Algebra II 3. Übungsblatt

William Crawley-Boevey

Abgabe: Bis zum 03.05.24 um 10:00h im Postfach Ihres Tutors [Sarah Meier: 129]

Aufgabe 3.1. (2+1+1)

(i) Let R be a ring, let $a \in R$ and let M be a left R-module. Show that $\operatorname{Hom}_R(R/Ra, M)$ is isomorphic as an additive group to the subgroup $\{m \in M : am = 0\}$ of M.

(ii) Suppose n > 0. Show that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/\mathbb{Z}n, \mathbb{Z}) = 0$ and $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/\mathbb{Z}n, \mathbb{Z}/\mathbb{Z}n) \cong \mathbb{Z}/\mathbb{Z}n$.

(iii) Let

$$0 \to \mathbb{Z} \xrightarrow{f} \mathbb{Z} \xrightarrow{g} \mathbb{Z}/\mathbb{Z}n \to 0$$

be the exact sequence, where f is multiplication by n and g is the canonical map. Show that the sequence

 $0 \to \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/\mathbb{Z}n, \mathbb{Z}) \to \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/\mathbb{Z}n, \mathbb{Z}) \to \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/\mathbb{Z}n, \mathbb{Z}/\mathbb{Z}n) \to 0$

obtained by applying the representable functor $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/\mathbb{Z}n, -)$ is not exact at the term $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/\mathbb{Z}n, \mathbb{Z}/\mathbb{Z}n)$.

Aufgabe 3.2. (2+2) A short exact sequence of *R*-modules

$$0 \to X \xrightarrow{f} Y \xrightarrow{g} Z \to 0$$

is said to be *split* if g has a *section*, that is, there is a homomorphism $s : Z \to Y$ with the property that $gs = \mathrm{Id}_Z$.

(i) Show that if the sequence is split, then the mapping

 $\theta: X \oplus Z \to Y, \quad \theta(x, z) = f(x) + s(z)$

is an isomorphism of R-modules.

(ii) Show that the sequence is split \Leftrightarrow for all *R*-modules *M*, the sequence

 $0 \to \operatorname{Hom}_R(M, X) \to \operatorname{Hom}_R(M, Y) \to \operatorname{Hom}_R(M, Z) \to 0$

is exact. [Hint: for \Leftarrow , take M = Z. By a result in the lecture notes, for \Rightarrow one just needs to show that the mapping $\operatorname{Hom}_R(M, Y) \to \operatorname{Hom}_R(M, Z)$ sending ϕ to $g\phi$ is surjective.]

Mehr...

Aufgabe 3.3. (2+2) Recall that if $\phi: S \to R$ is a ring homomorphism, then restriction gives a functor

 $F: R\operatorname{\!-Mod}\nolimits \to S\operatorname{\!-Mod}\nolimits, \quad M \mapsto {}_SM.$

It is easy to see that F is always faithful.

- (i) Show that if ϕ is surjective, then the functor F is full.
- (ii) Show that for the inclusion $\phi : \mathbb{R} \to \mathbb{C}$, the functor F is not full.

Aufgabe 3.4. (4) Suppose we have a diagram of *R*-modules and homomorphisms

in which the rows are exact and the squares commute (that is, $g_i h_i = h_{i+1} f_i$ for i = 1, 2, 3, 4). Show that if h_1, h_2, h_4, h_5 are isomorphisms, then so is h_3 .

[This is called the "Five lemma". You can easily find a proof for it in a book or online, but I hope you can do it on your own.]