Algebra II 1. Übungsblatt

William Crawley-Boevey

Abgabe: Bis zum 19.04.24 um 10:00h im Postfach Ihres Tutors [Sarah Meier: 129]

Aufgabe 1.1. (4) Let $\mathbb{N} = \{0, 1, 2, ...\}$. We define a relation \leq on \mathbb{N}^2 by

 $(a_1, a_2) \le (b_1, b_2) \iff a_1 < b_1 \text{ or } (a_1 = b_1 \text{ and } a_2 \le b_2).$

Show that with this relation \mathbb{N}^2 becomes a well-ordered set. [This is called the lexicographic ordering. You need to show first that it is a partial ordering.]

Aufgabe 1.2. (4) Let G be a group with neutral element e and let A be a subset of G such that $e \notin A$. Let S be the set of subgroups $H \leq G$ such that $H \cap A = \emptyset$. We partially order S by inclusion. Use Zorn's lemma to show that S has a maximal element.

Aufgabe 1.3. (1+1+1+1) An object X in a category C is called an initial object if there is a unique morphism $X \to Y$ for every object Y. Identify the initial objects in the following categories.

(i) Grp, the category of groups

(ii) Set, the category of sets.

(iii) Set^{op}, the opposite of the category of sets. [An initial object in \mathcal{C}^{op} is called a final object in \mathcal{C} . It is an object X such that for every object Y in \mathcal{C} there is a unique morphism $Y \to X$.] (iv) The category associated with a partially ordered set S.

Aufgabe 1.4. (1+1+1+1) Let $f: X \to Y$ and $g: Y \to Z$ be morphisms in a category \mathcal{C} and let $F: \mathcal{C} \to \mathcal{D}$ be a faithful functor. Show the following.

(i) If f and g are monomorphisms, then so is gf.

(ii) If gf is a monomorphism, then so is f.

(iii) If F(f) is a monomorphism, then so is f.

(iv) The monomorphisms in the category Grp of groups are exactly the injective group homomorphisms.