Algebra II

2. Übungsblatt

William Crawley-Boevey
Abgabe: Bis zum 26.04.24 um 10:00h im Postfach Ihres Tutors
[Sarah Meier: 129]

Aufgabe 2.1. (2+2)

(i) Let G be an abelian group. Show that the set $t(G)$ of elements of G of finite order is a subgroup of G.
(ii) Show how to turn t into a functor $\mathrm{Ab} \rightarrow \mathrm{Ab}$, in a natural way, where Ab is the category of abelian groups.

Aufgabe 2.2. (2+2) Let K be a field, V a K-vector space and $\theta: V \rightarrow V$ a linear map.
(i) Show that V becomes a $K[X]$-module via the action

$$
K[X] \times V \rightarrow V, \quad(p(X), v) \mapsto p(X) v:=a_{0} v+a_{1} \theta(v)+a_{2} \theta^{2}(v)+\ldots
$$

where $p(X)=a_{0}+a_{1} X+a_{2} X^{2}+\ldots \in K[X]$.
(ii) Show that a subset W of V is a $K[X]$-submodule if and only if W is a subspace which is θ-invariant, meaning that $\theta(W) \subseteq W$.

Aufgabe 2.3. (2+2) Let K be a field and let $M_{n}(K)$ be the ring of $n \times n$ matrices with entries in K. Let K^{n} be the set of n-tuples of elements of K, written as column vectors. It is naturally a left $M_{n}(K)$-module, with the action given by the usual product of a matrix and a column vector.
(i) Show that the only $M_{n}(K)$-submodules of K^{n} are $\{0\}$ and K^{n} itself.
(ii) Show that the mapping sending a matrix to its transpose defines a ring isomorphism

$$
M_{n}(K) \rightarrow M_{n}(K)^{o p}, \quad A \mapsto A^{\mathrm{T}} .
$$

Aufgabe 2.4. $(1+1+2)$ Let R and S be rings with ones 1_{R} and 1_{S}, and consider $R \times S$ as a ring with the componentwise operations

$$
(r, s)+\left(r^{\prime}, s^{\prime}\right)=\left(r+r^{\prime}, s+s^{\prime}\right), \quad(r, s)\left(r^{\prime}, s^{\prime}\right)=\left(r r^{\prime}, s s^{\prime}\right)
$$

for $r, r^{\prime} \in R$ and $s, s^{\prime} \in S$.
(i) If V is an R-module and W is an S-module, show that $V \times W$ becomes an $R \times S$-module via the operations

$$
(v, w)+\left(v^{\prime}, w^{\prime}\right)=\left(v+v^{\prime}, w+w^{\prime}\right), \quad(r, s)(v, w)=(r v, s w)
$$

for $v, v^{\prime} \in V, w, w^{\prime} \in W, r \in R$ and $s \in S$.
(ii) Let M be an $R \times S$-module and let

$$
V=\left\{\left(1_{R}, 0\right) m: m \in M\right\} \subseteq M
$$

Show that V is an additive subgroup of M, and that it becomes an R-module with the action * given by $r * v=(r, 0) v$.
(iii) Let M be an $R \times S$-module, let V be as in (ii) and, in the same way, let

$$
W=\left\{\left(0,1_{S}\right) m: m \in M\right\}
$$

considered as an S-module with the action $s * w=(0, s) w$. Consider $V \times W$ as an $R \times S$ module as in (i). Show that mapping

$$
\alpha: M \rightarrow V \times W, \quad m \mapsto\left(\left(1_{R}, 0\right) m,\left(0,1_{S}\right) m\right)
$$

is an isomorphism of $R \times S$-modules.

