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I cover a number of key topics in the representation theory of finite-dimensional
associative algebras. Specifically:

• Correspondences given by faithfully balanced modules, and applications to
Auslander algebras and homological conjectures.

• Tilting theory and the beginnings of tau-tilting theory.

• Geometric methods for studying representations of algebras, including an
introduction to varieties and schemes.

• Matrix reductions in the sense of Roiter and Kleiner, and Drozd’s Tame and
Wild Theorem.

Some relevant books:

• I. Assem and F. U. Coelho, Basic representation theory of algebras, Springer
2020.

• I. Assem, D. Simson and A. Skowroński, Elements of the representation the-
ory of associative algebras. Volume 1, Techniques of representation theory,
CUP 2006.

• H. Derksen and J. Weyman, An introduction to quiver representations, Amer-
ican Mathematical Society 2017.

• P. Gabriel and A. V. Roiter, Representations of finite dimensional algebras,
Springer 1977.

• A. Kirillov Jr., Quiver Representations and Quiver Varieties, American Math-
ematical Society 2016.

• A. Skowroński and K. Yamagata, Frobenius algebras 2 Tilted and Hochschild
extension algebras, European Mathematical Society 2017.

The section numbering continues from the previous lecture course.
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4 Homological topics
In this section I want to discuss

- Some of the many homological conjectures for f.d. algebras
- Auslander’s correspondence between algebras A of finite representation type

and algebras B with gl. dimB ≤ 2 ≤ dom. dimB, and Iyama’s generalization of
this with cluster tilting objects.

The unifying feature is what I call endomorphism correspondence for faithfully
balanced modules.

4.1 Higher generation and cogeneration

We are interested in finite-dimensional algebras A over a field K (but most things
generalize easily to Artin algebras).

Except where explicitly stated, all modules are f.d., and we write A-mod for
the category of finite-dimensional left A-modules.

We write D for the duality HomK(−, K) between A-mod and Aop-mod.
Recall that a module class in A-mod is a full subcategory closed under isomor-

phisms, direct sums and direct summands. Given any module M , add(M) is the
smallest module class containing M . It is given by the modules isomorphic to a
direct summand of Mn for some n.

Definition. Given a module M , gen(M) denotes the module class consisting of
quotients of direct sums of copies of M and cogen(M) the module class of submod-
ules of a direct sum of copies of M .

We say M is a generator if gen(M) = A-mod. It is equivalent that A ∈ gen(A),
or that A ∈ add(M). We say M is a cogenerator if cogen(M) = A-mod. It is
equivalent that DA ∈ cogen(M), or DA ∈ add(M).

There are higher versions as follows. Here

Proposition (1). Let M be an A-module and n ≥ 0 and consider M also as a
B-module, where B = EndA(M). For an A-module X, the following are equivalent.

(a) There is an exact sequence

Mn
fn−→Mn−1 → · · · →M0

f0−→ X → 0

with Mi ∈ addM , such that the sequence

HomA(M,Mn−1)→ · · · → HomA(M,M0)→ HomA(M,X)→ 0

is exact (note that this is automatic if M is projective).
(b) The natural map HomA(M,X)⊗B M → X is surjective (in case n = 0) or

an isomorphism (in case n > 0) and TorBi (HomA(M,X),M) = 0 for 0 < i < n.
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Definition. We define genn(M) to be the full subcategory of A-mod given by the
modules X satisfying these conditions. Using condition (b) it is easy to see that it
is a module class. Clearly

add(M) ⊆ · · · ⊆ gen2(M) ⊆ gen1(M) ⊆ gen0(M) = gen(M).

Proof. (a)⇒(b). First note that we may assume that the sequence

HomA(M,Mn)→ HomA(M,Mn−1)→ · · · → HomA(M,M0)→ HomA(M,X)→ 0

is exact. By assumption it is exact except possibly at HomA(M,Mn−1). Recall
from section 1.9, that addM is functorially finite in A-mod. Thus the module
Im(fn) has a right addM -approximation, say f ′ : M ′ → Im(fn). Since it is an
approximation, we can factorize fn = f ′g for some g : Mn → M ′. Thus the map
f ′ has image Im(fn). Thus the sequence

M ′ f ′
−→Mn−1

fn−1−−→ . . .
f1−→M0

f0−→ X → 0

is exact. Also, the sequence

HomA(M,M ′)→ HomA(M,Mn−1)→ · · · → HomA(M,M0)→ HomA(M,X)→ 0

is exact, since any morphism in Hom(M,Mn−1) which is sent to zero in Hom(M,Mn−2)
has image contained in Ker(fn−1) = Im(fn), and hence factors through the approx-
imation f ′. Thus replacing Mn by M ′ and fn by f ′ if necessary, we have the claimed
exactness.

Now we have a commutative diagram

Hom(M,Mn)⊗M −−−→ . . . −−−→ Hom(M,M0)⊗M −−−→ Hom(M,X)⊗M −−−→ 0

ϕn

y ϕ0

y θ

y
Mn

fn−−−→ . . .
f1−−−→ M0

f0−−−→ X −−−→ 0

For anyM ′ ∈ addM , the natural map Hom(M,M ′)⊗BM →M ′ is an isomorphism,
since it is for M ′ =M . Thus the ϕi are isomorphisms.

Since ϕ0 and f0 are surjective, so is θ. If n > 0, then since tensor products are
right exact, the part of the diagram below and to the right of Hom(M,M1) ⊗M
has exact rows, so implies that θ is an isomorphism.

Since Mi ∈ add(M), as a right B-module, we have

HomA(M,Mi) ∈ add(HomA(M,M)) = add(BB),

so the exact sequence

HomA(M,Mn)→ HomA(M,Mn−1)→ · · · → HomA(M,M0)→ HomA(M,X)→ 0
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is part of a projective resolution of HomA(M,X) as a right B-module. We can use
it to compute TorBi (HomA(M,X),M) for i < n as the homology of the complex

Hom(M,Mn)⊗B M → · · · → Hom(M,M0)⊗B M → 0.

But by the commutative diagram above, this is isomorphic to the complex

Mn → · · · →M0 → 0

This is exact at Mi for 0 < i < n, giving the Tor vanishing.
(b)⇒(a). Take the start of a projective resolution of HomA(M,X) as a right

B-module, say
Pn

gn−→ · · · → P0
g0−→ HomA(M,X)→ 0

Applying −⊗B M gives a complex, which by the hypotheses is exact:

Mn
fn−→ · · · →M0

f0−→ X → 0,

where Mi = Pi ⊗B M ∈ addM . Applying HomA(M,−) to this, gives a complex

HomA(M,Mn)→ · · · → HomA(M,M0)→ HomA(M,X)→ 0.

Identifying HomA(M,Mi) = HomA(M,Pi ⊗B M) ∼= Pi, we see that this is the
projective resolution we started with, so it is exact. Thus (a) holds.

Remark: if we took the projective resolution to be minimal, then the maps gi
would all be right minimal in the sense of section 1.6. It follows that the maps
fi are right minimal, for otherwise there is a decomposition Mi = M ′

i ⊕M ′′
i with

M ′′
i ̸= 0 and fi(M ′′

i ) = 0. But then we get

Pi
∼= HomA(M,Mi) ∼= HomA(M,M ′

i)⊕ HomA(M,M ′′
i )

and gi is zero on the summand corresponding to HomA(M,M ′′
i ), contradicting the

minimality of gi.

Dually we have the following.

Proposition (2). Let M be an A-module and n ≥ 0 and consider M also as a
B-module, where B = EndA(M). For an A-module X, the following are equivalent.

(a’) There is an exact sequence 0→ X → M0 → · · · → Mn with M i ∈ addM
such that the sequence

Hom(Mn−1,M)→ · · · → Hom(M0,M)→ Hom(X,M)→ 0

is exact (this is automatic if M is injective).
(b’) The natural map X → HomB(HomA(X,M),M) is a monomorphism (in

case n = 0) or an isomorphism (in case n > 0) and ExtiB(HomA(X,M),M) = 0
for 0 < i < n.
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Definition. We define cogenn(M) to be the full subcategory of A-mod given by
the modules X satisfying these conditions. By the second condition it is a module
class. Clearly

add(M) ⊆ · · · ⊆ cogen2(M) ⊆ cogen1(M) ⊆ cogen0(M) = cogen(M).

