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I want to cover a number of key topics in the representation theory of finite-
dimensional associative algebras. Specifically:

• Correspondences given by faithfully balanced modules, and applications to
Auslander algebras and homological conjectures. (Originally planned for the
previous semester, but carried over, since there was not enough time.)

• Tilting and tau-tilting theory, including equivalences of derived categories.

• Geometric methods for studying representations of algebras, including rele-
vant facts about varieties and schemes without proofs. (There will be less
time for this than originally planned.)

• If time, possibly preprojective algebras and Kleinian singularities.

Some relevant books:

• I. Assem and F. U. Coelho, Basic representation theory of algebras, Springer
2020.

• I. Assem, D. Simson and A. Skowroński, Elements of the representation the-
ory of associative algebras. Volume 1, Techniques of representation theory,
CUP 2006.

• H. Derksen and J. Weyman, An introduction to quiver representations, Amer-
ican Mathematical Society 2017.

• P. Gabriel and A. V. Roiter, Representations of finite dimensional algebras,
Springer 1977.

• A. Kirillov Jr., Quiver Representations and Quiver Varieties, American Math-
ematical Society 2016.

• A. Skowroński and K. Yamagata, Frobenius algebras 2 Tilted and Hochschild
extension algebras, European Mathematical Society 2017.

The section numbering continues from the previous lecture course.
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4 Homological topics
In this section I want to discuss

- Some of the many homological conjectures for f.d. algebras
- Auslander’s correspondence between algebras A of finite representation type

and algebras B with gl. dimB ≤ 2 ≤ dom. dimB, and Iyama’s generalization of
this with cluster tilting objects.

The unifying feature is what I call endomorphism correspondence for faithfully
balanced modules.

4.1 Higher generation and cogeneration

We are interested in finite-dimensional algebras A over a field K (but most things
generalize easily to Artin algebras).

Except where explicitly stated, all modules are f.d., and we write A-mod for
the category of finite-dimensional left A-modules.

We write D for the duality HomK(−, K) between A-mod and Aop-mod.
Recall that a module class in A-mod is a full subcategory closed under isomor-

phisms, direct sums and direct summands. Given any module M , add(M) is the
smallest module class containing M . It is given by the modules isomorphic to a
direct summand of Mn for some n.

Definition. Given a module M , gen(M) denotes the module class consisting of
quotients of direct sums of copies of M and cogen(M) the module class of submod-
ules of a direct sum of copies of M .

We say M is a generator if gen(M) = A-mod. It is equivalent that A ∈ gen(A),
or that A ∈ add(M). We say M is a cogenerator if cogen(M) = A-mod. It is
equivalent that DA ∈ cogen(M), or DA ∈ add(M).

There are higher versions as follows. Here

Proposition (1). Let M be an A-module and n ≥ 0 and consider M also as a
B-module, where B = EndA(M). For an A-module X, the following are equivalent.

(a) There is an exact sequence

Mn
fn−→Mn−1 → · · · →M0

f0−→ X → 0

with Mi ∈ addM , such that the sequence

HomA(M,Mn−1)→ · · · → HomA(M,M0)→ HomA(M,X)→ 0

is exact (note that this is automatic if M is projective).
(b) The natural map HomA(M,X)⊗B M → X is surjective (in case n = 0) or

an isomorphism (in case n > 0) and TorBi (HomA(M,X),M) = 0 for 0 < i < n.
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Definition. We define genn(M) to be the full subcategory of A-mod given by the
modules X satisfying these conditions. Using condition (b) it is easy to see that it
is a module class. Clearly

add(M) ⊆ · · · ⊆ gen2(M) ⊆ gen1(M) ⊆ gen0(M) = gen(M).

Proof. (a)⇒(b). First note that we may assume that the sequence

HomA(M,Mn)→ HomA(M,Mn−1)→ · · · → HomA(M,M0)→ HomA(M,X)→ 0

is exact. By assumption it is exact except possibly at HomA(M,Mn−1). Recall
from section 1.9, that addM is functorially finite in A-mod. Thus the module
Im(fn) has a right addM -approximation, say f ′ : M ′ → Im(fn). Since it is an
approximation, we can factorize fn = f ′g for some g : Mn → M ′. Thus the map
f ′ has image Im(fn). Thus the sequence

M ′ f ′
−→Mn−1

fn−1−−→ . . .
f1−→M0

f0−→ X → 0

is exact. Also, the sequence

HomA(M,M ′)→ HomA(M,Mn−1)→ · · · → HomA(M,M0)→ HomA(M,X)→ 0

is exact, since any morphism in Hom(M,Mn−1) which is sent to zero in Hom(M,Mn−2)
has image contained in Ker(fn−1) = Im(fn), and hence factors through the approx-
imation f ′. Thus replacing Mn by M ′ and fn by f ′ if necessary, we have the claimed
exactness.

Now we have a commutative diagram

Hom(M,Mn)⊗M −−−→ . . . −−−→ Hom(M,M0)⊗M −−−→ Hom(M,X)⊗M −−−→ 0

ϕn

y ϕ0

y θ

y
Mn

fn−−−→ . . .
f1−−−→ M0

f0−−−→ X −−−→ 0

For any M ′ ∈ addM , the natural map Hom(M,M ′)⊗BM →M ′ is an isomorphism,
since it is for M ′ = M . Thus the ϕi are isomorphisms.

Since ϕ0 and f0 are surjective, so is θ. If n > 0, then since tensor products are
right exact, the part of the diagram below and to the right of Hom(M,M1) ⊗M
has exact rows, so implies that θ is an isomorphism.

Since Mi ∈ add(M), as a right B-module, we have

HomA(M,Mi) ∈ add(HomA(M,M)) = add(BB),

so the exact sequence

HomA(M,Mn)→ HomA(M,Mn−1)→ · · · → HomA(M,M0)→ HomA(M,X)→ 0
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is part of a projective resolution of HomA(M,X) as a right B-module. We can use
it to compute TorBi (HomA(M,X),M) for i < n as the homology of the complex

Hom(M,Mn)⊗B M → · · · → Hom(M,M0)⊗B M → 0.

But by the commutative diagram above, this is isomorphic to the complex

Mn → · · · →M0 → 0

This is exact at Mi for 0 < i < n, giving the Tor vanishing.
(b)⇒(a). Take the start of a projective resolution of HomA(M,X) as a right

B-module, say
Pn

gn−→ · · · → P0
g0−→ HomA(M,X)→ 0

Applying −⊗B M gives a complex, which by the hypotheses is exact:

Mn
fn−→ · · · →M0

f0−→ X → 0,

where Mi = Pi ⊗B M ∈ addM . Applying HomA(M,−) to this, gives a complex

HomA(M,Mn)→ · · · → HomA(M,M0)→ HomA(M,X)→ 0.

Identifying HomA(M,Mi) = HomA(M,Pi ⊗B M) ∼= Pi, we see that this is the
projective resolution we started with, so it is exact. Thus (a) holds.

Remark: if we took the projective resolution to be minimal, then the maps gi
would all be right minimal in the sense of section 1.6. It follows that the maps
fi are right minimal, for otherwise there is a decomposition Mi = M ′

i ⊕M ′′
i with

M ′′
i ̸= 0 and fi(M

′′
i ) = 0. But then we get

Pi
∼= HomA(M,Mi) ∼= HomA(M,M ′

i)⊕ HomA(M,M ′′
i )

and gi is zero on the summand corresponding to HomA(M,M ′′
i ), contradicting the

minimality of gi.

