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We cover a selection of important topics in algebra:

1.

Preparations. We introduce the notions of categories and functors, which
are useful everywhere in pure mathematics, and we discuss Zorn’s lemma, a
version of the axiom of choice.

. Modules. These are generalizations of vector spaces, where the field is re-

placed by an arbitrary ring. For example, additive groups are the same as
modules for the ring Z of integers. In particular, we discuss free modules,
semisimple modules and rings, and Noetherian rings and modules.

. Multilinear algebra. An important construction for modules is the notion

of a tensor product. This allows one to introduce exterior algebras, which
provide a coordinate-free way to treat determinants. We also study Clifford
algebras.

. Representations of finite groups. A representation of a group is the occurrence

of the group as symmetries. We are interested in linear representations,
which are actions of the group on a vector space, or equivalently modules
for a suitable ring, the group algebra. The character table contains all the
information about its complex representations.

. Commutative algebra. Commutative rings play an essential role in number

theory and algebraic geometry. We discuss localization, integral extensions,
the Nullstellensatz, which establishes a correspondence between subsets of
affine space and ideals in a polynomial ring, and dimension theory.

Some suggested books:
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J. J. Rotman, Advanced Modern Algebra, Third Edition, Part 1, Amer.
Math. Soc. 2015.

M. Artin, Algebra, Birkh&user 1998.

J. A. Beachy, Introductory Lectures on Rings and Modules, CUP 2012.

M. Brandenburg, Einfiihrung in die Kategorientheorie : Mit ausfiihrlichen
Erklarungen und zahlreichen Beispielen, Springer 2017.

P. M. Cohn, Basic algebra : groups, rings and fields, Springer 2005.

D. J. H. Garling, Clifford algebras : an introduction, CUP 2011.

G. James and M. Liebeck, Representations and characters of groups, Second
Edition, CUP 2001.
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1 Preparations

1.1 Zorn’s Lemma

Definition. A partial order on a set S is a relation < that is reflexive, transitive
and antisymmetric, which means that ¢ <y and y < 2 = z = y. For elements in
S we write z > y for y < z, x < y for z <y and x # y, etc.

It is a total order if, in addition, for all z,y € S, z <y or y < x holds.
A partially ordered set is a set equipped with a partial order.

Let S be a partially ordered set.

A chain is a subset C of S that is totally ordered.

A largest element in S is an element ¢ € S with x < ¢ for all x € S. Likewise a
smallest element. If there is a largest element, it is unique.

An element x € S is called maximal if there is no y € S with x < y. Likewise
minimal. (A largest element is maximal, but the opposite need not be true.)

An upper bound for a subset X C S'is an element b € S with z < b for all x € X.

A partially ordered set is well-ordered if every nonempty subset has a smallest
element. Considering two-element subsets, we see that a well-ordered set is always
totally ordered.

Theorem. The following are equivalent:

(i) The axiom of choice: Given a set I and nonempty sets X; for each i € I, the
product [ [;c; Xi is not empty.

(i) Zorn’s lemma: Let S be a partially ordered set. If every chain in S has an
upper bound, then S has a mazimal element.

(iii) Every set can be well-ordered.

Remarks. (1) In naive set theory, the axiom of choice seems obvious, so we assume
it is true. Therefore, we assume that the equivalent conditions are also true.

The well-ordering property is not obvious. For example, the usual ordering of the
real numbers is not a well-ordering. Can you find an ordering?

We will use Zorn’s lemma several times.

(2) There are two hierarchies of infinities, one based only on sets, the other on
well-ordered sets.

(a) We consider two sets to be equivalent if there is a bijection between them.
The cardinal numbers are the equivalence classes of sets under this equivalence
relation.



The cardinal number of the set N = {0,1,2,...} is denoted by Ry, where aleph is
the first letter of the Hebrew alphabet. Thus, a set X has cardinality Xy if and
only if there is a bijection between X and N. That is, X is countable and infinite.

(b) We consider two well-ordered sets to be equivalent if there is a bijection between
them that preserves the order. The ordinals are the equivalence classes.

The ordinal number of the set N is denoted by w. For every ordinal S there is a
successor S + 1 obtained by appending a new largest element to S. For example,
w + 1 corresponds to the well-ordered set {0,1,2...,w}.

(3) For further discussion, including a proof of (ii)=-(iii), I recommend P. M. Cohn,
Basic algebra, §1.2.

Theorem. Fvery proper ideal I in a ring R is contained in a maximal ideal.

Proof. Remember: We only consider rings with one. We use: An ideal I is proper
if and only if 1 ¢ I. Let S be the set of all proper ideals in R that contain I. It is
partially ordered by inclusion. We are looking for a maximal element of S.

Suppose C'is a chain in S. If C' = (), then I is an upper bound for C. If C' # ()

then
K=JJ
JeC

is a subset of R. It is an ideal. For example, if a,b € K, then a € J and b € J' for
J,J' € C. Since C is a chain, J C J' or J' C J. In the first case, a +bec J C K
and in the second case, a+b € J C K. Now K is a proper ideal, because if 1 € K,
then 1 € J for some J € C, and then J is not a proper ideal. Thus K € S, and it
is an upper bound for C'.

By Zorn’s lemma, S contains a maximal element. O
Definition. Let V be a vector space over a field K. Let (v;)ier be a tuple of
elements of V', where I is a set that is not necessarily finite.

The tuple is linearly independent if for all elements A\; € K, all but finitely
many of them zero,

D Awi=0= X =0 for all i.

el

The tuple is a spanning set for V if for every v € V there are elements \; € K,
all but finitely many of them zero, such that

v = Z /\i'Uz'-

il

The tuple is a basis of V if it is linearly independent and a spanning set.



Theorem. Every vector space V' has a basis. If (v;)ier is a spanning set for V. and
I' C 1 is a subset with (v;);ep linearly independent, then there is a subset I" with
I' CI" C I such that (v;)ierr is a basis.

Proof. The second statement implies the first: The tuple (v;);e; with I =V and

v; =i € V is a spanning set for V and if I’ = ), then (v;);¢ is linearly independent.

Let S be the set of all subsets A of I with I’ C A such that (v;);ca is linearly
independent. S is partially ordered by inclusion.

Suppose C is a chain in S. If C' = (), then I’ is an upper bound for C. If C' # 0,

then
B=[]JA4
AeC

is a subset of I. Obviously I’ C B. Suppose there is a linear relation
Z )\z"Uz' =0.
i€B

The set N = {i € B : \; # 0} is finite. Suppose N is not empty. If i € N,
then ¢ € B, so ¢ € A; for some A; € C. Since C is a chain and N is finite, there
is a j € N such that 4; C A; for all ¢ € N. Then N C A;. However, this is
impossible because (v;)icq; is linearly independent. Thus N = 0, so (v;)icp is
linearly independent. So B € S. Thus every chain has an upper bound.

According to Zorn’s lemma, there is a maximal element I” in S. Suppose (v;);er
is not a spanning set for V. Since (v;);cs is a spanning set, there is j € I such that
v; cannot be written as a linear combination

v = Z Ai;.
iel”
But then (v;);crruy;y is linearly independent. So I" U {j} € S. A contradiction to
maximality. O
1.2 Categories

Remark. Because of Russell’s paradox, there is no set of all sets. One solution is
to use classes. A class is a collection of things, possibly a set but not necessarily,
defined by a property that all things in the class satisfy. There is a class of all sets.

Definition. A category C consists of a class Ob(C) of objects and for each pair
X,Y € Ob(C) a set Hom(X,Y) of morphisms from X to Y, together with a law
of composition

Hom(Y, Z) x Hom(X,Y) — Hom(X, Z), (g,f) g f,

for all X,Y,Z € Ob(C), satisfying the following conditions.



(i) The composition of morphisms is associative, that is, if f € Hom(X,Y), g €
Hom(Y, Z) and h € Hom(Z,U), then h(gf) = (hg)f.

(i) For all X € Ob(C) there is an identity morphism Idx € Hom(X, X') such that
for all f € Hom(X,Y) f Idx = f = Idy f. Note that Idx is unique.

Other notation: Instead of Hom(X,Y) sometimes Hom¢(X,Y) or C(X,Y). Also
f:X =Y means f € Hom(X,Y).

A morphism f : X — Y is an isomorphism if there exists a morphism f’ : Y — X
with f'f =Idx and ff’ = Idy. If so, then f’ is unique, it is called the inverse of
f and is denoted by f~!.

Examples. (a) Concrete categories:

Set. The objects are sets, the morphisms are mappings 8 : X — Y. It is easy to
see that the isomorphisms are the bijective mappings.

Grp. The objects are groups. Morphisms are group homomorphisms. It is easy to
see that isomorphisms correspond to the usual definition, i.e. bijective homomor-
phisms.

Ring. Similar.

K-Vec, where K is a field. The objects are vector spaces over K, morphisms are
linear maps. Isomorphisms correspond to the usual definition.

(b) The opposite category C is given by Ob(C) = Ob(C) and

Homeor (X,Y) = Home(Y, X)

(c) The product C x D of two categories has as objects the pairs (X,Y) with X
an object in C and Y an object in D, and

Hom((X,Y), (X",Y")) = Home(X, X') x Hom.p(Y,Y’).

(d) If G is a group, then there is a category with only one object X, Hom(X, X) =
G, and composition given by the multiplication for G. Every morphism is an
isomorphism. The same applies to a ring in which only multiplication is used. The
isomorphisms correspond to the units.

(e) If S is a partially ordered set, then there is a category with objects of the
elements s € S and
{ise} (s<1)

Hom(s,£) = {@ (else).

Definition. A morphism f : X — Y is a monomorphism if for all objects U
and o, 8 :U — X, if fa = ff, then a = .



A morphism f : X — Y is an epimorphism if for all objects Z and o, 5 : Y — Z,
if af = Gf, then a = 6.

Remark. For the categories Set and K-Vec, monomorphisms are the same as
injective morphisms and epimorphisms are the same as surjective morphisms.

In the category Ring, every surjective morphism is an epimorphism, but the inclu-
sion f :Z — Q is an epimorphism that is not surjective. Namely, if a,5: Q — R
satisfy af = Bf, then a(n) = B(n) for all n € Z. But since o and [ are ring
homomorphisms, we have

a(n/m) = a(n)a(m™) = a(n)a(m)™" = B(n)8(m)~" = B(n/m)
for n,m € Z with m # 0, so o = 3.
Definition. A subcategory D of a category C is a category such that:
- Every object of D is an object of C,
- Homp(X,Y) C Home(X,Y) for all X, Y € Ob(D).

- The composition of morphisms in D corresponds to the composition in C and
Idx € Homp(X, X) for all X € Ob(D).

A subcategory is full if Homp(X,Y) = Hom¢(X,Y) for all X, Y € Ob(D) .
Thus a full subcategory of C is determined by a subclass Ob(D) of Ob(C).
Examples. The category Ab of abelian groups is a full subcategory of Grp.
The category CRing of commutative rings is a full subcategory of Ring.

The category K-vec of finite-dimensional vector spaces is a full subcategory of
K-Vec.

Consider a group G as a category with an object. Any subgroup H < G gives a
subcategory.

The subcategory of Set, which is given by all sets and injective (or surjective, or
bijective) mappings.
1.3 Functors

Definition. Let C and D be categories. A (covariant) functor F' : C — D is
given by

- For every object X € Ob(C), an object F'(X) € Ob(D)

- For every morphism 6 : X — Y in C a morphism F(0) : F(X) — F(Y) in D
such that the following hold:

(i) F(Idx) = Idp(x, for all X € Ob(C).



(ii) F(g f) = F(g9)F(f) for morphisms ¢ and f in C that are composable (i.e.
f:X—=Yandg:Y — 7).

A contravariant functor from C to D is a covariant functor G : C°? — D. So if
¢ : X — Y is a morphism in C, then G(0) : G(Y) — G(X).

Note that if F' is a functor and 6 is an isomorphism, then F'(f) is an isomorphism
with inverse F(6~1).

A functor F' : C — D is called full (respectively faithful) if for all X,Y € Ob(C)
the mapping F' : Homeg(X,Y) — Homp(F(X),F(Y)), 0 — F(0) is surjective
(respectively injective).

A functor F' : C — D is said to be dense if every object in D is isomorphic to one
of the form F(X) for some X € Ob(C).

A functor F' : C — D is called an equivalence if it is full, faithful and dense.
Examples. (1) The identity functor Id¢ : C — C. It’s an equivalence!

2)If F:C — D and G : D — & are functors, the composition is a functor
GF :C — &. If F and G are both full, faithful or dense, the same applies to GF.

(3) The inclusion functor of a subcategory into a category, for example CRing —
Ring. Inclusion functors are faithful and full for full subcategories.

(4) Forgetful functors, e.g. Grp — Set or Ring — Ab forget some or all of the
structure. They are faithful.

A concrete category is a category C with a faithful functor C — Set. This makes
it possible to consider the objects of the category as sets with additional structure
and their morphisms as structure-preserving maps.

(5) Let G be a group. The commutator of a,b € G is [a,b] = aba~'b~! € G. The
commutator group of G is

G = {la,b] : a,b e G}) <G.

Thus there is a factor group G/G’, and it is abelian. If § : G — H, then 6(G’) C H',
so there is an induced homomorphism G/G’ — H/H'. This defines a functor
Grp — Ab, G — G/G'.

(6) Let K be a field. Let C be the category with Ob(C) = N = {0,1,2,...},
Hom(n, m) = My, xn(K) and composition given by matrix multiplication. Consider
the functor F' : C — K-vec given by F(n) = K" and for A € Hom(n,m) =
My timesn(K), F(A) is the corresponding linear map Ly : K" — K™ of left
multiplication by A. Then F' is an equivalence.

(7) The dual of a K vector space V' is V* = Hom(V, K). If f: V — W is a linear
map, then there is a linear map f*: W* — V* given by f*(h)(v) = h(f(v)).



This gives a functor K-Vec”? — K-Vec, V — V*.
Thus there is a contravariant functor from K-Vec to itself.

For finite-dimensional vector spaces there is an equivalence K-vec’? — K-vec,
Vi V™

The double dual is again a covariant functor K-Vec — K-Vec, V +— V**,
This gives an equivalence K-vec — K-vec, V — V**

(8) Given U € Ob(C) there is a representable functor Home(U, —) : C — Set that
sends an object X to Home (U, X).

There is also a contravariant representable functor Hom(—,U) : C°? — Set.

Definition. Let F,G : C — D be functors. A natural transformation « : F —
G is given by morphisms ax : F(X) — G(X) for all X € Ob(C), such that for
every morphism f: X — Y in C the following diagram commutes:

F(X) =2 G(X)

F) | [

F(Y) =25 G(Y).
It is a natural isomorphism if the ax are all isomorphisms.

Theorem. A functor F': C — D is an equivalence if and only if there is a functor
G : D — C such that FG is naturally isomorphic to Idp and GF is naturally
isomorphic to Ide.

Proof. Suppose G and natural isomorphisms a : GF — Id¢ and g : FG — Idp
exist. For every U € Ob(D) we have F(G(U)) = U, so F is dense.

Let 6,0’ : X — Y be morphisms in C with F(0) = F(6'). We have a commutative
square
GF(X) =5 X

Gro) | o

GF(Y) 25 v
SO
0 =ayGF(0)ay' =ayGF(@)ay' =6

Thus F' is faithful. By symmetry G is also faithful.
Let ¢ : F(X) — F(Y). Let 6 = ayG(¢)ay'. Then we have a commutative square

GF(X) =25 X

G | o

GF(Y) 25 v



But we also have the commutative square above, so
GF(0) = ay'fax = G(¢).

Now since G is faithful, ¢ = F(). So F' is full.

Conversely, let us assume that F' is an equivalence. We define G : D — C,
a, 3 as follows. Since F' is dense, for each object U € Ob(D) we can choose
an object G(U) € Ob(C) with F(G(U)) isomorphic to U and an isomorphism
Bu : F(G(U)) — U. Here we use the Axiom of Choice!

If ¢ : U — W is a morphism in D, then 51;/1¢5U is a morphism FG(U) — FG(W).
Since F' is full and faithful, there is a unique morphism 6 : G(U) — G(W) such
that F(0) = B, ¢Bu. We define G(¢) = 0.

If X € Ob(C), then Bpx) : FGF(X) — F(X), and since F' is full and faithful,
there is an isomorphism ax : GF(X) — X with Bpx) = F(ax). Now it is easy
to check that G, «, ( satisfy the conditions. O

Remark. As further reading, you could look at M. Brandenburg, Einfiihrung in
die Kategorientheorie. There are many interesting topics, such as limits, adjoint
functors and Yoneda’s Lemma.



2 Modules

2.1 Basics
Recall that a ring R is given by an additive group (R, +) and a multiplication

RxR—R, (r,s)+—rs

which is associative, distributive over addition and has a one, denoted 1 or 1p.

Definition. Let R be a ring. A (left) R-module is an additive group (M, +)
together with an operation

Rx M — M, (r,m)—rm

called the action, satisfying the following:

(1) For all r,s € R and m € M we have r(sm) = (rs)m,

(2) Im =m for all m € M,

(3) r(m+m') = rm+rm’ and (r+7")m = rm~+r'm for all v, € Rand m,m’ € M.
We sometimes write g M to indicate that M is a left R-module.

A submodule of an R-module M is a subset L of M which is a module under the
same operations. Equivalently L is an additive subgroup of M and rx € L for all
r€ Rand x € L.

If M and N are left R-modules, an R-module homomorphism 6 : M — N is a
homomorphism of additive groups with 6(rm) = rf(m) for all r € R and m € M.

Using composition of mappings, this gives a category R-Mod of left R-modules.
The isomorphisms correspond to bijective homomorphisms.

We denote by Homp(M, N) the set of all R-module homomorphisms from M to
N. It is naturally an additive group under

(0 + ¢)(m) = 0(m) + ¢(m)
for 6,¢ € Hompg(M,N) and m € M.
We define Endg(M) = Homp(M, M). It is naturally a ring under composition.

Examples. (a) If K a field, then left K-modules = K-vector spaces, submodules =
subspaces and K-module homomorphisms = linear maps. Thus K-Mod = K-Vec.

(b) Any additive group becomes a Z-module in a unique way, submodules = sub-
groups and Z-module homomorphisms = group homomorphisms. Thus we can
identify Z-Mod and Ab.



(¢c) If  : S — R is a ring homomorphism, and M is an R-module, then we can
turn the additive group (M, +) into an S-module with the action

SxM— M, (s,m)— ¢(s)m.

We denote this S-module by M. If f: M — N is a R-module homomorphism,
then it gives an S-module homomorphism ¢M — g¢N. Thus we obtain a functor
R-Mod — S-Mod. It is called restriction to S via ¢.

(d) If V is a K-vector space and 6 : V' — V is a linear map, then V' becomes a
K[X]-module via

(ap + a1 X + asX? + ... )v = agv + a10(v) + az0*(v) + .. ..

A subset W of V' is a K[X]-submodule if and only if W is a @-invariant subspace.
we have

Endgy(V) = {f € Endg (V) : 0f = f6}.

(e) If R is a ring, then there is a ring M, (R) of n x n matrices with entries on R.
Let R™ be the set of n-tuples of elements of R, written as column vectors. Then R"
is naturally a left M, (R)-module by the usual product of a matrix and a column
vector.

Remarks. (1) If M is a left R-module and r € R, then the mapping of left
multiplication by 7,
A M — M, X\.(m)=rm

is not in general an R-module homomorphism, unless R is commutative, but it is
a homomorphism of additive groups, so of Z-modules. This gives a mapping

A:R— Endz(M), r— A\

which is a ring homomorphism.

Conversely, given an additive group (M, +) and a ring homomorphism R — Endz (M),
we can turn M into an R-module with the action rm = A(r)(m).

Thus a left R-module con either be thought of as an additive group M together
with an action R x M — M, or as an additive group M together with a ring
homomorphism R — Endz(M).

