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We cover a selection of important topics in algebra:

1. Preparations. We introduce the notions of categories and functors, which
are useful everywhere in pure mathematics, and we discuss Zorn’s lemma, a
version of the axiom of choice.

2. Modules. These are generalizations of vector spaces, where the field is re-
placed by an arbitrary ring. For example, additive groups are the same as
modules for the ring Z of integers. In particular, we discuss free modules,
semisimple modules and rings, and Noetherian rings and modules.

3. Multilinear algebra. An important construction for modules is the notion
of a tensor product. This allows one to introduce exterior algebras, which
provide a coordinate-free way to treat determinants. We also study Clifford
algebras.

4. Representations of finite groups. A representation of a group is the occurrence
of the group as symmetries. We are interested in linear representations,
which are actions of the group on a vector space, or equivalently modules
for a suitable ring, the group algebra. The character table contains all the
information about its complex representations.

5. Commutative algebra. Commutative rings play an essential role in number
theory and algebraic geometry. We discuss localization, integral extensions,
the Nullstellensatz, which establishes a correspondence between subsets of
affine space and ideals in a polynomial ring, and dimension theory.
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1 Preparations

1.1 Zorn’s Lemma

Definition. A partial order on a set S is a relation ≤ that is reflexive, transitive
and antisymmetric, which means that x ≤ y and y ≤ x ⇒ x = y. For elements in
S we write x ≥ y for y ≤ x, x < y for x ≤ y and x ̸= y, etc.

It is a total order if, in addition, for all x, y ∈ S, x ≤ y or y ≤ x holds.

A partially ordered set is a set equipped with a partial order.

Let S be a partially ordered set.

A chain is a subset C of S that is totally ordered.

A largest element in S is an element c ∈ S with x ≤ c for all x ∈ S. Likewise a
smallest element. If there is a largest element, it is unique.

An element x ∈ S is called maximal if there is no y ∈ S with x < y. Likewise
minimal. (A largest element is maximal, but the opposite need not be true.)

An upper bound for a subset X ⊆ S is an element b ∈ S with x ≤ b for all x ∈ X.

A partially ordered set is well-ordered if every nonempty subset has a smallest
element. Considering two-element subsets, we see that a well-ordered set is always
totally ordered.

Theorem. The following are equivalent:

(i) The axiom of choice: Given a set I and nonempty sets Xi for each i ∈ I, the
product

∏
i∈I Xi is not empty.

(ii) Zorn’s lemma: Let S be a partially ordered set. If every chain in S has an
upper bound, then S has a maximal element.

(iii) Every set can be well-ordered.

Remarks. (1) In naive set theory, the axiom of choice seems obvious, so we assume
it is true. Therefore, we assume that the equivalent conditions are also true.

The well-ordering property is not obvious. For example, the usual ordering of the
real numbers is not a well-ordering. Can you find an ordering?

We will use Zorn’s lemma several times.

(2) There are two hierarchies of infinities, one based only on sets, the other on
well-ordered sets.

(a) We consider two sets to be equivalent if there is a bijection between them.
The cardinal numbers are the equivalence classes of sets under this equivalence
relation.
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The cardinal number of the set N = {0, 1, 2, . . . } is denoted by ℵ0, where aleph is
the first letter of the Hebrew alphabet. Thus, a set X has cardinality ℵ0 if and
only if there is a bijection between X and N. That is, X is countable and infinite.

(b) We consider two well-ordered sets to be equivalent if there is a bijection between
them that preserves the order. The ordinals are the equivalence classes.

The ordinal number of the set N is denoted by ω. For every ordinal S there is a
successor S + 1 obtained by appending a new largest element to S. For example,
ω + 1 corresponds to the well-ordered set {0, 1, 2 . . . , ω}.

(3) For further discussion, including a proof of (ii)⇒(iii), I recommend P. M. Cohn,
Basic algebra, §1.2.

Theorem. Every proper ideal I in a ring R is contained in a maximal ideal.

Proof. Remember: We only consider rings with one. We use: An ideal I is proper
if and only if 1 /∈ I. Let S be the set of all proper ideals in R that contain I. It is
partially ordered by inclusion. We are looking for a maximal element of S.

Suppose C is a chain in S. If C = ∅, then I is an upper bound for C. If C ̸= ∅
then

K =
⋃
J∈C

J

is a subset of R. It is an ideal. For example, if a, b ∈ K, then a ∈ J and b ∈ J ′ for
J, J ′ ∈ C. Since C is a chain, J ⊆ J ′ or J ′ ⊆ J . In the first case, a+ b ∈ J ′ ⊆ K
and in the second case, a+ b ∈ J ⊆ K. Now K is a proper ideal, because if 1 ∈ K,
then 1 ∈ J for some J ∈ C, and then J is not a proper ideal. Thus K ∈ S, and it
is an upper bound for C.

By Zorn’s lemma, S contains a maximal element.

Definition. Let V be a vector space over a field K. Let (vi)i∈I be a tuple of
elements of V , where I is a set that is not necessarily finite.

The tuple is linearly independent if for all elements λi ∈ K, all but finitely
many of them zero, ∑

i∈I
λivi = 0⇒ λi = 0 for all i.

The tuple is a spanning set for V if for every v ∈ V there are elements λi ∈ K,
all but finitely many of them zero, such that

v =
∑
i∈I

λivi.

The tuple is a basis of V if it is linearly independent and a spanning set.
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Theorem. Every vector space V has a basis. If (vi)i∈I is a spanning set for V and
I ′ ⊆ I is a subset with (vi)i∈I′ linearly independent, then there is a subset I ′′ with
I ′ ⊆ I ′′ ⊆ I such that (vi)i∈I′′ is a basis.

Proof. The second statement implies the first: The tuple (vi)i∈I with I = V and
vi = i ∈ V is a spanning set for V and if I ′ = ∅, then (vi)i∈I′ is linearly independent.

Let S be the set of all subsets A of I with I ′ ⊆ A such that (vi)i∈A is linearly
independent. S is partially ordered by inclusion.

Suppose C is a chain in S. If C = ∅, then I ′ is an upper bound for C. If C ̸= ∅,
then

B =
⋃
A∈C

A

is a subset of I. Obviously I ′ ⊆ B. Suppose there is a linear relation∑
i∈B

λivi = 0.

The set N = {i ∈ B : λi ̸= 0} is finite. Suppose N is not empty. If i ∈ N ,
then i ∈ B, so i ∈ Ai for some Ai ∈ C. Since C is a chain and N is finite, there
is a j ∈ N such that Ai ⊆ Aj for all i ∈ N . Then N ⊆ Aj . However, this is
impossible because (vi)i∈Aj is linearly independent. Thus N = ∅, so (vi)i∈B is
linearly independent. So B ∈ S. Thus every chain has an upper bound.

According to Zorn’s lemma, there is a maximal element I ′′ in S. Suppose (vi)i∈I′′

is not a spanning set for V . Since (vi)i∈I is a spanning set, there is j ∈ I such that
vj cannot be written as a linear combination

vj =
∑
i∈I′′

λivi.

But then (vi)i∈I′′∪{j} is linearly independent. So I ′′ ∪ {j} ∈ S. A contradiction to
maximality.

1.2 Categories

Remark. Because of Russell’s paradox, there is no set of all sets. One solution is
to use classes. A class is a collection of things, possibly a set but not necessarily,
defined by a property that all things in the class satisfy. There is a class of all sets.

Definition. A category C consists of a class Ob(C) of objects and for each pair
X,Y ∈ Ob(C) a set Hom(X,Y ) of morphisms from X to Y , together with a law
of composition

Hom(Y, Z)×Hom(X,Y )→ Hom(X,Z), (g, f) 7→ g f,

for all X,Y, Z ∈ Ob(C), satisfying the following conditions.
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(i) The composition of morphisms is associative, that is, if f ∈ Hom(X,Y ), g ∈
Hom(Y,Z) and h ∈ Hom(Z,U), then h(gf) = (hg)f .

(ii) For all X ∈ Ob(C) there is an identity morphism IdX ∈ Hom(X,X) such that
for all f ∈ Hom(X,Y ) f IdX = f = IdY f . Note that IdX is unique.

Other notation: Instead of Hom(X,Y ) sometimes HomC(X,Y ) or C(X,Y ). Also
f : X → Y means f ∈ Hom(X,Y ).

A morphism f : X → Y is an isomorphism if there exists a morphism f ′ : Y → X
with f ′f = IdX and ff ′ = IdY . If so, then f ′ is unique, it is called the inverse of
f and is denoted by f−1.

Examples. (a) Concrete categories:

Set. The objects are sets, the morphisms are mappings θ : X → Y . It is easy to
see that the isomorphisms are the bijective mappings.

Grp. The objects are groups. Morphisms are group homomorphisms. It is easy to
see that isomorphisms correspond to the usual definition, i.e. bijective homomor-
phisms.

Ring. Similar.

K-Vec, where K is a field. The objects are vector spaces over K, morphisms are
linear maps. Isomorphisms correspond to the usual definition.

(b) The opposite category Cop is given by Ob(Cop) = Ob(C) and

HomCop(X,Y ) = HomC(Y,X)

(c) The product C × D of two categories has as objects the pairs (X,Y ) with X
an object in C and Y an object in D, and

Hom((X,Y ), (X ′, Y ′)) = HomC(X,X
′)×HomcD(Y, Y

′).

(d) If G is a group, then there is a category with only one object X, Hom(X,X) =
G, and composition given by the multiplication for G. Every morphism is an
isomorphism. The same applies to a ring in which only multiplication is used. The
isomorphisms correspond to the units.

(e) If S is a partially ordered set, then there is a category with objects of the
elements s ∈ S and

Hom(s, t) =

{
{ist} (s ≤ t)
∅ (else).

Definition. A morphism f : X → Y is a monomorphism if for all objects U
and α, β : U → X, if fα = fβ, then α = β.

4



A morphism f : X → Y is an epimorphism if for all objects Z and α, β : Y → Z,
if αf = βf , then α = β.

Remark. For the categories Set and K-Vec, monomorphisms are the same as
injective morphisms and epimorphisms are the same as surjective morphisms.

In the category Ring, every surjective morphism is an epimorphism, but the inclu-
sion f : Z → Q is an epimorphism that is not surjective. Namely, if α, β : Q → R
satisfy αf = βf , then α(n) = β(n) for all n ∈ Z. But since α and β are ring
homomorphisms, we have

α(n/m) = α(n)α(m−1) = α(n)α(m)−1 = β(n)β(m)−1 = β(n/m)

for n,m ∈ Z with m ̸= 0, so α = β.

Definition. A subcategory D of a category C is a category such that:

- Every object of D is an object of C,

- HomD(X,Y ) ⊆ HomC(X,Y ) for all X,Y ∈ Ob(D).

- The composition of morphisms in D corresponds to the composition in C and
IdX ∈ HomD(X,X) for all X ∈ Ob(D).

A subcategory is full if HomD(X,Y ) = HomC(X,Y ) for all X,Y ∈ Ob(D) .

Thus a full subcategory of C is determined by a subclass Ob(D) of Ob(C).

Examples. The category Ab of abelian groups is a full subcategory of Grp.

The category CRing of commutative rings is a full subcategory of Ring.

The category K-vec of finite-dimensional vector spaces is a full subcategory of
K-Vec.

Consider a group G as a category with an object. Any subgroup H ≤ G gives a
subcategory.

The subcategory of Set, which is given by all sets and injective (or surjective, or
bijective) mappings.

1.3 Functors

Definition. Let C and D be categories. A (covariant) functor F : C → D is
given by

- For every object X ∈ Ob(C), an object F (X) ∈ Ob(D)

- For every morphism θ : X → Y in C a morphism F (θ) : F (X)→ F (Y ) in D

such that the following hold:

(i) F (IdX) = IdF (X) for all X ∈ Ob(C).
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(ii) F (g f) = F (g)F (f) for morphisms g and f in C that are composable (i.e.
f : X → Y and g : Y → Z).

A contravariant functor from C to D is a covariant functor G : Cop → D. So if
θ : X → Y is a morphism in C, then G(θ) : G(Y )→ G(X).

Note that if F is a functor and θ is an isomorphism, then F (θ) is an isomorphism
with inverse F (θ−1).

A functor F : C → D is called full (respectively faithful) if for all X,Y ∈ Ob(C)
the mapping F : HomC(X,Y ) → HomD(F (X), F (Y )), θ 7→ F (θ) is surjective
(respectively injective).

A functor F : C → D is said to be dense if every object in D is isomorphic to one
of the form F (X) for some X ∈ Ob(C).

A functor F : C → D is called an equivalence if it is full, faithful and dense.

Examples. (1) The identity functor IdC : C → C. It’s an equivalence!

(2) If F : C → D and G : D → E are functors, the composition is a functor
GF : C → E . If F and G are both full, faithful or dense, the same applies to GF .

(3) The inclusion functor of a subcategory into a category, for example CRing→
Ring. Inclusion functors are faithful and full for full subcategories.

(4) Forgetful functors, e.g. Grp → Set or Ring → Ab forget some or all of the
structure. They are faithful.

A concrete category is a category C with a faithful functor C → Set. This makes
it possible to consider the objects of the category as sets with additional structure
and their morphisms as structure-preserving maps.

(5) Let G be a group. The commutator of a, b ∈ G is [a, b] = aba−1b−1 ∈ G. The
commutator group of G is

G′ = ⟨{[a, b] : a, b ∈ G}⟩⊴G.

Thus there is a factor group G/G′, and it is abelian. If θ : G→ H, then θ(G′) ⊆ H ′,
so there is an induced homomorphism G/G′ → H/H ′. This defines a functor
Grp→ Ab, G 7→ G/G′.

(6) Let K be a field. Let C be the category with Ob(C) = N = {0, 1, 2, . . . },
Hom(n,m) =Mm×n(K) and composition given by matrix multiplication. Consider
the functor F : C → K-vec given by F (n) = Kn and for A ∈ Hom(n,m) =
Mm timesn(K), F (A) is the corresponding linear map LA : Kn → Km of left
multiplication by A. Then F is an equivalence.

(7) The dual of a K vector space V is V ∗ = Hom(V,K). If f : V → W is a linear
map, then there is a linear map f∗ :W ∗ → V ∗ given by f∗(h)(v) = h(f(v)).
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This gives a functor K-Vecop → K-Vec, V 7→ V ∗.

Thus there is a contravariant functor from K-Vec to itself.

For finite-dimensional vector spaces there is an equivalence K-vecop → K-vec,
V 7→ V ∗.

The double dual is again a covariant functor K-Vec → K-Vec, V 7→ V ∗∗.

This gives an equivalence K-vec → K-vec, V 7→ V ∗∗

(8) Given U ∈ Ob(C) there is a representable functor HomC(U,−) : C → Set that
sends an object X to HomC(U,X).

There is also a contravariant representable functor Hom(−, U) : Cop → Set.

Definition. Let F,G : C → D be functors. A natural transformation α : F →
G is given by morphisms αX : F (X) → G(X) for all X ∈ Ob(C), such that for
every morphism f : X → Y in C the following diagram commutes:

F (X)
αX−−−−→ G(X)

F (f)

y yG(f)

F (Y )
αY−−−−→ G(Y ).

It is a natural isomorphism if the αX are all isomorphisms.

Theorem. A functor F : C → D is an equivalence if and only if there is a functor
G : D → C such that FG is naturally isomorphic to IdD and GF is naturally
isomorphic to IdC.

Proof. Suppose G and natural isomorphisms α : GF → IdC and β : FG → IdD
exist. For every U ∈ Ob(D) we have F (G(U)) ∼= U , so F is dense.

Let θ, θ′ : X → Y be morphisms in C with F (θ) = F (θ′). We have a commutative
square

GF (X)
αX−−−−→ X

GF (θ)

y yθ
GF (Y )

αY−−−−→ Y

so
θ = αYGF (θ)α

−1
X = αYGF (θ

′)α−1
X = θ′.

Thus F is faithful. By symmetry G is also faithful.

Let ϕ : F (X)→ F (Y ). Let θ = αYG(ϕ)α
−1
X . Then we have a commutative square

GF (X)
αX−−−−→ X

G(ϕ)

y yθ
GF (Y )

αY−−−−→ Y
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But we also have the commutative square above, so

GF (θ) = α−1
Y θαX = G(ϕ).

Now since G is faithful, ϕ = F (θ). So F is full.

Conversely, let us assume that F is an equivalence. We define G : D → C,
α, β as follows. Since F is dense, for each object U ∈ Ob(D) we can choose
an object G(U) ∈ Ob(C) with F (G(U)) isomorphic to U and an isomorphism
βU : F (G(U))→ U . Here we use the Axiom of Choice!

If ϕ : U →W is a morphism in D, then β−1
W ϕβU is a morphism FG(U)→ FG(W ).

Since F is full and faithful, there is a unique morphism θ : G(U) → G(W ) such
that F (θ) = β−1

W ϕβU . We define G(ϕ) = θ.

If X ∈ Ob(C), then βF (X) : FGF (X) → F (X), and since F is full and faithful,
there is an isomorphism αX : GF (X) → X with βF (X) = F (αX). Now it is easy
to check that G, α, β satisfy the conditions.

Remark. As further reading, you could look at M. Brandenburg, Einführung in
die Kategorientheorie. There are many interesting topics, such as limits, adjoint
functors and Yoneda’s Lemma.
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2 Modules

2.1 Basics

Recall that a ring R is given by an additive group (R,+) and a multiplication

R×R→ R, (r, s) 7→ rs

which is associative, distributive over addition and has a one, denoted 1 or 1R.

Definition. Let R be a ring. A (left) R-module is an additive group (M,+)
together with an operation

R×M →M, (r,m) 7→ rm

called the action, satisfying the following:

(1) For all r, s ∈ R and m ∈M we have r(sm) = (rs)m,

(2) 1m = m for all m ∈M ,

(3) r(m+m′) = rm+rm′ and (r+r′)m = rm+r′m for all r, r′ ∈ R and m,m′ ∈M .

We sometimes write RM to indicate that M is a left R-module.

A submodule of an R-module M is a subset L of M which is a module under the
same operations. Equivalently L is an additive subgroup of M and rx ∈ L for all
r ∈ R and x ∈ L.

If M and N are left R-modules, an R-module homomorphism θ :M → N is a
homomorphism of additive groups with θ(rm) = rθ(m) for all r ∈ R and m ∈M .

Using composition of mappings, this gives a category R-Mod of left R-modules.
The isomorphisms correspond to bijective homomorphisms.

We denote by HomR(M,N) the set of all R-module homomorphisms from M to
N . It is naturally an additive group under

(θ + ϕ)(m) = θ(m) + ϕ(m)

for θ, ϕ ∈ HomR(M,N) and m ∈M .

We define EndR(M) = HomR(M,M). It is naturally a ring under composition.

Examples. (a) If K a field, then left K-modules = K-vector spaces, submodules =
subspaces and K-module homomorphisms = linear maps. Thus K-Mod = K-Vec.

(b) Any additive group becomes a Z-module in a unique way, submodules = sub-
groups and Z-module homomorphisms = group homomorphisms. Thus we can
identify Z-Mod and Ab.
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(c) If ϕ : S → R is a ring homomorphism, and M is an R-module, then we can
turn the additive group (M,+) into an S-module with the action

S ×M →M, (s,m) 7→ ϕ(s)m.

We denote this S-module by SM . If f : M → N is a R-module homomorphism,
then it gives an S-module homomorphism SM → SN . Thus we obtain a functor
R-Mod → S-Mod. It is called restriction to S via ϕ.

(d) If V is a K-vector space and θ : V → V is a linear map, then V becomes a
K[X]-module via

(a0 + a1X + a2X
2 + . . . )v = a0v + a1θ(v) + a2θ

2(v) + . . . .

A subset W of V is a K[X]-submodule if and only if W is a θ-invariant subspace.
we have

EndK[X](V ) = {f ∈ EndK(V ) : θf = fθ}.

(e) If R is a ring, then there is a ring Mn(R) of n× n matrices with entries on R.
Let Rn be the set of n-tuples of elements of R, written as column vectors. Then Rn

is naturally a left Mn(R)-module by the usual product of a matrix and a column
vector.

Remarks. (1) If M is a left R-module and r ∈ R, then the mapping of left
multiplication by r,

λr :M →M, λr(m) = rm

is not in general an R-module homomorphism, unless R is commutative, but it is
a homomorphism of additive groups, so of Z-modules. This gives a mapping

λ : R→ EndZ(M), r 7→ λr

which is a ring homomorphism.

Conversely, given an additive group (M,+) and a ring homomorphismR→ EndZ(M),
we can turn M into an R-module with the action rm = λ(r)(m).

Thus a left R-module con either be thought of as an additive group M together
with an action R × M → M , or as an additive group M together with a ring
homomorphism R→ EndZ(M).

(2) Instead of left modules one can define a right module, with an actionM×R→
M , (m, r) 7→ mr satisfying m(rs) = (mr)s. We write Mod-R for the category of
right R-modules.

If R is commutative, then left R-modules correspond to right R-modules, via rm =
mr.
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If R is not commutative, then modules for R on one side, correspond to modules
for Rop on the other side, where Rop is the opposite ring to R, given by the same
additive group, but with multiplication ·op given by

r ·op s = rs.

For example if M is a right R-module, then setting rm = mr we have

r(sm) = r(ms) = (ms)r = m(sr) = (sr)m = (r ·op s)m

so M is a left Rop-module.

(3) Multiplication turns any ring R into a left R-module RR.

A left ideal in R is a submodule of RR. Thus it is an additive subgroup L of
(R,+) such that rx ∈ L for all r ∈ R and x ∈ L.

Similarly R gives a right R-module RR, and the submodules are called right ideals
in R. An ideal in R is a subset of R which is a left ideal and a right ideal.

If R is commutative, ideal = left ideal = right ideal.

Properties. (a) If θ :M → N is a homomorphism of R-modules, then

Ker θ = {m ∈M : θ(m) = 0}

is a submodule of M and

Im θ = {θ(m) : m ∈M}

is a submodule of N . More generally, if M ′ is a submodule of M then θ(M ′) is a
submodule of N and if N ′ is a submodule of N , then θ−1(N ′) is a submodule of
M . [This is the same as for vector spaces.]

(b) If M is an R-module and L is a submodule of M , then the factor group M/L
becomes a module with the action r(L + m) = L + rm. It is called the factor
or quotient module. The canonical map M → M/L is a module homomorphism
which is surjective and has kernel L. [This is the same as for vector spaces.]

(c) If M is a left R-module and m ∈M , then the mapping

ρm : R→M, ρm(r) = rm

is an R-module homomorphism since ρm(rs) = rsm = rρm(s) for r, s ∈ R.

