Universität Bielefeld SoSe 2024

Algebra II 10. Übungsblatt

William Crawley-Boevey

Abgabe: Bis zum 21.06.24 um 10:00h im Postfach Ihres Tutors [Sarah Meier: 129]

Aufgabe 10.1. (2+1+1) Let $V = \mathbb{R}^3$ with the standard basis $e_1 = (1,0,0)$, $e_2 = (0,1,0)$, $e_3 = (0,0,1)$. Recall that there is a scalar product

$$V \times V \to \mathbb{R}$$
, $(v, w) \mapsto \langle v, w \rangle = v_1 w_1 + v_2 w_2 + v_3 w_3$

for $v = (v_1, v_2, v_3)$ and $w = (w_1, w_2, w_3)$, and there is a vector product

$$V \times V \to V$$
, $(v, w) \mapsto v \times w = (v_2 w_3 - v_3 w_2, v_3 w_1 - v_1 w_3, v_1 w_2 - v_2 w_1)$.

Let A be the set of expressions of the form

$$a1 + v + wi + bi \in \mathbb{R}1 \oplus V \oplus Vi \oplus \mathbb{R}i$$

where 1, i are symbols, $v, w \in V$ and $a, b \in \mathbb{R}$. We define a multiplication on A by the rules

$$vw = \langle v, w \rangle 1 + (v \times w)i$$

together with $i^2 = -1$, iv = vi and with 1 being a one.

- (i) Show that in the algebra A we have u(vw) = (uv)w for $u, v, w \in V$. (Hint. Use properties of the vector product in the Proposition in §7.2 of Linear Algebra II.)
- (ii) Show that the elements e_1, e_2, e_3 in A satisfy the relations for the Clifford algebra $C(\mathbb{R}^3, q_{(1,1,1)})$, and hence give an algebra homomorphism $\theta: C(\mathbb{R}^3, q_{(1,1,1)}) \to A$. (You may use that A is associative without further proof.)
- (iii) Find the images under θ of the usual basis of $C(\mathbb{R}^3, q_{(1,1,1)})$, and hence show that θ is an isomorphism.

Aufgabe 10.2. (2+2) Let V be a vector space over a field K, let $(v_1, \ldots, v_d) \in V^d$ and consider the element

$$v_1 \wedge \cdots \wedge v_d \in \Lambda^d(V)$$
.

- (i) Show that if the tuple (v_1, \ldots, v_d) is linearly dependent, then $v_1 \wedge \cdots \wedge v_d = 0$. (Hint: if it is linearly dependent, then some v_i is a linear combination of the others.)
- (ii) Show that if the tuple (v_1, \ldots, v_d) is linearly independent, then $v_1 \wedge \cdots \wedge v_d \neq 0$. (You may suppose for simplicity that V is finite-dimensional, though this isn't necessary. Now extend (v_1, \ldots, v_d) to a basis of V.)

Mehr...

Aufgabe 10.3. (2+2) Show the following:

- $(i) \ \mathbb{Q}(\sqrt{2}) \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{2}) \cong \mathbb{Q}(\sqrt{2}) \times \mathbb{Q}(\sqrt{2}).$
- (ii) $\mathbb{Q}(\sqrt{2}) \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{3}) \cong \mathbb{Q}(\sqrt{2}, \sqrt{3})$. (You may use without proof that $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$.)

Aufgabe 10.4. (2+2)

- (i) Let R, S and T be K-algebras. Show that there is an isomorphism of algebras $R \otimes_K (S \times T) \cong (R \otimes_K S) \times (R \otimes_K T)$.
- (ii) Use the theorem about tensor products of Clifford algebras to show that $C(\mathbb{R}^3,q_{(-1,-1,-1)})\cong \mathbb{H}\times \mathbb{H}.$