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I want to cover a number of key topics in the representation theory of finite-
dimensional associative algebras. Specifically:

• Correspondences given by faithfully balanced modules, and applications to
Auslander algebras and homological conjectures. (Originally planned for the
previous semester, but carried over, since there was not enough time.)

• Tilting and tau-tilting theory, including equivalences of derived categories.

• Geometric methods for studying representations of algebras, including rele-
vant facts about varieties and schemes without proofs. (There will be less
time for this than originally planned.)

• If time, possibly preprojective algebras and Kleinian singularities.

Some relevant books:

• I. Assem and F. U. Coelho, Basic representation theory of algebras, Springer
2020.

• I. Assem, D. Simson and A. Skowroński, Elements of the representation the-
ory of associative algebras. Volume 1, Techniques of representation theory,
CUP 2006.

• H. Derksen and J. Weyman, An introduction to quiver representations, Amer-
ican Mathematical Society 2017.

• P. Gabriel and A. V. Roiter, Representations of finite dimensional algebras,
Springer 1977.

• A. Kirillov Jr., Quiver Representations and Quiver Varieties, American Math-
ematical Society 2016.

• A. Skowroński and K. Yamagata, Frobenius algebras 2 Tilted and Hochschild
extension algebras, European Mathematical Society 2017.

The section numbering continues from the previous lecture course.
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4 Homological topics
In this section I want to discuss

- Some of the many homological conjectures for f.d. algebras
- Auslander’s correspondence between algebras A of finite representation type

and algebras B with gl. dimB ≤ 2 ≤ dom. dimB, and Iyama’s generalization of
this with cluster tilting objects.

The unifying feature is what I call endomorphism correspondence for faithfully
balanced modules.

4.1 Higher generation and cogeneration

We are interested in finite-dimensional algebras A over a field K (but most things
generalize easily to Artin algebras).

Except where explicitly stated, all modules are f.d., and we write A-mod for
the category of finite-dimensional left A-modules.

We write D for the duality HomK(−, K) between A-mod and Aop-mod.
Recall that a module class in A-mod is a full subcategory closed under isomor-

phisms, direct sums and direct summands. Given any module M , add(M) is the
smallest module class containing M . It is given by the modules isomorphic to a
direct summand of Mn for some n.

Definition. Given a module M , gen(M) denotes the module class consisting of
quotients of direct sums of copies of M and cogen(M) the module class of submod-
ules of a direct sum of copies of M .

We say M is a generator if gen(M) = A-mod. It is equivalent that A ∈ gen(A),
or that A ∈ add(M). We say M is a cogenerator if cogen(M) = A-mod. It is
equivalent that DA ∈ cogen(M), or DA ∈ add(M).

There are higher versions as follows. Here

Proposition (1). Let M be an A-module and n ≥ 0 and consider M also as a
B-module, where B = EndA(M). For an A-module X, the following are equivalent.

(a) There is an exact sequence

Mn
fn−→Mn−1 → · · · →M0

f0−→ X → 0

with Mi ∈ addM , such that the sequence

HomA(M,Mn−1)→ · · · → HomA(M,M0)→ HomA(M,X)→ 0

is exact (note that this is automatic if M is projective).
(b) The natural map HomA(M,X)⊗B M → X is surjective (in case n = 0) or

an isomorphism (in case n > 0) and TorBi (HomA(M,X),M) = 0 for 0 < i < n.
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Definition. We define genn(M) to be the full subcategory of A-mod given by the
modules X satisfying these conditions. Using condition (b) it is easy to see that it
is a module class. Clearly

add(M) ⊆ · · · ⊆ gen2(M) ⊆ gen1(M) ⊆ gen0(M) = gen(M).

Proof. (a)⇒(b). First note that we may assume that the sequence

HomA(M,Mn)→ HomA(M,Mn−1)→ · · · → HomA(M,M0)→ HomA(M,X)→ 0

is exact. By assumption it is exact except possibly at HomA(M,Mn−1). Recall
from section 1.9, that addM is functorially finite in A-mod. Thus the module
Im(fn) has a right addM -approximation, say f ′ : M ′ → Im(fn). Since it is an
approximation, we can factorize fn = f ′g for some g : Mn → M ′. Thus the map
f ′ has image Im(fn). Thus the sequence

M ′ f ′
−→Mn−1

fn−1−−→ . . .
f1−→M0

f0−→ X → 0

is exact. Also, the sequence

HomA(M,M ′)→ HomA(M,Mn−1)→ · · · → HomA(M,M0)→ HomA(M,X)→ 0

is exact, since any morphism in Hom(M,Mn−1) which is sent to zero in Hom(M,Mn−2)
has image contained in Ker(fn−1) = Im(fn), and hence factors through the approx-
imation f ′. Thus replacing Mn by M ′ and fn by f ′ if necessary, we have the claimed
exactness.

Now we have a commutative diagram

Hom(M,Mn)⊗M −−−→ . . . −−−→ Hom(M,M0)⊗M −−−→ Hom(M,X)⊗M −−−→ 0

ϕn

y ϕ0

y θ

y
Mn

fn−−−→ . . .
f1−−−→ M0

f0−−−→ X −−−→ 0

For any M ′ ∈ addM , the natural map Hom(M,M ′)⊗BM →M ′ is an isomorphism,
since it is for M ′ = M . Thus the ϕi are isomorphisms.

Since ϕ0 and f0 are surjective, so is θ. If n > 0, then since tensor products are
right exact, the part of the diagram below and to the right of Hom(M,M1) ⊗M
has exact rows, so implies that θ is an isomorphism.

Since Mi ∈ add(M), as a right B-module, we have

HomA(M,Mi) ∈ add(HomA(M,M)) = add(BB),

so the exact sequence

HomA(M,Mn)→ HomA(M,Mn−1)→ · · · → HomA(M,M0)→ HomA(M,X)→ 0
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is part of a projective resolution of HomA(M,X) as a right B-module. We can use
it to compute TorBi (HomA(M,X),M) for i < n as the homology of the complex

Hom(M,Mn)⊗B M → · · · → Hom(M,M0)⊗B M → 0.

But by the commutative diagram above, this is isomorphic to the complex

Mn → · · · →M0 → 0

This is exact at Mi for 0 < i < n, giving the Tor vanishing.
(b)⇒(a). Take the start of a projective resolution of HomA(M,X) as a right

B-module, say
Pn

gn−→ · · · → P0
g0−→ HomA(M,X)→ 0

Applying −⊗B M gives a complex, which by the hypotheses is exact:

Mn
fn−→ · · · →M0

f0−→ X → 0,

where Mi = Pi ⊗B M ∈ addM . Applying HomA(M,−) to this, gives a complex

HomA(M,Mn)→ · · · → HomA(M,M0)→ HomA(M,X)→ 0.

Identifying HomA(M,Mi) = HomA(M,Pi ⊗B M) ∼= Pi, we see that this is the
projective resolution we started with, so it is exact. Thus (a) holds.

Remark: if we took the projective resolution to be minimal, then the maps gi
would all be right minimal in the sense of section 1.6. It follows that the maps
fi are right minimal, for otherwise there is a decomposition Mi = M ′

i ⊕M ′′
i with

M ′′
i ̸= 0 and fi(M

′′
i ) = 0. But then we get

Pi
∼= HomA(M,Mi) ∼= HomA(M,M ′

i)⊕ HomA(M,M ′′
i )

and gi is zero on the summand corresponding to HomA(M,M ′′
i ), contradicting the

minimality of gi.

Dually we have the following.

Proposition (2). Let M be an A-module and n ≥ 0 and consider M also as a
B-module, where B = EndA(M). For an A-module X, the following are equivalent.

(a’) There is an exact sequence 0→ X → M0 → · · · → Mn with M i ∈ addM
such that the sequence

Hom(Mn−1,M)→ · · · → Hom(M0,M)→ Hom(X,M)→ 0

is exact (this is automatic if M is injective).
(b’) The natural map X → HomB(HomA(X,M),M) is a monomorphism (in

case n = 0) or an isomorphism (in case n > 0) and ExtiB(HomA(X,M),M) = 0
for 0 < i < n.
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Definition. We define cogenn(M) to be the full subcategory of A-mod given by
the modules X satisfying these conditions. By the second condition it is a module
class. Clearly

add(M) ⊆ · · · ⊆ cogen2(M) ⊆ cogen1(M) ⊆ cogen0(M) = cogen(M).

It is clear from conditions (a) and (a’) that X ∈ cogenn(AM)⇔DX ∈ genn(AopDM).

4.2 Faithfully balanced modules and endomorphism corre-
spondence

Definition. Let M be an A-module, and let B = EndA(M). Then M can be
considered as a B-module, and there is a natural map

A→ EndB(M).

Clearly M is faithful iff this map is injective. We say that M is a balanced A-
module or that M has the double centralizer property if this map is onto, and that
M is faithfully balanced (f.b.) if this map is an isomorphism.

Clearly M is a f.b. A-module iff DM is a f.b. Aop-module.

Lemma. Let M be an A-module.
(i) M is f.b. iff A ∈ cogen1(M) iff DA ∈ gen1(M).
(ii) If M is a generator or cogenerator, it is f.b.

Proof. (i) Apply the second proposition in the last section with X = A and n = 1.
Now M is f.b. iff DM is f.b. iff Aop ∈ cogen1(AopDM) iff DA ∈ gen1(AM).

(ii) If M is a generator, then A ∈ add(M) ⊆ cogen1(M). If M is a cogenerator,
then DM is a generator, so f.b., hence so is M .

Definition. By an f.b. pair we mean a pair (A,M) consisting of an algebra and a
f.b. A-module.

Given an f.b. pair, we construct a new f.b. pair (B,M), its endomorphism
correspondent, where B = EndA(M) and M is considered in the natural way as a
B-module.

Repeating the construction twice, one recovers essentially the original pair.
We say that f.b. pairs (A,M) and (A′,M ′) are equivalent if there is an equiva-

lence A-mod→ A′-mod sending add(M) to add(M ′).

One can show that equivalent pairs have equivalent endomorphism correspon-
dents.
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Theorem. If (A,M) and (B,M) are f.b. pairs which are endomorphism correspon-
dents, then HomA(−,M) and HomB(−,M) give inverse antiequivalences between
cogen1(AM) and cogen1(BM).

Proof. In view of (b’) in the second proposition of the last section, and the sym-
metrical role of A and B, it suffices to show that if X ∈ cogen1(AM), then
HomA(X,M) ∈ cogen1(BM). Take a free presentation of AX, say Am → An →
X → 0. Applying HomA(−,M) gives an exact sequence

0→ HomA(X,M)→Mn →Mm.

Applying HomB(−,M) to this gives

Am → An → HomB(HomA(X,M),M)→ 0

which is isomorphic to the original exact sequence, so exact. Thus HomA(X,M) ∈
cogen1(BM).

Example. Let A be the path algebra of the linear quiver Q = 1 → 2 → 3. We
display its AR quiver below. Let AM be the direct sum of the circled indecompos-
ables.

The endomorphism algebra of AM is

Considering M as a B-module, means to consider it as a representation of this
quiver. The vector space at each vertex is the corresponding indecomposable
A-module. In this example, the indecomposable A-modules are at most one-
dimensional at each vertex of Q. In the following diagram we write i for the
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natural basis element at vertex i of Q. The arrows in the quiver for B corre-
spond to homomorphisms of the indecomposable A-modules, and act on the basis
elements as indicated below.

Thus

Observe that AM has all of the projective A-modules as summands, but not all
injectives, so AM is a generator but not a cogenerator. On the other hand all of
the summands of BM are projective, and one summand is not injective.

Proposition. Let (A,M) and (B,M) be f.b. pairs which are endomorphism cor-
respondents. Then:

(a) AM is a generator iff BM is projective.
(b) AM is a cogenerator iff BM is injective.
(c) A ∈ cogenn(AM) iff ExtiB(M,M) = 0 for 0 < i < n.

Proof. (a) If AM is a generator, then A ∈ add(AM), so BM ∼= HomA(A,M) ∈
add(HomA(M,M)) = add(B), so BM is projective.

Conversely if BM is projective, then BM ∈ add(B), so A ∼= HomB(M,M) ∈
add(HomB(B,M)) = add(AM).

(b) Apply (a) to DM .
(c) Second proposition in last section with X = A.

For (a), see Azumaya, Completely faithful modules and self-injective rings,
Nagoya Math. J. 1966. Also (a) is similar to the Wedderburn correspondence in-
troduced by Auslander, Representation theory of Artin algebras I, Comm. Algebra
1974.

For things similar to (b), see T. Kato, Rings of U-dominant dimension ≥ 1,
Tohoku Math. J. 1969.

(c) is essentially Müller, The classification of algebras by dominant dimension,
Canad. J. Math 1968.

See also:
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B. Ma and J. Sauter, On faithfully balanced modules, F-cotilting and F-Auslander
algebras, Journal of Algebra 2020.

M. Pressland and J. Sauter, On quiver Grassmannians and orbit closures for
gen-finite modules, Algebras and Representation Theory 2022

4.3 Dominant dimension and Auslander correspondence

Definition. Given an algebra A, we take the minimal injective resolution

0→ A→ I0 → I1 → . . .

of the module AA. We say that A has dominant dimension ≥ n if I0, . . . , In−1 are
projective. This defines dom. dimA ∈ {0, 1, 2, . . . } ∪ {∞}.