It gives a mapping
ρ :M → HomR(R,M), m 7→ ρm,

This is a homomorphism of additive groups, and it is an isomorphism since if
ρ(m) = 0 then ρm = 0, so ρm(1) = 0, so 1m = 0, som = 0, and if f ∈ HomR(R,M)
and we take m = f(1), then ρm(r) = rm = rf(1) = f(r1) = f(r), so f = ρ(m).

11



The mapping ρ becomes an isomorphism of R-modules if we turn HomR(R,M)
into an R-module with the action

R×HomR(R,M)→ HomR(R,M), (r, θ) 7→ rθ, (rθ)(r′) = θ(r′r).

Namely, (rρ(m))(r′) = (rρm)(r
′) = ρm(r

′r) = r′rm = ρrm(r
′) = ρ(rm)(r′), so

rρ(m) = ρ(rm).

(d) Applying this to the module M = RR gives a ring isomorphism

ρ : Rop → EndR(R).

Namely (ρrρs)(t) = ρr(ρs(t)) = ρr(ts) = tsr = ρsr(t).

(e) If M is a left R-module and m ∈M , then the set

Rm = {rm : r ∈ R}

is a submodule of M . It is the image of the map ρm.

(f) If I is a set and Mi are submodules of M for i ∈ I, then
⋂
i∈IMi is a submodule

of M .

(g) If M1, . . . ,Mn are submodules of M , we define

M1 + · · ·+Mn = {x1 + · · ·+ xn : xi ∈Mi}.

More generally, if I is a set and Mi are submodules of M for i ∈ I, we define∑
i∈I

Mi = {
∑
i∈I

xi : xi ∈Mi, all but finitely many zero}.

This is a submodule of M .

In Algebra I there were Homomorphism Theorems and Isomorphism Theorems for
groups (§1.5) and for rings (§3.3). In just the same way there are versions for
modules.

Theorem (Homomorphism Theorem). Let θ :M → N be a homomorphism of left
R-modules.

(1) If L is a submodule of M with L ⊆ Ker θ, then there is a unique homomorphism
θ :M/L→ N with θ(L+m) = θ(m) for m ∈M .

(2) There is an isomorphism θ : M/Ker θ → Im θ with θ(Ker θ +m) = θ(m) for
m ∈M .

Theorem (First Isomorphism Theorem). Let M be a left R-module and L,N
submodules of M . Then there is an isomorphism

L/(L ∩N)→ (L+N)/N, (L ∩N) + x 7→ N + x.

12



Theorem (Second Isomorphism Theorem). Let L be a submodule of a left R-
module M .

(1) If N is a submodule of M and L ⊆ N ⊆M , then N/L is a submodule of M/L.

(2) Every submodule U of M/L is of this form for a unique N with L ⊆ N ⊆ M ,
namely N = {m ∈M : L+m ∈ U}.

(3) In this case there is an isomorphism

M/N → (M/L)/(N/L), N +m 7→ (N/L) + (L+m).

Remark. We denote by 0 the zero additive group {0} or zero R-module {0}.

If M and N are additive groups or R-modules, then any homomorphism M → N
sends 0 to 0. Thus HomR(M, 0) = 0 and HomR(0,M) = {0}. Thus 0 is an initial
object in R-Mod and in R-Modop, so a final object in R-Mod.

Definition. Let R be a ring. A sequence of R-modules and homomorphisms

· · · → X
f−→ Y

g−→ Z → . . .

is said to be exact at Y if Ker g = Im f . It is exact if it is exact at every module
which has homomorphisms in and out.

A short exact sequence is one of the form 0→ X → Y → Z → 0.

For example a homomorphism θ :M → N

- is injective if and only if 0→M
θ−→ N is exact,

- is surjective if and only if M θ−→ N → 0 is exact.
- is an isomorphism if and only if 0→M

θ−→ N → 0 is exact.

Any submodule L of M gives a short exact sequence

0→ L→M →M/L→ 0.

If
0→ X

f−→ Y
g−→ Z

is exact, then f induces an isomorphism X → Ker g. If

X
f−→ Y

g−→ Z → 0

is exact, then g induces an isomorphism Y/ Im f → Z by the Homomorphism
Theorem. We call Y/ Im f the cokernel of f and denote it Coker f .

An exact sequence
· · ·W → X

f−→ Y → Z · · ·

13



can be broken into two exact sequences

· · ·W → X
f−→ Im f → 0 0→ Im f → Y → Z · · ·

Any morphism θ :M → N gives an exact sequence

0→ Ker θ →M → N → N/ Im θ → 0,

so short exact sequences

0→ Ker θ →M → Im θ → 0 and 0→ Im θ → N → N/ Im θ → 0.

Definition. For any R-module M , we get a representable functor

HomR(M,−) : R−Mod→ Ab .

It sends an R-module X to the additive group HomR(M,X), and it sends a mor-
phism f ∈ HomR(X,Y ) to the mapping HomR(M,X)→ HomR(M,Y ), θ 7→ fθ.

Similarly, we get a contravariant representable functor, so a functor

HomR(−,M) : R−Modop → Ab

sending X to HomR(X,M) and a morphism f ∈ HomR(X,Y ) to the mapping
HomR(Y,M)→ HomR(X,M), θ 7→ θf .

Proposition. If M is an R-module and 0 → X
f−→ Y

g−→ Z → 0 is an exact
sequence of R-modules, then the following sequences are exact:

(i) 0→ HomR(M,X)→ HomR(M,Y )→ HomR(M,Z), and

(ii) 0→ HomR(Z,M)→ HomR(Y,M)→ HomR(X,M).

Proof. (i) If θ ∈ HomR(M,X) is sent to zero, then fθ = 0. Thus f(θ(m)) = 0 for
all m ∈M . But f is injective, so θ(m) = 0 for all m, so θ = 0.

If ϕ ∈ HomR(M,Y ) is sent to zero, then gϕ = 0, so ϕ(m) ∈ Ker g = Im f . Thus for
each m ∈M there is a unique xm ∈ X with f(xm) = ϕ(m). We define θ(m) = xm,
so fθ = ϕ. It remains to check that θ is an R-module homomorphism, so that ϕ is
in the image of the map HomR(M,X) → HomR(M,Y ). This is straightforward.
For example ϕ(rm) = rϕ(m) = rf(xm) = f(rxm), so by uniqueness xrm = rxm,
so θ(rm) = rθ(m).

(ii) If θ ∈ HomR(Z,M) is send to zero, then θg = 0. Thus θ(g(m)) = 0 for all
m ∈M . Since g is surjective, it follows that θ(z) = 0 for all z ∈ Z, so θ = 0.

Suppose ϕ ∈ HomR(Y,M) is sent to zero, so ϕf = 0. We define a homomorphism
θ ∈ HomR(Z,M) as follows. If z ∈ Z, then z = g(y) for some y ∈ Y , and we define
θ(z) = ϕ(y). This is well-defined, for if z = g(y) = g(y′), then y−y′ ∈ Ker g = Im f ,
so y − y′ = f(x) for some x, so ϕ(y) − ϕ(y′) = ϕ(y − y′) = ϕ(f(x)) = 0. Finally
we need that θ ∈ HomR(Z,M). For example if z, z′ ∈ Z and z = g(y), z′ = g(y′),
then z + z′ = g(y + y′), so θ(z + z′) = ϕ(y + y′) = ϕ(y) + ϕ(y′) = θ(z) + θ(z′).
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2.2 Finitely generated and noetherian modules

Definition. Given a subset S of a module M , we define the submodule of M
generated by S as the intersection of all submodules containing S. It is the
unique smallest submodule containing S. Clearly it is equal to∑

m∈S
Rm.

A module M which can be generated by one element m is called a cyclic. Thus
M = Rm. A module is finitely generated (f.g.) if it can be generated by a finite
set {m1, . . . ,mn}, so

M = Rm1 + · · ·+Rmn.

Proposition. A module is cyclic if and only if it is isomorphic to a quotient R/L
with L a left ideal in R.

Proof. The module R/L is cyclic, generated by the element L + 1R. Say M is
cyclic, so M = Rm. The mapping R → M , r 7→ rm is a module homomorphism,
and it is surjective. The kernel L is a left ideal in R, and by the Homomorphism
Theorem, M ∼= R/L.

Theorem. Any proper submodule L of a finitely generated module M is contained
in a maximal (proper) submodule.

Proof. We use Zorn’s Lemma. Let S be the set of all proper submodules of M
containing L and let m1, . . . ,mn be a generating set of M .

Let C be a chain in S. We want to show that C has an upper bound in S. If C is
empty, then L is an upper bound. Thus suppose C is not empty. Let

B =
⋃
N∈C

N.

Since C is a chain, it is easy to see that B is a submodule of M . Moreover it is
proper, for if B =M , then m1, . . . ,mn ∈ B. Then each mi ∈ Ni for some Ni ∈ C.
Since C is a chain, there is some j with Ni ⊆ Nj for all i. Then all mi ∈ Nj , so
Nj =M , which is a contradiction.

Thus by Zorn’s Lemma S has a maximal element.

Lemma. Suppose M is a module and N a submodule.

(i) If M is f.g. then so is M/N .

(ii) If N and M/N are f.g., so is M .

[In general, if M is f.g., it does not follow that N is f.g.]
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Proof. (i) is clear.

(ii) Suppose n1, . . . , nr are generators of N and N+m1, . . . , N+ms are generators
of M/N . We claim that n1, . . . , nr,m1, . . . ,ms are generators of M .

Let X be the submodule generated by these elements. Since it contains the ni, it
contains N . Also X/N contains the M +mi, so X/N =M/N . Thus X =M .

Theorem. Let M be a left R-module. The following are equivalent.

(i) M is noetherian, that is, any ascending chain of submodules of M

M1 ⊆M2 ⊆ . . .

breaks off, meaning that there is some n such that Mn = Mn+1 = . . . . [This is
also called the ascending chain condition on submodules of M .]

(ii) Any non-empty set S of submodules of M has a maximal element.

(iii) Every submodule of M is finitely generated.

Proof. (i)⇒(ii) Suppose S has no maximal element. Choose M1 ∈ S. Since M1

isn’t maximal, there is M2 ∈ S with M1 ⊂M2, M1 ̸=M2. Since M2 isn’t maximal,
there is M3 ∈ S with M2 ⊂ M3, M2 ̸= M3. This gives an ascending chain which
doesn’t break off.

(ii)⇒(iii) Let N be a submodule M . Let S be the set of f.g. submodules of N . It is
nonempty since {0} ∈ S. Thus it has a maximal element L. If L ̸= N then there is
x ∈ N \L, and L+Rx ∈ S and L is a proper submodule of L+Rx, contradicting
maximality of L.

(iii)⇒(i) Let
M1 ⊆M2 ⊆ · · · ⊆M

be an ascending chain. Then N =
∑
Mi =

⋃
Mi is a submodule of M , so N is

f.g., say by n1, . . . , nr. Now each ni belongs to some Mji . Then all n1, . . . , nr ∈Mj

where j = max{j1, . . . , jr}. But then N ⊆ Mj ⊆ N . Thus Mj = Mj+1 = . . . , so
the ascending chain breaks off.

Definition. A ring R is left noetherian if RR is noetherian.
A commutative ring R is noetherian if RR is noetherian.

Thus a commutative ring is noetherian
⇔ each ideal is finitely generated
⇔ any ascending chain of ideals breaks off
⇔ any non-empty set of ideals has a maximal element.

Examples: Z, since any ideal is principal, and fields K, since they have no ideals
except 0 and K.
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Example. Let R = K[X1, X2, . . . ], a polynomial ring over a field K in infinitely
many indeterminates. It is not noetherian since it has an ascending chain of ideals

I1 ⊆ I2 ⊆ . . . , In =

n∑
i=1

RXi

which does not break off (since Xn+1 ∈ In+1 \ In).

Then R is a f.g. (even cyclic) R-module, but it has submodules which are not f.g.

Theorem. Let M be a left R-module..

(i) If N is a submodule of M , then M is noetherian if and only if N and M/N are
noetherian.

(ii) If L and N are noetherian submodules of M , so is L+N .

(iii) If R is a left noetherian ring, then M is noetherian if and only if it is f.g.

Proof. (i) Suppose M is noetherian. Clearly N is noetherian. Also any ascending
chain of submodules of M/N is of the form

M1/N1 ⊆M2/N ⊆ . . .

for some ascending chain M1 ⊆M2 ⊆ . . . , so it breaks off.

Now suppose N and M/N are noetherian. If Mi is an ascending chain of sub-
modules of M , then Mi ∩ N is an ascending chain of submodules of N , and
(N +Mi)/N is an ascending chain of submodules of M/N . Thus there is n such
that Mn ∩N =Mn+1 ∩N = . . . and (N +Mn)/N = (N +Mn+1)/N = . . . . Then
N +Mn = N +Mn+1 = . . . . Then if x ∈ Mn+1, we have x = n + y with n ∈ N
and y ∈Mn, so n = x− y ∈ N ∩Mn+1 = N ∩Mn, so y = x− (x− y) ∈Mn. Thus
Mn =Mn+1 = . . . .

(ii) (L + N)/N ∼= L/(L ∩ N) by the First Isomorphism Theorem, and this is
noetherian by (i), hence so is L+N .

(iii) Suppose R is left noetherian and M is f.g.. If m ∈M then Rm is isomorphic
to a quotient of RR, so it is noetherian by (i). Then Rm1+ · · ·+Rmn is noetherian
by (ii) and induction.

Theorem (Hilbert’s Basis Theorem). If K is a commutative noetherian ring, then
so is the polynomial ring R = K[X].

Proof. Suppose that I is an ideal in R which is not finitely generated.

Take a nonzero polynomial f1(X) of least degree in I. By induction, suppose we
have fixed f1(X), . . . , fk(X) ∈ I. Since I is not finitely generated,

∑k
i=1Rfi(X) is

a proper subset of I, so we can choose fk+1(X) ∈ I of least degree not in this subset.
Thus we obtain an infinite sequence of polynomials f1(X), f2(X), . . . . Let fi(X)
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have degree di and leading coefficient ai. We have d1 ≤ d2 ≤ . . . by construction.
Consider the ascending chain

Ka1 ⊆ Ka1 +Ka2 ⊆ . . .

of ideals in K. If it breaks off, then for some n we have an+1 =
∑n

i=1 λiai with
λi ∈ K. But then

fn+1(X)−
n∑
i=1

λiX
dn+1−difi(X)

would be an element of I \
∑n

i=1Rfi(X) of degree less than dn+1. This contradicts
the minimality of the degree of fn+1(X).

Examples. The following are commutative noetherian rings:

- Z and any field K,

- K[X1, . . . , Xn] with K a commutative noetherian ring,

- R/I with R a commutative noetherian ring and I an ideal in R.

2.3 Products, direct sums and free modules

Definition. Suppose we are given a left R-module Mi for all i in a set I.

The product
∏
i∈IMi becomes an R-module with the operations

(mi) + (m′
i) = (mi +m′

i), r(mi) = (rmi).

The (external) direct sum is the submodule⊕
i∈I

Mi = {(mi) ∈
∏
i∈I

Mi : mi = 0 for all but finitely many i}.

For a finite index set we have equality:

M1 ×M2 × · · · ×Mn =M1 ⊕M2 ⊕ · · · ⊕Mn.

In case all terms Mi are equal to M , we use the notation

M I =
∏
i∈I

M, M (I) =
⊕
i∈I

M.

The first can be identified with the set of mappings I → M , the second with the
mappings that send all but finitely many elements of I to 0. (Of course M∅ =
M (∅) = {0}.)

For j ∈ I there are R-module homomorphisms

πj :
∏
i∈I

Mi →Mj , (mi) 7→ mj
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and

µj :Mj →
⊕
i∈I

Mi, m 7→ (mi) where mj = m and mi = 0 for i ̸= j

Proposition. For any family of R-modules Mi (i ∈ I) and R-module N we have
isomorphisms of additive groups

HomR(N,
∏
i∈I

Mi)→
∏
i∈I

HomR(N,Mi), θ 7→ (πiθ)

and
HomR(

⊕
i∈I

Mi, N)→
∏
i∈I

HomR(Mi, N), ϕ 7→ (ϕµi).

Proof. It is easy to see that the mappings are homomorphisms of additive groups.

The first is a bijection since it has inverse mapping∏
i∈I

HomR(N,Mi)→ HomR(N,
∏
i∈I

Mi)

sending (θi) to the map θ with θ(n) = (θi(n)).

The second is a bijection since it has inverse mapping∏
i∈I

HomR(Mi, N)→ HomR(
⊕
i∈I

Mi, N)

sending (ϕi) to the map ϕ with ϕ((mi)) =
∑

i∈I ϕi(mi) for (mi) ∈
⊕

i∈IMi. The
sum makes sense since only finitely many terms are nonzero.

Definition. Let Mi (i ∈ I) be a family of submodules of a module M . By taking
the inclusion map Mi →M for each i, we obtain a homomorphism⊕

i∈I
Mi →M, (mi) 7→

∑
i∈I

mi.

The image is
∑

i∈IMi. If this homomorphism is an isomorphism, we say that M
is the (internal) direct sum of the modules Mi (i ∈ I) and write

M =
⊕
i∈I

Mi.

Note that if M is the external direct sum of of Mi, then by the homomorphisms µi
we can identify each Mi as a submodule of M , and then M is the internal direct
sum of these copies of Mi.

Proposition. If L and N are submodules of M then M = L ⊕ N if and only if
M = L+N and L ∩N = {0}.
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Proof. The kernel of the map L⊕N →M , (ℓ, n) 7→ ℓ+ n is

{(x,−x) : x ∈ L ∩N}.

Lemma. Suppose M =
⊕

i∈IMi. Then M is f.g. if and only if the modules Mi

are all f.g. and all but finitely many of them are zero.

Proof. Exercise.

Definition. Let M be a module and let (xi) be a tuple of elements of M indexed
by a set I.

Recall that the submodule of M generated by the xi is
∑

i∈I Rxi.

Thus the xi generate M if and only if each element of M can be written in the
form

∑
i∈I rixi with ri ∈ R, all but finitely many zero.

We say that (xi) is a basis of M if each element of M can be written uniquely in
the form

∑
i∈I rixi with ri ∈ R, all but finitely many zero.

A module is free if it has a basis.

Examples. (i) Over a field K, the notion of a basis agrees with the definition for
vector spaces, so every K-module has a basis.

(ii) R is a free R-module with basis (1R).

(iii) If I is a set, then the R-module R(I) is free with basis (ei), where ei is the
tuple with ith entry 1R and the other entries 0. Namely, the element (ri) ∈ R(I)

can be written uniquely in the form
∑

i∈I riei.

(iv) If n > 0 then the Z-module Z/Zn is not free, since for any x ∈ Z/Zn we have
the relation nx = 0 = 0x, so x cannot be part of a basis.

(v) The Z-module Q is not free. It does not have a basis (x) with one element,
since there is no x ∈ Q with Q = {nx : n ∈ Z}. Also if x = a/n and y = b/m are
two non-zero elements of Q, then bnx = ab = amy, so x and y cannot both be in
a basis.

Theorem. (i) An R-module is free if and only if it is isomorphic to R(I) for some
I. Explicitly, if (xi)i∈I is a basis of M , then the mapping

R(I) →M, (ri) 7→
∑
i∈I

rixi

is an isomorphism of R-modules.

(ii) If M is a free module with basis (xi)i∈I and N is any module, then the mapping

HomR(M,N) ∼= N I , θ 7→ (θ(xi))
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is an isomorphism of additive groups.

(iii) A free module is finitely generated if and only if it has a finite basis.

(iv) Every (f.g.) module M can be written as a quotient of a (f.g.) free module.

Proof. (i) If M is free, then the stated map is clearly an isomorphism. Conversely
if θ : R(I) →M is an isomorphism, then (θ(ei)) is a basis.

(ii) We have

HomR(M,N) ∼= HomR(R
(I), N) = HomR(

⊕
i∈I

R,N)

∼=
∏
i∈I

HomR(R,N) ∼=
∏
i∈I

N = N I .

(iii) Follows from the lemma about finitely generated direct sums, for if R ̸= 0 and
I is infinite, then R(I) is not f.g..

(iv) Every module M can be generated by some subset, e.g. M itself, and by the
lemma, a generating set gives a surjective homomorphism θ : F → M with F a
free module. (This means that M ∼= F/Ker θ so it is a quotient of F .)

Definition. Given a set X, we denote by RX the set of formal sums∑
x∈X

rxx

with rx ∈ R, all but finitely many zero. It is a free R-module with basis identified
with the set X. Suppose we have elements ci ∈ RX for i in a set I. They generate
a submodule

∑
i∈I Rci of RX. The quotient

RX/
∑
i∈I

Rci

is called the module generated by X subject to the relations ci = 0 (i ∈ I).
We denote the image of the basis element x ∈ X in this module also by x.

2.4 Semisimple modules and rings

Definition. A ring R is a division ring or skew field if R ̸= 0 and every non-zero
element is invertible. Thus a commutative division ring is a field.

An R-module S is simple or irreducible if it has exactly two submodules, namely
0 and S. In particular, a simple module is nonzero.

If S is simple, then it is cyclic, generated by any non-zero element of S.

21



Lemma (Schur’s Lemma). (i) If M and N are simple R-modules, then any nonzero
homomorphism θ :M → N is an isomorphism.

(ii) If M and N are non-isomorphic simple modules, then HomR(M,N) = 0.

(iii) If M is simple, then EndR(M) is a division ring.

Proof. (i) If θ ̸= 0 then Im θ is nonzero, so it must be N , and Ker θ is not M , so
it must be 0.

(ii),(iii) Follow.

Definition. An R-module M is semisimple or completely reducible if every
submodule has a complement. That is, for every submodule N of M , there is a
submodule C with N ⊕ C =M .

Proposition. Any submodule or quotient of a semisimple module is semisimple.

Proof. If N is a submodule of a semisimple module M and L is a submodule of N ,
then L has a complement C in M , so L⊕C =M . We claim that L⊕(C∩N) = N .

Since L ∩ C = 0 we have L ∩ (C ∩N) = 0.

Clearly L+ (C ∩N) ⊆ N .

Also if n ∈ N , then we can write n = ℓ + c for some ℓ ∈ L and c ∈ C. Then
c = n− ℓ ∈ N , so c ∈ C ∩N . Thus n ∈ L+ (C ∩N). Thus N = L+ (C ∩N).

Thus N is semisimple.

Now suppose M is semisimple and consider a quotent M/N . Then N has a com-
plement C, so M = N ⊕C. But then the map C →M/N is an isomorphism, and
C is semismple, hence so is M/N .

Theorem. For an R-module M the following conditions are equivalent

(a) M is semisimple

(b) M is a sum of simple submodules

(c) M is a direct sum of simple modules.