(2) Instead of left modules one can define a right module, with an action M x R —
M, (m,r) — mr satisfying m(rs) = (mr)s. We write Mod-R for the category of
right R-modules.

If R is commutative, then left R-modules correspond to right R-modules, via rm =
mr.
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If R is not commutative, then modules for R on one side, correspond to modules
for R°P on the other side, where R°P is the opposite ring to R, given by the same
additive group, but with multiplication -,, given by

Top S =TS.

For example if M is a right R-module, then setting rm = mr we have
r(sm) =r(ms) = (ms)r = m(sr) = (sr)m = (1 -op s)m

so M is a left R°P-module.

(3) Multiplication turns any ring R into a left R-module rR.

A left ideal in R is a submodule of gR. Thus it is an additive subgroup L of
(R,+) such that rz € L for all r € R and x € L.

Similarly R gives a right R-module Rp, and the submodules are called right ideals
in R. An ideal in R is a subset of R which is a left ideal and a right ideal.

If R is commutative, ideal = left ideal = right ideal.

Properties. (a) If § : M — N is a homomorphism of R-modules, then
Ker ={me M :60(m) =0}
is a submodule of M and
Imé={0(m): me M}

is a submodule of N. More generally, if M’ is a submodule of M then §(M') is a
submodule of N and if N’ is a submodule of N, then §~(N’) is a submodule of
M. |This is the same as for vector spaces.|

(b) If M is an R-module and L is a submodule of M, then the factor group M/L
becomes a module with the action (L +m) = L + rm. It is called the factor
or quotient module. The canonical map M — M/L is a module homomorphism
which is surjective and has kernel L. [This is the same as for vector spaces.|

(c) If M is a left R-module and m € M, then the mapping
pm R — M, pp(r)=rm

is an R-module homomorphism since pp,(rs) = rsm = rpy,(s) for r,;s € R.

It gives a mapping
p: M — Hompg(R,M), mw— pm,

This is a homomorphism of additive groups, and it is an isomorphism since if
p(m) = 0 then p,, =0, 80 pp, (1) = 0,80 Im = 0, s0 m = 0, and if f € Hompg(R, M)
and we take m = f(1), then p,,(r) =rm =rf(1) = f(rl) = f(r), so f = p(m).

11



The mapping p becomes an isomorphism of R-modules if we turn Hompg(R, M)
into an R-module with the action

R x Hompg(R, M) — Homg(R, M), (r,0)— 70, (ro)(r") =0('r).
Namely, (rp(m))(r') = (rpm)(r") = pm(r'r) = r'rm = pop (") = p(rm)(r'), so
rp(m) = p(rm).

(d) Applying this to the module M = grR gives a ring isomorphism

p: R?P — Endg(R).

Namely (prps)(t) = pr(ps(t)) = pr(ts) = tsr = psr(t).
(e) If M is a left R-module and m € M, then the set

Rm = {rm:r € R}

is a submodule of M. It is the image of the map py,.

(f) If I is a set and M; are submodules of M for i € I, then (;c; M; is a submodule
of M.

(g) If My, ..., M, are submodules of M, we define
My+--+ My ={x1+ +xn: 7 € M;}.
More generally, if I is a set and M; are submodules of M for i € I, we define
ZMi = {Z x; : x; € M;, all but finitely many zero}.
icl icl
This is a submodule of M.

In Algebra I there were Homomorphism Theorems and Isomorphism Theorems for
groups (§1.5) and for rings (§3.3). In just the same way there are versions for
modules.

Theorem (Homomorphism Theorem). Let 6 : M — N be a homomorphism of left
R-modules.

(1) If L is a submodule of M with L C Ker @, then there is a unique homomorphism
0:M/L — N with (L +m) = 6(m) form € M.

(2) There is an isomorphism 0 : M/ Ker® — Im @ with 6(Ker§ + m) = 6(m) for
me M.

Theorem (First Isomorphism Theorem). Let M be a left R-module and L, N
submodules of M. Then there is an isomorphism

L/(LNN)—= (L+N)/N, (LON)+z— N +ax.

12



Theorem (Second Isomorphism Theorem). Let L be a submodule of a left R-
module M .

(1) If N is a submodule of M and L. C N C M, then N/L is a submodule of M /L.

(2) Every submodule U of M /L is of this form for a unique N with L C N C M,
namely N={me M :L+mecU}.

(3) In this case there is an isomorphism

M/N — (M/L)/(N/L), N+mw~ (N/L)+ (L+m).

Remark. We denote by 0 the zero additive group {0} or zero R-module {0}.

If M and N are additive groups or R-modules, then any homomorphism M — N
sends 0 to 0. Thus Hompg(M,0) = 0 and Homp (0, M) = {0}. Thus 0 is an initial
object in R-Mod and in R-Mod“, so a final object in R-Mod.

Definition. Let R be a ring. A sequence of R-modules and homomorphisms

s xhvsz

is said to be exact at Y if Kerg = Im f. It is exact if it is exact at every module
which has homomorphisms in and out.

A short exact sequence is one of the foorm 0 - X - Y — Z — 0.

For example a homomorphism 6 : M — N

- is injective if and only if 0 — M Y Nis exact,

- is surjective if and only if M b N = 0 is exact.

- is an isomorphism if and only if 0 — M b N =5 0is exact.

Any submodule L of M gives a short exact sequence
0—-L—M—M/L—D0.

If
0oxLvs gz

is exact, then f induces an isomorphism X — Kerg. If

xLhyv%z 0

is exact, then ¢ induces an isomorphism Y/Im f — Z by the Homomorphism
Theorem. We call Y/Im f the cokernel of f and denote it Coker f.

An exact sequence
W xLhyoz...
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can be broken into two exact sequences

WXL mfos0 0oImfoY 52

Any morphism 0 : M — N gives an exact sequence
0— Ker - M — N — N/Imb — 0,
so short exact sequences

0—Ker 4 M —-Imé -0 and 0—Imf —- N — N/Imb — 0.

Definition. For any R-module M, we get a representable functor
Homp(M,—) : R —Mod — Ab.

It sends an R-module X to the additive group Homp(M, X), and it sends a mor-
phism f € Homp(X,Y') to the mapping Homg(M, X) — Homgr(M,Y), 0 — f6.

Similarly, we get a contravariant representable functor, so a functor
Homp(—, M) : R — Mod”” — Ab

sending X to Homp (X, M) and a morphism f € Hompg(X,Y) to the mapping
Hompg (Y, M) — Hompg(X, M), 0 — 0f.

Proposition. If M is an R-module and 0 — X i> Y % Z = 0 is an ezact
sequence of R-modules, then the following sequences are exact:

(i) 0 — Homp(M, X) — Homgr(M,Y) — Homgr(M, Z), and
(ii) 0 — Homp(Z, M) — Homp(Y, M) — Homp(X, M).

Proof. (i) If # € Hompg(M, X) is sent to zero, then f@ = 0. Thus f(#(m)) = 0 for
all m € M. But f is injective, so 6(m) = 0 for all m, so § = 0.

If ¢ € Homp(M,Y) is sent to zero, then g¢ = 0, so ¢(m) € Ker g = Im f. Thus for
each m € M there is a unique z,, € X with f(z,,) = ¢(m). We define 6(m) = zy,,
so fO = ¢. It remains to check that 6 is an R-module homomorphism, so that ¢ is
in the image of the map Hompg(M, X) — Hompg(M,Y). This is straightforward.
For example ¢(rm) = r¢(m) = rf(xy) = f(ram,), so by uniqueness Xy, = riy,,

so O(rm) = rf(m).

(i) If § € Hompg(Z, M) is send to zero, then #g = 0. Thus 0#(g(m)) = 0 for all
m € M. Since g is surjective, it follows that §(z) =0 for all z € Z, so § = 0.

Suppose ¢ € Homp(Y, M) is sent to zero, so ¢f = 0. We define a homomorphism
0 € Homp(Z, M) as follows. If z € Z, then z = g(y) for some y € Y, and we define
0(z) = ¢(y). This is well-defined, for if 2 = g(y) = g(v/), then y—y’ € Kerg = Im f,
soy —y = f(z) for some z, so ¢(y) — ¢(y') = d(y — ') = ¢(f(x)) = 0. Finally
we need that § € Hompg(Z, M). For example if 2,2’ € Z and z = ¢g(y), 2/ = g(v'),
then z + 2" = g(y +y'), s0 0(z + 2') = d(y + y') = d(y) + o(y') = 0(2) +0(z"). O

14



2.2 Finitely generated and noetherian modules

Definition. Given a subset S of a module M, we define the submodule of M
generated by S as the intersection of all submodules containing S. It is the
unique smallest submodule containing S. Clearly it is equal to

Z Rm.

meS

A module M which can be generated by one element m is called a cyclic. Thus
M = Rm. A module is finitely generated (f.g.) if it can be generated by a finite
set {mq,...,my}, so

M = Rmj+---+ Rm,,.

Proposition. A module is cyclic if and only if it is isomorphic to a quotient R/L
with L a left ideal in R.

Proof. The module R/L is cyclic, generated by the element L + 1z. Say M is
cyclic, so M = Rm. The mapping R — M, r — rm is a module homomorphism,
and it is surjective. The kernel L is a left ideal in R, and by the Homomorphism

Theorem, M = R/L. O
Theorem. Any proper submodule L of a finitely generated module M is contained
in a mazimal (proper) submodule.

Proof. We use Zorn’s Lemma. Let S be the set of all proper submodules of M
containing L and let mq,..., m, be a generating set of M.

Let C be a chain in S. We want to show that C has an upper bound in S. If C' is
empty, then L is an upper bound. Thus suppose C' is not empty. Let

B = U N.
NeC

Since C is a chain, it is easy to see that B is a submodule of M. Moreover it is
proper, for if B = M, then my,...,my, € B. Then each m; € N; for some N; € C.
Since C' is a chain, there is some j with INV; C N; for all i. Then all m; € N;, so
N; = M, which is a contradiction.

Thus by Zorn’s Lemma S has a maximal element. O

Lemma. Suppose M is a module and N a submodule.
(i) If M is f.g. then so is M/N.

(i) If N and M /N are f.g., so is M.

[In general, if M is f.g., it does not follow that N is f.g.|
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Proof. (i) is clear.

(ii) Suppose ny, ..., n, are generators of N and N +my,..., N +mg are generators
of M/N. We claim that ni,...,n,,mq,..., ms are generators of M.

Let X be the submodule generated by these elements. Since it contains the n;, it
contains N. Also X/N contains the M + m;, so X/N = M/N. Thus X = M. O
Theorem. Let M be a left R-module. The following are equivalent.

(i) M is noetherian, that is, any ascending chain of submodules of M
My C My C ...

breaks off, meaning that there is some n such that M, = M, 1 = .... [This is
also called the ascending chain condition on submodules of M.|

(i) Any non-empty set S of submodules of M has a mazimal element.
(iii) Every submodule of M s finitely generated.

Proof. (i)=(ii) Suppose S has no maximal element. Choose M; € S. Since M;
isn’t maximal, there is My € S with M; C Ms, My # Ms. Since M isn’t maximal,
there is M3 € S with My C M3, Ms # Mj. This gives an ascending chain which
doesn’t break off.

(ii)=-(iii) Let N be a submodule M. Let S be the set of f.g. submodules of N. It is
nonempty since {0} € S. Thus it has a maximal element L. If L # N then there is
x € N\L,and L+ Rz € S and L is a proper submodule of L + Rz, contradicting
maximality of L.

(iii)=-(i) Let
MyCM;C---CM
be an ascending chain. Then N = >  M; = |JM; is a submodule of M, so N is

f.g., say by n1,...,n,. Now each n; belongs to some Mj,. Then all nq,...,n, € M;
where j = max{ji,...,jr}. But then N C M; C N. Thus M; = Mj;; = ..., so
the ascending chain breaks off. O

Definition. A ring R is left noetherian if R is noetherian.
A commutative ring R is noetherian if pR is noetherian.

Thus a commutative ring is noetherian

< each ideal is finitely generated

< any ascending chain of ideals breaks off

< any non-empty set of ideals has a maximal element.

Examples: Z, since any ideal is principal, and fields K, since they have no ideals
except 0 and K.
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Example. Let R = K[X;, Xo,...], a polynomial ring over a field K in infinitely
many indeterminates. It is not noetherian since it has an ascending chain of ideals

n
LhChLC..., I,=) RX
=1

which does not break off (since X,,11 € L1\ In).
Then R is a f.g. (even cyclic) R-module, but it has submodules which are not f.g.
Theorem. Let M be a left R-module..

(i) If N is a submodule of M, then M is noetherian if and only if N and M /N are
noetherian.

(ii) If L and N are noetherian submodules of M, so is L + N.
(iii) If R is a left noetherian ring, then M is noetherian if and only if it is f.g.

Proof. (i) Suppose M is noetherian. Clearly N is noetherian. Also any ascending
chain of submodules of M/N is of the form

My /Ny C My/N C ...

for some ascending chain M; C My C ..., so it breaks off.

Now suppose N and M/N are noetherian. If M; is an ascending chain of sub-
modules of M, then M; N N is an ascending chain of submodules of N, and
(N + M;)/N is an ascending chain of submodules of M/N. Thus there is n such
that M, "\N =M, 1NN =... and (N +M,)/N = (N + M,41)/N =.... Then
N+M,=N+M,y1 =.... Thenif x € M, 1, we have x = n+y withn € N
andy € My, son=x—ye€ NNMyt1 =NNM,,soy=z—(x—y) € M,. Thus
M,=M,41=....

(ii) (L+ N)/N = L/(L N N) by the First Isomorphism Theorem, and this is
noetherian by (i), hence so is L + N.

(iii) Suppose R is left noetherian and M is f.g.. If m € M then Rm is isomorphic
to a quotient of grR, so it is noetherian by (i). Then Rmj + - - -+ Rm,, is noetherian
by (ii) and induction. O

Theorem (Hilbert’s Basis Theorem). If K is a commutative noetherian ring, then
s0 is the polynomial ring R = K[X].
Proof. Suppose that I is an ideal in R which is not finitely generated.

Take a nonzero polynomial fi(X) of least degree in I. By induction, suppose we
have fixed f1(X),..., fx(X) € I. Since I is not finitely generated, Zle Rfi(X) is
a proper subset of I, so we can choose fi11(X) € I of least degree not in this subset.
Thus we obtain an infinite sequence of polynomials f1(X), fa(X),.... Let fi(X)
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have degree d; and leading coefficient a;. We have d; < ds < ... by construction.
Consider the ascending chain

Kai C Kag+ Kag C ...

of ideals in K. If it breaks off, then for some n we have ap11 = Y i A\ja; with
A; € K. But then

a1 (X) =Y N X i fi(X)

i=1
would be an element of 1\ Y ;" | Rf;(X) of degree less than d,,;1. This contradicts
the minimality of the degree of f,,+1(X). O

Examples. The following are commutative noetherian rings:
- Z and any field K,
- K[X1,...,X,] with K a commutative noetherian ring,

- R/I with R a commutative noetherian ring and I an ideal in R.

2.3 Products, direct sums and free modules

Definition. Suppose we are given a left R-module M; for all ¢ in a set I.

The product [

sc1 Mi becomes an R-module with the operations

(mi) + (m7) = (mi +mg),  r(mi) = (rmy).
The (external) direct sum is the submodule
@Mi ={(m;) € 1_[]\4Z :m; = 0 for all but finitely many ¢}.
iel el

For a finite index set we have equality:

MixMyx---xM,=M &My &®--- DM,

In case all terms M; are equal to M, we use the notation
M =T[Mm, MDY =M.
icl iel

The first can be identified with the set of mappings I — M, the second with the
mappings that send all but finitely many elements of I to 0. (Of course M 0 —

MO = {0}

For j € I there are R-module homomorphisms

ﬂ'jZHMZ'—>Mj, (mz)»—>mj
el
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and

uj:Mj%@Mi, m +— (m;) where m; = m and m; = 0 for i # j
i€l

Proposition. For any family of R-modules M; (i € 1) and R-module N we have
isomorphisms of additive groups

Homp(N, [ [ M:) = [[Homp(N, M;), 6 — (m:0)
i€l i€l

and

Homp(EP M;, N) — [ [ Homp(M;, N), ¢+ (dpua).
i€l el

Proof. 1t is easy to see that the mappings are homomorphisms of additive groups.

The first is a bijection since it has inverse mapping

[[Homg (N, M;) — Homp(N, [ | M;)
i€l i€l

sending (6;) to the map 0 with 6(n) = (6;(n)).

The second is a bijection since it has inverse mapping

[ [ Hompg(M;, N) — Homp(EP M;, N)

iel el
sending (¢;) to the map ¢ with ¢((m;)) = > ,c; di(my) for (m;) € @, M;. The
sum makes sense since only finitely many terms are nonzero. O

Definition. Let M; (i € I) be a family of submodules of a module M. By taking
the inclusion map M; — M for each i, we obtain a homomorphism

EE)Ad;—» Af, (ﬂ%” —> }E:Tnp
el iel

The image is >, ; M;. If this homomorphism is an isomorphism, we say that M
is the (internal) direct sum of the modules M; (i € I) and write

M:@Mi.
iel

Note that if M is the external direct sum of of M;, then by the homomorphisms u;
we can identify each M; as a submodule of M, and then M is the internal direct
sum of these copies of M;.

Proposition. If L and N are submodules of M then M = L ® N if and only if
M =L+ N and LN N ={0}.
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Proof. The kernel of the map L& N — M, ({,n) — ¢+ n is
{(z,—x) :z € LN N}.
O

Lemma. Suppose M = @, ; M;. Then M s f.g. if and only if the modules M;
are all f.qg. and all but finitely many of them are zero.

Proof. Exercise. O
Definition. Let M be a module and let (x;) be a tuple of elements of M indexed
by a set 1.

Recall that the submodule of M generated by the z; is ), ; Rx;.

Thus the x; generate M if and only if each element of M can be written in the
form ), ;rx; with 7; € R, all but finitely many zero.

We say that (z;) is a basis of M if each element of M can be written uniquely in
the form ), ; ryx; with 7; € R, all but finitely many zero.

A module is free if it has a basis.

Examples. (i) Over a field K, the notion of a basis agrees with the definition for
vector spaces, so every K-module has a basis.

(ii) R is a free R-module with basis (1g).

(i) If I is a set, then the R-module RU) is free with basis (e;), where ¢; is the
tuple with ith entry 1z and the other entries 0. Namely, the element (r;) € R
can be written uniquely in the form Zie 1 Ti€;-

(iv) If n > 0 then the Z-module Z/Zn is not free, since for any = € Z/Zn we have
the relation nx = 0 = 0z, so x cannot be part of a basis.

(v) The Z-module Q is not free. It does not have a basis () with one element,
since there is no x € Q with Q = {nz : n € Z}. Also if x = a/n and y = b/m are
two non-zero elements of Q, then bnx = ab = amy, so x and y cannot both be in
a basis.

Theorem. (i) An R-module is free if and only if it is isomorphic to R for some
1. Explicitly, if (z;)ier is a basis of M, then the mapping

R(I) — M, (Tz) — Zn’l‘i
i€l
is an isomorphism of R-modules.

(i) If M is a free module with basis (x;)icr and N is any module, then the mapping
Homp(M,N)= N, 60— (6(x))
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is an isomorphism of additive groups.
(iii) A free module is finitely generated if and only if it has a finite basis.
(iv) Every (f.g.) module M can be written as a quotient of a (f.g.) free module.

Proof. (i) If M is free, then the stated map is clearly an isomorphism. Conversely
if #: RY) — M is an isomorphism, then (6(e;)) is a basis.

(ii) We have

Homp(M, N) 2 Homp (R, N) = Homg(ED R, N)
i€l
= [[Homg(R, N) = J[ N = N".
il icl
(iii) Follows from the lemma about finitely generated direct sums, for if R # 0 and
I is infinite, then RY) is not f.g..

