → k, and
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• for any morphisms a, b : i→ j there is a morphism c : j → k with ca = cb.

Lemma. Let I be a small filtered category and M an I-diagram in R-Mod. On
the disjoint union ⋃̇

i∈ob(I)

Mi

consider the equivalence relation ∼ generated by the condition that Ma(m) ∼ m
whenever a : i→ j is a morphism in I and m ∈Mi. Then

(i) colimi∈IM ∼= C := (
⋃̇
i∈ob(I)Mi)/ ∼, equipped with the mappings αi : Mi →

C, m 7→ [m].

(ii) m ∈ Mi ∼ m′ ∈ Mj ⇔ there exist i a−→ k
b←− j in I with Ma(m) = Mb(m

′).
In particular, if m ∈ Mi, then [m] = 0 if and only if there is a morphism
a : i→ k in I such that Ma(m) = 0.

The same thing works for filtered colimits in the category of sets.

Proof. (ii) Consider the relation R defined by this condition. It is clearly reflexive
and symmetric. It suffices to show that it is transitive. Suppose mRm′ and m′Rm′′
with m ∈Mi, m′ ∈Mj, m′′ ∈Mk. By filteredness there are

i
a−→ p

b←− j
c−→ q

d←− k

with Ma(m) = Mb(m
′) and Mc(m

′) = Md(m
′′). By filteredness there are mor-

phisms p a′−→ r
d′←− q. And then a′b and d′c are morphisms j → r, so there is a

morphism f : r → s with fa′b = fd′c. Then Mfa′a(m) =Mfa′b(m
′) =Mfd′c(m

′) =
Mfd′d(m

′′), so mRm′′.

(i) We turn C into an R-module as follows:
- If m ∈Mi and r ∈ R, then r[m] := [rm].
- If m ∈Mi and m′ ∈Mj then

[m] + [n] := [Ma(m) +Mb(m
′)]

for morphisms i a−→ k
b←− j in I.

Using filteredness one can show that this is well-defined. For example if c : i→ i′

we have [m] = [Mc(m)], and we want

[Ma(m) +Mb(m
′)] = [Ma′(Mc(m)) +Mb′(m

′)]
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where i′ a′−→ k′
b′←− j. By filteredness there is are k d−→ s

d′←− k′ and then f : s → t
such that fda = fd′a′c and fdb = fd′b′. Then

[Ma′(Mc(m)) +Mb′(m
′)] = [Mfd′(Ma′c(m) +Mb′(m

′))] = [Mfd′a′c(m) +Mfd′b′(m
′)]

= [Mfda(m) +Mfdb(m
′)] = [Mfd(Ma(m) +Mb(m

′))] = [Ma(m) +Mb(m
′)].

Clearly this turns C into an R-module and the αi are homomorphisms. We show
it is a colimit for M . Clearly, if a : i→ j then αjMa = αi. Given a module X and
homomorphisms βi : M → X satisfying βjMa = βi for all a : i → j, the βi give a
mapping ⋃̇

i∈ob(I)
Mi → X

and it is constant on equivalence classes, so it defines a homomorphism θ : C → X
satisfying θαi = βi for all i. Clearly θ is uniquely determined. Thus we have the
universal property.

Theorem. The category R-Mod has exact filtered colimits. That is, suppose I is
a small filtered category. Let L,M,N be I-diagrams in R-Mod and let α : L→M
and β :M → N be natural transformations. If for all i the sequences of R-modules

0→ Li
αi−→Mi

βi−→ Ni → 0

are exact, then so is the induced sequence

0→ colim
i∈I

L→ colim
i∈I

M → colim
i∈I

N → 0.

Proof. Follows directly from the lemma. Take an element x ∈ colimi∈IM sent
to zero in colimi∈I N . Now x is represented by an element m ∈ Mi. But βi(m)
represents the zero element, so there is some a : i → j such that Na(βi(m)) = 0.
Thus βi(Ma(m)) = 0. Thus Ma(m) = αj(ℓ) for some ℓ ∈ Lj. But then x is the
image of the element in colimi∈I L represented by ℓ.

Definition. A Grothendieck category is an abelian category with the following
additional properties:

• It is cocomplete. (Since it is abelian, it is equivalent that it has arbitrary
coproducts, which is (AB3) in Grothendieck’s terminology.)

• It has a generator that is, an object G such that for any object X there is
an epimorphism from a coproduct of copies of G to X.

• It has exact filtered colimits (or equivalently, in Grothendieck’s terminology,
(AB5)).
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Examples. Module categories are Grothendieck categories. As are functor cate-
gories with values in a Grothendieck category, such as Ab. Also categories of graded
modules. Also the category of quasicoherent sheaves on a noetherian scheme.

Remarks. (1) Given exact sequences 0→ Xi → Yi → Zi → 0 (i ∈ I), the natural
sequence

0→
∐
i

Xi →
∐
i

Yi →
∐
i

Zi → 0

is in general only right exact, and the sequence

0→
∏
i

Xi →
∏
i

Yi →
∏
i

Zi → 0

is in general only left exact.

(2) Finite products and coproducts are the same, so we have exactness.

(3) In the category of R-modules, arbitrary products and coproducts are exact.

(4) In a cocomplete abelian category with exact filtered colimits, the sequence of
coproducts is exact, since ∐

i∈I

Xi
∼= colim

finite F ⊆ I

∐
i∈F

Xi

where the colimit is over the directed poset of finite subsets F of I.

Definition. An R-module M is finitely presented (f.p.) if it is a quotient of a
finitely generated free module by a finitely generated submodule. Equivalently if
there is an exact sequence Rm → Rn →M → 0.

Any quotient of a f.p. module by a f.g. submodule is f.p. If R is left noetherian,
any f.g. left R-module is f.p.

Theorem. Every R-module is a filtered colimit of f.p. modules. More generally, if
M is a module and C is a full subcategory of the category of f.p. R-modules such
that every map from a f.p. module to M factors through a module in C, then M is
a filtered colimit of modules in C.

Proof. We may assume that C is small. Let I be the category with:

• Objects are pairs (X, f) with X ∈ ob(C) and f ∈ Hom(X,M).

• Morphisms (X, f)→ (X ′, f ′) are morphisms θ : X → X ′ with f ′θ = f .
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This category is usually denoted C/M . It is filtered:
- It is nonempty since the zero map 0→M must factor.
- Given objects (X, f) and (X ′, f ′), the morphism

(f f ′) : X ⊕X ′ →M

factors through an object in C, say as

X ⊕X ′ (g g′)−−−→ X ′′
f ′′−→M.

Then we have morphisms g : (X, f)→ (X ′′, f ′′) and g′ : (X ′, f ′)→ (X ′′, f ′′).
- Given morphisms α, β : (X, f) → (X ′, f ′), we have f ′(α − β) = 0, so taking the
cokernel

X
α−β−−→ X ′

γ−→ Coker(α− β)→ 0,

we get f ′ = hγ for some h : Coker(α − β) → M . But then h factors through an
object X ′′ in C

Coker(α− β) ϕ−→ X ′′
f ′′−→M.

Then ϕγ : (X ′, f)→ (X ′′, f ′′) and ϕγα = ϕγβ.

Let F : I → R-Mod be the I-diagram sending an object (X, f) to X and a
morphism θ to θ. Let

L = colim
(X,f)∈I

F (X, f) = colim
(X,f)∈I

X.

It is equipped with morphisms α(X,f) : X → L for each (X, f). For each object
(X, f) in I, we have the morphism f : X → M . Thus by the universal property,
there is a unique morphism β : L→M such that βα(X,f) = f for each (X, f). We
want to show β is an isomorphism.

For an element x in a module X we write x̂ for the map R→ X, r 7→ rx. For any
m ∈M , the map m̂ : R→M factors through an object X in C, say as

R
x̂−→ X

f−→M.

Then (X, f) is an object in I and

m = f(x) = β(α(X,f)(x)) ∈ Im(β)

so β is surjective. Suppose ℓ ∈ L and β(ℓ) = 0. Then ℓ is represented by an
element x ∈ X for an object (X, f) ∈ ob(I). Since it is sent to 0 in M , we have
f(x) = 0. Taking the cokernel

R
x̂−→ X

ϕ−→ Coker(x̂)→ 0
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we have f = hϕ for some h : Coker(x̂)→M . Then h factors as

Coker(x̂)
g−→ X ′

f ′−→M

with X ′ in C. Then gϕ : (X, f)→ (X ′, f ′) and gϕ(x) = 0, so x represents the zero
element in the colimit, that is, ℓ = 0.

Proposition. A module X is finitely presented if and only if Hom(X,−) commutes
with filtered colimits, that is, for any filtered category I and I-diagram M , the map

colim
i∈I

Hom(X,Mi)→ Hom(X, colim
i∈I

Mi)

is bijective.

Proof. Given a presentation Rm → Rn → X → 0, since filtered colimits preserve
exact sequences we get a commutative diagram with exact rows

0 −−−→ Hom(X, colimMi) −−−→ Hom(Rn, colimMi) −−−→ Hom(Rm, colimMi)y y y
0 −−−→ colimHom(X,Mi) −−−→ colimHom(Rn,Mi) −−−→ colimHom(Rm,Mi)

Now the right hand vertical maps are isomorphisms (this follows easily from first
lemma in this section), hence so is the left hand vertical map by the Five Lemma.

Conversely, suppose that Hom(X,−) commutes with filtered colimits. Write X =
colimi∈IMi, a filtered colimit of f.p. modules. Then

IdX ∈ Hom(X,X) = Hom(X, colim
i∈I

Mi) = colim
i∈I

Hom(X,Mi).

This is a colimit of Z-modules, so IdX is represented by some element of Hom(X,Mi).
This means that IdX can be factored as the composition X →Mi → colimi∈IMi =
X. This means that X is a direct summand of Mi. Now Mi is f.p. and hence so
is X.
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2 Projective, injective and flat modules

2.1 Projective modules

Proposition/Definition. An object P in an abelian category is projective if it
satisfies the following equivalent conditions.
(i) Hom(P,−) is an exact functor.
(ii) Any short exact sequence 0→ X → Y → P → 0 is split.
(iii) Given an epimorphism θ : Y ↠ Z, any morphism P → Z factors through θ.

Proof. (i)⇒(ii) Hom(P, Y )→ Hom(P, P ) is onto. A lift of IdP is a section.
(ii)⇒(iii) Take the pullback along the map P → Z. The resulting exact sequence
has P as third term, so is split. This gives a map from P to the pullback. Com-
posing with the map to Y gives the map P → Y .
(iii)⇒(i) Clear.

Proposition. A coproduct
∐

iMi is projective ⇔ all Mi are projective.

Proof.
∐

iMi is projective
⇔ the functor Hom(

∐
iMi,−) =

∏
iHom(Mi,−) is exact

⇔ 0 → Hom(
∐

iMi, X) → Hom(
∐

iMi, Y ) → Hom(
∐

iMi, Z) → 0 exact for all
exact sequences 0→ X → Y → Z → 0
⇔ 0→

∏
iHom(Mi, X)→

∏
iHom(Mi, Y )→

∏
iHom(Mi, Z)→ 0 exact

⇔ 0 → Hom(Mi, X) → Hom(Mi, Y ) → Hom(Mi, Z) → 0 are exact. (Recall that
in the category of additive groups, or R-Mod, products of exact sequences are
exact. The reverse implication is easy.)
⇔ all Mi are projective.

Theorem. Let R be a ring. An R-module is projective if and only if it is a direct
summand of a free module. A finitely generated module is projective if and only if
it is a direct summand of a finitely generated free module Rn, for some n. Any f.g.
projective module is f.p.

Proof. HomR(R,X) ∼= X, so R is a projective module, hence so is any direct sum
of copies of R. If F → P is onto with F free and P projective, then P is isomorphic
to a summand of F .

We write R-proj for the category of finitely generated projective left R-modules.

Lemma. The functor HomR(−, R) defines an antiequivalence between R-proj and
Rop-proj.
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Proof. Observe that if M is a left R-module, then HomR(M,R) is naturally a right
module, and if M is free of rank n, then

HomR(M,R) ∼= HomR(R
n, R) ∼= HomR(R,R)

n ∼= (RR)
n

is a free right R-module of rank n. If P is f.g. projective, then there is Q with
P ⊕Q ∼= Rn. Then

HomR(P,R)⊕ HomR(Q,R) ∼= (RR)
n

so HomR(P,R) is f.g. projective. The inverse equivalence is given by the same
construction, but for right R-modules. There is a natural transformation

X → HomR(HomR(X,R), R), x 7→ (θ 7→ θ(x)).

It is an isomorphism for X = R, so for finite direct sums of copies of R, so for f.g.
projective modules.

Examples. (i) Every R-module is projective⇔ Every short exact sequence is split
⇔ every submodule of a module has a complement⇔ Every module is semisimple
⇔ R is a semisimple (artinian) ring R ⇔ (the Artin-Wedderburn Theorem) R is
a finite direct sum of matrix rings over division rings.

(ii) If R is a principal ideal domain, a standard theorem says that any f.g. module
is a finite direct sum of cyclic modules. Now if 0 ̸= a ∈ R, then

HomR(R/Ra,R) = {r ∈ R : ra = 0} = 0

so R/Ra cannot be projective (unless it is 0). Thus every f.g. projective module
is a direct sum of copies of R, so it is free.

(iii) If e ∈ R is an idempotent (that is, e2 = e), then R = Re ⊕ R(1 − e), so
Re is a direct summand of RR, so it is projective. Conversely any direct sum
decomposition of R = P ⊕Q arises in this way from an idempotent element of R,
since the projection onto P is an idempotent e ∈ EndR(R) ∼= Rop.

In R =Mn(K) the idempotents Eii give the decomposition

R = RE11 ⊕ . . . REnn = C1 ⊕ · · · ⊕ Cn

where Ci is the matrices living in the ith column. Since EijEji = Eii and EjiEij =
Ejj, right multiplication by Eij gives an isomorphism Ci → Cj.

Let R be the ring of 2× 2 upper triangular matrices with entries in K. Then

R = RE11 ⊕RE22 =

(
K 0
0 0

)
⊕
(
0 K
0 K

)
.
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Now the two summands are not isomorphic.

(iv) Let
R = {continuous f : [0, π]→ R : f(0) = f(π)}.

If f ∈ R is idempotent, then f(x)2 = f(x) for all x, so f(x) ∈ {0, 1}. So by
continuity f = 0 or 1. Let

P = {continuous f : [0, π]→ R : f(0) = −f(π)}.

It is naturally an R-module. Now R ̸∼= P since if there is an isomorphism sending
1 ∈ R to g ∈ P , then it sends any f to fg. By the Intermediate Value Theorem
g(x) = 0 for some 0 < x < π. But then every element of P vanishes at x, which is
nonsense. On the other hand, there are inverse isomorphisms between R2 and P 2

given by (
f g

)
7→
(
f g

) (sinx cosx
cosx − sinx

)
(See page 28 of T.-Y. Lam, Lectures on Modules and Rings, Springer 1999.) This
is an example of the following theorem, with X the circle and the vector bundle
given by the Möbius band.

Swan’s Theorem (1962). The global section functor gives an equivalence between
the category of topological vector bundles on a compact Hausdorff topological space
X and the category of f.g. projective modules for its ring of continuous functions
C(X).

(v) Earlier was:

Serre’s Theorem (1955). The global section functor gives an equivalence between
the category of vector bundles on an affine variety X and the category of f.g.
projective modules for its coordinate ring K[X].

(vi) Quillen-Suslin Theorem (1976). Every f.g. projective module for a polynomial
ring K[X1, . . . , Xn] with K a field is free (so every vector bundle on affine n-space
is trivial).

(vii) Beginnings of K-Theory. The Grothendieck group K0(R) of a ring R is the
Z-module generated by the isomorphism classes [P ] of f.g. projective R-modules
P , subject to the relations [P ⊕Q] = [P ] + [Q] for all P,Q.

(viii) Suppose R is an integral domain (commutative) with field of fractions K. A
fractional ideal is a nonzero R-submodule I of K such that I ⊆ d−1R for some
nonzero d ∈ R. For example any nonzero ideal in R is a fractional ideal. If I and
J are fractional ideals, then

IJ := {
n∑
i=1

xiyi : n ≥ 0, xi ∈ I, yi ∈ J}
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is another fractional ideal and so is

I−1 := {y ∈ K : Iy ⊆ R}.

For example in R = Z[
√
−5] consider the ideal

I = (2, 1 +
√
−5) = {a+ b

√
−5 : a, b ∈ Z, a ≡ b(mod2)}.

We have
I−1 = {x = a+ b

√
−5 : a, b ∈ Q, 2x, (1 +

√
−5)x ∈ R}

= {x = a+ b
√
−5 : 2a, 2b, a− 5b, a+ b ∈ Z}

=
1

2
I = R 1 +R

1 +
√
−5

2
and

1 = (1 +
√
−5) · (1− 1 +

√
−5

2
)− 2 · 1 ∈ II−1.

So II−1 = R. The next lemma shows that I is a projective module, but it is not
a principal ideal, and in fact not a free module.

Lemma. For a nonzero ideal I, the following are equivalent:
(a) I is invertible, meaning that II−1 = R.
(b) I is f.g. projective
(c) I is projective

Proof. For (a)⇒(b), write 1 =
∑n

i=1 xiyi with xi ∈ I and yi ∈ I−1. Then the
composition

I
a7→(ayi)−−−−→ Rn (ri)7→

∑n
i=1 rixi−−−−−−−−−→ I

is IdI .
(b)⇒(c) is trivial, and for (c)⇒(a), for some indexing set Λ there are maps

I
a7→(fλ(a))−−−−−−→ R(Λ) (rλ)7→

∑
λ∈Λ rλxλ−−−−−−−−−−→ I

with composition 1. Choose 0 ̸= a ∈ I. Only finitely many fλ(a) are nonzero. Let
yλ = a−1fλ(a) ∈ K. For any b ∈ I we have

yλb = a−1fλ(a)b = a−1fλ(ab) = a−1afλ(b) = fλ(b) ∈ R.

Thus yλ ∈ I−1. Also ∑
λ∈Λ

xλyλ =
∑
λ∈Λ

xλa
−1fλ(a) = a−1a = 1.

so II−1 = R.
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Remark. A Dedekind domain is an integral domain with Krull dimension ≤ 1
(that is, all non-zero prime ideals are maximal) and integrally closed in its field of
fractions. For example the ring of integers of a number field.

One can show that an integral domain is a Dedekind domain if and only if all
nonzero ideals are invertible, or equivalently all fractional ideals are invertible.

In this case K0(R) ∼= Z ⊕ Cl(R), where Cl(R) is the ideal class group, the group
of fractional ideals modulo the subgroup of principal fractional ideals.

2.2 Tensor products

If X is a right R-module and Y is a left R-module, the tensor product X ⊗R Y is
a Z-module X ⊗R Y equipped with a mapping

X × Y → X ⊗R Y, (x, y) 7→ x⊗ y

such that the mapping is a homomorphism of additive groups in each argument,
and R-balanced, meaning that

xr ⊗ y = x⊗ ry

for all x ∈ X, y ∈ Y and r ∈ R, and such that it is universal for this property,
that is, if

f : X × Y →M

is additive in each argument and R-balanced, then there is a unique Z-module
homomorphism α : X ⊗R Y →M such that f(x, y) = α(x⊗ y).

Theorem. (i) The tensor product exists and it is unique up to isomorphism.
(ii) Any element can be written (non-uniquely) as a finite sum

x1 ⊗ y1 + · · ·+ xn ⊗ yn.

(iii) X ⊗R R ∼= X and R⊗R Y ∼= Y via the maps x⊗ r 7→ xr and r ⊗ y 7→ ry.
(iv) If θ : X → X ′ and ϕ : Y → Y ′ are module homomorphisms, then there is a
unique Z-module homomorphism

θ ⊗ ϕ : X ⊗R Y → X ′ ⊗R Y ′

with (θ ⊗ ϕ)(x⊗ y) = θ(x)⊗ ϕ(y).
(v) We can identify X ⊗R Y with Y ⊗Rop X.

For a proof see my Algebra II notes.
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Definition. If S and R are rings, an S-R-bimodule X is given by a left S-module
and a right R-module with the same underlying additive group, and such that the
actions commute: (sx)r = s(xr).

Theorem. Let X be an S-R-bimodule. If Y is a left R-module, then X ⊗R Y
becomes an S-module via s(x⊗ y) = (sx)⊗ y. This gives a tensor product functor

X ⊗R − : R-Mod→ S-Mod.

If Z is an S-module, then HomS(X,Z) becomes an R-module via (rθ)(x) = θ(xr).
This gives a functor

HomS(X,−) : S-Mod→ R-Mod.

Moreover there is an isomorphism of additive groups

HomS(X ⊗R Y, Z) ∼= HomR(Y,HomS(X,Z))

which is natural in Y and Z. Thus (X ⊗R −,HomS(X,−)) is an adjoint pair of
functors.

Proof. The first parts are straightforward. Given θ ∈ HomS(X ⊗R Y, Z) we get
ϕ ∈ HomR(Y,HomS(X,Z)) by ϕ(y)(x) = θ(x ⊗ y), and given ϕ we get θ by the
same formula.

After the results about adjoint functors, we get.

Corollary. If X is an S-R-bimodule, then the tensor product functor X ⊗R − :
R-Mod→ S-Mod preserves colimits, so it is right exact and commutes with direct
sums (coproducts):

X ⊗R

(⊕
i∈I

Yi

)
∼=
⊕
i∈I

(X ⊗R Yi) .

(Similarly for the functor −⊗R Y : Mod-R→ Mod-T for an R-T -bimodule Y .)

Theorem (Eilenberg, Watts). Any functor F : R-Mod→ S-Mod which preserves
colimits, that is, is right exact and commutes with direct sums, is naturally iso-
morphic to a tensor product functor X ⊗R − for some S-R-bimodule X.

Proof. F (R) is an S-module, and it becomes an S-R-bimodule via the map

Rop ∼=−→ EndR(R)
F−→ EndS(F (R)).

Now for any R-module Y there is a R-module map

Y
∼=−→ HomR(R, Y )

F−→ HomS(F (R), F (Y )).
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By Hom-Tensor adjointness this corresponds to an S-module map F (R) ⊗R Y →
F (Y ). This is natural in Y , so it is ΦY for some natural transformation Φ :
F (R)⊗R− → F . Clearly ΦR is an isomorphism. Then for any free module R(I) we
have F (R(I)) = F (R)(I) ∼= F (R)⊗ R(I), so ΦR(I) is an isomorphism. Then for any
module Y there is a presentation R(I) → R(J) → Y → 0 and the first two vertical
maps in the diagram

F (R)⊗R(I) −−−→ F (R)⊗R(J) −−−→ F (R)⊗ Y −−−→ 0

Φ
R(I)

y Φ
R(J)

y ΦY

y
F (R(I)) −−−→ F (R(J)) −−−→ F (Y ) −−−→ 0

are isomorphisms. Also the rows are exact. Hence the third vertical map is an
isomorphism. Thus Φ is a natural isomorphism.

Lemma. If X is an S-R-bimodule, then there is homomorphism of additive groups

ϕU,Y : HomS(U,X)⊗R Y → HomS(U,X ⊗R Y ), θ ⊗ y 7→ (u 7→ θ(u)⊗ y)

for U an S-module and Y an R-module, which is a natural transformation in U
and Y . It is an isomorphism if U is f.g. projective. Conversely, taking X = R = S,
if IdU is in the image of the map

ϕU,U : HomS(U, S)⊗S U → HomS(U, S ⊗S U) ∼= EndS(U),

then U is finitely generated projective.

Proof. The first part is clear. The map ϕS,Y is an isomorphism since it is identified
with the identity map since HomS(S,X)⊗R Y and Hom(S,X ⊗R Y ) can both be
identified with X ⊗R Y . Now given a direct sum U = U1 ⊕ · · · ⊕ Un we get

HomS(U,X)⊗R Y ∼=
n⊕
i=1

(HomS(Ui, X)⊗R Y )

and

HomS(U,X ⊗R Y ) ∼=
n⊕
i=1

HomS(Ui, X ⊗R Y )

so ϕU,Y corresponds to the mapping whose components are ϕUi,Y , so ϕU,Y is a
bijection if and only if all ϕUi,Y are bijections. Thus Hom(Sn, Y ) is an isomorphism,
and hence so is ϕU,Y for any direct summand U of a f.g. free module Sn.