Proof. (a)⇒(b). Let N be the sum of all simple submodules of M . Suppose
N ̸= M . Now N has a complement C ̸= 0. Let 0 ̸= c ∈ C. Then Rc is a
non-zero f.g. submodule of C. Thus Rc has a maximal submodule L. Then Rc is
semisimple, so L has a complement D, and it must be simple since L is maximal.
Thus D ⊆ N . Contradiction.

(c)⇒(b) is trivial.

Suppose (b) holds and N is a submodule of M . We show that N has a complement
in M which is a direct sum of simple modules. This proves (a) and (c).
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Let I be the set of simple submodules of M . So M =
∑

S∈I S. Consider the set
X of subsets J of I such that N ⊕

⊕
S∈J S is a direct sum.

Any chain Y in X has an upper bound J ′ =
⋃
J∈Y J in X, for if the sum N +∑

S∈J ′ S is not direct, then the same holds for a finite subset of J ′, and this is
contained in an element of Y .

Thus by Zorn’s lemma there is a maximal element J ∈ X. Now ifN⊕
⊕

S∈J S ̸=M ,
then there is some simple submodule T not contained in N ⊕

⊕
S∈J S. But then

J ∪ {T} ∈ X, contradiction.

Thus
⊕

S∈J S is a complement to N which is a direct sum of simple modules.

Corollary. A direct sum of semisimple modules is semisimple.

Proof. If M =
⊕

i∈IMi and each Mi =
⊕

j∈Ii Si, then M =
⊕

j∈J Sj where J is
the disjoint union of the sets Ii with i ∈ I.

Theorem. A semisimple R-module M is f.g. if and only if it is a direct sum of
finitely many simple submodules. Moreover if

M = S1 ⊕ · · · ⊕ Sn = T1 ⊕ · · · ⊕ Tm

are two such decompositions as direct sums of simple submodules, then n = m and
there is a permutation σ such that Si ∼= Tσ(i) for all i.

Proof. The first statement follows from the lemma about f.g. direct sums.

We show the rest by induction on n. Let N = S1⊕. . . Sn−1. Then M/N ∼= Sn, so it
is simple. For some i we must have Ti ̸⊆ N , so (N +Ti)/N is a nonzero submodule
of M/N , so it equals M/N , so N +Ti =M . Thus the homomorphism N →M/Ti,
x 7→ Ti + x is surjective. It is also injective, for the kernel is N ∩ Ti, and if this
is not zero, then it is equal to Ti, so Ti ⊆ N , a contradiction. Thus we have an
isomorphism between N = S1 ⊕ . . . Sn−1 and M/Ti ∼=

⊕
j ̸=i Tj . By induction we

get n− 1 = m− 1 and a bijection π : {1, . . . , i− 1, i+ 1, . . . ,m} → {1, . . . , n− 1}
with Tj ∼= Sπ(j), hence n = m and we get σ.

The theory of vector spaces extends to division rings.

Theorem. Every module for a division ring is semisimple and free. Moreover the
modules with a finite basis are exactly the f.g. modules, and they have a well defined
dimension, the number of elements in any basis.

Proof. If R is a division ring, then it has no left ideals other than 0 and R, so RR
is a simple module.

Any non-zero cyclic module is isomorphic to R/L with L a proper left ideal, so
isomorphic to RR, so simple.
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Any simple module is cyclic, so isomorphic to RR.

Now every module is the sum of its cyclic submodulesM =
∑

m∈M Rm, so semisim-
ple. Thus it is isomorphic to a direct sum of copies of simple modules, so free.

Now any basis gives a decomposition as a direct sum of copies of the simple mod-
ule R, and the number of terms in the decomposition is uniquely determined by
the last theorem.

Theorem (Artin-Wedderburn Theorem). For a ring R, the following are equiva-
lent, in which case we call R a semisimple ring (or more precisely, a semisimple
artinian ring).

(i) RR is semisimple.

(ii) Every left R-module is semisimple.

(iii) R is isomorphic to a product of matrix rings over division rings,

R ∼=Mn1(D1)× · · · ×Mnr(Dr)

with ni ≥ 1 and the Di division rings.

Proof. (i)⇒(ii) Using that a semisimple module is one which is a sum of simple
modules, we see that any direct sum of semisimple modules is semisimple. Thus
(i) implies that any free module is semisimple, and then any module is a quotient
of a free module, so semisimple.

(ii)⇒(i) Clear

(i)⇒(iii) Given R-modules M1, . . . ,Mn we have

End(M1 ⊕ · · · ⊕Mn) ∼=
n∏
i=1

n∏
j=1

HomR(Mj ,Mi).

We can display elements as matricesθ11 . . . θ1n
...

. . .
...

θn1 . . . θnn


with θij ∈ HomR(Mj ,Mi), and then composition corresponds to matrix multipli-
cation.

Now write R as a direct sum of simple submodules. Since RR is a finitely generated
module, only finitely many terms can appear in the direct sum. Collecting terms,
we have

RR ∼= S1 ⊕ · · · ⊕ S1︸ ︷︷ ︸
n1

⊕ · · · ⊕ Sr ⊕ · · · ⊕ Sr︸ ︷︷ ︸
nr
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for pairwise non-isomorphic simple modules Si.

Let Ei = EndR(Si). By Schur’s Lemma these are division rings and elements of
EndR(R) correspond to matrices which have the block formA1 0 . . .

0 A2 . . .
...

...
. . .


with Ai ∈Mni(Ei). Thus

Rop ∼= EndR(R) ∼=Mn1(E1)× · · · ×Mnr(Er).

Then using the transposes of the matrices we get an isomorphism

R ∼=Mn1(D1)× · · · ×Mnr(Dr)

where Di = Eopi .

(iii)⇒(i) Suppose R =Mn1(D1)×· · ·×Mnr(Dr). Consider the elements which are
zero except for the jth column of the ith factor Mni(Di). They give a left ideal in
R isomorphic to the module Si = Dni

i . This module is simple since Di is a division
ring, as on the exercise sheet for a field. Now R is the direct sum of these simple
left ideals, so RR is semisimple.
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3 Algebras and multilinear algebra

3.1 Algebras

Definition. Let K be a commutative ring, e.g. Z or a field. An (associative and
unital) algebra over K or K-algebra is a ring R which is also a K-module, with
the same addition, and such that multiplication is bilinear, that is,

(λx+ λ′x′)y = λ(xy) + λ′(x′y), x(λy + λ′y′) = λ(xy) + λ′(xy′)

for all x, x′, y, y′ ∈ R and λ, λ′ ∈ K.

An algebra homomorphism R → S is a ring homomorphism which is also a
homomorphism of K-modules. This gives a category of K-algebras. A subalgebra
is a subring which is also a K-submodule.

Remarks. (a) The centre of a ring R is the set

Z(R) = {r ∈ R : rs = sr for all s ∈ R}.

It is a subring of R and it is commutative.

If R is a K-algebra, then the mapping K → R, λ 7→ λ1R is a ring homomorphism
with image contained in Z(R).

Conversely, if we are given a ring R and a homomorphism θ : K → R with image
contained in Z(R), then RR becomes a K-module via restriction and this turns R
into a K-algebra.

(b) If R is a K-algebra, then any R-module M becomes a K-module KM by
restriction using the homomorphism K → R.

If M and N are R-modules, then HomR(M,N) becomes a K-module via

(λθ)(m) = λθ(m)

for λ ∈ K, θ ∈ HomR(M,N) and m ∈M .

(c) To give an R-module, it is equivalent to give a K-module M and an algebra
homomorphism R→ EndK(M). (For the case K = Z, see Remark (1) in §2.1.)

(d) If R is a free K-module with basis (xi)i∈I , then any bilinear multiplication is
uniquely determined by its structure coefficients cijk ∈ K, where

xixj =
∑
k∈I

cijkxk.

Examples. (1) Every ring is a Z-algebra in a unique way.

(2) Any commutative ring R is naturally an R-algebra using the module structure
RR or equivalently the identity homomorphism R→ R.
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(3) If L/K is a field extension, then L is naturally a K-algebra via the inclusion
K → L.

(4) Mn(K) is a K-algebra. As a K-module it is free, with basis Eij for 1 ≤ i, j ≤ n,
where Eij is the matrix with 1 in the (i, j) position and zero elsewhere, so EijEpq =
δjpE

iq.

(5) Hamilton’s Quaternions is the R-algebra given by the 4-dimensional real vec-
tor space

H = {a1 + bi+ cj + dk : a, b, c, d ∈ R}

with multiplication defined by expanding out, bringing coefficients to the front and
using the rules

i2 = −1 ij = k ik = −j
ji = −k j2 = −1 jk = i
ki = j kj = −i k2 = −1

See Linear Algebra II §10.4. For example

(1+2i+j)(i−3k) = 1i+2i2+ji−3k−6ik−3jk = i−2−k−3k+6j−3i = −2−2i+6j−4k.

It is a non-commutative division ring, with

q−1 =
1

|q|2
q

for q ̸= 0, where a+ bi+ cj + dk = a − bi − cj − dk and |a + bi + cj + dk| =√
a2 + b2 + c2 + d2.

(6) The polynomial ring K[X1, . . . , Xn] is naturally a K-algebra. A monomial is
an expression of the form m = Xr1

1 X
r2
2 . . . Xrn

n with ri ≥ 0. We can omit any
term with ri = 0, and we write the monimal with all ri = 0 as m = 1. Then a
polynomial is an expression ∑

m

amm

with coefficients am ∈ K, all but finitely many zero, and the sum runs over all
monomials m. The multiplication is given by expanding out, bringing coefficients
to the front, and using

(Xr1
1 X

r2
2 . . . )(Xs1

1 X
s2
2 . . . ) = Xr1+s1

1 Xr2+s2
2 . . . .

(7) The free algebraK⟨X1, . . . , Xn⟩. A word of length r is a sequenceXi1Xi2 . . . Xir

with i1, i2, . . . , ir ∈ {1, . . . , n}. The word of length r = 0 is denoted 1. An element
of K⟨X1, . . . , Xn⟩ is an expression ∑

w

aww
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with coefficients aw ∈ K, all but finitely many zero, and the sum runs over all
words w. The multiplication is given by expanding out, bringing coefficients to the
front, and using the concatenation of words:

(Xi1Xi2 . . . Xir)(Xj1Xj2 . . . Xjr) = Xi1Xi2 . . . XirXj1Xj2 . . . Xjr .

For example in K⟨X,Y ⟩ we have

(a+ bX)(c+ dX + eY X) = ac+ (ad+ bc)X + aeY X + bdX2 + beXY X.

for a, b, c, d, e ∈ K. The elements are sometimes called noncommuting polynomials,
since XY ̸= Y X in K⟨X,Y ⟩.

When working with algebras over a field K, life is often simplest if the field is
algebraically closed.

Definition. A field K is algebraically closed if it satisfies the following equiva-
lent conditions.

(i) Any non-constant polynomial in K[X] has a root in K.

(ii) Any non-constant polynomial in K[X] splits into linear factors.

(iii) Any irreducible polynomial in K[X] is linear.

(iv) If L/K is a field extension and a ∈ L is algebraic over K, then a ∈ K.

(v) If L/K is a finite field extension then L = K.

It is easy to see that these are equivalent. We know that C is algebraically closed.

Theorem. (i) If K is an algebraically closed field, then the only finite-dimensional
division algebra over K is K itself.

(ii) (Frobenius) The only finite-dimensional division algebras over R are R, C and
H.

Proof. (i) Let R be a f.d. division algebra over K and let r ∈ R. The powers of r
cannot be linearly independent, so there is some monic polynomial f(X) ∈ K[X]
with f(r) = 0. We can factorize into monic linear factors f(X) = f1(X) . . . fn(X),
and then f1(r) . . . fn(r) = 0. Since R is a division ring, it has no zero divisors, so
some fj(r) = 0. But fj(X) is linear, of the form X−λ, so r = λ1, so R = K1 ∼= K.

(ii) Let R be a f.d. division algebra over R. We make several steps.

(a) If r ∈ R, then either r ∈ R1 or r = λ1+µi for some λ, µ ∈ R and some element
i ∈ R with i2 = −1.

Proof. Again f(r) = 0 for some monic f(X) ∈ R[X].

We can write f(X) = f1(X) . . . fn(X), a product of monic linear and irreducible
quadratic factors, and some fj(r) = 0.
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If fj(X) is linear, say X − λ, then r = λ1 ∈ R1.

If fj(X) is quadratic, then since it is irreducible it has the form X2 + bX + c with
d = b2 − 4c < 0. Then r has the required form with i = (c− b2/4)−1/2(r + b/2) .

(b) For r ∈ R let r̂ : R → R be left multiplication by R. It is a K-linear map.
Then R = R1⊕T where T = {r ∈ R : tr r̂ = 0}. Moreover T contains any element
i ∈ R with i2 = −1.

Proof. If r ∈ R1 ∩ T then r = λ1, so tr r̂ = λ tr 1̂ = λ dimR, so λ = 0.

If r ∈ R then r = λ1 ⊕ (r − λ1), and tr r̂ − λ1 = tr r̂ − λdimR. Taking λ =
(tr r̂)/ dimR this gives that r ∈ R1 + T .

Suppose i2 = −1. Then 1 and i span a subalgebra of R, which we can identify
with C.

We can’t necessarily consider R as an algebra over C, but we can at least consider
it as a vector space.

If (e1, . . . , en) is a C-basis of R, then (e1, ie1, e2, ie2, . . . , en, ien) is a basis for R
as a vector space over R. With respect to this basis, the matrix of î consists of
diagonal blocks (

0 −1
1 0

)
.

Thus it has trace 0.

(c) R ∼= R, C or H.

Proof. If 0 ̸= r ∈ T , then r2 is real and negative, for by (a) we can write r = λ1+µi,
and then 0 = tr r̂ = λ tr 1̂ + µ tr î = λ dimR, so λ = 0, so a = µi, so a2 = −µ2.

It follows that T becomes a real inner product space with inner product

⟨r, s⟩ = −1

2
(rs+ sr) =

1

2
(r2 + s2 − (r + s)2) ∈ R.

Choose an orthonormal basis (e1, . . . , en) of T . Then e2i = −1 and eiej = −ejei
for i ̸= j.

If n = 0 or 1 then clearly R ∼= R or R ∼= C, with e1 corresponding to i, so suppose
n ≥ 2.

Suppose n = 2. We have (e1e2)
2 = e1e2e1e2 = −e1e1e2e2 = −(−1)(−1) = −1,

so by (b) we have e1e2 ∈ T . Thus e1e2 = λe1 + µe2 for some λ, µ ∈ R. Then
e1(e1e2) = −e2 ∈ T , but e1(λe1 + µe2) = −λ + µe1e2, so λ = 0. Similarly µ = 0,
which is nonsense since e1e2 ̸= 0.

Thus suppose n ≥ 3. If 3 ≤ i ≤ n, then ei commutes with e1e2, so

(ei − e1e2)(ei + e1e2) = e2i − (e1e2)
2 = 0.
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So, since R is a division algebra, ei = ±e1e2. Since the ei are linearly independent,
this gives a contradiction unless n = 3, and then there is an isomorphism R ∼= H,
with i corresponding to e1, j to e2 and k to e1e2 = ±e3.

Example. Up to isomorphism, the 9-dimensional semisimple K-algebras for K
algebraically closed are

K × · · · ×K︸ ︷︷ ︸
9

, M2(K)×K × · · · ×K︸ ︷︷ ︸
5

, M2(K)×M2(K)×K, M3(K).

The 4-dimensional semisimple R-algebras are

R× R× R× R, R× R× C, C× C, H, M2(R).

3.2 Tensor products

Definition. Let R be a ring. The tensor product of a right R-module X and a
left R-module Y is a Z-module X ⊗R Y , equipped with a mapping

X × Y → X ⊗R Y, (x, y) 7→ x⊗ y

such that the mapping is a homomorphism of additive groups in each argument,
that is

x⊗ y + x′ ⊗ y = (x+ x′)⊗ y, x⊗ y + x⊗ y′ = x⊗ (y + y′),

for x, x′ ∈ X and y, y′ ∈ Y , the mapping is R-balanced, that is

xr ⊗ y = x⊗ ry

for all x ∈ X, y ∈ Y and r ∈ R, and such that it is universal for this property.
That is, if

f : X × Y →M

is a mapping to an additive group which is a homomorphism in each argument and
is R-balanced, then there is a unique homomorphism α : X ⊗R Y →M such that
f(x, y) = α(x⊗ y).

Theorem. The tensor product exists and is unique up to isomorphism. It is the
Z-module generated by symbols x⊗ y for x ∈ X and y ∈ Y , subject to the relations

x⊗ y + x′ ⊗ y − (x+ x′)⊗ y = 0,

x⊗ y + x⊗ y′ − x⊗ (y + y′) = 0,

xr ⊗ y − x⊗ ry = 0

for x, x′ ∈ X, y, y′ ∈ Y and r ∈ R.
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Proof. The construction means the following. We take the free Z-module

FX,Y =
⊕

(x,y)∈X×Y

Z(x⊗ y)

with basis the symbols x ⊗ y. Let SX,Y be the Z-submodule generated by the
elements

x⊗ y + x′ ⊗ y − (x+ x′)⊗ y,

x⊗ y + x⊗ y′ − x⊗ (y + y′),

xr ⊗ y − x⊗ ry.

for x, x′ ∈ X, y, y′ ∈ Y and r ∈ R. The elements x⊗ y in FX,Y induce elements in
FX,Y /SX,Y which should be denoted SX,Y +x⊗y or x⊗ y, but we shall just denote
them x⊗y. Then by construction the mapping X×Y → FX,Y /SX,Y sending (x, y)
to x⊗ y is a homomorphism in each argument and is R-balanced.

To show that this is the tensor product, we need to show it has the universal
property. Let f : X × Y →M is a mapping which is a homomorphism in each ar-
gument and is R-balanced. We need to show that there is a unique homomorphism
α : FX,Y /SX,Y →M with α(x⊗ y) = f(x, y) for (x, y) ∈ X ×Y . Uniqueness holds
since FX,Y /SX,Y is generated by the elements x⊗y. Since FX,Y is a free module, by
part (ii) of the theorem in section 2.3, there is a unique Z-module homomorphism
ϕ : FX,Y → M with ϕ(x ⊗ y) = f(x, y). Now ϕ sends the generators of SX,Y to
zero, so ϕ(SX,Y ) = 0, so it descends to a homomorphism ϕ̄ : FX,Y /SX,Y →M and
α = ϕ̄ gives existence.

For uniqueness, suppose that X ⊗′
R Y is another tensor product, equipped with

the mapping X × Y → X ⊗′
R Y , (x, y) 7→ x⊗′ y.

By the universal property ofX⊗RY there is a unique homomorphism α : X⊗RY →
X ⊗′

R Y with x⊗′ y = α(x⊗ y).

By the universal property of X ⊗′
R Y there is a unique homomorphism α′ : X ⊗′

R

Y → X ⊗R Y with x⊗ y = α′(x⊗′ y).

Now the homomorphisms β = Id and β = α′α both satisfy β(x⊗ y) = x⊗ y. Thus
by the uniqueness part of the universal property for X ⊗R Y we have α′α = Id.
Similarly αα′ = Id. Thus α and α′ are inverse isomorphisms.

Lemma. Let X be a right R-module and let Y be a left R-module.

(i) For all x ∈ X and y ∈ Y we have x⊗ 0 = 0⊗ y = 0 and n(x⊗ y) = (nx)⊗ y =
x⊗ (ny) for n ∈ Z.

(ii) Any element in X ⊗R Y can be written (non-uniquely) as a sum

x1 ⊗ y1 + x2 ⊗ y2 + · · ·+ xr ⊗ yr
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(iii) Considering X as a left Rop-module and Y as a right Rop-module, there is an
isomorphism of additive groups X ⊗R Y → Y ⊗Rop X with x⊗ y 7→ y ⊗ x.

(iv) If θ : X → X ′ is a homomorphism of right R-modules and ϕ : Y → Y ′ is a
homomorphism of left R-modules, then there is a unique homomorphism of additive
groups

θ ⊗ ϕ : X ⊗R Y → X ′ ⊗R Y ′

with (θ ⊗ ϕ)(x⊗ y) = θ(x)⊗ ϕ(y).

Proof. (i) For fixed y, the map X → X ⊗R Y , x 7→ x ⊗ y is a homomorphism
of additive groups, and these are standard properties for such homomorphisms.
Similarly for fixed x.

(ii) Follows from the definition and (i).

(iii) The definitions are the same, but with different notation.

(iv) Consider the mapping

f : X × Y → X ′ ⊗R Y ′, f(x, y) = θ(x)⊗ ϕ(y).

This is a homomorphism in each argument, for example f(x+x′, y) = θ(x+x′)⊗y =
(θ(x) + θ(x′))⊗ y = θ(x)⊗ y + θ(x′)⊗ y.

It is R-balanced, since f(xr, y) = θ(xr) ⊗ ϕ(y) = θ(x)r ⊗ ϕ(y) = θ(x) ⊗ rϕ(y) =
θ(x)⊗ ϕ(r) = f(x, ry).

Now the homomorphism θ ⊗ ϕ : X ⊗R Y → X ′ ⊗R Y ′ follows from the universal
property for X ′ ⊗R Y ′.

Suppose that R is a K-algebra.

Any left R-module Y becomes a left K-module via λy = (λ1R)y for λ ∈ K and
y ∈ Y .

Any right R-module X becomes a left K-module via λx = x(λ1R) for λ ∈ K and
x ∈ X.

It turns out that tensor products are also left K-modules in this case.

Proposition. Suppose that R is a K-algebra.

(i) If X is a right R-module and Y is a left R-module, then X ⊗R Y has a unique
structure as a K-module with

λ(x⊗ y) = (λx)⊗ y = x⊗ (λy)

for λ ∈ K, x ∈ X and y ∈ Y .

(ii) The mapping
X × Y → X ⊗R Y, (x, y) 7→ x⊗ y
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is K-bilinear, that is, a K-module map in each argument, and R-balanced. More-
over it is universal for K-bilinear R-balanced maps.

Proof. (i) We define an action of K on X ⊗ Y by λm = (θλ ⊗ IdY )(m) for m ∈
X ⊗R Y , where

θλ : X → X, x 7→ λx,

which is a homomorphism of right R-modules since (λx)r = x(λ1R)r = xr(λ1R) =
λ(xr). Then λ(x ⊗ y) = θλ(x) ⊗ y = (λx) ⊗ y = (x(λ1R)) ⊗ y = x ⊗ (λ1R)y) =
x⊗ (λy).