Recall that an algebra A is QF-3 if it A has a faithful projective-injective
module M . If so, then add(M) = PA ∩ IA, since any indecomposable projective-
injective module embeds in A, so in some Mn, so is in add(M). Thus M is unique,
up to multiplicities, since it is the direct sum of all indecomposable projective-
injective modules, each with some non-zero multiplicity.

Proposition. (i) dom. dimA ≥ 1 iff A is QF-3.
(ii) dom. dimA ≥ 2 iff A has a f.b. projective-injective M .

Proof. (i) If A is QF-3, with faithful projective-injective module M , then there is
an embedding A→Mn, and then the injective envelope of A is a direct summand
of Mn, so it is projective.

(ii) If dom. dimA ≥ 2, there is an exact sequence 0 → A → I0 → I1

with I0, I1 projective-injective. Let M be the direct sum of the indecomposable
projective-injectives, then A ∈ cogen1(M) by condition (a) in the characterization
of cogen1(M). Thus M is f.b.

Conversely suppose A has a f.b. projective-injective M . Since it is f.b., A ∈
cogen1(M). By the characterization of this means that there is an exact sequence

0→ A
θ−→M0 →M1

with M0,M1 ∈ add(M). Moreover by the dual result to the remark at the end
of the proof of (b)⇒(a) in Proposition (1) in the first subsection, we may suppose
that the maps in this exact sequence are left minimal. Now the M i are projective-
injective, so they are injective, so this is the start of the injective resolution of A.
Thus I0 ∼= M0 and I1 ∼= M1 are projective. Thus dom. dimB ≥ 2.

For the following, see C. M. Ringel, Artin algebras of dominant dimension at
least 2, manuscript 2007, available from his Bielefeld homepage.
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Theorem (Morita-Tachikawa correspondence). Endomorphism correspondence gives
a 1:1 correspondence between equivalence classes of pairs (A,M) where AM is a
generator-cogenerator and Morita equivalence classes of algebras B with dom. dimB ≥
2.

The correspondence sends (A,M) to B = EndA(M), and it sends B to A =
EndB(M) where BM is the faithful projective-injective B-module.

Proof. By endomorphism correspondence, the pairs (A,M) are in 1:1 correspon-
dence with f.b. pairs (B,M) with M projective-injective. By the discussion above,
these are in 1:1 correspondence with the Morita equivalence classes of algebras B
with dom. dimB ≥ 2.

The following correspondence comes from Auslander, Representation dimension
of Artin algebras, Queen Mary College Lecture Notes, 1971. See also Auslander,
Representation theory of Artin algebras II, Comm. Algebra 1974.

Theorem (Auslander correspondence). There is a 1-1 correspondence between al-
gebras A of finite representation type up to Morita equivalence and algebras B with
gl. dimB ≤ 2 ≤ dom. dimB up to Morita equivalence.

The correspondence sends A to B = EndA(M) where AM is the direct sum of
all the indecomposable A-modules, and it sends B to A = EndB(M) where BM is
the faithful projective-injective B-module.

The algebra B is called the Auslander algebra of A.

Proof. We show that under endomorphism correspondence, pairs (A,M) where
add(M) = A-mod correspond to pairs (B,M) where gl. dimB ≤ 2 ≤ dom. dimB
and BM is the faithful projective-injective.

Suppose add(M) = A-mod. Given a B-module Z, choose a projective presen-
tation

P1
f−→ P0 → Z → 0.

Applying HomB(−,M) gives an exact sequence

0→ HomB(Z,M)→ HomB(P0,M)
g−→ HomB(P1,M)→ Coker(g)→ 0.

Applying HomA(−,M) we get a commutative diagram with bottom row exact

P1
f−−−→ P0y y

0 −−−→ HomA(Coker(g),M) −−−→ HomA(HomB(P1,M),M) −−−→ HomA(HomB(P0,M),M)

The two vertical maps are isomorphisms, so Ker(f) ∼= HomA(Coker(g),M). Now
Coker(g) is an A-module, so in add(M), so as a B-module, we have

HomA(Coker(g),M) ∈ add(HomA(M,M)) = add(B),
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so it is projective. Thus proj. dimZ ≤ 2. Thus gl. dimB ≤ 2.
Conversely suppose gl. dimB ≤ 2 ≤ dom. dimB. If Y is an A-module, it has a

projective resolution starting

P1 → P0 → Y → 0.

Applying HomA(−,M) we get an exact sequence of B-modules

0→ HomA(Y,M)→ HomA(P0,M)→ HomA(P1,M).

The HomA(Pi,M) are projective B-modules since they are in add(BM), and BM is
projective. Thus, since gl. dimB ≤ 2, by dimension shifting we see that HomA(Y,M)
is a projective B-module. Now BM is injective, so applying HomB(−, BM) gives
an exact sequence

HomB(HomA(P1,M),M)→ HomB(HomA(P1,M),M)→ HomB(HomA(Y,M),M)→ 0.

For any A-module X there is a natural transformation from X to HomB(HomA(X,M),M),
and this is an isomorphism for X projective. We deduce that

Y ∼= HomB(HomA(Y,M),M) ∈ add(HomB(B,M)) = add(AM),

so add(M) = A-mod.

Example. We can check gl. dimB = 2 = dom. dimB for the Auslander algebra of
the linear quiver with three vertices.
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Definition. Let n ≥ 1. A module AM is an n-cluster tilting object if
(i) ExtiA(M,M) = 0 for 0 < i < n
(ii) ExtiA(U,M) = 0 for 0 < i < n implies U ∈ addM
(iii) ExtiA(M,U) = 0 for 0 < i < n implies U ∈ addM

Clearly (ii) implies A ∈ addM and (iii) implies DA ∈ addM , so any n-cto is a
generator-cogenerator.

Observe that M is a 1-cto iff add(M) = A-mod.
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Example. For the algebra with quiver

0→ 1→ 2→ · · · → n

with all paths of length 2 zero, the module S[0] has projective resolution

0→ P [n]→ P [n− 1]→ · · · → P [1]→ P [0]→ S[0]→ 0

so dimExti(S[0], S[j]) = δij. It follows that

M = S[0]⊕ P [0]⊕ · · · ⊕ P [n− 1]⊕ P [n] ∼= I[0]⊕ I[1]⊕ · · · ⊕ I[n]⊕ S[n]

is an n-cto. It’s endomorphism algebra B is the path algebra of the quiver

n→ · · · → 1→ 0→ ∗

with all paths of length 2 zero. It has global dimension n + 1. The projectives
P [n], . . . , P [0] are injective, and P [∗] has injective resolution

0→ P [∗]→ I[∗]→ I[0]→ · · · → I[n− 1]→ I[n]→ 0.

Now I[∗] ∼= P [0], I[0] ∼= P [1], . . . , I[n−1] ∼= P [n] and I[n] ∼= S[n] is not projective,
so dom. dimB = n+ 1.

The following generalization of Auslander correspondence is due to Iyama, Aus-
lander correspondence, Advances in Math. 2007.

Theorem (Iyama). There is a 1:1 correspondence between equivalence classes of
pairs (A,M) where AM is an n-cto and Morita equivalence classes of algebras B
with gl. dimB ≤ n+ 1 ≤ dom. dimB.

Proof. (To be omitted.) We are in the setting of Morita-Tachikawa correspon-
dence.

Now ExtiA(M,M) = 0 for 1 < i < n corresponds to B ∈ cogenn(BM), and since
BM is the faithful projective-injective, this corresponds to dom. dimB ≥ n+ 1.

Suppose gl. dimB ≤ n+ 1.
We show that if ExtiA(U,M) = 0 for 0 < i < n then U ∈ addM . Take the start

of a projective resolution of U , say

Pn → · · · → P0 → U → 0.

Applying HomA(−,M) gives a complex

0→ HomA(U,M)→ HomA(P0,M)→ · · · → HomA(Pn,M)
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which is exact because the Exts vanish. Since BM is injective, applying HomB(−,M)
gives an exact sequence

HomB(HomA(Pn,M),M)→ · · · → HomB(HomA(P0,M),M)→ HomB(HomA(U,M),M)→ 0.

Now the maps Pi → HomB(HomA(Pi,M),M) are isomorphisms since Pi ∈ addM .
Thus the map U → HomB(HomA(U,M),M) is an iso (so U ∈ cogen1(AM)). Also
HomA(Pi,M) ∈ add(HomA(A,M)) = add(BM). Thus, since gl. dimB ≤ n + 1,
the B-module HomA(U,M) must be projective, so it is in add(BB), and then
U ∼= HomB(HomA(U,M),M) ∈ add(HomB(B,M)) = add(AM).

Next we show that if ExtiA(M,U) = 0 for 0 < i < n then U ∈ addM . Take the
start of an injective resolution of U , say

0→ U → I0 → · · · → In.

Applying HomA(M,−) gives a complex

0→ HomA(M,U)→ HomA(M, I0)→ · · · → HomA(M, In)

which is exact because the Exts vanish. Since BM is projective, applying −⊗B M
gives an exact sequence

0→ HomA(M,U)⊗B M → HomA(M, I0)⊗B M → · · · → HomA(M, In)⊗B M.

Now the maps I i → HomA(M, I i)⊗B M are isomorphisms since I i ∈ addM . Thus
the map U → HomA(M,U)⊗BM is an iso. Also HomA(M, I i) ∈ add(HomA(M,M)) =
add(BB). Thus, since gl. dimB ≤ n+1, the right B-module HomA(M,U) must be
projective, so it is in add(BB), and then U ∼= HomA(M,U)⊗BM ∈ add(B⊗BM) =
add(AM).

Now suppose that M is an n-cto. Given a B-module Z, choose a projective
presentation

P1
f−→ P0 → Z → 0.

Applying HomB(−,M) gives an exact sequence

0→ HomB(Z,M)→ HomB(P0,M)
g−→ HomB(P1,M)→ Coker(g)→ 0.

Let C0 = Coker(g). Applying HomA(−,M) we get a commutative diagram with
bottom row exact

P1
f−−−→ P0y y

0 −−−→ HomA(C
0,M) −−−→ HomA(HomB(P1,M),M) −−−→ HomA(HomB(P0,M),M)
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The two vertical maps are isomorphisms, so Ker(f) ∼= HomA(C
0,M).

Now since M is a cogenerator, by repeatedly taking left M -approximations we
can get an exact sequence

0→ C0 →M0 → · · · →Mn−2

such that the sequence

HomA(M
n−2,M)→ · · · → HomA(M

0,M)→ HomA(C
0,M)→ 0

is exact. Let Ci be the cosyzygies for this sequence, so

0→ Ci →M i → Ci+1 → 0.

Then

Hom(M i,M) ↠ Hom(Ci,M)→ Ext1(Ci+1,M)→ Ext1(M i,M) = 0→ . . . ,

so by dimension shifting

Extn−1(Cn−1,M) ∼= Extn−2(Cn−1,M) ∼= . . . ∼= Ext1(C1,M) = 0

and similarly Exti(Cn−1,M) = 0 for 0 < i < n. Thus Cn−1 ∈ addM . Thus Z has
projective resolution

0→ HomA(C
n−1,M)→ HomA(M

n−2,M)→ · · · → HomA(M
0,M)→ P1 → P0 → Z → 0.

Thus proj. dimZ ≤ n+ 1. Thus gl. dimB ≤ n+ 1.

4.4 Homological conjectures for f.d. algebras

Let 0 → A → I0 → I1 → . . . be the minimal injective resolution of a f.d. algebra
A. Recall that A has dominant dimension ≥ n if I0, . . . , In−1 are all projective.

Conjecture (Nakayama conjecture 1958). If all In are projective, i.e. dom. dimA =
∞, then A is self-injective.

Proposition. The following are equivalent.
(i) The Nakayama conjecture (if dom. dimB =∞ then B is self-injective).
(ii) If AM is a generator-cogenerator and ExtiA(M,M) = 0 for all i > 0 then M
is projective.

13



Proof. (i) implies (ii). Say AM satisfies the hypotheses. Let (B,M) be the endo-
morphism correspondent. Then BM is projective-injective and B ∈ cogenn(M) for
all n. Thus for all n there is an exact sequence

0→ B → I0 → · · · → In

with the I i projective-injective. Thus dom. dimB = ∞. Thus B is self-injective,
so add(M) = add(B), so BM is a generator, so AM is projective.

(ii) implies (i). Say dom. dimB = ∞. Thus B is QF-3 and let BM be the
faithful projective-injective module. Let AM be the endomorphism correspondent.
It is a generator-cogenerator. Then B ∈ cogenn(M) for all n, so ExtiA(M,M) = 0
for all i > 0. Thus by (ii), AM is projective, so BM is a generator. Thus B ∈
add(M) is injective.

Conjecture (Generalized Nakayama conjecture, Auslander and Reiten 1975). For
any f.d. algebra A, every indecomposable injective occur as a summand of some In.

It clearly implies the Nakayama conjecture, for if the In are projective, and
each indecomposable injective occurs as a summand of some In, then the indecom-
posable injectives are projective.