Say IdU comes from
∑

i θi ⊗ ui, then the composition of the maps

U
(θi)−−→ Sn

(ui)−−→ U

is the identity, so U is a direct summand of Sn, so f.g. projective.
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2.3 Morita equivalence

Recall that an R-module P is a generator if for any module M there is an epi from
a direct sum of copies of P to M , P (I) →M .

Theorem (Morita equivalence). Let R and S be rings. The following are equiva-
lent.
(i) The categories R-Mod and S-Mod are equivalent
(ii) There is an S-R-bimodule X giving an equivalence X⊗R− : R-Mod→ S-Mod.
(iii) R ∼= EndS(X)op for some f.g. projective generator X in S-Mod.

Proof. (i)⇒(iii) Let F : R-Mod → S-Mod be an equivalence and let X = F (R).
Since F is full and faithful we have R ∼= EndS(X)op. Since F is an equivalence,
X is projective. Now HomR(R,−) commutes with coproducts. Thus HomS(X,−)
commutes with coproducts. Since X is projective, it is a summand of a free module
S(I). The inclusion is in HomS(X,S

(I)) ∼= Hom(X,S)(I), so only finitely many of
the components X → S are nonzero. It follows that X is a summand of a f.g. free
S-module, so it is a f.g. S-module.
(iii)⇒(ii) For any S-module T we have a mapping

X ⊗R HomS(X,T )→ T, x⊗ θ 7→ θ(x)

This is natural in T , and it is an isomorphism for T = X. Thus it is an isomorphism
for T = Xn. Thus it is an isomorphism for T any summand of Xn. Now X is a
generator as an S-module, and SS is finitely generated, so there is an epimorphism
Xn → S for some n. Then since SS is projective, S is isomorphic to a summand
of Xn. Thus we get an isomorphism

X ⊗R HomS(X,S)→ S, x⊗ θ 7→ θ(x)

This is an isomorphism of S-S-bimodules. Also, by the lemma above applied to
the S-S-bimodule S, we have an isomorphism

HomS(X,S)⊗S X 7→ HomS(X,S ⊗S X) ∼= R

and this is an isomorphism of R-R-bimodules. Thus the functors X ⊗R − :
R-Mod → S-Mod and HomS(X,S) ⊗S − : S-Mod → R-Mod are inverses (up
to natural isomorphisms) so they are equivalences.
(ii)⇒(i) is trivial

Examples. (i) R is Morita equivalent to Mn(R) for n ≥ 1. Namely the module Rn

is a finitely generated projective generator in R-Mod with EndR(R
n)op ∼= Mn(R).

(ii) If e ∈ R is idempotent, and ReR = R, then R is Morita equivalent to eRe.
Namely, the condition ensures that the multiplication map Re ⊗eRe eR → R is
onto. Taking a map from a free eRe-module onto eR, say eRe(I) → eR, we get a
map Re(I) → R, so Re is a generator. Then EndR(Re)

op ∼= eRe.

33



2.4 Injective modules

Proposition/Definition. An object E in an abelian category is injective if it
satisfies the following equivalent conditions.
(i) Hom(−, E) is an exact (contravariant) functor.
(ii) Any short exact sequence 0→ E → Y → Z → 0 is split.
(iii) Given an injective map θ : X ↪→ Y , any map X → E factors through θ.

Proposition. A product
∏

i∈IMi is injective ⇔ all Mi are injective. Thus a finite
direct sum is injective if and only if each term is injective.

Proof. This is the opposite category version of the result for projectives. Then a
finite direct sum is the same as a finite product.

Definition. An inclusion of R-modules M ⊆ N is an essential extension of M if
every non-zero submodule S of N has S ∩M ̸= 0.

Theorem. For an R-module M , following conditions are equivalent.
(a) M is injective.
(b) (Baer’s criterion) Every homomorphism f : I → M from a left ideal I of R
can be extended to a homomorphism R→M .
(c) M has no non-trivial essential extensions

Proof. (a)⇒(b) is trivial.

(b)⇒(c) Let M ⊆ N be a non-trivial essential extension and fix x ∈ N \M . We
consider the pullback

I −−−→ Ry y
M −−−→ N

where R→ N is the map r 7→ rx. Then I → R is injective, so I is identified with
a left ideal in R. By (b), the map I →M lifts to a map R→M , say sending 1 to
m.

Suppose r ∈ R satisfies r(x −m) ∈ M . Then rx ∈ M , and it follows that r ∈ I.
Then rx = rm, so r(x − m) = 0. Thus M ∩ R(x − m) = 0 and R(x − m) ̸= 0,
contradicting that M ⊆ N is an essential extension.

(c)⇒(a). Given an inclusion M ⊆ N , we need to show that M is a direct summand
of N . By Zorn’s Lemma, the set of submodules in N with zero intersection with
M has a maximal element C. If M +C = N , then C is a complement. Otherwise,
M ∼= (M + C)/C ⊆ N/C is a non-trivial extension. By (c) it cannot be an
essential extension, so there is a non-zero submodule U/C with zero intersection
with (M+C)/C. Then U∩(M+C) = C, so U∩M ⊆ C∩M = 0. This contradicts
the maximality of C.
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Definition. If R is an integral domain and M is an R-module, then

- M is divisible if for all m ∈ M and 0 ̸= a ∈ R, there is m′ ∈ M with m = am′.
For example the field of fractions of R is divisible.

- M is torsion-free if am ̸= 0 for all nonzero a ∈ R and m ∈ M . For example R
and its field of fractions are torsion-free.

Lemma. If R is an integral domain, then any injective module is divisible. If R
is a principal ideal domain, then any divisible module is injective.

Proof. Divisibility says that any map Ra → M lifts to a map R → M . If R is a
pid these are all ideals in R.

Definition. For the rest of this section we assume that R is a K-algebra, where
K is a field or a principal ideal domain. In particular, we can consider any ring R
as a K-algebra with K = Z.

We define (−)∗ = HomK(−, EK), where

EK =

{
K (if K is a field)
F/K (if K is a pid with fraction field F ̸= K)

For example EZ = Q/Z.

Lemma. (i) EK is an injective K-module, and (−)∗ defines an exact functor from
R-modules on one side to R-modules on the other side.

(ii) If M is an R-module, the map M →M∗∗, m 7→ (θ 7→ θ(m)) is an injective map
of R-modules. (It is an isomorphism if K is a field and M is a finite-dimensional
K-vector space).

Proof. (i) Any R-module M also gets an action of K via λm = (λ1R)m, and these
two actions commute, so M∗ = HomK(M,EK) becomes an R-module on the other
side.

Now any quotient of a divisible module is clearly divisible, so EK is a divisible
K-module, so an injective K-module, so (−)∗ is an exact functor.

(ii) Given 0 ̸= m ∈ M , let Km be the cyclic K-submodule of M generated by m.
It suffices to find a K-module map f : Km → EK with f(m) ̸= 0, for then since
EK is injective, f lifts to a map θ :M → EK .

If K is a field there is an isomorphism Km→ EK .

If K is a principal ideal domain and not a field, choose a maximal ideal Ka con-
taining ann(m) = {x ∈ K : xm = 0}. Since K is not a field, a ̸= 0. Then there
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is a map Km → EK sending xm to K + a−1x ∈ F/K. This is well-defined since
if xm = x′m, then x − x′ ∈ ann(m), so x − x′ = ba for some b ∈ K, and then
a−1x− a−1x′ = b ∈ K. It is clearly a K-module homomorphism. Now it sends m
to K + a−1. If this is zero, then a−1 ∈ K, so a is invertible in K, so Ka = K,
contradicting that Ka is a maximal ideal.

If K is a field, and M is K-vector space of dimension d, then so is M∗, and so also
M∗∗, so the map M →M∗∗ must be an isomorphism.

Theorem. Any R-module embeds in a product of copies of R∗, and such a product
is an injective R-module. An R-module is injective if and only if it is isomorphic
to a direct summand of such a product.

Proof. We have natural isomorphisms of functors R-Mod→ Ab,

HomR(−, R∗) = HomR(−,HomK(R,EK)) ∼= HomK(R⊗R −, EK)

∼= HomK(−, EK)∗ = (−)∗,
which is exact, so R∗ injective. Thus any product of copies of R∗ is injective.

If M is any R-module, then M embeds in M∗∗. Now M∗ is a right R-module, so
can be written as a quotient of a free right R-module, say R(X). Then

M ↪→M∗∗ ↪→ (R(X))∗ = HomK(R
(X), EK) ∼= HomK(R,EK)

X = (R∗)X .

The last part is clear.

Corollary. Any module over any ring embeds in an injective module.

Remark. More generally one can show that any object in a Grothendieck category
has a monomorphism to an injective object.

Theorem (Bass, Papp). For a ring R the following are equivalent
(i) R is left noetherian
(ii) Any filtered colimit of injective left R-modules is injective
(iii) Any direct sum of injective left R-modules is injective.

Proof. (i)⇒(ii). Let M = colimi∈IMi be a filtered colimit of injective modules.
Suppose I is a left ideal in R. It gives an exact sequence 0→ I → R→ R/I → 0.
Since the Mi are injective, we get exact sequences

0→ Hom(R/I,Mi)→ Hom(R,Mi)→ Hom(I,Mi)→ 0.

A colimit of exact sequences is exact, so

0→ colim
i∈I

Hom(R/I,Mi)→ colim
i∈I

Hom(R,Mi)→ colim
i∈I

Hom(I,Mi)→ 0
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is exact. Since the modules R/I, R and I are finitely presented, this is isomorphic
to

0→ Hom(R/I,M)→ Hom(R,M)→ Hom(I,M)→ 0.

Thus by Baer’s criterion M is injective.

(ii)⇒(iii). We have ⊕
i∈I

Mi
∼= colim

J⊆I

⊕
j∈J

Mj
∼= colim

J⊆I

∏
j∈J

Mj

where J runs over the finite subsets of I, a filtered colimit of injective modules.

(iii)⇒(i). Consider an ascending chain of left ideals

I1 ⊆ I2 ⊆ · · · ⊆ R.

Let I be their union. For each n ≥ 1, choose an embedding ϕn : R/In → En with
En injective. We have a well-defined map

θ : I → E :=
∞⊕
n=1

En, θ(a)n = ϕn(In + a)

Since E is injective, θ extends to a map R → E. Let that map send 1 to e ∈ E.
Then θ(a) = ae for a ∈ R. But e only has finitely many non-zero components, so
there is some n such that en = 0. Then θ(a)n = 0 for all a ∈ I, so a ∈ In. Thus
I = In, so the chain of ideals stabilizes. Thus R is left noetherian.

2.5 Flat modules

In this section R is a K-algebra and K is a field or pid, for example R is a ring
and K = Z.

Definition. A right R-module X is flat if X ⊗R − is an exact functor, either
considered as a functor R-Mod → Z-Mod or equivalently as a functor R-Mod →
K-Mod.

Remark. (i) A direct sum of modules is flat if and only if each summand is flat,
since if Xi are right R-modules and 0 → L → M → N → 0 is an exact sequence
of left R-modules, then

0→
⊕
i∈I

Xi ⊗R L→
⊕
i∈I

Xi ⊗RM →
⊕
i∈I

Xi ⊗R N → 0

is exact if and only if it is exact for each sequence

0→ Xi ⊗R L→ Xi ⊗RM → Xi ⊗R N → 0
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is exact.

(ii) Any projective module is flat, for R⊗R X ∼= X, so R is flat.

(iii) Any filtered colimit of flat modules is flat. If I is a small filtered category, X
is an I-diagram of flat right R-modules and 0 → L → M → N → 0 is an exact
sequence of left R-modules, then since the Xi are flat, we get exact sequences

0→ Xi ⊗R L→ Xi ⊗RM → Xi ⊗R N → 0.

Since R-Mod has exact filtered colimits, the sequence

0→ colim
i∈I

(Xi ⊗R L)→ colim
i∈I

(Xi ⊗RM)→ colim
i∈I

(Xi ⊗R N)→ 0

is exact. Since tensor products commute with colimits, this is

0→ (colim
i∈I

Xi)⊗R L→ (colim
i∈I

Xi)⊗RM → (colim
i∈I

Xi)⊗R N → 0

so colimi∈I Xi is flat.

Proposition. A right R-module X is flat if and only if X∗ is injective.

Proof. If Y is a left R-module, then HomR(Y,X
∗) ∼= (X ⊗R Y )∗. If X is flat, then

this is exact as a functor of Y , so X∗ is injective. Conversely, if X∗ is injective
then again this is exact as a functor of Y . Suppose X is not flat. Given an exact
sequence of left R-modules

0→ L→M → N → 0

we get
0→ H → X ⊗R L→ X ⊗RM → X ⊗R N → 0.

Then we get
(X ⊗RM)∗ → (X ⊗R L)∗ → H∗ → 0

Thus H∗ = 0. But H embeds in H∗∗, so H = 0.

Proposition. A module XR is flat if and only if the multiplication map X⊗R I →
X is injective for every left ideal I in R.

Proof. If X is flat, tensoring it with the exact sequence 0 → I → R → R/I → 0
shows that the map is injective.

If the map is injective, then the map X∗ → (X ⊗R I)∗ is surjective. We can write
this as HomR(R,X

∗) → HomR(I,X
∗). By Baer’s criterion X∗ is injective. Thus

X is flat.
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Example. If R is an integral domain, then any flat right R-module X is torsion-
free, that is, if x ∈ X and a ∈ R and xa = 0, then x = 0 or a = 0. Namely, if
I = Ra with 0 ̸= a ∈ R, then the map X ⊗R I → X is the identified with the map
X → X of multiplication by a.

If R is a pid, then a right module X is flat if and only if it is torsion-free, since
any non-zero ideal in R is of this form.

Thus Q is a flat Z-module. This also follows from the next construction.

Example. Let R be a commutative ring. A subset S ⊆ R is multiplicative if 1 ∈ S
and st ∈ S for all s, t ∈ S. The localization of an R-module M with respect to S
is

S−1M = S ×M/ ∼
where ∼ is the equivalence relation given by

(s,m) ∼ (s′,m′)⇔ t(sm′ − s′m) = 0 for some t ∈ S

It is equivalent that um = u′m′ for some u, u′ ∈ S with us = u′s′. To see this, take
t = us or u = ts′ and u′ = ts.

The equivalence class containing (s,m) is denoted s−1m. Now S−1M has an addi-
tion given by the usual formula for adding fractions

s−1m+ t−1n = (st)−1(tm+ sn).

Moreover S−1R becomes a ring and S−1M becomes an S−1R-module with the
usual formula for multiplication

(s−1a)(t−1b) = (st)−1(ab).

This was all on an exercise sheet for Algebra II. It was also shown on the exercise
sheet that S−1M ∼= S−1R ⊗R M . We can deduce this here from Eilenberg-Watts.
The construction gives a localization functor

R-Mod→ S−1R-Mod, M 7→ S−1M.

and it is easy to see that this is an exact functor. It is easy to see that an exact
sequence 0→ L→M → N → 0 of R-modules gives an exact sequence

0→ S−1L→ S−1M → S−1N → 0

so this functor is exact. It also commutes with arbitrary direct sums. Thus by the
Eilenberg-Watts theorem,

S−1M ∼= X ⊗RM
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for all M , for some bimodule X. Then X ∼= S−1R considered as a left S−1R
module in the usual way, and as a right R-module via (s−1r)r′ = s−1(rr′). Thus

S−1M ∼= S−1R⊗RM.

Since the localization functor is exact, S−1R is a flat R-module. Here is another
way to see this. Consider S as a the set of objects in a category, with

Hom(s, t) = {u ∈ S : us = t}

It is filtered since it has object 1, if s, s′ ∈ S then they both have morphisms to
ss′, and if u, u′ : s → t, then t = us = u′s. Thus considering s as a morphism
t→ st, the compositions with u and u′ are equal.

Consider the functor S → R-Mod sending all s ∈ S to Ms =M and u ∈ Hom(s, t)
to multiplication by u. Then our description of the colimit gives

colim
s∈S

Ms =
⋃̇

s∈S
M/ ∼ = (S ×M)/ ∼

where (s,m) ∼ (s′,m′) ⇔ there are morphisms u : s → v and u′ : s′ → v with
um = u′m′. Thus

S−1M = colim
s∈S

Ms

Thus if M is a flat R-module, so is S−1M . In particular S−1R is flat.

Lemma. Let X be an S-R-bimodule. If U is a f.p. left S-module and Y is a flat
left R-module, then the natural map

HomS(U,X)⊗R Y → HomS(U,X ⊗R Y )

is an isomorphism

Proof. It is clear for U = S. Then it follows for U = Sn. In general there is an
exact sequence Sm → Sn → U → 0, and in the diagram

0 −−−→ HomS(U,X)⊗R Y −−−→ HomS(S
n, X)⊗R Y −−−→ HomS(S

m, X)⊗R Yy y y
0 −−−→ HomS(U,X ⊗R Y ) −−−→ HomS(S

n, X ⊗R Y ) −−−→ HomS(S
m, X ⊗R Y )

the rows are exact and the right two vertical maps are isomorphisms, hence so is
the first.

Recall that any f.g. projective module is finitely presented.
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Theorem. (i) A finitely presented flat module is projective.
(ii) (Lazard, Govorov) Any flat module is a filtered colimit of finitely generated
projective (even free) modules.

Proof. (i) If Y is a f.p. flat left R-module, then the natural map HomR(Y,R) ⊗R
Y → EndR(Y ) is an isomorphism by the last lemma. Thus by the last lemma in
the section on projective modules, Y is f.g. projective.

(ii) If M is a flat left R-module and X is f.p., then the map Hom(X,R)⊗RM →
Hom(X,M) is an isomorphism. It follows that any map f : X → M can be
factored as

X
θ−→ Rn g−→M.

Now use the result in the section on filtered colimits.

2.6 Envelopes and covers

Definition. Suppose C is a full subcategory of R-Mod. If M is an R-module, a
homomorphism θ :M → C with C in C is a C-envelope if

• θ is a C-preenvelope, meaning that any θ′ : M → C ′ with C ′ in C factors as
θ′ = ϕθ for some ϕ : C → C ′, and

• θ is left minimal, meaning that if ϕ ∈ EndR(C) and ϕθ = θ, then ϕ is an
automorphism.

Dually, a homomorphism θ : C →M with C in C is a C-cover if

• θ is a C-precover, meaning that any θ′ : C ′ → M with C ′ in C factors as
θ′ = θϕ for some ϕ : C ′ → C, and

• θ is right minimal, meaning that if ϕ ∈ EndR(C) and θϕ = θ, then ϕ is an
automorphism.

Note that if M has an envelope or cover, it is unique up to a (non-unique) isomor-
phism.

Theorem. Take C to be the category of injective modules.
(i) A morphism θ : M → E with E injective is an injective preenvelope if and
only if θ is injective. If so, identifying M as a submodule of E, it is an injective
envelope if and only if the inclusion M ⊆ E is an essential extension.
(ii) Every module has an injective envelope M → E(M).

41



Proof. (i) If E is injective and θ is injective, then clearly it is a preenvelope. Con-
versely if θ is a preenvelope then E is injective and, since there is an embedding
M → E ′ with E ′ injective, we must have θ injective.

Now suppose M ⊆ E is an essential extension. Suppose ϕ ∈ EndR(E) satisfies
ϕθ = θ. That is, ϕ(m) = m for all m ∈M . Then M ∩Kerϕ = 0. Thus Kerϕ = 0.
Thus ϕ is injective. Now Imϕ ∼= E is injective, so it is a direct summand of E, so
E = Imϕ⊕ C for some complement C. But M ⊆ Imϕ, so M ∩ C = 0, so C = 0,
so ϕ is an automorphism.

We do the other direction later.

(ii) Any module M embeds as a submodule of an injective module F and Zorn’s
Lemma implies that the set of submodules of F which are essential extensions of
M has a maximal element E.

Suppose that E ⊂ N is a non-trivial essential extension (with N not necessarily
contained in F ). Since F is injective the inclusion E → F can be extended to a
map g : N → F .

Since M ⊂ E and E ⊂ N are essential extensions, so is M ⊂ N . Clearly M ∩
Ker g = 0, so since M is essential in N it follows that Ker g = 0. Thus we can
identify N with g(N). But then M is essential in N , contradicting the maximality
of E.

Thus E has no non-trivial essential extensions, so E is injective. Thus by (i)
θ :M → E is an injective envelope.

Completion of (i). By uniqueness, any injective envelope M → E is isomorphic to
the one we just constructed, so E is an essential extension of M .

Theorem. Suppose R is a f.d. algebra over a field.
(1) The injective envelopes of simples are f.g., and every injective module is a direct
sum of injective envelopes of simples.
(2) Every module M has a projective cover P (M), the projective covers of simples
are f.g., and every projective modules is a direct sum of projective covers of simples.
(3) Every flat module is projective.

Proof. We will need properties of the Jacobson radical of R

J = {r ∈ R : rS = 0 for all simple R-modules S}.

Equivalently it is the intersection of all maximal left ideals in R. It is a two sided
ideal in R. Since R is f.d. we have

(a) R/J is semisimple.
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(b) J is nilpotent, Jn = 0 for some n.

(c) If M is any module with JM =M , then M = 0.

Namely, since R is f.d., J(R) is a finite intersection of maximal left ideals, say

J = I1 ∩ · · · ∩ Ik

and then R/J embeds in R/I1 ⊕ · · · ⊕R/Ik, so R/J is a semisimple R-module, so
a semisimple R/J-module, so R/J is a semisimple ring. Also, since R is f.d., we
can choose a chain of submodules

0 = R0 ⊂ R1 ⊂ · · · ⊂ Rn = R

as long as possible. Then each Ri/Ri−1 is simple. Thus JRi ⊆ Ri−1. Thus JnR = 0
so Jn = 0. Now if M is a module with M = JM , then by induction M = JnM ,
so M = 0.

Clearly f.g.R-modules are the same as f.d. modules. Duality (−)∗ gives an antiequiv-
alence between R-mod and mod-R.

(1) If M is a f.g. module, then M∗ is f.g, so a quotient of Rn, so M is a submodule
of (R∗)n. Thus M embeds in a f.g. injective module, so its injective envelope is f.g.

The socle of an arbitrary module M is the sum of its simple submodules. For R
f.d., we have

socM = {m ∈M : Jm = 0}

and it is an essential submodule of M since any nonzero submodule contains a
nonzero f.g. submodule, and any submodule of this of minimal dimension is simple,
so meets socM . Thus E(M) = E(socM).

Now socM is semisimple, so a direct sum of simples, so

M =
⊕
λ

Sλ ↪→
⊕
λ

E(Sλ) =: E.

and
socE = {x ∈

⊕
λ

E(Sλ) : Jx = 0}

=
⊕
λ

{x ∈ E(Sλ) : Jx = 0}

=
⊕
λ

Sλ =M,

so E = E(M). Taking M to be injective gives M ∼= E.
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(2) IfM is a f.g. module, then so isM∗, so it has an injective envelopeM∗ → E(M∗)
with E(M∗) f.g. Now P (M) = E(M∗)∗ is flat since its dual is injective, so it is
projective, since it is f.p.. Now the map P (M)→M is surjective and a projective
cover.
If M is any R-module then M/JM is an R/J-module, so semisimple. Write
M/JM =

⊕
i Si, a direct sum of simples, and let P =

⊕
i P (Si). The map

P → M/JM lifts to a map θ : P → M , and it must be surjective, since
J(M/ Im(θ)) = M/ Im(θ). Now by construction of P , the map P/JP → M/JM
is an isomorphism. It follows that if α ∈ End(P ) is a map with θα = θ, then α = 1
in End(P/JP ). Then ϕ = α− 1 ∈ End(P ) has image contained in JP . Thus ϕ is
nilpotent, so α = 1 + ϕ is invertible. Thus θ : P →M is a projective cover.
Apply this with M projective, and we see that M is isomorphic to a direct sum of
projective covers of simples.
(3) If F is a flat left R-module, take a projective cover θ : P → F and let L be the
kernel. Thus we have an exact sequence

0→ L→ P → F → 0. (†)

Dualizing, we get an exact sequence of right R-modules

0→ F ∗ → P ∗ → L∗ → 0.