(ii) By (i) the mapping is K-bilinear, and by definition it is R-balanced. To show
the universal property, suppose that f : X × Y → M is a K-bilinear R-balanced
map to a K-module. By the definition of the tensor product, there is a unique
homomorphism of additive groups α : X ⊗R Y →M with α(x⊗ y) = f(x, y). Now
α is a K-module homomorphism since

α(λ(x⊗ y)) = α((λx)⊗ y) = f(λx, y) = λf(x, y) = λα(x⊗ y).

Theorem. Suppose R is a K-algebra. Let X and Xi be right R-modules and let
Y and Yi be left R-modules.

(i) The map x 7→ x⊗1 is an isomorphism of K-modules X → X⊗RR. The inverse
sends x⊗ r to xr. Similarly the map y → 1⊗ y is an isomorphism Y → R ⊗R Y ,
and the inverse sends r ⊗ y to ry.

(ii)
(⊕

i∈I Xi

)
⊗R Y ∼=

⊕
i∈I(Xi ⊗R Y ) and X ⊗R

(⊕
i∈I Yi

) ∼=⊕i∈I(X ⊗R Yi).

(iii) If X is a free right R-module with basis (xi)i∈I then there is an isomorphism
of additive groups

Y (I) → X ⊗R Y, (yi) 7→
∑
i∈I

xi ⊗ yi.

Similarly, if Y is a free left R-module with basis (yj)j∈J then there is an isomor-
phism of additive groups

X(J) → X ⊗R Y, (xj) 7→
∑
j∈J

xj ⊗ yj .

(iv) If X ′ is a submodule of X, then (X/X ′) ⊗R Y is isomorphic to the quotient
of X ⊗R Y by the K-submodule generated by all elements of the form x′ ⊗ y with
x′ ∈ X ′ and y ∈ Y . Similarly for X ⊗R (Y/Y ′).

(v) If X1 → X2 → X3 → 0 is an exact sequence of right R-modules, then

X1 ⊗R Y → X2 ⊗R Y → X3 ⊗R Y → 0
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is exact. Similarly, if Y1 → Y2 → Y3 → 0 is an exact sequence of left R-modules,
then

X ⊗R Y1 → X ⊗R Y2 → X ⊗R Y3 → 0

is exact.

Proof. We use the universal property.

(i) We have a homomorphism X → X ⊗R R given by x 7→ x⊗ 1.

The map X × R → X, (x, r) 7→ xr is K-bilinear and R-balanced, so corresponds
to a homomorphism X ⊗R R→ X with x⊗ r 7→ xr.

These homomorphisms are clearly inverses, since x⊗ r = xr ⊗ 1.

(ii) Let µj : Xj →
⊕

i∈I Xi be the canonical map. Then µj ⊗ IdY : Xj ⊗R Y →
(
⊕

i∈I Xi)⊗R Y . Varying j, these give a homomorphism⊕
j∈I

(Xj ⊗R Y )→ (
⊕
i∈I

Xi)⊗R Y.

On the other hand we have a mapping

(
⊕
i∈I

Xi)× Y →
⊕
i∈I

(Xi ⊗R Y ), ((xi), y) 7→ (xi ⊗ y)

This is K-bilinear and R-balanced, so it corresponds to a homomorphism

(
⊕
i∈I

Xi)⊗R Y →
⊕
i∈I

(Xi ⊗R Y ).

These homomorphisms are inverses.

(iii) Follows from (i) and (ii).

(iv) The canonical mapX → X/X ′ induces a homomorphismX⊗RY → (X/X ′)⊗R
Y , and this map kills the K-submodule S generated by elements of the form x′⊗y,
so it induces a homomorphism (X ⊗R Y )/S → (X/X ′)⊗R Y .

For y ∈ Y , if x1, x2 ∈ X andX ′+x1 = X ′+x2, then x1−x2 ∈ X ′, so x1⊗y−x2⊗y =
(x1 − x2)⊗ y ∈ S. Thus we have a well-defined mapping

(X/X ′)× Y → (X ⊗ Y )/S, (X ′ + x, y) 7→ S + (x⊗ y).

This is K-bilinear and R-balanced, so corresponds to a homomorphism

(X/X ′)⊗R Y → (X ⊗R Y )/S.

These mappings are clearly inverses.

(v) Follows from (iv), taking X = X2, X ′ the image of the map X1 → X2, and
identifying X3 with X/X ′.
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Example. We consider tensor products over Z. Since Z is commutative, left and
right Z-modules are the same - they are additive groups. Now

X ⊗Z Y ∼= Y ⊗Z X.

X ⊗Z Z ∼= X

X ⊗R Zn ∼= Xn.

Zm ⊗ Zn ∼= (Zm)n ∼= Zmn.

If a ∈ Z then (Z/Za)⊗Z Y ∼= Y/aY .

If a, b ∈ Z then a(Z/Zb) is the set of cosets a(Zb + x) = Zb + ax with x ∈ Z, so
a(Z/Zb) = (Zb + Za)/Zb. Thus (Z/Za) ⊗Z (Z/Zb) ∼= (Z/Zb)/((Zb + Za)/Zb) ∼=
Z/(Zb+ Za) = Z/Z ggT(a, b).

(Z/Z2)⊗Z (Z/Z3) ∼= Z/Z1 = 0.

For a ̸= 0 we have (Z/Za)⊗Z Q = Q/aQ = Q/Q = 0.

Q⊗Z Q ∼= Q. Namely, there are homomorphisms Q → Q⊗Z Q → Q sending a to
a⊗ 1 and sending a⊗ b to ab. They are inverses since a⊗ b is sent to ab and then
to ab⊗ 1. But if b = n/m with n,m ∈ Z and m ̸= 0, then

ab⊗ 1 = a(n/m)⊗ 1 = (a/m)n⊗m(1/m) = (a/m)m⊗ n(1/m) = a⊗ b.

Definition. Let S and R be rings. An S-R-bimodule is an additive group M
which is both a left S-module and a right R-module, such that (sm)r = s(mr) for
all m ∈M , s ∈ S and r ∈ R.

Proposition. Let X be an S-R-bimodule.

(i) If Y is a left R-module, then X ⊗R Y becomes an S-module, with s(x ⊗ y) =
(sx)⊗ y. In fact X ⊗R − defines a functor from R-Mod to S-Mod.

(ii) If Z is a left S-module, then HomS(X,Z) becomes a left R-module via (rϕ)(x) =
ϕ(xr). In fact HomS(X,−) defines a functor from S-Mod to R-Mod.

(iii) We have HomS(X⊗RY,Z) ∼= HomR(Y,HomS(X,Z)). (In fact this is a natural
isomorphism of functors in Y and Z, which says that the functors X ⊗R − and
HomS(X,−) are adjoint.)

Proof. (i) The action of s ∈ S is given by θs ⊗ IdY , where θs : X → X is the right
R-module homomorphism with θs(x) = sx.

It is straightforward to check that this turns X ⊗R Y into a left S-modules. More-
over if ϕ : Y → Y ′ is a homomorphism of left R-modules, then IdX⊗ϕ : X⊗RY →
X ⊗R Y ′ is a homomorphism of left S-modules.

(ii) Easy
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(iii) We construct mappings in both directions. For the direction

HomS(X ⊗R Y,Z)→ HomR(Y,HomS(X,Z)),

suppose that θ ∈ HomS(X ⊗R Y,Z). For y ∈ Y , define

ϕy,θ : X → Z, ϕy,θ(x) = θ(x⊗ y).

Then ϕy,θ ∈ HomS(X,Z) since

ϕy,θ(sx) = θ((sx)⊗ y) = θ(s(x⊗ y)) = sθ(x⊗ y) = sϕy,θ(x).

Let ϕθ : Y → HomS(X,Z) be the mapping sending y to ϕy,θ. Then ϕθ ∈
HomR(Y,HomS(X,Z)) since

ϕθ(y+y
′)(x) = ϕy+y′,θ(x) = θ(x⊗(y+y′)) = θ(x⊗y)+θ(x⊗y′) = ϕθ(y)(x)+ϕθ(y

′)(x)

so ϕθ(y + y′) = ϕθ(y) + ϕθ(y
′), and

ϕθ(ry)(x) = θ(x⊗ ry) = θ(xr ⊗ y) = (ϕθ(y))(xr) = (r(ϕθ(y))(x)

so ϕθ(ry) = rϕθ(y). Thus we use the mapping θ 7→ ϕθ.

For the direction

HomR(Y,HomS(X,Z))→ HomS(X ⊗R Y, Z),

suppose ψ ∈ HomR(Y,HomS(X,Z)). There is a mapping fψ : X ⊗ Y → Z given
by fψ(x, y) = ψ(y)(x). This mapping is a homomorphism of additive groups in
each argument and it is R-balanced, since

fψ(xr, y) = ψ(y)(xr) = (r(ψ(y)))(x) = ψ(ry)(x) = fψ(x, ry).

Thus there is a mapping αψ : X ⊗R Y → Z with αψ(x⊗ y) = fψ(x, y) = ψ(y)(x).

Now αψ ∈ HomS(X ⊗R Y,Z) since

αψ(s(x⊗ y)) = αψ((sx)⊗ y) = ψ(y)(sx) = sψ(y)(x) = sαψ(x⊗ y).

Thus we use the mapping ψ 7→ αψ.

Now it is easy to see that these two mappings are homomorphisms of additive
groups and inverse to each other.

3.3 Tensor, Clifford and exterior algebras

In this section K is a commutative ring and we consider left K-modules. We use
the letter K because the most important case is when K is a field.

Let V and W be K-modules. Because K is commutative we can consider V as a
right K-module and form the tensor product V ⊗K W . We write it as V ⊗W .
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Properties (of tensor products of modules for a commutative ring).

(i) V ⊗W is naturally a K-module with λ(v⊗w) = (λv)⊗w = v⊗(λw) for λ ∈ K,
v ∈ V , w ∈W .

This comes from considering K as a K-algebra.

(ii) If V is free with basis (vi)i∈I , then every element in V ⊗W can be written
uniquely in the form ∑

i∈I
vi ⊗ wi

with the wi ∈W , all but finitely many zero. Similarly if W is free.

This holds since V ⊗W ∼= K(I) ⊗W ∼=W (I).

(iii) If V is free with basis (vi)i∈I and W is free with basis (wj)j∈J then V ⊗W
is a free K-module with basis (vi ⊗wj)(i,j)∈I×J . In particular, if K is a field, then
dimV ⊗W = (dimV )(dimW ).

By (ii) we can write each element of V ⊗W uniquely in the form∑
i∈I

vi ⊗ (
∑
j∈J

aijwj) =
∑

(i,j)∈I×J

aijvi ⊗ wj

with the aij ∈ K, all but finitely many zero.

(iv) Symmetry. There is an isomorphism V ⊗W ∼=W ⊗ V , v ⊗ w 7→ w ⊗ v.

This follows from a general result, since Kop = K.

(v) The map V ×W → V ⊗W is K-bilinear, and universal for K-bilinear maps
V ×W →M .

Any K-bilinear map f : V ×W →M is automatically K-balanced, since f(xλ, y) =
λf(x, y) = f(x, λy). Thus it follows from the universal property of the tensor
product, the first proposition in §3.2.

(vi) The map

U × V ×W → (U ⊗ V )⊗W, (u, v, w) 7→ (u⊗ v)⊗ w

is K-multilinear, that is, a K-module map in each argument, and it is universal
for K-multilinear maps U × V ×W →M .

Proof. The mapping is K-multilinear. Suppose f : U × V × W → M is K-
multilinear. For fixed w ∈ W the map U × V → M , (u, v) 7→ f(u, v, w) is K-
bilinear, so there is a K-module map αw : U⊗V →M with αw(u⊗v) = f(u, v, w).
Now the map (U ⊗ V ) ×W → M , (ξ, w) 7→ αw(ξ) is K-bilinear. Thus there is a
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K-module map α : (U ⊗ V )⊗W →M with α(ξ, w) = αw(ξ), so α((u⊗ v)⊗w) =
αw(u⊗ v) = f(u,w, z).

(vii) Associativity. There is an isomorphism of K-modules (U ⊗ V ) ⊗W ∼= U ⊗
(V ⊗W ) with (u⊗ v)⊗ w sent to u⊗ (v ⊗ w).

Proof. A similar argument to (vi) shows that

U × V ×W → U ⊗ (V ⊗W ), (u, v, w) 7→ (u⊗ v)⊗ w

is also universal for K-multilinear maps U×Z×W →M . Now we have uniqueness,
similar to the uniqueness of the tensor product.

Definition. Let V be a K-module. For d ≥ 0, the dth tensor power of V is

T d(V ) =


V ⊗ · · · ⊗ V︸ ︷︷ ︸

d

(d > 0)

K (d = 0).

By the associativity property above, the tensor product can be computed with any
bracketing, and for all d, e we have an isomorphism of K-modules

T d(V )⊗ T e(V )→ T d+e(V )

(v1 ⊗ · · · ⊗ vd)⊗ (w1 ⊗ · · · ⊗ we) 7→ v1 ⊗ · · · ⊗ vd ⊗ w1 ⊗ · · · ⊗ we

Properties (of tensor powers).

(i) The mapping V d → T d(V ), (v1, . . . , vd) 7→ v1 ⊗ v2 ⊗ · · · ⊗ vn is K-multilinear,
that is, it is a K-module map in each argument, and it is universal with this
property.

This is proved by induction on d, with the inductive step being analogous to prop-
erty (vi) of tensor products of modules for a commutative ring.

(ii) If θ : V →W is a K-module homomorphism, there is a homomorphism

T d(θ) : T d(V )→ T d(W ), v1 ⊗ · · · ⊗ vd 7→ θ(v1)⊗ · · · ⊗ θ(vd).

Note that T 0(θ) : K → K is the identity map.

To see this, apply the universal property to the map

V d → T d(W ), (v1, . . . , vd) 7→ θ(v1)⊗ · · · ⊗ θ(vd).

(iii) If V has basis (b1, . . . , bn), then T d(V ) has basis given by the elements bi1 ⊗
· · · ⊗ bid with 1 ≤ i1, . . . , id ≤ n, so with nd elements.
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Definition. An algebra R over K is graded if it is equipped with a decomposition

R =
∞⊕
d=0

Rd

as a K-module, such that if x ∈ Rd and y ∈ Re, then xy ∈ Rd+e for all d, e. The
elements of Rd are called the homogeneous elements of degree d. An element
is homogeneous if it belongs to some Rd.

Example. The polynomial ring R = K[X1, . . . , Xn] is graded, with Rd being the
polynomials only involving monomials Xd1

1 X
d2
2 . . . Xdn

n of degree d1+d2+· · ·+dn =
d.

The free algebra R = ⟨X1, . . . , Xn⟩ is graded, with Rd being the linear combinations
of words of length d.

Definition. Given a K-module V , the tensor algebra is

T (V ) =
∞⊕
d=0

T d(V ).

It becomes a graded algebra with multiplication given by the mapping T d(V ) ⊗
T e(V ) 7→ T d+e(V ).

Note that we can write the product of elements v, v′ ∈ V as either v⊗ v′ or as vv′.

Properties (of tensor algebras).

(i) If R is a K-algebra and θ : V → R is a K-module homomorphism, then there
is a unique K-algebra homomorphism θ̃ : T (V )→ R with θ̃(v) = θ(v) for v ∈ V .

By the property (i) of tensor powers, for each d there is aK-module homomorphism

T d(V )→ R, v1 ⊗ · · · ⊗ vd 7→ θ(v1) . . . θ(vd).

Combining them, using

HomK(T (V ), R) = HomK(

∞⊕
d=0

T d(V ), R) =

∞∏
d=0

HomK(T d(V ), R)

we get a K-module map T (V ) → R, and by construction it is an algebra homo-
morphism.

(ii) If θ : V →W is a K-module homomorphism, then there is a unique K-algebra
homomorphism T (θ) : T (V )→ T (W ) with T (θ)(v) = θ(v) for v ∈ V .

This follows from (i) with the composition V →W → T (W ), or from property (ii)
of tensor powers with the mappings T d(θ) : T d(V )→ T d(W ).
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(iii) If V has basis (b1, . . . , bn), then there is an algebra isomorphism

K⟨X1, . . . Xn⟩ → T (V )

sending Xi corresponding to bi.

The free algebra is the free K-module with basis the words Xi1 . . . Xid with d ≥ 0
and i1, . . . , id ∈ {1, . . . , n}. We define the map by sending this basis element to
bi1 ⊗ · · · ⊗ bid . The elements of this form for fixed d give a basis of T d(V ), so
allowing d to vary, we get a basis of T (V ). Thus the mapping is an isomorphism
of K-modules. Clearly it is also an algebra isomorphism.

Definition. Let V be a K-module. A quadratic form q : V → K is a mapping
with q(λv) = λ2q(v) for all λ ∈ K and v ∈ V and such that the mapping

b : V × V → K, b(u, v) = q(u+ v)− q(u)− q(v)

is bilinear. If K is a field with charK ̸= 2, then this agrees with the definition in
Linear Algebra II §11.1, since in this case q(v) = 1

2b(v, v).

If q : V → K is a quadratic form, the Clifford algebra is

C(V, q) = T (V )/(v2 − q(v)1 : v ∈ V ).

It is not in general graded.

If V has basis (b1, . . . , bn) and a = (a1, . . . , an) ∈ Kn, then there is a quadratic
form

qa : V → K, qa(x1b1 + · · ·+ xnbn) = a1x
2
1 + · · ·+ anx

2
n

for x1, . . . , xn ∈ K.

If K is a field with charK ̸= 2 then by Linear Algebra II §11.1, any f.d. vector
space with a quadratic form has a basis with respect to which the quadratic form
is equal to qa, for some a. Over R, we may assume all ai ∈ {0, 1,−1}, and over C
we may assume that all ai ∈ {0, 1}.

We shall concentrate mainly on C(V, qa) where V has basis (b1, . . . , bn) and a ∈ Kn.
In particular we can take V = Kn and (b1, . . . , bn) the standard basis.

Properties (of Clifford algebras).

(i) Suppose V and W are equipped with quadratic forms q and p, and suppose
that θ : V → W is a K-module homomorphism with p(θ(v)) = q(v) for all v ∈ V .
Then there is a unique algebra homomorphism C(θ) : C(V, q) → C(W,p) with
C(θ)(v) = θ(v) for v ∈ V . If θ is an isomorphism of modules, then C(θ) is an
isomorphism of algebras.

Proof. The map θ induces a homomorphism of algebras

T (V )
T (θ)−−−→ T (W )

canonical map−−−−−−−−−→ C(W, q)
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For for v ∈ V we have

T (θ)(v2 − q(v)1) = T (θ)(v ⊗ v − q(v)1) = θ(v)⊗ θ(v)− q(v)1

= θ(v)2 − p(θ(v))1 ∈ (w2 − p(w)1 : w ∈W ).

Thus this homomorphism induces a homomorphism C(θ). Clearly it is unique.
Also, if θ has inverse ϕ, then C(ϕ) is an inverse for C(θ).

(ii) If V has basis (b1, . . . , bn), then in C(V, qa) we have b2i = ai1 and bibj = −bjbi =
0 for i ̸= j.

Namely, consider v2 − qa(v)1 for the elements v = bi and v = bi + bj .

(iii) We have an isomorphism K⟨X1, . . . Xn⟩/Ia → C(V, qa) sending Xi to bi, where
Ia is the ideal generated by the elements X2

i − ai1 and XiXj +XjXi for i ̸= j.

Proof. We have an isomorphism ϕ : K⟨X1, . . . , Xn⟩ → T (V ).

We want to show that ϕ(Ia) = (v2 − qa(v)1 : v ∈ V ). By (ii), the generators of Ia
are sent to 0 in R, so ϕ(Ia) ⊆ (v2− qa(v)1 : v ∈ V ). For the reverse inclusion, note
that if v =

∑n
i=1 xibi with xi ∈ K, then

v2 − qa(v)1 = (

n∑
i=1

xibi)
2 −

n∑
i=1

aix
2
i =

n∑
i=1

x2i (b
2
i − ai1) +

∑
i<j

xixj(bibj + bjbi)

= ϕ

 n∑
i=1

x2i (X
2
i − ai1) +

∑
i<j

xixj(XiXj +XjXi)

 ∈ ϕ(Ia).
Theorem (1). Let V have basis (b1, . . . , bn) and let a ∈ Kn. Then R = C(V, qa)
has K-basis the elements bI for I a subset of {1, . . . , n}, defined by

bI = bi1bi2 . . . bid

where I = {i1 < i2 < · · · < id}.

Proof. R is generated as a K-module by the products of the bi, and because of (ii)
we can write any product as a linear combination of products of the form bI .

We prove that the bI are a basis by induction on n. Let V ′ be theK-submodule of V
generated by b1, . . . , bn−1 and let a′ = (a1, . . . , an−1). By induction R′ = C(V ′, qa′)
has basis the bJ with J ⊆ {1, . . . , n− 1}.

We get a homomorphism θ : K⟨X1, . . . , Xn⟩ →M2(R
′) with

θ(Xi) =

(
bi 0
0 −bi

)
(i < n), θ(Xn) =

(
0 an
1 0

)
.
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This map sends the generators of Ia to 0, so it induces a homomorphism

θ : R→M2(R
′).

Any relation between the bI in R can be written in the form∑
J

λJbJ + µJbJbn = 0

with λJ , µJ ∈ K. Applying θ, and using that bnbJ = (−1)|J |bJbn we get( ∑
J λJbJ

∑
J µJanbJ∑

J(−1)|J |µJbJ
∑

J λJ(−1)|J |bJ

)
= 0.

Thus
∑

J λJbJ and
∑

J(−1)|J |µJbJ are zero in R′. Thus by induction the λJ and
µJ are all zero.

Theorem (2). Suppose K is a field with charK ̸= 2, V has basis (b1, . . . , bn) and
a = (a1, . . . , an) ∈ Kn. If all ai ̸= 0 (or equivalently qa is ‘non-degenerate’), then
R = C(V, qa) is a semisimple algebra.

Proof. Recall that R is semisimple if and only if every R-module M is semisimple,
that is, every submodule N ofM has a complement. It is equivalent that there is an
R-module homomorphism f : M → N with f(m) = m for all m ∈ N . Namely, if
there is a complement C, we can take f to be the projection onto N . Conversely, if
there is f , then Ker(f) is a complement, since clearly N∩Ker(f) = 0 and ifm ∈M ,
then m = f(m)+(m−f(m)) ∈ N+Ker(f) since f(m−f(m)) = f(m)−f(m) = 0.

We prove the theorem by induction on n.

The case n = 0 is clear, since in this case R = K, which is a field, so semisimple.

Thus suppose n > 0. By the last theorem, the subalgebra R′ of R spanned by the
bJ with J ⊆ {1, . . . , n − 1} is isomorphic to the Clifford algebra C(V ′, qa′) where
V ′ is the subspace of V spanned by b1, . . . , bn−1 and a′ = (a1, . . . , an−1. Thus by
induction R′ is semisimple.