Example. For the commutative square, vertices 1(source),2,3,4(sink). There are
injective resolutions

0→P [1]→ I[4]→ 0,

0→P [2]→ I[4]→ I[3]→ 0,

0→P [3]→ I[4]→ I[2]→ 0,

0→P [4]→ I[4]→ I[2]⊕ I[3]→ I[1]→ 0,

so
0→ A→ I[4]4 → I[2]2 ⊕ I[3]2 → I[1]→ 0,

so all indecomposable injectives occur.

Proposition. The following are equivalent.
(i) The generalized Nakayama conjecture (every indecomposable injective occurs as
a summand of some I i in the minimal injective resolution of B).
(ii) If AM is a cogenerator and ExtiA(M,M) = 0 for all i > 0 then M is injective.

Proof. (i) implies (ii). Suppose AM satisfies the conditions. Then there is corre-
sponding BM which is injective, and B ∈ cogenn(M) for all n. Thus by (i) every
indecomposable injective is a summand of BM . Thus BM is a cogenerator. Thus
AM is injective.
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(ii) implies (i). Let BM be the sum of all indecomposable injectives occuring in
the I i. Then B ∈ cogenn(M) for all n. Let AM be the endomorphism correspon-
dent. Then AM is a cogenerator and ExtiA(M,M) = 0 for all i > 0. Thus by (ii)
AM is injective. Thus BM is a cogenerator. Thus all indecomposable injectives
occur as a summand of BM .

For the next conjecture, see Happel, Selforthogonal modules, 1995.

Conjecture (Boundedness Conjecture). If M is an A-module with ExtiA(M,M) =
0 for all i > 0 then #M ≤ #A, where #M denotes the number of non-isomorphic
indecomposable summands of M .

Since a cogenerator has all indecomposable injectives as summands, the bound-
edness conjecture implies the generalized Nakayama conjecture.

Definition. An algebra A is (Iwanaga) Gorenstein if both inj. dim AA < ∞ and
inj. dimAA <∞.

In Auslander and Reiten, Applications of contravariantly finite subcategories,
Adv. Math 1991, one finds:

Conjecture (Gorenstein Symmetry Conjecture). If one of inj. dim AA and inj. dimAA

is finite, so is the other.

Lemma. (i) If inj. dim AA = n <∞, any A-module has proj. dimM ≤ n or ∞.
(ii) If inj. dim AA = n and inj. dimAA = m are both finite, they are equal.

For example, by (i) every non-projective module for a self-injective algebra has
infinite projective dimension.

Proof. (i) Say proj. dimM = i < ∞. There is some N with Exti(M,N) ̸= 0.
Choose 0 → L → P → N → 0 with P projective. The long exact sequence for
Hom(M,−) gives

· · · → Exti(M,P )→ Exti(M,N)→ Exti+1(M,L)→ . . .

Now Exti+1(M,L) = 0, so Exti(M,P ) ̸= 0, so Exti(M,A) ̸= 0, so i ≤ n.
(ii) proj. dim ADA = inj. dimAA = m, so m ≤ n by (i). Dually m ≥ n.

This also holds for noetherian rings, see Zaks, Injective dimension of semi-
primary rings, J. Alg. 1969.

For the following, see H. Bass, Finitistic dimension and a homological general-
ization of semiprimary rings, Trans. Amer. Math. Soc. 1960.
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Conjecture (Finitistic Dimension Conjecture). For any f.d. algebra A,

fin. dimA = sup{proj. dimM | proj. dimM <∞}

is finite.

For example if A is Gorenstein, with inj. dim AA = n = inj. dimAA, then
fin. dimA = n. For the lemma implies that any A-module M has proj. dimM ≤ n
or ∞, and proj. dimD(AA) = n.

Note that fin. dimA is not necessarily the same as the maximum of the projec-
tive dimensions of the simple modules of finite projective dimension.

There is also a big finitistic dimension, where the modules need not be finite-
dimensional, and this may also always be finite.

Proposition. The finitistic dimension conjecture implies the Gorenstein symmetry
conjecture.

Proof. Assuming inj. dimAA = n < ∞, we want to prove that inj. dim AA < ∞.
We have proj. dim ADA = n < ∞. Thus any injective module has projective
dimension < ∞. Take a minimal injective resolution 0 → AA → I0 → . . . . We
show by induction on i that proj. dimΩiA <∞. There is an exact sequence

0→ Ωi−1A→ I i−1 → ΩiA→ 0.

Applying HomA(−, X) for a module X gives a long exact sequence

· · · → Extm(Ωi−1A,X)→ Extm+1(ΩiA,X)→ Extm+1(I i−1, X)→ . . .

For m sufficiently large, independent of X, the outside terms are zero, hence so is
the middle.

Let i > 0. If ΩiA = 0, or is injective, then inj. dim AA < ∞, as desired, so
suppose otherwise. Let f : ΩiA → I i be the inclusion. Then f belongs to the
middle term in the complex

Hom(ΩiA, I i−1)→ Hom(ΩiA, I i)→ Hom(ΩiA, I i+1)

and it is sent to zero in the third term. Now f is not in the image of the map
from the first term, for otherwise the map I i−1 → ΩiA is a split epimorphism,
so ΩiA is injective. Thus the homology of this complex at the middle term is
non-zero. Thus Exti(ΩiA,A) ̸= 0. Thus proj. dimΩiA ≥ i. This contradicts that
fin. dimA <∞.

Proposition. The finitistic dimension conjecture implies the generalized Nakayama
conjecture.
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Proof. Assume the FDC. We show that if AM is a module and Extn(M,A) = 0
for all n ≥ 0 then M = 0 (the strong Nakayama conjecture).

If S[i] is a simple A-module and I[i] is its injective envelope, recall from section
1.10, that dimExtn(S[i], A) is dimEnd(S[i]) times the multiplicity of I[i] as a direct
summand of In. Thus taking M = S[i], the strong Nakayama conjecture gives the
generalized Nakayama conjecture.

Take a minimal projective resolution → P1 → P0 → M → 0. By assumption
the sequence

0→ HomA(P0, A)
f0−→ HomA(P1, A)

f1−→ Hom(P2, A)→ . . .

of right A-modules is exact. Let fin. dimAop = n < ∞. Then Coker(fn) has
projective resolution

0→ HomA(P0, A)
f0−→ HomA(P1, A)→ · · · → HomA(Pn+1, A)→ Coker(fn)→ 0

so it has finite projective dimension, so projective dimension ≤ n, so by dimension
shifting Im f1 is projective, so f0 must be a split mono. But HomA(−, A) is an
antiequivalence from PA to PAop . Thus the map P1 → P0 must be a split epi, so
M = 0.

4.5 No loops conjecture

It is nice to see that some homological conjecture has been proved. In this section
we do not assume that K is algebraically closed, but we do assume that A = KQ/I
with I admissible. The following conjecture was proved by Igusa, Notes on the no
loops conjecture, J. Pure Appl. Algebra 1990.

Theorem (No loops conjecture). If gl. dimA < ∞ then Q has no loops (that is,
Ext1(S[i], S[i]) = 0 for all i).

Proof. We use the trace function of Hattori and Stallings. I only sketch the proof
of its properties.

(1) For any matrix θ ∈ Mn(A) we consider its trace tr(θ) ∈ A/[A,A], where
[A,A] is the subspace of A spanned by the commutators ab− ba. This ensures that
tr(θϕ) = tr(ϕθ). This equality holds also for θ ∈Mm×n(A) and ϕ ∈Mn×m(A).

(2) If P is a f.g. projective A-module it is a direct summand of a f.g. free module
F = An. Let p : F → P and i : P → F be the projection and inclusion. One
defines tr(θ) for θ ∈ End(P ) to be tr(iθp). This is well defined, for if

An = F
p−→
←−

i

P
i′−→
←−
p′

F ′ = Am
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with pi = 1P = p′i′, then tr(iθp) = tr((ip′)(i′θp)) = tr((i′θp)(ip′)) = tr(i′θp′).
(3) Any module M has a finite projective resolution P∗ → M , and an endo-

morphism θ of M lifts to a map between the projective resolutions

0 −−−→ Pn −−−→ . . . −−−→ P1 −−−→ P0 −−−→ M −−−→ 0

θn

y θ1

y θ0

y θ

y
0 −−−→ Pn −−−→ . . . −−−→ P1 −−−→ P0 −−−→ M −−−→ 0.

Define tr(θ) =
∑

i(−1)i tr(θi). One can show that does not depend on the pro-
jective resolution or the lift of θ, see section 4 of Lenzing, Nilpotente Elemente in
Ringen von endlicher globaler Dimension, Math. Z. 1969.

(4) One can show that given a commutative diagram with exact rows

0 −−−→ M ′ −−−→ M −−−→ M ′′ −−−→ 0

θ′

y θ

y θ′′

y
0 −−−→ M ′ −−−→ M −−−→ M ′′ −−−→ 0

one has tr(θ) = tr(θ′) + tr(θ′′).
(5) It follows that any nilpotent endomorphism has trace 0, since

0 −−−→ Im θ −−−→ M −−−→ M/ Im θ −−−→ 0

θ|Im θ

y θ

y 0

y
0 −−−→ Im θ −−−→ M −−−→ M/ Im θ −−−→ 0

so tr(θ) = tr(θ|Im θ) = tr(θ|Im(θ2)) = · · · = 0.
(6) Thus any element of J(A) as a map A→ A has trace 0, so J(A) ⊆ [A,A].

Thus (KQ)+ ⊆ I + [KQ,KQ].
(7) Any loop of Q gives an element of (KQ)+. But it is easy to see that

I + [KQ,KQ] ⊆ span of arrows which are not loops + (KQ)2+,

for example if p, q are paths then [p, q] ∈ (KQ)2+ unless they are trivial paths or
one is trivial and the other is an arrow. Thus there are no loops.

A strengthening (proved by Igusa, Liu and Paquette, A proof of the strong no
loop conjecture, Adv. Math. 2011). If S is a 1-dimensional simple module for a
f.d. algebra and S has finite injective or projective dimension, then Ext1(S, S) = 0.

An open problem (stated by Liu and Morin, The strong no loop conjecture for
special biserial algebras, Proc. Amer. Math. Soc. 2004). The extension conjecture:
if S is simple module for a f.d. algebra and Ext1(S, S) ̸= 0 then Extn(S, S) ̸= 0 for
infinitely many n.
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5 Tilting theory
In order to give their proof of Gabriel’s theorem, Bernstein, Gelfand and Pono-
marev introduced some reflection functors.

If Q is a quiver and i is a sink (no arrows out), so that P [i] = S[i], let Q′ be
the quiver obtained by reversing all arrows incident at i. Then reflection functors
are functors

KQ-mod −→←− KQ′-mod

sending a representation X of Q to the representation X ′ of Q′ which is the same,
except that

X ′
i = Ker(

⊕
a:j→i

Xj → Xi)

and the linear map X ′
i → Xj is the canonical map.

This gives an equivalence between the module classes in KQ-mod and KQ′-mod
given by the modules with no summand S[i]. For example.

Brenner and Butler generalized this with the notion of a tilting module. Let A
be an algebra. An A-module T is a tilting module if

- proj. dimT ≤ 1.
- Ext1A(T, T ) = 0.
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- #T = #A, the number of non-isomorphic summands of T is the number of
simple A-modules.

Let B = EndA(T )
op, so T becomes an A-B-bimodule. The Brenner-Butler

theorem gives equivalences between the following parts of the module categories.

5.1 Torsion theories and tau-rigid modules

The notion of a torsion theory comes from Dickson, A torsion theory for abelian
categories, Trans. Amer. Math. Soc. 1966.

Definition. A torsion theory in an abelian categoryA is a pair of full subcategories
(T ,F), the torsion and torsion-free classes, such that
(i) Hom(T ,F) = 0.
(ii) Any object X has a subobject tT X ∈ T with X/tT X ∈ F (so it fits in an exact
sequence 0→ tT X → X → X/tT X → 0 with first term in T and last term in F).

Examples. (1) The torsion and torsion-free modules give a torsion theory in the
category of Z-modules.

(2) For A the path algebra of the quiver 1 → 2, A-mod has torsion theory
(addS[2], addS[1]).

Notation. For an a set C of modules in A-mod or more generally of objects in an
abelian category

C⊥i,j,... = {X : Extn(M,X) = 0 for all M ∈ C and n = i, j, . . . },

⊥i,j,...C = {X : Extn(X,M) = 0 for all M ∈ C and n = i, j, . . . }.

Recall that Ext0 = Hom.
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Properties. Let (T ,F) be a torsion theory.
(i) T = ⊥0F and F = T ⊥0 so either of the classes determines the other.
(ii) T is closed under quotients and extensions; F is closed under subobjects

and extensions.
(iii) The subobject tT X is uniquely determined, and the assignment sending

X to tT X defines a functor A → T which is a right adjoint to the inclusion T in
A. The assignment sending X to X/tT X defines a functor A → F which is a left
adjoint to the inclusion F in A.

Proof. (i) If X ∈ T ⊥0, then Hom(T , X) = 0, so we must have tT X = 0, so X ∼=
X/tT X ∈ F . If X ∈ ⊥0F , then Hom(X,F) = 0, so we must have X = tT X ∈ T .