It is clear from conditions (a) and (a’) thatX ∈ cogenn(AM)⇔DX ∈ genn(AopDM).

4.2 Faithfully balanced modules and endomorphism corre-
spondence

Definition. Let M be an A-module, and let B = EndA(M). Then M can be
considered as a B-module, and there is a natural map

A→ EndB(M).

Clearly M is faithful iff this map is injective. We say that M is a balanced A-
module or that M has the double centralizer property if this map is onto, and that
M is faithfully balanced (f.b.) if this map is an isomorphism.

Clearly M is a f.b. A-module iff DM is a f.b. Aop-module.

Lemma. Let M be an A-module.
(i) M is f.b. iff A ∈ cogen1(M) iff DA ∈ gen1(M).
(ii) If M is a generator or cogenerator, it is f.b.

Proof. (i) Apply the second proposition in the last section with X = A and n = 1.
Now M is f.b. iff DM is f.b. iff Aop ∈ cogen1(AopDM) iff DA ∈ gen1(AM).

(ii) If M is a generator, then A ∈ add(M) ⊆ cogen1(M). If M is a cogenerator,
then DM is a generator, so f.b., hence so is M .

Definition. By an f.b. pair we mean a pair (A,M) consisting of an algebra and a
f.b. A-module.

Given an f.b. pair, we construct a new f.b. pair (B,M), its endomorphism
correspondent, where B = EndA(M) and M is considered in the natural way as a
B-module.

Repeating the construction twice, one recovers essentially the original pair.
We say that f.b. pairs (A,M) and (A′,M ′) are equivalent if there is an equiva-

lence A-mod→ A′-mod sending add(M) to add(M ′).

One can show that equivalent pairs have equivalent endomorphism correspon-
dents.
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Theorem. If (A,M) and (B,M) are f.b. pairs which are endomorphism correspon-
dents, then HomA(−,M) and HomB(−,M) give inverse antiequivalences between
cogen1(AM) and cogen1(BM).

Proof. In view of (b’) in the second proposition of the last section, and the sym-
metrical role of A and B, it suffices to show that if X ∈ cogen1(AM), then
HomA(X,M) ∈ cogen1(BM). Take a free presentation of AX, say Am → An →
X → 0. Applying HomA(−,M) gives an exact sequence

0→ HomA(X,M)→Mn →Mm.

Applying HomB(−,M) to this gives

Am → An → HomB(HomA(X,M),M)→ 0

which is isomorphic to the original exact sequence, so exact. Thus HomA(X,M) ∈
cogen1(BM).

Example. Let A be the path algebra of the linear quiver Q = 1 → 2 → 3. We
display its AR quiver below. Let AM be the direct sum of the circled indecompos-
ables.

The endomorphism algebra of AM is

Considering M as a B-module, means to consider it as a representation of this
quiver. The vector space at each vertex is the corresponding indecomposable
A-module. In this example, the indecomposable A-modules are at most one-
dimensional at each vertex of Q. In the following diagram we write i for the
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natural basis element at vertex i of Q. The arrows in the quiver for B corre-
spond to homomorphisms of the indecomposable A-modules, and act on the basis
elements as indicated below.

Thus

Observe that AM has all of the projective A-modules as summands, but not all
injectives, so AM is a generator but not a cogenerator. On the other hand all of
the summands of BM are projective, and one summand is not injective.

Proposition. Let (A,M) and (B,M) be f.b. pairs which are endomorphism cor-
respondents. Then:

(a) AM is a generator iff BM is projective.
(b) AM is a cogenerator iff BM is injective.
(c) A ∈ cogenn(AM) iff ExtiB(M,M) = 0 for 0 < i < n.

Proof. (a) If AM is a generator, then A ∈ add(AM), so BM ∼= HomA(A,M) ∈
add(HomA(M,M)) = add(B), so BM is projective.

Conversely if BM is projective, then BM ∈ add(B), so A ∼= HomB(M,M) ∈
add(HomB(B,M)) = add(AM).

(b) Apply (a) to DM .
(c) Second proposition in last section with X = A.

For (a), see Azumaya, Completely faithful modules and self-injective rings,
Nagoya Math. J. 1966. Also (a) is similar to the Wedderburn correspondence in-
troduced by Auslander, Representation theory of Artin algebras I, Comm. Algebra
1974.

For things similar to (b), see T. Kato, Rings of U-dominant dimension ≥ 1,
Tohoku Math. J. 1969.

(c) is essentially Müller, The classification of algebras by dominant dimension,
Canad. J. Math 1968.

See also:
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B. Ma and J. Sauter, On faithfully balanced modules, F-cotilting and F-Auslander
algebras, Journal of Algebra 2020.

M. Pressland and J. Sauter, On quiver Grassmannians and orbit closures for
gen-finite modules, Algebras and Representation Theory 2022

4.3 Dominant dimension and Auslander correspondence

Definition. Given an algebra A, we take the minimal injective resolution

0→ A→ I0 → I1 → . . .

of the module AA. We say that A has dominant dimension ≥ n if I0, . . . , In−1 are
projective. This defines dom. dimA ∈ {0, 1, 2, . . . } ∪ {∞}.

Recall that an algebra A is QF-3 if it A has a faithful projective-injective
module M . If so, then add(M) = PA ∩ IA, since any indecomposable projective-
injective module embeds in A, so in some Mn, so is in add(M). Thus M is unique,
up to multiplicities, since it is the direct sum of all indecomposable projective-
injective modules, each with some non-zero multiplicity.

Proposition. (i) dom. dimA ≥ 1 iff A is QF-3.
(ii) dom. dimA ≥ 2 iff A has a f.b. projective-injective M .

Proof. (i) If A is QF-3, with faithful projective-injective module M , then there is
an embedding A→Mn, and then the injective envelope of A is a direct summand
of Mn, so it is projective.

(ii) If dom. dimA ≥ 2, there is an exact sequence 0 → A → I0 → I1

with I0, I1 projective-injective. Let M be the direct sum of the indecomposable
projective-injectives, then A ∈ cogen1(M) by condition (a) in the characterization
of cogen1(M). Thus M is f.b.

Conversely suppose A has a f.b. projective-injective M . Since it is f.b., A ∈
cogen1(M). By the characterization of this means that there is an exact sequence

0→ A
θ−→M0 →M1

with M0,M1 ∈ add(M). Moreover by the dual result to the remark at the end
of the proof of (b)⇒(a) in Proposition (1) in the first subsection, we may suppose
that the maps in this exact sequence are left minimal. Now the M i are projective-
injective, so they are injective, so this is the start of the injective resolution of A.
Thus I0 ∼= M0 and I1 ∼= M1 are projective. Thus dom. dimB ≥ 2.

For the following, see C. M. Ringel, Artin algebras of dominant dimension at
least 2, manuscript 2007, available from his Bielefeld homepage.
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Theorem (Morita-Tachikawa correspondence). Endomorphism correspondence gives
a 1:1 correspondence between equivalence classes of pairs (A,M) where AM is a
generator-cogenerator and Morita equivalence classes of algebras B with dom. dimB ≥
2.

The correspondence sends (A,M) to B = EndA(M), and it sends B to A =
EndB(M) where BM is the faithful projective-injective B-module.

Proof. By endomorphism correspondence, the pairs (A,M) are in 1:1 correspon-
dence with f.b. pairs (B,M) with M projective-injective. By the discussion above,
these are in 1:1 correspondence with the Morita equivalence classes of algebras B
with dom. dimB ≥ 2.

The following correspondence comes from Auslander, Representation dimension
of Artin algebras, Queen Mary College Lecture Notes, 1971. See also Auslander,
Representation theory of Artin algebras II, Comm. Algebra 1974.