Let M be an R-module and N an R-submodule. We can consider M as an R′-
module, and N is a submodule, so there is an R′-module map f ′ : M → N with
f ′(m) = m for m ∈ N . Define f :M → N by

f(m) =
1

2
f ′(m) +

1

2an
bnf

′(bnm).

Then f(m) = m for m ∈ N . Also f(bim) = bif(m) for i < n and

f(bnm) =
1

2
f ′(bnm) +

1

2an
bnf

′(b2nm) = bnf(m),

so f is an R-module map. Thus N has an R-module complement in M . Thus any
R-module M is semisimple.
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Examples. (1) C(R1, q(−1)) ∼= C. Since i2 = −1 there is a homomorphism
C(R1, q(−1)) → C of R-algebras with b1 7→ i. It sends the basis 1, b1 to the basis
1, i, so it is an isomorphism.

(2) C(R1, q(1)) ∼= R× R with b1 7→ (1,−1).

(3) C(R2, q(−1,−1)) ∼= H with b1 7→ i and b2 7→ j (so b1b2 7→ ij = k).

(4) C(R2, q(1,1)) ∼=M2(R) with b1 7→ ( 1 0
0 −1 ) and b2 7→ ( 0 1

1 0 ).

(5) The Clifford algebra for 3-dimensional Euclidean space is R = C(R3, q(1,1,1)).

Any rotation θ of R3 about the origin preserves distance from the origin, so pre-
serves q. Thus it induces an isomorphism C(θ) : R→ R.

There is an isomorphism R→M2(C) sending the bi to the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
This is a homomorphism since the Pauli matrices have square 1 and anticommute.
Now the basis 1, b1, b2, b3, b1b2, b1b3, b2b3, b1b2b3 of C(R3, q(1,1,1)) gets sent to(

1 0
0 1

)
,

(
0 1
1 0

)
,

(
0 −i
i 0

)
,

(
1 0
0 −1

)
,

(
i 0
0 −i

)
,

(
0 −1
1 0

)
,

(
0 i
i 0

)
,

(
i 0
0 i

)
which is a basis of M2(C) as a vector space over R. Thus this homomorphism is
an isomorphism.

Pauli (1927) used his matrices to formulate a version of the Schrödinger equation
for spin 1/2 particles.

Why does H appear when studying rotations? It is isomorphic to the subalgebra
of R with basis the words of even length: 1, b1b2 ↔ i, b2b3 ↔ j and b1b3 ↔ k.

(6) In special relativity one uses Minkowski space, which is R4 with the quadratic
form

q(t, x, y, z) = t2 − x2 − y2 − z2

where (x, y, z) is position, t is time, and the units are chosen so that the speed of
light is 1.

The relevant Clifford algebra is C(R4, q(1,−1,−1,−1)). It is sometimes called the
Space-Time Algebra.

Dirac (1928) used matrices in M4(C) which give a homomorphism from the Clfford
algebra to M4(C) to formulate a relativistic version of Pauli’s equation. Actually
they give an isomorphism C(C4, q(1,−1,−1,−1)) ∼=M4(C).
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Definition. Let V be a K-module. The exterior algebra or Grassmann alge-
bra Λ(V ) on V is the Clifford algebra given by V with the zero quadratic form

Λ(V ) = C(V, 0) = T (V )/(v ⊗ v : v ∈ V ).

We write the product in Λ(V ) as x ∧ y.

If θ : V → W is a K-module map, then as for Clifford algebras, T (θ) induces an
algebra homomorphism

Λ(θ) : Λ(V )→ Λ(W ), (Λθ)(v1 ∧ · · · ∧ vd) = θ(v1) ∧ · · · ∧ θ(vd)

for vi ∈ V .

Lemma. In Λ(V ) we have the following identities

(i) v ∧ v = 0 for all v ∈ V .

(ii) v ∧ v′ = −v′ ∧ v for all v, v′ ∈ V

(iii) If π is a permutation of {1, . . . , d} and ϵ(π) denotes its sign, then

vπ(1) ∧ · · · ∧ vπ(d) = ϵ(π)v1 ∧ · · · ∧ vd

for vi ∈ V .

(iv) v1 ∧ · · · ∧ vd = 0 for vi ∈ V if two of the vi are equal.

Proof. (i) This is the definition.

(ii) As for Clifford algebras, consider (v + v′) ∧ (v + v′).

(iii) Part (ii) gives the result in case π is the transposition of the form (i i + 1).
Now any permutation can be written as a composition of such transpositions.

(iv) By (iii) we can permute the vi to make consecutive ones equal. Then the result
follows from (i).

Properties (of exterior algebras).

(i) In T (V ) we have

(v ⊗ v : v ∈ V ) = J :=

∞⊕
d=0

Jd

where Jd is the K-submodule of T d(V ) generated by elements of the form v1 ⊗
· · · ⊗ vd with vi ∈ V and two of the vi equal.

Namely, J is clearly an ideal in T (V ) and it contains v ⊗ v for v ∈ V , so (v ⊗ v :
v ∈ V ) ⊆ J . By the lemma J is contained in the kernel of the homomorphism
T (V )→ Λ(V ), so J ⊆ (v ⊗ v : v ∈ V ).

44



(ii) Λ(V ) is a graded algebra, with decomposition

Λ(V ) =
∞⊕
d=0

Λd(V )

where Λd(V ) is generated as a K-submodule by the elements v1 ∧ · · · ∧ vd with
vi ∈ V . The homogeneous pieces Λd(V ) are called the exterior powers of V .
The map T d(V )→ Λ(V ) gives an isomorphism of K-modules T d(V )/Jd ∼= Λd(V ).

Proof. Let p : T (V ) → Λ(V ) be the canonical map and let Λd(V ) = p(T d(V )).
Since T d(V ) is generated as a K-module by the elements, v1 ⊗ · · · ⊗ vd, it follows
that Λd(V ) is generated as a K-module by the elements v1 ∧ · · · ∧ vd.

Since p is surjective and T (V ) =
∑∞

d=0 T
d(V ), we have Λ(V ) =

∑∞
d=0 Λ

d(V ).

Say xd ∈ Λd(V ), all but finitely many zero, and
∑
xd = 0. Then xd = p(yd) for

some yd ∈ T d(V ), all but finitely many zero. Then p(
∑
yd) = 0. Thus by (i) we

have ∑
yd ∈ Ker(p) = J

by (i). Now J =
⊕∞

d=0 Jd so
∑
yd =

∑
jd for elements jd ∈ Jd, all but finitely

many zero. But this is an equality in T (V ) =
⊕∞

d=0 T
d(V ), so yd = jd for all d.

Thus yd ∈ J , so xd = p(yd) = 0. Thus Λ(V ) =
⊕∞

d=0 Λ
d(V ).

(iii) The mapping

V d → Λd(V ), (v1, . . . , vd) 7→ v1 ∧ · · · ∧ vd

is K-multilinear and alternating, meaning that v1 ∧ · · · ∧ vd = 0 if two of the vi
are equal. Moreover it is universal for this property. That is, if f : V d →M is an
alternating K-multilinear map to a K-module M , then there is a unique K-module
map α : Λd(V )→M with f(v1, . . . , vd) = α(v1 ∧ · · · ∧ vd).

This follows from the universal property of T d(V ) and the fact that Λd(V ) ∼=
T d(V )/Jd.

(iv) If θ : V → W is a K-module map, then Λ(θ) restricts to give a K-module
homomorphism

Λd(θ) : Λd(V )→ Λd(W ), Λd(θ)(v1 ∧ · · · ∧ vd) = θ(v1) ∧ · · · ∧ θ(vd).

(v) If V has basis (b1, . . . , bn), then Λ(V ) has basis the elements

bI = bi1 ∧ bi2 ∧ · · · ∧ bid , I = {i1 < · · · < id} ⊆ {1, . . . , n}, d ≥ 0.

Thus Λd(V ) has basis the elements bI with I a subset with d elements. This basis
has

(
n
d

)
elements.
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Theorem. If V is a free K-module having a basis with n elements, then Λn(V ) ∼=
K and Λd(V ) = 0 for d > n. Moreover any other free basis for V has n elements.
We call n the rank of V .

Proof. The first statement follows from property (v), since
(
n
n

)
= 1. Since V has a

finite basis, it is finitely generated. Then by §2.3 Theorem (iii), any other basis for
V must be finite. But if it has m elements, then n = m = max{d : Λd(V ) ̸= 0}.

Definition. If V is a free K-module of rank n and θ ∈ EndK(V ), we define the
determinant det(θ) ∈ K as follows. The map Λn(θ) : Λn(V ) → Λn(V ) is an
endomorphism of a rank 1 free K-module, so is multiplication by some element of
K. This is det(θ). Thus

(Λn(θ))(x) = det(θ)x

for all x ∈ Λn(V ).

Remark. The definitions and results in Linear Algebra I about determinants of
matrices over fields, extend to commutative rings, and agree with the definition
here. For example we have the following.

Theorem (Leibnitz Formula). Suppose that V has basis (b1, . . . , bn) and that θ :
V → V is a linear map with matrix A = (aij) ∈ Mn(K) with respect to this basis,
so that

θ(bj) =
n∑
i=1

aijbi.

Then

det(θ) =

n∑
σ∈Sn

ϵ(σ)a1,σ(1)a2,σ(2) . . . an,σ(n)

(which is the Leibnitz formula for det(A) in Linear Algebra I).

Proof. Λn(V ) has basis b1 ∧ · · · ∧ bn. Moreover

Λn(θ)(b1 ∧ · · · ∧ bn) = θ(b1) ∧ . . . θ(bn)

= (

n∑
i1=1

ai1,1bi1) ∧ (

n∑
i2=1

ai2,1bi2) ∧ · · · ∧ (

n∑
in=1

ain,nbin)

n∑
i1,...,in=1

ai1,1ai2,2 . . . ain,nbi1 ∧ bi2 ∧ · · · ∧ bin .

Since any term with two ij ’s equal is zero, we can write this as a sum over permu-
tations π ∑

π∈Sn

aπ(1),1aπ(2),2 . . . aπ(n),nbπ(1) ∧ bπ(2) ∧ · · · ∧ bπ(n)

∑
π∈Sn

ϵ(π)aπ(1),1aπ(2),2 . . . aπ(n),nb1 ∧ b2 ∧ · · · ∧ bn
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so
det(θ) =

∑
π∈Sn

ϵ(π)aπ(1),1aπ(2),2 . . . aπ(n),n.

Since K is commutative, the product is equal to a1,σ(1)a2,σ(2) . . . an,σ(n) where σ =
π−1. Since ϵ(π) = ϵ(π−1), we obtain

det(θ) =
∑
σ∈Sn

ϵ(σ)a1,σ(1)a2,σ(2) . . . an,σ(n).

3.4 More applications of tensor products

Definition. Suppose R → S is a ring homomorphism. Then S is naturally an
S-R-bimodule. We sometimes denote it by SSR. If Y is an R-module, then S⊗RY
is an S-module. We call it the module obtained from Y by inducing from R to
S. It is sometimes denoted IndS Y or IndSR Y .

Properties. (i) If Z is a left S-module, then by restriction we have an R-module
RZ, and

HomS(S ⊗R Y,Z) ∼= HomR(Y,RZ).

This says that induction and restriction form an adjoint pair of functors. This
follows from Hom-Tensor adjointness, since if we consider S as an S-R-bimodule,
then HomS(S,Z) ∼= RZ.

(ii) If Y is a free R-module with basis (bi), then S ⊗R Y is a free S-module with
basis (1⊗ bi).

(iii) In particular if L/K is a field extension and V is a K-vector space, then L⊗KV
is an L-vector space and dimL(L⊗K V ) = dimK V .

Definition. If R and S are K-algebras, then R⊗K S is naturally a K-algebra with
a product satisfying

(r ⊗ s)(r′ ⊗ s′) = (rr′)⊗ (ss′).

Note that there are algebra homomorphisms

R→ R⊗K S, r 7→ r ⊗ 1,

S → R⊗K S, s 7→ 1⊗ s

and their images commute, since (r ⊗ 1)(1⊗ s) = r ⊗ s = (1⊗ s)(r ⊗ 1).

As a special case, if R is a commutative K-algebra, then R⊗K S is an R-algebra.

Examples. (i) R⊗KMn(K) ∼=Mn(R) via the map sending r⊗A with A = (Aij)
to the matrix with (i, j) entries raij ∈ R.
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(ii) Mn(K) ⊗K Mm(K) ∼= Mnm(K). Here we index the rows and columns of
Mnm(K) by the set {1, . . . , n}×{1, . . . ,m} and we send A⊗B to the matrix with
(i, j)(k, ℓ) entry aikbjℓ.

Let Eij denote the matrix which is 1 at position (i, j) and zero elsewhere. This
map sends Eij ⊗ Epq to E(i,p)(j,q). It preserves the multiplication since

(Eij ⊗ Epq)(Ei′j′ ⊗ Ep′q′) = EijEi
′j′ ⊗ EpqEp′q′ = δj,i′δq,p′E

ij′ ⊗ Epq′

which matches the product

E(i,p)(j,q)E(i′,p′)(j′,q′) = δ(j,q)(i′,p)E
(i,p)(j′,q).

(iii) If R is a commutative K-algebra, then R⊗K K[X1, . . . , Xn] ∼= R[X1, . . . , Xn].
In particular

K[X1, . . . , Xn]⊗K K[Y1, . . . , Ym] ∼= K[X1, . . . , Xn][Y1, . . . , Ym]

∼= K[X1, . . . , Xn, Y1, . . . , Ym].

Namely, we have a ring homomorphism

R⊗K K[X1, . . . , Xn]→ R[X1, . . . , Xn]

sending r ⊗ p(X1, . . . , Xn) to rp(X1, . . . , Xn), where we need to apply the ring
homomorphism

K → R, λ 7→ λ1R

to the coefficients of p(X1, . . . , Xn).

It is an isomorphism since K[X1, . . . , Xn] is a free K-module on the monomials
Xm1

1 . . . Xmn
n , so R ⊗K K[X1, . . . , Xn] is a free R-module on the elements 1 ⊗

Xm1
1 . . . Xmn

n , and these get sent to the monomials Xm1
1 . . . Xmn

n , which are a free
R-basis of R[X1, . . . , Xn].

(iv) Similarly, if R is a commutative K-algebra, then there is an isomorphism of
R-algebras

θ : R⊗K K⟨X1, . . . , Xn⟩ → R⟨X1, . . . , Xn⟩

sending r ⊗ a to ra if r ∈ R and a ∈ K⟨X1, . . . , Xn⟩.

Lemma. Suppose R,S are K-algebras and I is an ideal in S generated by a subset
H ⊆ S. Let i : I → S be the inclusion, and consider the map Id ⊗ i : R ⊗K I →
R⊗KS. Then Im(Id⊗i) is the ideal in R⊗KS generated by the set {1⊗h : h ∈ H},
and

R⊗K (S/I) ∼= (R⊗K S)/ Im(Id⊗ i).

48



Proof. Let J be the ideal in R⊗K S generated by {1⊗h : h ∈ H}. Now Im(Id⊗ i)
is an ideal, since if r, r′, r′′ ∈ R, s′, s′′ ∈ S and x ∈ I then

(r′ ⊗ s′)(r ⊗ x)(r′′ ⊗ s′′) = r′rr′′ ⊗ s′xs′′ ∈ Im(Id⊗ i).

Moreover this ideal contains the elements 1⊗ h, so J ⊆ Im(Id⊗ i).

Conversely if s, s′ ∈ S, then

1⊗ shs′ = (1⊗ s)(1⊗ h)(1⊗ s′) ∈ J.

It follows that 1⊗ x ∈ J for any x ∈ I. Then

r ⊗ x = (r ⊗ 1)(1⊗ x) ∈ J

for all r ∈ R, x ∈ I. Thus Im(Id⊗ i) ⊆ J .

Now the exact sequence
0→ I

i−→ S → S/I → 0

stays exact on the right on tensoring, so gives

R⊗K I
Id⊗i−−−→ R⊗K S → R⊗K (S/I)→ 0

so R⊗K (S/I) ∼= (R⊗K S)/ Im(Id⊗ i).

Examples. (a) We have

C⊗R C ∼= C⊗R (R[X]/(X2 + 1)) ∼= (C⊗R R[X])/(1⊗ (X2 + 1))

∼= C[X]/(X2 + 1) = C[X]/((X + i)(X − i)).

Now in C[X] we have (X+ i)∩ (X− i) = ((X+ i)(X− i)) and (X+ i)+ (X− i) =
C[X], since X + i and X − i are coprime. Explicitly (X + i) + (X − i) contains
i
2(X − i) −

i
2(X − i) = 1. Thus by the Chinese Remainder Theorem for rings in

§3.3 of Algebra I, we have

C[X]/((X + i)(X − i)) ∼= C[X]/(X + i)× C[X]/(X − i).

Now there are ring isomorphisms C(X]/(X ± i)→ C, p(X) 7→ p(∓i). Thus

C⊗R C ∼= C× C.

(b) If R is a commutative K-algebra and a ∈ Kn, then

R⊗K C(Kn, qa) ∼= C(Rn, qa),

where the second copy of a really means its image in Rn, since

R⊗K C(Kn, qa) ∼= R⊗K (K⟨b1, . . . , bn⟩/(b2i − ai1, bibj + bjbi))

49



∼= (R⊗K K⟨b1, . . . , bn⟩)/(1⊗ (b2i − ai1), 1⊗ (bibj + bjbi))

∼= R⟨b1, . . . , bn⟩/(b2i − ai1R, bibj + bjbi).

(c) C⊗R H ∼=M2(C). We have

C⊗R H ∼= C⊗R C(R2, q(−1,−1)) ∼= C(C2, q(−1,−1)).

Over C we can multiply the basis elements by i to get

∼= C(C2, q(1,1)) ∼= C⊗R C(R2, q(1,1)) ∼= C⊗R M2(R) ∼=M2(C).

(d) H⊗R H ∼=M4(R).

By the theorem below we have

C(R4, q(1,1,−1,−1)) ∼= C(R2, q(1,1))⊗R C(R2, q(1,1)) ∼=M2(R)⊗R M2(R) ∼=M4(R).

But by permuting the basis elements of R4, this is isomorphic to

C(R4, q(−1,−1,1,1)) ∼= C(R2, q(−1,−1))⊗R C(R2, q(−1,−1)) ∼= H⊗R H

where we have used the theorem below again.

Theorem. If a = (a1, a2) ∈ K2 with a1, a2 invertible in K and a′ = (a′1, . . . , a
′
n) ∈

Kn, then
C(K2, qa)⊗K C(Kn, qa′) ∼= C(Kn+2, qa′′)

where a′′ = (a1, a2,−a1a2a′1, . . . ,−a1a2a′n).

Proof. Let b1, b2 be the generators of C(K2, qa), let b′1, . . . , b′n be the generators of
C(Kn, qa′), and let b′′1, . . . , b′′n+2 be the generators of C(Kn+2, qa′′). The elements

c1 = b1 ⊗ 1, c2 = b2 ⊗ 1, c3 = b1b2 ⊗ b′1, . . . , cn+2 = b1b2 ⊗ b′n

of C(K2, qa)⊗K C(Kn, qa′) satisfy the relations for C(Kn+2, qa′′). For example

(c3)
2 = (b1b2 ⊗ b′1)(b1b2 ⊗ b′1) = b1b2b1b2 ⊗ b′1b′1 = −a1a21⊗ a′11 = a′′3(1⊗ 1).

Thus we get an algebra homomorphism C(Kn+2, qa′′)→ C(K2, qa)⊗K C(Kn, qa′)
sending b′′i to ci.

Now the usual K-bases bI (I ⊆ {1, 2}) of C(K2, qa) and b′J (J ⊆ {1, . . . , n}) of
C(Kn, qa′) give aK-basis bI⊗b′J of the tensor product. The algebra homomorphism
sends the usual basis of C(Kn+2, qa′′) to multiples (by invertible elements of K) of
the basis elements bI ⊗ b′J . For example b′′1b′′3b′′4 is sent to

c1c3c4 = (b1 ⊗ 1)(b1b2 ⊗ b′1)(b1b2 ⊗ b′2) = (−a1a2)(b1 ⊗ b′1b′2).

This gives a bijective correspondence between the bases, so the homomorphism is
an isomorphism. I omit the details.
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We use tensor products in the uniqueness part of the following theorem.

Theorem. (Steinitz). Any field K has an algebraic closure, that is, there is an
algebraic field extension L/K with L algebraically closed. Moreover the algebraic
closure of K is unique up to isomorphism.

Lemma. Suppose L/K is an algebraic field extension. If every irreducible polyno-
mial in K[X] splits over L as a product of linear factors, then L is algebraically
closed (so an algebraic closure of K).

Proof. Suppose E/L is a field extension and α ∈ E is algebraic over L. Then p(α) =
0 for some nonzero p(X) ∈ L[X]. Since L is algebraic over K, the coefficients of
p(X) all belong to some finite extension F of K. Then α is algebraic over F .
Thus F (α)/F is a finite extension. Thus by the Tower Law, F (α)/K is a finite
extension. Thus α is algebraic over K. By assumption its minimal polynomial
mα/K(X) splits as a product of linear factors over L. Since mα/K(α) = 0, we get
α ∈ L.

Proof of the Theorem. Let {pi(X) : i ∈ I} be the set of monic irreducible polyno-
mials in K[X] and let ni = Grad pi(X). Let R = K[Yik : i ∈ I, 1 ≤ k ≤ ni].

For i ∈ I,

pi(X)−
ni∏
k=1

(X − Yik)

is a polynomial in R[X] whose degree in X is ≤ ni − 1, so we can write it as

ni−1∑
k=0

rikX
k

with rik ∈ K[Yi1, . . . , Yi,ni ] ⊆ R. Let J = (rik : i ∈ I, 1 ≤ k ≤ ni), the ideal in R
generated by the rik. We want to show that J ̸= R. Suppose J = R. Then∑

ik

aikrik = 1

for some aik ∈ R, all but finitely many zero. Let I ′ = {i ∈ I : aik ̸= 0 for some k},
a finite subset of I. Let F/K be a splitting field for the polynomial

∏
i∈I′ pi(X).

We have a homomorphism
f : R→ F

sending the Yik for i ∈ I ′ to the roots of pi(X) in F (in some order), and sending
the other Yik to 0. Consider the induced homomorphism

R[X]→ F [X].

For i ∈ I ′, it sends pi(X) −
∏ni
k=1(X − Yik) to 0, so f(rik) = 0 for i ∈ I ′. Thus f

sends
∑

ik aikrik to 0, which is impossible.
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Thus J is a proper ideal in R, so it is contained in a maximal ideal m. Since
K is a field, the ring homomorphism K → L = R/m must be injective, so we
can consider L as a field extension of K. Then in L[X] we have the factorization
pi(X) =

∏ni
k=1(X − Y ik) so each irreducible polynomial pi(X) splits.

