Algebra II 2. Übungsblatt

William Crawley-Boevey Abgabe: Bis zum 26.04.24 um 10:00h im Postfach Ihres Tutors [Sarah Meier: 129]

Aufgabe 2.1. (2+2)

(i) Let G be an abelian group. Show that the set t(G) of elements of G of finite order is a subgroup of G.

(ii) Show how to turn t into a functor Ab \rightarrow Ab, in a natural way, where Ab is the category of abelian groups.

Aufgabe 2.2. (2+2) Let K be a field, V a K-vector space and $\theta: V \to V$ a linear map.

(i) Show that V becomes a K[X]-module via the action

 $K[X] \times V \to V, \quad (p(X), v) \mapsto p(X)v := a_0v + a_1\theta(v) + a_2\theta^2(v) + \dots$ where $p(X) = a_0 + a_1X + a_2X^2 + \dots \in K[X].$

(ii) Show that a subset W of V is a K[X]-submodule if and only if W is a subspace which is θ -invariant, meaning that $\theta(W) \subseteq W$.

Aufgabe 2.3. (2+2) Let K be a field and let $M_n(K)$ be the ring of $n \times n$ matrices with entries in K. Let K^n be the set of n-tuples of elements of K, written as column vectors. It is naturally a left $M_n(K)$ -module, with the action given by the usual product of a matrix and a column vector.

(i) Show that the only $M_n(K)$ -submodules of K^n are $\{0\}$ and K^n itself.

(ii) Show that the mapping sending a matrix to its transpose defines a ring isomorphism

 $M_n(K) \to M_n(K)^{op}, \quad A \mapsto A^{\mathrm{T}}.$

 ${\rm Mehr...}$

Aufgabe 2.4. (1+1+2) Let R and S be rings with ones 1_R and 1_S , and consider $R \times S$ as a ring with the componentwise operations

$$(r,s) + (r',s') = (r+r',s+s'), \quad (r,s)(r',s') = (rr',ss')$$

for $r, r' \in R$ and $s, s' \in S$.

(i) If V is an R-module and W is an S-module, show that $V \times W$ becomes an $R \times S$ -module via the operations

$$(v, w) + (v', w') = (v + v', w + w'), \quad (r, s)(v, w) = (rv, sw)$$

for $v, v' \in V$, $w, w' \in W$, $r \in R$ and $s \in S$.

(ii) Let M be an $R \times S$ -module and let

 $V = \{(1_R, 0)m : m \in M\} \subseteq M.$

Show that V is an additive subgroup of M, and that it becomes an R-module with the action * given by r * v = (r, 0)v.

(iii) Let M be an $R\times S\text{-module},$ let V be as in (ii) and, in the same way, let V

$$V = \{(0, 1_S)m : m \in M\},\$$

considered as an S-module with the action s * w = (0, s)w. Consider $V \times W$ as an $R \times S$ module as in (i). Show that mapping

 $\alpha: M \to V \times W, \quad m \mapsto ((1_R, 0)m, (0, 1_S)m)$

is an isomorphism of $R \times S$ -modules.