Theorem (Auslander correspondence). There is a 1-1 correspondence between al-
gebras A of finite representation type up to Morita equivalence and algebras B with
gl. dimB ≤ 2 ≤ dom. dimB up to Morita equivalence.

The correspondence sends A to B = EndA(M) where AM is the direct sum of
all the indecomposable A-modules, and it sends B to A = EndB(M) where BM is
the faithful projective-injective B-module.

The algebra B is called the Auslander algebra of A.

Proof. We show that under endomorphism correspondence, pairs (A,M) where
add(M) = A-mod correspond to pairs (B,M) where gl. dimB ≤ 2 ≤ dom. dimB
and BM is the faithful projective-injective.

Suppose add(M) = A-mod. Given a B-module Z, choose a projective presen-
tation

P1
f−→ P0 → Z → 0.

Applying HomB(−,M) gives an exact sequence

0→ HomB(Z,M)→ HomB(P0,M)
g−→ HomB(P1,M)→ Coker(g)→ 0.

Applying HomA(−,M) we get a commutative diagram with bottom row exact

P1
f−−−→ P0y y

0 −−−→ HomA(Coker(g),M) −−−→ HomA(HomB(P1,M),M) −−−→ HomA(HomB(P0,M),M)

The two vertical maps are isomorphisms, so Ker(f) ∼= HomA(Coker(g),M). Now
Coker(g) is an A-module, so in add(M), so as a B-module, we have

HomA(Coker(g),M) ∈ add(HomA(M,M)) = add(B),
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so it is projective. Thus proj. dimZ ≤ 2. Thus gl. dimB ≤ 2.
Conversely suppose gl. dimB ≤ 2 ≤ dom. dimB. If Y is an A-module, it has a

projective resolution starting

P1 → P0 → Y → 0.

Applying HomA(−,M) we get an exact sequence of B-modules

0→ HomA(Y,M)→ HomA(P0,M)→ HomA(P1,M).

The HomA(Pi,M) are projective B-modules since they are in add(BM), and BM is
projective. Thus, since gl. dimB ≤ 2, by dimension shifting we see that HomA(Y,M)
is a projective B-module. Now BM is injective, so applying HomB(−, BM) gives
an exact sequence

HomB(HomA(P1,M),M)→ HomB(HomA(P1,M),M)→ HomB(HomA(Y,M),M)→ 0.

For anyA-moduleX there is a natural transformation fromX to HomB(HomA(X,M),M),
and this is an isomorphism for X projective. We deduce that

Y ∼= HomB(HomA(Y,M),M) ∈ add(HomB(B,M)) = add(AM),

so add(M) = A-mod.

Example. We can check gl. dimB = 2 = dom. dimB for the Auslander algebra of
the linear quiver with three vertices.
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Definition. Let n ≥ 1. A module AM is an n-cluster tilting object if
(i) ExtiA(M,M) = 0 for 0 < i < n
(ii) ExtiA(U,M) = 0 for 0 < i < n implies U ∈ addM
(iii) ExtiA(M,U) = 0 for 0 < i < n implies U ∈ addM

Clearly (ii) implies A ∈ addM and (iii) implies DA ∈ addM , so any n-cto is a
generator-cogenerator.

Observe that M is a 1-cto iff add(M) = A-mod.
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Example. For the algebra with quiver

0→ 1→ 2→ · · · → n

with all paths of length 2 zero, the module S[0] has projective resolution

0→ P [n]→ P [n− 1]→ · · · → P [1]→ P [0]→ S[0]→ 0

so dimExti(S[0], S[j]) = δij. It follows that

M = S[0]⊕ P [0]⊕ · · · ⊕ P [n− 1]⊕ P [n] ∼= I[0]⊕ I[1]⊕ · · · ⊕ I[n]⊕ S[n]

is an n-cto. It’s endomorphism algebra B is the path algebra of the quiver

n→ · · · → 1→ 0→ ∗

with all paths of length 2 zero. It has global dimension n + 1. The projectives
P [n], . . . , P [0] are injective, and P [∗] has injective resolution

0→ P [∗]→ I[∗]→ I[0]→ · · · → I[n− 1]→ I[n]→ 0.

Now I[∗] ∼= P [0], I[0] ∼= P [1], . . . , I[n−1] ∼= P [n] and I[n] ∼= S[n] is not projective,
so dom. dimB = n+ 1.

The following generalization of Auslander correspondence is due to Iyama, Aus-
lander correspondence, Advances in Math. 2007.

Theorem (Iyama). There is a 1:1 correspondence between equivalence classes of
pairs (A,M) where AM is an n-cto and Morita equivalence classes of algebras B
with gl. dimB ≤ n+ 1 ≤ dom. dimB.

Proof. (To be omitted.) We are in the setting of Morita-Tachikawa correspon-
dence.

Now ExtiA(M,M) = 0 for 1 < i < n corresponds to B ∈ cogenn(BM), and since
BM is the faithful projective-injective, this corresponds to dom. dimB ≥ n+ 1.

Suppose gl. dimB ≤ n+ 1.
We show that if ExtiA(U,M) = 0 for 0 < i < n then U ∈ addM . Take the start

of a projective resolution of U , say

Pn → · · · → P0 → U → 0.

Applying HomA(−,M) gives a complex

0→ HomA(U,M)→ HomA(P0,M)→ · · · → HomA(Pn,M)
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which is exact because the Exts vanish. Since BM is injective, applying HomB(−,M)
gives an exact sequence

HomB(HomA(Pn,M),M)→ · · · → HomB(HomA(P0,M),M)→ HomB(HomA(U,M),M)→ 0.

Now the maps Pi → HomB(HomA(Pi,M),M) are isomorphisms since Pi ∈ addM .
Thus the map U → HomB(HomA(U,M),M) is an iso (so U ∈ cogen1(AM)). Also
HomA(Pi,M) ∈ add(HomA(A,M)) = add(BM). Thus, since gl. dimB ≤ n + 1,
the B-module HomA(U,M) must be projective, so it is in add(BB), and then
U ∼= HomB(HomA(U,M),M) ∈ add(HomB(B,M)) = add(AM).

Next we show that if ExtiA(M,U) = 0 for 0 < i < n then U ∈ addM . Take the
start of an injective resolution of U , say

0→ U → I0 → · · · → In.

Applying HomA(M,−) gives a complex

0→ HomA(M,U)→ HomA(M, I0)→ · · · → HomA(M, In)

which is exact because the Exts vanish. Since BM is projective, applying −⊗B M
gives an exact sequence

0→ HomA(M,U)⊗B M → HomA(M, I0)⊗B M → · · · → HomA(M, In)⊗B M.

Now the maps I i → HomA(M, I i)⊗BM are isomorphisms since I i ∈ addM . Thus
the map U → HomA(M,U)⊗BM is an iso. Also HomA(M, I i) ∈ add(HomA(M,M)) =
add(BB). Thus, since gl. dimB ≤ n+1, the right B-module HomA(M,U) must be
projective, so it is in add(BB), and then U ∼= HomA(M,U)⊗BM ∈ add(B⊗BM) =
add(AM).

Now suppose that M is an n-cto. Given a B-module Z, choose a projective
presentation

P1
f−→ P0 → Z → 0.

Applying HomB(−,M) gives an exact sequence

0→ HomB(Z,M)→ HomB(P0,M)
g−→ HomB(P1,M)→ Coker(g)→ 0.

Let C0 = Coker(g). Applying HomA(−,M) we get a commutative diagram with
bottom row exact

P1
f−−−→ P0y y

0 −−−→ HomA(C
0,M) −−−→ HomA(HomB(P1,M),M) −−−→ HomA(HomB(P0,M),M)

12



The two vertical maps are isomorphisms, so Ker(f) ∼= HomA(C
0,M).