Now L/K is an algebraic extension, since any element belongs to some extension
of K obtained by adjoining finitely many of the Y ik, and they are algebraic over
K, since they are roots of pi(X). Thus by the lemma, L is an algebraic closure of
K.

For uniqueness, suppose that L/K and L′/K are algebraic closures. Then L⊗K L′

is a non-zero commutative ring, so has a maximal ideal m′. The factor ring E =
(L ⊗K L′)/m′ is a field and has homomorphisms from L and L′ such that the
homomorphisms from K are equal.

We consider the field extension E/L. If a ∈ L′, then since L′/K is algebraic, the
element 1⊗ a of E is algebraic over L. Thus since L is algebraically closed, 1⊗ a ∈
L. It follows that E = L. More precisely, the map L→ E is an isomorphism.

Similarly L′ → E is an isomorphism. Thus L ∼= L′.

Examples. (1) The algebraic closure of Q is

L = {a ∈ C : a is algebraic over Q}.

If a, b are algebraic over Q, so are a + b, ab, 1/a, so this is a subfield of C, and it
is algebraic over Q.

Now any irreducible polynomial in Q[X] splits into linear factors over C, and the
roots are all in L, so it splits into linear factors over L. Thus by the lemma, L is
a algebraic closure of Q.

(2) Let p be a prime number. Recall that for each power q of p there is a unique
field Fq with q elements. Moreover Fq ⊆ Fq′ if and only if q′ is a power of q. Thus
we have inclusions

Fp ⊆ Fp2! ⊆ Fp3! ⊆ . . .

where n! = n · (n− 1) · · · · · 2 · 1 is the factorial of n. The algebraic closure of Fp is
the union L of these fields.

Namely, every element a ∈ L is in Fq for some q = pn!, and [Fq : Fp] < ∞, so a is
algebraic over Fp.

Now suppose f(X) is an irreducible polynomial over Fp. Let E/Fp be a splitting
field. Then E is a finite extension of Fp, so for some m we have

E ∼= Fpm ⊆ Fpm! ⊆ L.

Thus f(X) splits into linear factors over L, so by the lemma, L is an algebraic
closure of Fp.
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4 Representations of finite groups

4.1 Representations and the group algebra

Let G be a group and let K be a field. We write G in multiplicative notation with
neutral element 1.

Definition. A (linear) representation of the group G over the field K is given
by a K-vector space V together with a group homomorphism

ρ : G→ GL(V )

where GL(V ) is the group of invertible linear maps V → V .

We denote the representation by (V, ρ) or V or ρ. The degree of the representation
is dimV . A real/complex representation is one with K = R or K = C.

We get a category with

Hom((V, ρ), (W,σ)) = {θ ∈ HomK(V,W ) : σ(g)θ = θρ(g) for all g ∈ G}.

A (matrix) representation of G is a group homomorphism

A : G→ GLn(K)

where GLn(K) is the group of n× n invertible matrices.

Two matrix representations A,B : G→ GLn(K) of the same degree are said to be
equivalent if there is an invertible matrix P such that B(g) = PA(g)P−1 for all
g ∈ G.

Lemma. (i) If (V, ρ) is a linear representation of degree n and (v1, . . . , vn) is a
basis of V , then the map

A : G→ GLn(K), A(g) = matrix of ρ(g) with respect to this basis

is a matrix representation.

(ii) If A : G→ GLn(K) is a matrix representation, then Kn equipped with the map

ρ : G→ GL(Kn), ρ(g) = the map Kn → Kn of left multiplication by A(g)

is a linear representation of degree n.

(iii) These give inverse bijections between the isomorphism classes of representa-
tions of degree n and the equivalence classes of matrix representations of degree n.

Proof. Exercise.
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Examples. (1) The trivial representation of G is the representation G →
GL1(K) with ρ(g) = 1 for all g ∈ G.

(2) Let n > 0. We denote by Cn a cyclic group of order n written multiplicatively,
with generator g. Thus Cn = {1, g, g2, . . . , gn−1} and gn = 1. If ϵ ∈ K is an nth
root of 1, we get a representation ρ : Cn → GL1(K) with ρ(gr) = ϵr for all r.

(3) The sign representation of the symmetric group Sn is the representation

ϵ : Sn → GL1(K)

where ϵ(π) is the sign of a permutation π.

(4) Suppose θ : G → H is a group homomorphism and σ : H → GL(V ) is a
representation of H. Then by composition we get a representation of G

G→ H → GL(V ).

In particular, if N is a normal subgroup of G and σ : G/N → GL(V ) is a repre-
sentation of the factor group, we get a representation of of G via

G→ G/N → GL(V ).

(5) If L/K is a field extension and V is representation of G over K, then L⊗K V
is an L-vector space and it becomes a representation of G over L via

G
ρ−→ GL(V )

θ 7→Id⊗θ−−−−−→ GL(L⊗K V )

If (v1, . . . , vn) is a K-basis of V , then (1⊗ v1, . . . , 1⊗ vn) is an L-basis of L⊗K V ,
and the corresponding matrix representations are related by

G→ GLn(K)
inclusion−−−−−→ GLn(L).

(6) Recall that the dihedral group Dn is the group of symmetries of a regular n-gon
in the plane, say with one vertex on the x-axis. We have Dn = ⟨σ, τ⟩ where σ is
rotation by angle 2π/n, τ is the reflection in the x-axis, σn = 1, τσ = σ−1τ . There
is a corresponding natural representation

ρ : Dn → GL2(R), ρ(σ) =

(
cos(2π/n) − sin(2π/n)
sin(2π/n) cos(2π/n)

)
, ρ(τ) =

(
1 0
0 −1

)
.

(7) Let G be the group of rotations of a Platonic solid. There is a natural repre-
sentation

ρ : G→ GL3(R)

sending each rotation to the corresponding rotation matrix.
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Remark. Given a group G, we would like to classify all representations of G.
Then we would know all ways in which G can occur as a group of symmetries of
an object.

Definition. The group algebra KG consists of the formal sums∑
g∈G

agg

with coefficients ag ∈ K, all but finitely many zero. Thus it is a vector space with
basis G. It becomes an algebra with the multiplication coming from that in G,
that is,

(
∑
g∈G

agg)(
∑
h∈G

bhh) =
∑
g,h∈G

agbhgh =
∑
k∈G

ckk

where
ck =

∑
g,h∈G
gh=k

agbh =
∑
g∈G

agbg−1k.

Example. Let C2 = ⟨g⟩ with g2 = 1. Then KC2 = {a1 + bg : a, b ∈ K} with
(a1 + bg)(a′1 + b′g) = (aa′ + bb′)1 + (ab′ + ba′)g.

If charK ̸= 2, then KC2
∼= K ×K, via the mapping a1 + bg 7→ (a+ b, a− b).

If charK = 2, thenKC2
∼= K[X]/(X2), via the mappingK[X]→ KC2, X 7→ 1+g,

since (1 + g)2 = 2 + 2g = 0.

Lemma. The formulas gv = ρ(g)(v) and (
∑

g∈G agg)v =
∑

g∈G ag(gv) give bijec-
tions between

(a) representations (V, ρ) of G;

(b) actions G × V → V , (g, v) 7→ gv of G on a vector space V , which are linear,
meaning that for each g ∈ G, the map v 7→ gv is a linear map; and

(c) KG-modules V .

Moreover homomorphisms of representations correspond to KG-module homomor-
phisms.

Proof. Recall that an action of G on a set V is a mapping G×V → V , (g, v) 7→ gv
with g(g′v) = (gg′)v and 1v = v for all g, g′ ∈ G and v ∈ V . A representation gives
a linear action via the formula gv = ρ(g)(v).

Given a linear action, the same formula gives a map ρ : G→ End(V ) with ρ(gg′) =
ρ(g)ρ(g′) and ρ(1) = IdV . Since ρ(g−1)ρ(g) = ρ(1) = IdV = ρ(g)ρ(g−1) it is a map
to GL(V ), so it gives a representation.
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Given a linear action, V becomes a KG-module via

(
∑
g∈G

agg)v =
∑
g∈G

ag(gv).

Conversely a KG-module structure on V gives a linear action by restriction.

For the last part observe that if θ ∈ HomK(V,W ), then

θ is a homomorphism of representations

⇔ σ(g)θ = θρ(g) for all g ∈ G

⇔ σ(g)(θ(v)) = θ(ρ(g)(v)) for all g ∈ G and v ∈ V

⇔ gθ(v) = θ(gv) for all g ∈ G and v ∈ V

⇔ xθ(v) = θ(xv) for all x ∈ KG and v ∈ V

⇔ θ is a homomorphism of KG-modules.

Definition. Let (V, ρ) be a representation of G.

A subrepresentation of V is submodule U of the corresponding KG-module, so
a subspace of V with ρ(g)(u) ⊆ U for all g ∈ G and u ∈ U .

There is a quotient representation ρ : G → GL(V/U) corresponding to the
quotient module, so ρ(g)(U + v) = U + ρ(g)(v).

The representation is simple or irreducible if the corresponding module is simple,
so has exactly two subrepresentations 0 and V .

The direct sum of representations V and W is given by the direct sum of the
corresponding KG-modules, so V ⊕W with the action g(v, w) = (gv, gw).

A representation is semisimple or completely reducible if the corresponding
module is semisimple, so every subrepresentation has a complement.

Theorem (Maschke). If G is a finite group and either charK = 0 or charK
is a prime number which does not divide |G|, then every representation of G is
semisimple, so the group algebra KG is semisimple.

Proof. The assumption on the characteristic of K ensures that |G| is nonzero as
an element of K.

Let M be a KG-module and N a submodule. As for Clfford algebras, to show that
M is semisimple it suffices to show that there is a KG-module map f : M → N
with f(m) = m for all m ∈ N .

Now M is semisimple as a K-vector space, so there is a K-linear map f ′ :M → N
with f ′(m) = m for all m ∈ N . Define f :M → N by

f(m) =
1

|G|
∑
g∈G

g−1f ′(gm).
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If h ∈ G we have
f(hm) =

1

|G|
∑
g∈G

g−1f ′(ghm).

Let k = gh, so g−1 = hk−1. As g runs through the elements of G, so does k. Thus

f(hm) =
1

|G|
∑
k∈G

hk−1f ′(km) = hf(m).

Thus f is a KG-module homomorphism. Thus M is semisimple.

Remark. Since C is algebraically closed, the only f.d. division algebra over C is
C itself. Thus by the Artin-Wedderburn Theorem, if G is finite, then

CG ∼=Mm1(C)× · · · ×Mmr(C).

For example:

CS3 has dimension 6 and it is not commutative, so it must be isomorphic to
C× C×M2(C).

CCn has dimension n and is commutative, so it must be isomorphic to C×· · ·×C.

4.2 Characters

From now on K = C, the group G is finite, and we only consider representations
which are finite dimensional vector spaces.

Definition. The character of a representation (V, ρ) with ρ : G→ GL(V ) is the
function χV : G→ C given by χV (g) = tr ρ(g), where tr is the trace.

A character is a function χ : G → C which arises as the character of some
representation.

An irreducible character is the character of an irreducible representation.

A class function is a function f : G→ C which is constant on conjugacy classes,
that is f(h−1gh) = f(g) for g, h ∈ G. The class functions form a subspace of the
vector space of all functions G → C. The dimension is the number of conjugacy
classes.

Properties. (i) Any character is a class function.

First observe that if g, g′ ∈ G, then χV (gg
′) = tr(ρ(gg′)) = tr(ρ(g)ρ(g′)) =

tr(ρ(g′)ρ(g)) = χV (g
′g).

Then χV (h−1(gh)) = χV ((gh)h
−1) = χV (g).

(ii) χV (1) = tr IdV = dimV is the degree of the representation V .
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(iii) If V is a representation of degree 1, that is dimV = 1, then χV is a group
homomorphism G→ C×.

The trace of a 1× 1 matrix is identified with the matrix itself, so the character is
identified with the corresponding matrix representation.

(iv) Isomorphic representations have the same character. [We will show later that
the converse also holds.]

If (V, ρ) is isomorphic to (W,σ), then there is an isomorphism f : V → W with
fρ(g) = σ(g)f for all g ∈ G. Then χV (g) = tr ρ(g) = tr(f−1σ(g)f) = trσ(g) =
χW (g).

(v) The character of a direct sum of representations is the sum of their characters,
χV⊕W (g) = χV (g) + χW (g).

If (V, ρ) and (W,σ) are representations, their direct sum V ⊕W becomes a repre-
sentation τ : G→ GL(V ⊕W ) where τ(g)(v, w) = (ρ(v), σ(w)). Combining bases
of V and W gives a basis of V ⊕ W , and the matrix of τ is block diagonal, so
tr τ(g) = tr ρ(g) + trσ(g).

(vi) If χ is a character and g ∈ G has order n, then χ(g) is a sum of n roots of 1,
and χ(g−1) = χ(g), the complex conjugate.

Proof. Since ρ(g)n = 1, it is diagonalizable by example (c) at the end of Linear
Algebra II §8.3. Thus there is a basis with repect to which the matrix A(g) is
diagonal. The diagonal entries must be nth roots of 1, so χ(g) is a sum of nth
roots of 1. Moreover they have absolute value 1, so their inverses are their complex
conjugates. Thus

χ(g−1) = trA(g−1) = trA(g)−1 = trA(g) = trA(g) = χ(g).

Examples. (i) The character of the trivial representation is χ : G → C with
χ(g) = 1 for all g ∈ G. It is called the trivial character.

(ii) Recall that the actions G ×X → X, (g, x) 7→ gx of G on a set X correspond
bijectively to group homomorphisms G → SX , where SX is the symmetric group
on X. Given such an action, we get a linear action of G on the vector space CX
with basis X via

g(
∑
xinX

axx) =
∑
x∈X

axgx.

The corresponding representation ρ : G → GL(CX) is called a permutation
representation.

Suppose that X is finite, say X = {x1, . . . , xn}. The matrix A(g) = (aij) of ρ(g)
with respect to the basis (x1, . . . , xn) of CX satisfies

gxj =
n∑
i=1

aijxi.
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so

aij =

{
1 (gxj = xi)

0 (gxj ̸= xi)

Thus the corresponding character is

χ(g) = trA(g) =

n∑
i=1

aii = |{i : gxi = xi}| = |{x ∈ X : gx = x}|.

(iii) The regular representation of G is the representation corresponding to the
module CGCG. This is the permutation representation corresponding to the action
G×G→ G given by multiplication. The corresponding character is given by

χ(g) =

{
|G| (g = 1)

0 (g ̸= 1).

(iv) If V is a representation of G, then the dual representation is given by the
dual vector space V ∗ = HomC(V,C) with the action of G given by

G× V ∗ → V ∗, (g, ξ) 7→ gξ, (gξ)(v) = ξ(g−1v)

for g ∈ G, ξ ∈ V ∗ and v ∈ V . We need to use the inverse to get the action property:

(g(g′ξ))(v) = (g′ξ)(g−1v) = ξ((g′)−1g−1v) = ξ((gg′)−1v) = ((gg′)ξ)(v).

The character is
χV ∗(g) = χV (g

−1) = χV (g).

Proof. Suppose V has basis v1, . . . , vn, and the action of g ∈ G has matrix A(g) =
(aij(g)), then

gvj =
n∑
i=1

aij(g)vi

Let ξ1, . . . , ξn be the dual basis of V ∗. Then

(gξi)(vj) = ξi(g
−1vj) = aij(g

−1)

so

gξi =

n∑
j=1

aij(g
−1)ξj

Thus the action of g on V ∗ has matrix A(g−1)T, so χV ∗(g) = tr(A(g−1)T) =
tr(A(g−1) = χV (g

−1).

(v) If V and W are representations of V , the tensor product representation is
V ⊗C W with the action of G given by

G× (V ⊗C W )→ V ⊗C W, g(v ⊗ w) = (gv)⊗ (gw)
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for g ∈ G, v ∈ V , w ∈W . The character is χV⊗CW (g) = χV (g)χW (g).

Proof. If V has basis v1, . . . , vn and W has basis w1, . . . , wm, then V ⊗C W has
basis vi ⊗ wj . If the action of g ∈ G on V has matrix A(g) = (aij) and on W has
matrix B(g) = (bij), then

g(vi ⊗ wj) = (gvi)⊗ (gwj) =

 n∑
p=1

apivp

⊗
 m∑
q=1

bqjwq


=

n∑
p=1

m∑
q=1

apibqjvp ⊗ wq

so the action of g on V ⊗CW has matrix C(g) = (c(p,q),(i,j)) with rows and columns
indexed by pairs (i, j) and c(p,q),(i,j) = apibqj . The character is

χV⊗W (g) = trC(g) =
n∑
i=1

m∑
j=1

c(i,j),(i,j) =
n∑
i=1

m∑
j=1

aiibjj

=

(
n∑
i=1

aii

) m∑
j=1

bjj

 = (trA(g))(trB(g)) = χV (g)χW (g).

Here is another way to see this. Fix g ∈ G. We can choose a basis (v1, . . . , vn) of
V with respect to which the action of g is diagonal, say gvi = λivi with λi ∈ C.
Similarly, we can choose a basis (w1, . . . , wm) of W with respect to which the action
of g is diagonal, say gwj = µjwi with µj ∈ C. Then (vi⊗wj : 1 ≤ i ≤ n, 1 ≤ j ≤ m)
is a basis of V ⊗W , and with respect to this basis the action of g is diagonal, with

g(vi ⊗ wj) = (gvi)⊗ (gwj) = (λivi)⊗ (µjwj) = λiµj(vi ⊗ wj).

Then
χV⊗W (g) =

∑
i,j

λiµj = (
∑
i

λi)(
∑
j

µj) = χV (g)χW (g).

Lemma. Suppose V is a representation of G. The set of fixed points

V G = {v ∈ V : gv = v for all g ∈ G}

is a subrepresentation of V , and

dimV G =
1

|G|
∑
g∈G

χV (g)
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Proof. The first statement is straightforward. We have a map

f : V → V, f(v) =
1

|G|
∑
g∈G

gv

Then f has image contained in V G, and f(v) = v for v ∈ V G. Thus f is idempotent
and V G = Im f . Thus V = Im f ⊕ Ker f by Linear Algebra II §7.4 Proposition.
Combining bases of Im f and Ker f gives a basis of V , and with respect to this
basis the matrix of f has block form(

Ir 0
0 0

)
where Ir is an r × r identity matrix, where r = dim Im f = dimV G. Thus

r = tr f =
1

|G|
∑
g∈G

χV (g).

Definition. If ϕ : G→ C and ψ : G→ C are mappings, we define

⟨ϕ, ψ⟩ = 1

|G|
∑
g∈G

ϕ(g)ψ(g).

This defines a scalar product on the C-vector space of all mappings G → C. By
restriction it defines a scalar product on the subspace of class functions.

Theorem. If V and W are representations, then

dimHomCG(V,W ) = ⟨χW , χV ⟩.

In particular, if V is an irreducible representation, then ⟨χW , χV ⟩ is the multiplicity
of V in the decomposition of W as a direct sum of irreducible representations. Thus
any representation W is determined up to isomorphism by its character.

Proof. The space HomC(V,W ) becomes a representation of G with action

G×HomC(V,W )→ HomC(V,W ), (gθ)(v) = gθ(g−1v)

for g ∈ G, θ ∈ HomC(V,W ) and v ∈ V . Moreover we have an isomorphism

V ∗ ⊗C W ∼= HomC(V,W ).

Thus
dimHomCG(V,W ) = dimHomC(V,W )G = dim(V ∗ ⊗W )G
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=
1

|G|
∑
g∈G

χV ∗⊗W (g) =
1

|G|
∑
g∈G

χV (g)χW (g) = ⟨χW , χV ⟩.

Now by semisimplicity we can write W =W1 ⊕ · · · ⊕Wm with the Wi irreducible,
and by Schur’s Lemma, for V irreducible we have

HomCG(V,Wi) ∼=

{
C (V ∼=Wi)

0 (V ̸∼=Wi).

Then

HomCG(V,W ) = HomC(V,
m⊕
i=1

Wi) ∼=
m⊕
i=1

HomC(V,Wi)

so

⟨χW , χV ⟩ = dimHomCG(V,W ) =
m∑
i=1

dimHomCG(V,Wi) = |{i :Wi
∼= V }|.

Now if representations W and W ′ have the same character, they are isomorphic
to directs sums of irreducible representations with the same multiplicities, and so
W ∼=W ′.

4.3 The character table

Still K = C, the group G is finite, and we only consider f.d. representations.

Definition. The character table of G is the table with

- columns indexed by representatives g1, . . . , gk of the conjugacy classes in G.

- rows indexed by the irreducible characters χ1, . . . , χr of G. Equivalently by the
simple modules for CG.

- entries χi(gj).

Let n1, . . . , nk be the sizes of the conjugacy classes, so nj = [G : CG(gj)]. If
ϕ, ψ : G→ C are class functions, e.g. characters, then

⟨ϕ, ψ⟩ = 1

|G|

k∑
j=1

njϕ(gj)ψ(gj).

Properties. (i) The rows of the character table are orthonormal:

⟨χi, χj⟩ = δij .

(ii) If ϕ is a character, then ϕ =
∑r

i=1 ciχi, where ci = ⟨ϕ, χi⟩ ≥ 0. Then ⟨ϕ, ϕ⟩ =∑r
i=1 c

2
i . Thus ϕ is an irreducible character if and only if ⟨ϕ, ϕ⟩ = 1.
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(iii) Recall that the character ϕ of the regular representation is given by ϕ(1) = |G|
and ϕ(g) = 0 for g ̸= 1. Thus ⟨ϕ, ψ⟩ = ψ(1) if ψ is another character (so ψ(1) is
its degree, which is real). Thus

ϕ =

r∑
i=1

χi(1)χi.

(iv) In particular

|G| =
r∑
i=1

χi(1)
2,

the sum of the squares of the degrees of the irreducible characters.

Theorem. The character table is square. That is, the number r of irreducible
characters is equal to the number k of conjugacy classes in G. Thus the irreducible
characters are an orthonormal basis of the vector space of class functions.

Proof. Recall that if R is an algebra, then Z(R) is its centre.

If a =
∑

g∈G agg ∈ CG, then a ∈ Z(CG)

⇔ ha = ah for all h ∈ G

⇔ a = hah−1 for all h ∈ G

⇔
∑

g∈G agg =
∑

g∈G aghgh
−1

⇔
∑

g∈G agg =
∑

x∈G ah−1xhx

⇔ ag = ah−1gh for all h ∈ G.