(iv) Every module M can be generated by some subset, e.g. M itself, and by the
lemma, a generating set gives a surjective homomorphism 0 : ' — M with F' a
free module. (This means that M = F//Ker 6 so it is a quotient of F.) O

Definition. Given a set X, we denote by RX the set of formal sums
D rew
zeX

with r, € R, all but finitely many zero. It is a free R-module with basis identified
with the set X. Suppose we have elements ¢; € RX for ¢ in a set I. They generate
a submodule ). ; Re; of RX. The quotient

RX/> R
el

is called the module generated by X subject to the relations ¢; =0 (i € I).
We denote the image of the basis element x € X in this module also by =«.

2.4 Semisimple modules and rings

Definition. A ring R is a division ring or skew field if R # 0 and every non-zero
element is invertible. Thus a commutative division ring is a field.

An R-module S is simple or irreducible if it has exactly two submodules, namely
0 and S. In particular, a simple module is nonzero.

If S is simple, then it is cyclic, generated by any non-zero element of S.
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Lemma (Schur’s Lemma). (i) If M and N are simple R-modules, then any nonzero
homomorphism 6 : M — N is an isomorphism.

(ii) If M and N are non-isomorphic simple modules, then Homg(M,N) = 0.
(iii) If M is simple, then Endr(M) is a division ring.

Proof. (i) If 6 # 0 then Im @ is nonzero, so it must be N, and Ker§ is not M, so
it must be 0.

(i), (iii) Follow. O
Definition. An R-module M is semisimple or completely reducible if every

submodule has a complement. That is, for every submodule N of M, there is a
submodule C with N & C' = M.

Proposition. Any submodule or quotient of a semisimple module is semisimple.

Proof. If N is a submodule of a semisimple module M and L is a submodule of NV,
then L has a complement C'in M, so L&C = M. We claim that L& (CNN) = N.

Since LN C =0 we have LN (CNN) = 0.
Clearly L+ (CNN)CN.

Also if n € N, then we can write n = £ + ¢ for some ¢ € L and ¢ € C. Then
c=n—f¢eN,soceCNN. Thusne L+ (CNN). Thus N=L+ (CNN).

Thus N is semisimple.

Now suppose M is semisimple and consider a quotent M /N. Then N has a com-
plement C, so M = N @& C. But then the map C' — M/N is an isomorphism, and
C' is semismple, hence so is M/N. O
Theorem. For an R-module M the following conditions are equivalent

(a) M is semisimple

(b) M is a sum of simple submodules

(¢) M is a direct sum of simple modules.

Proof. (a)=(b). Let N be the sum of all simple submodules of M. Suppose
N # M. Now N has a complement C # 0. Let 0 # ¢ € C. Then Rc is a
non-zero f.g. submodule of C'. Thus Rc has a maximal submodule L. Then Rc is
semisimple, so L has a complement D, and it must be simple since L is maximal.
Thus D C N. Contradiction.

(¢)=(b) is trivial.

Suppose (b) holds and N is a submodule of M. We show that N has a complement
in M which is a direct sum of simple modules. This proves (a) and (c).
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Let I be the set of simple submodules of M. So M = } 4.;S. Consider the set
X of subsets J of I such that N @ @g. ;S is a direct sum.

Any chain Y in X has an upper bound J' = (J;cy J in X, for if the sum N +
> ey S is not direct, then the same holds for a finite subset of J’, and this is
contained in an element of Y.

Thus by Zorn’s lemma there is a maximal element J € X. Now if NG@ g ; S # M,
then there is some simple submodule 7" not contained in N @ @g.;S. But then
JUA{T} € X, contradiction.

Thus @gc; S is a complement to N which is a direct sum of simple modules. [

Corollary. A direct sum of semisimple modules is semisimple.

Proof. It M = @,y M; and each M; = ¢, Si, then M = P, ; S; where J is
the disjoint union of the sets I; with ¢ € I. O

Theorem. A semisimple R-module M is f.g. if and only if it is a direct sum of
finitely many simple submodules. Moreover if

M=S1@-~@Sn=T1@---@Tm

are two such decompositions as direct sums of simple submodules, then n = m and
there is a permutation o such that S; = T ;) for all i.

Proof. The first statement follows from the lemma about f.g. direct sums.

We show the rest by induction on n. Let N = S1@...S,_1. Then M/N = S, so it
is simple. For some i we must have T; € N, so (N +T;)/N is a nonzero submodule
of M/N, so it equals M/N, so N +T; = M. Thus the homomorphism N — M /T;,
x +— T; 4+ x is surjective. It is also injective, for the kernel is N N7T;, and if this
is not zero, then it is equal to T;, so T; C N, a contradiction. Thus we have an
isomorphism between N = S; @ ...S,_1 and M/T; = @#i T;. By induction we
get n — 1 =m —1 and a bijection 7 : {1,...,i—1,i+1,....m} —{1,...,n—1}

with T & S(;), hence n = m and we get o. O

i)
The theory of vector spaces extends to division rings.

Theorem. FEvery module for a division ring is semisimple and free. Moreover the
modules with a finite basis are exactly the f.g. modules, and they have a well defined
dimension, the number of elements in any basis.

Proof. If R is a division ring, then it has no left ideals other than 0 and R, so rR
is a simple module.

Any non-zero cyclic module is isomorphic to R/L with L a proper left ideal, so
isomorphic to grR, so simple.
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Any simple module is cyclic, so isomorphic to rR.

Now every module is the sum of its cyclic submodules M =}, Rm, so semisim-
ple. Thus it is isomorphic to a direct sum of copies of simple modules, so free.

Now any basis gives a decomposition as a direct sum of copies of the simple mod-
ule R, and the number of terms in the decomposition is uniquely determined by
the last theorem. O

Theorem (Artin-Wedderburn Theorem). For a ring R, the following are equiva-
lent, in which case we call R a semisimple ring (or more precisely, a semisimple
artinian ring).

(i) rR is semisimple.
(i) Every left R-module is semisimple.

(iii) R is isomorphic to a product of matrixz rings over division rings,
R = M, ,(Dy) x -+ x M, (D,)

with n; > 1 and the D; division rings.

Proof. (i)=(ii) Using that a semisimple module is one which is a sum of simple
modules, we see that any direct sum of semisimple modules is semisimple. Thus
(i) implies that any free module is semisimple, and then any module is a quotient
of a free module, so semisimple.

(ii)=(i) Clear
(i)=(ili) Given R-modules Mj, ..., M, we have

End(M; @ - - @ My) = [[ [[ Homr(M;, M;).

i=1j=1

We can display elements as matrices
911 e Hln
01 ... Gun

with 6;; € Hompg(M;, M;), and then composition corresponds to matrix multipli-
cation.

Now write R as a direct sum of simple submodules. Since g R is a finitely generated
module, only finitely many terms can appear in the direct sum. Collecting terms,
we have

rRRES1®--- 510 ®S, D---B S,

ni Ny
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for pairwise non-isomorphic simple modules S;.

Let E; = Endg(S;). By Schur’s Lemma these are division rings and elements of
Endg(R) correspond to matrices which have the block form

A O
0 A
with A; € M, (E;). Thus
R? 2 Endg(R) = My, (Ey) X -+ x M, (E,).
Then using the transposes of the matrices we get an isomorphism
R = M,,(Dy) x -+ x M, (D,)

where D; = Efp .

(iii)=(i) Suppose R = My, (D7) x - -+ x My, (D,). Consider the elements which are
zero except for the jth column of the ith factor M, (D;). They give a left ideal in
R isomorphic to the module S; = D}"". This module is simple since D; is a division
ring, as on the exercise sheet for a field. Now R is the direct sum of these simple
left ideals, so pR is semisimple. O
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3 Algebras and multilinear algebra

3.1 Algebras

Definition. Let K be a commutative ring, e.g. Z or a field. An (associative and
unital) algebra over K or K-algebra is a ring R which is also a K-module, with
the same addition, and such that multiplication is bilinear, that is,

Az + XNa')y = AMzy) + N (2'y), 2y +Ny') = May) + N (2y)
for all z,2',y,y € Rand \, N € K.

An algebra homomorphism R — S is a ring homomorphism which is also a
homomorphism of K-modules. This gives a category of K-algebras. A subalgebra
is a subring which is also a K-submodule.

Remarks. (a) The centre of a ring R is the set
Z(R)={r € R:rs=srforall s € R}.

It is a subring of R and it is commutative.

If R is a K-algebra, then the mapping K — R, A — Alp is a ring homomorphism
with image contained in Z(R).

Conversely, if we are given a ring R and a homomorphism 6 : K — R with image
contained in Z(R), then rR becomes a K-module via restriction and this turns R
into a K-algebra.

(b) If R is a K-algebra, then any R-module M becomes a K-module xM by
restriction using the homomorphism K — R.

If M and N are R-modules, then Homp (M, N) becomes a K-module via
(A0)(m) = A0(m)
for A € K, 0 € Homgr(M, N) and m € M.

(c) To give an R-module, it is equivalent to give a K-module M and an algebra
homomorphism R — Endgx(M). (For the case K = 7Z, see Remark (1) in §2.1.)

(d) If R is a free K-module with basis (x;);ecr, then any bilinear multiplication is
uniquely determined by its structure coefficients c;;, € K, where

Tilj = E CijkTk-

kel

Examples. (1) Every ring is a Z-algebra in a unique way.

(2) Any commutative ring R is naturally an R-algebra using the module structure
rR or equivalently the identity homomorphism R — R.
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(3) If L/K is a field extension, then L is naturally a K-algebra via the inclusion
K — L.

(4) M,,(K) is a K-algebra. As a K-module it is free, with basis E for 1 <1i,j <n,
where E% is the matrix with 1 in the (4, j) position and zero elsewhere, so E EP4 =
SipEY.

(5) Hamilton’s Quaternions is the R-algebra given by the 4-dimensional real vec-
tor space
H={al+bi+cj+dk:a,becdecR}

with multiplication defined by expanding out, bringing coefficients to the front and
using the rules

PP=—-1 ij=k ik=—j

ji=—k j*=-1 jk=i

ki=j kj=—i kK =-1

See Linear Algebra II §10.4. For example
(142i+75)(i—3k) = 1i4-2i*+ji—3k—6ik—3jk = i—2—k—3k+6j—3i = —2—2i+6j—4k.

It is a non-commutative division ring, with
1
-1 _
q9 =154
lql?

for ¢ # 0, where a+bi+cj+dk = a —bi — cj — dk and |a + bi + ¢j + dk| =
Va2 + b2+ 2 + &2

(6) The polynomial ring K[X,...,X,] is naturally a K-algebra. A monomial is
an expression of the form m = X' XJ? ... X7» with r; > 0. We can omit any
term with r; = 0, and we write the monimal with all , = 0 as m = 1. Then a
polynomial is an expression

Z GmMm

m

with coefficients a,, € K, all but finitely many zero, and the sum runs over all
monomials m. The multiplication is given by expanding out, bringing coefficients
to the front, and using

(XTPX52 (X X2 .. ) = Xprrsxetse
(7) The free algebra K (X1, ..., X,). A word of length r is a sequence X;, X, ... Xj,

with i1,49,...,4, € {1,...,n}. The word of length » = 0 is denoted 1. An element
of K(X1,...,X,) is an expression

E QW

w
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with coefficients a,, € K, all but finitely many zero, and the sum runs over all
words w. The multiplication is given by expanding out, bringing coefficients to the
front, and using the concatenation of words:

(X, Xy Xi ) (X, Xy X)) = Xy Xy X0, X5, Xy .. X

For example in K(X,Y) we have
(a+bX)(c+dX +eYX) =ac+ (ad+ bc)X + aeY X + bdX? + be XY X.

for a,b,c,d,e € K. The elements are sometimes called noncommuting polynomials,
since XY #Y X in K(X,Y).

When working with algebras over a field K, life is often simplest if the field is
algebraically closed.

Definition. A field K is algebraically closed if it satisfies the following equiva-
lent conditions.

(i) Any non-constant polynomial in K[X] has a root in K.

(ii) Any non-constant polynomial in K[X] splits into linear factors.

(iii) Any irreducible polynomial in K[X] is linear.

(iv) If L/K is a field extension and a € L is algebraic over K, then a € K.

(v) If L/K is a finite field extension then L = K.

It is easy to see that these are equivalent. We know that C is algebraically closed.

Theorem. (i) If K is an algebraically closed field, then the only finite-dimensional
division algebra over K is K itself.

(i) (Frobenius) The only finite-dimensional division algebras over R are R, C and

H.

Proof. (i) Let R be a f.d. division algebra over K and let » € R. The powers of r
cannot be linearly independent, so there is some monic polynomial f(X) € K[X]
with f(r) = 0. We can factorize into monic linear factors f(X) = fi1(X)... fu(X),
and then fi(r)... fn(r) = 0. Since R is a division ring, it has no zero divisors, so
some f;(r) = 0. But f;(X) is linear, of the form X — X, sor = Al,so R = K1 = K.

(ii) Let R be a f.d. division algebra over R. We make several steps.

(a) If r € R, then either 7 € R1 or r = A1 + ui for some A, u € R and some element
i € R with i = —1.

Proof. Again f(r) = 0 for some monic f(X) € R[X].

We can write f(X) = fi1(X)... fo(X), a product of monic linear and irreducible
quadratic factors, and some f;(r) = 0.
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If f;(X) is linear, say X — A, then r = A1 € R1.

If f;(X) is quadratic, then since it is irreducible it has the form X2 + bX + ¢ with
d =b* — 4¢ < 0. Then r has the required form with i = (¢ — b2/4)~Y2(r +b/2) .

(b) For r € R let # : R — R be left multiplication by R. It is a K-linear map.
Then R =R1@T where T = {r € R: tr7 = 0}. Moreover T contains any element
i € R with i* = —1.

Proof. If r € R1NT then r = A1, so tr# = Atr1 = Adim R, so A = 0.

—

If r € Rthenr = A& (r—Al), and trr — Al = tr7 — Adim R. Taking A\ =
(tr7)/ dim R this gives that r € R1 + T.

Suppose 2 = —1. Then 1 and i span a subalgebra of R, which we can identify
with C.

We can’t necessarily consider R as an algebra over C, but we can at least consider
it as a vector space.

If (e1,...,e,) is a C-basis of R, then (ey,ieq,es,ies,...,en,ie,) is a basis for R
as a vector space over R. With respect to this basis, the matrix of 7 consists of

diagonal blocks
0 -1
1 0)°

Thus it has trace 0.
(¢c) R=R, Cor H.

Proof. If 0 # r € T, then r? is real and negative, for by (a) we can write r = A1+,

and then 0 = tr# = Atril+4 ptri = AdimR, so A =0, so a = i, so a® = —p2.

It follows that T" becomes a real inner product space with inner product

(r,s) = —%(rs +s1) = %(r2 + 52— (r+s)?) eR.

Choose an orthonormal basis (eq,...,e,) of T. Then e? = —1 and e;e; = —eje;
for i # 7.

If n =0 or 1 then clearly R = R or R = C, with e; corresponding to 4, so suppose
n > 2.

Suppose n = 2. We have (e1e2)? = ejesejes = —ejeener = —(—1)(—=1) = —1,
so by (b) we have ejeq € T. Thus ejes = Aej + pey for some A\, € R. Then
ei(ereg) = —eg € T, but eg(Aep + pea) = —A + pejes, so A = 0. Similarly p = 0,
which is nonsense since ejes # 0.

Thus suppose n > 3. If 3 < i < n, then ¢; commutes with ejes, so

(e: — ere2)(ei + ere2) = €f — (e1e2)” = 0.

29



So, since R is a division algebra, e; = ejeo. Since the e; are linearly independent,
this gives a contradiction unless n = 3, and then there is an isomorphism R = H,
with ¢ corresponding to e, j to es and k to ejes = te3. O

Example. Up to isomorphism, the 9-dimensional semisimple K-algebras for K
algebraically closed are

Kx- - xK, May(K)x Kx---xK, My(K) x My(K) x K, M3(K).
9 5

The 4-dimensional semisimple R-algebras are

RxRxRxR, RxRxC, CxC, H MyR).

3.2 Tensor products

Definition. Let R be a ring. The tensor product of a right R-module X and a
left R-module Y is a Z-module X ®g Y, equipped with a mapping

XXY—=>XerY, (r,y)—»zRy

such that the mapping is a homomorphism of additive groups in each argument,
that is

rRy+ry=(r+2)Qy, ry+ry =2 (y+7v),
for z,2’ € X and y,y’ € Y, the mapping is R-balanced, that is
TrR®Y=rRry

forall x € X, y € Y and r € R, and such that it is universal for this property.
That is, if
f: XxY—=>M

is a mapping to an additive group which is a homomorphism in each argument and
is R-balanced, then there is a unique homomorphism « : X ® g Y — M such that

f(z,y) = a(z®@y).

Theorem. The tensor product exists and is unique up to isomorphism. It is the
Z-module generated by symbols x @y for x € X andy €Y, subject to the relations

ry+2y—(r+a2)oy=0,

ry+rey -z y+y)=0,
zry—az®ry=20
forz, 2’ € X, y,y €Y andr € R.
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Proof. The construction means the following. We take the free Z-module

Fxy= P Z@ey)
(z,y)EX XY

with basis the symbols * ® y. Let Sxy be the Z-submodule generated by the
elements
rey+aey-(z+a)®y,

z@y+ry -z (y+y),
rrR®Y —rQry.

for z,2' € X, y,y/ € Y and r € R. The elements x ® y in Fxy induce elements in
Fxy /Sxy which should be denoted Sx y +z®y or  ® y, but we shall just denote
them z®y. Then by construction the mapping X xY — Fxy/Sx y sending (z,y)
to £ ® y is a homomorphism in each argument and is R-balanced.

To show that this is the tensor product, we need to show it has the universal
property. Let f: X x Y — M is a mapping which is a homomorphism in each ar-
gument and is R-balanced. We need to show that there is a unique homomorphism
a: Fxy/Sxy — M with a(z®y) = f(z,y) for (z,y) € X xY. Uniqueness holds
since Fxy /Sx,y is generated by the elements z®y. Since Fx y is a free module, by
part (ii) of the theorem in section 2.3, there is a unique Z-module homomorphism
¢ : Fxy — M with ¢(z ® y) = f(x,y). Now ¢ sends the generators of Sxy to
zero, so ¢(Sx,y) = 0, so it descends to a homomorphism " Fxy/Sxy — M and
a = ¢ gives existence.

For uniqueness, suppose that X ®' Y is another tensor product, equipped with
the mapping X xY — X @R Y, (z,y) =z ® y.

By the universal property of X®pgY there is a unique homomorphism « : X®QgrY —
X @RY withz®'y=alz®y).

By the universal property of X &% Y there is a unique homomorphism o/ : X ®',
Y 5> X®rY withz®@y =d(x®y).

Now the homomorphisms 8 = Id and 8 = o/« both satisfy S(x ® y) = x ® y. Thus
by the uniqueness part of the universal property for X ® g Y we have o/a = Id.
Similarly aa’ = Id. Thus « and ' are inverse isomorphisms. O

Lemma. Let X be a right R-module and let Y be a left R-module.

(i) Forallx € X andy € Y we have x@0 =00y =0 and n(z®y) = (nz) @y =
z ® (ny) forn € Z.

(i) Any element in X @rY can be written (non-uniquely) as a sum

T1®Y1 +22Q0Y2+ -+ T Yy
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(iii) Considering X as a left R°P-module and Y as a right R°P-module, there is an
isomorphism of additive groups X QrY — Y Qpor X with x @ y — y Q@ x.

(iv) If 0 : X — X' is a homomorphism of right R-modules and ¢ : Y — Y’ is a
homomorphism of left R-modules, then there is a unique homomorphism of additive
groups

0R¢: X @rY — X' @Y’
with (0 @ ¢)(z @ y) = 0(x) @ ¢(y).