Now since M is a cogenerator, by repeatedly taking left M -approximations we
can get an exact sequence

0→ C0 →M0 → · · · →Mn−2

such that the sequence

HomA(M
n−2,M)→ · · · → HomA(M

0,M)→ HomA(C
0,M)→ 0

is exact. Let Ci be the cosyzygies for this sequence, so

0→ Ci →M i → Ci+1 → 0.

Then

Hom(M i,M) ↠ Hom(Ci,M)→ Ext1(Ci+1,M)→ Ext1(M i,M) = 0→ . . . ,

so by dimension shifting

Extn−1(Cn−1,M) ∼= Extn−2(Cn−1,M) ∼= . . . ∼= Ext1(C1,M) = 0

and similarly Exti(Cn−1,M) = 0 for 0 < i < n. Thus Cn−1 ∈ addM . Thus Z has
projective resolution

0→ HomA(C
n−1,M)→ HomA(M

n−2,M)→ · · · → HomA(M
0,M)→ P1 → P0 → Z → 0.

Thus proj. dimZ ≤ n+ 1. Thus gl. dimB ≤ n+ 1.

4.4 Homological conjectures for f.d. algebras

Let 0 → A → I0 → I1 → . . . be the minimal injective resolution of a f.d. algebra
A. Recall that A has dominant dimension ≥ n if I0, . . . , In−1 are all projective.

Conjecture (Nakayama conjecture 1958). If all In are projective, i.e. dom. dimA =
∞, then A is self-injective.

Proposition. The following are equivalent.
(i) The Nakayama conjecture (if dom. dimB =∞ then B is self-injective).
(ii) If AM is a generator-cogenerator and ExtiA(M,M) = 0 for all i > 0 then M
is projective.

13



Proof. (i) implies (ii). Say AM satisfies the hypotheses. Let (B,M) be the endo-
morphism correspondent. Then BM is projective-injective and B ∈ cogenn(M) for
all n. Thus for all n there is an exact sequence

0→ B → I0 → · · · → In

with the I i projective-injective. Thus dom. dimB = ∞. Thus B is self-injective,
so add(M) = add(B), so BM is a generator, so AM is projective.

(ii) implies (i). Say dom. dimB = ∞. Thus B is QF-3 and let BM be the
faithful projective-injective module. Let AM be the endomorphism correspondent.
It is a generator-cogenerator. Then B ∈ cogenn(M) for all n, so ExtiA(M,M) = 0
for all i > 0. Thus by (ii), AM is projective, so BM is a generator. Thus B ∈
add(M) is injective.

Conjecture (Generalized Nakayama conjecture, Auslander and Reiten 1975). For
any f.d. algebra A, every indecomposable injective occur as a summand of some In.

It clearly implies the Nakayama conjecture, for if the In are projective, and
each indecomposable injective occurs as a summand of some In, then the indecom-
posable injectives are projective.

Example. For the commutative square, vertices 1(source),2,3,4(sink). There are
injective resolutions

0→P [1]→ I[4]→ 0,

0→P [2]→ I[4]→ I[3]→ 0,

0→P [3]→ I[4]→ I[2]→ 0,

0→P [4]→ I[4]→ I[2]⊕ I[3]→ I[1]→ 0,

so
0→ A→ I[4]4 → I[2]2 ⊕ I[3]2 → I[1]→ 0,

so all indecomposable injectives occur.

Proposition. The following are equivalent.
(i) The generalized Nakayama conjecture (every indecomposable injective occurs as
a summand of some I i in the minimal injective resolution of B).
(ii) If AM is a cogenerator and ExtiA(M,M) = 0 for all i > 0 then M is injective.

Proof. (i) implies (ii). Suppose AM satisfies the conditions. Then there is corre-
sponding BM which is injective, and B ∈ cogenn(M) for all n. Thus by (i) every
indecomposable injective is a summand of BM . Thus BM is a cogenerator. Thus
AM is injective.
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(ii) implies (i). Let BM be the sum of all indecomposable injectives occuring in
the I i. Then B ∈ cogenn(M) for all n. Let AM be the endomorphism correspon-
dent. Then AM is a cogenerator and ExtiA(M,M) = 0 for all i > 0. Thus by (ii)
AM is injective. Thus BM is a cogenerator. Thus all indecomposable injectives
occur as a summand of BM .

For the next conjecture, see Happel, Selforthogonal modules, 1995.

Conjecture (Boundedness Conjecture). If M is an A-module with ExtiA(M,M) =
0 for all i > 0 then #M ≤ #A, where #M denotes the number of non-isomorphic
indecomposable summands of M .

Since a cogenerator has all indecomposable injectives as summands, the bound-
edness conjecture implies the generalized Nakayama conjecture.

Definition. An algebra A is (Iwanaga) Gorenstein if both inj. dim AA < ∞ and
inj. dimAA <∞.

In Auslander and Reiten, Applications of contravariantly finite subcategories,
Adv. Math 1991, one finds:

Conjecture (Gorenstein Symmetry Conjecture). If one of inj. dim AA and inj. dimAA

is finite, so is the other.

Lemma. (i) If inj. dim AA = n <∞, any A-module has proj. dimM ≤ n or ∞.
(ii) If inj. dim AA = n and inj. dimAA = m are both finite, they are equal.

For example, by (i) every non-projective module for a self-injective algebra has
infinite projective dimension.

Proof. (i) Say proj. dimM = i < ∞. There is some N with Exti(M,N) ̸= 0.
Choose 0 → L → P → N → 0 with P projective. The long exact sequence for
Hom(M,−) gives

· · · → Exti(M,P )→ Exti(M,N)→ Exti+1(M,L)→ . . .

Now Exti+1(M,L) = 0, so Exti(M,P ) ̸= 0, so Exti(M,A) ̸= 0, so i ≤ n.
(ii) proj. dim ADA = inj. dimAA = m, so m ≤ n by (i). Dually m ≥ n.

This also holds for noetherian rings, see Zaks, Injective dimension of semi-
primary rings, J. Alg. 1969.

For the following, see H. Bass, Finitistic dimension and a homological general-
ization of semiprimary rings, Trans. Amer. Math. Soc. 1960.
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Conjecture (Finitistic Dimension Conjecture). For any f.d. algebra A,

fin. dimA = sup{proj. dimM | proj. dimM <∞}

is finite.

For example if A is Gorenstein, with inj. dim AA = n = inj. dimAA, then
fin. dimA = n. For the lemma implies that any A-module M has proj. dimM ≤ n
or ∞, and proj. dimD(AA) = n.

Note that fin. dimA is not necessarily the same as the maximum of the projec-
tive dimensions of the simple modules of finite projective dimension.

There is also a big finitistic dimension, where the modules need not be finite-
dimensional, and this may also always be finite.

Proposition. The finitistic dimension conjecture implies the Gorenstein symmetry
conjecture.

Proof. Assuming inj. dimAA = n < ∞, we want to prove that inj. dim AA < ∞.
We have proj. dim ADA = n < ∞. Thus any injective module has projective
dimension < ∞. Take a minimal injective resolution 0 → AA → I0 → . . . . We
show by induction on i that proj. dimΩiA <∞. There is an exact sequence

0→ Ωi−1A→ I i−1 → ΩiA→ 0.

Applying HomA(−, X) for a module X gives a long exact sequence

· · · → Extm(Ωi−1A,X)→ Extm+1(ΩiA,X)→ Extm+1(I i−1, X)→ . . .

For m sufficiently large, independent of X, the outside terms are zero, hence so is
the middle.

Let i > 0. If ΩiA = 0, or is injective, then inj. dim AA < ∞, as desired, so
suppose otherwise. Let f : ΩiA → I i be the inclusion. Then f belongs to the
middle term in the complex

Hom(ΩiA, I i−1)→ Hom(ΩiA, I i)→ Hom(ΩiA, I i+1)

and it is sent to zero in the third term. Now f is not in the image of the map
from the first term, for otherwise the map I i−1 → ΩiA is a split epimorphism,
so ΩiA is injective. Thus the homology of this complex at the middle term is
non-zero. Thus Exti(ΩiA,A) ̸= 0. Thus proj. dimΩiA ≥ i. This contradicts that
fin. dimA <∞.