Dually we have the following.

Proposition (2). Let M be an A-module and n ≥ 0 and consider M also as a
B-module, where B = EndA(M). For an A-module X, the following are equivalent.

(a’) There is an exact sequence 0→ X → M0 → · · · → Mn with M i ∈ addM
such that the sequence

Hom(Mn−1,M)→ · · · → Hom(M0,M)→ Hom(X,M)→ 0

is exact (this is automatic if M is injective).
(b’) The natural map X → HomB(HomA(X,M),M) is a monomorphism (in

case n = 0) or an isomorphism (in case n > 0) and ExtiB(HomA(X,M),M) = 0
for 0 < i < n.
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Definition. We define cogenn(M) to be the full subcategory of A-mod given by
the modules X satisfying these conditions. By the second condition it is a module
class. Clearly

add(M) ⊆ · · · ⊆ cogen2(M) ⊆ cogen1(M) ⊆ cogen0(M) = cogen(M).

It is clear from conditions (a) and (a’) that X ∈ cogenn(AM)⇔DX ∈ genn(AopDM).

4.2 Faithfully balanced modules and endomorphism corre-
spondence

Definition. Let M be an A-module, and let B = EndA(M). Then M can be
considered as a B-module, and there is a natural map

A→ EndB(M).

Clearly M is faithful iff this map is injective. We say that M is a balanced A-
module or that M has the double centralizer property if this map is onto, and that
M is faithfully balanced (f.b.) if this map is an isomorphism.

Clearly M is a f.b. A-module iff DM is a f.b. Aop-module.

Lemma. Let M be an A-module.
(i) M is f.b. iff A ∈ cogen1(M) iff DA ∈ gen1(M).
(ii) If M is a generator or cogenerator, it is f.b.

Proof. (i) Apply the second proposition in the last section with X = A and n = 1.
Now M is f.b. iff DM is f.b. iff Aop ∈ cogen1(AopDM) iff DA ∈ gen1(AM).

(ii) If M is a generator, then A ∈ add(M) ⊆ cogen1(M). If M is a cogenerator,
then DM is a generator, so f.b., hence so is M .

Definition. By an f.b. pair we mean a pair (A,M) consisting of an algebra and a
f.b. A-module.

Given an f.b. pair, we construct a new f.b. pair (B,M), its endomorphism
correspondent, where B = EndA(M) and M is considered in the natural way as a
B-module.

Repeating the construction twice, one recovers essentially the original pair.
We say that f.b. pairs (A,M) and (A′,M ′) are equivalent if there is an equiva-

lence A-mod→ A′-mod sending add(M) to add(M ′).

One can show that equivalent pairs have equivalent endomorphism correspon-
dents.
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Theorem. If (A,M) and (B,M) are f.b. pairs which are endomorphism correspon-
dents, then HomA(−,M) and HomB(−,M) give inverse antiequivalences between
cogen1(AM) and cogen1(BM).

Proof. In view of (b’) in the second proposition of the last section, and the sym-
metrical role of A and B, it suffices to show that if X ∈ cogen1(AM), then
HomA(X,M) ∈ cogen1(BM). Take a free presentation of AX, say Am → An →
X → 0. Applying HomA(−,M) gives an exact sequence

0→ HomA(X,M)→Mn →Mm.

Applying HomB(−,M) to this gives

Am → An → HomB(HomA(X,M),M)→ 0

which is isomorphic to the original exact sequence, so exact. Thus HomA(X,M) ∈
cogen1(BM).

Example. Let A be the path algebra of the linear quiver Q = 1 → 2 → 3. We
display its AR quiver below. Let AM be the direct sum of the circled indecompos-
ables.

The endomorphism algebra of AM is

Considering M as a B-module, means to consider it as a representation of this
quiver. The vector space at each vertex is the corresponding indecomposable
A-module. In this example, the indecomposable A-modules are at most one-
dimensional at each vertex of Q. In the following diagram we write i for the
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natural basis element at vertex i of Q. The arrows in the quiver for B corre-
spond to homomorphisms of the indecomposable A-modules, and act on the basis
elements as indicated below.

Thus

Observe that AM has all of the projective A-modules as summands, but not all
injectives, so AM is a generator but not a cogenerator. On the other hand all of
the summands of BM are projective, and one summand is not injective.

Proposition. Let (A,M) and (B,M) be f.b. pairs which are endomorphism cor-
respondents. Then:

(a) AM is a generator iff BM is projective.
(b) AM is a cogenerator iff BM is injective.
(c) A ∈ cogenn(AM) iff ExtiB(M,M) = 0 for 0 < i < n.

Proof. (a) If AM is a generator, then A ∈ add(AM), so BM ∼= HomA(A,M) ∈
add(HomA(M,M)) = add(B), so BM is projective.

Conversely if BM is projective, then BM ∈ add(B), so A ∼= HomB(M,M) ∈
add(HomB(B,M)) = add(AM).

(b) Apply (a) to DM .
(c) Second proposition in last section with X = A.

For (a), see Azumaya, Completely faithful modules and self-injective rings,
Nagoya Math. J. 1966. Also (a) is similar to the Wedderburn correspondence in-
troduced by Auslander, Representation theory of Artin algebras I, Comm. Algebra
1974.

For things similar to (b), see T. Kato, Rings of U-dominant dimension ≥ 1,
Tohoku Math. J. 1969.

(c) is essentially Müller, The classification of algebras by dominant dimension,
Canad. J. Math 1968.

See also:
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B. Ma and J. Sauter, On faithfully balanced modules, F-cotilting and F-Auslander
algebras, Journal of Algebra 2020.

M. Pressland and J. Sauter, On quiver Grassmannians and orbit closures for
gen-finite modules, Algebras and Representation Theory 2022

4.3 Dominant dimension and Auslander correspondence

Definition. Given an algebra A, we take the minimal injective resolution

0→ A→ I0 → I1 → . . .

of the module AA. We say that A has dominant dimension ≥ n if I0, . . . , In−1 are
projective. This defines dom. dimA ∈ {0, 1, 2, . . . } ∪ {∞}.

Recall that an algebra A is QF-3 if it A has a faithful projective-injective
module M . If so, then add(M) = PA ∩ IA, since any indecomposable projective-
injective module embeds in A, so in some Mn, so is in add(M). Thus M is unique,
up to multiplicities, since it is the direct sum of all indecomposable projective-
injective modules, each with some non-zero multiplicity.

Proposition. (i) dom. dimA ≥ 1 iff A is QF-3.
(ii) dom. dimA ≥ 2 iff A has a f.b. projective-injective M .

Proof. (i) If A is QF-3, with faithful projective-injective module M , then there is
an embedding A→Mn, and then the injective envelope of A is a direct summand
of Mn, so it is projective.

(ii) If dom. dimA ≥ 2, there is an exact sequence 0 → A → I0 → I1

with I0, I1 projective-injective. Let M be the direct sum of the indecomposable
projective-injectives, then A ∈ cogen1(M) by condition (a) in the characterization
of cogen1(M). Thus M is f.b.

Conversely suppose A has a f.b. projective-injective M . Since it is f.b., A ∈
cogen1(M). By the characterization of this means that there is an exact sequence

0→ A
θ−→M0 →M1

with M0,M1 ∈ add(M). Moreover by the dual result to the remark at the end
of the proof of (b)⇒(a) in Proposition (1) in the first subsection, we may suppose
that the maps in this exact sequence are left minimal. Now the M i are projective-
injective, so they are injective, so this is the start of the injective resolution of A.
Thus I0 ∼= M0 and I1 ∼= M1 are projective. Thus dom. dimB ≥ 2.