Proof. (i) For fixed y, the map X - X ®r Y, 2 — z ® y is a homomorphism
of additive groups, and these are standard properties for such homomorphisms.
Similarly for fixed x.

(i) Follows from the definition and (i).
(iii) The definitions are the same, but with different notation.
(iv) Consider the mapping
[:XxY =X @rY', flz,y)=0(z)d(y).
This is a homomorphism in each argument, for example f(z+2',y) = 0(z+2' )Ry =
Ox)+60(2))Ry=0x)y+0(z)®y.

It is R-balanced, since f(xr,y) = 0(zr) ® ¢(y) = 0(z)r ® ¢(y) = 0(x) @ ro(y) =
0(x) @ ¢(r) = f(z,ry).

Now the homomorphism § ® ¢ : X ®rY — X' @ Y’ follows from the universal
property for X' @p Y. O
Suppose that R is a K-algebra.

Any left R-module Y becomes a left K-module via Ay = (Alg)y for A € K and
yey.

Any right R-module X becomes a left K-module via Az = x(Alg) for A € K and
reX.

It turns out that tensor products are also left K-modules in this case.
Proposition. Suppose that R is a K-algebra.

(i) If X is a right R-module and Y is a left R-module, then X Qg Y has a unique
structure as a K-module with

Mzoy)=M)@y =2 (\y)

forae K, zxeX andyeY.

(i) The mapping
X XY —=>X®rY, (@y—zy
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is K -bilinear, that is, a K-module map in each argument, and R-balanced. More-
over it is universal for K-bilinear R-balanced maps.

Proof. (i) We define an action of K on X ® Y by Am = (6, ® Idy)(m) for m €
X ®rY, where
0y: X =X, z— Az,

which is a homomorphism of right R-modules since (Ax)r = z(Alg)r = zr(Alg) =
Azr). Then Mz ®@y) =0\(z) @y = (M) ®y = (z(M\lR)) ®y = 2z ® (AlR)y) =
z® (Ay).

(ii) By (i) the mapping is K-bilinear, and by definition it is R-balanced. To show
the universal property, suppose that f : X x Y — M is a K-bilinear R-balanced
map to a K-module. By the definition of the tensor product, there is a unique

homomorphism of additive groups a: X @Y — M with a(x®y) = f(z,y). Now
« is a K-module homomorphism since

a(Mz®y)) =a((A\z) ®y) = f(Az,y) = AMf(2,y) = Aa(z @y).

O

Theorem. Suppose R is a K-algebra. Let X and X; be right R-modules and let
Y and Y; be left R-modules.

(i) The map x — x®1 is an isomorphism of K-modules X — X ®@g R. The inverse
sends x ® r to xr. Similarly the map y — 1 ® y is an isomorphism Y — RRRY,
and the inverse sends r ® y to ry.

(i) (@ie[ Xi) ®rY = @ieI(Xi ®@rY) and X ®pr (@ie[ E) = @ieI(X ®RYi).

(iii) If X is a free right R-module with basis (z;);cr then there is an isomorphism
of additive groups
YO 5 X@rY, ()Y miouy
el
Similarly, if Y is a free left R-module with basis (y;)jes then there is an isomor-
phism of additive groups

X(J)—)X®RK (@)»—)ij@)yj.
jeJ

(iv) If X' is a submodule of X, then (X/X') @g Y is isomorphic to the quotient
of X @r Y by the K-submodule generated by all elements of the form z' ® y with
e X andy €Y. Similarly for X @ (Y/Y').

(v) If X1 — X9 — X3 — 0 is an exact sequence of right R-modules, then

X1QrY -2 Xo®rY - X35®rY —0
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is exact. Simdlarly, if Y1 — Yo — Y3 — 0 is an exact sequence of left R-modules,
then
X®RY1*>X®R}/2*>X®R}/3—>O

18 exact.
Proof. We use the universal property.
(i) We have a homomorphism X — X ®g R given by z — = ® 1.

The map X x R — X, (z,7) — xr is K-bilinear and R-balanced, so corresponds
to a homomorphism X ®pr R — X with z ® r — zr.

These homomorphisms are clearly inverses, since x ® r = xr ® 1.
(i) Let pj : X; — @,;c; Xi be the canonical map. Then p; ® Idy : X; ®p Y —
(Pic; Xi) ®r Y. Varying j, these give a homomorphism

P erY) = (@ Xi)orY.

jel il
On the other hand we have a mapping

@ x) <Y - PierY), (@)y) - (@oy)
i€l el

This is K-bilinear and R-balanced, so it corresponds to a homomorphism

P xi)erY > PXi@rY).

icl iel

These homomorphisms are inverses.
(iii) Follows from (i) and (ii).

(iv) The canonical map X — X/X’ induces a homomorphism X®rY — (X/X")®pr
Y, and this map kills the K-submodule S generated by elements of the form 2z’ ®1y,
so it induces a homomorphism (X ®gY)/S — (X/X')®@rY.

Fory € Y,ifz1,29 € X and X'+x1 = X'+x9, then 71 —29 € X/, 50 21Qy—1oQy =
(r1 —x2) ® y € S. Thus we have a well-defined mapping

(X/X'YxY = (X®Y)/S, (X'+z,9)—= S+ (z®y).
This is K-bilinear and R-balanced, so corresponds to a homomorphism
(X/X")®@rY = (X ®rY)/S.

These mappings are clearly inverses.

(v) Follows from (iv), taking X = X5, X’ the image of the map X; — X5, and
identifying X5 with X/X’. O
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Example. We consider tensor products over Z. Since Z is commutative, left and
right Z-modules are the same - they are additive groups. Now

X®zY =2Y ®z X.

X®rZ=X

XQrZ"*= X"

L @ LP 2 (LMY = T

If a € Z then (Z/Za) ®@zY =Y/aY.

If a,b € Z then a(Z/7Zb) is the set of cosets a(Zb+ x) = Zb + ax with x € Z, so
a(Z/Zb) = (Zb + Za)/Zb. Thus (Z/Za) ®z (Z/Zb) = (Z]Zb)/((Zb + Za)/Zb) =
Z)(Zb+ Za) = Z/Z ggT(a,b).

(Z)72) ©7 (Z)23) = 7,)71 = 0.

For a # 0 we have (Z/Za) ®7 Q =Q/aQ = Q/Q = 0.

Q ®7z Q@ = Q. Namely, there are homomorphisms Q — Q ®z Q — Q sending a to
a ® 1 and sending a ® b to ab. They are inverses since a ® b is sent to ab and then
to ab® 1. But if b = n/m with n,m € Z and m # 0, then

ab®1=a(n/m)®1=(a/m)n®@m(l/m)=(a/m)m@n(l/m)=a®b.

Definition. Let S and R be rings. An S-R-bimodule is an additive group M
which is both a left S-module and a right R-module, such that (sm)r = s(mr) for
allme M, se Sandr e R.

Proposition. Let X be an S-R-bimodule.

(i) If Y is a left R-module, then X @g Y becomes an S-module, with s(x ® y) =
(sx) ®@y. In fact X ®pr — defines a functor from R-Mod to S-Mod.

(i) If Z is a left S-module, then Homg (X, Z) becomes a left R-module via (r¢)(z) =
¢(xr). In fact Homg(X, —) defines a functor from S-Mod to R-Mod.

(iii) We have Homg(X®gY, Z) =2 Hompg(Y,Homg (X, Z)). (In fact this is a natural
isomorphism of functors in' Y and Z, which says that the functors X ®r — and
Homg (X, —) are adjoint.)

Proof. (i) The action of s € S is given by 05 ® Idy, where 05 : X — X is the right
R-module homomorphism with 04(z) = sz.

It is straightforward to check that this turns X ®pr Y into a left S-modules. More-
over if ¢ : Y — Y’ is a homomorphism of left R-modules, then Idx ® ¢ : X @Y —
X ®r Y’ is a homomorphism of left S-modules.

(i) Easy
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(iii) We construct mappings in both directions. For the direction
Homg(X ®r Y, Z) — Hompg(Y, Homg (X, 7)),
suppose that § € Homg(X ®p Y, 7). For y € Y, define
byo: X =72, ¢ye(x) =0(x®1y).
Then ¢, ¢ € Homg (X, Z) since
Py o(sz) =0((sz) @y) =0(s(z @ y)) = s0(x @ y) = sy ().

Let ¢p : Y — Homg(X,Z) be the mapping sending y to ¢,9. Then ¢y €
Homp(Y,Homg (X, Z)) since

Po(y+y) (@) = Gyry 0(2) = 0(z@(y+y")) = 0(z@y)+0(z@Y') = do(y)(x)+¢o(y')(2)
so dp(y +y') = do(y) + do(y'), and
do(ry)(z) = 0z @ 1y) = O(ar @ y) = (¢o(y))(zr) = (r(da(y))(x)
s0 ¢o(ry) = rég(y). Thus we use the mapping 0 — .
For the direction
Hom (Y, Homg (X, Z)) — Homg(X ®r Y, Z),

suppose ¢ € Hompg(Y,Homg (X, Z)). There is a mapping fy : X ® Y — Z given
by fy(z,y) = ¥(y)(x). This mapping is a homomorphism of additive groups in
each argument and it is R-balanced, since

fo(@r,y) = d(y)(ar) = (r(Y)) (@) = Y (ry)(x) = fu(z,ry).
Thus there is a mapping ay, : X ®r Y — Z with ay(z ®y) = fy(z,y) = ¥ (y) ().
Now ay, € Homg(X ®p Y, Z) since

ay(s(z @y)) = ay((sz) @ y) = P(y)(sz) = s1p(y)(z) = say(z @ y).
Thus we use the mapping 1) — a.
Now it is easy to see that these two mappings are homomorphisms of additive
groups and inverse to each other. O
3.3 Tensor, Clifford and exterior algebras

In this section K is a commutative ring and we consider left K-modules. We use
the letter K because the most important case is when K is a field.

Let V and W be K-modules. Because K is commutative we can consider V as a
right K-module and form the tensor product V ®@x W. We write it as V @ W.
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Properties (of tensor products of modules for a commutative ring).

(i) V@W is naturally a K-module with A(v®@w) = (Av) @w = v® (Aw) for A € K,
veV,weW.

This comes from considering K as a K-algebra.
(i) If V is free with basis (v;)ier, then every element in V' ® W can be written
uniquely in the form
Z V; Q@ w;
i€l
with the w; € W, all but finitely many zero. Similarly if W is free.
This holds since V@ W = K @ W =~ w0,
(iii) If V' is free with basis (v;)ier and W is free with basis (w;);cs then V@ W

is a free K-module with basis (v; ® w;)(; j)erx.s- In particular, if K is a field, then
dimV @ W = (dim V) (dim W).

By (ii) we can write each element of V' ® W uniquely in the form
Z V; & (Z aijwj) = Z iV Q Wj
iel jeJ (i,5)eIxJ

with the a;; € K, all but finitely many zero.

(iv) Symmetry. There is an isomorphism V@ W ZW @V, v @ w — w ® v.

This follows from a general result, since K? = K.

(v) The map V x W — V ® W is K-bilinear, and universal for K-bilinear maps
VxW— M.

Any K-bilinear map f : VxW — M is automatically K-balanced, since f(z\,y) =
M (z,y) = f(x,A\y). Thus it follows from the universal property of the tensor
product, the first proposition in §3.2.

(vi) The map
UxVxW—=UV)eW, (uv,w)— (u®v)w

is K-multilinear, that is, a K-module map in each argument, and it is universal
for K-multilinear maps U x V x W — M.

Proof. The mapping is K-multilinear. Suppose f : U x V x W — M is K-
multilinear. For fixed w € W the map U x V. — M, (u,v) — f(u,v,w) is K-
bilinear, so there is a K-module map oy, : U®V — M with a,(u®v) = f(u,v,w).
Now the map (U@ V) x W — M, ({§,w) — (&) is K-bilinear. Thus there is a
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K-module map a: (U® V)W — M with a(§,w) = au(€), so a((u®@v) @w) =
aw(u ® U) = f(u,w,z).

(vii) Associativity. There is an isomorphism of K-modules (U® V)@ W =2 U ®
(Ve W) with (u®v) @ w sent to u ® (v ® w).

Proof. A similar argument to (vi) shows that
UxVxW=UeVeW), (uvw)—ulv)®uw

is also universal for K-multilinear maps U x Z x W — M. Now we have uniqueness,
similar to the uniqueness of the tensor product.

Definition. Let V' be a K-module. For d > 0, the dth tensor power of V is

Ve---@V (d>0)
V)y=¢" &
K (d=0).

By the associativity property above, the tensor product can be computed with any
bracketing, and for all d, e we have an isomorphism of K-modules

TYV) @ T(V) — THe(V)
(M@ @)@ W R OWe) VI Q- QVIRW @+ @ We

Properties (of tensor powers).

(i) The mapping V¢ — T4V), (v1,...,vq) = v1 @ v2 @ - - @ v, is K-multilinear,
that is, it is a K-module map in each argument, and it is universal with this
property.

This is proved by induction on d, with the inductive step being analogous to prop-
erty (vi) of tensor products of modules for a commutative ring.

(ii) If  : V — W is a K-module homomorphism, there is a homomorphism
TYO) : TUV) = TYW), v @ - @vg+ 0v1) @ @ 0(vq).

Note that 7°(6) : K — K is the identity map.

To see this, apply the universal property to the map

VESTYW),  (v1,...,09) — 0(v1) ® - @ O(vyg).

(iii) If V' has basis (by,...,b,), then T¢(V) has basis given by the elements b;, ®
- ®b;, with 1 <4q,...,1q < n, so with n? elements.
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Definition. An algebra R over K is graded if it is equipped with a decomposition

R:éRd
d=0

as a K-module, such that if x € Ry and y € R,, then xy € Ry, for all d,e. The
elements of Ry are called the homogeneous elements of degree d. An element
is homogeneous if it belongs to some Rg.

Example. The polynomial ring R = K[X1,...,X,] is graded, with R4 being the
polynomials only involving monomials X{ll ng ... X% of degree dy +do+- - -+d,, =
d.

The free algebra R = (X1, ..., X,,) is graded, with Ry being the linear combinations
of words of length d.

Definition. Given a K-module V| the tensor algebra is
oo
T(V)=EP1i(v).
d=0

It becomes a graded algebra with multiplication given by the mapping T¢(V) ®
Te(V) = Te(V).

Note that we can write the product of elements v, v’ € V as either v ® v’ or as vv’.
Properties (of tensor algebras).

(i) If R is a K-algebra and 6 : V' — R is a K-module homomorphism, then there
is a unique K-algebra homomorphism 6 : T'(V) — R with 6(v) = 0(v) for v € V.

By the property (i) of tensor powers, for each d there is a K-module homomorphism
TYV) =R, 11 ® - Quvgrs 0(v1)...0(vy).
Combining them, using
Homy (T(V), R) = Homg (P T4(V), R) = [ [ Homx (T4(V), R)
d=0 d=0

we get a K-module map T(V) — R, and by construction it is an algebra homo-
morphism.

(i) If  : V. — W is a K-module homomorphism, then there is a unique K-algebra
homomorphism 7'(0) : T'(V) — T (W) with T'(0)(v) = (v) for v € V.

This follows from (i) with the composition V- — W — T(W), or from property (ii)
of tensor powers with the mappings T¢(6) : T4(V') — T4(W).
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(iii) If V has basis (b1,...,by), then there is an algebra isomorphism
K(X1,...X,) = T(V)
sending X; corresponding to b;.

The free algebra is the free K-module with basis the words X;, ... X;, with d > 0
and i1,...,iq € {1,...,n}. We define the map by sending this basis element to
bit ® - ® b;,. The elements of this form for fixed d give a basis of T4V), so
allowing d to vary, we get a basis of T'(V'). Thus the mapping is an isomorphism
of K-modules. Clearly it is also an algebra isomorphism.

Definition. Let V be a K-module. A quadratic form ¢ : V — K is a mapping
with ¢(\v) = A2q(v) for all A € K and v € V and such that the mapping

b:VxV =K, buv)=qu+v)—qu)—qv)
is bilinear. If K is a field with char K # 2, then this agrees with the definition in
Linear Algebra II §11.1, since in this case g(v) = 1b(v,v).
If ¢: V — K is a quadratic form, the Clifford algebra is
C(V,q)=T(V)/(v* —qv)1:veV).
It is not in general graded.

If V has basis (b1,...,b,) and a = (a1,...,a,) € K", then there is a quadratic
form

GV =K, qo(vibi +--+x0y) = 12 + - + aza?

for 1,...,x, € K.
If K is a field with char K # 2 then by Linear Algebra II §11.1, any f.d. vector
space with a quadratic form has a basis with respect to which the quadratic form

is equal to gq, for some a. Over R, we may assume all a; € {0,1,—1}, and over C
we may assume that all a; € {0,1}.

We shall concentrate mainly on C(V, q,) where V has basis (b1, ...,b,) and a € K™.
In particular we can take V= K™ and (b1, ..., b,) the standard basis.

Properties (of Clifford algebras).

(i) Suppose V and W are equipped with quadratic forms ¢ and p, and suppose
that 0 : V' — W is a K-module homomorphism with p(f(v)) = ¢(v) for all v € V.
Then there is a unique algebra homomorphism C(6) : C(V,q) — C(W,p) with
C(0)(v) = O(v) for v € V. If # is an isomorphism of modules, then C(0) is an
isomorphism of algebras.

Proof. The map 6 induces a homomorphism of algebras

canonical map C(
_—

W, q)
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For for v € V' we have
T(0)(v* = q(v)1) = T(0)(v @ v — q(v)1) = 6(v) © O(v) — q(v)1

= 0(v)? = p(B())1 € (w? — p(w)l : w € W).
Thus this homomorphism induces a homomorphism C(#). Clearly it is unique.
Also, if 0 has inverse ¢, then C(¢) is an inverse for C(6).
(ii) If V has basis (b1, . . ., by), then in C(V, g,) we have b? = a;1 and b;b; = —b;b; =
0 for ¢ # j.
Namely, consider v? — g,(v)1 for the elements v = b; and v = b; + b;.
(iii) We have an isomorphism K (X1, ... X,)/I, = C(V, q,) sending X; to b;, where
1, is the ideal generated by the elements XZ-2 —a;1 and X;X; + X; X, for i # j.
Proof. We have an isomorphism ¢ : K(Xy,...,X,) = T(V).

We want to show that ¢(I,) = (v? — qu(v)1 : v € V). By (ii), the generators of I,
are sent to 0 in R, so ¢(I,) C (v2 — g, (v)1 : v € V). For the reverse inclusion, note
that if v = > | x;b; with z; € K, then

v? — qa(v)1 = (Z 2:b;)? — Zaﬂ‘% = Zm?(b? —a;l) + Zl‘il‘j(bibj + bjbi)
i=1 i=1 i=1

1<j

=¢ | Y al(X7 —ail) + > 2 (XX, + X;Xi) | € o(La).

i=1 i<j

Theorem (1). Let V' have basis (by,...,b,) and let a € K™. Then R = C(V,qq)
has K -basis the elements by for I a subset of {1,...,n}, defined by

br = bi,bi, ... by,

where I = {iy <ig < -+ <ig}.

Proof. R is generated as a K-module by the products of the b;, and because of (ii)
we can write any product as a linear combination of products of the form by.

We prove that the by are a basis by induction on n. Let V/ be the K-submodule of V/
generated by by,...,b,—1 and let @’ = (a1, ...,a,—1). By induction R' = C(V’, qu)
has basis the by with J C {1,...,n — 1}.