Since F is flat, F ∗ is injective, so this sequence splits, so considering R/J as a right
R-module, the sequence

0→ HomR(R/J, F
∗)→ HomR(R/J, P

∗)→ HomR(R/J, L
∗)→ 0

is exact. By Hom-tensor adjointness, for any right R-module, we get

HomR(R/J,M
∗) ∼= ((R/J)⊗RM)∗ ∼= (M/JM)∗.

Thus we have an exact sequence

0→ (F/JF )∗ → (P/JP )∗ → (L/JL)∗ → 0.

But by the construction above, the map P/JP → F/JF is an isomorphism. Thus
(L/JL)∗ = 0, so L/JL = 0, so L = 0. Thus F ∼= P is projective. (Alternatively,
using that F is flat, the long exact sequence for Tor, which comes later, implies
that the sequence obtained by tensoring (†) with R/J is exact, so 0 → L/JL →
P/JP → F/JF → 0 is exact. But P/JP → F/JF is an isomorphism, so L/JL =
0, so L = 0.)

Remark. The rings for which all left modules have projective covers are the ‘left
perfect rings’. They are also the rings for which flat = projective, so the best
generalization of the last theorem is a theorem of Bican, El Bashir and Enochs
2001, that every module has a flat cover. The proof is much harder.
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3 Complexes

3.1 Chain and cochain complexes

Definition. Let R be a ring. A chain complex C (or C· or C∗) of R-modules
consists of modules and homomorphisms

. . . −→ C2
d2−→ C1

d1−→ C0
d0−→ C−1

d−1−−→ C−2 −→ . . .

satisfying dn−1dn = 0 for all n. The elements of Cn are called chains of degree n
or n-chains. The morphisms dn are the differential, also denoted d or dCn .

If C is a chain complex, then its homology is defined by

Hn(C) = Ker(dn)/ Im(dn+1) = Zn(C)/Bn(C).

The elements of Bn(C) are n-boundaries. The elements of Zn(C) are n-cycles.

A chain complex C is non-negative if Cn = 0 for n < 0. It is bounded if there are
only finitely many nonzero Cn. It is acyclic if Hn(C) = 0 for all n, that is, if it is
an exact sequence.

Definition. A cochain complex C (or C · or C∗) consists of R-modules and homo-
morphisms

. . . −→ C−2
d−2

−−→ C−1
d−1

−−→ C0 d0−→ C1 d1−→ C2 −→ . . .

satisfying dn+1dn = 0 for all n. The elements of Cn are called cochains of degree n
or n-cochains. The differential is also denoted dnC .

The cohomology of a cochain complex is defined by

Hn(C) = Ker(dn)/ Im(dn−1) = Zn(C)/Bn(C).

The elements of Bn(C) are n-coboundaries. The elements of Zn(C) are n-cocycles.

A cochain complex C is non-negative if Cn = 0 for n < 0. It is bounded if there
are only finitely many nonzero Cn. It is acyclic if Hn(C) = 0 for all n.

Remarks. (i) There is no difference between chain and cohain complexes, apart
from numbering. Pass between them by setting Cn = C−n, dn = d−n.

(ii) Many complexes are zero to the right, so naturally thought of as non-negative
chain complexes, or zero to the left, so naturally thought of as non-negative cochain
complexes.

45



Definition. If C is a chain complex of right R-modules and M is a left R-module,
the homology of C with coefficients in M is

Hn(C;M) := Hn(C ⊗RM)

where C ⊗RM is the chain complex with

(C ⊗RM)n = Cn ⊗RM, dC⊗RM
n = dCn ⊗ IdM .

If C is a chain complex of left R-modules and M is a left R-module M , the
cohomology of C with coefficients in M is

Hn(C;M) := Hn(Hom(C,M))

where Hom(C,M) is the cochain complex of Z-modules (or R-modules if R is
commutative, or K-modules if R is a K-algebra) with

Hom(C,M)n = HomR(Cn,M)

and differential

dnHom(C,M) : HomR(Cn,M)→ HomR(Cn+1,M), dnHom(C,M)(θ) = θ dCn+1.

Note that other conventions are possible, for example

dnHom(C,M)(θ) = (−1)n+1θ dCn+1.

Example. If C is the acyclic chain complex

0→ Z 2−→ Z→ Z/Z2→ 0

with Z/Z2 in degree 0, then C ⊗Z (Z/Z2) is the chain complex

0→ Z/Z2 0−→ Z/Z2 1−→ Z/Z2→ 0

so H2(C,Z/Z2) ∼= Z/Z2, and Hom(C,Z) is the cochain complex

0→ 0→ Z 2−→ Z→ 0

with Z in degrees 1 and 2, so H2(C;Z) ∼= Z/Z2.
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3.2 Examples from algebraic and differential topology

Example (Simplicial homology). If v0, . . . , vn are n + 1 points in RN , and the
vectors v1−v0, . . . , vn−v0 are linearly independent, then the n-simplex with vertices
v0, . . . , vn is

[v0, . . . , vn] := {convex span of the vi} =

{
n∑
i=0

λivi : λi ≥ 0,
n∑
i=0

λi = 1

}
.

It is a closed subset of RN and its vertices are uniquely determined as the extremal
points. A 0-simplex is a point, a 1-simplex is a line segment, a 2-simplex is a
triangle, a 3-simplex is a tetrahedron, etc.

A face of a simplex is a simplex given by a subset of its vertices. A simplicial
complex in RN is a finite set K of simplices, satisfying

(1) If s ∈ K then so is every face of s.

(2) If s, t ∈ K, then their intersection is either empty or it is a face of s and t.

An oriented simplicial complex is a simplicial complex together with a total order-
ing on its vertices. We can do this by labelling its vertices 1, 2, 3, . . . . If K is an
oriented simplicial complex, its chain complex C = C(K) is

Cn = free Z-module on the n-simplices in K.

with differential

dn([v0, . . . , vn]) =
n∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vn]

for v0 < · · · < vn, where the hat means to omit that term. This is a chain complex,
for example

d2d3[v0, v1, v2, v3] = d2[v1, v2, v3]− d2[v0, v2, v3] + d2[v0, v1, d3]− d2[v0, v1, v2]

= ([v2, v3]− [v1, v3] + [v1, v2])

−([v2, v3]− [v0, v3] + [v0, v2])

+([v1, v3]− [v0, v3] + [v0, v1])

−([v1, v2]− [v0, v2] + [v0, v1])

= 0.

The simplicial homology of K is Hn(C(K)).
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The naming of cycles and boundaries can be explained as follows. Let K be a
oriented simplicial complex, for simplicity in R2. A path along the edges gives an
element of C1. The path is a cycle if it returns to its starting point. The path is a
boundary if you can fill its interior with 2-simplices.

For example suppose K is given by vertices 1,2,3,4, with edges 1–2–3–4–1–3, and a
triangle 1–2–3–1. Then C0 free on [1], [2], [3], [4], C1 is free on [12], [13], [14], [23], [34],
C2 is free on [123]. We have d([123]) = [23] − [13] + [12], d([12]) = [2] − [1],
d([13]) = [3]− [1], d([14]) = [4]− [1], d([23]) = [3]− [2], d([34]) = [4]− [3]. We have
Z0(C) = C0 and

B0(C) = Z-span([2]− [1], [3]− [1], [4]− [1], [3]− [2], [4]− [3])

= {α[1] + β[2] + γ[3] + δ[4] : α + β + γ + δ = 0}.
so H0(C) ∼= Z. Now Z1(C) is the set of α[12] + β[13] + γ[14] + δ[23] + ϵ[34] such
that

(−α− β − γ)[1] + (α− δ)[2] + (β + δ − ϵ)[3] + (γ + ϵ)[4] = 0

and B1(C) = Z([23]− [13] + [12]). Then

Z1(C) = B1(C)⊕ Z([13]− [14] + [34])

so H1(C) ∼= Z. Also Z2(C) = 0, so H2(C) = 0.

Example (de Rham cohomology). Let M be a smooth manifold. The de Rham
complex is the cochain complex

· · · → 0→ Ω0(M)
d−→ Ω1(M)

d−→ Ω2(M)→ . . .

where Ω0(M) is the set of smooth functions M → R (that is all partial derivatives
exist and are continuous), Ωn(M) is the space of differential n-forms and d is the
exterior derivative. The de Rham cohomology is Hn

DR(M) = Hn(Ω(M)).

For example if M is an open subset of R2 then:

Ω1(M) ={ω = p dx+ q dy : p, q smooth functions on M},
Ω2(M) ={h dx dy : h a smooth function on M.}

For f ∈ Ω0(M) we have

d(f) =
∂f

∂x
dx+

∂f

∂y
dy

For ω = p dx+ q dy ∈ Ω1(M) we have

dω = (
∂q

∂x
− ∂p

∂y
) dx dy.
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We have d2 = 0 since
∂2f

∂x∂y
=

∂2f

∂y∂x
.

The spaces of cocycles and coboundaries are:
Z1 = {ω ∈ Ω1(M) : dω = 0}, the set of closed 1-forms.
B1 = {df : f ∈ Ω0(M)}, the set of exact 1-forms.
Thus H1

DR(M) = {closed 1-forms}/{exact 1-forms}.

The Poincaré Lemma implies that H1
DR(M) = 0 if M is an open disc in R2, or

more generally simply connected. On the other hand H1
DR(R2 \ {0}) ̸= 0 since one

can show that the 1-form

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy ∈ Ω1(R2 \ {0})

is closed but not exact.

Example (Singular homology and cohomology). Let X be a topological space.
For each n, let ∆n = [v0, . . . , vn] be an n-simplex. Let Cn be the free Z-module
with basis the set of continuous maps σ : ∆n → X. The image of the map might
look like a deformed simplex, but it might be singular, hence the name. We can
make the Cn into a chain complex via

dn(σ) =
n∑
i=0

(−1)iσ|[v0,...,v̂i,...,vn]

where we must consider the restriction σ|[v0,...,v̂i,...,vn] as a mapping ∆n−1 → X, so
an element of Cn−1. We get singular homology and cohomology.

(1) SupposeK is an ordered simplicial complex and |K| is the union of its simplices.
Then simplicial homology of K and singular homology of |K| coincide.

(2) Suppose M is a manifold, then singular cohomology of M with coefficients in
R and de Rham cohomology of M coincide (de Rham’s theorem).

The proofs use results from topology and also about complexes. We shall develop
the latter only.

3.3 The category of complexes

We shall work with cochain complexes. The definitions work for an abelian category
A, and some more generally for A an additive or preadditive category. But we do
most proofs only for R-Mod.
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Definition. Let A be a preadditive category (usually abelian, or at least additive).
The category of complexes C(A) has as objects the cochain complexes of objects
and morphisms in A

. . . −→ C−2
d−2

−−→ C−1
d−1

−−→ C0 d0−→ C1 d1−→ C2 −→ . . .

satisfying dndn−1 = 0 for all n. We denote the differential also by dnC or just d. A
morphism f : C → D is given by morphisms fn : Cn → Dn for n ∈ Z such that
each square in the diagram commutes

. . . −−−→ Cn−1 dn−1
C−−−→ Cn

dnC−−−→ Cn+1 −−−→ . . .

fn−1

y fn
y fn+1

y
. . . −−−→ Dn−1 dn−1

D−−−→ Dn
dnC−−−→ Dn+1 −−−→ . . .

Composition of morphisms is done degreewise.

For i ∈ Z there is a shift functor Σi : C(A)→ C(A) defined on objects by

(ΣiC)n = Cn+i, dnΣiC = (−1)idn+iC

and on morphisms f : C → D by

(Σif)n = fn+i.

This is an automorphism of the category. It is the ith power of the functor Σ = Σ1.
Other notation is C[i] or T iC. Other names are suspension and translation.

If A is an abelian category, then we get the cohomology

Hn(C) = Ker(dn)/ Im(dn−1) = Zn(C)/Bn(C) ∈ ob(A).

Lemma. C(A) is a preadditive category. If A is additive or abelian, so is C(A).
In the last case, a sequence of complexes

0→ C −→ D −→ E → 0

is exact if and only if the sequence in each degree

0→ Cn → Dn → En → 0

is exact.
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Proof. Sums of morphisms, direct sums, kernels and cokernels are computed ‘de-
greewise’:

(f + g)n = fn + gn, (C ⊕D)n = Cn ⊕Dn, (Ker f)n = Ker(fn)

etc.

Lemma. A morphism of complexes f : C → D for an abelian category A in-
duces morphisms on cohomology Hn(f) : Hn(C) → Hn(D), giving a functor
Hn : C(A)→ A.

Proof. We do it for A = R-Mod. An arbitrary element of Hn(C) is of the form
[x] with x ∈ Zn(C) = Ker dnC . Then fn(x)Ker dnD = Zn(D), so induces an ele-
ment [fn(x)] ∈ Hn(D). This is well-defined, for if x ∈ Bn(C) = Im dn−1C , then
x = dn−1C (y) for some y ∈ Cn−1, but then fn(x) = fndn−1C (y) = dn−1D fn−1(y) ∈
Im dn−1D = Bn(D). Thus we get a mapping Hn(f) : Hn(C)→ Hn(D). It is easy to
see that this defines a functor.

Definition. A morphism of complexes f : C → D for an abelian category A is a
quasi-isomorphism if the morphism Hn(C)→ Hn(D) is an isomorphism for all n.

Example. For 0 ̸= a ∈ Z, there is a quasi-isomorphism of complexes of Z-modules

. . . −−−→ 0 −−−→ Z a−−−→ Z −−−→ 0 −−−→ . . .y y π

y y
. . . −−−→ 0 −−−→ 0 −−−→ Z/Za −−−→ 0 −−−→ . . .

where π is the projection.

Theorem. A short exact sequence of complexes 0 → C → D → E → 0 for an
abelian category A induces a long exact sequence on cohomology

· · · → Hn−1(E)→ Hn(C)→ Hn(D)→ Hn(E)→ Hn+1(C)→ Hn+1(D)→ . . .

for suitable connecting morphisms cn : Hn(E)→ Hn+1(C).

Proof. For all n we have a diagram

0 −−−→ Cn −−−→ Dn −−−→ En −−−→ 0

dnC

y dnD

y dnE

y
0 −−−→ Cn+1 −−−→ Dn+1 −−−→ En+1 −−−→ 0

and the easy part of the Snake Lemma gives exact sequences on kernels of the
vertical maps

0→ Zn(C)→ Zn(D)→ Zn(E)
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and on cokernels

Cn+1/Bn+1(C)→ Dn+1/Bn+1(D)→ En+1/Bn+1(E)→ 0

This holds for all n, so shows that the rows in the following diagram are exact

Cn/Bn(C) −−−→ Dn/Bn(D) −−−→ En/Bn(E) −−−→ 0

d
n
C

y d
n
C

y d
n
E

y
0 −−−→ Zn+1(C) −−−→ Zn+1(D) −−−→ Zn+1(E).

Here the vertical maps are induced by dnC , dnD and dnE, so the diagram commutes.
Thus by the snake lemma one gets an exact sequence

Ker(d
n

C)→ Ker(d
n

D)→ Ker(d
n

E)→ Coker(d
n

C)→ Coker(d
n

D)→ Coker(d
n

E)

That is,

Hn(C)→ Hn(D)→ Hn(E)→ Hn+1(C)→ Hn+1(D)→ Hn+1(E)

as required.

3.4 Mapping cones

Definition. The mapping cone of a morphism of complexes f : B → C in C(A),
with A an additive category, is the complex cone(f) with

cone(f)n = (ΣB)n ⊕ Cn = Bn+1 ⊕ Cn,

dn =

(
dnΣB 0
fn+1 dnC

)
=

(
−dn+1

B 0
fn+1 dnC

)
: Bn+1 ⊕ Cn → Bn+2 ⊕ Cn+1

That is, for complexes of R-modules,

dn(b, c) = (−dn+1
B (b), fn+1(b) + dnC(c)).

Observe that cone(0→ C) ∼= C and cone(B → 0) ∼= ΣB.

Proposition. There is a sequence of complexes

0→ C → cone(f)→ ΣB → 0

which in degree n is the split exact sequence

0→ Cn iCn−−→ Bn+1 ⊕ Cn pBn+1−−−→ Bn+1 → 0

Thus if A is abelian, it is an exact sequence of complexes. In the corresponding
long exact sequence on cohomology, the connecting morphism

Hn(B) = Hn−1(ΣB)→ Hn(C)

is equal to Hn(f).
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Proof. The first part is straightforward. We do the second part for R-Mod. The
connecting map Hn+1(B) → Hn+1(C) is given by the Snake Lemma from the
diagram

0y
Hn+1(B)y

Cn/Bn(C) −−−→ cone(f)n/Bn(cone(f)) −−−→ Bn+1/Bn+1(B) −−−→ 0y y y
0 −−−→ Zn+1(C) −−−→ Zn+1(cone(f)) −−−→ Zn+2(B)y

Hn+1(C)y
0

Now an element [b] of Hn+1(B) lifts to an element [(b, 0)] of cone(f)n/Bn(cone(f)),
and applying the differential of cone(f) it gives [(0, fn+1(b))] ∈ Zn+1(cone(f)),
which comes from [fn+1(b)] in Hn+1(C).

Corollary. If A is abelian, then a morphism f : B → C of complexes is a quasi-
isomorphism if and only if cone(f) is acyclic.

Proof. Follows from the long exact sequence on cohomology

· · · → Hn−1(cone(f))→ Hn(B)→ Hn(C)→ Hn(cone(f))→ Hn+1(B)→ Hn+1(C)→ . . .

3.5 The homotopy category

Definition. An ideal in a preadditive category A is a class of morphisms I in A
such that

• I(X, Y ) := I ∩ HomA(X, Y ) is an additive subgroup of HomA(X, Y ) for all
X, Y , and

• If X f−→ Y
g−→ Z are morphisms in A, and f or g is in I, then so is gf .
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If I is an ideal in A, then there is a quotient category A/I, with the same objects
as A and

HomA/I(X, Y ) = HomA(X, Y )/I(X, Y ).

If A is an additive category, so is A/I.

Definition. A morphisms f : C → D of complexes is null-homotopic if there are
morphisms hn : Cn → Dn−1 for all n ∈ Z such that

fn = hn+1dnC + dn−1D hn

for all n ∈ Z. Two morphisms f, g : C → D of complexes are homotopic if f − g is
null-homotopic.

Proposition/Definition. The null-homotopic morphisms form an ideal in the
category of C(A), so we get the quotient category

K(A) := A/{null-homotopic morphisms}

is called the homotopy category of A. The morphisms are the homotopy classes of
morphisms in C(A). If A is additive, so is K(A).

Proof. We need to show that if C f−→ D
g−→ E are morphisms of complexes and f

or g is null-homotopic, then so is gf . If f is null-homotopic with morphisms hn,
then

(gf)n = gnfn = gn(hn+1dnC + dn−1D hn)

= gnhn+1)dnC + gndn−1D hn

= (gnhn+1)dnC + dn−1E (gn−1hn).

Similarly if g is null-homotopic.

Lemma. If A is abelian, then homotopic morphisms f, g : C → D induce the same
morphism on cohomology Hn(f) = Hn(g) : Hn(C) → Hn(D). Thus cohomology
induces a functor on the homotopy category

Hn : K(A)→ A

also denoted by Hn.

Proof. It suffices to show that null-homotopic morphisms induce the zero morphism
on cohomology. We do it for R-modules. Thus suppose

fn = hn+1dnC + dn−1D hn

An element of Hn(C) is represented by an element x ∈ Zn(C) = Ker dnC . Then
fn(x) = dn−1D hn(x) ∈ Im(dn−1D ) = Bn(D), so Hn(f)([x]) = [fn(x)] is zero in
Hn(D).
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Definition. A morphism f : C → D is a homotopy equivalence if its image in
K(A) is an isomorphism. Equivalently, there is a morphism g : D → C such that
fg is homotopic to IdD and gf is homotopic to IdC .

Lemma. If A is abelian, then a homotopy equivalence is a quasi-isomorphism.

Proof. A homotopy equivalence gives an isomorphism in K(A), so it is sent to an
isomorphism by Hn.

Lemma. An additive functor F : A → B induces a functor

F : C(A)→ C(B), F (C)n = F (Cn), dnF (C) = F (dnC),

and this induces a functor F : K(A) → K(B). Similarly an additive functor
F : Aop → B induces a functor

F : C(A)op → C(B), F (C)n = F (C−n), dnF (C) = F (d−n−1C ),

and this induces a functor F : K(A)op → K(B).

Proof. If f : C → D is null-homotopic, then

fn = hn+1dnC + dn−1D hn

so
F (fn) = F (hn+1)dnF (C) + dn−1F (D)F (h

n),

so F (f) is null-homotopic.

Corollary. If F : A → B is an additive functor and f : C → D is a homotopy
equivalence in C(A), then F (f) : F (C) → F (D) is a homotopy equivalence. In
particular, if B is abelian, then F (f) is a quasi-isomorphism. Similarly for a
contravariant functor.

Proof. f becomes an isomorphism in K(A), so F (f) is an isomorphism, but this
is the image of F (f) in K(B).

Remark. If M is a left R-module and f : C → D is a homotopy equivalence of
complexes of right R-modules, taking F = −⊗RM , one gets an isomorphism

Hn(C;M)→ Hn(D;M)

on homology with coefficients. Similarly if C → D is a homotopy equivalence of
complexes of left R-modules, one get an isomorphism

Hn(D;M)→ Hn(C;M)

on cohomology with coefficients.
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Definition. A complex C is contractible if it is homotopy equivalent to the zero
complex, or equivalently if IdC is null-homotopic.

Proposition. If A is abelian, a complex is contractible if and only if it is acyclic
(i.e. exact) and all of the short exact sequences

0→ Zn(C)
in−→ Cn dnC−→ Bn+1(C)→ 0

are split.

Proof. We do it for R-Mod. If C is contractible, then it is quasi-isomorphic to the
zero complex, so it is acyclic. Now IdC is null-homotopic, so there are hn : Cn →
Cn−1 with

IdCn = hn+1dnC + dn−1C hn

Let sn+1 : Bn+1(C) = Zn+1(C) → Cn be the restriction of hn+1. If x ∈ Bn+1(C),
then

x = IdCn+1(x) = (hn+2dn+1
C + dnCh

n+1)(x) = dnCh
n+1(x) = dnCs

n+1(x)

so sn+1 is a section for the short exact sequence 0→ Zn(C)→ Cn → Bn+1(C)→ 0.

Now suppose that C is acyclic and the short exact sequences are all split, with
sections sn+1 : Bn+1(C)→ Cn. If x ∈ Cn, then x− sn+1dnC(x) ∈ Zn(C) = Bn(C),
so we can define a homomorphism hn : Cn → Cn−1 by

hn(x) = sn(x− sn+1dnC(x)).

Then

(hn+1dnC + dn−1C hn)(x) = sn+1(dnC(x)− sn+2dn+1
C (dnC(x))) + dn−1C sn(x− sn+1dnC(x))

= sn+1dnC(x) + (x− sn+1dnC(x)) = x.

Thus C is contractible.
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4 Resolutions, Ext and Tor

4.1 Projective and injective resolutions

Definition. We suppose that A is an abelian category which has enough projec-
tives, meaning that for every object M there is an epimorphism from a projective
object to M , for example R-Mod.
A projective resolution of M is an exact sequence

· · · → P2
d2−→ P1

d1−→ P0
ϵ−→M → 0

with the Pi projective. It is equivalent to give a non-negative chain complex P
of projectives and a quasi-isomorphism P → M (with M considered as a chain
complex in degree 0),

. . . −−−→ P2
d2−−−→ P1

d1−−−→ P0 −−−→ 0 −−−→ . . .y y ϵ

y y
. . . −−−→ 0 −−−→ 0 −−−→ M −−−→ 0 −−−→ . . .