For the following, see C. M. Ringel, Artin algebras of dominant dimension at
least 2, manuscript 2007, available from his Bielefeld homepage.
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Theorem (Morita-Tachikawa correspondence). Endomorphism correspondence gives
a 1:1 correspondence between equivalence classes of pairs (A,M) where AM is a
generator-cogenerator and Morita equivalence classes of algebras B with dom. dimB ≥
2.

The correspondence sends (A,M) to B = EndA(M), and it sends B to A =
EndB(M) where BM is the faithful projective-injective B-module.

Proof. By endomorphism correspondence, the pairs (A,M) are in 1:1 correspon-
dence with f.b. pairs (B,M) with M projective-injective. By the discussion above,
these are in 1:1 correspondence with the Morita equivalence classes of algebras B
with dom. dimB ≥ 2.

The following correspondence comes from Auslander, Representation dimension
of Artin algebras, Queen Mary College Lecture Notes, 1971. See also Auslander,
Representation theory of Artin algebras II, Comm. Algebra 1974.

Theorem (Auslander correspondence). There is a 1-1 correspondence between al-
gebras A of finite representation type up to Morita equivalence and algebras B with
gl. dimB ≤ 2 ≤ dom. dimB up to Morita equivalence.

The correspondence sends A to B = EndA(M) where AM is the direct sum of
all the indecomposable A-modules, and it sends B to A = EndB(M) where BM is
the faithful projective-injective B-module.

The algebra B is called the Auslander algebra of A.

Proof. We show that under endomorphism correspondence, pairs (A,M) where
add(M) = A-mod correspond to pairs (B,M) where gl. dimB ≤ 2 ≤ dom. dimB
and BM is the faithful projective-injective.

Suppose add(M) = A-mod. Given a B-module Z, choose a projective presen-
tation

P1
f−→ P0 → Z → 0.

Applying HomB(−,M) gives an exact sequence

0→ HomB(Z,M)→ HomB(P0,M)
g−→ HomB(P1,M)→ Coker(g)→ 0.

Applying HomA(−,M) we get a commutative diagram with bottom row exact

P1
f−−−→ P0y y

0 −−−→ HomA(Coker(g),M) −−−→ HomA(HomB(P1,M),M) −−−→ HomA(HomB(P0,M),M)

The two vertical maps are isomorphisms, so Ker(f) ∼= HomA(Coker(g),M). Now
Coker(g) is an A-module, so in add(M), so as a B-module, we have

HomA(Coker(g),M) ∈ add(HomA(M,M)) = add(B),
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so it is projective. Thus proj. dimZ ≤ 2. Thus gl. dimB ≤ 2.
Conversely suppose gl. dimB ≤ 2 ≤ dom. dimB. If Y is an A-module, it has a

projective resolution starting

P1 → P0 → Y → 0.

Applying HomA(−,M) we get an exact sequence of B-modules

0→ HomA(Y,M)→ HomA(P0,M)→ HomA(P1,M).

The HomA(Pi,M) are projective B-modules since they are in add(BM), and BM is
projective. Thus, since gl. dimB ≤ 2, by dimension shifting we see that HomA(Y,M)
is a projective B-module. Now BM is injective, so applying HomB(−, BM) gives
an exact sequence

HomB(HomA(P1,M),M)→ HomB(HomA(P1,M),M)→ HomB(HomA(Y,M),M)→ 0.

For any A-module X there is a natural transformation from X to HomB(HomA(X,M),M),
and this is an isomorphism for X projective. We deduce that

Y ∼= HomB(HomA(Y,M),M) ∈ add(HomB(B,M)) = add(AM),

so add(M) = A-mod.

Example. We can check gl. dimB = 2 = dom. dimB for the Auslander algebra of
the linear quiver with three vertices.
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Definition. Let n ≥ 1. A module AM is an n-cluster tilting object if
(i) ExtiA(M,M) = 0 for 0 < i < n
(ii) ExtiA(U,M) = 0 for 0 < i < n implies U ∈ addM
(iii) ExtiA(M,U) = 0 for 0 < i < n implies U ∈ addM

Clearly (ii) implies A ∈ addM and (iii) implies DA ∈ addM , so any n-cto is a
generator-cogenerator.

Observe that M is a 1-cto iff add(M) = A-mod.
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Example. For the algebra with quiver

0→ 1→ 2→ · · · → n

with all paths of length 2 zero, the module S[0] has projective resolution

0→ P [n]→ P [n− 1]→ · · · → P [1]→ P [0]→ S[0]→ 0

so dimExti(S[0], S[j]) = δij. It follows that

M = S[0]⊕ P [0]⊕ · · · ⊕ P [n− 1]⊕ P [n] ∼= I[0]⊕ I[1]⊕ · · · ⊕ I[n]⊕ S[n]

is an n-cto. It’s endomorphism algebra B is the path algebra of the quiver

n→ · · · → 1→ 0→ ∗

with all paths of length 2 zero. It has global dimension n + 1. The projectives
P [n], . . . , P [0] are injective, and P [∗] has injective resolution

0→ P [∗]→ I[∗]→ I[0]→ · · · → I[n− 1]→ I[n]→ 0.

Now I[∗] ∼= P [0], I[0] ∼= P [1], . . . , I[n−1] ∼= P [n] and I[n] ∼= S[n] is not projective,
so dom. dimB = n+ 1.

The following generalization of Auslander correspondence is due to Iyama, Aus-
lander correspondence, Advances in Math. 2007.

Theorem (Iyama). There is a 1:1 correspondence between equivalence classes of
pairs (A,M) where AM is an n-cto and Morita equivalence classes of algebras B
with gl. dimB ≤ n+ 1 ≤ dom. dimB.

Proof. (To be omitted.) We are in the setting of Morita-Tachikawa correspon-
dence.

Now ExtiA(M,M) = 0 for 1 < i < n corresponds to B ∈ cogenn(BM), and since
BM is the faithful projective-injective, this corresponds to dom. dimB ≥ n+ 1.

Suppose gl. dimB ≤ n+ 1.
We show that if ExtiA(U,M) = 0 for 0 < i < n then U ∈ addM . Take the start

of a projective resolution of U , say

Pn → · · · → P0 → U → 0.

Applying HomA(−,M) gives a complex

0→ HomA(U,M)→ HomA(P0,M)→ · · · → HomA(Pn,M)
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which is exact because the Exts vanish. Since BM is injective, applying HomB(−,M)
gives an exact sequence

HomB(HomA(Pn,M),M)→ · · · → HomB(HomA(P0,M),M)→ HomB(HomA(U,M),M)→ 0.

Now the maps Pi → HomB(HomA(Pi,M),M) are isomorphisms since Pi ∈ addM .
Thus the map U → HomB(HomA(U,M),M) is an iso (so U ∈ cogen1(AM)). Also
HomA(Pi,M) ∈ add(HomA(A,M)) = add(BM). Thus, since gl. dimB ≤ n + 1,
the B-module HomA(U,M) must be projective, so it is in add(BB), and then
U ∼= HomB(HomA(U,M),M) ∈ add(HomB(B,M)) = add(AM).

Next we show that if ExtiA(M,U) = 0 for 0 < i < n then U ∈ addM . Take the
start of an injective resolution of U , say

0→ U → I0 → · · · → In.