Proposition. The finitistic dimension conjecture implies the generalized Nakayama
conjecture.
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Proof. Assume the FDC. We show that if AM is a module and Extn(M,A) = 0
for all n ≥ 0 then M = 0 (the strong Nakayama conjecture).

If S[i] is a simple A-module and I[i] is its injective envelope, recall from section
1.10, that dimExtn(S[i], A) is dimEnd(S[i]) times the multiplicity of I[i] as a direct
summand of In. Thus taking M = S[i], the strong Nakayama conjecture gives the
generalized Nakayama conjecture.

Take a minimal projective resolution → P1 → P0 → M → 0. By assumption
the sequence

0→ HomA(P0, A)
f0−→ HomA(P1, A)

f1−→ Hom(P2, A)→ . . .

of right A-modules is exact. Let fin. dimAop = n < ∞. Then Coker(fn) has
projective resolution

0→ HomA(P0, A)
f0−→ HomA(P1, A)→ · · · → HomA(Pn+1, A)→ Coker(fn)→ 0

so it has finite projective dimension, so projective dimension ≤ n, so by dimension
shifting Im f1 is projective, so f0 must be a split mono. But HomA(−, A) is an
antiequivalence from PA to PAop . Thus the map P1 → P0 must be a split epi, so
M = 0.

4.5 No loops conjecture

It is nice to see that some homological conjecture has been proved. In this section
we do not assume that K is algebraically closed, but we do assume that A = KQ/I
with I admissible. The following conjecture was proved by Igusa, Notes on the no
loops conjecture, J. Pure Appl. Algebra 1990.

Theorem (No loops conjecture). If gl. dimA < ∞ then Q has no loops (that is,
Ext1(S[i], S[i]) = 0 for all i).

Proof. We use the trace function of Hattori and Stallings. I only sketch the proof
of its properties.

(1) For any matrix θ ∈ Mn(A) we consider its trace tr(θ) ∈ A/[A,A], where
[A,A] is the subspace of A spanned by the commutators ab− ba. This ensures that
tr(θϕ) = tr(ϕθ). This equality holds also for θ ∈Mm×n(A) and ϕ ∈Mn×m(A).

(2) If P is a f.g. projective A-module it is a direct summand of a f.g. free module
F = An. Let p : F → P and i : P → F be the projection and inclusion. One
defines tr(θ) for θ ∈ End(P ) to be tr(iθp). This is well defined, for if

An = F
p−→
←−

i

P
i′−→
←−
p′

F ′ = Am
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with pi = 1P = p′i′, then tr(iθp) = tr((ip′)(i′θp)) = tr((i′θp)(ip′)) = tr(i′θp′).
(3) Any module M has a finite projective resolution P∗ → M , and an endo-

morphism θ of M lifts to a map between the projective resolutions

0 −−−→ Pn −−−→ . . . −−−→ P1 −−−→ P0 −−−→ M −−−→ 0

θn

y θ1

y θ0

y θ

y
0 −−−→ Pn −−−→ . . . −−−→ P1 −−−→ P0 −−−→ M −−−→ 0.

Define tr(θ) =
∑

i(−1)i tr(θi). One can show that does not depend on the pro-
jective resolution or the lift of θ, see section 4 of Lenzing, Nilpotente Elemente in
Ringen von endlicher globaler Dimension, Math. Z. 1969.

(4) One can show that given a commutative diagram with exact rows

0 −−−→ M ′ −−−→ M −−−→ M ′′ −−−→ 0

θ′

y θ

y θ′′

y
0 −−−→ M ′ −−−→ M −−−→ M ′′ −−−→ 0

one has tr(θ) = tr(θ′) + tr(θ′′).
(5) It follows that any nilpotent endomorphism has trace 0, since

0 −−−→ Im θ −−−→ M −−−→ M/ Im θ −−−→ 0

θ|Im θ

y θ

y 0

y
0 −−−→ Im θ −−−→ M −−−→ M/ Im θ −−−→ 0

so tr(θ) = tr(θ|Im θ) = tr(θ|Im(θ2)) = · · · = 0.
(6) Thus any element of J(A) as a map A→ A has trace 0, so J(A) ⊆ [A,A].

Thus (KQ)+ ⊆ I + [KQ,KQ].
(7) Any loop of Q gives an element of (KQ)+. But it is easy to see that

I + [KQ,KQ] ⊆ span of arrows which are not loops + (KQ)2+,

for example if p, q are paths then [p, q] ∈ (KQ)2+ unless they are trivial paths or
one is trivial and the other is an arrow. Thus there are no loops.

A strengthening (proved by Igusa, Liu and Paquette, A proof of the strong no
loop conjecture, Adv. Math. 2011). If S is a 1-dimensional simple module for a
f.d. algebra and S has finite injective or projective dimension, then Ext1(S, S) = 0.

An open problem (stated by Liu and Morin, The strong no loop conjecture for
special biserial algebras, Proc. Amer. Math. Soc. 2004). The extension conjecture:
if S is simple module for a f.d. algebra and Ext1(S, S) ̸= 0 then Extn(S, S) ̸= 0 for
infinitely many n.
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5 Tilting theory
In order to give their proof of Gabriel’s theorem, Bernstein, Gelfand and Pono-
marev introduced some reflection functors.

If Q is a quiver and i is a sink (no arrows out), so that P [i] = S[i], let Q′ be
the quiver obtained by reversing all arrows incident at i. Then reflection functors
are functors

KQ-mod −→←− KQ′-mod

sending a representation X of Q to the representation X ′ of Q′ which is the same,
except that

X ′
i = Ker(

⊕
a:j→i

Xj → Xi)

and the linear map X ′
i → Xj is the canonical map.

This gives an equivalence between the module classes inKQ-mod andKQ′-mod
given by the modules with no summand S[i]. For example.

Brenner and Butler generalized this with the notion of a tilting module. Let A
be an algebra. An A-module T is a tilting module if

- proj. dimT ≤ 1.
- Ext1A(T, T ) = 0.
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- #T = #A, the number of non-isomorphic summands of T is the number of
simple A-modules.

Let B = EndA(T )
op, so T becomes an A-B-bimodule. The Brenner-Butler

theorem gives equivalences between the following parts of the module categories.

5.1 Torsion theories and tau-rigid modules

The notion of a torsion theory comes from Dickson, A torsion theory for abelian
categories, Trans. Amer. Math. Soc. 1966.

Definition. A torsion theory in an abelian categoryA is a pair of full subcategories
(T ,F), the torsion and torsion-free classes, such that
(i) Hom(T ,F) = 0.
(ii) Any object X has a subobject tTX ∈ T with X/tTX ∈ F (so it fits in an exact
sequence 0→ tTX → X → X/tTX → 0 with first term in T and last term in F).

Examples. (1) The torsion and torsion-free modules give a torsion theory in the
category of Z-modules.

(2) For A the path algebra of the quiver 1 → 2, A-mod has torsion theory
(addS[2], addS[1]).

Notation. For an a set C of modules in A-mod or more generally of objects in an
abelian category

C⊥i,j,... = {X : Extn(M,X) = 0 for all M ∈ C and n = i, j, . . . },

⊥i,j,...C = {X : Extn(X,M) = 0 for all M ∈ C and n = i, j, . . . }.

Recall that Ext0 = Hom.
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Properties. Let (T ,F) be a torsion theory.
(i) T = ⊥0F and F = T ⊥0 so either of the classes determines the other.
(ii) T is closed under quotients and extensions; F is closed under subobjects

and extensions.
(iii) The subobject tTX is uniquely determined, and the assignment sending

X to tTX defines a functor A → T which is a right adjoint to the inclusion T in
A. The assignment sending X to X/tTX defines a functor A → F which is a left
adjoint to the inclusion F in A.

Proof. (i) If X ∈ T ⊥0, then Hom(T , X) = 0, so we must have tTX = 0, so X ∼=
X/tTX ∈ F . If X ∈ ⊥0F , then Hom(X,F) = 0, so we must have X = tTX ∈ T .