We get a homomorphism 60 : K(X7,...,X,) — M(R') with

e(xi)_Cg _Obi> (i < ), H(Xn)_<(1) “0").
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This map sends the generators of I, to 0, so it induces a homomorphism
0:R— My(R).
Any relation between the by in R can be written in the form

Z)\ij—l-/tjbjbn:(]
J

with Ay, uy € K. Applying 0, and using that b,by = (—1)”1b b, we get

( oAby > 1ianby >:0
S Dby S A (=1, '

Thus ) ; Asby and ZJ(—l)“”,uJbJ are zero in R'. Thus by induction the \; and
g are all zero. ]

Theorem (2). Suppose K is a field with char K # 2, V' has basis (bi,...,by,) and
a=(ai,...,an) € K" Ifall a; # 0 (or equivalently q, is ‘non-degenerate’), then
R =C(V,q,) is a semisimple algebra.

Proof. Recall that R is semisimple if and only if every R-module M is semisimple,
that is, every submodule IV of M has a complement. It is equivalent that there is an
R-module homomorphism f : M — N with f(m) = m for all m € N. Namely, if
there is a complement C, we can take f to be the projection onto V. Conversely, if
there is f, then Ker(f) is a complement, since clearly NNKer(f) = 0 and if m € M,
then m = f(m)+(m— f(m)) € N+Ker(f) since f(m— f(m)) = f(m)— f(m) = 0.

We prove the theorem by induction on n.
The case n = 0 is clear, since in this case R = K, which is a field, so semisimple.

Thus suppose n > 0. By the last theorem, the subalgebra R’ of R spanned by the
by with J C {1,...,n — 1} is isomorphic to the Clifford algebra C(V"’, q,/) where
V' is the subspace of V spanned by by,...,b,—1 and o’ = (a1,...,an—1. Thus by
induction R’ is semisimple.

Let M be an R-module and N an R-submodule. We can consider M as an R'-

module, and N is a submodule, so there is an R’-module map f’ : M — N with
f'(m) =m for m € N. Define f : M — N by

L
2a,
Then f(m) =m for m € N. Also f(bym) = b;f(m) for i < n and

Flm) = 5 m) + 5= f ().

Flbun) = 5 (bum) + b (Bm) = by f(m),

so f is an R-module map. Thus N has an R-module complement in M. Thus any
R-module M is semisimple. ]
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Examples. (1) C(Rl,q(_l)) >~ C. Since 2 = —1 there is a homomorphism
C(R!, q(—1)) — C of R-algebras with by + i. It sends the basis 1,1 to the basis
1,4, so it is an isomorphism.

(2) C(RY, q(1y) =R x R with by — (1,—1).

(3) C(RQ,(](_lj_l)) =~ H with b1 — ¢ and by '—)] (SO b1by — Z] = k‘)

(4) C(RQ,(](IJ)) = MQ(R) with b1 — (é _01) and b2 — ((1) (1))

(5) The Clifford algebra for 3-dimensional Euclidean space is R = C(R3, q(1,1,1))-

Any rotation 6 of R? about the origin preserves distance from the origin, so pre-
serves ¢. Thus it induces an isomorphism C(f) : R — R.

There is an isomorphism R — M(C) sending the b; to the Pauli matrices

(01 (0 =i (1 0
TT=11 0)°27\i 0) o <1

This is a homomorphism since the Pauli matrices have square 1 and anticommute.
Now the basis 1, by, by, b3, byba, b1b3, babs, b1babs of C(R3, q(1,1,1)) gets sent to

O 2 Go)0a) 6 26 2) G ) 60)6)

which is a basis of Ma(C) as a vector space over R. Thus this homomorphism is
an isomorphism.

Pauli (1927) used his matrices to formulate a version of the Schrédinger equation
for spin 1/2 particles.

Why does H appear when studying rotations? It is isomorphic to the subalgebra
of R with basis the words of even length: 1, biby <> ¢, bobs <> j and b1bs <> k.

(6) In special relativity one uses Minkowski space, which is R* with the quadratic

form

2 2

qt,z,y,2) =t — 2 —y* — 2

where (z,y, z) is position, t is time, and the units are chosen so that the speed of
light is 1.

The relevant Clifford algebra is C(R4,q(17_17_17_1)). It is sometimes called the
Space-Time Algebra.

Dirac (1928) used matrices in M4(C) which give a homomorphism from the Clfford
algebra to My(C) to formulate a relativistic version of Pauli’s equation. Actually
they give an isomorphism C(C*, q1,-1,-1,-1)) = My(C).
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Definition. Let V' be a K-module. The exterior algebra or Grassmann alge-
bra A(V) on V is the Clifford algebra given by V with the zero quadratic form

AV)=C(V,0)=T(V)/(vev:veV).

We write the product in A(V) as z A y.

If0:V — W is a K-module map, then as for Clifford algebras, T'(f) induces an
algebra homomorphism

AO) : A(V) = A(W),  (AB) (w1 A~ Avg) = 0(v1) A~ AB(vg)

for v; € V.

Lemma. In A(V) we have the following identities
(i) vAv=0 forallveV.

(1) v AV = —=v' AN for allv,v' € V

(iii) If w is a permutation of {1,...,d} and e(mw) denotes its sign, then
V) A AUg(q)y = €(m)vr A=+ Avg

forv; e V.

(iv) vi A+ ANvg =0 for v; € V if two of the v; are equal.
Proof. (i) This is the definition.

(i) As for Clifford algebras, consider (v +v') A (v + v).

(iii) Part (ii) gives the result in case 7 is the transposition of the form (i i + 1).
Now any permutation can be written as a composition of such transpositions.

(iv) By (iii) we can permute the v; to make consecutive ones equal. Then the result
follows from (i). O
Properties (of exterior algebras).

(i) In T(V) we have

(v®v:v€V):J::@Jd
d=0

where J; is the K-submodule of T¢(V) generated by elements of the form v; ®
-+ ®@uvg with v; € V and two of the v; equal.

Namely, J is clearly an ideal in 7'(V') and it contains v ® v for v € V,s0 (v ®@ v :
v € V) C J. By the lemma J is contained in the kernel of the homomorphism
T(V)—=A(V),soJC (v@v:veV).
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(ii) A(V) is a graded algebra, with decomposition
o0

AV) =D AV)
d=0

where A%(V) is generated as a K-submodule by the elements v1 A --- A vg with
v; € V. The homogeneous pieces A(V) are called the exterior powers of V.
The map T%(V) — A(V) gives an isomorphism of K-modules T¢(V)/Jg =2 A4(V).

Proof. Let p : T(V) — A(V) be the canonical map and let A4(V) = p(T4(V)).
Since T%(V) is generated as a K-module by the elements, v; ® - - - ® vy, it follows
that A%(V) is generated as a K-module by the elements v A - - - A vg.

Since p is surjective and T(V) = Y52, T4(V), we have A(V) = 32, A4(V).

Say x4 € A%(V), all but finitely many zero, and >_ 24 = 0. Then x4 = p(yg) for
some yg € T%(V), all but finitely many zero. Then p(3_y4) = 0. Thus by (i) we
have

> yq € Ker(p) = J

by (i). Now J = @32, Ja s0 Y ya = Y ja for elements j; € Jy, all but finitely
many zero. But this is an equality in (V) = @32, T4(V), so yq = jq for all d.
Thus yq € J, s0 24 = p(ya) = 0. Thus A(V) = P32, ALV).

(iii) The mapping
VdﬁAd(V)y (V1,...,09) = V1 A= Aug

is K-multilinear and alternating, meaning that v; A --- A vg = 0 if two of the v;
are equal. Moreover it is universal for this property. That is, if f: V¢ — M is an
alternating K-multilinear map to a K-module M, then there is a unique K-module
map o : AYV) — M with f(v1,...,09) = a(vi A+ Avg).

This follows from the universal property of T%(V) and the fact that A4(V) =
TYV) ) Jg.

(iv) If 0 : V. — W is a K-module map, then A(f) restricts to give a K-module
homomorphism

AYB) : AYV) = ATW),  AY@) (o1 A~ Avg) = O(v1) A - A B(vg).

(v) If V has basis (b1, ...,by), then A(V') has basis the elements
bI:bil /\big/\"'/\bid, I:{il < - <id}g {1,...,n},d20.
Thus AY(V) has basis the elements b; with I a subset with d elements. This basis

has (2) elements.
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Theorem. IfV is a free K-module having a basis with n elements, then A" (V') =
K and AY(V) =0 for d > n. Moreover any other free basis for V has n elements.
We call n the rank of V.

Proof. The first statement follows from property (v), since (") = 1. Since V has a

n

finite basis, it is finitely generated. Then by §2.3 Theorem (iii), any other basis for
V must be finite. But if it has m elements, then n = m = max{d : A%(V) #0}. O

Definition. If V is a free K-module of rank n and 6 € Endg(V'), we define the
determinant det(d) € K as follows. The map A"(0) : A"(V) — A™(V) is an
endomorphism of a rank 1 free K-module, so is multiplication by some element of
K. This is det(). Thus

(A" (0)) () = det(6)a

for all z € A™(V).

Remark. The definitions and results in Linear Algebra I about determinants of
matrices over fields, extend to commutative rings, and agree with the definition
here. For example we have the following.

Theorem (Leibnitz Formula). Suppose that V' has basis (b1,...,by) and that 0 :
V =V is a linear map with matriz A = (a;;) € M, (K) with respect to this basis,
so that

O(bj) = Z aijbi.
=1

Then

n

det(a) = Z 6(0')611,0'(1)(12,0'(2) -+ Qn o(n)
gES,

(which is the Leibnitz formula for det(A) in Linear Algebra I).
Proof. A"(V') has basis by A - -+ A by,. Moreover

AP (@) (by A~ Aby) = 0(b1) A...0(by)

= (> ainabi)) A ainabi) A A aigabi,)

i1=1 io=1 in=1
n

Z iy 1Gin 2 - - - ain,nbh ANbiy N+ Nby, .
i1yeyin=1
Since any term with two 7;’s equal is zero, we can write this as a sum over permu-
tations 7
Z Ar(1),107(2),2 - - - Are(n)nbr(1) A br2) AN+ A br(p)

7T€Sn

Z G(W)a”(l)vlaﬂ(Q)Q s aﬂ(n),nbl Aba A---Nby
TESK
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SO

det(6) = > e(M)ar(1),1Gr(2)2 - - - Gr(n) -
TESK

Since K is commutative, the product is equal to ay ;(1)a2 5(2) - - - Gp,o(n) Where o =
71, Since e(n) = e(n7!), we obtain

det(@) = Z 6(0’)&170(1)CL27U(2) NN an,a(n).
oESy

3.4 More applications of tensor products

Definition. Suppose R — S is a ring homomorphism. Then S is naturally an
S-R-bimodule. We sometimes denote it by ¢Sg. If Y is an R-module, then SQrY
is an S-module. We call it the module obtained from Y by inducing from R to
S. It is sometimes denoted Ind® Y or IndSR Y.

Properties. (i) If Z is a left S-module, then by restriction we have an R-module
rZ, and
Homs(S’ RRrY, Z) = HomR(Y, RZ).

This says that induction and restriction form an adjoint pair of functors. This
follows from Hom-Tensor adjointness, since if we consider S as an S-R-bimodule,

then Homg(S, Z) = pZ.

(ii) If Y is a free R-module with basis (b;), then S ®r Y is a free S-module with
basis (1 ® b;).

(iii) In particular if L/ K is a field extension and V' is a K-vector space, then L&V
is an L-vector space and dimy, (L ®x V) = dimg V.

Definition. If R and S are K-algebras, then R® S is naturally a K-algebra with
a product satisfying
(res)(res)=(r") o (ss).

Note that there are algebra homomorphisms
R—R®gS, r—rol,

S—>R®KkS, s—1R®s
and their images commute, since (r®1)(1®s)=r®s=(1®s)(r®1).
As a special case, if R is a commutative K-algebra, then R ®k S is an R-algebra.

Examples. (i) R®@g M, (K) = M,(R) via the map sending r ® A with A = (A;;)
to the matrix with (4, j) entries ra;; € R.
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(il) My(K) @g Mp(K) = My, (K). Here we index the rows and columns of
My (K) by the set {1,...,n} x{1,...,m} and we send A® B to the matrix with

(ia j)(ka 5) entry aikbjf‘

Let E% denote the matrix which is 1 at position (4, ) and zero elsewhere. This
map sends FY @ EP? to EGP)U9) . Tt preserves the multiplication since

(B @ EPY)(E*) @ EP1) = EVE') @ EPIEPT = 0,164y BV @ EP1
which matches the product

EEPGe) p'p)Gd) — 5 EEPG)

(:a)(#p)

(iii) If R is a commutative K-algebra, then R®x K[X1,..., X = R[X1,..., Xy].
In particular

K[X1,..., X, @k K[Y1,..., Y] 2 K[X1,...,X,][Y1,..., Y0
=KXy, X, Y1, ., Y]
Namely, we have a ring homomorphism
R®@kg K[X1,...,Xn] = R[X1,...,X,]

sending r @ p(X1,...,X,) to rp(X1,...,X,), where we need to apply the ring
homomorphism
K—R, A= JAlp

to the coefficients of p(Xi,...,X,).

It is an isomorphism since K[Xi,...,X,] is a free K-module on the monomials
X7 X", so R®kg K[Xi,...,X,] is a free R-module on the elements 1 ®
X7 .. X[ and these get sent to the monomials X{"' ... X which are a free
R-basis of R[X7,...,X,].

(iv) Similarly, if R is a commutative K-algebra, then there is an isomorphism of
R-algebras
0 : R@KK<X1,,Xn> — R(Xl,,Xn>

sending r @ a tora if r € R and a € K(Xy,...,X,).

Lemma. Suppose R, S are K-algebras and I is an ideal in S generated by a subset
HCS. Leti: I — S be the inclusion, and consider the map ld®i: R®x I —
R®kS. Then Im(Id®i) is the ideal in Rk S generated by the set {1®@h: h € H},
and

Rk (S/I) = (R®k S)/Im(Id ® ).
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Proof. Let J be the ideal in R®x S generated by {1®h : h € H}. Now Im(Id ®1)
is an ideal, since if r,7",r” € R, s',s" € S and x € I then

(res)(reoz)(r" s =r'm" @sdrs" € Im(Id @ 1).
Moreover this ideal contains the elements 1 ® h, so J C Im(Id ® 7).
Conversely if s,s’ € S, then
1®shs =(1®s)(1@h)(1®s) e J
It follows that 1 ® x € J for any x € I. Then
rer=rel)(lez)eJ

forallr € R, z € I. Thus Im(Id ® i) C J.

Now the exact sequence
0158 —S/I—=0

stays exact on the right on tensoring, so gives
RoxI 295 Regx S — Rok (S/I) — 0
so R@g (S/I) = (R@g S)/Tm(ld @ i). 0
Examples. (a) We have
Cor C2Cog (RIX]/(X?+1)) 2 (CerRX])/(1® (X*+1))
>~ CX])/(X2+1) = C[X]/((X +i)(X —1i)).
Now in C[X] we have (X +i)N (X —i) = (X +i)(X —i)) and (X +1i) + (X —i) =

C[X], since X + i and X — i are coprime. Explicitly (X + ¢) + (X — ¢) contains

L(X —i) — 5(X —4) = 1. Thus by the Chinese Remainder Theorem for rings in

§3.3 of Algebra I, we have
CIX]/((X +i)(X —1)) 2 C[X]/(X +14) x C[X]/(X —1).
Now there are ring isomorphisms C(X]/(X £1i) — C, p(X) — p(Fi). Thus

CerC=CxC.

(b) If R is a commutative K-algebra and a € K", then
R ®K C(Kn7 qa) = C(Rna Q(l)a
where the second copy of a really means its image in R", since

R®K C’(K”,qa) = R®K (K(bl, .. ,bn>/(b22 — ail,bibj + b]bl))
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=~ (R®x K(by,...,bn)/(1® (b —ail),1® (bibj + b;b;))
= R(bl, e, bn>/(bl2 —a;lp, bibj + bjbz)
(c) Cor H = M3(C). We have
C®r H=C®r C(R* q_1,-1)) = C(C? q_1,-1))-
Over C we can multiply the basis elements by ¢ to get

=~ o(C?, qa,1)) = C®r C(R?, q(1,1)) = C®g Ma(R) = M;(C).

(d) Hog H= My(R).
By the theorem below we have
C(RY, q1,1,-1,-1)) = C(R?,qa,1)) ®r C(R?, q(1,1)) = Ma2(R) @ Ma(R) = My(R).
But by permuting the basis elements of R*, this is isomorphic to
C(R*, q—1,-1,1,1)) = C(R?, g(_1,-1)) ®r C(R? q_1,_1)) 2 HRr H
where we have used the theorem below again.

Theorem. If a = (a1, az2) € K? with ay,ay invertible in K and a’ = (a},...,al) €
K", then
C(KQa Qa) K C(Kn,%') = C(Kn+2a Qa”)

where o’ = (a1, a2, —ajazal, ..., —ajasal,).

Proof. Let by, by be the generators of C(K?2,q,), let b}, ...,b, be the generators of
C(K™, qq), and let by, ..., b/, , be the generators of C(K™*2 g,v). The elements

c1=b1®1, co=by®1, 03:b1b2®b/1, ,Cn+2:b1b2®b;
of C(K?,q,) @K C(K",qu) satisfy the relations for C(K"*+2, g,). For example
(c3)* = (b1bg @ by)(b1be @ b)) = bibabibe @ by} = —ajasl ® aj1 = a(1®1).

Thus we get an algebra homomorphism C(K"2, q.n) — C(K?,q) @k C(K", qu)
sending b to ¢;.

Now the usual K-bases by (I C {1,2}) of C(K?,q,) and b/, (J C {1,...,n}) of
C(K™, qq) give a K-basis by@b’; of the tensor product. The algebra homomorphism
sends the usual basis of C(K"*2, g,/) to multiples (by invertible elements of K) of
the basis elements by ® b/;. For example b{b5b] is sent to

cl1c3cqy = (bl X 1)(b1b2 & bll)(ble ® blg) = (—alag)(bl ® bllblg).

This gives a bijective correspondence between the bases, so the homomorphism is
an isomorphism. I omit the details. ]

50



We use tensor products in the uniqueness part of the following theorem.

Theorem. (Steinitz). Any field K has an algebraic closure, that is, there is an
algebraic field extension L/K with L algebraically closed. Moreover the algebraic
closure of K is unique up to isomorphism.

Lemma. Suppose L/K is an algebraic field extension. If every irreducible polyno-
mial in K[X] splits over L as a product of linear factors, then L is algebraically
closed (so an algebraic closure of K ).

Proof. Suppose E/L is a field extension and « € E is algebraic over L. Then p(a) =
0 for some nonzero p(X) € L[X]. Since L is algebraic over K, the coefficients of
p(X) all belong to some finite extension F' of K. Then « is algebraic over F.
Thus F(«)/F is a finite extension. Thus by the Tower Law, F(«)/K is a finite
extension. Thus « is algebraic over K. By assumption its minimal polynomial
mq Kk (X) splits as a product of linear factors over L. Since m,, k(o) = 0, we get
ac L. O

Proof of the Theorem. Let {p;(X) : i € I} be the set of monic irreducible polyno-
mials in K[X] and let n; = Gradp;(X). Let R=K[Yip:i€ 1,1 <k <mny.

Forie I,

Uz

pi(X) = J](X = Yip)

k=1

is a polynomial in R[X] whose degree in X is < n; — 1, so we can write it as

n;—1

> !
k=0

with 7, € K[Yi1,...,Yin,] CR. Let J = (1 i € 1,1 < k < n;), the ideal in R
generated by the r;z. We want to show that J # R. Suppose J = R. Then

Z aigTik = 1
ik

for some a;; € R, all but finitely many zero. Let I’ = {i € I : a;; # 0 for some k},
a finite subset of I. Let F//K be a splitting field for the polynomial ], pi(X).
We have a homomorphism

f:R—>F

sending the Yji, for ¢ € I’ to the roots of p;(X) in F (in some order), and sending
the other Y;; to 0. Consider the induced homomorphism

R[X]| — F[X].