The syzygies of M with respect to this projective resolution are the objects

ΩnM = Im(dn : Pn → Pn−1) =

{
Ker(ϵ : P0 →M) (n = 1)

Ker(dn−1 : Pn−1 → Pn−2) (n > 1)

and Ω0M =M . Thus there are exact sequences

0→ Ωn+1M → Pn → ΩnM → 0.

Note that object module has many different projective resolutions. Choose any
epimorphism ϵ : P0 → M . This gives Ω1M . Then choose any epimorphism d1 :
P1 → KerΩ1M , then any epimorphism d2 : P2 → Ω2M , etc.

Dually, suppose that A has enough injectives, meaning that every object has a
monomorphism to an injective object. An injective resolution of an object X is an
exact sequence

0→ X → I0 → I1 → I2 → . . .

with the In injective. The cosyzygies are ΩnX = Im(In−1 → In) (and ), so

0→ ΩnX → In → Ωn+1X → 0.

Injective resolutions in A are exactly the same as projective resolutions in Aop.
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Theorem (Comparison Theorem). Given projective resolutions ϵ : P → M and
ϵ′ : P ′ →M ′, any morphism f :M →M ′ can be lifted to a morphism of projective
resolutions

. . . −−−→ P2
d2−−−→ P1

d1−−−→ P0
ϵ−−−→ M −−−→ 0

g2

y g1

y g0

y f

y
. . . −−−→ P ′2

d′2−−−→ P ′1
d′1−−−→ P ′0

ϵ′−−−→ M ′ −−−→ 0

or equivalently to a morphism of complexes g : P → P ′ with ϵ′g0 = fϵ. Moreover
g is unique up to homotopy.

Proof. Consider the diagram with exact rows

0 −−−→ Ω1M −−−→ P0 −−−→ M −−−→ 0

Ω1g

y g0

y f

y
0 −−−→ Ω1M

′ −−−→ P ′0 −−−→ M ′ −−−→ 0.

Since P0 is projective and P ′0 → M ′ is an epimorphism, there is a morphism g0
making the right hand square commute. Then there is an induced morphism Ω1g
making the left hand square commute.

Now the same argument gets g1 and Ω2g:

0 −−−→ Ω2M −−−→ P1 −−−→ Ω1M −−−→ 0

Ω2g

y g1

y Ω1g

y
0 −−−→ Ω2M

′ −−−→ P ′1 −−−→ Ω1M
′ −−−→ 0

etc.

To show that any two lifts are homotopic, it is equivalent to show that any lift g
of the zero morphism M →M ′ is null-homotopic. Say

. . . −−−→ P2
d2−−−→ P1

d1−−−→ P0
ϵ−−−→ M −−−→ 0

g2

y g1

y g0

y 0

y
. . . −−−→ P ′2

d′2−−−→ P ′1
d′1−−−→ P ′0

ϵ′−−−→ M ′ −−−→ 0

Since ϵ′g0 = 0 we have Im(g0) ⊆ Ker(ϵ′) = Ω1M
′, then since P ′1 → Ω1M

′ is an
epimorphism, g0 lifts to a morphism h0 : P0 → P ′1 with d′1h0 = g0. By induction
we find morphisms hn : Pn → P ′n+1 for n > 0 with gn = d′n+1hn + hn−1dn. Having
found h1, . . . , hn−1, we have

d′n(gn − hn−1dn) = gn−1dn − d′nhn−1dn = (gn−1 − d′nhn−1)dn.
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This is zero both if n = 1 or n > 1. Thus Im(gn−hn−1dn) ⊆ Ωn+1M
′. Thus it lifts

to a morphism gn : Pn → P ′n+1.

Corollary. If ϵ : P → M and ϵ′ : P ′ → M are projective resolutions of M , then
there is a homotopy equivalence g : P → P ′ with ϵ′g0 = ϵ. Moreover g is unique up
to homotopy.

Proof. The identity IdM lifts to a morphism g : P → P ′ and to a morphism
g′ : P ′ → P . Now g′g − IdP is a lift of the zero morphism M → M , so is null-
homotopic, and so is gg′ − IdP ′ .

Lemma (Horseshoe Lemma). Given a short exact sequence

0→M ′ f−→M
g−→M ′′ → 0

and projective resolutions P ′ → M ′ and P ′′ → M ′′, we can find a commutative
diagram

0 0 0y y y
. . . −−−→ P ′1 −−−→ P ′0

ϵ′−−−→ M ′ −−−→ 0

(10)
y (10)

y f

y
. . . −−−→ P ′1 ⊕ P ′′1 −−−→ P ′0 ⊕ P ′′0 −−−→ M −−−→ 0

(0 1)

y (0 1)

y g

y
. . . −−−→ P ′′1 −−−→ P ′′0

ϵ′′−−−→ M ′′ −−−→ 0y y y
0 0 0

in which the middle row is a projective resolution of M .

Proof. Since g is an epimorphism and P ′′0 is projective, we have ϵ′′ = gh for some
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h : P ′′0 →M . Then we get a commutative diagram

0 0y y
P ′0

ϵ′−−−→ M ′ −−−→ 0

(10)
y f

y
P ′0 ⊕ P ′′0

(fϵ′ h)−−−−→ M −−−→ 0

(0 1)

y g

y
P ′′0

ϵ′′−−−→ M ′′ −−−→ 0y y
0 0

By the snake lemma, the sequence of syzygies 0→ Ω1M
′ → Ω1M → Ω1M

′ → 0 is
exact. Now iterate.

4.2 Derived functors

Definition. Suppose F : A → B is a right exact functor between abelian categories
and A has enough projective. For any M ∈ ob(A), we fix a projective resolution
P → M . For n ≥ 0, the nth left derived functor of F is the functor LnF : A → B
given by

LnF (M) = Hn(F (P )),

the nth homology of the chain complex

· · · → F (P2)→ F (P1)→ F (P0)→ 0

A morphism f :M →M ′ lifts to a morphism of projective resolutions g : P → P ′,
unique up to homotopy. Then F (g) is a morphism : F (P ) → F (P ′), unique up
to homotopy, so it induces unique morphisms Hn(F (P )) → Hn(F (P

′)), that is
LnF (M)→ LnF (M

′). This makes LnF a functor.

Proposition. (i) LnF (M) is independent of the projective resolution of M .
(ii) LnF (M) = 0 for n < 0 and L0F (M) ∼= F (M).
(iii) LnF (M) = 0 for M projective and n > 0.
(iv) Any short exact sequence 0 → M ′ → M → M ′′ → 0 induces a long exact
sequence

· · · → L2F (M
′′)→ L1F (M

′)→ L1F (M)→ L1F (M
′′)→ F (M ′)→ F (M)→ F (M ′′)→ 0.
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Proof. (i) Any two projective resolutions P, P ′ of M have a homotopy equivalence
P → P ′. Thus F (P )→ F (P ′) is a homotopy equivalence, so a quasi-isomorphism.
Thus Hn(F (P )) ∼= Hn(F (P

′)).

(ii) Since P is a non-negative chain complex, so is F (P ), so LnF (M) = 0 for
n < 0. Since F is right exact, the exact sequence P1 → P0 → M → 0 gives an
exact sequence

F (P1)→ F (P0)→ F (M)→ 0,

so H0(F (P )) ∼= F (M).

(iii) If M is projective it has a projective resolution with P0 = M and Pi = 0 for
i > 0.

(iv) Given an exact sequence 0→M ′ →M →M ′′ → 0, by the Horseshoe Lemma
we get an exact sequence of projective resolutions 0→ P ′ → P → P ′′ → 0. Since
the sequences 0 → P ′n → Pn → P ′′n → 0 are split, they stay exact under F , so we
get an exact sequence of complexes

0→ F (P ′)→ F (P )→ F (P ′′)→ 0

and hence the long exact sequence on homology.

Remark. Variations. Replacing A by Aop and/or B by Bop, and noting that a
functor Aop → Bop is the same thing as a functor A → B, we get the following
variants.

Right exact Left exact
Covariant, F : A → B done (b)
Contravariant, F : Aop → B (a) (c)

(a) If F : Aop → B is a right exact functor and A has enough injectives, then the
nth left derived functor LnF : Aop → B is defined by LnF (M) = Hn(F (I)) where
M → I is a fixed injective resolution of X. A short exact sequence 0 → M ′ →
M →M ′′ → 0 induces a long exact sequence

· · · → L2F (M
′)→ L1F (M

′′)→ L1F (M)→ L1F (M
′)→ F (M ′′)→ F (M)→ F (M ′)→ 0.

(b) If F : A → B is a left exact functor and A has enough injectives, then the
nth right derived functor RnF : A → B is defined by RnF (M) = Hn(F (I)) where
M → I is a fixed injective resolution of X. A short exact sequence 0 → M ′ →
M →M ′′ → 0 induces a long exact sequence

0→ F (M ′)→ F (M)→ F (M ′′)→ R1F (M ′)→ R1F (M)→ R1F (M ′′)→ R2F (M ′)→ . . .
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(c) If F : Aop → B is a left exact functor and A has enough projectives, then the
nth right derived functor RnF : Aop → B is defined by RnF (M) = Hn(F (P ))
where P → M is a fixed projective resolution of M . A short exact sequence
0→M ′ →M →M ′′ → 0 induces a long exact sequence

0→ F (M ′′)→ F (M)→ F (M ′)→ R1F (M ′′)→ R1F (M)→ R1F (M ′)→ R2F (M ′′)→ . . .

Example. IfX is topological space, there is a category Sh(X) of sheaves of abelian
groups on X. It is a Grothendieck category, so has enough injectives. The global
section functor

Γ(X,−) : Sh(X)→ Ab

is left exact, so it has right derived functors Hn(X,−) = RnΓ(X,−). This is sheaf
cohomology. For a nice enough topological space (locally contractible), one has

Hn(X,ZX) ∼= Hn
sing(X;Z),

where ZX is the constant sheaf on X and the right hand side is singular cohomology
with coefficients in Z.

4.3 Ext

Definition. For each R-module M , fix a projective resolution P →M . Given an
R-module X, we define ExtnR(M,X) to be the cohomology of the cochain complex

· · · → 0→ HomR(P0, X)→ HomR(P1, X)→ HomR(P2, X)→ . . .

That is,

ExtnR(M,X) = Hn(P ;X) = Hn(HomR(P,X)) = (RnHomR(−, X))(M)

using the right derived functors of the left exact functor

HomR(−, X) : R-Modop → Ab .

The results about derived functors give:

Proposition. (i) ExtnR(M,X) is independent of the projective resolution of M .
(ii) Ext0R(M,X) ∼= HomR(M,X).
(iii) ExtnR(M,X) = 0 for M projective and n > 0.
(iv) Any short exact sequence 0 → M ′ → M → M ′′ → 0 induces a long exact
sequence

0→ HomR(M
′′, X)→ HomR(M,X)→ HomR(M

′, X)→

Ext1R(M
′′, X)→ Ext1R(M,X)→ Ext1R(M

′, X)→ Ext2R(M
′′, X)→ . . .
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Further properties.

Proposition. (i) By definition ExtnR(M,X) is a contravariant functor in M , but
it is also a covariant functor in X. If R is a K-algebra (e.g. K = Z for a ring),
we get a bifunctor

ExtnR(−,−) : R-Modop ×R-Mod→ K-Mod

which is K-linear in each argument.
(ii) ExtnR(M,X) = 0 for n > 0 and X injective.
(iii) A short exact sequence 0→ X ′ → X → X ′′ → 0 induces a long exact sequence

0→ HomR(M,X ′)→ HomR(M,X)→ HomR(M,X ′′)→

Ext1R(M,X ′)→ Ext1R(M,X)→ Ext1R(M,X ′′)→ Ext2R(M,X ′)→ . . .

Proof. (i) Let P → M be a projective resolution of M . A morphism X → X ′

induces a morphism of complexes HomR(P,X) → HomR(P,X
′), and hence mor-

phisms ExtnR(M,X)→ ExtnR(M,X ′).

If R is a K-algebra, then any space HomR(M,X) is a K-module, and an morphism
M → M ′ or X → X ′ induces a morphism of K-modules. Now we need that if
X → X ′ and if M →M ′, then the square

Extn(M ′, X) −−−→ Extn(M,X)y y
Extn(M ′, X ′) −−−→ Extn(M,X ′)

commutes. This holds because if P → P ′ is a lift of M → M ′, then the square of
complexes

Hom(P ′, X) −−−→ Hom(P,X)y y
Hom(P ′, X ′) −−−→ Hom(P,X ′)

commutes.

(ii) Holds since HomR(−, X) is exact.

(iii) If P →M is a projective resolution, then since each Pn is projective, one gets
an exact sequence of complexes

0→ HomR(P,X
′)→ HomR(P,X)→ HomR(P,X

′′)→ 0.

This induces a long exact sequence on cohomology.
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Theorem. If 0→ X → I0 → I1 → I2 → . . . is an injective resolution of X, then
one can compute ExtnR(M,X) as the nth cohomology of the complex HomR(M, I):

0→ HomR(M, I0)→ HomR(M, I1)→ HomR(M, I2)→ . . .

Proof. Break the injective resolution into exact sequences

0→ ΩiX → I i → Ωi+1X → 0

for i ≥ 0 where Ω0X = X. One gets long exact sequences

0→ HomR(M,ΩiX)→ HomR(M, I i)→ HomR(M,Ωi+1X)

→ Ext1R(M,ΩiX)→ 0→ Ext1R(M,Ωi+1X)

→ Ext2R(M,ΩiX)→ 0→ Ext2R(M,Ωi+1X) . . .

so
Ext1R(M,ΩiX) ∼= Coker(HomR(M, I i)→ HomR(M,Ωi+1X))

and
ExtjR(M,Ωi+1X) ∼= Extj+1

R (M,ΩiX)

for j ≥ 1. Thus (it is called dimension shifting)

ExtnR(M,X) ∼= Extn−1R (M,Ω1X) ∼= . . . ∼= Ext1R(M,Ωn−1X)

∼= Coker
(
HomR(M, In−1)→ HomR(M,ΩnX)

)
=

HomR(M,ΩnX)

Im(HomR(M, In−1)→ HomR(M,ΩnX))

Now 0→ ΩnX → In → In+1 is exact, hence so is

0→ HomR(M,ΩnX)→ HomR(M, In)→ HomR(M, In+1),

so we can identify

ExtnR(M,X) ∼=
Ker(HomR(M, In)→ HomR(M, In+1))

Im(HomR(M, In−1)→ HomR(M, In))

which is the cohomology in degree n of the complex HomR(M, I).

Remark. We have defined ExtnR(M,X) as the right derived functorRnHomR(−, X)
applied to M . Instead one can consider the right derived functor RnHomR(M,−)
applied to X. The theorem shows that you get the same result. With more care
one can show that the resulting bifunctors are isomorphic.
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Examples. (1) If R is a semisimple (artinian) ring then all short exact sequences
of R-modules are split exact, so all modules are projective and injective. Thus

ExtnR(M,X) ∼=

{
HomR(M,X) (n = 0)

0 (n > 0).

(2) If R is a pid and 0 ̸= a ∈ R then R/Ra has projective resolution 0 → R
a−→

R→ R/Ra→ 0. Thus ExtnR(R/Ra,X) is the cohomology of the complex

· · · → 0→ Hom(R,X)
a−→ Hom(R,X)→ 0→ . . .

that is,
· · · → 0→ X

a−→ X → 0→ . . .

so Ext0R(R/Ra,X) = Hom(R/Ra,X) ∼= {x ∈ X : ax = 0}, Ext1R(R/Ra,X) ∼=
X/aX and ExtnR(R/Ra,X) = 0 for n > 1.

(3) Let R = K[x]/(x2) with K a field. Any finitely generated module is a direct
sum of copies of K (with x acting as 0) and R. The module K has projective
resolution

→ R
x−→ R

x−→ R→ K → 0.

Now HomR(R,K) ∼= K, and we get ExtnR(K,K) ∼= K for all n ≥ 0.

4.4 Description of Ext1 using short exact sequences

Definition. Two short exact sequences ξ, ξ′ with the same end terms are equivalent
if there is a map θ (necessarily an isomorphism) giving a commutative diagram

ξ : 0 −−−→ L −−−→ M −−−→ N −−−→ 0∥∥∥ θ

y ∥∥∥
ξ′ : 0 −−−→ L −−−→ M ′ −−−→ N −−−→ 0

It is easy to see that the split exact sequences form one equivalence class.

Definition. For any short exact sequence of modules

ξ : 0→ L→M → N → 0

we define an element ξ̂ ∈ Ext1(N,L) as follows. The long exact sequence for
Hom(N,−) applied to ξ gives a connecting map Hom(N,N)→ Ext1(N,L), and ξ̂
is the image of IdN under this map.

One can show that ξ̂ is also the image of IdL under the connecting map Hom(L,L)→
Ext1(N,L) in the long exact sequence obtained by applying Hom(−, L) to ξ.
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Theorem. The assignment ξ 7→ ξ̂ gives a bijection between equivalence classes of
short exact sequences 0 → L → M → N → 0 and elements of Ext1R(N,L). The
split exact sequences correspond to the element 0 ∈ Ext1R(N,L).

Proof. Fix a projective resolution of N , and hence an exact sequence

0→ Ω1N
θ−→ P0

ϵ−→ N → 0.

An exact sequence ξ gives a commutative diagram with exact rows and columns

0y
Hom(N,N)y

0 −−−→ Hom(P0, L) −−−→ Hom(P0,M) −−−→ Hom(P0, N) −−−→ 0

θ∗

y y y
0 −−−→ Hom(Ω1N,L) −−−→ Hom(Ω1N,M) −−−→ Hom(Ω1N,N)y

Ext1(N,L)y
0

and the connecting map Hom(N,N) → Ext1(N,L) is given by diagram chasing,
so by the choice of maps α, β giving a commutative diagram

0 −−−→ Ω1N −−−→ P0 −−−→ N −−−→ 0

α

y β

y ∥∥∥
ξ : 0 −−−→ L

f−−−→ M
g−−−→ N −−−→ 0.

Then ξ̂ = [α] where [. . . ] denotes the map Hom(Ω1N,L)→ Ext1(N,L).

Any element of Ext1(N,L) arises from some ξ. Namely, write it as [α] for some
α ∈ Hom(Ω1N,L). Then take ξ to be the pushout

0 −−−→ Ω1N −−−→ P0 −−−→ N −−−→ 0

α

y y ∥∥∥
ξ : 0 −−−→ L −−−→ M −−−→ N −−−→ 0.
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Now if ξ, ξ′ are equivalent exact sequences one gets a diagram

0 −−−→ Ω1N −−−→ P0 −−−→ N −−−→ 0

α

y β

y ∥∥∥
ξ : 0 −−−→ L −−−→ M −−−→ N −−−→ 0∥∥∥ y ∥∥∥
ξ′ : 0 −−−→ L −−−→ M ′ −−−→ N −−−→ 0.

so ξ and ξ′ correspond to the same map α, so ξ̂ = ξ̂′. If two short exact sequences
ξ, ξ′ give the same element of Ext1(N,L) there are diagrams with maps α, β and
α′, β′ and with α − α′ in the image of the map θ∗ : Hom(P0, L) → Hom(Ω1N,L).
Say α− α′ = ϕθ with ϕ : P0 → L. Then there is also a diagram

0 −−−→ Ω1N
θ−−−→ P0 −−−→ N −−−→ 0

α′

y β−fϕ
y ∥∥∥

ξ : 0 −−−→ L
f−−−→ M −−−→ N −−−→ 0.

This is a pushout, so by the uniqueness of pushouts, ξ and ξ′ are equivalent.

Remark. Homomorphisms L → L′ and N ′′ → N induce maps Ext1(N,L) →
Ext1(N,L′) and Ext1(N,L) → Ext1(N ′′, L). One can show that these maps cor-
respond to pushouts and pullbacks of short exact sequences. For pushouts this
follows directly from the definition. For pullbacks it needs more thought.

Theorem. The following are equivalent for a module M .
(i) M is projective
(ii) Extn(M,X) = 0 for all X and all n > 0.
(iii) Ext1(M,X) = 0 for all X.

The following are equivalent for a module X.
(i) X is injective
(ii) Extn(M,X) = 0 for all M and all n > 0.
(iii) Ext1(M,X) = 0 for all cyclic modules M .

Proof. (i)⇒(ii)⇒(iii) are clear.

(iii)⇒(i) using the characterization of a projective module as one for which all short
exact sequences ending at the module split. If Ext1(R/I,X) = 0 for all left ideals
R, then by the long exact for Hom(−, X) applied to 0 → I → R → R/I → 0,
we get a surjective map Hom(R,X) → Hom(I,X), so X is injective by Baer’s
criterion.
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4.5 Projective, injective and global dimensions

Proposition/Definition. Let M be a module and n ≥ 0. The following are
equivalent.
(i) There is a projective resolution 0→ Pn → · · · → P0 →M → 0
(ii) Extm(M,X) = 0 for all m > n and all X.
(iii) Extn+1(M,X) = 0 for all X.
(iv) For any projective resolution of M , we have ΩnM projective.
The projective dimension, proj. dimM , is the smallest n with this property (or ∞
if there is none).

Let X be a module and n ≥ 0. The following are equivalent.
(i) There is an injective resolution 0→ X → I0 → · · · → In → 0
(ii) Extm(M,X) = 0 for all m > n and all X.
(iii) Extn+1(M,X) = 0 for all cyclic M .
(iv) For any injective resolution of X, we have ΩnX injective.
The injective dimension, inj. dimX, is the smallest n with this property (or ∞ if
there is none).

Proof. (i)⇒(ii)⇒(iii) are trivial. For (iii)⇒(iv) let P →M be a projective resolu-
tion. For any X, dimension shifting gives

0 = Extn+1(M,X) ∼= Extn(Ω1M,X) ∼= . . . ∼= Ext1(ΩnM,X),

so ΩnM is projective. Then

0→ ΩnM → Pn−1 → · · · → P0 →M → 0

is also a projective resolution of M , giving (i).

Lemma. If 0→ L→M → N → 0 is exact, then

proj. dimM ≤ max{proj. dimL, proj. dimN},
inj. dimM ≤ max{inj. dimL, inj. dimN}.

Proof. For any X the long exact sequence for Hom(−, X) gives an exact sequence

· · · → Extn+1(N,X)→ Extn+1(M,X)→ Extn+1(L,X)→ . . .

and the outer terms are zero for n = max.

Definition. The (left) global dimension of R (in N ∪ {∞}) is

gl. dimR = sup{proj. dimM :M ∈ R-Mod}
= inf{n ∈ N : Extn+1(M,X) = 0 ∀ M,X}
= sup{inj. dimX : X ∈ R-Mod}
= inf{n ∈ N : Extn+1(M,X) = 0 ∀ M,Xwith M cyclic}
= sup{proj. dimM :M cyclic}.
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Examples. (1) gl. dimR = 0 ⇔ all modules are projective ⇔ all short exact se-
quences split⇔ every submodule has a complement⇔ R is a semisimple (artinian)
ring.

(2) If R is a f.d. algebra over a field, then

gl. dimR = max{proj. dimS : S is a simple module}.

Namely, call the maximum m. Using the lemma and induction on dimM we get
proj. dimM ≤ m for any f.d. M . Thus proj. dimM ≤ m for all cyclic M . Thus
gl. dimR ≤ m. But clearly m ≤ gl. dimR.

(3) Let R = K[x]/(x2) with K a field. Then K becomes an R-module with x acting
as 0, and we saw that ExtnR(K,K) ∼= K for all n ≥ 0. Thus proj. dimK = ∞, so
also gl. dimR =∞.

Proposition/Definition. A ring R is said to be (left) hereditary if it satisfies
the following equivalent conditions
(i) gl. dimR ≤ 1 (left global dimension).
(ii) Every submodule of a projective (left) module is projective.
(iii) Every left ideal in R is projective.

Proof. (i)⇒(ii) IfN is a submodule of P then for anyX, by the long exact sequence,
Ext1(N,X) ∼= Ext2(P/N,X) = 0.

(ii)⇒(iii) Trivial.

(iii)⇒(i) For any cyclic module R/I we have proj. dimR/I ≤ 1.