⇔ the map g 7→ ag is a class function.

Thus dimZ(CG) is the dimension of the space of class functions, which is the
number k of conjugacy classes.

Since C is algebraically closed, the only f.d. division algebra over C is C itself. Thus
by the Artin-Wedderburn Theorem

CG ∼=Mm1(C)× · · · ×Mmr(C).

Each factor corresponds to a simple module Cmi , so there are r simple modules.
Now if R = R1 × · · · ×Rr, then Z(R) = Z(R1)× · · · ×Z(Rr), and it is easy to see
that Z(Mn(C)) = C1, so dimZ(CG) = r, so r = k.

Example. IfG = Cn is a cyclic group, then representatives of the conjugacy classes
are 1, g, . . . , gn−1. The irreducible characters are χ1, . . . , χn with χi(g

j) = ϵ(i−1)j ,
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where ϵ = e2πi/n (where in this last formula, i =
√
−1). For example for n = 2

gj 1 g
nj 1 1

χ1 1 1
χ2 1 −1

For n = 3
gj 1 g g2

nj 1 1 1

χ1 1 1 1
χ2 1 ϵ ϵ2

χ3 1 ϵ2 ϵ

For example C3 acts on R2 by rotations. This gives a representation

ρ : C3 → GL2(C), gj 7→
(
cos(2πj/3) − sin(2πj/3)
sin(2πj/3) cos(2πj/3)

)
.

The corresponding character is χ2 + χ3.

Example. Consider a product of two groups G×G′.

Let gi be representatives of the conjugacy classes in G, sizes ni.

Let g′j be representatives of the conjugacy classes in G′, sizes n′j .

Then (gi, g
′
j) are representatives of the conjugacy classes in G×G′, sizes nin′j .

Let χi be the irreducible characters of G.

Let χ′
j be the irreducible characters of G′.

The compositions
G×G′ p1−→ G

χi−→ C

G×G′ p2−→ G′ χ′
j−→ C

are characters of G×G′ and their tensor product is the character

χij : G×G′ → C, χij(g, g
′) = χi(g)χ

′
j(g

′).

The degree is χij(1) = χi(1)χ
′
j(1).

Now

⟨χij , χij⟩ =
1

|G×G′|
∑
a,b

nan
′
bχi(ga)χj(g

′
b)χi(ga)χj(g

′
b) = ⟨χi, χi⟩⟨χ

′
j , χ

′
j⟩ = 1.

Thus χij is irreducible.
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The number of such characters is the number of conjugacy classes in G × G′, so
they are all of the irreducible characters.

For example, for Klein’s four group V = C2 × C2, we get

gj (1, 1) (g1, 1) (1, g2) (g1, g2)
nj 1 1 1 1

χ11 1 1 1 1
χ21 1 −1 1 −1
χ12 1 1 −1 −1
χ22 1 −1 −1 1

Example. The group G = S3 of order 6. The conjugacy classes are given by the
cycle type.

gj 1 (12) (123)
nj 1 3 2

χ1 1 1 1
χ2 1 −1 1
ϕ 3 1 0
χ3 2 0 −1

χ1 is the trivial character. Irreducible.

χ2 is the sign character. Irreducible.

ϕ is the character of the natural permutation representation.

We have
⟨ϕ, χ1⟩ =

1

6
(1.1.3 + 3.1.1) = 1,

so ϕ = χ1 + χ3 for some character χ3, and

⟨χ3, χ3⟩ =
1

6
(1.22 + 2.(−1)2) = 1,

so χ3 is irreducible.

Example. G = A4 of order 12. The conjugacy classes are

{1}, {(12)(34), (13)(24), (14)(23)},

{(123), (243), (134), (142)}, {(132), (234), (143), (124)}.

gj 1 (12)(34) (123) (132)
nj 1 3 4 4

χ1 1 1 1 1
χ2 1 1 ϵ ϵ2

χ3 1 1 ϵ2 ϵ
ϕ 4 0 1 1
χ4 3 −1 0 0
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χ1 is the trivial character.

V = {1, (12)(34), (13)(24), (14)(23)} is a normal subgroup of A4, and A4/V ∼= C3.
χ2 and χ3 are lifts of irreducible characters for C3, where ϵ = e2πi/3.

ϕ is the character of the natural permutation representation. We have

⟨ϕ, χ1⟩ =
1

12
(4.1 + 3.0.1 + 4.1.1 + 4.1.1) = 1

Thus χ4 = ϕ− χ1 is a character. It is an irreducible character since

⟨χ4, χ4⟩ =
1

12
(32 + 3.(−1)2) = 1.

Example. G = A5 of order 60.

gj 1 (12)(34) (123) (12345) (12354)
nj 1 15 20 12 12

χ1 1 1 1 1 1
ϕ 5 1 2 0 0
χ2 4 0 1 −1 −1
χ3 5 1 −1 0 0
χ4 3 −1 0 α β
ψ 60 0 0 0 0
χ5 3 −1 0 β α

χ1 is the trivial character.

ϕ is the natural permutation representation. Now

⟨ϕ, χ1⟩ =
1

60
(1.1.5 + 15.1.1 + 20.1.2) = 1,

so χ2 = ϕ− χ1 is a character. It is irreducible since

⟨χ2, χ2⟩ =
1

60
(1.4.4 + 20.1.1 + 12.(−1)2 + 12.(−1)2) = 1.

Let H be the subgroup of permutations fixing 5. So H = A4. Index 5. Let
c = (12345), so

c = (12345), c2 = (13524), c3 = (14253), c4 = (15432), c5 = Id.

Then for 1 ≤ k ≤ 5 we have ckH = {g ∈ G : g(5) = k}, so c, c2, c3, c4, c5 is a set of
representatives of the left cosets of H in G.

Let V be the degree 1 representation of H = A4 given by the row 1, 1, ϵ, ϵ2. Let
0 ̸= v ∈ V , so

(12)(34)v = v, (123)v = ϵv, (132)v = ϵ2v.

66



We consider the induced representation

IndCG V = CG⊗CH V

Let χ3 be its character. Since the ck are representatives of the left cosets of H in G,
they also give a basis of CG as a right CH-module. Then IndCG V ∼=

⊕5
k=1 c

k⊗V ,
and since V is 1-dimensional with basis v, IndCG V is a C-vector space with basis
the elements ck ⊗ v for 1 ≤ k ≤ 5. Thus χ3(1) = 5.

Now we need to compute gi(ck ⊗ v). For example what is (12)(34)(c⊗ v).

(12)(34)(c⊗ v) = (12)(34)c⊗ v

Now the permutation (12)(34)c sends 5 to 2, so it is in c2H, and in fact it is equal
to c2h with h = (143). Thus

(12)(34)(c⊗v) = (12)(34)c⊗v = c2(143)⊗v = c2⊗ (143)v = c2⊗ ϵ2v = ϵ2(c2⊗v).

This does not contribute to the trace, since c2⊗ v is not the same basis element as
c⊗ v. In fact we only get a contribution when gic

k ∈ ckH, which is when gi fixes
k. We have

(12)(34)c5 ⊗ v = c5(12)(34)⊗ v = c5 ⊗ (12)(34)v = c5 ⊗ v.

Thus χ3((12)(34)) = 1.

Now the fixed points of (123) are 4 and 5 and we have

(123)c4 ⊗ v = c4(234)⊗ v = c4 ⊗ (234)v = c4 ⊗ ϵ2v,

(123)c5 ⊗ v = c5(123)⊗ v = c5 ⊗ (123)v = c5 ⊗ ϵv.

Thus χ3((123)) = ϵ2 + ϵ = −1.

Also (12345) and (12354) have no fixed points, so

χ3((12345)) = χ3((12354)) = 0.

Now
⟨χ3, χ3⟩ =

1

60
(52 + 15.12 + 20.(−1)2) = 1,

so χ3 is irreducible.

The group of rotations of a dodecahedron has 60 elements, since a given face
can be rotated to any of the other faces, and it has 5 possible orientations. The
dodecahedron has 5 inscribed cubes which are permuted by these rotations. This
gives a homomorphism from the rotation group to S5, but the image has order 2,
so it is a subgroup of index 2 in S5. Thus it must be A5.
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This gives a representation of A5. Let χ4 be the character. It has degree 3 so
χ4(1) = 3.

The conjugacy class (12)(34) corresponds to a rotation about an axis through edge
midpoints by angle π, so with respect to a suitable basis the matrix is1 0 0

0 −1 0
0 0 −1


So χ4((12)(34)) = −1.

The conjugacy class (123) corresponds to a rotation about an axis through opposite
vertices by angle 2π/3, so with respect to a suitable basis the matrix is1 0 0

0 cos(2π/3) − sin(2π/3)
0 sin(2π/3) cos(2π/3)


So χ4((123)) = 1 + 2 cos(2π/3) = 0.

The conjugacy class (12345) corresponds to a rotation about an axis through face
centres. If we number the inscribed cubes appropriately, then it corresponds to
rotation by angle 2π/5, so χ4((12345)) = 1 + 2 cos(2π/5) = α.

Then (12345)2 = (13524) is in the same conjugacy class as (12354) since the
permutation (

1 2 3 4 5
1 3 5 4 2

)
= (235)

is even, and it corresponds to rotation by angle 4π/5 so χ4((12354)) = 1 +
2 cos(4π/5) = β.

Letting η = e2πi/5, we have 1+ η+ η2 + η3 + η4 = 0, and α = 1+ η+ η4, and then
(2α− 1)2 = 5, so α = (1+

√
5)/2 and then β = 1+ η2 + η3 = 1− α = (1−

√
5)/2.

Now
⟨χ4, χ4⟩ =

1

60
(32 + 15.(−1)2 + 12.α2 + 12.β2) = 1

so χ4 is irreducible.

Now there is only one more irreducible character χ5. The degrees satisfy

60 = |G| = χ1(1)
2 + χ2(1)

2 ++χ3(1)
2 + χ4(1)

2 + χ5(1)
2

= 12 + 42 + 52 + 32 + χ5(1)
2,

so χ5(1) = 3.

Let ψ be the character of the regular representation. Then

ψ = χ1(1)χ1 + χ2(1)χ2 + χ3(1)χ3 + χ4(1)χ4 + χ5(1)χ5
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so
χ5 =

1

3
(ψ − χ1 − 4χ2 − 5χ3 − 3χ4).

(Alternatively we could have obtained χ5 by arguing that if we had numbered the
inscribed cubes differently, then the rotation by angle 4π/5 could have corresponded
to the cycle (12345). Then we could have used the regular representation to find
χ3, so avoiding induced representations.)
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5 Commutative algebra

All rings are now commutative, unless explicitly stated otherwise.

5.1 Localization and prime ideals

Let R be a (commutative!) ring.

Definition. Recall from Exercise Sheet 7, that a subset S ⊆ R is multiplicative
if 1 ∈ S and st ∈ S for all s, t ∈ S. If so, the localization of R at S is

S−1R = {r/s : r ∈ R, s ∈ S}

where r/s = r′/s′ ⇔ t(s′r − sr′) = 0 for some t ∈ S. It is a ring with the
usual addition and multiplication of fractions. There is a ring homomorphism
R→ S−1R, r 7→ r/1 with kernel {r ∈ R : sr = 0 for some s ∈ S}.

Definition. Suppose θ : R→ R′ is a homomorphism of rings.

If I is an ideal of R, its extension to R′ is the ideal Ie := (θ(I)) of R′.

If I ′ is an ideal of R′, its contraction to R is the ideal (I ′)c := θ−1(I ′) of R.

It is easy to see that I ⊆ Iec and (I ′)ce ⊆ I ′.

If θ is the inclusion of a subring, then Ie = (I) and (I ′)c = R ∩ I ′.

Proposition. Suppose S is a multiplicative set in R and let θ : R → R′ = S−1R
be the natural map.

(i) If I ′ is an ideal in R′, then (I ′)ce = I ′.

(ii) Suppose I is an ideal in R then:
(a) Ie = {a/s : a ∈ I, s ∈ S}.
(b) If r ∈ R then r/1 ∈ Ie ⇔ sr ∈ I for some s ∈ S.
(c) If S ∩ I = ∅ and no element of S is a zero divisor in R/I, then I = Iec.

Proof. (i) If a/s ∈ I ′, then a/1 = (s/1)(a/s) ∈ I ′ so a ∈ (I ′)c so a/1 ∈ (I ′)ce so
a/s = (1/s)(a/1) ∈ (I ′)ce.

(ii) (a) Any element of Ie has the form
∑

i xi(ai/1) for some xi ∈ R′ and ai ∈ I.
Writing the xi over a common denominator as xi = ri/s, the element is a/s where
a =

∑
riai ∈ I.

(b) If sr ∈ I then r/1 = sr/s ∈ Ie. Conversely if r/1 ∈ Ie then r/1 = a/s with
a ∈ I and s ∈ S, so t(sr − a) = 0 for some t ∈ S, so (ts)r = ta ∈ I.

(c) If a ∈ Iec then a/1 ∈ Ie, so sa ∈ I for some s ∈ S. Then in R/I we have
s a = 0, so a = 0 so a ∈ I.

Corollary. If R is noetherian, then so is S−1R.
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Definition. Recall that an ideal P in R is prime if R/P is an integral domain.
Equivalently P ̸= R and a, b ∈ R and ab ∈ P implies a ∈ P or b ∈ P . Any maximal
ideal is prime.

MaxspecR := {maximal ideals M in R} ⊆ SpecR := {prime ideals P in R}

If θ : R → R′, then the map P ′ 7→ (P ′)c gives a mapping SpecR′ → SpecR, since
θ induces an injective homomorphism R/(P ′)c → R′/P ′.

Corollary. Extension and contraction give inverse bijections between the prime
ideals of S−1R and the prime ideals of R which are disjoint from S.

Definition. A ring R (commutative or not) is local if the set of non-invertible
elements forms an ideal I. If so, then R/I is a division ring and I is the Jacobson
radical of R (see Aufgabe 6.2).

A commutative ring is local if and only if it has a unique maximal ideal.

Proposition. An ideal P in R is prime if and only if S = R\P is a multiplicative
set. In this case S−1R is denoted RP , and it is a local ring with maximal ideal P e.
Moreover RP /P e is isomorphic to the quotient field κ(P ) of R/P .

Proof. The first statement is clear. The prime ideals in RP are of the form pe with
p ⊆ P , so P e is the unique maximal ideal. Now if s ∈ S then P + s is nonzero in
R/P , so we get a homomorphism

RP → κ(P ), r/s 7→ (P + r)/(P + s)

for r ∈ R and s ∈ R \ P . Clearly it is surjective.

The kernel contains the elements a/1 with a ∈ P , so it also contains P e. Thus we
get a homomorphism RP /P

e → κ(P ). Since RP /P e is a field, this is homomor-
phism is injective, so an isomorphism.

Definition. If I is an ideal in R, its radical is
√
I = {a ∈ R : an ∈ I for some n > 0}.

It is an ideal in R, since if an = bm = 0, then

(a+ b)n+m =

n+m∑
i=0

(
n+m

i

)
aibn+m−i = 0.

Theorem.
√
I is the intersection of the prime ideals in R containing I.

Proof. Let a ∈ R. If I ⊆ P with P prime and a ∈
√
I, then an ∈ I ⊆ P . Then

P + a is nilpotent in R/P . But this is a domain, so has no nilpotent elements.
Thus P + a = 0, so a ∈ P .
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Now suppose a /∈
√
I. Let S = {1, a, a2, . . . } and consider θ : R → R′ = S−1R.

Then 1/1 /∈ Ie by (ii)(b) of the proposition above, so Ie is a proper ideal in R′, so
it is contained in a maximal ideal M . Now a/1 is a unit in R′, with inverse 1/a,
so a/1 /∈ M , so a /∈ M c, and this is a prime ideal in R. Moreover Ie ⊆ M implies
I ⊆ Iec ⊆M c.

Definition. Let I be an ideal in R. A minimal prime over I is a prime ideal
containing I which is minimal with this property.

Proposition. Suppose I is an ideal in a ring R.

(i) Any prime ideal P of R containing I contains a minimal prime over I.

(ii)
√
I is the intersection of the minimal primes over I.

(iii) If R is noetherian, there are only finitely many minimal primes over I.

Proof. (i) Let X be the set of prime ideals p with I ⊆ p ⊆ P . We partially order
X by the opposite of the inclusion ordering. Any intersection I of a chain of ideals
in X is in X. Namely, suppose ab ∈ I and a, b /∈ I. Then b /∈ p and a /∈ p′ for some
primes p, p′ ∈ X. Without loss of generality, p ⊆ p′. Then a, b /∈ p but ab ∈ p, a
contradiction. Now Zorn’s Lemma implies that X has a maximal element, which
is a minimal prime over I.

(ii) Follows from (i).

(iii) Suppose false. Let J be maximal such that there are infinitely many minimal
primes over J . Then J is not prime, so there are a, b /∈ J with ab ∈ J . If p is
a minimal prime over J then ab ∈ p, so a ∈ p or b ∈ p. Thus p is minimal over
J + (a) or J + (b), but these have finitely many minimal primes.

Example. Recall that if R is a UFD, then any 0 ̸= a ∈ R which is not a unit can be
written as a product of irreducible elements a = b1b2 . . . bn and this decomposition
is unique up to ordering and multiplication by units. Moreover the principal ideal
(bi) generated by an irreducible element is prime. The minimal primes over (a)
are the prime ideals (bi), for if (a) ⊆ p ⊆ (bi), with p a prime ideal, then a =
b1 . . . bn ∈ p, so some bj ∈ p, but then bj ∈ (bi). It follows that bj is a unit times
bi, so (bi) = (bj) ⊆ p ⊆ (bi).

5.2 Integral extensions

Definition. Suppose R is a subring of R′ and α ∈ R′.

We say that α is integral over R if there is a monic polynomial f(X) ∈ R[X]
with f(α) = 0.

If every element of R′ is integral over R, we say that R′ is integral over R or that
R ⊆ R′ is an integral extension.
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Proposition. Suppose R ⊆ R′.

(i) If R′ is a f.g. R-module, then it is integral over R.

(ii) α ∈ R′ is integral over R ⇔ R[α] is a f.g. R-module.

Proof. (i) Let α ∈ R′ and let R′ =
∑n

i=1Rxi with x1 = 1. We can write αxi =∑n
j=1 aijxj for some matrix A = (aij) ∈Mn(R).

Let f(X) = det(A−XI) ∈ R[X] be the characteristic polynomial of A. It suffices
to prove that f(α) = 0.

Let T = A− αI ∈ Mn(R
′). Let x ∈ (R′)n be the column vector with components

xi. Then Tx = 0.

Now adj(T )T = det(T )I. (By Linear Algebra I §6.4 Satz 5 this holds for a matrix
T with entries in a field, but here we need it for matrices over the ring R′. Working
over the field Q(Xij : 1 ≤ i, j ≤ n), for n = 3 we get an identityX22X33 −X23X32 −(X21X33 −X23X31) ∗

∗ ∗ ∗
∗ ∗ ∗

X11 X12 X13

X21 X22 X23

X31 X32 X33



= (X11X22X33 −X12X21X33 + . . . )

1 0 0
0 1 0
0 0 1

 .

This involves matrices over Z[Xij ], and now by a ring homomorphism Z[Xij ]→ R′

we can specialize the Xij to elements of R′.)

Thus det(T )x = adj(T )Tx = 0. Thus since x1 = 1 we get det(T ) = 0, so f(α) = 0.

(ii) Suppose f(X) ∈ R[X] is a monic polynomial of degree n with f(α) = 0. Then
αn ∈

∑n−1
i=1 R[X]αi. By induction the sum contains αm for all m ≥ n. Thus the

sum is R[α]. The converse follows from (i).

Properties. (i) Suppose R ⊆ R′ and α1, . . . , αn ∈ R′. If each αi is integral over
R[α1, . . . , αi−1], then R[α1, . . . , αn] is f.g. as an R-module, so it is integral over R.

Proof. By induction R′′ = R[α1, . . . , αn−1] is f.g. as an R-module, say R′′ =∑n
i=1Rxi. Since αn is integral over R′, we have

R[α1, . . . , αn] = R′′[αn] =

m∑
j=1

R′′yj =
∑
i,j

Rxiyj .

(ii) If R ⊆ R′ ⊆ R′′, then R′′ is integral over R if and only if R′′ is integral over R′

and R′ is integral over R.

Proof. It is clear that if R′′ is integral over R then it is integral over R′ and R′ is
integral over R.
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For the converse, say α ∈ R′′. Then there is a monic polynomial f(X) ∈ R′[X]
with f(α) = 0. Let a0, . . . , an ∈ R′ be its coefficients. Then by property (i),
R[a0, . . . , an, α] is integral over R, so α is integral over R.

(iii) If R ⊆ R′ is an integral extension and θ : R′ → R′′ is a ring homomorphism,
then θ(R′) is integral over θ(R).

If α ∈ R′ and f(α) = 0 with f(X) ∈ R[X] monic. Then f ′(X) = θ(f(X)) ∈
θ(R)[X] is monic and f ′(θ(α)) = θ(f(α)) = 0, so θ(α) is integral over θ(R).

(iv) If R ⊆ R′ is an integral extension and S is a multiplicatively closed subset of
R then S−1R′ is integral over S−1R.

If is clear that S−1R is a subring of S−1R′. Suppose a ∈ R′ is a root of the monic
polynomial

Xn + rn−1X
n−1 + · · ·+ r1X + r0,

then for s ∈ S the element a/s is a root of the monic polynomial

Xn + (rn−1/s)X
n−1 + · · ·+ (r1/s

n−1)X + (r0/s
n).

(v) If R ⊆ R′ is an integral extension of integral domains, then R is a field if and
only if R′ is a field.

If R′ is a field and 0 ̸= r ∈ R, then r−1 exists in R′, so there is a polynomial with

(r−1)n + rn−1(r
−1)n−1 + · · ·+ r0 = 0

Multiplying by rn−1 we get r−1 ∈ R.

If R is a field then 0 ̸= α ∈ R′ satisfies a polynomial

αn + rn−1α
n−1 + · · ·+ r1α+ r0 = 0

and since R′ is an integral domain we may take r0 ̸= 0. Then

α−1 = −(r0)−1(αn−1 + rn−1α
−2 + · · ·+ r1).

(vi) If R ⊆ R′ is an integral extension, then the contraction of a maximal ideal m′

in R′ is maximal in R.

Let θ : R′ → R′/m′ be the canonical map. By Property (iii), θ(R′) = R′/m′ is
integral over θ(R) = (R+m′)/m′ ∼= R/(R ∩m′) = R/(m′)c. Now use (v).