For i € I, it sends p;i(X) — [[;2, (X — Yix) to 0, so f(ry) =0 for ¢ € I'. Thus f
sends ), a;,rix to 0, which is impossible.
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Thus J is a proper ideal in R, so it is contained in a maximal ideal m. Since
K is a field, the ring homomorphism K — L = R/m must be injective, so we
can consider L as a field extension of K. Then in L[X] we have the factorization
pi(X) = [13L,(X — Y) so each irreducible polynomial p;(X) splits.

Now L/K is an algebraic extension, since any element belongs to some extension
of K obtained by adjoining finitely many of the Yz, and they are algebraic over
K, since they are roots of p;(X). Thus by the lemma, L is an algebraic closure of

K.

For uniqueness, suppose that L/K and L'/K are algebraic closures. Then L ®g L'
is a non-zero commutative ring, so has a maximal ideal m/. The factor ring E =
(L ®g L')/m' is a field and has homomorphisms from L and L’ such that the
homomorphisms from K are equal.

We consider the field extension E/L. If a € L', then since L'/K is algebraic, the
element 1 ® a of E is algebraic over L. Thus since L is algebraically closed, 1 ® a €
L. Tt follows that E = L. More precisely, the map L — FE is an isomorphism.

Similarly L' — E is an isomorphism. Thus L = L'. O

Examples. (1) The algebraic closure of Q is
L = {a € C: a is algebraic over Q}.

If a,b are algebraic over Q, so are a + b, ab, 1/a, so this is a subfield of C, and it
is algebraic over Q.

Now any irreducible polynomial in Q[X] splits into linear factors over C, and the
roots are all in L, so it splits into linear factors over L. Thus by the lemma, L is
a algebraic closure of Q.

(2) Let p be a prime number. Recall that for each power ¢ of p there is a unique
field F, with ¢ elements. Moreover F, C F, if and only if ¢’ is a power of g. Thus
we have inclusions

]Fngpm QIFP?,! c...

wheren!l=n-(n—1)----- 2 -1 is the factorial of n. The algebraic closure of F), is
the union L of these fields.

Namely, every element a € L is in F, for some ¢ = p™, and [Fq : Fp] < 00,50 ais
algebraic over [y,

Now suppose f(X) is an irreducible polynomial over IF,,. Let E/F, be a splitting
field. Then E is a finite extension of ), so for some m we have

E 2 Fyn CFpm C L.

Thus f(X) splits into linear factors over L, so by the lemma, L is an algebraic
closure of IF),.
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4 Representations of finite groups

4.1 Representations and the group algebra

Let G be a group and let K be a field. We write G in multiplicative notation with
neutral element 1.

Definition. A (linear) representation of the group G over the field K is given
by a K-vector space V together with a group homomorphism

p:G — GL(V)

where GL(V') is the group of invertible linear maps V — V.

We denote the representation by (V, p) or V or p. The degree of the representation
is dim V. A real/complex representation is one with K =R or K = C.

We get a category with

Hom((V, p), (W,0)) = {6 € Homg (V,W) : 0(g)0 = 6p(g) for all g € G}.

A (matrix) representation of G is a group homomorphism
A: G — GL,(K)

where GL,,(K) is the group of n x n invertible matrices.

Two matrix representations A, B : G — GL,(K) of the same degree are said to be
equivalent if there is an invertible matrix P such that B(g) = PA(g)P~! for all
geq.

Lemma. (i) If (V,p) is a linear representation of degree n and (v1,...,v,) is a
basis of V', then the map

A: G — GL,(K), A(g) = matriz of p(g) with respect to this basis

1s a matrix representation.

(ii) If A : G — GL,(K) is a matriz representation, then K™ equipped with the map
p:G— GL(K"), p(g) = the map K" — K™ of left multiplication by A(g)

s a linear representation of degree n.

(iii) These give inverse bijections between the isomorphism classes of representa-
tions of degree n and the equivalence classes of matrix representations of degree n.

Proof. Exercise. O
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Examples. (1) The trivial representation of G is the representation G —
GL1(K) with p(g) =1 for all g € G.

(2) Let n > 0. We denote by C,, a cyclic group of order n written multiplicatively,
with generator g. Thus C,, = {1,g,¢% ...,9" '} and ¢g" = 1. If ¢ € K is an nth
root of 1, we get a representation p : Cp, — GL1(K) with p(¢g") = €” for all r.

(3) The sign representation of the symmetric group S, is the representation
€: S, — GLi(K)

where €(7) is the sign of a permutation .

(4) Suppose 0 : G — H is a group homomorphism and ¢ : H — GL(V) is a
representation of H. Then by composition we get a representation of G

G — H — GL(V).

In particular, if N is a normal subgroup of G and ¢ : G/N — GL(V) is a repre-
sentation of the factor group, we get a representation of of G via

G — G/N — GL(V).

(5) If L/K is a field extension and V' is representation of G over K, then L @ V
is an L-vector space and it becomes a representation of G over L via

f—1d0
o

G4 GL(vV) GL(L @k V)

If (v1,...,vy) is a K-basis of V', then (1®vy,...,1®v,) is an L-basis of L ®x V/,
and the corresponding matrix representations are related by

G — GL,(K) 2dusion, o, (L).

(6) Recall that the dihedral group D,, is the group of symmetries of a regular n-gon
in the plane, say with one vertex on the z-axis. We have D,, = (o, 7) where o is
rotation by angle 27 /n, 7 is the reflection in the x-axis, ™ = 1, 70 = o~ 17. There
is a corresponding natural representation

oD GLat®.pto) = (ST ) = (1),

(7) Let G be the group of rotations of a Platonic solid. There is a natural repre-
sentation

sending each rotation to the corresponding rotation matrix.
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Remark. Given a group G, we would like to classify all representations of G.
Then we would know all ways in which G can occur as a group of symmetries of
an object.

Definition. The group algebra K G consists of the formal sums
D a9
geG

with coefficients a, € K, all but finitely many zero. Thus it is a vector space with
basis G. It becomes an algebra with the multiplication coming from that in G,

that is,
(> ag9) (> _buh) = > agbugh =) ek
geG heG g,heG keG
where
cL = Z agbp, = Z aghg—1y,-
g,heG geG
gh=k

Example. Let Cy = (g) with g> = 1. Then KCy = {al + bg : a,b € K} with
(al+bg)(a'1+Vg) = (ad’ +bV')1 + (ab/ + ba)g.

If char K # 2, then KCy = K x K, via the mapping al 4+ bg — (a + b,a — b).

If char K = 2, then KCy & K[X]/(X?), via the mapping K[X] — KC2, X + 1+g,
since (1 +¢)? =2+2g=0.

Lemma. The formulas gv = p(g)(v) and (3 cq ag9)v = 3 e ag(gv) give bijec-
tions between

(a) representations (V, p) of G;

(b) actions G x V.=V, (g,v) — gv of G on a vector space V', which are linear,
meaning that for each g € G, the map v — gv is a linear map; and

(¢) KG-modules V.

Moreover homomorphisms of representations correspond to K G-module homomor-
phisms.

Proof. Recall that an action of G on a set V' is a mapping G xV — V, (g,v) — gv
with g(¢'v) = (g¢')v and 1v = v for all g, ¢’ € G and v € V. A representation gives
a linear action via the formula gv = p(g)(v).

Given a linear action, the same formula gives a map p : G — End(V') with p(g¢’) =

p(g)p(g’) and p(1) = Idy. Since p(g~")p(9) = p(1) = Idv = p(g)p(g~") it is a map
to GL(V), so it gives a representation.
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Given a linear action, V' becomes a K G-module via

(Z agg)v = Z ag(gv).

geG geG

Conversely a KG-module structure on V gives a linear action by restriction.
For the last part observe that if 6 € Homg (V, W), then

0 is a homomorphism of representations

< 0(g)0 =0p(g) for all g € G

< 0(g)(0(v)) =0(p(g)(v)) forall g € G and v e V

< gf(v) =0(gv) for all g € Gand v eV

< z6(v) = 0(av) for all z € KG and v € V

& 6 is a homomorphism of KG-modules. O

Definition. Let (V, p) be a representation of G.

A subrepresentation of V is submodule U of the corresponding K G-module, so
a subspace of V with p(g)(u) CU for all g € G and u € U.

There is a quotient representation p : G — GL(V/U) corresponding to the
quotient module, so p(g)(U +v) = U + p(g)(v).

The representation is simple or irreducible if the corresponding module is simple,
so has exactly two subrepresentations 0 and V.

The direct sum of representations V' and W is given by the direct sum of the
corresponding K G-modules, so V @ W with the action g(v,w) = (gv, gw).

A representation is semisimple or completely reducible if the corresponding
module is semisimple, so every subrepresentation has a complement.

Theorem (Maschke). If G is a finite group and either char K = 0 or char K
is a prime number which does not divide |G|, then every representation of G is
semisimple, so the group algebra KG is semisimple.

Proof. The assumption on the characteristic of K ensures that |G| is nonzero as
an element of K.

Let M be a KG-module and N a submodule. As for Clfford algebras, to show that
M is semisimple it suffices to show that there is a KG-module map f: M — N
with f(m) = m for all m € N.

Now M is semisimple as a K-vector space, so there is a K-linear map f': M — N
with f(m) =m for all m € N. Define f: M — N by

1 —1 g/
fm) = i > g7 (gm).

geG
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If h € G we have

f(hm) G Zg "(ghm).
e =

Let k = gh, so g~ ' = hk™!. As g runs through the elements of G, so does k. Thus

f(hm) = th L' (km) = hf(m).
161 &5
Thus f is a KG-module homomorphism. Thus M is semisimple. ]

Remark. Since C is algebraically closed, the only f.d. division algebra over C is
C itself. Thus by the Artin-Wedderburn Theorem, if G is finite, then

CG = My, (C) x -+- x My, (C).

For example:

CS5 has dimension 6 and it is not commutative, so it must be isomorphic to
CxCx MQ((C)

CC,, has dimension n and is commutative, so it must be isomorphic to C x --- x C.

4.2 Characters

From now on K = C, the group G is finite, and we only consider representations
which are finite dimensional vector spaces.

Definition. The character of a representation (V, p) with p : G — GL(V) is the
function xy : G — C given by xv(g) = tr p(g), where tr is the trace.

A character is a function x : G — C which arises as the character of some
representation.

An irreducible character is the character of an irreducible representation.

A class function is a function f : G — C which is constant on conjugacy classes,
that is f(h~'gh) = f(g) for g,h € G. The class functions form a subspace of the
vector space of all functions G — C. The dimension is the number of conjugacy
classes.

Properties. (i) Any character is a class function.

First observe that if g,¢' € G, then xy(g9’) = tr(p(gq’)) = tr(p(g)p(d’)) =
tr(p(9')p(9)) = xv(9'9)-

Then xv(h™(gh)) = xv((gh)h™") = xv(9)-
(ii) xv(1) = trIdy = dim V is the degree of the representation V.
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(iii) If V is a representation of degree 1, that is dimV = 1, then yy is a group
homomorphism G — C*.

The trace of a 1 x 1 matrix is identified with the matrix itself, so the character is
identified with the corresponding matrix representation.

(iv) Isomorphic representations have the same character. [We will show later that
the converse also holds.|

If (V,p) is isomorphic to (W, o), then there is an isomorphism f : V — W with

fp(g) = o(g)f for all g € G. Then xv(g) = trp(g) = tr(fo(g)f) = tro(g) =
xw(9)-

(v) The character of a direct sum of representations is the sum of their characters,
xvew (9) = xv(9) + xw(9)-
If (V,p) and (W, o) are representations, their direct sum V @& W becomes a repre-

sentation 7 : G — GL(V @& W) where 7(g)(v,w) = (p(v),o(w)). Combining bases
of V and W gives a basis of V & W, and the matrix of 7 is block diagonal, so

tr7(g) = trp(g) + tro(g).

(vi) If x is a character and g € G has order n, then x(g) is a sum of n roots of 1,
and x(g7%) = x(g), the complex conjugate.

Proof. Since p(g)™ = 1, it is diagonalizable by example (c) at the end of Linear
Algebra I §8.3. Thus there is a basis with repect to which the matrix A(g) is
diagonal. The diagonal entries must be nth roots of 1, so x(g) is a sum of nth
roots of 1. Moreover they have absolute value 1, so their inverses are their complex
conjugates. Thus

x(g™h) =trA(g™") =trA(g) "' = tr A(g) = tr A(g) = x(9).

Examples. (i) The character of the trivial representation is x : G — C with
x(g) =1 for all g € G. Tt is called the trivial character.

(ii) Recall that the actions G x X — X, (g,x) — gz of G on a set X correspond
bijectively to group homomorphisms G — Sx, where Sy is the symmetric group
on X. Given such an action, we get a linear action of G on the vector space CX

with basis X via
g( Z a;x) = Z azg.
zinX zeX

The corresponding representation p : G — GL(CX) is called a permutation
representation.

Suppose that X is finite, say X = {x1,...,2,}. The matrix A(g) = (a;;) of p(g)
with respect to the basis (z1,...,x,) of CX satisfies

n
ng: E aijxi.
=1
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SO

o {1 (925 = )
1] :L‘)

Thus the corresponding character is

x(9) =tr A(g) = aiw =i gzi =z} = {x € X : gz = x}|.
=1

(iii) The regular representation of G is the representation corresponding to the
module cgCG. This is the permutation representation corresponding to the action
G x G — G given by multiplication. The corresponding character is given by

X(g):{m (9="1)
0 (¢9#1).

(iv) If V is a representation of G, then the dual representation is given by the
dual vector space V* = Homc(V, C) with the action of G given by

GxV* >V (9,998 (96)w) =E&g M)

forg e G, £ € V*and v € V. We need to use the inverse to get the action property:
(9(g'))(v) = (¢ (g v) = £((¢") g™ o) = €((99)'v) = ((99)€) (v).

The character is

xv+(9) =xv(g™") = xv(9).

Proof. Suppose V' has basis vy, ..., v,, and the action of g € G has matrix A(g) =
(aij(g)), then

gui = aij(g)vi
i=1
Let &4, ...,&, be the dual basis of V*. Then
(98 (v5) = &g~ vj) = aij(g™")
SO

9& = aij(g7)¢
j=1

Thus the action of g on V* has matrix A(g~")T, so xy+(9) = tr(A(g™")T) =
tr(A(g™h) = xv(g™).

(v) If V and W are representations of V', the tensor product representation is
V ®c W with the action of G given by

Gx(VecW)=VecW, glvew)= () (gw)
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for g € G, v eV, we W. The character is xve.w(g9) = xv(9)xw(9)-

Proof. If V has basis v1,...,v, and W has basis wq,...,w,, then V ®c W has
basis v; ® wj. If the action of g € G on V' has matrix A(g) = (a;;) and on W has
matrix B(g) = (b;j), then

m
9(vi ® wy) = (gv;) ® (gwy) Z apiVp | & Z bgjwq
g=1

n m

= Z Z apibqjvp ® Wy

p=1q=1
so the action of g on V ®@c W has matrix C(g) = (¢(p.9),(i,j)) With rows and columns
indexed by pairs (7, j) and ¢, g) (ij) = apibgj- The character is

n m

xvew(g) =trC(g) = Z Z C(i,5),(ig) = Z Z @by

i=1 j=1 i=1 j=1

:(Za“) Zbﬂ (tr A(g))(tr B(g)) = xv (9)xw (9)-
=1

Here is another way to see this. Fix g € G. We can choose a basis (v1,...,vy) of
V' with respect to which the action of g is diagonal, say gv; = A;v; with A; € C.
Similarly, we can choose a basis (w1, ..., wy,) of W with respect to which the action
of g is diagonal, say gw; = pjw; with pr; € C. Then (v;Qw; : 1 <i<n,1<j<m)
is a basis of V@ W, and with respect to this basis the action of g is diagonal, with

g(vi ® wj) = (gui) @ (gw;) = (Nivi) @ (jwj) = Aip(vi @ wj).

xvew(g) =Y iy = O_ MO 1) = xv(g)xw(g)-
i i J

Then

Lemma. Suppose V' is a representation of G. The set of fived points
={veV:gv=w foradlge G}

s a subrepresentation of V, and

dim VY = |G] Z xv (g
geG
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Proof. The first statement is straightforward. We have a map
[V =V, fl Z g
’ geG

Then f has image contained in V¢, and f(v) = v for v € V. Thus f is idempotent
and V¢ = Im f. Thus V = Im f @ Ker f by Linear Algebra II §7.4 Proposition.
Combining bases of Im f and Ker f gives a basis of V', and with respect to this
basis the matrix of f has block form

I, 0
0 0
where I, is an 7 x r identity matrix, where 7 = dimIm f = dim V. Thus

r=trf= 1€l ZXV

geG

Definition. If ¢ : G — C and 9 : G — C are mappings, we define

)= g 2 009

geG

This defines a scalar product on the C-vector space of all mappings G — C. By
restriction it defines a scalar product on the subspace of class functions.

Theorem. IfV and W are representations, then
dim Homea(V, W) = (xw, xv)-

In particular, if V is an irreducible representation, then (xw, xv) is the multiplicity
of V in the decomposition of W as a direct sum of irreducible representations. Thus
any representation W is determined up to isomorphism by its character.

Proof. The space Home (V, W) becomes a representation of G with action
G x Home(V, W) — Home(V, W), (g6)(v) = g0(g™ ")
for g € G, 8 € Hom¢(V, W) and v € V. Moreover we have an isomorphism
V* @c W = Home(V, W).

Thus
dim Homeg(V, W) = dim Home (V, W)% = dim(V* @ W)¢
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e ZXV ~ew (9) ’G| > xv@xw(g) = xw,xv)-
geG geG

Now by semisimplicity we can write W = Wy & - - - & W,,, with the W; irreducible,
and by Schur’s Lemma, for V irreducible we have

Cc (Vew;
Homeq (V, W) = ( )
0 (VZW)
Then . -
Homee(V, W) = Home (V, ) Wi) = @5 Home (V, W)
=1 =1
SO

(xw,xv) = dim Homea(V, W) = > dim Homea(V, Wi) = [{i : W; =V},
i=1

Now if representations W and W’ have the same character, they are isomorphic
to directs sums of irreducible representations with the same multiplicities, and so
wW=w. O
4.3 The character table

Still K = C, the group G is finite, and we only consider f.d. representations.
Definition. The character table of G is the table with

- columns indexed by representatives gy, ..., g of the conjugacy classes in G.

- rows indexed by the irreducible characters xi,..., X, of G. Equivalently by the
simple modules for CG.

- entries x;(g;)-

Let ny,...,n; be the sizes of the conjugacy classes, so n; = [G : Cg(g;)]. If
¢, : G — C are class functions, e.g. characters, then

<¢ w ‘G’ Zn3¢ g] g])

Properties. (i) The rows of the character table are orthonormal:

(Xis X5) = bij-
(ii) If qﬁ is a character, then ¢ = ., ¢ixi, where ¢; = (¢, x;) > 0. Then (¢, ¢) =
>i_ 7. Thus ¢ is an irreducible character if and only if (¢, qu)
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(iii) Recall that the character ¢ of the regular representation is given by ¢(1) = |G|
and ¢(g) = 0 for g # 1. Thus (¢, 1) = (1) if ¢ is another character (so ¥ (1) is
its degree, which is real). Thus

¢ = xi(1)xi-
i=1

(iv) In particular
-
Gl =) xi(1)?,
i=1
the sum of the squares of the degrees of the irreducible characters.

Theorem. The character table is square. That is, the number r of irreducible
characters is equal to the number k of conjugacy classes in G. Thus the irreducible
characters are an orthonormal basis of the vector space of class functions.

Proof. Recall that if R is an algebra, then Z(R) is its centre.
Ifa=73,cqa99 € CG, then a € Z(CG)

< ha=ah forall he G

< a=hah ! forall he G

& Dgec 199 = YLgeq aghgh™

e deG agg = erG ap—14pT

& ag = ap-14, for all h € G.

4 the map g — ay4 is a class function.

Thus dim Z(CG) is the dimension of the space of class functions, which is the
number k of conjugacy classes.