Example. A principal ideal domain is hereditary. As discussed in the section on
projective modules, if R is an integral domain, then a non-zero ideal is projective
if and only if it is invertible. Thus R is hereditary if and only if every nonzero
ideal is invertible, and as mentioned before, this is if and only if R is a Dedekind
domain.

Definition. Let Q = (Q0, Q1, s, t) be a quiver with finite vertex set Q0. If R is a
commutative ring, the path algebra RQ is the free R-module with basis the paths
in Q, including a trivial path ei for each vertex. For example the quiver

1
a−→ 2

b−→ 3

has paths e1, e2, e3, a, b, ba. It becomes an R-algebra with multiplication given by
concatination of paths, or zero if they are not compatible. For example

b · a = ba, a · a = 0,
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b · e2 = b, b · e1 = 0,

e1 · e1 = e1, e1 · e2 = 0.

Thus the ei are orthogonal idempotents and the 1 is
∑

i∈Q0
ei.

Note that if i ∈ Q0 then RQei is an RQ-R-bimodule, and it is a projective left
RQ-module.

Proposition. If M is a left RQ-module, there is an exact sequence of RQ-modules

0→
⊕
a∈Q1

RQet(a) ⊗R es(a)M
f−→
⊕
i∈Q0

RQei ⊗R eiM
g−→M → 0

where x⊗m ∈ RQei⊗eiM is sent by g to xm and where x⊗m ∈ RQet(a)⊗es(a)M
is sent by f to xa⊗m−x⊗am, where the summands are in RQes(a)⊗ es(a)M and
RQet(a) ⊗ et(a)M .

In particular, if R is a field, this is a projective resolution of M , so gl. dimRQ ≤ 1.

Proof. Clearly gf = 0. We show that it is contractible as a complex of R-modules.
Let the middle term be C0 and the left hand term C1. Consider the R-module
maps s :M → C0 and r : C0 → C1 given by

s(m) =
∑
i∈Q0

ei ⊗ eim

and for m ∈ eiM and a path starting at i, by r(ei ⊗m) = 0 and

r(a1a2 . . . an ⊗m) =
n∑
j=1

(a1 . . . aj−1 ⊗ aj+1 . . . anm)aj ,

where the jth term is an element of RQet(aj) ⊗R es(aj)M . It is straightforward to
check that gs = IdM , fr + sg = IdC0 and rf = IdC1 .

Lemma (a version of Shapiro’s Lemma). If R → S is a ring homomorphism and
SR is flat, then for an R-module M and an S-module X we have

ExtnS(S ⊗RM,X) ∼= ExtnR(M, RX).

Proof. If P is a projective R-module, say a direct summand of R(I), then S ⊗R P
is direct summand of S ⊗R R(I) ∼= S(I), so S ⊗R P is a projective S-module.
Now if

· · · → P1 → P0 →M → 0

is an R-module projective resolution of M , then

· · · → S ⊗R P1 → S ⊗R P0 → S ⊗RM → 0
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is an S-module projective resolution of S⊗RM . Thus ExtnS(S⊗RM,X) is the nth
cohomology of the complex

HomS(S ⊗R P,X) ∼= HomR(P,HomS(S,X)) ∼= HomR(P, RX)

which is ExtnR(M, RX).

Theorem (Hilbert’s Syzygy Theorem). For any (commutative) ring R we have
gl. dimR[x] = gl. dimR+1. In particular, if K is a field, gl. dimK[x1, . . . , xn] = n.

Proof. (i) Let S = R[x]. For any S-module M there is an exact sequence

0→ S ⊗RM
f−→ S ⊗RM

g−→M → 0

where g is multiplication and f(s⊗m) = sx⊗m− s⊗ xm. This is the case of a
path algebra given by a loop.

(ii) gl. dimS ≤ 1 + gl. dimR. If M and X are S-modules, the long exact sequence
for HomS(−, X) applied to the exact sequence of (i) gives

ExtnS(S ⊗RM,X)
h−−−→ ExtnS(S ⊗RM,X) −−−→ Extn+1

S (M,X) −−−→ Extn+1
S (S ⊗RM,X)∥∥∥ ∥∥∥ ∥∥∥

ExtnR(M,X) ExtnR(M,X) Extn+1
R (M,X)

Thus Extn+1
S (M,X) = 0 for n > gl. dimR, so gl. dimS ≤ 1 + gl. dimR.

(iii) gl. dimS = 1 + gl. dimR. Let M and X be R-modules, considered as S-
modules with x acting as 0. Let X → I an R-module injective resolution. We get
cosyzygies 0 → ΩiX → I i → Ωi+1X → 0. We consider these also as S-modules
with x acting as 0. If U is an S-module, applying HomS(U,−) gives long exact
sequences

0→ HomS(U,Ω
iX)→ HomS(U, I

i)→ HomS(U,Ω
i+1X)

→ Ext1S(U,Ω
iX)→ Ext1S(U, I

i)→ Ext1S(U,Ω
i+1X)

→ Ext2S(U,Ω
iX)→ Ext2S(U, I

i)→ . . .

Thus we get morphisms

HomS(U,Ω
nX)→ Ext1S(U,Ω

n−1X)→ Ext2S(U,Ω
n−2X)→ · · · → ExtnS(U,X).

This gives a natural transformation of contravariant functors

HomS(−,ΩnX)→ ExtnS(−, X).
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Now if U = S ⊗R M then ExtjS(U, I
i) ∼= ExtjR(M, I i), which is zero for j > 0,

and then the morphism HomS(U,Ω
nX) → ExtnS(U,X) is surjective since, as in

dimension shifting, it is a composition

HomS(U,Ω
nX)↠ Ext1S(U,Ω

n−1X) ∼= Ext2S(U,Ω
n−2X) ∼= . . . ∼= ExtnS(U,X).

Thus the map f gives a commutative square

HomS(S ⊗M,ΩnX) −−−→ ExtnS(S ⊗M,X)

f ′

y h

y
HomS(S ⊗M,ΩnX) −−−→ ExtnS(S ⊗M,X)

with surjective horizontal maps, where f ′ is composition with f and where h is the
morphism in (ii). Now

f ′(ϕ)(s⊗m) = ϕf(s⊗m) = ϕ(sx⊗m− s⊗ xm) = ϕ(xs⊗m) = xϕ(s⊗m) = 0

since x acts as zero on M and ΩnX. Thus f ′ is zero. Since the horizontal maps
in the square are surjective, h is zero. Thus the exact sequence in (ii) gives an
embedding

ExtnR(M,X) ∼= ExtnS(S ⊗RM,X) ↪→ Extn+1
S (M,X)

so if gl. dimS = n, then gl. dimR ≤ n− 1, that is, gl. dimS ≥ 1 + gl. dimR.

4.6 Tor

Definition. Given a right R-module M , a flat resolution of M is an exact sequence

· · · → P2 → P1 → P0 →M → 0

with the Pi flat, or equivalently a non-negative chain complex P of flat right R-
modules and a quasi-isomorphism P →M .

Given a flat resolution P of M and a left R-module X, we can consider Hn(P ;X) =
Hn(P ⊗R X), nth homology of the complex

· · · → P2 ⊗R X → P1 ⊗R X → P0 ⊗R X → 0.

Since any projective module is flat, any projective resolution of M is a flat resolu-
tion. Fixing a projective resolution P →M , we define

TorRn (M,X) := Hn(P ;X) = Hn(P ⊗R X) = (Ln(−⊗R X))(M),
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the nth left derived functor of the functor

−⊗R X : Mod-R→ Ab

evaluated at M . In general TorRn (M,X) is a Z-module. If R is a K-algebra, it is
a K-module. If R is a commutative ring, it is an R-module.

Remarks. (1) Since TorRn (M,X) is a left derived functor, we know that it is
functorial in M , so a morphism M →M ′ of right R-modules induces a morphism
TorRn (M,X) → TorRn (M

′, X). Also TorR0 (M,X) ∼= M ⊗R X, and a short exact
sequence 0→M ′ →M →M ′′ → 0 of right R-modules gives a long exact sequence

· · · → TorR2 (M
′′, X)→ TorR1 (M

′, X)→ TorR1 (M,X)→ TorR1 (M
′′, X)→

→M ′ ⊗R X →M ⊗R X →M ′′ ⊗R X → 0.

(2) If P is the chosen projective resolution of M , then a homomorphism X → X ′ of
left R-modules induces a morphism P⊗RX → P⊗RX ′ of complexes of Z-modules,
and hence a morphism TorRn (M,X) → TorRn (M,X ′), so TorRn (M,X) is functorial
in X. Also, a short exact sequence 0 → X ′ → X ′′ → 0 of left R-modules induces
a short exact sequence

0→ P ⊗R X ′ → P ⊗R X → P ⊗R X ′′ → 0

of complexes of Z-modules, and hence a long exact sequence on homology

· · · → TorR2 (M,X ′′)→ TorR1 (M,X ′)→ TorR1 (M,X)→ TorR1 (M,X ′′)→

→M ⊗R X ′ →M ⊗R X →M ⊗R X ′′ → 0.

(3) If Q → X is a flat resolution of X, then analogous to the theorem in section
4.3 showing that Ext is a derived functor of its second argument, we get

TorRn (M,X) ∼= Hn(M ⊗R Q).

In particular, taking Q to be a projective resolution of X, this shows that

TorRn (M,X) = (Ln(M ⊗R −))(X).

(4) Comparing (3) with the definition of Tor, it follows that Tor is symmetrical with
respect to the two arguments. We can state this formally as a natural isomorphism

TorRn (M,X) ∼= TorR
op

n (X,M)
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where X is a left R-module, or equivalently a right Rop-module and M is a right
R-module, or equivalently a left Rop-module.

(5) It follows from (3) and (4) that

TorRn (M,X) = Hn(P ⊗R X)

where P is any flat resolution of P of M .

Theorem. The following are equivalent for a right R-module M .
(i) M is flat
(ii) TorRn (M,X) = 0 for all X and all n > 0.
(iii) TorR1 (M,X) = 0 for all X.

Proof. (i)⇒(ii) since M is its own flat resolution. (ii)⇒(iii) is trivial. (iii)⇒(i) The
long exact sequence shows that M is flat.

Proposition/Definition. Let M be a right R-module and n ≥ 0. The following
are equivalent.
(i) There is a flat resolution 0→ Pn → · · · → P0 →M → 0
(ii) TorRm(M,X) = 0 for all X and m > n
(iii) TorRn+1(M,X) = 0 for all X.
(iv) For any flat resolution of M , we have ΩnM flat.
The flat dimension flatdimM is the smallest n with this property (or ∞ if there is
none).

Proof. As for projective dimension.

Definition. The weak dimension of R is

w. dimR = sup{flatdimM : ∀M} = inf{n ∈ N : TorRn+1(M,X) = 0 ∀ M,X}.

It is left/right symmetric.

Proposition. (i) For M a left R-module, flatdimM ≤ proj. dimM , with equality
if M is finitely generated and R is left noetherian.
(ii) w. dimR ≤ gl. dimR, with equality if R is left noetherian.
(iii) (Auslander) If R is left and right noetherian, the left and right global dimen-
sions of R are equal.

Proof. (i) The inequality holds since any projective resolution is also a flat reso-
lution. If R is left noetherian and M is f.g., we have a projective resolution with
all Pn finitely generated. Then flatdimM ≤ n implies ΩnM is flat. Since it is also
finitely presented, it is projective. Thus proj. dimM ≤ n.

(ii) The inequality follows from the first part of (i). For equality use that

gl. dimR = sup{proj. dimM :M cyclic} = sup{flatdimM :M cyclic} ≤ w. dimR

(iii) Clear.
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Recall that if R is an integral domain, then any flat R-module is torsion-free (and
these are equivalent if R is a pid). We also have the following (possibly justifying
the name “Tor”).

Proposition. If R is an integral domain, then TorR1 (M,X) is a torsion R-module
for any R-modules M and X.

Proof. Note that since R is commutative, TorR1 (M,X) is an R-module.

Recall that a left R-module T is torsion if there is some 0 ̸= t ∈ T and some
0 ̸= a ∈ R with at = 0. In fact T is torsion ⇔ K ⊗R T = 0 where K is the field
of fractions of R. Namely, suppose 0 ̸= t ∈ T . If at = 0 with a ̸= 0, then for
any λ ∈ K we have λ⊗ t = λa−1 ⊗ at = 0. Conversely if there is no such a, then
the map R → M , r 7→ rt is injective. Since K is flat as an R-module we get an
injection K ∼= K ⊗R→ K ⊗ T , so K ⊗ T ̸= 0.

Now let 0→ L→ F → X → 0 be exact with F flat. Then we get

0→ TorR1 (M,X)→M ⊗R L→M ⊗R F →M ⊗R X → 0.

Thus since K is flat over R we get an exact sequence

0→ K⊗RTorR1 (M,X)→ K⊗RM ⊗R L→ K⊗RM ⊗R F → K⊗RM ⊗RX → 0.

But K ⊗R M is K-module, with K a field, so it is isomorphic to a direct sum of
copies of K, so flat over R, so the sequence

0→ K ⊗RM ⊗R L→ K ⊗RM ⊗R F → K ⊗RM ⊗R X → 0.

is exact.

4.7 Universal coefficient theorem

Lemma. Every complex of projective modules for a hereditary ring is a direct sum
of complexes of the form

. . . 0→ P
θ−→ Q→ 0→ . . .

with P and Q projective and θ injective.

Proof. Given a complex C, the exact sequence

0→ Zn(C)→ Cn dn−→ Bn+1(C)→ 0

splits since Bn+1(C) ⊆ Cn+1, so it is projective. Thus Cn = Zn(C)⊕ Un for some
complement Un. Then C is the direct sum of the complexes

· · · → 0→ Un dn−→ Zn+1(C)→ 0→ . . .
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Theorem. If R is left hereditary, C is a chain complex of projective left R-modules
and M is a left R-module, then there are split exact sequences

0→ Ext1R(Hn−1(C),M)→ Hn(C;M)→ HomR(Hn(C),M)→ 0.

If R is right hereditary, C is a chain complex of projective right R-modules and M
is a left R-module, then there are split exact sequences

0→ Hn(C)⊗RM → Hn(C;M)→ TorR1 (Hn−1(C),M)→ 0.

Proof. We prove the result for homology with coefficients. We write the cycles,
boundaries and homology of the chain complex C as Zn, Bn and Hn. Tensor
products are over R.

(1) There is a natural map Hn ⊗M → Hn(C ⊗M). The composition

Zn ⊗M
inc⊗1−−−→ Cn ⊗M

dn⊗1−−−→ Cn−1 ⊗M

is zero, so we get a natural map

Zn ⊗M → Zn(C ⊗M)→ Hn(C ⊗M),
∑
i

ci ⊗mi 7→ [
∑
i

ci ⊗mi].

Now we have an exact sequence

Bn ⊗M → Zn ⊗M → Hn ⊗M → 0

and the composition

Bn ⊗M → Zn ⊗M → Hn(C ⊗M)

is zero, so we get a map

Hn(C)⊗M → Hn(C ⊗M),
∑
i

[ci]⊗mi 7→ [
∑
i

ci ⊗mi].

(2) There is a natural map Hn(C;M)→ TorR1 (Hn−1,M). As in the lemma above,
Bn−2 is a submodule of Cn−2, so projective, so the exact sequence

0→ Zn−1 → Cn−1
dn−1−−−→ Bn−2 → 0

splits. Thus the map
Zn−1 ⊗M → Cn−1 ⊗M
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is injective. Also Zn−1 is projective and

0→ Bn−1 → Zn−1 → Hn−1 → 0

is exact, so we get an exact sequence

0→ TorR1 (Hn−1,M)→ Bn−1 ⊗M → Zn−1 ⊗M → Hn−1 ⊗M → 0.

Thus we can identify TorR1 (Hn−1,M) with the kernel K of the natural map Bn−1⊗
M → Zn−1 ⊗M . We get a map

Zn(C ⊗M)→ K,
∑
i

ci ⊗mi 7→
∑
i

dn(ci)⊗mi.

Namely
∑

i dn(ci)⊗mi = 0 in Cn−1 ⊗M . Thus
∑

i dn(ci)⊗mi = 0 in Zn−1 ⊗M .
Thus, considered as an element of Bn−1 ⊗M , it is an element of K. This induces
a map

Hn(C ⊗M)→ K, [
∑
i

ci ⊗m]→
∑
i

dn(ci)⊗mi

since Bn(C ⊗M) is spanned by elements of the form dn+1(c)⊗m, and this is sent
to 0.

(3) By the lemma, any chain complex is a direct sum of two term complexes, so it
suffices to prove the result for C of the form

· · · → 0→ P
θ−→ Q→ 0→ . . .

with P and Q projective and θ injective. Say P is in degree i and Q in degree i−1.

We have an exact sequence

0→ P → Q→ Hi−1 → 0

so
0→ TorR1 (Hi−1,M)→ P ⊗M → Q⊗M → Hi−1 ⊗M → 0.

Now the wanted sequence

0→ Hn ⊗M → Hn(C;M)→ TorR1 (Hn−1,M)→ 0

is as follows: for n = i it is

0→ 0→ TorR1 (Hi−1,M)→ TorR1 (Hi−1,M)→ 0.

for n = i− 1 it is
0→ Hi−1 ⊗M → Hi−1 ⊗M → 0→ 0

and for all other n it has all terms zero. This is split exact in each case.

77



5 Applications to commutative algebra and group
actions

5.1 Some preliminary results on prime ideals

We begin with some generalities for a commutative ring R.

Lemma (Prime avoidance). If J and Ii are ideals with

J ⊆
n⋃
i=1

Ii

and at least n− 2 of the Ii are prime, then J ⊆ Ii for some i.

For a proof, search the internet for “Stacks project Lemma 10.15.2”.

Lemma (Support). Suppose M is a f.g. R-module and P is a prime ideal in R.
Let RP and MP be the localizations with respect to the multiplicative set S = R\P .
Then MP ̸= 0 if and only if Ann(M) ⊆ P .

Proof. If Ann(M) ̸⊆ P , there is some element r ∈ Ann(M) \ P . Then r kills MP ,
but it is invertible in RP , so MP = 0.

If Ann(M) ⊆ P , then we have an epi R/Ann(M) → R/P . A generating set of
M gives a mono R/Ann(M)→ Mn. Localizing at P and using exactness, we get
MP ̸= 0.

Definition. Recall that the height of a prime ideal P in R is

htP = sup{d ≥ 0 : there are distinct prime ideals P0 ⊂ P1 ⊂ · · · ⊂ Pd = P }

The Krull dimension of R is

KdimR = sup{htP : P a prime ideal in R}

The Krull dimension of a f.g. R-module M is defined to be

KdimM = Kdim(R/Ann(M)).

Theorem (Krull’s height theorem). In a noetherian ring, any minimal prime over
an ideal generated by n elements has height ≤ n. Conversely any prime of height
n is minimal over some ideal generated by n elements.
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Proof. The first part is proved in my Algebra II notes, or Stacks project Lemma
10.60.12. (Note that every prime ideal containing an ideal I contains a minimal
prime over I, and in a noetherian ring there are only finitely many minimal primes
over I, see my Algebra II notes, or Stacks project Lemma 10.17.2 and Lemma
10.31.6.)

For the second part, for 0 ≤ r ≤ n we find by induction an ideal (x1, . . . , xr) ⊆ P
such that any minimal prime over it has height r. This is clear for r = 0. Given
(x1, . . . , xr−1), by prime avoidance there is an element xr ∈ P not contained in
any of the (finitely many) minimal primes over (x1, . . . , xr−1). Then any minimal
prime over (x1, . . . , xr) has height ≤ r by Krull’s height theorem, and height ≥ r
since it properly contains a minimal prime over (x1, . . . , xr−1).

Lemma (Associated primes). If R is noetherian and M is a f.g. R-module, then
the set of associated primes

Ass(M) := {P prime ideal in R : R/P is isomorphic to a submodule of M}

is finite and contains the minimal primes over Ann(M). (In particular, if M ̸= 0
then Ass(M) ̸= ∅.)

For a proof see Stacks project Lemmas 10.63.5 and 10.63.8.

5.2 Regular sequences for local noetherian commutative rings

Throughout this section R is a local noetherian commutative ring with unique
maximal ideal m and residue field k = R/m. Thus Kdim(R) is the height of m.
Also every element of R \m is invertible, since the ideal it generates must be R.

Examples. (a) If S is a noetherian ring and P is a prime ideal in S, then the
localization R = SP is a local noetherian ring with maximal ideal m = PSP . The
residue field R/m is the field of fractions of S/P .

For example ifK is a field, S = K[x1, . . . , xn] and P is the maximal ideal (x1, . . . , xn),
then

R = SP = {f/g : f, g ∈ K[x1, . . . , xn], g(0, . . . , 0) ̸= 0}.

(b) A formal power series ring K[[x1, . . . , xn]]. The maximal ideal is (x1, . . . , xn),
the set of power series with constant term 0.

(c) The ring of p-adic integers Ẑp. The maximal ideal is (p). The residue field is
Z/Zp, the field with p elements.

(d) Any factor ring of a local noetherian ring is again a local noetherian ring.

Lemma (Nakayama). If M is a f.g. R-module and mM =M , then M = 0.
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Proof. In general Nakayama’s Lemma says that if M is a f.g. R-module for any
ring R and JM =M , where J is the Jacobson radical, then M = 0. Now J is the
intersection of the maximal left ideals, so in this case it is m. The proof is easy.
Suppose M ̸= 0. Since M is f.g., by Zorn’s lemma it has a maximal submodule N .
Then M/N is simple, so J(M/N) = 0. Thus JM ⊆ N .

Lemma (Projective covers). (i) Any f.g. module M has a projective cover.
(ii) Every f.g. projective module is free.
(iii) Any f.g. module M has a projective resolution

· · · → P1 → P0 →M → 0

which is minimal, in the sense that each map Pi → ΩiM is a projective cover. It
has the property that in the complex k ⊗R P

· · · → P1/mP1 → P0/mP0 → 0

the maps are all zero.
(iv) If M is f.g. R-module, then proj. dimM ≤ n ⇔ TorRn+1(k,M) = 0.

Proof. (i) Take a basis of M/mM as a k-vector space, and lift it to elements of M .
They give a map θ : Rn →M with the property that θ : Rn/mRn = kn →M/mM
is an isomorphism. Thus M = Im(θ) + mM , so θ must be onto. Now suppose
ϕ ∈ End(Rn) satisfies θϕ = θ. Tensoring with k we get ϕ ∈ End(kn) with θϕ = θ.
This implies that ϕ = 1. Now detϕ ∈ R and detϕ = detϕ = 1 ∈ k, so detϕ /∈ m,
so detϕ is invertible in R, so ϕ is invertible.

(ii) The projective cover of a projective module is itself, but by (i) it is free.

(iii) Construct the resolution iteratively, taking Pi → ΩiM to be a projective cover.
Then the sequence

Pi+1 → Pi → ΩiM → 0

is exact, hence so is

k ⊗ Pi+1 → k ⊗ Pi → k ⊗ ΩiM → 0

but the map k ⊗ Pi → k ⊗ ΩiM is an isomorphism, so k ⊗ Pi+1 → k ⊗ Pi is zero.

(iv) If proj. dimM ≤ n, then there is a projective resloution of length n, so
TorRn+1(k,M) = 0. Conversely, using a minimal projective resolution of M we
see that

0 = TorRn+1(k,M) ∼= Pn+1/mPn+1

so Pn+1 = 0, so proj. dimM ≤ n.
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Definition. Let M be a nonzero f.g. module. An element x ∈ m is regular for M
if it is not a zero divisor on M , that is, if xm = 0 with m ∈M , then m = 0.

Note that since R is commutative, xM is a submodule of M .

A sequence x1, x2, . . . , xn of elements of m is a regular sequence for M if, for all i,
xi is regular for the module

M/(x1M + · · ·+ xi−1M) =M/(x1, . . . , xi−1)M.

A regular sequence is one which is regular for R.

