Algebra II
 4. Übungsblatt

William Crawley-Boevey
Abgabe: Bis zum 10.05.24 um 10:00h im Postfach Ihres Tutors [Sarah Meier: 129]

Aufgabe 4.1. $(2+2)$ Let K be a field. Recall that K-modules are the same thing as vector spaces over K.
(i) Show that if $0 \rightarrow X \rightarrow Y \rightarrow Z \rightarrow 0$ is an exact sequence of finite-dimensional vector spaces over K, then $\operatorname{dim} Y=\operatorname{dim} X+\operatorname{dim} Z$. [Hint: Rank Theorem from Linear Algebra I §5.3]
(ii) Show that if $0 \rightarrow X_{1} \rightarrow X_{2} \rightarrow \cdots \rightarrow X_{n} \rightarrow 0$ is an exact sequence of finite-dimensional vector spaces over K, then

$$
\sum_{i=1}^{n}(-1)^{i} \operatorname{dim} X_{i}=0 .
$$

Aufgabe 4.2. (4) Let I be a set and for each $i \in I$, let M_{i} be an R-module.
Show that $M=\bigoplus_{i \in I} M_{i}$ is finitely generated if and only if the M_{i} are all finitely generated, and all but finitely many of the M_{i} are zero.
[Hint. Use that if $j \in I$, then the projection homomorphism $\bigoplus_{i \in I} M_{i} \rightarrow M_{j}$ is surjective.]

Aufgabe 4.3. $(1+2+1)$ Let R be a ring. An element $e \in R$ is called an idempotent if $e^{2}=e$.
(i) Show that $e \in R$ is idempotent if and only if $1-e$ is idempotent.
(ii) Show that if $e \in R$ is idempotent, then $R=R e \oplus R(1-e)$. Show similarly, that if M is a left R-module, then as an additive group we have a decomposition $M=e M \oplus(1-e) M$.
(iii) Show that if $e \in R$ is idempotent and M is a left R-module, then $\operatorname{Hom}_{R}(R e, M) \cong e M$ as additive groups.

Aufgabe 4.4. $(1+1+1+1)$ Let R be a ring and let I be a left ideal in R. By definition

$$
I^{2}=\left\{a_{1} b_{1}+\cdots+a_{n} b_{n}: n \geq 0, a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in I\right\}
$$

We suppose that $I^{2} \neq 0$ and that I is simple as a left R-module.
(i) Show that if $b \in I$, then $I b=\{x b: x \in I\}$ is a submodule of I.
(ii) Show that there is some $b \in I$ with $I b=I$.
(iii) With b as in (ii), show that the set $N=\{x \in I: x b=0\}$ is a submodule of I and that $N \neq I$. Hence deduce that $N=0$.
(iv) With b as in (ii), show that there is an element $e \in I$ with $e b=b$. By considering $\left(e^{2}-e\right) b$, show that e is an idempotent and that $I=R e$.