For (ii), for T given an exact sequence 0→ X → Y → Z → 0, apply Hom(−, F )
for F ∈ F to get an exact sequence

0→ Hom(Z, F )→ Hom(Y, F )→ Hom(X,F ).

Now if X,Z ∈ T , then Hom(X,F ) = Hom(Z, F ) = 0, so Hom(Y, F ) = 0, so
Y ∈ T . Also, if Y ∈ T , then Hom(Y, F ) = 0, so Hom(Z, F ) = 0, so Z ∈ T .

For (iii) observe that any map θ : X → Y induces a map tT X → tT Y since the
composition tT X → X → Y → Y/tT Y must be zero.

Remark. A splitting torsion theory is one in which the sequence 0 → tT X →
X → X/tT X → 0 is always split exact.

If A is a f.d. algebra, a torsion theory in A-mod is splitting if and only if every
indecomposable module is either torsion or torsion-free.

A splitting torsion theory is thus given by a partition of the indecomposable
modules into two sets T, F with Hom(T, F ) = 0. Then (addT, addF ) is a splitting
torsion theory in A-mod.

This is very easy to do if A is an algebra whose AR quiver is obtained by
knitting, so A is of finite representation type and all of its indecomposable modules
are directing. We want there to be no irreducible maps from T to F .

Proposition. If A is a f.d. algebra, for a module class T in A-mod the following
are equivalent.

(i) T is a torsion class for some torsion theory in A-mod.
(ii) T = ⊥0(T ⊥0).
(iii) T = ⊥0C for some module class C.
(iv) T is closed under quotients and extensions.

Proof. (i) implies (ii) implies (iii) implies (iv). Straightforward.
(iv) implies (i). Define F = T ⊥0. Given any module X, let T be a submodule

of X in T of maximal dimension. Then Hom(T , X/T ) = 0, for if T ′/T is the image
of such a map, then T ′/T is in T , hence so is T ′, contradicting maximality. Thus
X/T ∈ F .
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Thus a pair of module classes (T ,F) is a torsion theory in A-mod if and only
if T = ⊥0F and F = T ⊥0.

Lemma (Auslander-Smalø, 1981). For modules M,N , the following are equivalent:
(i) Hom(N, τM) = 0.
(ii) Ext1(M, genN) = 0 (that is, Ext1(M,G) = 0 for all G ∈ genN).

Proof. (i)⇒(ii). If Hom(N, τM) = 0, then Hom(G, τM) = 0 for all G ∈ genN),
so Hom(G, τM) = 0, so Ext1(M,G) = 0 by the Auslander-Reiten formula.

(ii)⇒(i). Say f : N → τM is a non-zero map. Factorize it as a surjection
g : N → G followed by a mono h : G → τM . Suppose that h factors through an
injective. Then it factors through the injective envelope E(G) of G. Since τM has
no injective summand, the induced map E(G) → τM cannot be injective, so its
kernel is non-zero. Since G is essential in E(G), the kernel meets G. Thus G→ τM
has non-zero kernel. Contradiction. Thus Hom(G, τM) ̸= 0, so Ext1(M,G) ̸=
0.

Definition. Given a module class C in A-mod and X ∈ C, we say that
(i) X is Ext-projective in C if Ext1(X, C) = 0.
(ii) X is Ext-injective in C if Ext1(C, X) = 0.

Lemma. If (T ,F) is a torsion theory in A-mod, then
(i) X ∈ T is Ext-projective for T iff τX ∈ F .
(ii) X ∈ F is Ext-injective for F iff τ−X ∈ T .
(iii) There are bijections

Non-proj indec Ext-projs in T up to iso
τ−→
←−
τ−

Non-inj indec Ext-injs in F up to iso

Proof. (i) Say X ∈ T . Then τX ∈ F ⇔ Hom(T, τX) = 0 for all T ∈ T ⇔
Ext1(X, genT ) = 0 for all T ∈ T ⇔ X is Ext-projective.

(ii) is dual.
(iii) follows.

Lemma. If (T ,F) is a torsion theory in A-mod, then
(i) The Ext-injectives for T are the modules tT I with I injective. The indecom-

posable Ext-injectives are the modules tT I[i] with I[i] /∈ F .
(ii) The Ext-projectives for F are the modules P/tT P with P projective. The

indecomposable Ext-projectives are the modules P [i]/tT P [i] with P [i] /∈ T .

Proof. (i) tT I is in T , and it is Ext-injective since if T ∈ T and 0→ tT I → E →
T → 0 is an exact sequence, then the pushout along tT I → I splits, giving a map
E → I. But E ∈ T , so it gives a map E → tT I, which is a retraction for the given
sequence.
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Conversely suppose X is Ext-injective in T and X → I is its injective envelope.
Then we have an injection X → tT I. Since T is closed under quotients, all terms
in the exact sequence 0 → X → tT I → tT I/X → 0 are in T . Thus this sequence
splits, so X is a direct summand of tT I, and we have equality since X is essential
in I.

Also, if I[i] /∈ F , then tT I[i] is non-zero and contained in I[i], so it has simple
socle, so it is indecomposable.

(ii) is dual.

The following definition comes from Adachi, Iyama and Reiten, τ -tilting theory,
2014.

Definition. A module M is τ -rigid if Hom(M, τM) = 0. Dually, it is τ−-rigid if
Hom(τ−M,M) = 0

Note that M is τ -rigid iff DM is τ−-rigid, since

Hom(M, τM) = Hom(M,DTrM) ∼= Hom(TrM,DM)

∼= Hom(TrDDM,DM) = Hom(τ−DM,DM).

Proposition. The following are equivalent
(i) M is τ -rigid.
(ii) Ext1(M, genM) = 0.
(iii) genM is a torsion class and M is Ext-projective in genM .
(iv) M is Ext-projective in some torsion class.

Proof. (i)⇔(ii). The lemma of Auslander and Smalø.
(ii)⇒(iii). Suppose M is τ -rigid. To show that genM is a torsion class, it

suffices to show that if 0→ X → Y → Z → 0 is exact and X,Z ∈ genM , then so
is Y . Choose a surjection Mn → Z. By (ii) The pullback sequence splits, so the
middle term of it is in genM , and hence so is Y . Now Ext1(M, genM) = 0, so M
is Ext-projective.

(iii)⇒(iv). Trivial.
(iv)⇒(ii). If M is Ext-projective in T , then Ext1(M, genM) = 0 since genM ⊆

T .

Note that the torsion theory given by a τ -rigid module M is (genM,M⊥0).

Example. Let A be the path algebra of 1→ 2→ 3. Let M = 2⊕123. It is τ -rigid.
Then T = genM contains 123, 12, 2, 1. The torsion-free class is F = T ⊥0 = M⊥0.
It contains 3 and 23.

The Ext-projectives in T are 2, 12, 123.
The Ext-injectives in T are 1, 12, 123.
The Ext-projectives in F are 3, 23.
The Ext-injectives in F are 3, 23.
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The next result is dual to Theorem 4.1(c) of Auslander and Smalø, Almost split
sequences in subcategories, J. Algebra 1981.

Theorem. Let T be a torsion class which is functorially finite and let

A
f−→M0 c−→M1 → 0

be an exact sequence with f be a minimal left T -approximation of A. Then
(i) T = genM0 = gen(M0 ⊕M1).
(ii) M0 is a splitting projective for T , meaning that any epimorphism θ : T ↠

M0 with T ∈ T must be a split epi.
(iii) M0 and M0 ⊕M1 are Ext-projective in T , so they are τ -rigid.
(iv) Any module T ∈ T is a quotient of a module in add(M0 ⊕ M1) by a

submodule in T .
(v) Any Ext-projective in T is in add(M0⊕M1), so there are only finitely many

indecomposable Ext-projectives in T .

Proof. (i) Clearly genM0 = gen(M0 ⊕M1) ⊆ T . If T ∈ T , then there is a map
An ↠ T , and each component factors through M , giving an epimorphism Mn ↠ T .

(ii) Since A is projective, the map f : A → M0 lifts to a map A → T . By
the approximation property, this factors as A → M0 → T . Now the composition
M0 → T →M0 must be an isomorphism by minimality.

(iii) Let T ∈ T . Any exact sequence 0 → T → E → M0 → 0 splits by (ii).
Thus M0 is Ext-projective.

Since f is a T -approximation, the induced map Hom(M0, T ) → Hom(A, T ) is
surjective. This is a composition Hom(M0, T )→ Hom(Im f, T )→ Hom(A, T ) and
the second map is injective, so actually the second map is a bijection and the first
map Hom(M0, T )→ Hom(Im f, T ) is surjective.

Now the exact sequence 0→ Im f
i−→M0 c−→M1 → 0 gives

Hom(M0, T )→ Hom(Im f, T )→ Ext1(M1, T )→ Ext1(M0, T ) = 0.

so Ext1(M1, T ) = 0.
(iv) (My thanks to Andrew Hubery for this argument). Take a right add(M0⊕

M1)-approximation ϕ : W → T for T . Since T ∈ genM0, the map ϕ is surjective,
so it gives an exact sequence

0→ U
θ−→ W

ϕ−→ T → 0.

Given u ∈ U there is a map r : A → U , a 7→ au. Since A → M0 is a T -
approximation and W ∈ T , there is a map p, and hence a map q giving a commu-
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tative diagram

A
f−−−→ M0 c−−−→ M1 −−−→ 0

r

y p

y q

y
0 −−−→ U

θ−−−→ W
ϕ−−−→ T −−−→ 0.

Since ϕ is an approximation, q = ϕh for some h : M1 → W . Then ϕ(p− hc) = 0.
Thus p − hc = θℓ for some ℓ : M0 → U . Then θ(r − ℓf) = 0, so since θ is mono,
r = ℓf . Thus u ∈ Im(ℓ). Repeating for a basis of U , we get a map from a direct
sum of copies of M0 onto U , so U ∈ T .

(v) Follows.

Corollary. If M is a τ -rigid module, then genM is a functorially finite torsion
class. Conversely, any functorially finite torsion class T is of the form genM for
some τ -rigid module M , which we can take to be the direct sum of the indecompos-
able Ext-projectives in T .

Proof. Any torsion class in A-mod is contravariantly finite, since the inclusion has
a right adjoint. Recall also that if M is a module, then genM is always covariantly
finite by the proposition at the end of section 1.9. In particular, if M is τ -rigid,
then genM is a functorially finite torsion class.

The last part follows from the theorem, since up to multiplicities, M0 ⊕M1 is
the direct sum of the indecomposable Ext-projectives in T .

There is a better description of the Ext-injectives in a torsion class.

Remark. If C is a module class in A-mod, we write I = ann(C) for the ideal of all
a ∈ A annihilating all modules in C. Then we can consider C as a module class in
A/I-mod. Since A is finite-dimensional, some module in C is a faithful module for
A/I. Thus A/I embeds in some module in C.

Lemma. If (T ,F) is a torsion theory in A-mod, then
(i) The Ext-injectives for T are the injective A/ ann(T )-modules.
(ii) The Ext-projectives for F are the projective A/ ann(F)-modules.

Proof. (i) Let I = ann(T ). Any injective A/I-module E has an epi (A/I)n → E.
Now A/I embeds in some module T ∈ T , and by the injective property the epi
extends to an epi T n → E. Thus E ∈ T .

Now if U is an Ext-injective, it embeds in an injective A/I-module, say 0 →
U → E → E/U → 0. Then E/U ∈ T , so this sequence splits, so U is injective as
an A/I-module.

(ii) is dual.
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5.2 Tilting modules

Definition. Let M be an A-module.
M is a partial tilting module if proj. dimM ≤ 1 and Ext1(M,M) = 0.
A partial tilting module M is a tilting module if there is an exact sequence

0 → A → M0 → M1 → 0 with M i ∈ addM . (Later we will see that it is
equivalent that #M = #A.)

M is a partial cotilting module if inj. dimM ≤ 1 and Ext1(M,M) = 0.
A partial cotilting module is a cotilting module if there is an exact sequence

0 → M1 → M0 → DA → 0 with Mi ∈ addM . (Again, it is equivalent that
#M = #A.)

Clearly M is a (partial) tilting A-module iff DM is a (partial) cotilting Aop-
module.

Note that we deal only with classical tilting theory. There is a version allowing
higher projective dimension.

Lemma. If M is a partial tilting module, then M is τ -rigid. Conversely if M is
τ -rigid, then it is a partial tilting module for A/ ann(M).

Proof. Use the AR formula DExt1(M,N) ∼= Hom(N, τM). If proj. dimM ≤ 1
then Hom(DA, τM) = 0 by Lemma (2) in §2.2, so the AR formula takes the form
DExt1(M,N) ∼= Hom(N, τM). The converse is the special case T = genM of (i)
in the next lemma.

Lemma. (i) If T is a torsion class in A-mod, then any Ext-projective M in T is
a partial tilting module for A/ ann(T ).

(ii) If furthermore T is functorially finite, then the direct sum of all indecom-
posable Ext-projectives is a tilting module for A/ ann(T ).
Proof. (i) Consider T as a module class in A/I-mod, where I = ann(T ). Clearly
Ext1A/I(M,M) = 0. Also the injective A/I-modules are in T , and τA/IM is in the
corresponding torsion-free class, so Hom(D(A/I), τA/IM) = 0. Thus by Lemma
(2) in §2.2, proj. dimA/I M ≤ 1.