Definition. Given x1, . . . , xn in R the Koszul complex C = K(x1, . . . , xn) is given
as follows. Let F be the free R-module with basis b1, . . . , bn. Then Ci = ΛiF , the
ith exterior power of F , with basis

bj1 ∧ · · · ∧ bji

for j1 < · · · < ji, and the differential is given by

d(bj1 ∧ · · · ∧ bji) =
i∑

r=1

(−1)r−1xjrbj1 ∧ · · · ∧ b̂jr ∧ · · · ∧ bji .

If M is an R-module, then clearly H0(C;M) =M/(x1, ..., xn)M .

Theorem. If x1, . . . , xn is a regular sequence on M , then Hi(C;M) = 0 for i > 0
(and the converse holds if M is f.g. nonzero and xi ∈ m).

Proof. We just do the cases n = 1 and n = 2. We won’t need the result later. In
case n = 1, the Koszul complex C is

0→ Rb1
x1−→ R1→ 0

so C ⊗RM is the complex
0→M

x1−→M → 0,

and the assertion is clear.

In case n = 2, the Koszul complex C is

0→ R(b1 ∧ b2)→ Rb1 ⊕Rb2 → R1→ 0

with b1 ∧ b2 7→ x1b2 − x2b1, b1 7→ x11 and b2 7→ x21, so the complex C ⊗RM is

0→M
f−→M ⊕M g−→M → 0.
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with f(m) = (−x2m,x1m) and g(m1,m2) = x1m1 + x2m2.

Suppose that x1, x2 is a regular sequence for M . If f(m) = 0, then x1m = 0 so
m = 0. If g(m1,m2) = 0, then x1m1 + x2m2 = 0. Thus x2(x1M +m2) = 0. Thus
m2 ∈ x1M . Thus m2 = x1m for some m. Then x1(m1+x2m) = 0, so m1 = −x2m,
so (m1,m2) = f(m), so the complex is acyclic.

Now suppose the complex is acyclic, M is f.g. and xi ∈ m. Let U = {m ∈ M :
x1m = 0}, a submodule of M , which by f.g. since R is noetherian. If m ∈ U , then
g(m, 0) = 0, so (m, 0) = f(m′) for some m′, that is, m = −x2m′ and x1m

′ = 0.
Thus m ∈ x2U . Thus U ⊆ x2U ⊆ mU . Thus U = 0 by Nakayama’s Lemma. Thus
x1 is regular on M .

Next suppose that m ∈M and x2(x1M +m) = x1M +0. Then x2m ∈ x1M . Thus
x2m = x1m

′ for some m′. Then g(−m′,m) = 0. Thus (−m′,m) = f(m′′) for some
m′′. Thus m = x1m

′′, so x1M +m = x1M +0. Thus x2 is regular on M/x1M .

Lemma (Existence of a regular element). Let M be a nonzero f.g. module.
(i) If x ∈ m, then x is regular on M if and only if it is not contained in any
associated prime of M .
(ii) There is some x ∈ m which is regular on M if and only if m is not an asso-
ciated prime of M . (Equivalently M has no submodule isomorphic to k, or also
Hom(k,M) = 0.)

Proof. (i) If x ∈ P and R/P is a submodule of M , then x(R/P ) = 0, giving a
nonzero element m ∈ M with xm = 0. Conversely, if x is not regular on M , then
N = {m ∈M : xm = 0} is a nonzero submodule of M , so has an associated prime
P . But then P is an associated prime of M . Now xN = 0, so x(R/P ) = 0 so
x ∈ P .

(ii) Follows from prime avoidance.

Lemma. If M is a nonzero f.g. R-module and x1, . . . , xn is a regular sequence for
M , then

HomR(k,M/(x1, . . . , xn)M) ∼= ExtnR(k,M).

Proof. We prove this for all M and all regular sequence by induction on n. The
case n = 0 is empty, so suppose n > 0. By induction

Extn−1R (k,M) ∼= HomR(k,M/(x1, . . . , xn−1)M)

and this is zero by the lemma, since xn is regular on M/(x1, . . . , xn−1)M . Thus
the sequence

0→M
x1−→M →M/x1M → 0
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gives

0 = Extn−1R (k,M)→ Extn−1R (k,M/x1M)→ ExtnR(k,M)→ ExtnR(k,M)

The last map is induced by multiplication by x1 on M , but x1 kills k, so it is zero.
Thus Extn(k,M) ∼= Extn−1(k,M/x1M). Again, by induction, since x2, . . . , xn is a
regular sequence for M/x1M , this is Hom(k,M/(x1, . . . , xn)M).

Theorem. If x ∈ m and M is a f.g. R-module, then

Kdim(M/xM) ≥ Kdim(M)− 1,

with equality if x is regular on M .

Proof. Let I = Ann(M) ⊆ Ann(M/xM) = J . We want

Kdim(R/I) ≤ Kdim(R/J) + 1.

Clearly we have (I, x) ⊆ J , and in fact if P is a prime ideal containing (I, x), then
P contains J , so that Kdim(R/J) = Kdim(R/(I, x)). Namely, P contains I, so
MP ̸= 0. But x is an element of the maximal ideal of RP , so MP/xMP ̸= 0. Thus
(M/xM)P ̸= 0, so J ⊆ P .

Let Kdim(R/J) = n. Thus the ideal m/(I, x) in R/(I, x) has height n. Then by
Krull’s height theorem, it is minimal over some ideal (ȳ1, . . . , ȳn) with yi ∈ R/I
and ȳi ∈ R/(I, x). Now the ideals of R/I containing x̄ := I+x are in bijection with
the ideals of R/(I, x), so the ideal m/I in R/I is minimal over (x̄, y1, . . . , yn), so by
Krull’s height theorem again, m/I has height ≤ n+ 1. Thus Kdim(R/I) ≤ n+ 1.

Now suppose x is regular on M . Then x is not contained in any associated prime of
M . Thus by the lemma about associated primes, x is not contained in any minimal
prime over I = Ann(M). Thus Kdim(R/(I, x)) < Kdim(R/I).

Corollary. Any regular sequence x1, . . . , xn for a nonzero f.g. module M has length
n ≤ KdimM .

Definition. The depth of a nonzero f.g. module M , is the maximal length of a
regular sequence for M .

Clearly M is an R/I-module for an ideal I, then depthR/IM = depthRM .

Theorem (Rees). If M is a nonzero f.g. R-module, then

depthM = min{i ≥ 0 : Exti(k,M) ̸= 0}.

Moreover any regular sequence x1, . . . , xi for M can be extended to a regular se-
quence x1, . . . , xn of length n = depthM , so

depthM/(x1, . . . , xi)M = depthM − i.
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Proof. It suffices to show that if x1, . . . , xn is a regular sequence forM which cannot
be extended to one of length n+1, then n is given by the formula. By assumption,
no element of m is regular on M/(x1, . . . , xn)M , so by the lemma on existence of
a regular element, Hom(k,M/(x1, . . . , xn)M) ̸= 0, and so Extn(k,M) ̸= 0. On
the other hand, for i < n, the element xi+1 is regular on M/(x1, . . . , xi)M , so
Hom(k,M/(x1, . . . , xi)M) = 0, so Exti(k,M) = 0.

Lemma (Regular elements preserve acyclicity). If C is an acyclic chain complex
of R-modules and x is regular on each Ci, then the complex R/(x) ⊗R C is also
acyclic.

Proof. The complex is

· · · → Cn+1/xCn+1
dn+1−−−→ Cn/xCn

dn−→ Cn−1/xCn−1 → . . .

Say c ∈ Cn and dn(c) = 0. Then d(c) ∈ xCn−1, so d(c) = xc′ for some c′ ∈ Cn−1.
Then xd(c′) = d(xc′) = d2(c) = 0, so since x is regular on Cn−1 we have d(c′) = 0.
Thus since C is acyclic, c′ = d(c′′) for some c′′ ∈ Cn. Then d(c − xc′′) = 0. Thus
c− xc′′ = d(c′′′) for some c′′′ ∈ Cn+1. Then c = dn+1(c′′′).

Theorem (Auslander-Buchsbaum formula). If M is nonzero f.g. R-module and
proj. dimM <∞, then proj. dimM + depthM = depthR.

Proof. We prove this by induction on depthR. Say depthR = 0, so there is an
embedding i : k → R. If proj. dimM = n > 0, then the last terms in a minimal
projective resolution of M are a monomorphism θ : Pn → Pn−1 with Pn ̸= 0. This
gives a commutative square

k ⊗ Pn
Idk⊗θ−−−→ k ⊗ Pn−1

i⊗1
y i⊗1

y
R⊗ Pn

IdR⊗θ−−−→ R⊗ Pn−1

Now the bottom and the vertical maps are injective, hence so is the top map.
But since we used a minimal projective resolution, the top map is zero (as in the
proof of the lemma about projective covers). Also k ⊗ Pn ∼= Pn/mPn is nonzero
by Nakayama’s Lemma. Contradiction. Thus M is projective, so free, so also has
depth 0, and the formula holds.

Now suppose depthR > 0. Suppose depthM = 0. Applying Hom(k,−) to the
exact sequence 0→ Ω1M → P0 →M → 0 gives an exact sequence

0→ Hom(k,Ω1M)→ Hom(k, P0)→ Hom(k,M)→ Ext1(k,Ω1M)
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and we have Hom(k, P0) = 0 and Hom(k,M) ̸= 0, so Hom(k,Ω1M) = 0 and
Ext1(k,Ω1M) ̸= 0, so by Rees’ Theorem, depthΩ1M = 1. AlsoM is not projective,
and proj. dimΩ1M = proj. dimM−1. Thus it suffices to prove the result for Ω1M .

Thus we may assume that depthM > 0. Then Hom(k,R⊕M) = 0, so m contains
an element x which is regular for R ⊕M , so for R and for M . Take a minimal
projective resolution

0→ Pn → · · · → P0 →M → 0

with Pn ̸= 0. Tensoring with R/(x), it stays exact by the lemma, so gives a minimal
projective resolution

0→ Pn/xPn → · · · → P0/xP0 →M/xM → 0

of M/xM as an R/(x)-module. Thus

proj. dimR/(x)(M/xM) = n = proj. dimRM <∞

Also
depthR/(x)M/xM = depthRM/xM = depthRM − 1

by Rees’ Theorem, and

depthR/(x)R/(x) = depthRR/(x) = depthRR− 1.

Then by induction

proj. dimR/(x)M/xM + depthR/(x)M/xM = depthR/(x)R/(x)

so
proj. dimRM + depthRM − 1 = depthRR− 1

giving the result.

5.3 Regular local rings

R is still a local noetherian commutative ring.

Proposition/Definition. Elements x1, . . . , xn generate m as an ideal if and only
if they span m/m2 as a k-vector space, so

dimk(m/m
2) = minimal number of generators of m ≥ KdimR.

If equality holds, R is said to be a regular local ring.
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Proof. Let I = (x1, . . . , xn). If I = m, then the map I → m/m2 is surjective, and
since it kills any multiple axi with a ∈ m, it follows that the xi span. Conversely,
if the xi span m/m2, then m2 + I = m. But then m(m/I) = m/I, so m/I = 0 by
Nakayama’s Lemma. The last inequality is Krull’s height theorem.

Example. The ring K[[x1, . . . , xn]] is regular since it has Krull dimension n and
m = (x1, . . . , xn).

Lemma. (i) Any regular local ring R is an integral domain.
(ii) R is a regular local ring ⇔ m is generated by a regular sequence.

Proof. For (ii)(⇐), suppose that m is generated by a regular sequence of length
n. Then n ≤ depthR ≤ KdimR. On the other hand, htm ≤ n by Krull’s height
theorem. Thus KdimR = n and R is a regular local ring.

We prove (i) and (ii)(⇒) by induction on n = KdimR. If n = 0, then m = 0, and
both are clear, so suppose n > 0. By Nakayama, m2 ̸= m, so by prime avoidance,
there is some element x ∈ m which is not contained in m2 or any minimal prime
of R. Then m = (x, x2, . . . , xn) for suitable x2, . . . , xn. Then the maximal ideal
m/(x) of R/(x) is generated by x̄2, . . . , x̄n, so KdimR/(x) ≤ n − 1. But by the
theorem about the Krull dimension of M/xM , we have KdimR/(x) ≥ n−1. Thus
KdimR/(x) = n− 1 and R/(x) is a regular local ring.

(i) Thus by induction R/(x) is a domain, so (x) is a prime ideal, so it contains a
minimal prime ideal P . Now P = xP , for if y ∈ P , then y = ax for some a ∈ R,
and then since x /∈ P , we must have a ∈ P . Thus by Nakayama, P = 0, so R is a
domain.

(ii) By induction m/(x) is generated by a regular sequence (ȳ1, . . . , ȳn−1). Also x is
regular on R by (i), so m is generated by the regular sequence (x, y1, . . . , yn−1).

Lemma. If x ∈ m \m2, then m/(x) is isomorphic to a direct summand of m/xm.

Proof. Let x, y1, . . . , yk give a basis of m/m2 and let I = (y1, . . . , yk). Then I+(x) =
m and x /∈ I. Observe that (I + xm) ∩ (x) = xm, for if rx = i+ xa with i ∈ I and
a ∈ m, then (r − a)x ∈ I, so r − a is not invertible, so r − a ∈ m (otherwise the
ideal it generates must be R), so also r ∈ m. Thus

m

xm
=
I + xm

xm
⊕ (x)

xm
.

Now
m

(x)
=
I + (x)

(x)
∼=

I

I ∩ (x)
=

I

I ∩ xm
∼=
I + xm

xm
.

86



Theorem ((Auslander-Buchsbaum-)Serre). The following are equivalent
(i) R is a regular local ring
(ii) proj. dim k <∞.
(iii) gl. dimR <∞
If so, then proj. dim k = gl. dimR = KdimR = depthR.

Proof. (i)⇒(ii) We could use the Koszul resolution. Alternatively use the following.
If x ∈ m is regular on M and Y is an R-module, applying Hom(−, Y ) to the short
exact sequence

0→M
x−→M →M/xM → 0

gives an exact sequence

· · · → Extn(M,Y )→ Extn+1(M/xM, Y )→ Extn+1(M,Y )→ . . .

and if n > proj. dimM , then the outer two terms vanish, hence so does the middle,
so

proj. dimM/xM ≤ proj. dimM + 1.

Now m is generated by a regular sequence x1, . . . , xn. By induction on i, this shows
that proj. dimRR/(x1, . . . , xi) ≤ i. Thus proj. dim k = proj. dimR/(x1, . . . , xn) ≤
n.

(ii)⇒(iii) If proj. dim k ≤ n, then for any module M we have TorRn+1(M,k) = 0,
so by the lemma about projective covers, if M is f.g., then proj. dimM ≤ n. It
follows that gl. dimR ≤ n, since it is the supremum of the projective dimensions
of cyclic modules.

(iii)⇒(i) We prove this by induction on the Krull dimension of R. Let n =
gl. dimR < ∞. If n = 0, then R is semisimple, so a field (since it is commu-
tative), so a regular local ring. Thus we may suppose that n > 0. Now there is
a cyclic module M with proj. dimM = n. By the lemma about projective covers,
it follows that TorRn (M,k) ̸= 0. Thus proj. dim k = n, so by the same argument
TorRn (k, k) ̸= 0.

Now m is not an associated prime of R, for if R has a submodule isomorphic to
k, we have an exact sequence 0 → k → R → R/k → 0. The long exact sequence
gives

0 = Torn+1(R, k)→ Torn+1(R/k, k)→ Torn(k, k)→ Torn(R, k) = 0

But Torn(k, k) ̸= 0, so Torn+1(R/k, k) ̸= 0, and this is impossible since gl. dimR =
n. Contradiction.

By prime avoidance, there is some element x ∈ m not contained in m2 or in any
associated prime of R. In particular x is regular on R. Let

0→ Pn → · · · → P0 → m→ 0
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be a projective resolution of m. Now x is regular on m and on any projective
R-module, so the sequence

0→ R/(x)⊗ Pn → · · · → R/(x)⊗ P0 → R/(x)⊗m→ 0

is still exact by the lemma that regular elements preserve acyclicity. Thus it is a
projective resolution of m/xm as an R/(x)-module. Thus proj. dimR/(x)(m/xm) <
∞. By the lemma, m/(x) is isomorphic to a direct summand of m/xm, and hence
proj. dimR/(x) m/(x) <∞. Now if

0→ Qm → · · · → Q0 → m/(x)→ 0

is a projective resolution of m/(x) as an R/(x)-module, then

0→ Qm → · · · → Q0 → R/(x)→ k → 0

is a projective resolution of k as an R/(x)-module. Thus as in (ii)⇒(iii) we have
gl. dimR/(x) <∞. Now since x is regular on R, we have KdimR/(x) = KdimR−
1, so by induction R/(x) is a regular local ring, say with maximal ideal generated
by a regular sequence ȳ1, . . . , ȳn−1. Then m is generated by the regular sequence
x, y1, . . . , yn−1, so R is a regular local ring.

Finally, if the conditions hold, the implication (i)⇒(ii) shows proj. dim k ≤ KdimR,
(ii)⇒(iii) shows gl. dimR = proj. dim k, and Rees’ theorem shows that depthR ≤
gl. dimR. But since R is regular local, depthR = KdimR, so all are equal.

Corollary. A localization RP of a regular local ring is regular local.

Proof. If M is an RP -module, we can consider it as an R-module by restriction.
Then it has a finite projective resolution. Applying localization, this stays exact,
and it is an RP -module projective resolution of MP

∼= M .

Theorem (Auslander-Buchsbaum, 1959). Any regular local ring is a UFD.

This was one of the early achievements of homological algebra. The statement
does not involve homological algebra, but the proof does. Unfortunately the proof
is too long for us.

5.4 Cohen-Macaulay rings (omitted)

Due to lack of time, this section will be omitted.

R is still a local noetherian commutative ring.

Definition. R is Cohen-Macaulay (CM) if depthR = KdimR.
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Examples. (i) Any regular local ring.

(ii) If R is an integral domain and KdimR = 1, then R is CM, since any nonzero
element of m is a regular sequence.

(iii) If R is CM of Krull dimension n and x1, . . . , xi is a regular sequence on R,
then R/(x1, . . . , xi) is CM of dimension n− i, as in Rees’ Theorem.

Lemma (Additional lemma to add at end of §5.1). If R is a commutative noethe-
rian ring and M is a f.g. R-module, then there is a chain of submodules

0 =M0 ⊂M1 ⊂ · · · ⊂Mn =M

such that each quotient Mi/Mi−1 is isomorphic to R/Pi for some prime ideal Pi.
Moreover KdimM = max{KdimR/Pi : 1 ≤ i ≤ n}.

Proof. If M = 0 then this holds trivially. If not, then M has an associated prime,
so a submodule M1

∼= R/P1. Now M/M1 is either zero, or it has a submodule
M2/M1

∼= R/P2. This gives an ascending chain of submodules of M which must
stabilize, so Mn = M for some n. Now the primes P with MP ̸= 0 are those with
(R/Pi)P ̸= 0 for some i, so with Pi ⊆ P . Thus a maximal chain of primes ideals P
with MP ̸= 0 will start with some Pi and increase up to m.

Using this lemma, we can prove another result about depth.

Lemma (Ischebeck). If M and N are nonzero f.g. R-modules then

Exti(N,M) = 0

if i+KdimN < depthM .

Proof. We prove this by induction on r = KdimN . Now N has a filtration by
modules of the form R/Pi, so we reduce to the case when N = R/P . If r = 0, this
is Rees’ Theorem, so suppose r > 0. Choose x ∈ m \ P . We get an exact sequence

0→ N
x−→ N → N ′ → 0.

where N ′ = N/xN = R/(x, P ), which has Krull dimension < r, so by induction
Extj(N ′,M) = 0 if j + (r − 1) < depthM . Thus if i + r < depthM , we get an
exact sequence

Exti(N,M)
x−→ Exti(N,M)→ Exti+1(N ′,M) = 0

so by Nakayama’s Lemma, Exti(N,M) = 0.

89



Theorem. Suppose R is a CM ring.
(i) If P is an associated prime of R, then KdimR/P = KdimR. Thus the associ-
ated primes of R are the minimal primes.
(ii) Any two maximal chains of distinct prime ideals in R have the same length.
Equivalently, for any prime ideal P , we have

htP +KdimR/P = KdimR

Proof. (i) If P is an associated prime of R, then Hom(R/P,R) ̸= 0. Thus by
Ischebeck’s Lemma,

depthR ≤ 0 + KdimR/P ≤ KdimR = depthR

so KdimR/P = KdimR, and clearly P must be a minimal prime. Conversely We
already know that, in general, any minimal prime is an associated prime of R.

(ii) We prove this by induction on n = KdimR. Suppose htP = h. If h = 0 this
is (i), so suppose h > 0. Then there is a chain of distinct prime ideals

P0 ⊂ · · · ⊂ Ph = P

and P0 is a minimal prime. By prime avoidance there is some x ∈ P1 not contained
in any minimal prime. Then x is regular on R, so R/(x) is CM of Krull dimension
n− 1. Now P1/(x) is a minimal prime in R/(x), so P/(x) has height h− 1. Thus
by induction

n− 1 = KdimR/(x) = ht(P/(x)) + Kdim(R/(x))/(P/(x)) = h− 1 + KdimR/P

giving the result.

Theorem. The following are equivalent
(i) R is a regular local ring
(ii) R is a CM ring and every nonzero f.g. module M with depthM = depthR is
projective (so free).

Proof. (i)⇒(ii) m is generated by a regular sequence, so R is CM. Then use the
Auslander-Buchsbaum formula.

(ii)⇒(i) Let M be nonzero and f.g. We show by descending induction on d =
depth(M) that proj. dimM < ∞. If depth(M) = depth(R), then M is pro-
jective by hypothesis. If depth(M) < depth(R), then the long exact sequence
gives depth(Ω1M) = depth(M) + 1, so by induction proj. dimΩ1M < ∞, so
proj. dimM <∞.
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Remark. A local noetherian commutative ring R is said to be Gorenstein if
inj. dimR < ∞. Thus clearly a regular local ring is Gorenstein. It can be shown
that if R has Krull dimension n, then R is Gorenstein if and only if it is CM and
Extn(k,R) ∼= k. It follows that if x1, . . . , xi is a regular sequence for R, then R is
Gorenstein if and only if R/(x1, . . . , xi) is Gorenstein. If you are interested, there
is a reasonably accessible treatment in §18 of H. Matsumura, Commutative rings,
CUP 1986.

5.5 Group homology and cohomology

Definition. Let K be a commutative ring and let G be a group. Recall that the
group algebra KG has elements ∑

g∈G

agg

with ag ∈ K, at most finitely many nonzero. It is a ring with∑
g∈G

agg +
∑
g∈G

bgg =
∑
g∈G

(ag + bg)g

(
∑
g∈G

agg)(
∑
g∈G

bgg) =
∑
g∈G

cgg, cg =
∑
hk=g

ahbk.

The augmentation is the ring homomorphism

ϵ : KG→ K,
∑
g∈G

agg 7→
∑
g∈G

ag.

The augmentation ideal is ∆(G) = Ker(ϵ).

Lemma. ∆(G) =
∑

g∈GK(g − 1)

Proof. Clearly the right hand side is contained in the left. Conversely if x =∑
g∈G agg ∈ ∆(G), then

x = x− ϵ(x)1 =
∑
g∈G

(agg − ag1) =
∑
g∈G

ag(g − 1).

Remarks. (a) To give a left KG-module M it is equivalent to give a K-module
M and a group homomorphism θ : G→ AutK(M). Namely, given θ, we define

(
∑
g∈G

agg)m =
∑
g∈G

agθ(g)(m).
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Alternatively, a KG-module is given by K-module M and a map

ρ : G×M →M

which:
- is an action of G on M , meaning that ρ(gg′,m) = ρ(g, ρ(g′m)) and ρ(1,m) = m,
and
- is K-linear for fixed g ∈ G, that is ρ(g, am + bm′) = aρ(g,m) + bρ(g,m′) for all
a, b ∈ K and m,m′ ∈M .

(b) We can turn any K-module M into a KG-module by making G act trivially,
so gm = m for all g ∈ G and m ∈ M . In particular the trivial KG-module is K
with G acting trivially. We just denote it as K.