For (ii), for T given an exact sequence 0→ X → Y → Z → 0, apply Hom(−, F )
for F ∈ F to get an exact sequence

0→ Hom(Z, F )→ Hom(Y, F )→ Hom(X,F ).

Now if X,Z ∈ T , then Hom(X,F ) = Hom(Z, F ) = 0, so Hom(Y, F ) = 0, so
Y ∈ T . Also, if Y ∈ T , then Hom(Y, F ) = 0, so Hom(Z, F ) = 0, so Z ∈ T .

For (iii) observe that any map θ : X → Y induces a map tTX → tT Y since the
composition tTX → X → Y → Y/tT Y must be zero.

Remark. A splitting torsion theory is one in which the sequence 0 → tTX →
X → X/tTX → 0 is always split exact.

If A is a f.d. algebra, a torsion theory in A-mod is splitting if and only if every
indecomposable module is either torsion or torsion-free.

A splitting torsion theory is thus given by a partition of the indecomposable
modules into two sets T, F with Hom(T, F ) = 0. Then (addT, addF ) is a splitting
torsion theory in A-mod.

This is very easy to do if A is an algebra whose AR quiver is obtained by
knitting, so A is of finite representation type and all of its indecomposable modules
are directing. We want there to be no irreducible maps from T to F .

Proposition. If A is a f.d. algebra, for a module class T in A-mod the following
are equivalent.

(i) T is a torsion class for some torsion theory in A-mod.
(ii) T = ⊥0(T ⊥0).
(iii) T = ⊥0C for some module class C.
(iv) T is closed under quotients and extensions.

Proof. (i) implies (ii) implies (iii) implies (iv). Straightforward.
(iv) implies (i). Define F = T ⊥0. Given any module X, let T be a submodule

of X in T of maximal dimension. Then Hom(T , X/T ) = 0, for if T ′/T is the image
of such a map, then T ′/T is in T , hence so is T ′, contradicting maximality. Thus
X/T ∈ F .
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Thus a pair of module classes (T ,F) is a torsion theory in A-mod if and only
if T = ⊥0F and F = T ⊥0.

Lemma (Auslander-Smalø, 1981). For modules M,N , the following are equivalent:
(i) Hom(N, τM) = 0.
(ii) Ext1(M, genN) = 0 (that is, Ext1(M,G) = 0 for all G ∈ genN).

Proof. (i)⇒(ii). If Hom(N, τM) = 0, then Hom(G, τM) = 0 for all G ∈ genN),
so Hom(G, τM) = 0, so Ext1(M,G) = 0 by the Auslander-Reiten formula.

(ii)⇒(i). Say f : N → τM is a non-zero map. Factorize it as a surjection
g : N → G followed by a mono h : G → τM . Suppose that h factors through an
injective. Then it factors through the injective envelope E(G) of G. Since τM has
no injective summand, the induced map E(G) → τM cannot be injective, so its
kernel is non-zero. Since G is essential in E(G), the kernel meets G. Thus G→ τM
has non-zero kernel. Contradiction. Thus Hom(G, τM) ̸= 0, so Ext1(M,G) ̸=
0.

Definition. Given a module class C in A-mod and X ∈ C, we say that
(i) X is Ext-projective in C if Ext1(X, C) = 0.
(ii) X is Ext-injective in C if Ext1(C, X) = 0.

Lemma. If (T ,F) is a torsion theory in A-mod, then
(i) X ∈ T is Ext-projective for T iff τX ∈ F .
(ii) X ∈ F is Ext-injective for F iff τ−X ∈ T .
(iii) There are bijections

Non-proj indec Ext-projs in T up to iso
τ−→
←−
τ−

Non-inj indec Ext-injs in F up to iso

Proof. (i) Say X ∈ T . Then τX ∈ F ⇔ Hom(T, τX) = 0 for all T ∈ T ⇔
Ext1(X, genT ) = 0 for all T ∈ T ⇔ X is Ext-projective.

(ii) is dual.
(iii) follows.

Lemma. If (T ,F) is a torsion theory in A-mod, then
(i) The Ext-injectives for T are the modules tT I with I injective. The indecom-

posable Ext-injectives are the modules tT I[i] with I[i] /∈ F .
(ii) The Ext-projectives for F are the modules P/tT P with P projective. The

indecomposable Ext-projectives are the modules P [i]/tT P [i] with P [i] /∈ T .

Proof. (i) tT I is in T , and it is Ext-injective since if T ∈ T and 0→ tT I → E →
T → 0 is an exact sequence, then the pushout along tT I → I splits, giving a map
E → I. But E ∈ T , so it gives a map E → tT I, which is a retraction for the given
sequence.
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Conversely suppose X is Ext-injective in T and X → I is its injective envelope.
Then we have an injection X → tT I. Since T is closed under quotients, all terms
in the exact sequence 0 → X → tT I → tT I/X → 0 are in T . Thus this sequence
splits, so X is a direct summand of tT I, and we have equality since X is essential
in I.

Also, if I[i] /∈ F , then tT I[i] is non-zero and contained in I[i], so it has simple
socle, so it is indecomposable.

(ii) is dual.

The following definition comes from Adachi, Iyama and Reiten, τ -tilting theory,
2014.

Definition. A module M is τ -rigid if Hom(M, τM) = 0. Dually, it is τ−-rigid if
Hom(τ−M,M) = 0

Note that M is τ -rigid iff DM is τ−-rigid, since

Hom(M, τM) = Hom(M,DTrM) ∼= Hom(TrM,DM)

∼= Hom(TrDDM,DM) = Hom(τ−DM,DM).

Proposition. The following are equivalent
(i) M is τ -rigid.
(ii) Ext1(M, genM) = 0.
(iii) genM is a torsion class and M is Ext-projective in genM .
(iv) M is Ext-projective in some torsion class.

Proof. (i)⇔(ii). The lemma of Auslander and Smalø.
(ii)⇒(iii). Suppose M is τ -rigid. To show that genM is a torsion class, it

suffices to show that if 0→ X → Y → Z → 0 is exact and X,Z ∈ genM , then so
is Y . Choose a surjection Mn → Z. By (ii) The pullback sequence splits, so the
middle term of it is in genM , and hence so is Y . Now Ext1(M, genM) = 0, so M
is Ext-projective.

(iii)⇒(iv). Trivial.
(iv)⇒(ii). If M is Ext-projective in T , then Ext1(M, genM) = 0 since genM ⊆

T .

Note that the torsion theory given by a τ -rigid module M is (genM,M⊥0).

Example. Let A be the path algebra of 1→ 2→ 3. Let M = 2⊕123. It is τ -rigid.
Then T = genM contains 123, 12, 2, 1. The torsion-free class is F = T ⊥0 = M⊥0.
It contains 3 and 23.

The Ext-projectives in T are 2, 12, 123.
The Ext-injectives in T are 1, 12, 123.
The Ext-projectives in F are 3, 23.
The Ext-injectives in F are 3, 23.
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The next result is dual to Theorem 4.1(c) of Auslander and Smalø, Almost split
sequences in subcategories, J. Algebra 1981.

Theorem. Let T be a torsion class which is functorially finite and let

A
f−→M0 c−→M1 → 0

be an exact sequence with f be a minimal left T -approximation of A. Then
(i) T = genM0 = gen(M0 ⊕M1).
(ii) M0 is a splitting projective for T , meaning that any epimorphism θ : T ↠

M0 with T ∈ T must be a split epi.
(iii) M0 and M0 ⊕M1 are Ext-projective in T , so they are τ -rigid.
(iv) Any module T ∈ T is a quotient of a module in add(M0 ⊕ M1) by a

submodule in T .
(v) Any Ext-projective in T is in add(M0⊕M1), so there are only finitely many

indecomposable Ext-projectives in T .