(ii) If T is functorially finite, in the theorem of Auslander-Smalø, the map
f : A → M0 induces an injection A/I → M0, so M0 ⊕M1 is a tilting module for
A/I.

Proposition (Bongartz). Let M be a partial tilting module. Take a basis of
ξ1, . . . , ξn of Ext1(M,A), consider the tuple (ξ1, . . . , ξn) as an element of Ext1(Mn, A),
and let

0→ A→ E →Mn → 0.

be the corresponding universal extension. Then T = E ⊕M is a tilting module.
Thus every partial tilting module is a direct summand of a tilting module, and by
duality every partial cotilting module is a direct summand of a cotilting module.
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Proof. The long exact sequence for Hom(M,−) gives

Hom(M,Mn)
ξ−→ Ext1(M,A)→ Ext1(M,E)→ Ext1(M,Mn),

the map ξ is onto, and Ext1(M,Mn) = 0, so Ext1(M,E) = 0. From the long exact
sequence for Hom(−,M) one gets Ext1(E,M) = 0, from the long exact sequence
for Hom(−, E) one gets Ext1(E,E) = 0. Also A and Mn have projective dimension
≤ 1, hence so does E.

A partial tilting module M is τ -rigid, so gives a torsion theory (genM,M⊥0).
Moreover gen1M ⊆ genM ⊆M⊥1.

Proposition (1). For a partial tilting module M , the following are equivalent:
(i) M is a tilting module.
(ii) M⊥0,1 = 0.
(iii) genM = M⊥1.
(iv) gen1M = M⊥1.
(v) X is Ext-projective in M⊥1 ⇔ X ∈ addM .

Proof. (i)⇒ (ii). If X ∈M⊥0,1, apply Hom(−, X) to the exact sequence 0→ A→
M0 →M1 → 0, to deduce that Hom(A,X) = 0.

(ii) ⇒ (iii). Suppose X ∈M⊥1. Take a basis of Hom(M,X) and use it to form
the universal map f : Mn → X. Then Im f ∈ genM . Consider the exact sequence
0→ Im f → X → X/ Im f → 0. Apply Hom(M,−) giving an exact sequence

0→ Hom(M, Im f)→ Hom(M,X)→ Hom(M,X/ Im f)→ Ext1(M, Im f).

By construction the map Hom(M,Mn)→ Hom(M,X) is onto, hence so is the map
Hom(M, Im f) → Hom(M,X). Also Ext1(M, Im f) = 0 since M is τ -rigid. Thus
Hom(M,X/ Im f) = 0. Also Ext1(M,X/ Im f) = 0. Thus X/ Im f ∈ M⊥0,1. Thus
X/ Im f = 0, so f is onto, so X ∈ genM .

(iii) ⇒ (iv). Suppose X ∈ M⊥1. Then it is in genM . Let L be the kernel of
the universal map Mn → X. Then applying Hom(M,−) we see that L ∈M⊥1, so
L ∈ genM . Say M ′′ ↠ L. Now the sequence M ′′ → Mn → X → 0 shows that
X ∈ gen1M .

(iv) ⇒ (v). Clearly M and so any X ∈ add(M) is in M⊥1 and Ext-projective.
Conversely if X is in M⊥1 and Ext-projective, then by (iv) there is an exact
sequence M ′′ f−→ M ′ → X → 0. This gives an exact sequence 0 → Im f →
M ′ → X → 0 with Im f ∈ genM ⊆ M⊥1. By assumption this sequence splits, so
X ∈ addM .

(v) ⇒ (i). It suffices to show that E in Bongartz’s sequence is in addM , and
for this it suffices to show it is Ext-projective in M⊥1. We know it is in M⊥1.
If Y ∈ M⊥1, apply Hom(−, Y ) to the Bongartz sequence to get Ext1(Mn, Y ) →
Ext1(E, Y )→ Ext1(A, Y ), so Ext1(E, Y ) = 0.
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Dually, a partial cotilting module M is τ−-rigid, so gives a torsion theory
(⊥0M, cogenM). Moreover cogen1M ⊆ cogenM ⊆ ⊥1M . The following is dual to
the last proposition.

Proposition (2). For a partial cotilting module M , the following are equivalent:
(i’) M is a cotilting module.
(ii’) ⊥0,1M = 0.
(iii’) cogenM = ⊥1M .
(iv’) cogen1M = ⊥1M .
(v’) X is Ext-injective in ⊥1M ⇔ X ∈ addM .

Proposition (3). If AM is a (co)tilting module, then it is f.b. and if B = EndA(M),
then BM is also a (co)tilting module.

Proof. If AM is tilting, then gen1M = M⊥1, which contains DA, so AM is f.b.
(i) Applying HomA(−,M) to the exact sequence 0 → A → M0 → M1 → 0

gives
0→ HomA(M

1,M)→ HomA(M
0,M)→M → 0

and HomA(M
i,M) ∈ add(HomA(M,M)) = add(BB), so proj. dim BM ≤ 1.

(ii) The tilting sequence 0 → A → M0 → M1 → 0 stays exact on applying
Hom(−,M). Thus A ∈ cogen2(AM). Thus Ext1B(M,M) = 0 by the proposition
about endomorphism correspondents.

(iii) Applying HomA(−,M) to a projective resolution 0→ P1 → P0 →M → 0
of M gives an exact sequence

0→ B →M0 →M1 → 0

where M i = HomA(Pi,M) ∈ add(BM). Thus BM is a tilting module.
Dually for cotilting.

5.3 The Brenner-Butler Theorem

Let AM be a cotilting module and B = EndA(M), so BM is also cotilting.
In A-mod we have a torsion theory (TA,FA) = (⊥0

AM, cogen AM). Since AM
is cotilting we have

FA = cogen(AM) = cogen1(AM) = ⊥1
AM = {X ∈ A-mod : Ext1A(X,M) = 0}.

In B-mod we have a torsion theory (TB,FB) = (⊥0
BM, cogen BM). Since BM

is cotilting we have the equivalent alternative descriptions of FB.
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Theorem (Brenner-Butler Theorem, 1st version). There are antiequivalences

FA

HomA(−,M)−→
←−

HomB(−,M)

FB and TA
Ext1A(−,M)
−→
←−

Ext1B(−,M)

TB.

Proof. Since FA = cogen1(AM) and FB = cogen1(BM), the first antiequivalence
is given by endomorphism correspondence.

Given a module AX in TA, so with HomA(X,M) = 0, we show that

HomB(Ext
1
A(X,M),M) = 0

and construct a natural isomorphism

X → Ext1B(Ext
1(X,M),M).

Indeed, take a projective cover of X to get a sequence 0 → L → P → X → 0. It
gives an exact sequence of B-modules

0→ HomA(P,M)→ HomA(L,M)→ Ext1A(X,M)→ 0

Now P,L ∈ cogenM = cogen1M , so the natural maps P → HomB(HomA(P,M),M)
and L→ HomB(HomA(L,M),M) are isomorphisms. Also

HomA(L,M) ∈ cogen1(BM) = ⊥1(BM),

so Ext1B(Hom(L,M),M) = 0. Thus we get a commutative diagram

0 −−−→ L −−−→ P −−−→ X −−−→ 0y y
0 −−−→ (1(X,M),M) −−−→ ((L,M),M) −−−→ ((P,M),M) −−−→ 1(1(X,M),M) −−−→ 0

(where we omit the words Hom and Ext) with exact rows and in which the vertical
maps are isomorphisms. Thus HomB(Ext

1
A(X,M),M) = 0 and there is an induced

isomorphism X → Ext1B(Ext
1
A(X,M),M). One also needs to show that this is a

natural isomorphism, but we omit the proof of this.
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Example.

Theorem. If B is hereditary, then the torsion theory (TA,FA) is split (and by
symmetry, if A is hereditary, then (TB,FB) is split).

Proof. We want to show that Ext1A(U, V ) = 0 for all U ∈ FA and V ∈ TA. Now we
have V = Ext1B(Y,M) for some Y ∈ TB. Taking a projective A-module Q mapping
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onto U , gives an exact sequence

0→ Ω1U → Q→ U → 0

and applying HomA(−,M), we get an isomorphism Ext2(U,M) ∼= Ext1(Ω1U,M)
(dimension shifting). Also Q ∈ cogenM since M is faithful, so Ω1U ∈ cogenM =
FA, so Ext1(Ω1U,M) = 0, so Ext2(U,M) = 0. We also have Ext1(U,M) = 0.

Now take a projective resolution

0→ P1 → P0 → Y → 0.

Since HomB(Y,M) = 0, we get an exact sequence

0→ HomB(P0,M)→ HomB(P1,M)→ Ext1B(Y,M)→ 0.

Thus

· · · → Ext1A(U,HomB(P1,M))→ Ext1A(U,Ext
1
B(Y,M))→ Ext2A(U,HomB(P0,M))→ . . .

Now HomB(Pi,M) ∈ add(AM), so the outer terms are zero, giving the result.

We now give another version of the Brenner-Butler theorem. Let A be an
algebra and AT a tilting module. Let B = End(T )op, so T becomes an A-B-
bimodule, and TB is right B-module which is a tilting module. Thus DT is a left
B-module which is cotilting.

The tilting module AT gives a torsion theory (T ,F) in A-mod via

T = gen AT = (AT )
⊥1

F = (AT )
⊥0.

The cotilting left B-module DT gives a torsion theory (X ,Y) in B-mod where

X = ⊥0(BDT )

and
Y = cogen BDT = ⊥1(BDT ).

Note that if
· · · → P1 → P0 → T → 0

is a projective resolution of T as a right B-module, then

0→ DT → DP0 → DP1 → . . .

is an injective resolution of DT as a left B-module. Now if Y is a left B-module,
then TorBn (T, Y ) is the homology of the complex P∗⊗B Y , so D(TorBn (T, Y )) is the
cohomology of the complex D(P∗ ⊗B Y ) ∼= HomB(Y,DP∗), so

D(TorBn (T, Y )) ∼= ExtnB(Y,DT ).

Thus X = {Y : T ⊗B Y = 0} and Y = {Y : TorB1 (T, Y ) = 0}.
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Theorem (Brenner-Butler theorem, 2nd version). We have inverse equivalences

T
HomA(T,−)−→
←−
T⊗B−

Y

and

F
Ext1A(T,−)
−→
←−

TorB1 (T,−)

X .

For the proof, we consider DT as a cotilting right A-module, so as a cotilting
left Aop-module, and B = EndAop(DT ). Use this in 1st version, and compose with
duality.

Examples. (1) The Bernstein-Gelfand-Ponomarev reflection functors fit this pic-
ture. If i is a sink in Q, the tilting module is

T = τ−1P [i]⊕
⊕
j ̸=i

P [j].

In fact, for any algebra A, if P [i] is a simple projective (and not injective), this
construction gives a tilting module, called an APR tilting module after Auslander,
Platzeck and Reiten, Coxeter functors without diagrams, 1979.

(2) A tilted algebra is one of the form B = EndA(T ) where A is hereditary and
AT is a tilting module. Then the torsion theory (X ,Y) is split.

(3) A concealed algebra is a tilted algebra of the form B = EndA(T ) where
A is representation-infinite connected hereditary and AT is a preprojective tilting
module.

There is some n > 0 with τnT = 0. If X is a module with X ∼= τ−(n−1)τn−1X,
for example if X is indecomposable and not preprojective, or not near the start of
the preprojective component, then since A is hereditary,

Ext1(T,X) ∼= DHom(X, τT ) ∼= DHom(τ−(n−1)τn−1X, τT )
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∼= DHom(τn−1X, τnT ) = 0

so X ∈ T . Thus T contains all but finitely many indecomposables and F contains
only finitely many indecomposables.

Then B-mod is obtained by reassembling these two pieces as X and Y .
There is an example worked out in detail on p336 of Assem, Simson and

Skowronski, Elements of the representation theory of associative algebras I.
A theorem of Happel and Vossieck, Minimal algebras of infinite representation

type with preprojective component, Manuscripta Math. 1983: If B is an algebra
with a preprojective component and B is minimal of infinite representation type,
meaning that B/BeB of finite representation type for all nonzero idempotents e,
then either B is Morita equivalent to the path algebra of an r-arrow Kronecker
quiver with r ≥ 2, or B is tame concealed, and there is a classification of all such
algebras.

5.4 Derived equivalences

I promised to talk about how tilting theory is related to derived categories, but to
do this properly would be too much of a digression. So I will only sketch things
briefly.

Definition. An A-module T is a generalized (or Miyashita) tilting module if
(i) proj. dimT < ∞, so there is a projective resolution 0 → Pr → · · · → P0 →

T → 0
(ii) Exti(T, T ) = 0 for all i > 0
(iii) There is an exact sequence 0 → A → T 0 → · · · → T r → 0 with T i ∈

add(T ).

The following was proved by Happel for gl. dimA <∞ and in general by Cline,
Parshall and Scott, Derived categories and Morita theory, J. Algebra 1986.