Since C is algebraically closed, the only f.d. division algebra over C is C itself. Thus
by the Artin-Wedderburn Theorem

CG = My, (C) x -+- x My, (C).
Each factor corresponds to a simple module C™i, so there are r simple modules.
Now if R = Ry X -+ X R, then Z(R) = Z(R1) X --- X Z(R;), and it is easy to see
that Z(M,(C)) = C1, so dim Z(CG) =r, so r = k. O

Example. If G = C,, is a cyclic group, then representatives of the conjugacy classes
are 1,g,...,9" '. The irreducible characters are xi,..., xn with x;(g7) = =17,
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where € = e2™/™ (where in this last formula, i = v/—1). For example for n = 2

Forn=3
9|1 g ¢°
nj 1 1 1
x1]1 1 1
x2 |1 € €
xa |l € ¢

For example C3 acts on R? by rotations. This gives a representation

Gy G, g oo (SR ),

The corresponding character is o2 + x3.
Example. Consider a product of two groups G x G’.
Let g; be representatives of the conjugacy classes in G, sizes n;.
Let g} be representatives of the conjugacy classes in G, sizes n.
Then (g;, gé) are representatives of the conjugacy classes in G x G’, sizes nzn;
Let x; be the irreducible characters of G.
Let X be the irreducible characters of G'.
The compositions

GxG G Xc

Gxa B X
are characters of G x G’ and their tensor product is the character

Xij : Gx G = C, xi(9,9") = xi(9)x;(g")-

The degree is x;;(1) = xi(1)x(1).
Now

1 -
(Xij» Xij) = Gxal > nanyxi(ga) x5 (9h)xi(9a) x5 (95) = (xir xa) O X)) = 1.
a,b

Thus x;; is irreducible.

64



The number of such characters is the number of conjugacy classes in G x G’, so
they are all of the irreducible characters.

For example, for Klein’s four group V = Cs x C, we get

g | (L) (91,1) (L1,92) (91,92)
nj | 1 1 1 1
X11 1 1 1 1
X21 1 -1 1 -1
X12 1 1 -1 -1
X22 1 -1 -1 1

Example. The group G = S35 of order 6. The conjugacy classes are given by the
cycle type.

g; |1 (12) (123)
nj |1 3 2
Yi|l 1 1
2|l -1 1
613 1 0
ys|2 0 -1

x1 is the trivial character. Irreducible.
X2 is the sign character. Irreducible.
¢ is the character of the natural permutation representation.

We have .
(x1) = G(L13+3.1.1) =1,

S0 ¢ = x1 + x3 for some character x3, and

o

@&M9:6122+2@4f):L

so X3 is irreducible.

Example. G = A4 of order 12. The conjugacy classes are

{1},{(12)(34), (13)(24), (14)(23)},
{(123), (243), (134), (142)}, {(132), (234), (143), (124)}.

gj |1 (12)(34) (123) (132)
n; 1 3 4 4
x1 |1 1 1 1
xo | 1 1 € €
x3 | 1 1 € €
¢ |4 0 1 1
X4 | 3 -1 0 0
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x1 is the trivial character.

V ={1,(12)(34), (13)(24), (14)(23) } is a normal subgroup of A4, and A4/V = Cs.
xe and 3 are lifts of irreducible characters for Cs, where € = ¢27%/3.

¢ is the character of the natural permutation representation. We have

1
(6:x1) = (414301 +411+411) =1

Thus x4 = ¢ — x1 is a character. It is an irreducible character since
1
(X4, x4) = 5(32 +3.(-1)%) = 1.

Example. G = Aj of order 60.

gi | 1 (12)(34) (123) (12345) (12354)
n | 1 15 20 12 12
x| 1 1 1 1 1
6|5 1 2 0 0
X2 | 4 0 1 —1 ~1
X3 | 5 1 -1 0 0
ya| 3 -1 0 a 8
¥ | 60 0 0 0 0
vs| 3 -1 0 3 a

x1 is the trivial character.
¢ is the natural permutation representation. Now
1
60

SO X2 = ¢ — X1 is a character. It is irreducible since

(¢, x1) = —(1.1.5+15.1.1 + 20.1.2) = 1,

1
(X2, x2) = ¢5(1.4.4+20.11 + 12.(-1)2 +12.(-1)?) = 1.
Let H be the subgroup of permutations fixing 5. So H = A4. Index 5. Let
c = (12345), so
c = (12345), ¢* = (13524), ¢ = (14253), ¢! = (15432), ¢® = Id.

Then for 1 <k <5 we have ¢*H = {g € G : g(5) = k}, so ¢,c?,¢c3, ¢, c° is a set of
representatives of the left cosets of H in G.

Let V be the degree 1 representation of H = A4 given by the row 1,1,¢, €. Let
0#veV,so
(12)(34)v =v, (123)v =ev, (132)v = e%v.
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We consider the induced representation
Ind““V = CG ®@cy V

Let x3 be its character. Since the ¢* are representatives of the left cosets of H in G,
they also give a basis of CG as a right CH-module. Then Ind®? V = @2:1 FeV,
and since V is 1-dimensional with basis v, Ind®“ V is a C-vector space with basis
the elements c* ® v for 1 < k < 5. Thus x3(1) = 5.

Now we need to compute g;(c¥ ® v). For example what is (12)(34)(c ® v).
(12)(34)(c ® v) = (12)(34)c ® v

Now the permutation (12)(34)c sends 5 to 2, so it is in ¢?H, and in fact it is equal
to c2h with h = (143). Thus

(12)(34)(c®v) = (12)(34)c®@v = *(143) @v = @ (143)v = @ v = (2 Q).

This does not contribute to the trace, since ¢> ® v is not the same basis element as
c®v. In fact we only get a contribution when g;c* € ¢*H, which is when g; fixes
k. We have

(12)(34) @ v = A(12)(34) @ v = ¢ @ (12)(34)v = ¢ Q@ v.

Thus x3((12)(34)) = 1.
Now the fixed points of (123) are 4 and 5 and we have

(123)c* @ v =c*(234) @ v = ¢* ® (234)v = ¢* @ €20,

(123)P @v=c"(123) @v = ® (123)v = & @ ev.
Thus x3((123)) = €2 + e = —1.
Also (12345) and (12354) have no fixed points, so

x3((12345)) = x3((12354)) = 0.

Now
1

60(52 +15.12420.(-1)%) =1,

(X3, Xx3) =
so X3 is irreducible.

The group of rotations of a dodecahedron has 60 elements, since a given face
can be rotated to any of the other faces, and it has 5 possible orientations. The
dodecahedron has 5 inscribed cubes which are permuted by these rotations. This
gives a homomorphism from the rotation group to S5, but the image has order 2,
S0 it is a subgroup of index 2 in S5. Thus it must be As.
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This gives a representation of As. Let x4 be the character. It has degree 3 so

The conjugacy class (12)(34) corresponds to a rotation about an axis through edge
midpoints by angle 7, so with respect to a suitable basis the matrix is

1 0 0
0 -1 0
0 0 -1

So x4((12)(34)) = —1.

The conjugacy class (123) corresponds to a rotation about an axis through opposite
vertices by angle 27 /3, so with respect to a suitable basis the matrix is

1 0 0

0 cos(27/3) —sin(27/3)

0 sin(27/3) cos(27/3)
So x4((123)) = 1+ 2cos(2m/3) = 0.

The conjugacy class (12345) corresponds to a rotation about an axis through face
centres. If we number the inscribed cubes appropriately, then it corresponds to
rotation by angle 27/5, so x4((12345)) = 1 + 2 cos(27/5) = «.

Then (12345)2 = (13524) is in the same conjugacy class as (12354) since the
permutation

12345
(1 35 4 2>_(235)

is even, and it corresponds to rotation by angle 47/5 so x4((12354)) = 1 +
2 cos(4n/5) = B.

Letting 7 = €2™/5 we have 14+ n+4n>+n°+n* =0, and o = 1 + 7 +7n*, and then
(2a—1)2=5,s0a=(1++/5)/2and then B=1+n?+n3=1—a=(1-5)/2.
Now

1

60(32 +15.(-1)2 +12.02 +12.8%) =1

(x4, xa) =
S0 X4 is irreducible.
Now there is only one more irreducible character xs. The degrees satisfy
60 = |G| = x1(1)* + x2(1)* + +x3(1)* + xa(1)” + x5(1)?
— 12442452 1324 5 (1)2
so x5(1) = 3.

Let 9 be the character of the regular representation. Then

Y= x1(1)x1 +x2(1)x2 + x3(1)x3 + xa(1)xa + x5(1)x5
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SO
1
X5 = 3 (¢ = x1 = 4x2 = 5xs = 3xa)-
(Alternatively we could have obtained x5 by arguing that if we had numbered the
inscribed cubes differently, then the rotation by angle 47 /5 could have corresponded

to the cycle (12345). Then we could have used the regular representation to find
X3, so avoiding induced representations.)
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5 Commutative algebra

All rings are now commutative, unless explicitly stated otherwise.

5.1 Localization and prime ideals
Let R be a (commutative!) ring.

Definition. Recall from Exercise Sheet 7, that a subset S C R is multiplicative
if 1 € Sand st € S for all s,t € S. If so, the localization of R at S is

ST'R={r/s:re€R,scS}

where r/s = 1'/s' < t(s'r — sr’) = 0 for some t € S. It is a ring with the
usual addition and multiplication of fractions. There is a ring homomorphism
R — S7'R, r+ r/1 with kernel {r € R : sr = 0 for some s € S}.

Definition. Suppose 6 : R — R’ is a homomorphism of rings.

If I is an ideal of R, its extension to R’ is the ideal I¢ := (6(I)) of R'.

If I is an ideal of R/, its contraction to R is the ideal (I')¢ := 0~(I') of R.
It is easy to see that I C I°¢ and (I")* C I'.

If 0 is the inclusion of a subring, then I¢ = (I) and (I')*= RN I

Proposition. Suppose S is a multiplicative set in R and let § : R - R' = SR
be the natural map.

(i) If I is an ideal in R, then (I')* =1T".

(ii) Suppose I is an ideal in R then:

(a) I° ={a/s:a€l,s €S}

(b) If r € R thenr/1 € I¢ < sr €I for some s € S.

(¢) If SNI =10 and no element of S is a zero diwisor in R/I, then I = I°.

Proof. (i) If a/s € I', then a/1 = (s/1)(a/s) € I' so a € (I')® so a/1 € (I')* so
a/s = (1/s)(a/1) € (I')e.

(ii) (a) Any element of I¢ has the form ), x;(a;/1) for some z; € R' and a; € I.
Writing the x; over a common denominator as x; = r;/s, the element is a/s where
a=> ria; €1

(b) If sr € I then r/1 = sr/s € I°. Conversely if /1 € I then r/1 = a/s with
a€landseS, sot(sr—a)=0forsometesS, so(ts)r=tacl.

(c) If a € I° then a/1 € I¢, so sa € I for some s € S. Then in R/I we have
sa=0,soa=0soa€cl. ]

Corollary. If R is noetherian, then so is ST'R.
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Definition. Recall that an ideal P in R is prime if R/P is an integral domain.
Equivalently P # R and a,b € R and ab € P impliesa € P or b € P. Any maximal
ideal is prime.

Maxspec R := {maximal ideals M in R} C Spec R := {prime ideals P in R}

If #: R — R, then the map P’ — (P’)¢ gives a mapping Spec R’ — Spec R, since
6 induces an injective homomorphism R/(P’)¢ — R/'/P’.

Corollary. FExtension and contraction give inverse bijections between the prime
ideals of ST'R and the prime ideals of R which are disjoint from S.

Definition. A ring R (commutative or not) is local if the set of non-invertible
elements forms an ideal I. If so, then R/I is a division ring and I is the Jacobson
radical of R (see Aufgabe 6.2).

A commutative ring is local if and only if it has a unique maximal ideal.

Proposition. An ideal P in R is prime if and only if S = R\ P is a multiplicative
set. In this case ST'R is denoted Rp, and it is a local ring with mazimal ideal P¢.
Moreover Rp/P€ is isomorphic to the quotient field k(P) of R/P.

Proof. The first statement is clear. The prime ideals in Rp are of the form p® with
p C P, so P¢ is the unique maximal ideal. Now if s € S then P + s is nonzero in
R/P, so we get a homomorphism

Rp = k(P), r/s—= (P+r)/(P+s)

forr € Rand s € R\ P. Clearly it is surjective.

The kernel contains the elements a/1 with a € P, so it also contains P¢. Thus we
get a homomorphism Rp/P¢ — k(P). Since Rp/P¢ is a field, this is homomor-
phism is injective, so an isomorphism. ]

Definition. If [ is an ideal in R, its radical is
VI={a€ R:a" eI for some n > 0}.

It is an ideal in R, since if a” = 0™ = 0, then

(a+ b)n—i—m _ Z

=0

+
1

)aibn+m—i —0.

Theorem. /I is the intersection of the prime ideals in R containing I.

Proof. Let a € R. If I C P with P prime and a € v/I, then " € I C P. Then
P + a is nilpotent in R/P. But this is a domain, so has no nilpotent elements.
Thus P+a=0,s0a € P.

71



Now suppose a ¢ v/I. Let S = {1,a,a?,...} and consider § : R — R' = S™IR.
Then 1/1 ¢ I¢ by (ii)(b) of the proposition above, so I¢ is a proper ideal in R’, so
it is contained in a maximal ideal M. Now a/1 is a unit in R’, with inverse 1/a,
soa/l ¢ M,soa¢ M and this is a prime ideal in R. Moreover I¢ C M implies
I CI°¢C M- [

Definition. Let I be an ideal in R. A minimal prime over [ is a prime ideal
containing I which is minimal with this property.

Proposition. Suppose I is an ideal in a ring R.

(i) Any prime ideal P of R containing I contains a minimal prime over I.
(ii) /T is the intersection of the minimal primes over I.

(iii) If R is noetherian, there are only finitely many minimal primes over I.

Proof. (i) Let X be the set of prime ideals p with I C p C P. We partially order
X by the opposite of the inclusion ordering. Any intersection I of a chain of ideals
in X is in X. Namely, suppose ab € I and a,b ¢ I. Then b ¢ p and a ¢ p’ for some
primes p,p’ € X. Without loss of generality, p C p/. Then a,b ¢ p but ab € p, a
contradiction. Now Zorn’s Lemma implies that X has a maximal element, which
is a minimal prime over I.

(ii) Follows from (i).

(iii) Suppose false. Let J be maximal such that there are infinitely many minimal
primes over J. Then J is not prime, so there are a,b ¢ J with ab € J. If p is
a minimal prime over J then ab € p, so a € p or b € p. Thus p is minimal over
J + (a) or J + (b), but these have finitely many minimal primes. O

Example. Recall that if Ris a UFD, then any 0 # a € R which is not a unit can be
written as a product of irreducible elements a = b1bs ... b, and this decomposition
is unique up to ordering and multiplication by units. Moreover the principal ideal
(b;) generated by an irreducible element is prime. The minimal primes over (a)
are the prime ideals (b;), for if (a) C p C (b;), with p a prime ideal, then a =
bi...by € p, so some b; € p, but then b; € (b;). It follows that b; is a unit times
bi, so (bi) = (bj) S p C (bi)-

5.2 Integral extensions

Definition. Suppose R is a subring of R and o € R'.

We say that « is integral over R if there is a monic polynomial f(X) € R[X]
with f(a) =0.

If every element of R’ is integral over R, we say that R’ is integral over R or that
R C R is an integral extension.
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Proposition. Suppose R C R'.
(i) If R is a f.g. R-module, then it is integral over R.
(i) o € R’ is integral over R < Ra] is a f.g. R-module.

Proof. (i) Let @ € R and let R’ = " | Rx; with 1 = 1. We can write az; =
>_j—1 aijz; for some matrix A = (a;;) € Mp(R).

Let f(X) =det(A — XI) € R[X] be the characteristic polynomial of A. It suffices
to prove that f(«) = 0.

Let T = A —al € M,(R'). Let z € (R)" be the column vector with components
;. Then Tz = 0.

Now adj(T)T = det(T)I. (By Linear Algebra I §6.4 Satz 5 this holds for a matrix
T with entries in a field, but here we need it for matrices over the ring R’. Working
over the field Q(X;; : 1 < 4,5 < n), for n = 3 we get an identity

X2 X33 — Xo3 X320 —(Xo1 X33 — Xo3X31) * X1 X2 X3
* * % X21 XQQ X23
k * * X31 X32 X33

1
(X11X22X33 — X12X91 X33 +...) | 0

This involves matrices over Z[X;;], and now by a ring homomorphism Z[X;;] — R’
we can specialize the X;; to elements of R'.)

Thus det(T")x = adj(T))T'z = 0. Thus since 1 = 1 we get det(T') =0, so f(a) = 0.

(i) Suppose f(X) € R[X] is a monic polynomial of degree n with f(a) = 0. Then
a” e Z?;ll R[X]a!. By induction the sum contains o™ for all m > n. Thus the

sum is R[a]. The converse follows from (i). O
Properties. (i) Suppose R C R and aq,...,a, € R'. If each «; is integral over
Rlag,...,a;_1], then R[ai,...,ay] is f.g. as an R-module, so it is integral over R.

Proof. By induction R” = R|aq,...,a,—1] is f.g. as an R-module, say R" =
>, Rxi. Since oy, is integral over R, we have

Rlon,...,an] = R'lan] = ) R'y; =) Ray;.
j=1 i,j

(ii) If R € R’ C R”, then R” is integral over R if and only if R” is integral over R’
and R’ is integral over R.

Proof. It is clear that if R” is integral over R then it is integral over R’ and R’ is
integral over R.
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For the converse, say o € R”. Then there is a monic polynomial f(X) € R'[X]
with f(a) = 0. Let ag,...,a, € R’ be its coefficients. Then by property (i),
Rlag, ..., an, a] is integral over R, so « is integral over R.

(iii) If R C R’ is an integral extension and 6 : R* — R is a ring homomorphism,
then 0(R’) is integral over 0(R).

If « € R and f(a) = 0 with f(X) € R[X] monic. Then f(X) = 0(f(X)) €
6(R)[X] is monic and f/'(8(a)) = 0(f(a)) = 0, so () is integral over §(R).

(iv) If R C R’ is an integral extension and S is a multiplicatively closed subset of
R then S™'R’ is integral over S~!R.

If is clear that S™'R is a subring of S™'R’. Suppose a € R’ is a root of the monic
polynomial
X"+ ’I“nlen_l + -+ r1 X + 7o,

then for s € S the element a/s is a root of the monic polynomial
X"+ (rp—1 /) X" oo (/8" HX + (ro/s™).
(v) If R C R’ is an integral extension of integral domains, then R is a field if and

only if R is a field.

If R is a field and 0 # r € R, then 7! exists in R’, so there is a polynomial with
() a7 g =0
Multiplying by 7"~ we get »~! € R.

If R is a field then 0 # « € R’ satisfies a polynomial

1

a"+rpd T+ ria+19 =0

and since R’ is an integral domain we may take rg # 0. Then

al=—(ro) Ha" " F a4 ).

(vi) If R C R’ is an integral extension, then the contraction of a maximal ideal m/
in R’ is maximal in R.

Let # : R — R'/m’ be the canonical map. By Property (iii), 0(R') = R'/m’ is
integral over §(R) = (R+m/)/m’ =2 R/(RNm') = R/(m')¢. Now use (v).

Theorem (Lying over). If R C R’ is an integral extension, then every P € Spec R
is the contraction of some P’ € Spec R'.
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Proof. Consider
R —— R

| |
Rp — (R\ P)"'R/

Then Rp is a local ring with maximal ideal ideal P¢. So it is not zero. So (R '\
P)~'R’ is not zero. Take a maximal ideal m in it.