Applying HomA(M,−) gives a complex

0→ HomA(M,U)→ HomA(M, I0)→ · · · → HomA(M, In)

which is exact because the Exts vanish. Since BM is projective, applying −⊗B M
gives an exact sequence

0→ HomA(M,U)⊗B M → HomA(M, I0)⊗B M → · · · → HomA(M, In)⊗B M.

Now the maps I i → HomA(M, I i)⊗B M are isomorphisms since I i ∈ addM . Thus
the map U → HomA(M,U)⊗BM is an iso. Also HomA(M, I i) ∈ add(HomA(M,M)) =
add(BB). Thus, since gl. dimB ≤ n+1, the right B-module HomA(M,U) must be
projective, so it is in add(BB), and then U ∼= HomA(M,U)⊗BM ∈ add(B⊗BM) =
add(AM).

Now suppose that M is an n-cto. Given a B-module Z, choose a projective
presentation

P1
f−→ P0 → Z → 0.

Applying HomB(−,M) gives an exact sequence

0→ HomB(Z,M)→ HomB(P0,M)
g−→ HomB(P1,M)→ Coker(g)→ 0.

Let C0 = Coker(g). Applying HomA(−,M) we get a commutative diagram with
bottom row exact

P1
f−−−→ P0y y

0 −−−→ HomA(C
0,M) −−−→ HomA(HomB(P1,M),M) −−−→ HomA(HomB(P0,M),M)
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The two vertical maps are isomorphisms, so Ker(f) ∼= HomA(C
0,M).

Now since M is a cogenerator, by repeatedly taking left M -approximations we
can get an exact sequence

0→ C0 →M0 → · · · →Mn−2

such that the sequence

HomA(M
n−2,M)→ · · · → HomA(M

0,M)→ HomA(C
0,M)→ 0

is exact. Let Ci be the cosyzygies for this sequence, so

0→ Ci →M i → Ci+1 → 0.

Then

Hom(M i,M) ↠ Hom(Ci,M)→ Ext1(Ci+1,M)→ Ext1(M i,M) = 0→ . . . ,

so by dimension shifting

Extn−1(Cn−1,M) ∼= Extn−2(Cn−1,M) ∼= . . . ∼= Ext1(C1,M) = 0

and similarly Exti(Cn−1,M) = 0 for 0 < i < n. Thus Cn−1 ∈ addM . Thus Z has
projective resolution

0→ HomA(C
n−1,M)→ HomA(M

n−2,M)→ · · · → HomA(M
0,M)→ P1 → P0 → Z → 0.

Thus proj. dimZ ≤ n+ 1. Thus gl. dimB ≤ n+ 1.

4.4 Homological conjectures for f.d. algebras

Let 0 → A → I0 → I1 → . . . be the minimal injective resolution of a f.d. algebra
A. Recall that A has dominant dimension ≥ n if I0, . . . , In−1 are all projective.

Conjecture (Nakayama conjecture 1958). If all In are projective, i.e. dom. dimA =
∞, then A is self-injective.

Proposition. The following are equivalent.
(i) The Nakayama conjecture (if dom. dimB =∞ then B is self-injective).
(ii) If AM is a generator-cogenerator and ExtiA(M,M) = 0 for all i > 0 then M
is projective.
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Proof. (i) implies (ii). Say AM satisfies the hypotheses. Let (B,M) be the endo-
morphism correspondent. Then BM is projective-injective and B ∈ cogenn(M) for
all n. Thus for all n there is an exact sequence

0→ B → I0 → · · · → In

with the I i projective-injective. Thus dom. dimB = ∞. Thus B is self-injective,
so add(M) = add(B), so BM is a generator, so AM is projective.

(ii) implies (i). Say dom. dimB = ∞. Thus B is QF-3 and let BM be the
faithful projective-injective module. Let AM be the endomorphism correspondent.
It is a generator-cogenerator. Then B ∈ cogenn(M) for all n, so ExtiA(M,M) = 0
for all i > 0. Thus by (ii), AM is projective, so BM is a generator. Thus B ∈
add(M) is injective.

Conjecture (Generalized Nakayama conjecture, Auslander and Reiten 1975). For
any f.d. algebra A, every indecomposable injective occur as a summand of some In.

It clearly implies the Nakayama conjecture, for if the In are projective, and
each indecomposable injective occurs as a summand of some In, then the indecom-
posable injectives are projective.

Example. For the commutative square, vertices 1(source),2,3,4(sink). There are
injective resolutions

0→P [1]→ I[4]→ 0,

0→P [2]→ I[4]→ I[3]→ 0,

0→P [3]→ I[4]→ I[2]→ 0,

0→P [4]→ I[4]→ I[2]⊕ I[3]→ I[1]→ 0,

so
0→ A→ I[4]4 → I[2]2 ⊕ I[3]2 → I[1]→ 0,

so all indecomposable injectives occur.

Proposition. The following are equivalent.
(i) The generalized Nakayama conjecture (every indecomposable injective occurs as
a summand of some I i in the minimal injective resolution of B).
(ii) If AM is a cogenerator and ExtiA(M,M) = 0 for all i > 0 then M is injective.

Proof. (i) implies (ii). Suppose AM satisfies the conditions. Then there is corre-
sponding BM which is injective, and B ∈ cogenn(M) for all n. Thus by (i) every
indecomposable injective is a summand of BM . Thus BM is a cogenerator. Thus
AM is injective.
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(ii) implies (i). Let BM be the sum of all indecomposable injectives occuring in
the I i. Then B ∈ cogenn(M) for all n. Let AM be the endomorphism correspon-
dent. Then AM is a cogenerator and ExtiA(M,M) = 0 for all i > 0. Thus by (ii)
AM is injective. Thus BM is a cogenerator. Thus all indecomposable injectives
occur as a summand of BM .

For the next conjecture, see Happel, Selforthogonal modules, 1995.

Conjecture (Boundedness Conjecture). If M is an A-module with ExtiA(M,M) =
0 for all i > 0 then #M ≤ #A, where #M denotes the number of non-isomorphic
indecomposable summands of M .

Since a cogenerator has all indecomposable injectives as summands, the bound-
edness conjecture implies the generalized Nakayama conjecture.

Definition. An algebra A is (Iwanaga) Gorenstein if both inj. dim AA < ∞ and
inj. dimAA <∞.

In Auslander and Reiten, Applications of contravariantly finite subcategories,
Adv. Math 1991, one finds:

Conjecture (Gorenstein Symmetry Conjecture). If one of inj. dim AA and inj. dimAA

is finite, so is the other.

Lemma. (i) If inj. dim AA = n <∞, any A-module has proj. dimM ≤ n or ∞.
(ii) If inj. dim AA = n and inj. dimAA = m are both finite, they are equal.

For example, by (i) every non-projective module for a self-injective algebra has
infinite projective dimension.

Proof. (i) Say proj. dimM = i < ∞. There is some N with Exti(M,N) ̸= 0.
Choose 0 → L → P → N → 0 with P projective. The long exact sequence for
Hom(M,−) gives

· · · → Exti(M,P )→ Exti(M,N)→ Exti+1(M,L)→ . . .

Now Exti+1(M,L) = 0, so Exti(M,P ) ̸= 0, so Exti(M,A) ̸= 0, so i ≤ n.
(ii) proj. dim ADA = inj. dimAA = m, so m ≤ n by (i). Dually m ≥ n.

This also holds for noetherian rings, see Zaks, Injective dimension of semi-
primary rings, J. Alg. 1969.