Theorem. Let T be a generalized tilting A-module. Then T is faithfully balanced,
and letting B = End(T )op, the module TB is a generalized tilting right B-module.
Moreover T induces inverse equivalences of triangulated categories

Db(A-mod) −→←− Db(B-mod)

The functor to the right is RHom(T,−), the right derived functor of Hom(T,−).
This can be defined abstractly, but to show it exists and compute it, one uses the
isomorphisms

Db(A-mod) ∼= D+,b(A-mod) ∼= K+,b(A-inj).

Then Hom(T,−) can be applied to a complex of injectives I ·, giving a complex
Hom(T, I ·) in D+(B-mod).
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Now if X is an A-module in degree 0, then RHom(T,X) is computed by taking
an injective resolution of X, so its n-th cohomology is Extn(T,X). This is nonzero
only for finitely many n, so RHom(T,X) ∈ D+,b(B-mod). Now any complex X
in Db(A-mod) can be built from modules in a finite number of degrees. Thus
RHom(T,X) ∈ D+,b(B-mod) ∼= Db(B-mod).

Similarly the functor to the left is LT ⊗B −, constructed using

Db(A-mod) ∼= D−,b(A-mod) ∼= K−,b(A-proj).

Using that T ⊗B − is left adjoint to HomA(T,−) one can show that LT ⊗B

− is left adjoint to RHomA(T,−). Then one can show that they are inverse
equivalences.

Now suppose A is hereditary. Then every object in Db(A-mod) is a direct sum
of stalk complexes - living in only one degree.

The shift X[n] of a complex X is given by X[n]i = X i+n and it multiplies the
differential by (−1)i.

Thus if X is an A-module considered as a complex in degree 0, then X[n] is a
module in degree −n.

Also Hom(X[i], Y [j]) ∼= Extj−i(X, Y ) which is zero for j < i.
Thus we can picture Db(A-mod) as below.

Now suppose in addition that T is a classical tilting module, so B is tilted.
If X is an A-module in degree 0, then it is isomorphic in the derived category

to its injective resolution, and RHom(T,X) is the complex

· · · → 0→ Hom(T, I0)→ Hom(T, I1)→ 0→ . . .

The cohomology in degree i is Exti(T,X).
If X ∈ T = (AT )

⊥1 then RHom(T,X) is in B-mod. It is in the class X = {Y :
TorB1 (T, Y ) = 0}.

If X ∈ F = (AT )
⊥0 then RHom(T,X) is a module in degree 1, so it is in

B-mod[−1]. It is in the shift of Y = {Y : T ⊗B Y = 0}.
Since the torsion theory (X ,Y) is splitting, we can picture Db(B-mod) as fol-
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lows.

5.5 Consequences for Grothendieck groups

Definition. We consider two types of Grothendieck groups.
If A is an abelian category, the Grothendieck group G0(A) is the additive

group generated by symbols [X] for each object X in A, modulo the relations
[Y ] = [X] + [Z] for any short exact sequence 0→ X → Y → Z → 0.

If C is an additive category, the Grothendieck group K0(C) is the additive
group generated by symbols [X] for each object X in C, modulo the relations
[Y ] = [X] + [Z] whenever Y ∼= X ⊕ Z.

Lemma. If A is a f.d. algebra with simples S[i] (i = 1, . . . , n) and indecomposable
projectives P [i], then:

(i) The map sending a module X to its dimension vector gives an isomorphism
G0(A-mod) ∼= Zn, [X] 7→ dimX, so G0(A-mod) is the free Z-module on the symbols
[S[i]].

(ii) K0(A-proj) is also isomorphic to Zn since it is the free Z-module on the
symbols [P [i]].

Proof. (i) is the Jordan-Hölder theorem and (ii) is Krull-Remak-Schmidt.

Theorem. If AM is a cotilting module and B = EndA(M), then there is an iso-
morphism

θ : G0(A-mod)→ G0(B-mod), [X] 7→ [HomA(X,M)]− [Ext1A(X,M)].

Thus the canonical basis of G0(A-mod) gives a new basis of G0(B-mod), hence
the name “tilting”.
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Proof. If we apply HomA(−,M) to a short exact sequence of A-modules, say 0→
X → Y → Z → 0 we get a long exact sequence of B-modules

0→ Hom(Z,M)→ Hom(Y,M)→ Hom(X,M)→

Ext1(Z,M)→ Ext1(Y,M)→ Ext1(X,M)→ 0.

Now the relations for G0(B-mod) imply that

θ([Y ]) = [HomA(Y,M)]− [Ext1A(Y,M)]

= [HomA(X,M)]− [Ext1A(X,M)] + [HomA(Z,M)]− [Ext1A(Z,M)]

= θ([X]) + θ([Z])

so that θ is well-defined.
Swapping the roles of A and B there is a map ϕ in the reverse direction.
If X ∈ cogenM or X ∈ ⊥0M , then ϕ(θ([X])) = [X]. Because any X belongs

to a short exact sequence whose ends are torsion and torsion-free, it follows that
ϕθ = 1. Similarly θϕ = 1.

Recall that we write #M for the number of isomorphism classes of indecom-
posable summands of M . Thus #A is the number of isomorphism classes of inde-
composable projective A-modules, so the number of isomorphism classes of simple
A-modules.

Corollary. Any partial (co)tilting module M has #M ≤ #A, with equality if and
only if M is (co)tilting.

Proof. If AM is a cotilting module and B = EndA(M), then Hom(−,M) gives
an antiequivalence between addM and B-proj, so #M is the rank of G0(B-mod),
which is the rank of G0(B-mod), which is #A.

By duality any tilting module has #A summands. By Bongartz, any partial
tilting module is a summand of a tilting module.

Theorem (Smalø, 1984). If (T ,F) is a torsion theory, then T is functorially finite
iff F is functorially finite.

Proof. By symmetry, it suffices to prove that if T is functorially finite, then so is
F .

The number of indec Ext-injectives in F
= number of indec injectives in F + number of non-injective indec Ext-injectives

in F
= number of indec injectives in F + number of non-projective indec Ext-

projectives in T
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= number of indec injectives in F + number of indec Ext-projectives in T -
number of indec projectives in T .

Since T is functorially finite, the direct sum of the indecomposable Ext-projectives
in T is a tilting module for A/ ann(T ). Thus we get

= number of indec injectives in F + #A/ ann(T ) - number of indec projectives
in T .

Now the number of indecomposable injectives I[i] not in F is the number of in-
decomposable Ext-injectives in T , which is the number of indecomposable injective
A/ ann(T )-modules, so it is #A/ ann(T ).

Similarly the number of indecomposable projectives not in T is #A/ ann(F).
So we get
= (#A−#A/ ann(T )) + #A/ ann(T )− (#A−#A/ ann(F)).
= #A/ ann(F).
Now by the dual of an earlier result, any Ext-injective in F is a partial cotilting

module for A/ ann(F). Thus the direct sum M of all indecomposable Ext-injectives
in F is a cotilting module for A/ ann(F).

Thus working in A/ ann(F)-mod, we have cogenM = ⊥1M . Now since M is
Ext-injective in F , Ext1(F ,M) = 0, so F ⊆ ⊥1M = cogenM ⊆ F .

Thus also F = cogenM as a module class in A-mod. Thus F is contravariantly
finite by the proposition at the end of §1.9, and it is covariantly finite since the
inclusion has a left adjoint.

5.6 Some tau-tilting theory

It was started by Adachi, Iyama and Reiten, τ -tilting theory, 2014, although there
was earlier work, see Derksen and Fei, General Presentations of Algebras and
Foundations of tau-tilting Theory, arxiv 2409.12743. It has led to a lot of other
work. We shall only do a little.

We have done all the necessary prerequisites in our theorems about functorially
finite torsion and torsion-free classes.

Lemma. (i) If M is an A-module, then #A/ ann(M) is the number of different
simple composition factors involved in M .

(ii) If M is τ -rigid, then the number of indecomposable Ext-projectives in genM
is #A/ ann(M) and #M ≤ #A/ ann(M).

Proof. (i) If S is involved in M , then S must be an A/ ann(M)-module. On the
other hand, M is faithful as an A/ ann(M)-module, so A/ ann(M) embeds in a
direct sum of copies of M , so if S is a simple for A/ ann(M), then it must be a
composition factor of M .
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(ii) M is a partial tilting module for A/ ann(M), and genM is a functorially
finite torsion class, so the direct sum of the indecomposable Ext-projectives is a
tilting module for A/ ann(M).

Definition. Let M be a τ -rigid A-module.
(i) M is a support τ -tilting module if #M = #A/ ann(M), or equivalently M is

the direct sum of the indecomposable Ext-projectives in genM , each with non-zero
multiplicity.

(ii) M is a τ -tilting module if it is a sincere support τ -tilting module, or equiv-
alently #M = #A. (Recall that sincere means that every simple module occurs
as a composition factor.)

Lemma. If M is τ -rigid, then T = ⊥0(τM) is a sincere functorially finite torsion
class. If T is the direct sum of the indecompsable Ext-projectives in T , then T is
a τ -tilting module, M ∈ add(T ) and ⊥0(τT ) = genT .

The module T is called the Bongartz completion of M .

Proof. τM is a τ−-rigid module, so we get a torsion theory (⊥0(τM), cogen τM).
The torsion class is functorially finite by Smalø’s theorem. The torsion class is
sincere, since no injective I[i] embeds in τM , so I[i] is not in the torsion-free class,
so its torsion submodule is non-zero, and this has S[i] as a submodule. Clearly
M ∈ T and it is Ext-projective since if X ∈ T , then

Ext1(M,X) ∼= DHom(X, τM)

and Hom(X, τM) = 0. Now
⊥0(τM) = T = genT ⊆ ⊥0(τT ) ⊆ ⊥0(τM)

where the second equality holds by the Auslander-Smalø theorem of functorially
finite torsion classes, the first inclusion since T is τ -rigid, and the second since
M ∈ add(T ).

The following is an analogue of a result known as Wakamatsu’s lemma.

Lemma. If M is τ -rigid and f : M ′ → X is a right add(M)-approximation of a
module X, then Hom(Ker(f), τM) = 0.

Proof. Replacing X by Im(f), we may suppose that f is surjective. Applying
Hom(−, τM) gives an exact sequence

Hom(M ′, τM)→ Hom(Ker(f),M)→ Ext1(X, τM)→ Ext1(M ′, τM).

The first hom space is zero since M is τ -rigid. Now the map Hom(M,M ′) →
Hom(M,X) induced by f is surjective, hence so is the map on Hom, hence by the
Auslander-Reiten formula, the map on Ext1 is injective.
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Theorem. A τ -rigid module M is τ -tilting iff genM = ⊥0(τM).

Proof. If M is τ -tilting, then its Bongartz completion T can have no new indecom-
posable summands, so add(M) = add(T ), and we get the result from the lemma.

Suppose genM = ⊥0(τM). Let T be the Bongartz completion of M . Then

genM ⊆ genT = ⊥0τT ⊆ ⊥0τM = genM

so all are equal. Take a minimal right add(M)-approximation of T , say f : M ′ → T .
It is surjective since T ∈ genM , so we get an exact sequence

0→ Ker(f)→M ′ → T → 0.

By the Wakamatsu-type lemma Hom(Ker(f), τM) = 0. Since ⊥0(τM) = ⊥0(τT )
we get Hom(Ker(f), τT ) = 0. Thus Ext1(T,Ker(f)) = 0. Thus the sequence
0→ Ker(f)→M ′ → T → 0 splits. Thus T ∈ add(M), so M is τ -tilting.

Corollary. Any basic τ -rigid module M which is not τ -tilting, is a direct summand
of at least two basic support τ -tilting modules.

Proof. genM and ⊥0(τM) are different functorially finite torsion classes containing
M , and we can take the direct sum of the indecomposable Ext-projectives in either.

Remark. It is useful to consider pairs (M,P ) where M is a module, P is a pro-
jective module and Hom(P,M) = 0, so that P is a direct sum of P [i] such that
S[i] is not a composition factor of M .

We call it a τ -rigid pair if M is τ -rigid.
We call it a support τ -tilting pair if #M + #P = #A. Note that we always

have ≤ for a τ -rigid pair. Also M is necessarily support τ -tilting.
We call a pair basic if M and P are basic.
One can show that any basic τ -rigid pair (M,P ), can be extended to a basic

support τ -tilting pair (M ⊕M ′, P ⊕ P ′), and if #M + #P = #A − 1, there are
exactly two ways to do it.

Thus we get mutations of support τ -tilting pairs where we remove any one
indecomposable summand, and replace it by the other possible extension of that
pair.

Such mutations are related to the mutations in cluster algebras.

Remark. There is a natural homomorphism

θ : K0(A-proj)→ G0(A-mod), θ([X]K) = [X]G.
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It is an isomorphism if gl. dimA <∞. For this, it suffices to see that it is surjective.
Now a projective resolution

0→ Pn → · · · → P0 → X → 0

gives

[X]G =
n∑

i=0

(−1)i[Pi]G ∈ Im θ.