Proof. (i) Clearly genM0 = gen(M0 ⊕M1) ⊆ T . If T ∈ T , then there is a map
An ↠ T , and each component factors throughM , giving an epimorphismMn ↠ T .

(ii) Since A is projective, the map f : A → M0 lifts to a map A → T . By
the approximation property, this factors as A → M0 → T . Now the composition
M0 → T →M0 must be an isomorphism by minimality.

(iii) Let T ∈ T . Any exact sequence 0 → T → E → M0 → 0 splits by (ii).
Thus M0 is Ext-projective.

Since f is a T -approximation, the induced map Hom(M0, T ) → Hom(A, T ) is
surjective. This is a composition Hom(M0, T )→ Hom(Im f, T )→ Hom(A, T ) and
the second map is injective, so actually the second map is a bijection and the first
map Hom(M0, T )→ Hom(Im f, T ) is surjective.

Now the exact sequence 0→ Im f
i−→M0 c−→M1 → 0 gives

Hom(M0, T )→ Hom(Im f, T )→ Ext1(M1, T )→ Ext1(M0, T ) = 0.

so Ext1(M1, T ) = 0.
(iv) (My thanks to Andrew Hubery for this argument). Take a right add(M0⊕

M1)-approximation ϕ : W → T for T . Since T ∈ genM0, the map ϕ is surjective,
so it gives an exact sequence

0→ U
θ−→ W

ϕ−→ T → 0.

Given u ∈ U there is a map r : A → U , a 7→ au. Since A → M0 is a T -
approximation and W ∈ T , there is a map p, and hence a map q giving a commu-
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tative diagram

A
f−−−→ M0 c−−−→ M1 −−−→ 0

r

y p

y q

y
0 −−−→ U

θ−−−→ W
ϕ−−−→ T −−−→ 0.

Since ϕ is an approximation, q = ϕh for some h : M1 → W . Then ϕ(p− hc) = 0.
Thus p − hc = θℓ for some ℓ : M0 → U . Then θ(r − ℓf) = 0, so since θ is mono,
r = ℓf . Thus u ∈ Im(ℓ). Repeating for a basis of U , we get a map from a direct
sum of copies of M0 onto U , so U ∈ T .

(v) Follows.

Corollary. If M is a τ -rigid module, then genM is a functorially finite torsion
class. Conversely, any functorially finite torsion class T is of the form genM for
some τ -rigid module M , which we can take to be the direct sum of the indecompos-
able Ext-projectives in T .

Proof. Any torsion class in A-mod is contravariantly finite, since the inclusion has
a right adjoint. Recall also that if M is a module, then genM is always covariantly
finite by the proposition at the end of section 1.9. In particular, if M is τ -rigid,
then genM is a functorially finite torsion class.

The last part follows from the theorem, since up to multiplicities, M0 ⊕M1 is
the direct sum of the indecomposable Ext-projectives in T .

There is a better description of the Ext-injectives in a torsion class.

Remark. If C is a module class in A-mod, we write I = ann(C) for the ideal of all
a ∈ A annihilating all modules in C. Then we can consider C as a module class in
A/I-mod. Since A is finite-dimensional, some module in C is a faithful module for
A/I. Thus A/I embeds in some module in C.

Lemma. If (T ,F) is a torsion theory in A-mod, then
(i) The Ext-injectives for T are the injective A/ ann(T )-modules.
(ii) The Ext-projectives for F are the projective A/ ann(F)-modules.

Proof. (i) Let I = ann(T ). Any injective A/I-module E has an epi (A/I)n → E.
Now A/I embeds in some module T ∈ T , and by the injective property the epi
extends to an epi T n → E. Thus E ∈ T .

Now if U is an Ext-injective, it embeds in an injective A/I-module, say 0 →
U → E → E/U → 0. Then E/U ∈ T , so this sequence splits, so U is injective as
an A/I-module.

(ii) is dual.
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5.2 Tilting modules

Definition. Let M be an A-module.
M is a partial tilting module if proj. dimM ≤ 1 and Ext1(M,M) = 0.
A partial tilting module M is a tilting module if there is an exact sequence

0 → A → M0 → M1 → 0 with M i ∈ addM . (Later we will see that it is
equivalent that #M = #A.)

M is a partial cotilting module if inj. dimM ≤ 1 and Ext1(M,M) = 0.
A partial cotilting module is a cotilting module if there is an exact sequence

0 → M1 → M0 → DA → 0 with Mi ∈ addM . (Again, it is equivalent that
#M = #A.)

Clearly M is a (partial) tilting A-module iff DM is a (partial) cotilting Aop-
module.

Note that we deal only with classical tilting theory. There is a version allowing
higher projective dimension.

Lemma. If M is a partial tilting module, then M is τ -rigid. Conversely if M is
τ -rigid, then it is a partial tilting module for A/ ann(M).

Proof. Use the AR formula DExt1(M,N) ∼= Hom(N, τM). If proj. dimM ≤ 1
then Hom(DA, τM) = 0 by Lemma (2) in §2.2, so the AR formula takes the form
DExt1(M,N) ∼= Hom(N, τM). The converse is the special case T = genM of (i)
in the next lemma.

Lemma. (i) If T is a torsion class in A-mod, then any Ext-projective M in T is
a partial tilting module for A/ ann(T ).

(ii) If furthermore T is functorially finite, then the direct sum of all indecom-
posable Ext-projectives is a tilting module for A/ ann(T ).
Proof. (i) Consider T as a module class in A/I-mod, where I = ann(T ). Clearly
Ext1A/I(M,M) = 0. Also the injective A/I-modules are in T , and τA/IM is in the
corresponding torsion-free class, so Hom(D(A/I), τA/IM) = 0. Thus by Lemma
(2) in §2.2, proj. dimA/I M ≤ 1.

(ii) If T is functorially finite, in the theorem of Auslander-Smalø, the map
f : A → M0 induces an injection A/I → M0, so M0 ⊕M1 is a tilting module for
A/I.

Proposition (Bongartz). Let M be a partial tilting module. Take a basis of
ξ1, . . . , ξn of Ext1(M,A), consider the tuple (ξ1, . . . , ξn) as an element of Ext1(Mn, A),
and let

0→ A→ E →Mn → 0.

be the corresponding universal extension. Then T = E ⊕M is a tilting module.
Thus every partial tilting module is a direct summand of a tilting module, and by
duality every partial cotilting module is a direct summand of a cotilting module.
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Proof. The long exact sequence for Hom(M,−) gives

Hom(M,Mn)
ξ−→ Ext1(M,A)→ Ext1(M,E)→ Ext1(M,Mn),

the map ξ is onto, and Ext1(M,Mn) = 0, so Ext1(M,E) = 0. From the long exact
sequence for Hom(−,M) one gets Ext1(E,M) = 0, from the long exact sequence
for Hom(−, E) one gets Ext1(E,E) = 0. Also A and Mn have projective dimension
≤ 1, hence so does E.

A partial tilting module M is τ -rigid, so gives a torsion theory (genM,M⊥0).
Moreover gen1M ⊆ genM ⊆M⊥1.

Proposition (1). For a partial tilting module M , the following are equivalent:
(i) M is a tilting module.
(ii) M⊥0,1 = 0.
(iii) genM =M⊥1.
(iv) gen1M =M⊥1.
(v) X is Ext-projective in M⊥1 ⇔ X ∈ addM .

Proof. (i)⇒ (ii). If X ∈M⊥0,1, apply Hom(−, X) to the exact sequence 0→ A→
M0 →M1 → 0, to deduce that Hom(A,X) = 0.

(ii) ⇒ (iii). Suppose X ∈M⊥1. Take a basis of Hom(M,X) and use it to form
the universal map f :Mn → X. Then Im f ∈ genM . Consider the exact sequence
0→ Im f → X → X/ Im f → 0. Apply Hom(M,−) giving an exact sequence

0→ Hom(M, Im f)→ Hom(M,X)→ Hom(M,X/ Im f)→ Ext1(M, Im f).