For the following, see H. Bass, Finitistic dimension and a homological general-
ization of semiprimary rings, Trans. Amer. Math. Soc. 1960.
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Conjecture (Finitistic Dimension Conjecture). For any f.d. algebra A,

fin. dimA = sup{proj. dimM | proj. dimM <∞}

is finite.

For example if A is Gorenstein, with inj. dim AA = n = inj. dimAA, then
fin. dimA = n. For the lemma implies that any A-module M has proj. dimM ≤ n
or ∞, and proj. dimD(AA) = n.

Note that fin. dimA is not necessarily the same as the maximum of the projec-
tive dimensions of the simple modules of finite projective dimension.

There is also a big finitistic dimension, where the modules need not be finite-
dimensional, and this may also always be finite.

Proposition. The finitistic dimension conjecture implies the Gorenstein symmetry
conjecture.

Proof. Assuming inj. dimAA = n < ∞, we want to prove that inj. dim AA < ∞.
We have proj. dim ADA = n < ∞. Thus any injective module has projective
dimension < ∞. Take a minimal injective resolution 0 → AA → I0 → . . . . We
show by induction on i that proj. dimΩiA <∞. There is an exact sequence

0→ Ωi−1A→ I i−1 → ΩiA→ 0.

Applying HomA(−, X) for a module X gives a long exact sequence

· · · → Extm(Ωi−1A,X)→ Extm+1(ΩiA,X)→ Extm+1(I i−1, X)→ . . .

For m sufficiently large, independent of X, the outside terms are zero, hence so is
the middle.

Let i > 0. If ΩiA = 0, or is injective, then inj. dim AA < ∞, as desired, so
suppose otherwise. Let f : ΩiA → I i be the inclusion. Then f belongs to the
middle term in the complex

Hom(ΩiA, I i−1)→ Hom(ΩiA, I i)→ Hom(ΩiA, I i+1)

and it is sent to zero in the third term. Now f is not in the image of the map
from the first term, for otherwise the map I i−1 → ΩiA is a split epimorphism,
so ΩiA is injective. Thus the homology of this complex at the middle term is
non-zero. Thus Exti(ΩiA,A) ̸= 0. Thus proj. dimΩiA ≥ i. This contradicts that
fin. dimA <∞.

Proposition. The finitistic dimension conjecture implies the generalized Nakayama
conjecture.
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Proof. Assume the FDC. We show that if AM is a module and Extn(M,A) = 0
for all n ≥ 0 then M = 0 (the strong Nakayama conjecture).

If S[i] is a simple A-module and I[i] is its injective envelope, recall from section
1.10, that dimExtn(S[i], A) is dimEnd(S[i]) times the multiplicity of I[i] as a direct
summand of In. Thus taking M = S[i], the strong Nakayama conjecture gives the
generalized Nakayama conjecture.

Take a minimal projective resolution → P1 → P0 → M → 0. By assumption
the sequence

0→ HomA(P0, A)
f0−→ HomA(P1, A)

f1−→ Hom(P2, A)→ . . .

of right A-modules is exact. Let fin. dimAop = n < ∞. Then Coker(fn) has
projective resolution

0→ HomA(P0, A)
f0−→ HomA(P1, A)→ · · · → HomA(Pn+1, A)→ Coker(fn)→ 0

so it has finite projective dimension, so projective dimension ≤ n, so by dimension
shifting Im f1 is projective, so f0 must be a split mono. But HomA(−, A) is an
antiequivalence from PA to PAop . Thus the map P1 → P0 must be a split epi, so
M = 0.

4.5 No loops conjecture

It is nice to see that some homological conjecture has been proved. In this section
we do not assume that K is algebraically closed, but we do assume that A = KQ/I
with I admissible. The following conjecture was proved by Igusa, Notes on the no
loops conjecture, J. Pure Appl. Algebra 1990.

Theorem (No loops conjecture). If gl. dimA < ∞ then Q has no loops (that is,
Ext1(S[i], S[i]) = 0 for all i).

Proof. We use the trace function of Hattori and Stallings. I only sketch the proof
of its properties.

(1) For any matrix θ ∈ Mn(A) we consider its trace tr(θ) ∈ A/[A,A], where
[A,A] is the subspace of A spanned by the commutators ab− ba. This ensures that
tr(θϕ) = tr(ϕθ). This equality holds also for θ ∈Mm×n(A) and ϕ ∈Mn×m(A).

(2) If P is a f.g. projective A-module it is a direct summand of a f.g. free module
F = An. Let p : F → P and i : P → F be the projection and inclusion. One
defines tr(θ) for θ ∈ End(P ) to be tr(iθp). This is well defined, for if

An = F
p−→
←−

i

P
i′−→
←−
p′

F ′ = Am

17



with pi = 1P = p′i′, then tr(iθp) = tr((ip′)(i′θp)) = tr((i′θp)(ip′)) = tr(i′θp′).
(3) Any module M has a finite projective resolution P∗ → M , and an endo-

morphism θ of M lifts to a map between the projective resolutions

0 −−−→ Pn −−−→ . . . −−−→ P1 −−−→ P0 −−−→ M −−−→ 0

θn

y θ1

y θ0

y θ

y
0 −−−→ Pn −−−→ . . . −−−→ P1 −−−→ P0 −−−→ M −−−→ 0.

Define tr(θ) =
∑

i(−1)i tr(θi). One can show that does not depend on the pro-
jective resolution or the lift of θ, see section 4 of Lenzing, Nilpotente Elemente in
Ringen von endlicher globaler Dimension, Math. Z. 1969.

(4) One can show that given a commutative diagram with exact rows

0 −−−→ M ′ −−−→ M −−−→ M ′′ −−−→ 0

θ′

y θ

y θ′′

y
0 −−−→ M ′ −−−→ M −−−→ M ′′ −−−→ 0

one has tr(θ) = tr(θ′) + tr(θ′′).
(5) It follows that any nilpotent endomorphism has trace 0, since

0 −−−→ Im θ −−−→ M −−−→ M/ Im θ −−−→ 0

θ|Im θ

y θ

y 0

y
0 −−−→ Im θ −−−→ M −−−→ M/ Im θ −−−→ 0

so tr(θ) = tr(θ|Im θ) = tr(θ|Im(θ2)) = · · · = 0.
(6) Thus any element of J(A) as a map A→ A has trace 0, so J(A) ⊆ [A,A].

Thus (KQ)+ ⊆ I + [KQ,KQ].
(7) Any loop of Q gives an element of (KQ)+. But it is easy to see that

I + [KQ,KQ] ⊆ span of arrows which are not loops + (KQ)2+,

for example if p, q are paths then [p, q] ∈ (KQ)2+ unless they are trivial paths or
one is trivial and the other is an arrow. Thus there are no loops.

A strengthening (proved by Igusa, Liu and Paquette, A proof of the strong no
loop conjecture, Adv. Math. 2011). If S is a 1-dimensional simple module for a
f.d. algebra and S has finite injective or projective dimension, then Ext1(S, S) = 0.

An open problem (stated by Liu and Morin, The strong no loop conjecture for
special biserial algebras, Proc. Amer. Math. Soc. 2004). The extension conjecture:
if S is simple module for a f.d. algebra and Ext1(S, S) ̸= 0 then Extn(S, S) ̸= 0 for
infinitely many n.
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5 Tilting theory
In order to give their proof of Gabriel’s theorem, Bernstein, Gelfand and Pono-
marev introduced some reflection functors.