In general, however, it is not an isomorphism.
Instead there is a bilinear map

⟨−,−⟩ : K0(A-proj)×G0(A-mod)→ Z, ([P ], [X]) 7→ dimHom(P,X).

and
⟨[P [i]], [S[j]]⟩ = dimHom(P [i], S[j]) = δij dimDi.

where Di = End(S[i])op. The matrix is invertible over Q, so gives a perfect pairing
between K0(A-proj)⊗Z Q and G0(A-mod)⊗Z Q.

Definition. The g-vector of a module M is

g(M) = [P0]− [P1] ∈ K0(A-proj)

where P1 → P0 →M → 0 is the minimal projective presentation.

Lemma. If M and X are modules, then

⟨g(M), [X]⟩ = dimHom(M,X)− dimHom(X, τM).

Proof. We have exact sequences

0→ τM → νP1 → νP0

and
0→ Hom(M,X)→ Hom(P0, X)→ Hom(P1, X)

so we get a commutative diagram with exact rows

0 −−−→ Hom(X, τM) −−−→ Hom(X, νP1) −−−→ Hom(X, νP0)∥∥∥ ∥∥∥
DHom(P1, X) −−−→ DHom(P0, X) −−−→ DHom(M,X) −−−→ 0
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Lemma. If M is τ -rigid, and P1
θ−→ P0

ϕ−→M → 0 is a minimal projective presen-
tation, then P0 and P1 have no direct summand in common.

Proof. The map Hom(P0,M) → Hom(P1,M) is surjective since its dual can be
identified with the map Hom(M, νP1)→ Hom(M, νP0) and the kernel of this map
is Hom(M, τM) = 0.

It suffices to show that any map s : P1 → P0 is in the radical. The composition
ϕs ∈ Hom(P1,M), so by the surjectivity, ϕs = tθ for some t : P0 → X.

Since ϕ is surjective and P0 is projective, we have t = ϕu for some u : P0 → P0.
Then ϕ(s − uθ) = 0. Thus since P1 is projective, s − uθ = θv for some

v : P1 → P1. Now θ is in the radical, hence so is s.

Theorem. Two τ -rigid modules with the same g-vector must be isomorphic.

By the lemma, the two modules have the same projectives in their mini-
mal projective presentations. Thus we are dealing with two homomorphisms in
Hom(P1, P0). Can reduce to the case of an algebra over an algebraically closed
field. Then it is a simple geometric argument. Hopefully we will do it later.

Remark. There are nice connections with semibricks. See Asai, Semibricks, IMRN
2020 and Ringel, Brick chain filtrations, arxiv 2411.18427

Also Demonet, Iyama and Jasso, tau-tilting finite algebras, bricks, and g-
vectors, IMRN 2019. For example the following are equivalent.

- A has only finitely many τ -tilting modules.
- Every torsion class in A-mod is functorially finite.
- A has only finitely many bricks.
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6 Varieties and schemes of algebras and modules

6.1 Varieties of algebras

First we need to discuss varieties. We work over an algebraically closed field K,
and follow Kempf, Algebraic varieties, 1993.

Definition. A space with functions consists of a topological space X and the
assignment of a set O(U) of regular functions for each open set U ⊆ X, satisfying:

(a) O(U) is a K-subalgebra of the algebra of all functions U → K, with point-
wise operations.

(b) If U is a union of open sets, U =
⋃
Uα, then f ∈ O(U) iff f |Uα ∈ O(Uα) for

all α.
(c) If f ∈ O(U), then D(f) = {u ∈ U | f(u) ̸= 0} is open in U and 1/f ∈

O(D(f)).
A morphism of spaces with functions is a continuous map θ : X → Y with the

property that for any open subset U of Y , and any f ∈ O(U), the composition

θ−1(U)
θ−→ U

f−→ K

is in O(θ−1(U)). In this way one gets a category of spaces with functions.

Properties. (1) If X is a space with functions and V ⊆ X is any subset, one
defines O(V ) to be the set of functions f : V → K such that each v ∈ V has an
open neighbourhood U in X such that f |V ∩U = g|V ∩U for some g ∈ O(U).

(2) Any subset V of a space with functions X becomes a space with functions
with the induced topology and induced functions, and the inclusion V → X is a
morphism. (Kempf, Exercise 1.5.3.)

(3) An embedding is a morphism θ : X → Y which induces an isomorphism
X → Im(θ). If so, then for any Z is a space with functions, a mapping ϕ : Z → X
is a morphism if and only if θϕ : Z → Y is a morphism.

(4) If X and Y are spaces with functions, then the set X × Y can be given the
structure of a space with functions, so that it becomes a product of X and Y in
the category of spaces with functions. See Kempf, Lemma 3.1.1. The topology is
not the usual product topology. Instead a basis of open sets is given by the sets

{(u, v) ∈ U × V : f(u, v) ̸= 0}

where U is open in X, V is open in Y and f(x, y) =
∑n

i=1 gi(x)hi(y) with gi ∈ O(U)
and hi ∈ O(V ).

(5) The diagonal map X → X ×X is an embedding, since if ∆X is its image,
then there is a morphism ∆X → X given by the composition ∆X → X×X

p1−→ X.
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(6) The projection morphism p : X × Y → X is an open morphism, that is,
the image of any open set U is open. Namely, for y ∈ Y , the identity morphism
X → X and the morphism X → Y sending every element to y induce a morphism
iy : X → X×Y with iy(x) = (x, y). Now if U ⊆ X×Y , then p(U) =

⋃
y∈Y i−1

y (U),
which is open.

Definition. Affine n-space is An = Kn considered as a space with functions with:
- The topology is the Zariski topology, so closed sets are of the form

V (S) = {(x1, . . . , xn) ∈ Kn | f(x1, . . . , xn) = 0 for all f ∈ S}

where S is a subset of the polynomial ring K[X1, . . . , Xn]. Equivalently, the sets

D(f) = {(x1, . . . , xn) ∈ Kn | f(x1, . . . , xn) ̸= 0}

with f ∈ K[X1, . . . , Xn] are a base of open subsets, and by noetherianness, any
open set is a finite union of D(f).

- If U is an open subset of An, then the set of regular functions O(U) consists of
the functions f : U → K such that each point u ∈ U has an open neighbourhood
W ⊆ U such that f |W = p/q with p, q ∈ K[X1, . . . , Xn] and q(x1, . . . , xn) ̸= 0 for
all (x1, . . . , xn) ∈ W .

Properties. (a) If X is a space with functions, then a mapping

θ : X → An, θ(x) = (θ1(x), . . . , θn(x))

is a morphism of spaces with functions iff the θi are regular functions on X. If θ is
a morphism, then since the ith projection πi : An → K is regular, so it θi = πiθ is
regular. Conversely suppose that θ1, . . . , θn are regular. Let U be an open subset
of An and f = p/q ∈ O(U) with q(u) ̸= 0 for u ∈ U . We need to show that fθ is
regular on θ−1(U). Now by assumption pθ = p(θ1(x), . . . , θn(x)) and qθ are regular
on U . Also qθ is non-vanishing on θ−1(U). Thus pθ/qθ is regular on θ−1(U).

(b) It follows that An × Am ∼= An+m.
(c) An n-dimensional vector space V can be considered as a space with functions

isomorphic to An by choosing any basis. Any linear map An → Am is a morphism
of spaces with functions, and an invertible linear map is an isomorphism, so a
different basis gives the same space with functions.

(d) X = An is separated, meaning that the diagonal

∆X = {(x, x) : x ∈ X}

is closed in X ×X, since

∆An = {(x1, . . . , xn, y1, . . . , yn) ∈ A2n : x1 = y1, . . . , xn = yn},

so it is closed. Note that if X is a topological space and X ×X is considered with
the product topology, then ∆X is closed if and only if X is Hausdorff.
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Definition. An affine variety is a space with functions which is, or is isomorphic to,
a closed subset of An. If X is an affine variety, its coordinate ring is K[X] := O(X).
An (abstract) variety is a space with functions X which is separated and with a
finite open covering by affine varieties.

Note that an affine variety is a variety, since separatedness passes to subsets of
a space with functions equipped with the induced structure, for if Y is a subset of
X, then ∆Y = (Y × Y ) ∩∆X in X ×X.

Example. Determinantal varieties. If V and W are f.d. vector spaces then the
space Hom(V,W )≤r of linear maps of rank ≤ r is closed in Hom(V,W ), so an affine
variety. Namely, identifying this with Mn×m(K), it is defined by the vanishing of
all minors of size r + 1.

Recall that the radical of an ideal I in a commutative ring A is
√
I = {a ∈ A : an ∈ I for some n > 0}

It is an ideal. The ideal I is radical if I =
√
I. Equivalently, if the factor ring A/I

is reduced, that is, it has no nonzero nilpotent elements. Since K[X1, . . . , Xn] is a
UFD, if f is an irreducible polynomial in K[X1, . . . , Xn], then (f) is a prime ideal,
so K[X1, . . . , Xn]/(f) is a domain, so (f) is a radical ideal.

Theorem. Let X be a closed subset of An, say X = V (S) with S is a subset of
K[X1, . . . , Xn]. Then there is a canonical isomorphism

K[X] ∼= K[X1, . . . , Xn]/
√
I

where I is the ideal generated by S and
√
I is its radical.

The kernel of the canonical map K[X1, . . . , Xn] → K[X] is
√
I by Hilbert’s

Nullstellensatz. The fact that is is surjective is proved in Kempf §1.5.

Corollary. The assignment X 7→ K[X] gives an anti-equivalence between the cat-
egories of affine varieties and finitely generated reduced commutative K-algebras.
Moreover if Z is any space with functions, we get a bijection

Homspaces with functions(Z,X)→ HomK-algebras(K[X],O(Z))

sending θ : Z → X to the composition map f 7→ fθ.

Proof. The theorem shows that K[X] is a f.g. reduced commutative algebra, and
any such occurs. The statement about morphisms follows from our observation
about morphisms Z → An.
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Theorem. A product X × Y of varieties is a variety. If X and Y are affine
varieties, so is X × Y , and K[X × Y ] ∼= K[X]⊗K K[Y ].

Proof. Recall that the product X × Y exists for any two spaces with functions.
If X is closed in An and Y is closed in Am then X × Y is closed in An ×Am ∼=

An+m, so affine. Clearly K[X] ⊗K K[Y ] is a f.g. commutative algebra, and with
commutative algebra (using that K is algebraically closed) one can show it is
reduced. Now the categorical property shows that X × Y has coordinate ring
K[X]⊗K K[Y ].

In general, it is straightforward that if U ⊆ X and V ⊆ Y are open (resp.
closed) subsets, then U × V is open (resp. closed) in X × Y . Moreover with the
induced structure as a space with functions it is a categorical product.

Assuming that X and Y are separated, ∆X×Y is identified with ∆X×∆Y which
is closed in (X ×X)× (Y × Y ).

Properties. (i) If X is a variety and x ∈ X, then the singleton set {x} is closed
in X. This is easy to see for affine space, it follows immediately for X an affine
variety, and then for X an arbitrary variety.

(ii) Any variety is a noetherian topological space, that is it has the ascending
chain condition on open subsets. The noetherian property of polynomial rings
proves this for affine space, and then it follows for affine varieties and then for
arbitrary varieties.

(iii) In particular, any variety is quasi-compact, meaning that any open covering
has a finite subcovering. (Usually this is just called compactness, but in this context
it is called quasi-compactness, apparently to make clear that the topological spaces
needn’t be Hausdorff.)

(iv) For a subset Y of a topological space, the following are equivalent, and
then Y is called locally closed.
(1) Y is an open subset of a closed subset of X
(2) Y is open in its closure
(3) Y is the intersection of an open and a closed subset of X.

Definition. A subvariety Y of a variety X is a locally closed subset equipped with
the induced structure as a space with functions.

Clearly a closed subvariety of an affine variety is affine.

Proposition. If X is an affine variety and f ∈ K[X], then the open subset D(f) =
{x ∈ X : f(x) ̸= 0} is an affine variety and K[D(f)] ∼= K[X]f (the localization,
inverting f).
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Proof. We have an isomorphisms D(f) −→←−{(x, t) ∈ X × A1 : f(x)t = 1}, where
the map to the left sends (x, t) to x and the map to the right sends x to (x, 1/f(x)).
It is a morphism since 1/f ∈ O(D(f)).

Corollary. Any subvariety of a variety is a variety.

Proof. Suppose Y ⊆ X. We need to show that Y is a finite union of affine open
subsets. Since X is a finite union of affine opens, we may reduce to the case when
X is affine. We may also assume that Y is open in X. But then Y = X ∩ U with
U = D(f1)∪ · · · ∪D(fm), and then Y = V1∪ · · · ∪Vm with Vi = X ∩D(fi) a closed
subset of the affine variety D(fi), hence affine.

Example. If V and W are vector spaces, the set of injective linear maps Inj(V,W )
is an open subvariety in Hom(V,W ), since the complement is Hom≤r(V,W ) where
r = dimV − 1.

Remark. The example of D(f) shows that some open subvarieties of affine vari-
eties quasi-affine varieties are again affine. But this is not always true. For example
U = A2 \ {0} = D(X1) ∪D(X2) is not affine.