(c) Any left KG-module becomes a right KG-module via

m(
∑
g∈G

agg) = (
∑
g∈G

agg
−1)m

and conversely. (You can’t do this for rings in general!) Namely,

(mg)h = (g−1m)h = h−1g−1m = (gh)−1m = m(gh).

This gives an isomorphism of categories between KG-Mod and Mod-KG. Thus,
for example, M is projective as a left KG-module if and only if it is projective as
a right KG-module.

For most purposes we can actually take K = Z.

Proposition/Definition. Let M be a ZG-module. The set of invariants

MG = {m ∈M : gm = m}

is the unique largest submodule of M on which G acts trivially. The set of coin-
variants

MG =M/SM , SM = submodule generated by gm−m for g ∈ G and m ∈M,

is the unique largest quotient module of M on which G acts trivially. They give
functors −G and −G from ZG-Mod to Ab.

Proof. The first part is clear. If S is a submodule of M , then G acts trivially on
M/S if and only if g(S +m) = S +m for all g,m, that is, gm−m ∈ S.

It is clear that any homomorphism M → N restricts to a map MG → NG. More-
over it sends SM into SN , so induces a map MG → NG.
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Lemma. (i) There is a natural isomorphism MG ∼= HomZG(Z,M) and −G is left
exact.

(ii) There is a natural isomorphism MG
∼= Z⊗ZGM and −G is right exact.

Proof. (i) is clear. For (ii) the exact sequence

0→ ∆(G)→ ZG→ Z→ 0

gives an exact sequence

∆(G)⊗ZGM → ZG⊗ZGM → Z⊗ZGM → 0

Now we can identify ZG⊗ZGM with M , and then since ∆(G) =
∑

g∈G Z(g − 1),
the image of the map from ∆(G)⊗ZGM is identified with SM .

Definition. The homology of G with coefficients in a ZG-module M is

Hn(G;M) := Ln(−G)(M) ∼= TorZGn (Z,M).

The cohomology is

Hn(G;M) := Rn(−G)(M) ∼= ExtnZG(Z,M).

Thus H0(G;M) = MG and H0(G;M) = MG. A short exact sequence 0 → L →
M → N → 0 of ZG-modules gives long exact sequences

· · · → H2(G;N)→ H1(G;L)→ H1(G;M)→ H1(G;N)→ LG →MG → NG → 0

0→ LG →MG → NG → H1(G;L)→ H1(G;M)→ H2(G;N)→ H2(G;L)→ . . .

Example. (1) If G = 1 then MG = M = MG so −G and −G are exact functors,
so Hn(G;M) = 0 and Hn(G;M) = 0 for n > 0.

(2) If G = C∞, an infinite cyclic group with generator σ, we have a projective
resolution

0→ ZG σ−1−−→ ZG ϵ−→ Z→ 0,

so
H0(G;M) =MG ∼= H1(G;M), H0(G;M) =MG

∼= H1(G;M),

and Hn(G;M) = Hn(G;M) = 0 for n > 1.

(3) If G = Cm, a finite cyclic group of order m with generator σ, we have a periodic
projective resolution

· · · → ZG N−→ ZG σ−1−−→ ZG N−→ ZG σ−1−−→ ZG ϵ−→ Z→ 0
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where N = 1 + σ + σ2 + · · · + σm−1. Thus Hn(G;M) is the cohomology of the
complex

0→M
σ−1−−→M

N−→M
σ−1−−→M → . . .

so

Hn(G;M) =


MG = {m ∈M : σm = m} (n = 0)

{m ∈M : Nm = 0}/(σ − 1)M (n = 1, 3, 5, . . . )

MG/NM (n = 2, 4, 6, . . . ).

Proposition. If K is a commutative ring and M is a KG-module, then

TorKGn (K,M) ∼= TorZGn (Z,M) and ExtnKG(K,M) ∼= ExtnZG(Z,M)

where K is the trivial KG-module.

Proof. Observe that if X is a ZG-module, then K⊗ZX is naturally a KG-module,
with the action of K on K and the action of G on X. Let · · · → P1 → P0 → Z→ 0
be a resolution of Z by free ZG-modules. Clearly each Pi is free as a Z-module.
Since Ω0Z ∼= Z is projective as a Z-module, an induction on n shows that ΩnZ is
projective as a Z-module and the sequence

0→ Ωn+1Z→ Pn → ΩnZ→ 0

splits as a sequence of Z-modules. It follows that the tensor product sequence

· · · → K ⊗Z P1 → K ⊗Z P0 → K → 0

is exact, so it is a resolution of the trivial KG-module by free KG-modules. Now
if M is a KG-module, we have a natural isomorphism of additive groups

HomKG(K ⊗Z Pn,M) ∼= HomZG(Pn,M)

so taking cohomology we get ExtnKG(K,M) ∼= ExtnZG(Z,M). Similarly for Tor.

Corollary. If G is a finite group and |G| acts invertibly on M , then Hn(G;M) =
Hn(G;M) = 0 for n > 0.

Proof. Let K be obtained from Z by inverting the multiplicative set

S = {1, |G|, |G|2, |G|3, . . . }.

We write K = Z[1/|G|]. We can consider M as a KG-module. Now the map

K → KG, 1 7→ 1

|G|
∑
g∈G

g

is a KG-module map, and a section for the augmentation ϵ, so K is a projective
KG-module. (cf. Maschke’s Theorem.)
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Definition. The bar resolution for G is the sequence

· · · → P2
d2−→ P1

d1−→ P0
ϵ−→ Z→ 0

where:
- Pn is the free Z-module with basis the elements [g0|g1| . . . |gn] with g0, . . . , gn ∈ G,
considered as a ZG-module with the action given by

g[g0|g1| . . . |gn] = [gg0|gg1| . . . |ggn]

- ϵ is the homomorphism sending each basis element [g0] to 1.
- dn : Pn → Pn−1 is given by

dn([g0|g1| . . . |gn]) =
n∑
i=0

(−1)i[g0| . . . |ĝi| . . . |gn].

Proposition. The bar resolution is a projective resolution for Z as a ZG-module.

Proof. Clearly Pn is a free ZG-module with basis the elements [1|g1| . . . |gn]. It
is easy to check that ϵ and the dn are homomorphisms and give a complex. For
exactness, we set P−1 = Z and d0 = ϵ and use that the resulting complex is
contractible as a complex of Z-modules, using the homotopy h given by

h−1 : Z = P−1 → P0, h−1(1) = [1]

and for n ≥ 0,

hn : Pn → Pn+1, [g0| . . . |gn] 7→ [1|g0| . . . |gn].

Definition. Given a ZG-module M , we denote by C(G,M) the cochain complex
C of additive groups

→ 0→ C0 d0−→ C1 d1−→ C2 → . . . ,

where
Cn = {functions f : Gn →M}

considered as an additive group by pointwise addition, and

dn(f)(g1, . . . , gn+1) = g1f(g2, . . . , gn+1) +
n∑
i=1

(−1)if(g1, . . . , gigi+1, . . . , gn+1)

+(−1)n+1f(g1, . . . , gn).

The elements of Cn are n-cochains of G with values in M
Zn(G,M) = Ker(dn) = n-cocycles of G with values in M
Bn(G,M) = Im(dn−1) = n-coboundaries of G with values in M .
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Theorem. If M is a ZG-module, then C(G,M) ∼= Hom(P,M) where P is the bar
resolution, so

Hn(G,M) ∼= Hn(C(G,M)) =
Zn(G,M)

Bn(G,M)
.

Proof. Pn is a free ZG-module with basis the elements [1|g1| . . . |gn] with gi ∈ G.
Thus it also has basis the elements [1|h1|h1h2| . . . |h1 . . . hn] with hi ∈ G. We get
an isomorphism

HomZG(Pn,M)→ Cn, θ 7→ f

where
f(h1, . . . , hn) = θ([1|h1|h1h2| . . . |h1 . . . hn]).

Now if f corresponds to θ, then dn(f) corresponds to θdn+1 where dn+1 : Pn+1 → Pn
is in the bar resolution. Thus

dn(f)(h1, . . . , hn+1) = θdn+1([1|h1|h1h2| . . . |h1 . . . hn+1])

= θ

(
[h1|h1h2| . . . |h1 . . . hn+1]

+
n∑
i=1

(−1)i[1|h1| . . . |ĥ1 . . . hi| . . . |h1 . . . hn+1]

+(−1)n+1[1|h1| . . . |h1 . . . hn]
)

= h1f(h2, . . . , hn+1) +
n∑
i=1

(−1)if(h1, . . . , hihi+1, . . . , hn+1) + (−1)n+1f(h1, . . . , hn).

Example. (i) A 1-cocycle f : G→M is called a crossed homomorphism. It must
satisfy f(g1g2) = g1f(g2) + f(g1). A 1-coboundary is called a principal crossed
homomorphism. It is of the form f(g) = gm−m for some m ∈M . Thus

H1(G;M) =
Z1(G,M)

B1(G,M)
=

crossed homomorphisms
principal crossed homomorphisms

.

For example if M has trivial G-action, then H1(G;M) is identified with the set of
group homomorphisms G→M . Thus if G is finite, then H1(G;Z) = 0.

(ii) A 2-cocycle f : G×G→M must satisfy

g1f(g2, g3)− f(g1g2, g3) + f(g1, g2g3)− f(g1, g2) = 0.
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The 2-coboundaries are those of the form

f(g1, g2) = (d1α)(g1, g2) = g1α(g2)− α(g1g2) + α(g1)

for some function α : G→M . Then

H2(G;M) =
Z2(G,M)

B2(G,M)
=

2-cocycles
2-coboundaries

.

5.6 Second cohomology classifies group extensions

Definition. If M and G are groups, then a group extension

1→M
θ−→ E

ϕ−→ G→ 1

is given by a group E, an injective group homomorphism θ and a surjective group
homomorphism ϕ with Im(θ) = Ker(ϕ). Two extensions of M and G are equivalent
if there is an isomorphism τ giving a commutative diagram

1 −−−→ M
θ−−−→ E

ϕ−−−→ G −−−→ 1∥∥∥ τ

y ∥∥∥
1 −−−→ M

θ′−−−→ E ′
ϕ′−−−→ G −−−→ 1

Now suppose that M is an additive group. It becomes a ZG-module as follows. Let
m ∈ M and g ∈ G. Choose e ∈ E with ϕ(e) = g. Then gm is the unique element
of M with θ(gm) = eθ(m)e−1. This does not depend on the choice of e since M is
abelian. Also, equivalent extensions induce the same ZG-module structure.

For example a central extension is one with Im(θ) ⊆ Z(E), or equivalently G acts
trivially on M .

Theorem. If M is a ZG-module, then H2(G;M) classifies the group extensions

1→M
θ−→ E

ϕ−→ G→ 1

inducing the given ZG-module structure on M , up to equivalence. The zero element
corresponds to the semidirect product

E =M ⋊G, (m, g)(m′, g′) = (m+ gm′, gg′), θ(m) = (m, 1), ϕ(m, g) = g.

Proof. (1) Given an extension, choose a map of sets s : G→ E which is a section
for ϕ. If g, h ∈ G, then ϕ(s(g)s(h)) = gh = ϕ(s(gh)), so there is a uniquely
determined f : G×G→M with

θ(f(g, h)) = s(g)s(h)s(gh)−1.
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It is called the factor set associated to the extension E and s. It is a 2-cocycle. It
follows that f(g, 1) = gf(1, 1) and f(1, h) = f(1, 1) for all g, h ∈ G. (Usually one
chooses s with s(1) = 1. Then f is normalized, meaning that f(1, 1) = 0.)

(2) Any other section s′ is given by

s′(g) = θ(α(g))s(g)

for some α : G→M . Let f, f ′ be the factor sets given by s, s′. Then

θ(f ′(g, h)) = s′(g)s′(h)s′(gh)−1

= θ(α(g))s(g)θ(α(h))s(h)s(gh)−1θ(−α(gh))

= θ(α(g))θ(gα(h))s(g)s(h)s(gh)−1θ(−α(gh))

= θ(α(g)θ(gα(h))θ(f(g, h))θ(−α(gh))

= θ(α(g) + gα(h) + f(g, h)− α(gh))

= θ(f(g, h) + (d1α)(g, h)).

so f ′ = f+d1α, so f and f ′ give the same element ofH2(G;M). Thus the extension
gives a well-defined element of H2(G;M).

(3) Suppose two extensions, give the same element of H2(G;M). The element is
given by factor sets f, f ′ associated to sections s : G→ E and s′ : G→ E ′, and by
modifying one of them as in (2), we may assume that f = f ′.

Any element of E can be written uniquely in the form θ(m)s(g) with m ∈M and
g ∈ G. Define τ : E → E ′ be

τ(θ(m)s(g)) = θ′(m)s′(g).

Provided τ is a group homomorphism, it shows that the extensions are equivalent.
Now the product of two elements of E is

θ(m)s(g) θ(m′)s(g′) = θ(m)s(g)θ(m′)s(g)−1s(g)s(g′)

= θ(m)θ(gm′)θ(f(g, g′))s(gg′)

= θ(m+ gm′ + f(g, g′))s(gg′)

Then
τ(θ(m)s(g) θ(m′)s(g′)) = τ(θ(m+ gm′ + f(g, g′))s(gg′))

= θ′(m+ gm′ + f(g, g′))s′(gg′) = θ′(m)s′(g) θ′(m′)s′(g′)

= τ(θ(m)s(g)) τ(θ(m′)s(g′)).

98



(4) If f : G × G → M is 2-cocycle, then E = M × G becomes a group with the
operation

(m, g) · (m′, g′) = (m+ gm′ + f(g, g′), gg′),

identity element (−f(1, 1), 1), and

(m, g)−1 = (−g−1(m+ f(1, 1) + f(g, g−1)), g−1).

We get an extension with θ(m) = (m − f(1, 1), 1) and ϕ(m, g) = g. Using the
section s(g) = (0, g) one recovers f , since

(0, g)(0, h)(0, gh)−1 = (f(g, h), gh)(0, gh)−1

= (f(g, h)− f(1, 1), 1)(0, gh)(0, gh)−1 = (f(g, h)− f(1, 1), 1) = θ(f(g, h)).

5.7 Cohomology with nonabelian coefficients

Some low degree cohomology can be generalized to the nonabelian case.

Definition. Let G be a group. A multiplicative G-module is a group M , written
multiplicatively, together with a homomorphism ρ : G → Aut(M). If g ∈ G and
x ∈M we write gx for ρ(g)(x). Thus g(xy) = (gx)(gy) and g(x−1) = (gx)−1.

A homomorphism of multiplicative G-module θ : M → M ′ is a group homomor-
phism with θ(gm) = gθ(m) for all g,m.

An abelian multiplicative G-module is the same as a ZG-module, just written
multiplicatively.

If M is a multiplicative G-module, we define:
- MG = {m ∈M : gm = m ∀ g ∈ G}. It is a subgroup of M .
- A mapping f : G → M is a crossed homomorphism if f(g1g2) = f(g1)(g1f(g2))
for all g1, g2 ∈ G.
- Two crossed homomorphisms f, f ′ are equivalent if there is some m ∈ M with
f ′(g) = m−1f(g)(gm) for all g ∈ G.
- A crossed homomorphism f is principal if there is m ∈M with f(g) = m−1(gm)
for all g ∈ G. The principal crossed homomorphisms form one equivalence class.
- Let H1(G;M) be the set of equivalence classes of crossed homomorphisms. It
is a pointed set, that is, a set with a distinguished element, corresponding to the
principal crossed homomorphisms.

Let L and M be pointed sets with distinguished element ∗L and ∗M . A morphism
of pointed sets f : L→M is a mapping with f(∗L) = ∗M . A sequence

L
f−→M

g−→ N
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is exact at M if Im(f) = g−1(∗N). A group is a pointed set with distinguished
element the identity element.

The long exact sequence in cohomology extends to multiplicative G-modules.

Theorem. Let
1→ L

θ−→M
ϕ−→ N → 1

be a central extension of multiplicative G-modules (so L is abelian, so a ZG-
module). Then there is a natural exact sequence of pointed sets

1→ LG →MG → NG → H1(G;L)→ H1(G;M)→ H1(G;N)→ H2(G;L).

Proof. I’ll define the maps. The exactness is straightforward.

The maps LG →MG → NG are the restrictions of the homomorphisms θ and ϕ.

The maps H1(G;L) → H1(G;M) → H1(G;N) are given by composing a crossed
homomorphism with θ or ϕ.

The connecting map NG → H1(G;L) is given as follows. If x ∈ NG, choose
mx ∈ ϕ−1(x). If g ∈ G, then ϕ(m−1x (gmx)) = x−1 (gx) = 1, so there is a
unique mapping fx : G → L with θ(fx(g)) = m−1x (gmx). Now fx is a crossed
homomorphism, since

θ(fx(g1)g1fx(g2)) = θ(fx(g1))g1θ(fx(g2)) = m−1x (g1mx)g1(m
−1
x (g2mx))

= m−1x (g1mx)(g1mx)
−1(g1g2mx) = m−1x (g1g2mx) = θ(fx(g1g2))

and the image of x is the corresponding equivalence class in H1(G;L). This doesn’t
depend on the choice of mx.

The connecting map H1(G;N) → H2(G;L) is given as follows. An element of
H1(G;N) is represented by a crossed homomorphism f : G→ N . For each g ∈ G,
choose mg ∈ ϕ−1(f(g)). For g, h ∈ G, note that

ϕ(mg (gmh) m
−1
gh ) = f(g) (gf(h)) f(gh)−1 = 1

since f is a crossed homomorphism. Thus there is a mapping α : G×G→ L with

θ(α(g, h)) = mg (gmh) m
−1
gh .

Then θ is a 2-cocycle, so induces an element of H2(G;L).

100



5.8 Projective representations of groups

Definition. Let K be a field and n ≥ 1. It is easy to see that

Z(GLn(K)) = {λI : λ ∈ K×}.

The quotient group

PGLn(K) := GLn(K)/Z(GLn(K))

is called the projective linear group.

Remark. Projective space Pn−1(K) is the set of equivalence classes of n-tuples
(x1, . . . , xn) with xi ∈ K, not all zero, under the equivalence relation ∼ with

(x1, . . . , xn) ∼ (λx1, . . . , λxn)

for λ ∈ K×. The group GLn(K) acts on Kn and induces an action on Pn−1(K). If
A ∈ GLn(K), then

A acts trivially on Pn−1 ⇔ Ax is a multiple of x for all x ∈ Kn \ 0
⇔ Every x is an eigenvector for A
⇔ A = λI for some λ ∈ K×

so PGLn(K) acts faithfully on Pn−1(K).

Definition. Let G be a group. An (ordinary) matrix representation of G of degree
n is a group homomorphism

ρ : G→ GLn(K).

Two representations ρ, ρ′ are equivalent if there is a matrix A ∈ GLn(K) with

ρ′(g) = A−1ρ(g)A

for all g ∈ G. Matrix representations of degree n up to equivalence correspond to
isomorphism classes of n-dimensional KG-modules.

A projective representation of G is a group homomorphism

σ : G→ PGLn(K).

This is in the sense of Schur, it has nothing to do with projective modules! Two
projective representations σ, σ′ are equivalent if there is A ∈ PGLn(K) with

σ′(g) = A−1σ(g)A

for all g ∈ G.
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Any ordinary representation ρ gives a projective representation as the composition

G
ρ−→ GLn(K)→ PGLn(K).

Which projective representations lift to ordinary representations?

Example. Suppose ρ : SU2 → GLn(C) is an ordinary representation which is
irreducible, so corresponds to a simple module for C SU2. Now Z(SU2) = {I,−I},
and any eigenspace of ρ(−I), say

Vλ = {v ∈ Cn : ρ(−I)v = λv},

is a subrepresentation of ρ, since if v ∈ Vλ, then

ρ(−I)ρ(g)v = ρ(g)ρ(−I)v = λρ(g)v

so ρ(g)v ∈ Vλ. Thus by irreducibility Vλ = Cn for some λ. Thus ρ(−I) = λI.
Thus ρ induces a projective representation

SO3(R) ∼= SU2 /{I,−I} → PGLn(C).

Now if ρ is the natural representation (sending any g ∈ SU2 to itself in GL2(C)),
then ρ(−I) = −I, and I don’t think that the corresponding projective represen-
tation lifts to an ordinary representation of SO3(R). (Using the representation
theory of Lie groups, one can see that it doesn’t lift to a representation of SO3(R)
as a Lie group.)

Theorem. (i) Given a projective representation σ : G → PGLn(K), there is a
natural way to define an element c(σ) ∈ H2(G;K×), the obstruction, so that G
lifts to an ordinary representation if and only if c(σ) = 0.

(ii) If K is algebraically closed and the Schur muultiplier H2(G;Z) of G is zero,
then every projective representation lifts.

Proof. (i) If we consider GLn(K) and PGLn(K) as multiplicative G-modules, with
G acting trivially, then clearly

H1(G; GLn(K)) =
matrix representations G→ GLn(K)

equivalence

H1(G; PGLn(K)) =
projective representations G→ PGLn(K)

equivalence
Now the central extension of groups

1→ K× → GLn(K)→ PGLn(K)→ 1,
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gives an exact sequence

H1(G; GLn(K))
b−→ H1(G; PGLn(K))

c−→ H2(G;K×).

Thus a projective representation σ lifts to an ordinary representation if and only
if c(σ) is zero.

(ii) If P is a projective resolution of the trivial ZG-module, then

H2(G;K×) = H2(HomZG(P,K
×)) by definition of cohomology with coefficients

∼= H2(HomZ(PG, K
×)) since G acts trivially on K×

∼= H2(HomZ(P ⊗ZG Z, K×)) since MG
∼= M ⊗ZG Z

= H2(P ⊗ZG Z;K×) by definition of cohomology with coefficients.

Since K is algebraically closed, K× is divisible, hence injective, as a Z-module.
Also P ⊗ZGZ is a complex of projective Z-modules, so by the Universal Coefficient
Theorem

H2(P ⊗ZG Z;K×) ∼= HomZ(H2(P ⊗ZG Z), K×) = HomZ(H2(G;Z), K×).

Thus if H2(G;Z) = 0, then H2(G;K×) = 0, so c(σ) = 0 for all σ.

5.9 Galois descent

Due to lack of time, the first theorem and the proof of the second
theorem will by omitted. A possible reference for this section is §2.3 of P. Gille
and T. Szamuely, Central simple algebras and Galois cohomology, CUP 2006.

Definition. Let K be a field. We consider the category whose objects are pairs
(V, ϕ) where V is a K-vector space and ϕ is some additional structure, for example:
- An associative multiplication V ⊗K V → V
- A bilinear form V ⊗K V → K
- An A-module structure A⊗K V → V where A is a fixed K-algebra.

A morphism (V, ϕ) → (V ′, ϕ′) is a K-linear map θ : V → V ′ compatible with the
additional structures ϕ and ϕ′.

Aut(V, ϕ) is the group of automorphisms of (V, ϕ).

If L/K is a field extension, then there is an induced L-vector space V L = L⊗K V ,
and there is an induced structure ϕL on V L. For example
- A multiplication V ⊗K V → V gives a multiplication V L ⊗L V L → V L.
- A bilinear form V ⊗K V → K gives a bilinear form V L ⊗L V L → L.
- An A-module structure A⊗K V → V gives an AL-module structure AL⊗L V L →
V L.
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If (W,ψ) is an L-vector space with additional structure and K is subfield of L, a K-
form of (W,ψ) is a K-vector space with additional structure (V, ϕ) with (V L, ϕL) ∼=
(W,ψ).

If (V, ϕ) and (V ′, ϕ′) are K-vector spaces with additional structure, we say that
(V ′, ϕ′) is a twisted form of (V, ϕ) split by a field extension L/K if ((V ′)L, (ϕ′)L) ∼=
(V L, ϕL).

Theorem. Let L/K be a Galois field extension with group G and let W be an
L-vector space. There is a bijection between
(i) K-subspaces V of W such that the multiplication map m : L⊗K V → W is an
isomorphism, and
(ii) group homomorphisms α : G → AutK(W ) such that α(g) is a g-semilinear
map for each g ∈ G, meaning that α(g)(λw) = g(λ)α(g)(w) for all λ ∈ L and
w ∈ W .