If Q is a quiver and i is a sink (no arrows out), so that P [i] = S[i], let Q′ be
the quiver obtained by reversing all arrows incident at i. Then reflection functors
are functors

KQ-mod −→←− KQ′-mod

sending a representation X of Q to the representation X ′ of Q′ which is the same,
except that

X ′
i = Ker(

⊕
a:j→i

Xj → Xi)

and the linear map X ′
i → Xj is the canonical map.

This gives an equivalence between the module classes in KQ-mod and KQ′-mod
given by the modules with no summand S[i]. For example.

Brenner and Butler generalized this with the notion of a tilting module. Let A
be an algebra. An A-module T is a tilting module if

- proj. dimT ≤ 1.
- Ext1A(T, T ) = 0.
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- #T = #A, the number of non-isomorphic summands of T is the number of
simple A-modules.

Let B = EndA(T )
op, so T becomes an A-B-bimodule. The Brenner-Butler

theorem gives equivalences between the following parts of the module categories
(C = B in the picture).

5.1 Torsion theories and tau-rigid modules

The notion of a torsion theory comes from Dickson, A torsion theory for abelian
categories, Trans. Amer. Math. Soc. 1966.

Definition. A torsion theory in an abelian categoryA is a pair of full subcategories
(T ,F), the torsion and torsion-free classes, such that
(i) Hom(T ,F) = 0.
(ii) Any object X has a subobject tT X ∈ T with X/tT X ∈ F (so it fits in an exact
sequence 0→ tT X → X → X/tT X → 0 with first term in T and last term in F).

Examples. (1) The torsion and torsion-free modules give a torsion theory in the
category of Z-modules.

(2) For A the path algebra of the quiver 1 → 2, A-mod has torsion theory
(addS[2], addS[1]).

Notation. For an a set C of modules in A-mod or more generally of objects in an
abelian category

C⊥i,j,... = {X : Extn(M,X) = 0 for all M ∈ C and n = i, j, . . . },

⊥i,j,...C = {X : Extn(X,M) = 0 for all M ∈ C and n = i, j, . . . }.

Recall that Ext0 = Hom.

20



Properties. Let (T ,F) be a torsion theory.
(i) T = ⊥0F and F = T ⊥0 so either of the classes determines the other.
(ii) T is closed under quotients and extensions; F is closed under subobjects

and extensions.
(iii) The subobject tT X is uniquely determined, and the assignment sending

X to tT X defines a functor A → T which is a right adjoint to the inclusion T in
A. The assignment sending X to X/tT X defines a functor A → F which is a left
adjoint to the inclusion F in A.

Proof. (i) If X ∈ T ⊥0, then Hom(T , X) = 0, so we must have tT X = 0, so X ∼=
X/tT X ∈ F . If X ∈ ⊥0F , then Hom(X,F) = 0, so we must have X = tT X ∈ T .

For (ii), for T given an exact sequence 0→ X → Y → Z → 0, apply Hom(−, F )
for F ∈ F to get an exact sequence

0→ Hom(Z, F )→ Hom(Y, F )→ Hom(X,F ).

Now if X,Z ∈ T , then Hom(X,F ) = Hom(Z, F ) = 0, so Hom(Y, F ) = 0, so
Y ∈ T . Also, if Y ∈ T , then Hom(Y, F ) = 0, so Hom(Z, F ) = 0, so Z ∈ T .

For (iii) observe that any map θ : X → Y induces a map tT X → tT Y since the
composition tT X → X → Y → Y/tT Y must be zero.

Remark. A splitting torsion theory is one in which the sequence 0 → tT X →
X → X/tT X → 0 is always split exact.

If A is a f.d. algebra, a torsion theory in A-mod is splitting if and only if every
indecomposable module is either torsion or torsion-free.

A splitting torsion theory is thus given by a partition of the indecomposable
modules into two sets T, F with Hom(T, F ) = 0. Then (addT, addF ) is a splitting
torsion theory in A-mod.

This is very easy to do if A is an algebra whose AR quiver is obtained by
knitting, so A is of finite representation type and all of its indecomposable modules
are directing. We want there to be no irreducible maps from T to F .

Proposition. If A is a f.d. algebra, for a module class T in A-mod the following
are equivalent.

(i) T is a torsion class for some torsion theory in A-mod.
(ii) T = ⊥0(T ⊥0).
(iii) T = ⊥0C for some module class C.
(iv) T is closed under quotients and extensions.

Proof. (i) implies (ii) implies (iii) implies (iv). Straightforward.
(iv) implies (i). Define F = T ⊥0. Given any module X, let T be a submodule

of X in T of maximal dimension. Then Hom(T , X/T ) = 0, for if T ′/T is the image
of such a map, then T ′/T is in T , hence so is T ′, contradicting maximality. Thus
X/T ∈ F .
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Thus a pair of module classes (T ,F) is a torsion theory in A-mod if and only
if T = ⊥0F and F = T ⊥0.

Lemma (Auslander-Smalø, 1981). For modules M,N , the following are equivalent:
(i) Hom(N, τM) = 0.
(ii) Ext1(M, genN) = 0 (that is, Ext1(M,G) = 0 for all G ∈ genN).

Proof. (i)⇒(ii). If Hom(N, τM) = 0, then Hom(G, τM) = 0 for all G ∈ genN),
so Hom(G, τM) = 0, so Ext1(M,G) = 0 by the Auslander-Reiten formula.

(ii)⇒(i). Say f : N → τM is a non-zero map. Factorize it as a surjection
g : N → G followed by a mono h : G → τM . Suppose that h factors through an
injective. Then it factors through the injective envelope E(G) of G. Since τM has
no injective summand, the induced map E(G) → τM cannot be injective, so its
kernel is non-zero. Since G is essential in E(G), the kernel meets G. Thus G→ τM
has non-zero kernel. Contradiction. Thus Hom(G, τM) ̸= 0, so Ext1(M,G) ̸=
0.

Definition. Given a module class C in A-mod and X ∈ C, we say that
(i) X is Ext-projective in C if Ext1(X, C) = 0.
(ii) X is Ext-injective in C if Ext1(C, X) = 0.

Lemma. If (T ,F) is a torsion theory in A-mod, then
(i) X ∈ T is Ext-projective for T iff τX ∈ F .
(ii) X ∈ F is Ext-injective for F iff τ−X ∈ T .
(iii) There are bijections

Non-proj indec Ext-projs in T up to iso
τ−→
←−
τ−

Non-inj indec Ext-injs in F up to iso

Proof. (i) Say X ∈ T . Then τX ∈ F ⇔ Hom(T, τX) = 0 for all T ∈ T ⇔
Ext1(X, genT ) = 0 for all T ∈ T ⇔ X is Ext-projective.

(ii) is dual.
(iii) follows.

Lemma. If (T ,F) is a torsion theory in A-mod, then
(i) The Ext-injectives for T are the modules tT I with I injective. The indecom-

posable Ext-injectives are the modules tT I[i] with I[i] /∈ F .
(ii) The Ext-projectives for F are the modules P/tT P with P projective. The

indecomposable Ext-projectives are the modules P [i]/tT P [i] with P [i] /∈ T .

Proof. (i) tT I is in T , and it is Ext-injective since if T ∈ T and 0→ tT I → E →
T → 0 is an exact sequence, then the pushout along tT I → I splits, giving a map
E → I. But E ∈ T , so it gives a map E → tT I, which is a retraction for the given
sequence.
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Conversely suppose X is Ext-injective in T and X → I is its injective envelope.
Then we have an injection X → tT I. Since T is closed under quotients, all terms
in the exact sequence 0 → X → tT I → tT I/X → 0 are in T . Thus this sequence
splits, so X is a direct summand of tT I, and we have equality since X is essential
in I.