Theorem (Lying over). If R ⊆ R′ is an integral extension, then every P ∈ SpecR
is the contraction of some P ′ ∈ SpecR′.
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Proof. Consider
R −−−−→ R′y y
RP −−−−→ (R \ P )−1R′

Then RP is a local ring with maximal ideal ideal P e. So it is not zero. So (R \
P )−1R′ is not zero. Take a maximal ideal m in it.

Since (R \ P )−1R′ is integral over RP , the contraction of m to RP is maximal,
so equal to P e. Thus the contraction of m to R is P . On the other hand the
contraction of m to R′ is a prime P ′, and its contraction to R is P .

Definition. Let R be a subring of R′. The integral closure of R in R′ is

R
R′

= {α ∈ R′ : α is integral over R}.

It is a subring of R′, for if α1, α2 are integral over R, then α2 is also integral over
R[α1], so R[α1, α2] ⊆ R

R′
by property (i).

If RR
′
= R, we say that R is integrally closed in R′.

Note that RR
′
is integrally closed in R′, since if α ∈ R′ is integral over RR

′
, then

R
R′
[α] is integral over RR

′
, so by property (ii) it is integral over R, so α is integral

over R, so α ∈ RR
′
.

Theorem. Suppose R is a UFD with field of fractions K.

(i) RK = R, so R is integrally closed in K.

(ii) If L/K is a field extension, then

R
L
= {α ∈ L : α algebraic over K and mα/K(X) ∈ R[X]}.

Proof. (i) Rational root test, Algebra I §4.5.

(ii) Say α ∈ RL. Take p(X) ∈ R[X] monic of least degree with p(α) = 0. Clearly
p(X) is irreducible in R[X]. Then by Algebra I, §4.4 Satz (i), p(X) is irreducible
in K[X], so it is the minimal polynomial of α.

Examples. A number field is a finite extension field L of Q. Its ring of integers
is OL = ZL.

If α = a+ b
√
2 ∈ Q(

√
2) with a, b ∈ Q and b ̸= 0, then

mα/Q(X) = (X − a)2 − 2b2 = X2 − 2aX + a2 − 2b2.
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This is in Z[X] ⇔ 2a, a2 − 2b2 ∈ Z ⇔ a, b ∈ Z, so OQ(
√
2) = Z[

√
2].

Similarly OQ(i) = Z[i].

If α = a+ b
√
5 ∈ Q(

√
5) with a, b ∈ Q and b ̸= 0, then

mα/Q(X) = (X − a)2 − 5b2 = X2 − 2aX + a2 − 5b2.

This is in Z[X] ⇔ 2a, a2 − 5b2 ∈ Z ⇔ a, b ∈ Z or a, b ∈ Z + 1
2 . For example if

α = 1
2(1 +

√
5) then α2 = α+ 1. It follows that OQ(

√
5) = Z[1+

√
5

2 ].

The ring of algebraic integers is ZC. We use algebraic integers to prove the
following theorem.

Theorem. The degrees of the irreducible complex representations of a finite group
divide the order of the group.

Proof. Let g1, . . . , gk be representatives of the conjugacy classes. Let

cj =
∑
g∈[gj ]

g ∈ CG

be the class sum, the sum of the elements conjugate to gj .

The elements cj are a basis for Z(CG), and clearly

cicj =
∑
k

aijkck

for some aijk ∈ N.

By Schur’s Lemma, cj acts on an irreducible representation V as multiplication by
a scalar ωj ∈ C. Then ωiωj =

∑
k aijkωk. Thus R =

∑
j Zωj is a subring of C.

Thus the ωj are algebraic integers.

Considering the trace of the action of cj on V , we get

njχV (gj) = (dimV )ωj

where nj = |[gj ]|. Then

1 = ⟨χV , χV ⟩ =
1

|G|
∑
j

njχV (gj)χV (g
−1
j ) =

1

|G|
∑
j

(dimV )ωj χV (g
−1
j ).

Thus
|G|

dimV
=
∑
j

ωjχV (g
−1
j ).

Now χV (g
−1
j ) is a sum of roots of 1, so an algebraic integer. Thus the right hand

side is an algebraic integer, but rational, so an integer.
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5.3 The Nullstellensatz

Lemma (1). Let K be a field and n > 0. By the substitution

Yi := Xi −Xri−1

1 (i = 2, . . . , n)

with r > 0, we can identify

K[X1, . . . , Xn] = K[X1, Y2, . . . , Yn] = R[X1]

where R = K[Y2, . . . , Yn],

Given 0 ̸= f(X1, . . . , Xn) ∈ K[X1, . . . , Xn] we can choose r such that f(X1, . . . , Xn)
corresponds to a scalar multiple of a monic polynomial in R[X1].

Proof. Any polynomial inX1, Y2, . . . , Yn can be written as a polynomial inX1, X2, . . . , Xn

via the substitution, and this is reversible by the substitution

Xi = Yi +Xri−1

1 (i = 2, . . . , n).

Any monomial Xd1
1 X

d2
2 . . . Xdn

n involved in f(X1, . . . , Xn) becomes

Xd1
1 (Y2 +Xr

1)
d2 . . . (Yn +Xrn−1

1 )dn

which is a monic polynomial in R[X1] of degree

d1 + d2r + · · ·+ dnr
n−1.

The finitely many monomials involved in f(X1, . . . , Xn) give a finite number of
polynomials d1+d2T + · · ·+dnTn−1, so we can choose r such that their evaluations
at r are all different. Then

f(X1, . . . , Xn) = f(X1, Y2+X
r
1 , . . . , Yn+X

rn−1

1 ) = λ

Xm
1 +

m−1∑
j=0

gj(Y2, . . . , Yn)X
j
1


where m is the maximal value of d1 + d2r + · · ·+ dnr

n−1 for a monomial involved
in f(X1, . . . , Xn), λ is the coefficient of that monomial and gj(Y2, . . . , Yn) ∈ R.

Lemma (2). If f(X) ∈ R[X] is a monic polynomial of degree n > 0, then the
natural map R → R[X]/(f(X)) is injective, so we can identify R as a subring of
R[X]/(f(X)). Moreover R[X]/(f(X)) is integral over R.

Proof. If g(X) ∈ R[X] has leading term amX
m then f(X)g(X) has leading term

amX
n+m, so it cannot be a nonzero element of R. Thus the map R→ R[X]/(f(X))

is injective. Let X be the image of X in R[X]/(f(X)). Then f(X) = f(X) = 0,
and R[X]/(f(X)) = R[X], so it is integral over R by property (i) of integral
extensions.
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Theorem (Noether Normalization). Let K be a field. If R is a f.g. K-algebra, then
it contains a subalgebra S which is isomorphic to a polynomial algebra K[X1, . . . , Xn],
and such that R is integral over R, and hence a f.g. S-module.

Proof. Let θ : K[X1, . . . , Xn] → R be a ring homomorphism with R integral over
Im(θ) and n minimal with this property. It exists since R is f.g. as a K-algebra, so
there is even a surjective homomorphism.

If θ is not injective, then the kernel contains an non-zero element f . By Lemma 1
we may assume that f is monic in R0[X1], where R0 = K[X2, . . . , Xn]. Then we
get

R0
ϕ−→ K[X1, . . . , Xn]/(f)

θ−→ R.

Now R is integral over Im θ by assumption. Also Im θ is integral over Im θϕ by
Lemma 2 and property (iii) of integral extensions. Thus R is integral over Im θϕ
by property (ii) of integral extensions, contradicting the minimality of n.

Now R is f.g. as an Im(θ)-module by property (i) of integral extensions, since it is
f.g. as a K-algebra.

Theorem (Weak Nullstellensatz). If L/K is a field extension, and L is f.g. as a
K-algebra, then L/K is a finite field extension.

Proof. By Noether normalization L is f.g. as a module over a subring S ∼=
K[X1, . . . , Xn]. Now by property (v) of integral extensions S is a field, so n = 0.
Thus L/K is a finite field extension.

Lemma. (i) If K is a field, the K-algebra homomorphisms θ : K[X1, . . . , Xn]→ K
are exactly the maps

f(X1, . . . , Xn) 7→ f(a) := f(a1, . . . , an)

for some a = (a1, . . . , an) ∈ Kn. Moreover Ker θ is equal to

ma = (X1 − a1, . . . , Xn − an)

and it is a maximal ideal in K[X1, . . . , Xn].

(ii) If K is an algebraically closed field, then every maximal ideal of K[X1, . . . , Xn]
is of the form ma for some a ∈ Kn

Proof. (i) Given θ, set ai = θ(Xi). We have Xi − ai ∈ Ker θ so ma ⊆ Ker θ.
Conversely suppose that f ∈ Ker θ. Let

g(Y1, . . . , Yn) = f(Y1 + a1, . . . , Yn + an) ∈ K[Y1, . . . , Yn].

Then g(0, . . . , 0) = f(a1, . . . , an) = 0. Thus g has constant term zero, so we we
can write

g =
n∑
i=1

hiYi
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with hi ∈ K[Y1, . . . , Yn]. Then

f(X1, . . . , Xn) = g(X1−a1, . . . , Xn−an) =
n∑
i=1

hi(X1−a1, . . . , Xn−an)(Xi−ai) ∈ ma.

Since θ is surjective, K[X1, . . . , Xn]/ma
∼= K is a field, so ma is a maximal ideal.

(ii) Suppose M is a maximal ideal. It is the kernel of the canonical homomorphism
K[X1, . . . , Xn] → K[X1, . . . , Xn]/M . Now K[X1, . . . , Xn]/M is a field extension
of K, finitely generated as a K-algebra, so a finite extension of K by the weak
Nullstellensatz. By algebraic closure, it is K.

Definition. Let K be an algebraically closed field.

If V is a subset of Kn, we define

I(V ) = {f ∈ K[X1, . . . , Xn] : f(a) = 0 for all a ∈ V }

= {f ∈ K[X1, . . . , Xn] : f ∈ ma for all a ∈ V }

It is an ideal in K[X1, . . . , Xn].

If S is a subset of K[X1, . . . , Xn], we define

V(S) = {a ∈ Kn : f(a) = 0 for all f ∈ S} = {a ∈ Kn : S ⊆ ma}.

Clearly V(S) = V(I) where I is the ideal generated by S.

Theorem (Hilbert’s Nullstellensatz). Let K be an algebraically closed field. If I is
an ideal in K[X1, . . . , Xn] then I(V(I)) =

√
I. Equivalently,

√
I is the intersection

of all maximal ideals containing I.

Proof. If f ∈
√
I, then fm ∈ I for some m > 0. For a ∈ V(I), we have f(a)n = 0.

Thus f(a) = 0. Thus f ∈ I(V(I)).

Now suppose f ∈ I(V(I)). Consider the ideal

J = (I,Xf − 1) ⊆ K[X1, . . . , Xn, X].

If J is a proper ideal in K[X1, . . . , Xn, X], then it is contained in some maximal
ideal

m(a1,...,an,b) = (X1 − a1, . . . , Xn − an, X − b)

= KerK[X1, . . . , Xn, X] 7→ K, g(X1, . . . , Xn, X) 7→ g(a1, . . . , an, b).

If h ∈ I, then h ∈ J ⊆ m(a1,...,an,b), so h(a1, . . . , an) = 0. Thus a = (a1, . . . , an) ∈
V(I). Also Xf −1 ∈ J ⊆ m(a1,...,an,b), so bf(a1, . . . , an)−1 = 0, so f(a1, . . . , an) ̸=
0, contradicting the assumption that f ∈ I(V(I)).
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Thus J is not a proper ideal. Thus we have

1 =

k∑
i=1

higi + h(Xf − 1)

with the gi in I and hi, h ∈ K[X1, . . . , Xn, X]. Applying the homomorphism

K[X1, . . . , Xn, X] 7→ K(X1, . . . , Xn), Xi 7→ Xi, X 7→ 1/f,

we get

1 =

k∑
i=1

hi(X1, . . . , Xn, 1/f)gi

in K(X1, . . . , Xn). But we can write

hi(X1, . . . , Xn, 1/f) = ki/f
di

for some ki ∈ K[X1, . . . , Xn] and di ≥ 0, and we may assume that all di = d. Then
1 = ℓ/fd where ℓ =

∑k
i=1 kigi ∈ I. Thus fd ∈ I, so f ∈

√
I.

Definition. We say that an ideal I in a ring is radical if I =
√
I. Note that if I

is any ideal, then
√√

I =
√
I, so

√
I is radical.

We say that a subset V ⊆ Kn is Zariski-closed if it is of the form V(S) for some
subset S of K[X1, . . . , Xn].

Corollary. If K is an algebraically closed field, we have inverse bijections

{Radical ideals I in K[X1, . . . , Xn]}
V−→
←−
I
{Zariski-closed subsets V of Kn}.

The bijections reverse inclusions.

Examples.

Poly ring Ideal I V(I) ∩ Rn Min primes over I
C[X,Y ] (Y −X2) parabola y = x2 I

C[X,Y ] (XY − 1) hyperbola xy = 1 I

C[X,Y ] ((Y −X2)(XY − 1)) parabola ∪ hyperbola (Y −X2), (XY − 1)

C[X,Y, Z] (XY,XZ) (plane x = 0) ∪ (line y = z = 0) (X), (Y,Z)

We have a decomposition
V(I) =

⋃
P

V(P )

where P runs through the minimal primes over I. (The real picture of the hyperbola
seems to have two connected components, but in C2 the pieces are joined together.
Real pictures can be misleading.)

80



Remarks. (a) The Zariski-closed subsets are the closed subsets of a topology on
Kn, the Zariski topology, since

(i) Kn = V(∅) and ∅ = V(K[X1, . . . , Xn]),

(ii)
⋂
iV(Si) = V(

⋃
i Si),

(iii) V(S) ∪ V(T ) = V({st : s ∈ S, t ∈ T}),

(b) An affine variety is a Zariski-closed subset V of Kn together with its coor-
dinate ring

K[V ] := K[X1, . . . , Xn]/I(V ).

We have a bijection
V → MaxspecK[V ], a 7→ ma.

5.4 Krull dimension

Definition. If p is a prime ideal in R then the height of p is

ht(p) = sup{n : ∃ p0 ⊂ p1 ⊂ · · · ⊂ pn = p with pi distinct prime ideals}.

and the Krull dimension of R is

dimR = sup{ht(p) : p prime ideal in R}

= sup{n : ∃ p0 ⊂ p1 ⊂ · · · ⊂ pn with pi distinct prime ideals}.

We will see that every prime ideal in a noetherian ring has finite height. There are
examples by Nagata of noetherian rings with infinite Krull dimension, but we will
see that f.g. algebras over a field have finite Krull dimension.

Example. (1) If K is a field, it has dimK = 0.

(2) A principal ideal domain R which is not a field has dimR = 1, since the prime
ideals are either 0 or maximal, of the form (a) with a an irreducible element.

(3) If R is a UFD then the height 1 primes are exactly the ideals (b) with b an
irreducible element.

Proof. If p is a height 1 prime, and a is a non-zero element of p, then p is a minimal
prime over (a), so p = (b) for some irreducible factor of a by the example at the
end of §5.1. On the other hand if p is a prime ideal contained in (b) and a is a
nonzero element of p, then (b) is a minimal prime over (a), so p = (b), so (b) has
height 1.

(4) A Dedekind domain is an integral domain of Krull dimension ≤ 1 which is
integrally closed in its field of fractions. Any principal ideal domain is a Dedekind
domain. By the next result, the ring of integers OL of a number field L is a
Dedekind domain.
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Theorem. If R ⊆ R′ is an integral extension, then R and R′ have the same Krull
dimension.

Proof. Given a chain of prime ideals p0 ⊂ p1 ⊂ · · · ⊂ pn in R we construct a chain
p′0 ⊂ p′1 ⊂ · · · ⊂ p′n in R′ inductively such that p′i contracts to pi for all i. First, by
Lying over, p0 is the contraction of some prime ideal p′0 in R′. If p′0, . . . , p′i−1 have
been constructed, then R′/p′i−1 contains (R+p′i−1)/p

′
i−1
∼= R/(R∩p′i−1)

∼= R/pi−1,
and it is integral over it by property (iii) of integral extensions. Thus by Lying-
over, there is a prime ideal in R′/p′i−1 which contracts to pi/pi−1 in R/pi−1. We
can write it in the form p′i/p

′
i−1 for a suitable prime ideal p′i in R′, and then p′i

contracts to pi.

Conversely, given a chain in R′, the contractions give a chain in R, and they
are all different. Namely, suppose (p′i)

c = (p′i−1)
c. By assumption there is some

a ∈ p′i \ p′i−1. Let

f(X) = Xn + rn−1X
n−1 + . . . r1X + r0

be a monic polynomial in R[X] of minimal degree with f(a) ∈ p′i−1. It exists by
integrality. Then

r0 = f(a)− an − rn−1a
n−1 − · · · − r1a ∈ p′i

so
r0 ∈ R ∩ p′i = (p′i)

c = (p′i−1)
c ⊆ p′i−1

so
(an−1 + rn−1a

n−2 + · · ·+ r1)a = f(a)− r0 ∈ p′i−1.

Now by minimality the first factor is not in p′i−1, so a ∈ p′i−1. Contradiction

Theorem. If K is a field, then K[X1, . . . , Xn] has Krull dimension n. Thus any
f.g. K-algebra has finite Krull dimension.

Proof. Induction on n. Say m is a maximal ideal. Then m contains a height one
prime (f). By §5.3 Lemma 1, we may suppose f is monic inX1 overK[X2, . . . , Xn].
Then by §5.3 Lemma 2, K[X1, . . . , Xn]/(f) is integral over K[X2, . . . , Xn], so has
Krull dimension n− 1.

Proposition. Let R be a noetherian ring. The following are equivalent:

(i) R has Krull dimension 0, that is, every prime ideal in R is maximal.

(ii) R/
√
0 is a semisimple ring.

(iii) There is an ideal I in R with R/I semisimple and I nilpotent.

(iv) R is artinian, that is, it has the DCC on ideals.
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Proof. (i)⇒(ii) The ideal
√
0 is the intersection of the minimal primes over 0, and

since R is noetherian, there are only finitely many of them. These primes are
maximal, say m1, . . . ,mn. Then

R/
√
0 ↪→ (R/m1)⊕ · · · ⊕ (R/mn).

This is a submodule of a semisimple module, so semisimple.

(ii)⇒(iii) If I and J are nilpotent ideals, then so is I + J , for if In = Jm = 0, then

(I + J)n+m ⊆
n+m∑
i=0

IiJn+m−i = 0.

Now
√
0 is finitely generated, so equal to (x1, . . . , xr) for some r, and the ideals

(xi) are nilpotent, hence so is
√
0.

(iii)⇒(iv) Each In/In+1 is a f.g. module for R/I, so semisimple. Thus it is artinian.
Now use Aufgabe 5.3(ii).

(iv)⇒(i) Replacing R by R/P , with P a prime ideal, we may suppose that R is an
integral domain, and need to show it is a field. Let 0 ̸= x ∈ R. The chain of ideals

(x) ⊇ (x2) ⊆ (x3) ⊇ . . .

stabilizes with (xn) = (xn+1) for some n. Then xn = axn+1 for some a ∈ R. Then
1 = ax, so x is invertible with inverse a.

Lemma (Nakayama’s Lemma). If R is a local ring with maximal ideal m and M
is a f.g. module with mM = M , then M = 0. More generally, if R is a ring, not
necessarily commutative, J is its Jacobson radical and M is a f.g. R-module with
JM =M , then M = 0.

Proof. Suppose M ̸= 0. Since it is f.g., it has a maximal proper submodule N .
Then M/N is a simple module, so J(M/N) = 0. Thus JM ⊆ N . Contradiction.

Theorem (Krull’s Hauptidealsatz). If R is a noetherian ring, then any minimal
prime ideal over a principal ideal has height ≤ 1.

Proof. Suppose otherwise. Then there is a minimal prime P over a principal ideal
(x), and a chain of distinct prime ideals p ⊂ q ⊂ P . By passing to R/p and
localizing at P we may suppose that R is a local integral domain with maximal
ideal m minimal over (x) and containing a nonzero prime ideal q.

Then the only prime ideal in R/(x) is m/(x), so it is artinian. Consider θ : R →
R′ = Rq. Since R is an integral domain, so is R′, for if (a/s)(b/t) = 0 with a, b ∈ R
and t ∈ R \ q, then tab = 0, and since t ̸= 0, we have a = 0 or b = 0.
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Let Q = qe the max ideal in R′ and let In = (Qn)c. By the descending chain
condition we have In+(x) = In+1+(x) for some n. Suppose a ∈ In. We can write
a = b + rx with b ∈ In+1 and r ∈ R. Then in R′ we have θ(rx) ∈ (In)

e = Qn.
Now θ(x) /∈ Q, for otherwise x ∈ Qc = q, contrary to the assumption. Since R′

is local, with maximal ideal Q, it follows that θ(x) is invertible. Thus θ(r) ∈ Qn.
Thus r ∈ In. It follows that In = In+1 + Inx.

Now In/In+1 = xIn/In+1 ⊆ mIn/In+1. Thus by Nakayama’s Lemma In/In+1 = 0.
Thus In = In+1. Thus Qn = (In)

e = (In+1)
e = Qn+1. Thus Qn = 0 by Nakayama’s

Lemma. Thus R′ is artinian. But it is an integral domain, so the ideal 0 is a prime
ideal, so Q = 0. Thus q ⊆ qec = Qc = 0. Contradiction.

Corollary (Krull’s height theorem). If R is a noetherian ring, then any minimal
prime ideal over an ideal generated by n elements has height ≤ n. Thus every prime
ideal in a noetherian ring has finite height.

Proof. Induction on n. Let P be a minimal prime over (x1, . . . , xn). Replacing R by
RP , we may suppose that P is a maximal ideal. It follows that P =

√
(x1, . . . , xn).

It suffices to show that any element of the set X = {p ∈ SpecR : p ⊂ P, p ̸= P} has
height < n. Since R is noetherian, it suffices to show that any maximal element Q
of X has ht(Q) < n.

Since P is minimal over (x1, . . . , xn), without loss of generality x1 /∈ Q. Then P
is minimal over Q + (x1), so P =

√
Q+ (x1). Thus for i = 2, . . . , n, we have

xni
i = qi + rix1 with ni > 0, qi ∈ Q and ri ∈ R.

Consider the ring R = R/(q2, . . . , qn). The prime ideals Q ⊂ P in R give primes
Q ⊂ P in R. Now any prime ideal in R is of the form p for some prime ideal p in
R, and if p is minimal over (x1), then p contains x1 and the qi, so it contains all
xni
i , so it contains all xi, so p = P . Then ht(P ) ≤ 1 since P is a minimal prime

over (x1), so ht(Q) = 0, so Q is a minimal prime over (q2, . . . , qn), so by induction
ht(Q) < n.
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