Algebra II

3. Übungsblatt

William Crawley-Boevey

Abgabe: Bis zum 03.05.24 um 10:00h im Postfach Ihres Tutors
[Sarah Meier: 129]

Aufgabe 3.1. $(2+1+1)$
(i) Let R be a ring, let $a \in R$ and let M be a left R-module. Show that $\operatorname{Hom}_{R}(R / R a, M)$ is isomorphic as an additive group to the subgroup $\{m \in M: a m=0\}$ of M.
(ii) Suppose $n>0$. Show that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / \mathbb{Z} n, \mathbb{Z})=0$ and $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / \mathbb{Z} n, \mathbb{Z} / \mathbb{Z} n) \cong \mathbb{Z} / \mathbb{Z} n$.
(iii) Let

$$
0 \rightarrow \mathbb{Z} \xrightarrow{f} \mathbb{Z} \xrightarrow{g} \mathbb{Z} / \mathbb{Z} n \rightarrow 0
$$

be the exact sequence, where f is multiplication by n and g is the canonical map. Show that the sequence

$$
0 \rightarrow \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / \mathbb{Z} n, \mathbb{Z}) \rightarrow \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / \mathbb{Z} n, \mathbb{Z}) \rightarrow \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / \mathbb{Z} n, \mathbb{Z} / \mathbb{Z} n) \rightarrow 0
$$

obtained by applying the representable functor $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / \mathbb{Z} n,-)$ is not exact at the term $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z} / \mathbb{Z} n, \mathbb{Z} / \mathbb{Z} n)$.

Aufgabe 3.2. $(2+2) \mathrm{A}$ short exact sequence of R-modules

$$
0 \rightarrow X \xrightarrow{f} Y \xrightarrow{g} Z \rightarrow 0
$$

is said to be split if g has a section, that is, there is a homomorphism $s: Z \rightarrow Y$ with the property that $g s=\operatorname{Id}_{Z}$.
(i) Show that if the sequence is split, then the mapping

$$
\theta: X \oplus Z \rightarrow Y, \quad \theta(x, z)=f(x)+s(z)
$$

is an isomorphism of R-modules.
(ii) Show that the sequence is split \Leftrightarrow for all R-modules M, the sequence

$$
0 \rightarrow \operatorname{Hom}_{R}(M, X) \rightarrow \operatorname{Hom}_{R}(M, Y) \rightarrow \operatorname{Hom}_{R}(M, Z) \rightarrow 0
$$

is exact. [Hint: for \Leftarrow, take $M=Z$. By a result in the lecture notes, for \Rightarrow one just needs to show that the mapping $\operatorname{Hom}_{R}(M, Y) \rightarrow \operatorname{Hom}_{R}(M, Z)$ sending ϕ to $g \phi$ is surjective.]

Aufgabe 3.3. (2+2) Recall that if $\phi: S \rightarrow R$ is a ring homomorphism, then restriction gives a functor

$$
F: R \text {-Mod } \rightarrow S \text {-Mod, } \quad M \mapsto_{S} M .
$$

It is easy to see that F is always faithful.
(i) Show that if ϕ is surjective, then the functor F is full.
(ii) Show that for the inclusion $\phi: \mathbb{R} \rightarrow \mathbb{C}$, the functor F is not full.

Aufgabe 3.4. (4) Suppose we have a diagram of R-modules and homomorphisms

in which the rows are exact and the squares commute (that is, $g_{i} h_{i}=h_{i+1} f_{i}$ for $i=1,2,3,4$). Show that if $h_{1}, h_{2}, h_{4}, h_{5}$ are isomorphisms, then so is h_{3}.
[This is called the "Five lemma". You can easily find a proof for it in a book or online, but I hope you can do it on your own.]