Also, if I[i] /∈ F , then tT I[i] is non-zero and contained in I[i], so it has simple
socle, so it is indecomposable.

(ii) is dual.

The following definition comes from Adachi, Iyama and Reiten, τ -tilting theory,
2014.

Definition. A module M is τ -rigid if Hom(M, τM) = 0. Dually, it is τ−-rigid if
Hom(τ−M,M) = 0

Note that M is τ -rigid iff DM is τ−-rigid, since

Hom(M, τM) = Hom(M,DTrM) ∼= Hom(TrM,DM)

∼= Hom(TrDDM,DM) = Hom(τ−DM,DM).

Proposition. The following are equivalent
(i) M is τ -rigid.
(ii) Ext1(M, genM) = 0.
(iii) genM is a torsion class and M is Ext-projective in genM .
(iv) M is Ext-projective in some torsion class.

Proof. (i)⇔(ii). The lemma of Auslander and Smalø.
(ii)⇒(iii). Suppose M is τ -rigid. To show that genM is a torsion class, it

suffices to show that if 0→ X → Y → Z → 0 is exact and X,Z ∈ genM , then so
is Y . Choose a surjection Mn → Z. By (ii) The pullback sequence splits, so the
middle term of it is in genM , and hence so is Y . Now Ext1(M, genM) = 0, so M
is Ext-projective.

(iii)⇒(iv). Trivial.
(iv)⇒(ii). If M is Ext-projective in T , then Ext1(M, genM) = 0 since genM ⊆

T .

Note that the torsion theory given by a τ -rigid module M is (genM,M⊥0).

Example. Let A be the path algebra of 1→ 2→ 3. Let M = 2⊕123. It is τ -rigid.
Then T = genM contains 123, 12, 2, 1. The torsion-free class is F = T ⊥0 = M⊥0.
It contains 3 and 23.

The Ext-projectives in T are 2, 12, 123.
The Ext-injectives in T are 1, 12, 123.
The Ext-projectives in F are 3, 23.
The Ext-injectives in F are 3, 23.

23



The next result is dual to Theorem 4.1(c) of Auslander and Smalø, Almost split
sequences in subcategories, J. Algebra 1981.

Theorem. Let T be a torsion class which is functorially finite and let

A
f−→M0 c−→M1 → 0

be an exact sequence with f be a minimal left T -approximation of A. Then
(i) T = genM0 = gen(M0 ⊕M1).
(ii) M0 is a splitting projective for T , meaning that any epimorphism θ : T ↠

M0 with T ∈ T must be a split epi.
(iii) M0 and M0 ⊕M1 are Ext-projective in T , so they are τ -rigid.
(iv) Any module T ∈ T is a quotient of a module in add(M0 ⊕ M1) by a

submodule in T .
(v) Any Ext-projective in T is in add(M0⊕M1), so there are only finitely many

indecomposable Ext-projectives in T .

Proof. (i) Clearly genM0 = gen(M0 ⊕M1) ⊆ T . If T ∈ T , then there is a map
An ↠ T , and each component factors through M , giving an epimorphism Mn ↠ T .

(ii) Since A is projective, the map f : A → M0 lifts to a map A → T . By
the approximation property, this factors as A → M0 → T . Now the composition
M0 → T →M0 must be an isomorphism by minimality.

(iii) Let T ∈ T . Any exact sequence 0 → T → E → M0 → 0 splits by (ii).
Thus M0 is Ext-projective.

Since f is a T -approximation, the induced map Hom(M0, T ) → Hom(A, T ) is
surjective. This is a composition Hom(M0, T )→ Hom(Im f, T )→ Hom(A, T ) and
the second map is injective, so actually the second map is a bijection and the first
map Hom(M0, T )→ Hom(Im f, T ) is surjective.

Now the exact sequence 0→ Im f
i−→M0 c−→M1 → 0 gives

Hom(M0, T )→ Hom(Im f, T )→ Ext1(M1, T )→ Ext1(M0, T ) = 0.

so Ext1(M1, T ) = 0.
(iv) (My thanks to Andrew Hubery for this argument). Take a right add(M0⊕

M1)-approximation ϕ : W → T for T . Since T ∈ genM0, the map ϕ is surjective,
so it gives an exact sequence

0→ U
θ−→ W

ϕ−→ T → 0.

Given u ∈ U there is a map r : A → U , a 7→ au. Since A → M0 is a T -
approximation and W ∈ T , there is a map p, and hence a map q giving a commu-
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tative diagram

A
f−−−→ M0 c−−−→ M1 −−−→ 0

r

y p

y q

y
0 −−−→ U

θ−−−→ W
ϕ−−−→ T −−−→ 0.

Since ϕ is an approximation, q = ϕh for some h : M1 → W . Then ϕ(p− hc) = 0.
Thus p − hc = θℓ for some ℓ : M0 → U . Then θ(r − ℓf) = 0, so since θ is mono,
r = ℓf . Thus u ∈ Im(ℓ). Repeating for a basis of U , we get a map from a direct
sum of copies of M onto U , so U ∈ T .

(v) Follows.

End of lecture on 2025-10-30. Provisional script for the next
lecture follows (subject to change).

Corollary. If M is a τ -rigid module, then genM is a functorially finite torsion
class. Conversely, any functorially finite torsion class T is of the form genM for
some τ -rigid module M , which we can take to be the direct sum of the indecompos-
able Ext-projectives in T .

Proof. Any torsion class in A-mod is contravariantly finite, since the inclusion has
a right adjoint. Recall also that if M is a module, then genM is always covariantly
finite by the proposition at the end of section 1.9. In particular, if M is τ -rigid,
then genM is a functorially finite torsion class.

The last part follows from the theorem, since up to multiplicities, M0 ⊕M1 is
the direct sum of the indecomposable Ext-projectives in T .

5.2 Tilting modules

Definition. Let M be an A-module.
M is a partial tilting module if proj. dimM ≤ 1 and Ext1(M,M) = 0.
A partial tilting module M is a tilting module if there is an exact sequence

0 → A → M0 → M1 → 0 with M i ∈ addM . (Later we will see that it is
equivalent that #M = #A.)

M is a partial cotilting module if inj. dimM ≤ 1 and Ext1(M,M) = 0.
A partial cotilting module is a cotilting module if there is an exact sequence

0 → M1 → M0 → DA → 0 with Mi ∈ addM . (Again, it is equivalent that
#M = #A.)

Clearly M is a (partial) tilting A-module iff DM is a (partial) cotilting Aop-
module.
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Note that we deal only with classical tilting theory. There is a version allowing
higher projective dimension.

Lemma. If M is a partial tilting module, then M is τ -rigid. Conversely if M is τ -
rigid, then Ext1(M,M) = 0, and if M is in addition faithful, then proj. dimM ≤ 1
so it is a partial tilting module.

Proof. Use the AR formula DExt1(M,N) ∼= Hom(N, τM).
If proj. dimM ≤ 1 then Hom(DA, τM) = 0, so the AR formula takes the form

DExt1(M,N) ∼= Hom(N, τM).
Suppose M is τ -rigid. If M is faithful, then so is DM , so Aop ↪→ DMn,

for some n, so Mn ↠ DA. Applying Hom(−, τM) we get Hom(DA, τM) ↪→
Hom(Mn, τM) = 0. Thus Hom(DA, τM) = 0, so proj. dimM ≤ 1.