To see this, we show first that O(U) = K[X1, X2]. A function f ∈ O(U)
is determined by its restrictions fi to D(Xi) (i = 1, 2). Now fi ∈ O(D(Xi)) =
K[X1, X2, X

−1
i ]. Moreover the restrictions of f1 and f2 to D(X1) ∩ D(X2) =

D(X1X2) are equal, so f1 and f2 are equal as elements of K[X1, X2, 1/X1X2]. But
this is only possible if they are both in K[X1, X2], and equal. Thus f ∈ K[X1, X2].

Now the inclusion morphism θ : U → A2 induces a homomorphism O(A2) →
O(U) which is actually an isomorphism. Now the category of affine varieties is
anti-equivalent to the category of finitely generated reduced K-algebras. If U were
affine, then since the map on coordinate rings is an isomorphism, θ would have to
be an isomorphism. But is isn’t.

Definition. A (non-empty) topological space X is irreducible if it cannot be writ-
ten as a union of two proper closed subsets.

Properties. (1) X is irreducible iff every non-empty open subset U is dense in X.
Thus any non-empty open subset of an irreducible space is irreducible.

(2) An affine variety X is irreducible iff K[X] is a domain. (Kempf, Lemma
2.3.1.) In particular An is irreducible.

(3) Any variety is a finite union of maximal irreducible closed subvarieties, its
irreducible components.

(4) A product of irreducible varieties is irreducible. Indeed if X × Y = Z1 ∪Z2

with the Zi closed, then for all x ∈ X we have

Y = i−1
x (Z1) ∪ i−1

x (Z2),
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so by irreduciblity, one of the sets on the right is Y . Thus {x}× Y is contained in
Z1 or Z2. Thus X = X1 ∪X2 where

Xi =
⋂
y∈Y

i−1
y (Zi)

Thus by irreducibility, we have X = Xi for some i, so Zi = X × Y .

Definition. An algebraic group is a group which is also a variety, such that mul-
tiplication G×G→ G and inversion G→ G are morphisms of varieties.

A morphism of algebraic groups is a map which is a group homomorphism and
a morphism of varieties.

When considering an action of an algebraic group on a variety X we shall
suppose that the map G×X → X is a morphism of varieties.

The general linear group GLn(K) is the open subset D(det) of Mn(K), so an
affine variety. It is an algebraic group thanks to the formula g−1 = adj g/ det g. It
acts by left multiplication or by conjugation on Mn(K).

A linear algebraic group is an algebraic group which is isomorphic to a closed
subgroup of GLn(K). For example the special linear group, orthogonal group or
any finite group. The additive and multiplicative groups of the field are

Ga = (K,+) ∼= {
(
1 a
0 1

)
: a ∈ K}, Gm = (K \ {0},×) = GL1(K).

Any finite product of linear algebraic groups is a linear algebraic group, using that
GLn(K)×GLm(K) embeds in GLn+m(K).

Remark. Any linear algebraic group is an affine variety, and conversely one can
show that any affine algebraic group is linear, see for example Humphreys, Linear
algebraic groups, section 8.6. An elliptic curve is an example of an algebraic group
which is a projective variety, so not linear.

Lemma. A connected algebraic group is an irreducible variety.

Proof. Write the group as a union of irreducible components G = G1 ∪ · · · ∪ Gn.
Since G1 is not a subset of the union of the other components, some element g ∈ G1

does not lie in any other component. Now any two elements of an algebraic group
look the same, since multiplication by any h ∈ G defines an isomorphism G→ G.
It follows that every element of G lies in only one irreducible component. Thus G
is the disjoint union of its irreducible components. But then the components are
open and closed, and since G is connected, there is only one component.
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Let V be a vector space of dimension n, with basis e1, . . . , en. We write Bil(n)
for the set of bilinear maps V ×V → V . A map µ ∈ Bil(n) is given by its structure
constants (ckij) ∈ Kn3 with

µ(ei, ej) =
∑
k

ckijek.

Equivalently Bil(n) ∼= Hom(V ⊗ V, V ), Thus it is affine space An3 .
We write Ass(n) for the subset consisting of associative multiplications. This is

a closed subset of Bil(n), hence an affine variety, since it is defined by the equations

µ(µ(ei, ej), ek) = µ(ei, µ(ej, ek)),

that is ∑
p

cpijc
s
pk =

∑
q

csiqc
q
jk

for all s.
We write Alg(n) for the subset of associative unital multiplications, so algebra

structures on V .

Theorem. Alg(n) is an affine open subset of Ass(n), hence an affine variety.
The algebraic group GL(V ) acts by basis change, and the orbits correspond to
isomorphism classes of n-dimensional algebras.

Proof. (i) We use that a vector space A with an associative multiplication has a 1
if and only if there is some a ∈ A for which the maps ℓa, ra : A → A of left and
right multiplication by a are invertible.

Namely, if u = ℓ−1
a (a), then au = a. Thus aub = ab for all b, so since ℓa is

invertible, ub = b. Thus u is a left 1. Similarly there is a right 1, and they must
be equal.

(ii) For the algebra V with multiplication µ, write ℓµa and rµa for left and right
multiplication by a ∈ V . Then Alg(n) =

⋃
a∈V D(fa) where fa(µ) = det(ℓµa) det(r

µ
a ).

Thus Alg(n) is open in Ass(n).

(iii) The map
Alg(n)→ V, µ 7→ the 1 for µ

is a morphism of varieties, since on D(fa) it is given by (ℓµa)
−1(a), whose components

are rational functions, with det(ℓµa) in the denominator.

(iv) Alg(n) is affine. In fact

Alg(n) ∼= {(µ, u) ∈ Ass(n)× V | u is a 1 for µ}.

The right hand side is a closed subset, hence it is affine. Certainly there is a
bijection, and the maps both ways are morphisms.

(v) Last statement is clear.
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Example. The structure of Alg(n) is known for small n. For example Alg(4) has
5 irreducible components, of dimensions 15, 13, 12, 12, 9. See P. Gabriel, Finite
representation type is open, 1974.

End of lecture on 2025-11-20. Provisional script for the next
lecture follows (subject to change).

6.2 Schemes and varieties of modules

More general than varieties are schemes. I only discuss affine schemes, using rep-
resentable functors rather than sheaves. See:

- M. Demazure and P. Gabriel, Groupes Algébriques, 1970. Partial English
translation, Introduction to Algebraic Geometry and Algebraic Groups, 1980.

- W. C. Waterhouse, Affine group schemes, 1979.
- D. Eisenbud and J. Harris, The geometry of schemes, 2000. (Chapter VI)

Let K be a commutative ring. We write K-comm for the category of commuta-
tive K-algebras, or equivalently commutative rings R equipped with a homomor-
phism K → R.

Definition. The category of affine (K-)schemes is the category of representable
(covariant) functors

F : K-comm→ Sets

with morphisms given by natural transformations. (These are not additive cate-
gories.)

Recall that a functor F is said to be representable if there is an object A in the
category (a commutative K-algebra) such that

F (−) ∼= HomK-comm(A,−).

By Yoneda’s lemma, the functor A 7→ HomK-comm(A,−) defines an anti-equivalence
from K-comm to the category of affine schemes.

Examples. (i) An is the affine scheme with An(R) = Rn. It is represented by the
polynomial ring K[X1, . . . , Xn], since

HomK-comm(K[X1, . . . , Xn], R) = Rn.

(ii) Any subset S of K[X1, . . . , Xn] defines a functor V(S) by

V(S)(R) = {(x1, . . . , xn) ∈ Rn : f(x1, . . . , xn) = 0 for all f ∈ S}.

It is an affine scheme, represented by the algebra K[X1, . . . , Xn]/(S).
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Definition. The affine scheme represented by A is
- algebraic if A is f.g. as a K-algebra (and K is a noetherian ring).
- reduced if A is reduced.

We immediately get:

Proposition. If K is an algebraically closed field, then there is an equivalence

Cat. of affine varieties→ Cat. of reduced affine algebraic schemes

X 7→ HomK-comm(K[X],−).

We usually identify an affine variety with the reduced affine algebraic scheme.
Note that if X is the functor, then the underlying set for the variety is X(K).

Lemma. Given an affine (algebraic) scheme F , there is a reduced affine (algebraic)
scheme Fred and a morphism Fred → F such that for all R the map

Fred(R)→ F (R)

is injective, and a bijection for R reduced. This defines a functor F 7→ Fred which
is right adjoint to the inclusion of reduced affine (algebraic) schemes into affine
(algebraic) schemes.

Proof. If F (−) = Hom(A,−) we set Fred(−) = Hom(Ared,−). The natural map
A→ Ared gives a morphism Fred → F .

For example V(S) is algebraic. It is reduced if and only if K[X1, . . . , Xn]/(S)
is reduced. The scheme V(S)red is represented by K[X1, . . . , Xn]/

√
(S)

Remark. If K is any commutative ring, then an affine group scheme over K is a
representable functor F : K-comm→ Groups. If A is the commutative K-algebra
representing F , then A becomes a Hopf algebra, see Waterhouse §1.4. For example
GLn is the affine group scheme with GLn(R) = GLn(R) for all R. It is represented
by the algebra K[Xij, 1/ det], so reduced.

Let A be a f.g. K-algebra (possibly non-commutative). A d-dimensional A-
module V can be considered as a homomorphism A → EndK(V ), or choosing a
basis of V , as a homomorphism A→Md(K).

Definition. Let A be a f.g. K-algebra and n a natural number. We define the
scheme Mod(A, d) of d-dimensional A-modules to be the functor

K-comm→ Sets, R 7→ HomK-algebra(A,Md(R)).

50



Lemma. Mod(A, d) is an affine algebraic K-scheme.

Proof. Write A as a quotient of a free algebra, say A = K⟨X1, . . . , Xk⟩/I. Then

Mod(A, d)(R) = {(A1, . . . , Ak) ∈Md(R)k : p(A1, . . . , Ak) = 0 for all p ∈ I}.

Consider the polynomial ring S = K[Xrij : 1 ≤ r ≤ k, 1 ≤ i, j ≤ d] and let
Ur ∈ Md(S) be the matrix with (i, j) entry Xrij. If p ∈ K⟨X1, . . . , Xk⟩, then
considering it as a noncommutative polynomial, we obtain p(U1, . . . , Uk) ∈Md(S).
Then Mod(A, d)(R) is in bijection with

HomK-algebra(S/J,Md(R)).

where J is the ideal generated by all entries of p(U1, . . . , Uk) with p ∈ I.

Definition. If K is algebraically closed, the variety corresponding to the reduced
scheme is denoted Mod(A, d). Thus

Mod(A, d) = HomK-algebra(A,Md(K)).

There is an action of GLd(K) on Mod(A, d) by conjugation, so given by (g ·θ)(a) =
gθ(a)g−1. The orbits correspond to isomorphism classes of d-dimensional modules.

Writing A = K⟨X1, . . . , Xk⟩/I, we have

Mod(A, d) = {(A1, . . . , Ak) ∈Md(K)k : p(A1, . . . , Ak) = 0 for all p ∈ I}.

Examples. (1) Mod(A, 1) is the affine algebraic scheme given by the largets com-
mutative quotient of A, which is A/([A,A]), where [A,A] = {ab − ba : a, b ∈ A}.
Then the variety has coordinate ring

K[Mod(A, 1)] = (A/([A,A]))/
√
0.

(2) The nilpotent variety consists of the d × d nilpotent matrices over K. In
fact that dth power of such a matrix must be zero, so the nilpotent variety is

Nd = {A ∈Md(K) : Ad = 0} = Mod(K[x]/(xd), d)

(3) The commuting variety consists of the pairs of commuting matrices

Cd = {(A,B) ∈Md(K)2 : AB = BA} = Mod(K[x, y], d).
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Remark. We can do the same thing with quivers and dimension vectors. If Q is
a finite quiver and α ∈ NQ0 is a dimension vector, one gets an affine space

Rep(Q,α) =
∏
a∈Q1

HomK(K
αt(a) , Kαh(a))

and the group
GL(α) =

∏
i∈Q0

GLαi
(K)

acts by conjugation,
(g · x)a = gh(a)xa(gt(a))

−1

and the orbits correspond to the isomorphism classes of representations of Q of
dimension vector α.

There is a corresponding scheme Rep(Q,α) with

Rep(Q,α)(R) =
∏
a:i→j

HomR(R
αi , Rαj)

which is reduced.
For an algebra A = KQ/I, one gets an affine algebraic scheme Rep(A,α)

which is not necessarily reduced, and the affine variety Rep(A,α) which is a closed
subset of Rep(Q,α). Again, the orbits under GL(α) correspond to the isomorphism
classes of representations.

Another way to get this. Let S = K × · · · ×K with the factors indexed by Q0.
There is a homomorphism S → A sending the 1 in the ith factor to the idempotent
ei, and restriction gives a morphism

res : Mod(A, d)→ Mod(S, d).

Given a dimension vector α with
∑

i∈Q0
αi = d, let z ∈ Mod(S, d) be the S-module

structure given by the decomposition

Kd =
⊕
i∈Q0

Kαi .

Then Rep(A,α) = res−1(z).

Example. Let Q be the quiver 1
a−→ 2

b−→ 3 and I the ideal generated by ba.

Rep(KQ/I, (2, 2, 1)) = {(a, b) ∈M2×2(K)×M1×2(K) : ba = 0}.
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