Since (R \ P)"!'R’ is integral over Rp, the contraction of m to Rp is maximal,
so equal to P¢. Thus the contraction of m to R is P. On the other hand the
contraction of m to R’ is a prime P’, and its contraction to R is P. O

Definition. Let R be a subring of R'. The integral closure of R in R’ is
RY = {a € R : a is integral over R}.

It is a subring of R/, for 1f a1, a9 are integral over R, then ayg is also integral over

Rlo ] so Rlag,an] C R" by property (i).

Ifﬁ = R, we say that R is integrally closed in R'.

Note that R is 1ntegrally closed in R, since if « € R’ is integral over R , then
ER [a] is 1ntegral over RY , so by property (ii) it is integral over R, so « is 1ntegral

over R, so a € R"

Theorem. Suppose R is a UFD with field of fractions K.
(i) RN = R, so R is integrally closed in K.

(i) If L/ K is a field extension, then

R' = {a € L : a algebraic over K and my x(X) € R[X]}.

Proof. (i) Rational root test, Algebra I §4.5.

(i) Say o € R". Take p(X) € R[X]| monic of least degree with p(ar) = 0. Clearly
p(X) is irreducible in R[X]. Then by Algebra I, §4.4 Satz (i), p(X) is irreducible
in K[X], so it is the minimal polynomial of a. O

Examples. A number field is a finite extension field L of Q. Its ring of integers
is O L = Z

If a =a+byv2 € Q(v2) with a,b € Q and b # 0, then

mq o(X) = (X — a)? — 2% = X% — 20X + a® — 20°.
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This is in Z[X] & 24,0 = 20> € Z & a,b € Z, s0 O 5, = Z[V2].
Similarly Og;) = Z[i].
If a =a+ b5 € Q(5) with a,b € Q and b # 0, then
Ma(X) = (X —a)® — 5b* = X* — 2aX + a® — 5b°.
This is in Z[X] < 2a,a®> — 5V € Z < a,b € Z or a,b € Z + 3. For example if

a = 1(1++/5) then o? = a+ 1. It follows that Og(v) = Z[1+2\/5]_

The ring of algebraic integers is A We use algebraic integers to prove the
following theorem.

Theorem. The degrees of the irreducible complex representations of a finite group
divide the order of the group.

Proof. Let g1,...,gr be representatives of the conjugacy classes. Let
cj = Z g e CG
9€l9]

be the class sum, the sum of the elements conjugate to g;.

The elements ¢; are a basis for Z(CG), and clearly
CZ'Cj = Zaijkck
k

for some a;j;, € N.

By Schur’s Lemma, ¢; acts on an irreducible representation V' as multiplication by
a scalar wj € C. Then wyw; = >, ajjpwr. Thus R = Zj Zwj is a subring of C.
Thus the w; are algebraic integers.

Considering the trace of the action of ¢; on V', we get
nixv(g;) = (dim V)w;
where n; = |[g;]|. Then
1 —1 ]- . -1
1= (xv,xv)= i@l > nixvi(g)xvigh) = @l > (dim V)w; xv(g;7).
J J

Thus vl
J

Now Xv(gj*l) is a sum of roots of 1, so an algebraic integer. Thus the right hand
side is an algebraic integer, but rational, so an integer. O
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5.3 The Nullstellensatz
Lemma (1). Let K be a field and n > 0. By the substitution

V=X, - X" (i=2,....n)
with r > 0, we can identify
K[X1,...,X,) = K[X1,Ys,...,Y,] = R[Xi]

where R = K[Ya,...,Y,],

Given 0 # f(X1,...,Xy) € K[X1,...,X,] we can choose r such that f(X1,...,X,)
corresponds to a scalar multiple of a monic polynomial in R[X1].

Proof. Any polynomial in X1, Y5,..., Y, can be written as a polynomial in X1, X5,..., X,
via the substitution, and this is reversible by the substitution

X, =Yi+ X" (i=2,...,n).
Any monomial X X852 . X% involved in f(X1,...,X,) becomes
XU Yy + XT)2 (Y, + X7y
which is a monic polynomial in R[X;] of degree
di +dor + -+ dpr" L

The finitely many monomials involved in f(X1,...,X,) give a finite number of
polynomials dy +doT + - - - +d, T" !, so we can choose r such that their evaluations
at r are all different. Then

m—1
FX1, o Xn) = F(X0 Yok XT o Yk XU ) = A X7 4 Y gi(Yas ., Ya) X
j=0

where m is the maximal value of dy 4+ dor + - - - + d,, v~ ! for a monomial involved
in f(X1,...,Xp), Ais the coefficient of that monomial and g;(Y2,...,Y,) € R. O

Lemma (2). If f(X) € R[X] is a monic polynomial of degree n > 0, then the

natural map R — R[X]/(f(X)) is injective, so we can identify R as a subring of
RIX]/(f(X)). Moreover R[X]/(f(X)) is integral over R.

Proof. It g(X) € R[X] has leading term a,, X™ then f(X)g(X) has leading term
am,m X™T™ ] 50 it cannot be a nonzero element of R. Thus the map R — R[X]/(f(X))
is injective. Let X be the image of X in R[X]/(f(X)). Then f(X) = f(X) =0,
and R[X]/(f(X)) = R[X], so it is integral over R by property (i) of integral

extensions. O
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Theorem (Noether Normalization). Let K be a field. If R is a f.g. K-algebra, then
it contains a subalgebra S which is isomorphic to a polynomial algebra K[X1, ..., X,],
and such that R is integral over R, and hence a f.g. S-module.

Proof. Let 0 : K[X1,...,X,] — R be a ring homomorphism with R integral over
Im(#) and n minimal with this property. It exists since R is f.g. as a K-algebra, so
there is even a surjective homomorphism.

If 6 is not injective, then the kernel contains an non-zero element f. By Lemma 1
we may assume that f is monic in Ry[X;], where Ry = K[X2,...,X,]. Then we
get

Ro % K[X1,..., X/(f) & R.

Now R is integral over Im# by assumption. Also Im#@ is integral over Im 8¢ by
Lemma 2 and property (iii) of integral extensions. Thus R is integral over Im 6¢
by property (ii) of integral extensions, contradicting the minimality of n.

Now R is f.g. as an Im(6)-module by property (i) of integral extensions, since it is
f.g. as a K-algebra. O
Theorem (Weak Nullstellensatz). If L/K is a field extension, and L is f.g. as a
K -algebra, then L/K is a finite field extension.

Proof. By Noether normalization L is f.g. as a module over a subring S =
K[X1,...,Xy]). Now by property (v) of integral extensions S is a field, so n = 0.
Thus L/K is a finite field extension. O

Lemma. (i) If K is a field, the K-algebra homomorphisms 6 : K[X1,...,X,;] - K
are exactly the maps

f(X1,..., Xpn) = fa) = fla1,...,an)
for some a = (ay,...,an) € K™. Moreover Ker 0 is equal to
me = (X1 —a1,..., Xn — an)
and it is a mazximal ideal in K[X71,..., X,].

(ii) If K is an algebraically closed field, then every maximal ideal of K[X1, ..., X;]
is of the form mg for some a € K™

Proof. (i) Given 0, set a; = 6(X;). We have X; — a; € Kerf so m, C Ker6.
Conversely suppose that f € Ker. Let

gY,....Y) =fWMi+a,....Y,+a,) € K[Y7,...,Y,].

Then ¢(0,...,0) = f(a1,...,a,) = 0. Thus g has constant term zero, so we we

n
g= Z h;Y;
i—1
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with h; € K[Y7,...,Y,]. Then

n

FXr . X)) = g(Xi—ar,..., Xn—an) = Y _ hi(X1—a1, ..., Xp—a,)(Xi—a;) € mq.
i=1

Since 6 is surjective, K[X1,..., X,]|/m, = K is a field, so m, is a maximal ideal.

(i) Suppose M is a maximal ideal. It is the kernel of the canonical homomorphism
K[X,...,X,] - K[Xy,...,X,]/M. Now K[X1,...,X,|/M is a field extension
of K, finitely generated as a K-algebra, so a finite extension of K by the weak
Nullstellensatz. By algebraic closure, it is K. O
Definition. Let K be an algebraically closed field.

If V is a subset of K™, we define
I(V)={feK[Xy,...,X,]: f(a)=0forall a € V}

={feK[X1,....,X,]: fe€mgforallae V}
It is an ideal in K[X1,..., X,].
If S is a subset of K[X,...,X,], we define

V(S)={aec K": f(a)=0forall fe S} ={ac K":5Cm,}.

Clearly V(S) = V(I) where I is the ideal generated by S.

Theorem (Hilbert’s Nullstellensatz). Let K be an algebraically closed field. If I is
an ideal in K[X1,...,X,] then I(V(I)) = VI. Equivalently, /T is the intersection
of all maximal ideals containing I.

Proof. If f € V/T, then f™ € I for some m > 0. For a € V(I), we have f(a)" = 0.
Thus f(a) =0. Thus f € I(V(I)).

Now suppose f € [(V(I)). Consider the ideal

J=(,Xf-1)CK[X1,...,Xn, X].

If J is a proper ideal in K[X;,...,X,, X], then it is contained in some maximal
ideal

M(aq,....an,b) = (X1 —a1,..., Xpn —an, X =)
=Ker K[Xy,..., X, X] = K, g(Xi1,...,Xn, X) = g(ay,...,an,b).

If hel, then h € JC myg, .5, 50 h(al,...,a,) =0. Thus a = (a1,...,a,) €
V(I). Also Xf—1€J C M. anp) 50 bf(a1,...,a,)—1=0,s0 f(ay,...,an) #
0, contradicting the assumption that f € I(V(I)).
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Thus J is not a proper ideal. Thus we have

k

1= higi+h(Xf—1)

i=1
with the g; in I and h;,h € K[X1,..., Xy, X]. Applying the homomorphism
K[Xl,...,Xn,X]I—)K(Xl,...,Xn), Xli—>Xl,Xi—>1/f,

we get
k

1 :Zhi(Xl,--~7Xna1/f)gi

i=1
in K(Xy,...,Xy). But we can write

hi(X1, ..., Xn, 1/f) = ki) f%

for some k; € K[X3,...,X,] and d; > 0, and we may assume that all d; = d. Then
lzf/fdwhere€:Zf:1kig¢€I. Thus f¢el,so fe VI O

Definition. We say that an ideal I in a ring is radical if I = v/I. Note that if I
is any ideal, then v/ VI = \ﬁ, so v/ I is radical.

We say that a subset V' C K™ is Zariski-closed if it is of the form V(.S) for some
subset S of K[X1,...,X,].

Corollary. If K is an algebraically closed field, we have inverse bijections
\%
{Radical ideals T in K[X1,...,Xn|} " {Zariski-closed subsets V of K"}.
I

The bijections reverse inclusions.

Examples.
Poly ring Ideal T V({I)NnR" Min primes over
C[X,Y] (Y — X?) parabola y = x° I
C[X,Y] (XY —1) hyperbola zy = 1 I
CIX,Y] | (Y = X?)(XY —1)) parabola U hyperbola (Y - X2), (XY —1)
C[X,Y, Z] (XY, XZ) (plane z = 0) U (line y = z = 0) (X),(Y,2)

We have a decomposition
v(I) = JV(P)
P
where P runs through the minimal primes over I. (The real picture of the hyperbola

seems to have two connected components, but in C? the pieces are joined together.
Real pictures can be misleading.)
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Remarks. (a) The Zariski-closed subsets are the closed subsets of a topology on
K™, the Zariski topology, since

(i) K" =V(0) and 0 = V(K[X1, ..., X,]),
(ii) ﬂiV(Si) = V(Uz Si)v
(i) V(S YUV(T) =V({st : s € S,t € T}),

(b) An affine variety is a Zariski-closed subset V' of K™ together with its coor-
dinate ring
K[V]:= K[Xy,...,X,]/I(V).

We have a bijection
V — Maxspec K[V], a+> Tg.
5.4 Krull dimension

Definition. If p is a prime ideal in R then the height of p is
ht(p) =sup{n: 3 py C p1 C -+ C p, = p with p; distinct prime ideals}.
and the Krull dimension of R is
dim R = sup{ht(p) : p prime ideal in R}
=sup{n:3Ipy Cp1 C - - C p, with p; distinct prime ideals}.

We will see that every prime ideal in a noetherian ring has finite height. There are
examples by Nagata of noetherian rings with infinite Krull dimension, but we will
see that f.g. algebras over a field have finite Krull dimension.

Example. (1) If K is a field, it has dim K = 0.

(2) A principal ideal domain R which is not a field has dim R = 1, since the prime
ideals are either 0 or maximal, of the form (a) with @ an irreducible element.

(3) If R is a UFD then the height 1 primes are exactly the ideals (b) with b an
irreducible element.

Proof. If p is a height 1 prime, and a is a non-zero element of p, then p is a minimal
prime over (a), so p = (b) for some irreducible factor of a by the example at the
end of §5.1. On the other hand if p is a prime ideal contained in (b) and a is a
nonzero element of p, then (b) is a minimal prime over (a), so p = (b), so (b) has
height 1.

(4) A Dedekind domain is an integral domain of Krull dimension < 1 which is
integrally closed in its field of fractions. Any principal ideal domain is a Dedekind
domain. By the next result, the ring of integers O of a number field L is a
Dedekind domain.
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Theorem. If R C R’ is an integral extension, then R and R’ have the same Krull
dimension.

Proof. Given a chain of prime ideals pg C p1 C --- C py in R we construct a chain
py C p} C -+ Cpl, in R inductively such that p; contracts to p; for all 7. First, by
Lying over, pg is the contraction of some prime ideal pj in R'. If pj, ..., p;_; have
been constructed, then R'/p}_, contains (R+p,_,)/p;_; = R/(RNp,_,) = R/pi—1,
and it is integral over it by property (iii) of integral extensions. Thus by Lying-
over, there is a prime ideal in R'/p]_; which contracts to p;/p;—1 in R/p;—1. We
can write it in the form p}/p,_; for a suitable prime ideal p} in R/, and then p
contracts to p;.

Conversely, given a chain in R/, the contractions give a chain in R, and they
are all different. Namely, suppose (p;)¢ = (p/_,)¢. By assumption there is some
a€p,\p;_y. Let

f(X) = X" + Tn_anil +.. .TlX + 7o
be a monic polynomial in R[X] of minimal degree with f(a) € p}_;. It exists by
integrality. Then

1

ro = f(a) —a" —rp_1a" " — - —ria € P

SO
ro € RNp; = ()= (pi_1)° S piy

SO
(@" '+ rp1a™ 44 r)a= f(a) — 7o € pl_q.

Now by minimality the first factor is not in p}_,, so a € p;_;. Contradiction [
Theorem. If K is a field, then K[X,...,X,] has Krull dimension n. Thus any
f.g. K-algebra has finite Krull dimension.

Proof. Induction on n. Say m is a maximal ideal. Then m contains a height one
prime (f). By §5.3 Lemma 1, we may suppose f is monic in X; over K[Xo, ..., X,].
Then by §5.3 Lemma 2, K[X1,...,X,]/(f) is integral over K[Xo, ..., X,], so has
Krull dimension n — 1. O
Proposition. Let R be a noetherian ring. The following are equivalent:

(i) R has Krull dimension 0, that is, every prime ideal in R is mazimal.

(i1) R/ is a semisimple ring.

(iii) There is an ideal I in R with R/I semisimple and I nilpotent.

(iv) R is artinian, that is, it has the DCC on ideals.
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Proof. (i)=(ii) The ideal v/0 is the intersection of the minimal primes over 0, and
since R is noetherian, there are only finitely many of them. These primes are
maximal, say mq,..., m,. Then

R/VO < (R/my) @ --- @ (R/my).
This is a submodule of a semisimple module, so semisimple.

(ii)=-(iii) If I and J are nilpotent ideals, then so is I + J, for if I" = J™ = 0, then

n+m
(I+)tmc Y ryrmi=o.
i=0
Now /0 is finitely generated, so equal to (z1,...,2,) for some r, and the ideals

(z;) are nilpotent, hence so is /0.

(iii)=(iv) Each I"/I"*! is a f.g. module for R/I, so semisimple. Thus it is artinian.
Now use Aufgabe 5.3(ii).

(iv)=(i) Replacing R by R/P, with P a prime ideal, we may suppose that R is an
integral domain, and need to show it is a field. Let 0 # x € R. The chain of ideals

()2 (z*) S (2%) 2 ...

stabilizes with (2") = (2"*!) for some n. Then 2" = ax™*! for some a € R. Then
1 = az, so x is invertible with inverse a. O

Lemma (Nakayama’s Lemma). If R is a local ring with mazimal ideal m and M
is a f.g. module with mM = M, then M = 0. More generally, if R is a ring, not
necessarily commutative, J is its Jacobson radical and M is a f.g. R-module with
JM = M, then M = 0.

Proof. Suppose M # 0. Since it is f.g., it has a maximal proper submodule N.
Then M/N is a simple module, so J(M/N) = 0. Thus JM C N. Contradiction.
O

Theorem (Krull’s Hauptidealsatz). If R is a noetherian ring, then any minimal
prime ideal over a principal ideal has height < 1.

Proof. Suppose otherwise. Then there is a minimal prime P over a principal ideal
(z), and a chain of distinct prime ideals p C ¢ C P. By passing to R/p and
localizing at P we may suppose that R is a local integral domain with maximal
ideal m minimal over (z) and containing a nonzero prime ideal q.

Then the only prime ideal in R/(x) is m/(z), so it is artinian. Consider 6 : R —
R’ = R,. Since R is an integral domain, so is R', for if (a/s)(b/t) = 0 with a,b € R
and t € R\ ¢, then tab = 0, and since t # 0, we have a = 0 or b = 0.
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Let @ = ¢° the max ideal in R’ and let I,, = (Q™)°. By the descending chain
condition we have I, 4+ (z) = I,,11 + (x) for some n. Suppose a € I,,. We can write
a =0b+rx with b € I,1; and r € R. Then in R’ we have (rz) € (I,)¢ = Q™.
Now 6(z) ¢ Q, for otherwise x € Q° = ¢, contrary to the assumption. Since R’
is local, with maximal ideal @, it follows that 6(z) is invertible. Thus 6(r) € Q™.
Thus r € I,,. It follows that I,, = I,,4+1 + I,x.

Now I,,/I+1 = x1, /1,41 € ml,/I,+1. Thus by Nakayama’s Lemma I,,/I,,11 = 0.
Thus I, = I+1. Thus Q" = (I,)¢ = (I,41)¢ = Q*"!. Thus Q" = 0 by Nakayama’s
Lemma. Thus R’ is artinian. But it is an integral domain, so the ideal 0 is a prime
ideal, so @ = 0. Thus g C ¢°¢ = Q° = 0. Contradiction. O

Corollary (Krull’s height theorem). If R is a noetherian ring, then any minimal
prime tdeal over an ideal generated by n elements has height < n. Thus every prime
ideal in a noetherian ring has finite height.

Proof. Induction on n. Let P be a minimal prime over (x1, ..., z,). Replacing R by
Rp, we may suppose that P is a maximal ideal. It follows that P = \/(x1,...,2p).

It suffices to show that any element of the set X = {p € Spec R : p C P,p # P} has
height < n. Since R is noetherian, it suffices to show that any maximal element @
of X has ht(Q) < n.

Since P is minimal over (x1,...,zy), without loss of generality 1 ¢ . Then P

is minimal over @ + (z1), so P = \/Q + (z1). Thus for ¢ = 2,...,n, we have
z]" =g+ iz withn; >0, ¢ € Qand r; € R.

Consider the ring R = R/(q2,...,qn). The prime ideals Q C P in R give primes
@Q C P in R. Now any prime ideal in R is of the form p for some prime ideal p in
R, and if p is minimal over (Z), then p contains z; and the g;, so it contains all
x}", so it contains all x;, so p = P. Then ht(P) < 1 since P is a minimal prime

over (Z1), so ht(Q) = 0, so @ is a minimal prime over (g2, ..., ¢n), so by induction
ht(Q) < n. O
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