Proposition (Bongartz). Let M be a partial tilting module. Take a basis of
ξ1, . . . , ξn of Ext1(M,A), consider the tuple (ξ1, . . . , ξn) as an element of Ext1(Mn, A),
and let

0→ A→ E →Mn → 0.

be the corresponding universal extension. Then T = E ⊕M is a tilting module.
Thus every partial tilting module is a direct summand of a tilting module, and by
duality every partial cotilting module is a direct summand of a cotilting module.

Proof. The long exact sequence for Hom(M,−) gives

Hom(M,Mn)
ξ−→ Ext1(M,A)→ Ext1(M,E)→ Ext1(M,Mn),

the map ξ is onto, and Ext1(M,Mn) = 0, so Ext1(M,E) = 0. From the long exact
sequence for Hom(−,M) one gets Ext1(E,M) = 0, from the long exact sequence
for Hom(−, E) one gets Ext1(E,E) = 0. Also A and Mn have projective dimension
≤ 1, hence so does E.

A partial tilting module M is τ -rigid, so gives a torsion theory (genM,M⊥0).
Moreover gen1M ⊆ genM ⊆M⊥1.

Proposition (1). For a partial tilting module M , the following are equivalent:
(i) M is a tilting module.
(ii) M⊥0,1 = 0.
(iii) genM = M⊥1.
(iv) gen1M = M⊥1.
(v) X is Ext-projective in M⊥1 ⇔ X ∈ addM .
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Proof. (i)⇒ (ii). If X ∈M⊥0,1, apply Hom(−, X) to the exact sequence 0→ A→
M0 →M1 → 0, to deduce that Hom(A,X) = 0.

(ii) ⇒ (iii). Suppose X ∈M⊥1. Take a basis of Hom(M,X) and use it to form
the universal map f : Mn → X. Then Im f ∈ genM . Consider the exact sequence
0→ Im f → X → X/ Im f → 0. Apply Hom(M,−) giving an exact sequence

0→ Hom(M, Im f)→ Hom(M,X)→ Hom(M,X/ Im f)→ Ext1(M, Im f).

By construction the map Hom(M,Mn)→ Hom(M,X) is onto, hence so is the map
Hom(M, Im f) → Hom(M,X). Also Ext1(M, Im f) = 0 since M is τ -rigid. Thus
Hom(M,X/ Im f) = 0. Also Ext1(M,X/ Im f) = 0. Thus X/ Im f ∈ M⊥0,1. Thus
X/ Im f = 0, so f is onto, so X ∈ genM .

(iii) ⇒ (iv). Suppose X ∈ M⊥1. Then it is in genM . Let L be the kernel of
the universal map Mn → X. Then applying Hom(M,−) we see that L ∈M⊥1, so
L ∈ genM . Say M ′′ ↠ L. Now the sequence M ′′ → Mn → X → 0 shows that
X ∈ gen1M .

(iv) ⇒ (v). Clearly M and so any X ∈ add(M) is in M⊥1 and Ext-projective.
Conversely if X is in M⊥1 and Ext-projective, then by (iv) there is an exact
sequence M ′′ f−→ M ′ → X → 0. This gives an exact sequence 0 → Im f →
M ′ → X → 0 with Im f ∈ genM ⊆ M⊥1. By assumption this sequence splits, so
X ∈ addM .

(v) ⇒ (i). It suffices to show that E in Bongartz’s sequence is in addM , and
for this it suffices to show it is Ext-projective in M⊥1. We know it is in M⊥1.
If Y ∈ M⊥1, apply Hom(−, Y ) to the Bongartz sequence to get Ext1(Mn, Y ) →
Ext1(E, Y )→ Ext1(A, Y ), so Ext1(E, Y ) = 0.

Dually, a partial cotilting module M gives a torsion theory (⊥0M, cogenM).
Moreover cogen1M ⊆ cogenM ⊆ ⊥1M . The following is dual to the last proposi-
tion.

Proposition (2). For a partial cotilting module M , the following are equivalent:
(i’) M is a cotilting module.
(ii’) ⊥0,1M = 0.
(iii’) cogenM = ⊥1M .
(iv’) cogen1M = ⊥1M .
(v’) X is Ext-injective in ⊥1M ⇔ X ∈ addM .

Proposition (3). If AM is a (co)tilting module, then it is f.b. and if B = EndA(M),
then BM is also a (co)tilting module.

Proof. If AM is tilting, then gen1M = M⊥1, which contains DA, so AM is f.b.
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(i) Applying HomA(−,M) to the exact sequence 0 → A → M0 → M1 → 0
gives

0→ HomA(M
1,M)→ HomA(M

0,M)→M → 0

and HomA(M
i,M) ∈ add(HomA(M,M)) = add(BB), so proj. dim BM ≤ 1.

(ii) The tilting sequence 0 → A → M0 → M1 → 0 stays exact on applying
Hom(−,M). Thus A ∈ cogen2(AM). Thus Ext1B(M,M) = 0 by the proposition
about endomorphism correspondents.

(iii) Applying HomA(−,M) to a projective resolution 0→ P1 → P0 →M → 0
of M gives an exact sequence

0→ B →M0 →M1 → 0

where M i = HomA(Pi,M) ∈ add(BM). Thus BM is a tilting module.
Dually for cotilting.

5.3 The Brenner-Butler Theorem

Let AM be a cotilting module and B = EndA(M), so BM is also cotilting.
In A-mod we have a torsion theory (TA,FA) = (⊥0

AM, cogen AM). Since AM
is cotilting we have

FA = cogen(AM) = cogen1(AM) = ⊥1
AM = {X ∈ A-mod : Ext1A(X,M) = 0}.

In B-mod we have a torsion theory (TB,FB) = (⊥0
BM, cogen BM). Since BM

is cotilting we have the equivalent alternative descriptions of FB.

Theorem (Brenner-Butler Theorem, 1st version). There are antiequivalences

FA

HomA(−,M)−→
←−

HomB(−,M)

FB and TA
Ext1A(−,M)
−→
←−

Ext1B(−,M)

TB.

Proof. Since FA = cogen1(AM) and FB = cogen1(BM), the first antiequivalence
is given by endomorphism correspondence.

Given a module AX in TA, so with HomA(X,M) = 0, we show that

HomB(Ext
1
A(X,M),M) = 0

and construct a natural isomorphism

X → Ext1B(Ext
1(X,M),M).

Indeed, take a projective cover of X to get a sequence 0 → L → P → X → 0. It
gives an exact sequence of B-modules

0→ HomA(P,M)→ HomA(L,M)→ Ext1A(X,M)→ 0
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Now P,L ∈ cogenM = cogen1M , so the natural maps P → HomB(HomA(P,M),M)
and L→ HomB(HomA(L,M),M) are isomorphisms. Also

HomA(L,M) ∈ cogen1(BM) = ⊥1(BM),

so Ext1B(Hom(L,M),M) = 0. Thus we get a commutative diagram

0 −−−→ L −−−→ P −−−→ X −−−→ 0y y
0 −−−→ (1(X,M),M) −−−→ ((L,M),M) −−−→ ((P,M),M) −−−→ 1(1(X,M),M) −−−→ 0

(where we omit the words Hom and Ext) with exact rows and in which the vertical
maps are isomorphisms. Thus HomB(Ext

1
A(X,M),M) = 0 and there is an induced

isomorphism X → Ext1B(Ext
1
A(X,M),M). One also needs to show that this is a

natural isomorphism, but we omit the proof of this.
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