Proof. Given V ⊆ W as in (i), define α by α(g)(w) = m(g⊗ 1)m−1(w). It has the
properties in (ii). Conversely, given α as in (ii), define

V = {w ∈ W : α(g)(w) = w ∀ g ∈ G}.

This is a K-subspace of W . Let m : L⊗K V → W be the multiplication map.

Let g1, . . . , gn be the elements of G and λ1, . . . , λn a basis of L overK (same n, since
L/K is Galois). Suppose

∑n
i=1 λi ⊗ vi is in the kernel of m. Then

∑n
i=1 λivi = 0.

Applying α(gj) we get
∑n

i=1 gj(λi)vi = 0. By Dedekind’s Independence Theorem,
the matrix (gj(λi)) ∈Mn(L) is invertible. Thus vi = 0 for all i. Thus m is injective.

If w ∈ W , then clearly
∑n

j=1 α(gj)(w) ∈ V . Applying this to the elements λiw, we
obtain elements vi ∈ V with

vi =
∑
j

α(gj)(λiw) =
∑
i

gj(λi)α(gj)(w)

Now if (bij) ∈Mn(L) is the inverse of the matrix (gj(λi)), then

α(gj)(w) =
∑
i

bjivi ∈ Im(m),

so in particular w = α(1)(w) ∈ Im(m). Thus m is an isomorphism.

Now it is easy to see that the constructions are inverse.

Theorem. Let L/K be a Galois field extension with group G. Given a K-vector
space with additional structure (V, ϕ), the group Aut(V L, ϕL) is naturally a mul-
tiplicative G-module and the twisted forms of (V, ϕ) split by L/K are in bijection
with H1(G; Aut(V L, ϕL)).
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Proof. We consider Aut(V L, ϕL) as a multiplicative G-module as follows. If θ ∈
Aut(V L, ϕL) and g ∈ G, let gθ be the composition

L⊗K V
g−1⊗1−−−→ L⊗K V

θ−→ L⊗K V
g⊗1−−→ L⊗K V.

By construction it is a K-linear map, and in fact it is L-linear, since the twists by
g−1 and g cancel out. Moreover gθ preserves the additional structure. For example
if the extra structure is a multiplication ϕ : V ⊗K V → V , then

ϕL : V L ⊗L V L → V L, (λ⊗ v)⊗ (λ⊗ v′) 7→ λλ′ ⊗ ϕ(v ⊗ v′),

and

ϕL((gθ)(λ⊗ v)⊗ (gθ)(λ′ ⊗ v′))) = (g ⊗ 1)ϕL(θ(g−1(λ)⊗ v)⊗ θ(g−1(λ′)⊗ v′)))
= (g ⊗ 1)θ(g−1(λ)g−1(λ′))⊗ ϕ(v ⊗ v′)
= (gθ)(λλ′ ⊗ ϕ(v ⊗ v′))
= (gθ)ϕL((λ⊗ v)⊗ (λ′ ⊗ v′)).

A twisted form (V ′, ϕ′) of (V, ϕ) gives a crossed homomorphism as follows. Choose
an isomorphism f : ((V ′)L, (ϕ′)L)→ (V L, ϕL). If g ∈ G, let ρf (g) be the composi-
tion

L⊗K V
g−1⊗1−−−→ L⊗ V f−1

−−→ L⊗K V ′
g⊗1−−→ L⊗K V ′

f−→ L⊗K V.

Then ρf (g) is L-linear and belongs to Aut(V L, ϕL). Also

ρf (gg
′) = f(gg′ ⊗ 1)f−1((g′)−1g−1 ⊗ 1)

= f(g ⊗ 1)(g′ ⊗ 1)f−1((g′)−1 ⊗ 1)(g−1 ⊗ 1)

= f(g ⊗ 1)f−1(g−1 ⊗ 1)(g ⊗ 1)f(g′ ⊗ 1)f−1((g′)−1 ⊗ 1)(g−1 ⊗ 1)

= ρf (g)(g ⊗ 1)ρf (g
′)(g−1 ⊗ 1)

= ρf (g)(gρf (g
′))

so ρf is a crossed homomorphism G→ Aut(V L, ϕL).

Now if f ′ : ((V ′)L, (ϕ′)L) → (V L, ϕL) is another isomorphism, then θ = f(f ′)−1 ∈
Aut(V L, ϕL), and

ρf ′(g) = θ−1ρf (g)(gθ)

so ρf and ρf ′ are equivalent, so determine one element in H1(G,Aut(V L, ϕL)).

Conversely a crossed homomorphism ρ : G→ Aut(V L, ϕL) gives a twisted form Vρ
as follows. The map α : G→ AutK(V

L) given by

α(g) = ρ(g)(g ⊗ 1)
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satisfies the conditions of the previous theorem, so

Vρ = {w ∈ V L : ρ(g)((g ⊗ 1)w) = w ∀ g ∈ G}

is a K-form for V L as a vector space. Moreover the additional structure on V L

restricts to an additional structure ϕρ on Vρ. For example if ϕ is a multiplication
and w,w′ ∈ L⊗ V , then

ρ(g)((g ⊗ 1)ϕL(w ⊗ w′)) = ρ(g)ϕL((g ⊗ 1)w ⊗ (g ⊗ 1)w′)

= ϕL(ρ(g)(g ⊗ 1)w ⊗ ρ(g)((g ⊗ 1)w′))

since ρ(g) ∈ Aut(V L, ϕL). Thus if w,w′ ∈ Vρ, so is ϕL(w ⊗ w′).
Now it is easy to check that if ρ and ρ′ are equivalent crossed homomorphisms, then
(Xρ, ϕρ) ∼= (Vρ′ , ϕρ′) and that the constructions (Xρ, ϕρ) and ρf are inverse.

Corollary. Let L/K be a Galois field extension with group G. Considering GLn(L)
as a multiplicative G-module with action

g (aij) = (g(aij)), g ∈ G, (aij) ∈ GLn(L),

the set H1(G,GLn(L)) = 0 has only one-element; in particular H1(G,L×) = 0.

Proof. Take V = Kn with no additional structure, we have Aut(V L) = GLn(L),
and the G-module structure is as indicated. Since a vector space is determined up
to isomorphism by its dimension, all twisted forms of V are isomorphic to V .

Theorem (Hilbert’s Theorem 90). Suppose L/K is a Galois field extension whose
group G is cyclic of order n, say generated by σ. Let N be the norm for L, so

N(x) = x σ(x)σ2(x) . . . σn−1(x).

Then x ∈ L× is of the form y−1σ(y) for some y ∈ L if and only if N(x) = 1.

Proof. Observe that N(xx′) = N(x)N(x′) and N(σ(x)) = N(x). It follows that if
x has the indicated form, then N(x) = 1. Now suppose that N(x) = 1. Define a
map ρ : G→ L× by

ρ(σi) = x σ(x)σ2(x) . . . σi−1(x).

for i ≥ 0. This is well-defined since N(x) = 1. It is a crossed homomorphism since

ρ(σi+j) = x σ(x)σ2(x) . . . σi+j−1 = ρ(σi) · σiρ(σj).

Thus it is principal, so of the form

ρ(σi) = y−1σi(y)

for some y ∈ L×. Taking i = 1 gives x = y−1σ(y).
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6 Triangulated categories and derived categories
Unfortunately there is no time to do this properly. I just discuss a few basics,
without proofs. A good reference (but in French) is P.-P. Grivel, Catégorie dérivées
et Foncteurs dérives, chapter I of A. Borel et. al., Algebraic D-modules, Academic
Press, 1987.

6.1 Triangulated categories

We consider an additive category C equipped with an additive functor Σ which is
an automorphism. A triangle is a collection of objects and morphisms

X
u−→ Y

v−→ Z
w−→ ΣX.

It is sometimes written with X, Y , Z at the vertices of a triangle, and the edges
given by arrows u : X → Y , v : Y → Z, and w represented as a arrow Z → X
labelled with Σ.

A morphism of triangles from X
u−→ Y

v−→ Z
w−→ ΣX to X ′ u

′
−→ Y ′

v′−→ Z ′
w′
−→ ΣX ′ is

given by a commutative diagram

X
u−−−→ Y

v−−−→ Z
w−−−→ ΣX

f

y g

y h

y Σf

y
X ′

u′−−−→ Y ′
v′−−−→ Z ′

w′
−−−→ ΣX ′

A triangulated category is given by an additive category C with an additive auto-
morphism Σ and a collection of distinguished triangles satisfying the following.

TR1. (a) Every triangle isomorphic to a distinguished triangle is distinguished.
(b) Every morphism u : X → Y can be included in a distinguished triangle.
(c) The triangle X IdX−−→ X → 0→ ΣX is distinguished.

TR2. The triangle
X

u−→ Y
v−→ Z

w−→ ΣX

is distinguished if and only if its rotation

Y
v−→ Z

w−→ ΣX
−Σu−−→ ΣY

is distinguished.

TR3. Given a commutative diagram

X
u−−−→ Y

v−−−→ Z
w−−−→ ΣX

f

y g

y
X ′

u′−−−→ Y ′
v′−−−→ Z ′

w′
−−−→ ΣX ′
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in which the rows are distinguished triangles, there is some h : Z → Z ′ (not
necessarily unique) turning it into a morphism of triangles.

X
u−−−→ Y

v−−−→ Z
w−−−→ ΣX

f

y g

y h

y Σf

y
X ′

u′−−−→ Y ′
v′−−−→ Z ′

w′
−−−→ ΣX ′

TR4. (Octahedral axiom) Given three distinguished triangles

X
u−→ Y

j−→ Z ′ → ΣX

Y
v−→ Z → X ′ → ΣY

X
vu−→ Z → Y ′ → ΣX

there is a distinguished triangle

Z ′ → Y ′ → X ′ → ΣZ ′

such that on the octahedron, whose top front and back, and bottom left and right
faces are given by the triangles,
- the other four faces commute,
- the compositions from bottom to top via Z and Z ′ give the same map Y → Y ′.
- the compositions from top to bottom via X and X ′ give the same map Y ′ → ΣY .
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Remarks. (i) In fact TR3 follows from the other axioms, and one only needs to
show one direction of TR2, see J. P. May, The additivity of traces in triangulated
categories, Adv. Math. 163 (2001), 34-–73.

(ii) As suggested in May’s article, another way to draw the octahedral axiom is as
a commutative “braid” or “sine wave diagram”:

(iii) Pretending that we are in an abelian category and thatX and Y are subobjects
of Z with X ⊆ Y ⊆ Z, we might label the three given triangles as

X → Y → Y/X → ΣX

Y → Z → Z/Y → ΣY

X → Z → Z/X → ΣX

and then the last one is

Y/X → Z/X → Z/Y → Σ(Y/X)

corresponding to the isomorphism Z/Y ∼= (Z/X)/(Y/X) we would have in the
abelian category.

(iv) Note that in TR3, the morphism h is not unique. A. Neeman, Some new
axioms for triangulated categories, J. Algebra 139 (1991), 221–255, has pointed
out that some choices of h are better than others. This leads to problems with
higher K-theory for triangulated categories. (As a preprint, Neeman’s paper was
called ‘Triangulated categories are all wrong’). In modern work, the problems are
tackled by working with ‘algebraic triangulated categories’, or DG-categories or
∞-categories.

Definition. Let C and C ′ be triangulated categories with automorphisms Σ and
Σ′. A functor F : C → C ′ is a triangle functor if it is additive, Σ′F = FΣ, and it
sends distinguished triangles to distinguished triangles.
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If C is a triangulated category, a full additive subcategory B is a triangulated
subcategory if
- X ∈ ob(B) ⇔ ΣX ∈ ob(B).
- If X → Y → Z → ΣX is a distinguished triangle in C and X, Y ∈ ob(B), then
Z ∈ ob(B).
In this case B is a triangulated category and the inclusion is a triangle functor.

B is a thick or épaisse subcategory if in addition it is closed under direct summands,
that is, if X is isomorphic to a direct summand of Y in C and Y ∈ ob(B), then
X ∈ ob(B).

Proposition. (i) The composition of two morphisms in a distinguished triangle is
zero.
(ii) If M is an object, a distinguished triangle gives a long exact sequence

· · · → Hom(M,Σ−1Z)→ Hom(M,X)→ Hom(M,Y )→ Hom(M,Z)→

Hom(M,ΣX)→ Hom(M,ΣY )→ Hom(M,ΣZ)→ Hom(M,Σ2X)→ . . .

and similarly for Hom(−,M).
(iii) Given a morphism of distinguished triangles

X
u−−−→ Y

v−−−→ Z
w−−−→ ΣX

f

y g

y h

y Σf

y
X ′

u′−−−→ Y ′
v′−−−→ Z ′

w′
−−−→ ΣX ′

if two of f, g, h are isomorphisms, so is the third.

Proof. (i) We have a commutative diagram whose rows are distinguished triangles

X
IdX−−−→ X

0−−−→ 0
0−−−→ ΣX

idX

y u

y
X

u−−−→ Y
v−−−→ Z

w−−−→ ΣX

By TR3 this extends to a morphism of triangles, via a morphism h : 0→ Z which
must be zero. Since the middle square commutes, we get vu = 0. Using TR2 one
gets that also wv = 0 and Σu ◦ w = 0.

(ii) Suppose f ∈ Hom(M,Y ) is sent to 0 in Hom(M,Z), that is, vf = 0. Then we
have a commutative diagram

M
0−−−→ 0

0−−−→ ΣM
−Id−−−→ ΣM

f

y 0

y
Y

v−−−→ Z
w−−−→ ΣX

−Σu−−−→ ΣY
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whose rows are rotations of distinguished triangles, so distinguished. Thus it can be
completed to a morphism of triangles with a morphism h : ΣM → ΣX. Since the
right hand square is commutative, we have Σf ◦(−Id) = (−Σu)◦h, so f = u◦Σ−1h,
so f is in the image of the map Hom(M,X)→ Hom(M,Y ). Thus the sequence is
exact at Hom(M,Y ). By considering rotations, we get exactness at all places.

(iii) By considering rotations, we may suppose that f and g are isomorphisms, and
want to show that h is an isomorphism. For any M , by (ii) we get a commutative
diagram with exact rows

Hom(M,X) −−−→ Hom(M,Y ) −−−→ Hom(M,Z) −−−→ Hom(M,ΣX) −−−→ Hom(M,ΣY )y y y y y
Hom(M,X ′) −−−→ Hom(M,Y ′) −−−→ Hom(M,Z ′) −−−→ Hom(M,ΣX ′) −−−→ Hom(M,ΣY ′)

Now the 1st, 2nd, 4th and 5th vertical maps are induced by f, g,Σf,Σg, so they
are isomorphisms. Thus by the five lemma, the middle vertical map is an isomor-
phism. Thus h induces an isomorphism of representable functors Hom(−, Z) →
Hom(−, Z ′). Thus by Yoneda’s Lemma, h is an isomorphism.

Recall that if A is an additive category, we have a category of complexes C(A) and
the homotopy category K(A). Both have a shift automorphism Σ. Recall that if
f : B → C is a morphism in C(A), it has a mapping cone cone(f) and there is a
sequence of complexes

0→ C
i−→ cone(f)

p−→ ΣB → 0

which is split exact in each degree.

Theorem. K(A) becomes a triangulated category, where the the distinguished tri-
angles are those isomorphic to one of the form

B
f−→ C

i−→ cone(f)
p−→ ΣB.

The proof is omitted. For example we need to know that the rotation

C
i−→ cone(f)

p−→ ΣB
−Σf−−→ ΣC

is isomorphic to the mapping cone triangle

C
i−→ cone(f) −→ cone(i) −→ ΣC.

Of course this is not true in C(A), only in K(A). (It is related to the “mapping
cylinder” construction.)
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Proposition. If A is an abelian category, the cohomology functor H0 : K(A)→ A
sends triangles to long exact sequences

· · · → H0(Σ−1Z)→ H0(X)→ H0(Y )→ H0(Z)→

H0(ΣX)→ H0(ΣY )→ H0(ΣZ)→ H0(Σ2X)→ . . .

Since H0(Σn(X) = Hn(X), we can also write this as

· · · → H−1(Z)→ H0(X)→ H0(Y )→ H0(Z)→

H1(X)→ H1(Y )→ H1(Z)→ H2(X)→ . . .

Example. The full subcategory Kb(A) of K(A) consisting of the bounded com-
plexes is a triangulated subcategory, so triangulated itself. Similarly K−(A), con-
sisting of the bounded above complexes. Also, if A is abelian, the category K−,b(A)
of the bounded above complexes X which have bounded cohomology, that is, with
H i(X) = 0 for all but finitely many i. There are many other variations.

6.2 Localization of categories

In the homotopy category K(R-Mod), we can consider any module M as a stalk
complex, and a projective resolution gives a quasi-isomorphism P → M from a
complex of projectives. We would like to construct a ‘derived category’ D(R-Mod)
from K(R-Mod) in which the quasi-isomorphisms become isomorphisms. We do
this by explicitly inverting them.

Definition. Let C be a category and S a class of morphisms in C. One says that
S has a calculus of left fractions if
(i) S contains all identity morphisms and is closed under composition.
(ii) Any diagram

X −−−→ Y

s

y
X ′

with s ∈ S can be completed to a commutative square

X −−−→ Y

s

y t

y
X ′ −−−→ Y ′

with t ∈ S.
(iii) If f, g ∈ Hom(X, Y ) and fs = gs for some s ∈ S, then tf = tg for some t ∈ S.
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Remark. If R is a ring, considered as a category with one object, and S is a
subset of R, then (i) is the condition for S to be a multiplicative subset of R. If
R is a commutative ring, this is enough to construct a localization S−1R. If R is
noncommutative, it is not enough. One also needs the left Ore condition (ii) and
left reversibility (iii).

Proposition. If S admits a calculus of left fraction, then there is a (BIG) category
S−1C with
- objects as in C,
- Hom(X, Y ) = {(f, s) : X f−→ Y ′

s←− Y and s ∈ S}/ ∼ where

(f1, s1) ∼ (f2, s2)⇔ ∃commutative diagram

X
f1−−−→ Y ′1

s1←−−− Y∥∥∥ y ∥∥∥
X −−−→ Y ′3

s3←−−− Y∥∥∥ x ∥∥∥
X

f2−−−→ Y ′2
s2←−−− Y

with s3 ∈ S

The equivalence class of (f, s) is denoted s−1f .
- The composition of s−1f : X → Y and (s′)−1(f ′) : Y → Z is (ts′)−1(gf) where

Z

s′

y
Y

f ′−−−→ Z ′

s

y t

y
X

f−−−→ Y ′
g−−−→ Z ′′

where the square is given by part (ii) of the definition

There is a natural functor i : C → S−1C sending a morphism f : X → Y to 1−1Y f .
If f ∈ S, then i(f) is invertible with inverse f−11Y , and it sends elements of S to
invertible morphisms.

Moreover any functor F : C → D sending the elements of S to invertible morphisms
factors as Gi for a unique functor G : S−1C → D.

Remark. We say that S has a calculus of right fractions in C if it has a calculus
of left fractions in Cop. If so, we define CS−1 = (S−1Cop)op. If S has calculi of left
and right fractions, then we can identify S−1C and CS−1.
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Definition. Suppose C is a triangulated category and S has calculi of left and
right fractions. We say that S is compatible with the triangulated structure of C if
- s ∈ S ⇔ Σ(s) ∈ S, and
- In the situation of axiom TR3, if f, g ∈ S, there is some h ∈ S giving a morphism
of triangles.

Theorem. Suppose C is a triangulated category, S has calculi of left and right
fractions and it is compatible with the triangulated structure, then S−1C has the
structure of a triangulated category in which the distinguished triangles are those
isomorphic to the image of a distinguished triangle in C. Moreover the functor
i : C → S−1C is a triangle functor.

Theorem. Suppose C is a triangulated category and B is a (full additive) triangu-
lated subcategory of C. Let S be the collection of morphisms u : X → Y such that
there is a distinguished triangle

X
u−→ Y

v−→ Z
w−→ ΣX.

in C with Z isomorphic to an object in B. Then S has calculi of left and right
fractions and it is compatible with the triangulated structure.

The category S−1C in this case is denoted C/B and called the Verdier quotient.

6.3 Derived categories

Definition. Let A be an abelian category. If

X
u−→ Y

v−→ Z
w−→ ΣX

is a distinguished triangle in K(A), then the sequence

· · · → H−1(Z)→ H0(X)→ H0(Y )→ H0(Z)→

H1(X)→ H1(Y )→ H1(Z)→ H2(X)→ . . .

is exact. It follows that the full subcategory K(A)ac of K(A) consisting of acyclic
complexes is a triangulated subcategory.

Let S be the collection of all quasi-isomorphisms in K(A). The long exact sequence
also shows that in a triangle as above, u ∈ S if and only if Z is acyclic. Thus S is
the collection of morphisms arising from the subcategory K(A)ac, so it has calculi
of left and right fractions and is compatible with the triangulated structure.

The derived category is the triangulated category

D(A) = K(A)/K(A)ac = S−1K(A).
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Remark. The bounded derived category Db(A) can be defined in several ways:
- Kb(A)/(Kb(A) ∩K(A)ac) = (S ∩Kb(A))−1Kb(A).
- The full subcategory of D(A) given by the bounded complexes.
- The full subcategory of D(A) given by the complexes with bounded cohomology.
These give triangle equivalent categories, see Stacks Project Lemma 13.11.6. Sim-
ilarly for D+(A) and D−(A).

This uses that if X is any complex and n ∈ Z, then there is a morphism from a
truncation τ≤nX → X

. . . −−−→ Xn−1 −−−→ Ker(dn) −−−→ 0 −−−→ . . .y y y

. . . −−−→ Xn−1 −−−→ Xn −−−→ Xn+1 −−−→ . . .

which is an isomorphism on cohomology H i with i ≤ n, and a morphism to a
truncation X → τ≥nX

. . . −−−→ Xn−1 −−−→ Xn −−−→ Xn+1 −−−→ . . .y y y

. . . −−−→ 0 −−−→ Xn/ Im(dn−1) −−−→ Xn+1 −−−→ . . .

which is an isomorphism on cohomology H i with i ≥ n.

Example. Consider the derived category D(R-Mod). We can consider any module
M as a complex in degree 0. If

0→M → I0 → I1 → . . .

is an injective, then M is isomorphic in the derived category to the complex I:

· · · → 0→ I0 → I1 → . . .

Any complex I of injectives which is bounded below is K-injective, meaning that

HomK(R-Mod)(X, I) = 0

for any acyclic complex X, see Stacks project Lemma 13.31.4. Moreover, I is
K-injective if and only if the natural map

HomK(R-Mod)(X, I)→ HomD(R-Mod)(X, I)

is an isomorphism for all X, see Stacks project Lemma 13.31.2.
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Now if N is an R-module, considered as a stalk complex in degree 0, then a
homomorphism N → ΣnI is given by a diagram

. . . −−−→ 0 −−−→ N −−−→ 0 −−−→ . . .y y y

. . . −−−→ In−1 −−−→ In −−−→ In+1 −−−→ . . .

and taking into account homotopies, we see that

HomK(R-Mod)(N, I) ∼= Hn(Hom(N, I)) ∼= Extn(N,M).

Thus

HomD(R-Mod)(N,M) ∼= HomD(R-Mod)(N, I) ∼= HomK(R-Mod)(N, I) ∼= Extn(N,M).

In general any complex X which is bounded below has a quasi-isomorphism X → I
with I a complex of injectives which is bounded below, see Stacks project Lemma
13.19.3. If X is not bounded below, by Spaltenstein’s work, there is still a quasi-
isomorphism to a K-injective complex, see Stacks project Lemma 13.34.6.

Example. If R is hereditary, then we saw in the section on the universal coefficient
theorem that any complex of projectives is isomorphic to a direct sum of two term
complexes 0 → P

θ−→ Q → 0 with θ injective, and this is quasi-isomorphic to the
stalk complex Coker(θ) in the same degree as Q. Now any bounded above complex
is quasi-isomorphic to a bounded above complex of projectives (this is dual to
the statement about bounded below complexes and injectives), so isomorphic in
D(R-Mod) to a direct sum shifts of stalk complexes.
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