By construction the map Hom(M,Mn)→ Hom(M,X) is onto, hence so is the map
Hom(M, Im f) → Hom(M,X). Also Ext1(M, Im f) = 0 since M is τ -rigid. Thus
Hom(M,X/ Im f) = 0. Also Ext1(M,X/ Im f) = 0. Thus X/ Im f ∈ M⊥0,1. Thus
X/ Im f = 0, so f is onto, so X ∈ genM .

(iii) ⇒ (iv). Suppose X ∈ M⊥1. Then it is in genM . Let L be the kernel of
the universal map Mn → X. Then applying Hom(M,−) we see that L ∈M⊥1, so
L ∈ genM . Say M ′′ ↠ L. Now the sequence M ′′ → Mn → X → 0 shows that
X ∈ gen1M .

(iv) ⇒ (v). Clearly M and so any X ∈ add(M) is in M⊥1 and Ext-projective.
Conversely if X is in M⊥1 and Ext-projective, then by (iv) there is an exact
sequence M ′′ f−→ M ′ → X → 0. This gives an exact sequence 0 → Im f →
M ′ → X → 0 with Im f ∈ genM ⊆ M⊥1. By assumption this sequence splits, so
X ∈ addM .

(v) ⇒ (i). It suffices to show that E in Bongartz’s sequence is in addM , and
for this it suffices to show it is Ext-projective in M⊥1. We know it is in M⊥1.
If Y ∈ M⊥1, apply Hom(−, Y ) to the Bongartz sequence to get Ext1(Mn, Y ) →
Ext1(E, Y )→ Ext1(A, Y ), so Ext1(E, Y ) = 0.
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Dually, a partial cotilting module M is τ−-rigid, so gives a torsion theory
(⊥0M, cogenM). Moreover cogen1M ⊆ cogenM ⊆ ⊥1M . The following is dual to
the last proposition.

Proposition (2). For a partial cotilting module M , the following are equivalent:
(i’) M is a cotilting module.
(ii’) ⊥0,1M = 0.
(iii’) cogenM = ⊥1M .
(iv’) cogen1M = ⊥1M .
(v’) X is Ext-injective in ⊥1M ⇔ X ∈ addM .

Proposition (3). If AM is a (co)tilting module, then it is f.b. and if B = EndA(M),
then BM is also a (co)tilting module.

Proof. If AM is tilting, then gen1M =M⊥1, which contains DA, so AM is f.b.
(i) Applying HomA(−,M) to the exact sequence 0 → A → M0 → M1 → 0

gives
0→ HomA(M

1,M)→ HomA(M
0,M)→M → 0

and HomA(M
i,M) ∈ add(HomA(M,M)) = add(BB), so proj. dim BM ≤ 1.

(ii) The tilting sequence 0 → A → M0 → M1 → 0 stays exact on applying
Hom(−,M). Thus A ∈ cogen2(AM). Thus Ext1B(M,M) = 0 by the proposition
about endomorphism correspondents.

(iii) Applying HomA(−,M) to a projective resolution 0→ P1 → P0 →M → 0
of M gives an exact sequence

0→ B →M0 →M1 → 0

where M i = HomA(Pi,M) ∈ add(BM). Thus BM is a tilting module.
Dually for cotilting.

5.3 The Brenner-Butler Theorem

Let AM be a cotilting module and B = EndA(M), so BM is also cotilting.
In A-mod we have a torsion theory (TA,FA) = (⊥0

AM, cogen AM). Since AM
is cotilting we have

FA = cogen(AM) = cogen1(AM) = ⊥1
AM = {X ∈ A-mod : Ext1A(X,M) = 0}.

In B-mod we have a torsion theory (TB,FB) = (⊥0
BM, cogen BM). Since BM

is cotilting we have the equivalent alternative descriptions of FB.
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Theorem (Brenner-Butler Theorem, 1st version). There are antiequivalences

FA

HomA(−,M)−→
←−

HomB(−,M)

FB and TA
Ext1A(−,M)
−→
←−

Ext1B(−,M)

TB.

Proof. Since FA = cogen1(AM) and FB = cogen1(BM), the first antiequivalence
is given by endomorphism correspondence.

Given a module AX in TA, so with HomA(X,M) = 0, we show that

HomB(Ext
1
A(X,M),M) = 0

and construct a natural isomorphism

X → Ext1B(Ext
1(X,M),M).

Indeed, take a projective cover of X to get a sequence 0 → L → P → X → 0. It
gives an exact sequence of B-modules

0→ HomA(P,M)→ HomA(L,M)→ Ext1A(X,M)→ 0

Now P,L ∈ cogenM = cogen1M , so the natural maps P → HomB(HomA(P,M),M)
and L→ HomB(HomA(L,M),M) are isomorphisms. Also

HomA(L,M) ∈ cogen1(BM) = ⊥1(BM),

so Ext1B(Hom(L,M),M) = 0. Thus we get a commutative diagram

0 −−−→ L −−−→ P −−−→ X −−−→ 0y y
0 −−−→ (1(X,M),M) −−−→ ((L,M),M) −−−→ ((P,M),M) −−−→ 1(1(X,M),M) −−−→ 0

(where we omit the words Hom and Ext) with exact rows and in which the vertical
maps are isomorphisms. Thus HomB(Ext

1
A(X,M),M) = 0 and there is an induced

isomorphism X → Ext1B(Ext
1
A(X,M),M). One also needs to show that this is a

natural isomorphism, but we omit the proof of this.
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Example.

Theorem. If B is hereditary, then the torsion theory (TA,FA) is split (and by
symmetry, if A is hereditary, then (TB,FB) is split).

Proof. We want to show that Ext1A(U, V ) = 0 for all U ∈ FA and V ∈ TA. Now we
have V = Ext1B(Y,M) for some Y ∈ TB. Taking a projective A-module Q mapping
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onto U , gives an exact sequence

0→ Ω1U → Q→ U → 0

and applying HomA(−,M), we get an isomorphism Ext2(U,M) ∼= Ext1(Ω1U,M)
(dimension shifting). Also Q ∈ cogenM since M is faithful, so Ω1U ∈ cogenM =
FA, so Ext1(Ω1U,M) = 0, so Ext2(U,M) = 0. We also have Ext1(U,M) = 0.

Now take a projective resolution

0→ P1 → P0 → Y → 0.

Since HomB(Y,M) = 0, we get an exact sequence

0→ HomB(P0,M)→ HomB(P1,M)→ Ext1B(Y,M)→ 0.

Thus

· · · → Ext1A(U,HomB(P1,M))→ Ext1A(U,Ext
1
B(Y,M))→ Ext2A(U,HomB(P0,M))→ . . .

Now HomB(Pi,M) ∈ add(AM), so the outer terms are zero, giving the result.

We now give another version of the Brenner-Butler theorem. Let A be an
algebra and AT a tilting module. Let B = End(T )op, so T becomes an A-B-
bimodule, and TB is right B-module which is a tilting module. Thus DT is a left
B-module which is cotilting.

The tilting module AT gives a torsion theory (T ,F) in A-mod via

T = gen AT = (AT )
⊥1

F = (AT )
⊥0.

The cotilting left B-module DT gives a torsion theory (X ,Y) in B-mod where

X = ⊥0(BDT )

and
Y = cogen BDT = ⊥1(BDT ).

Note that if
· · · → P1 → P0 → T → 0

is a projective resolution of T as a right B-module, then

0→ DT → DP0 → DP1 → . . .

is an injective resolution of DT as a left B-module. Now if Y is a left B-module,
then TorBn (T, Y ) is the homology of the complex P∗⊗B Y , so D(TorBn (T, Y )) is the
cohomology of the complex D(P∗ ⊗B Y ) ∼= HomB(Y,DP∗), so

D(TorBn (T, Y )) ∼= ExtnB(Y,DT ).

Thus X = {Y : T ⊗B Y = 0} and Y = {Y : TorB1 (T, Y ) = 0}.
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Theorem (Brenner-Butler theorem, 2nd version). We have inverse equivalences

T
HomA(T,−)−→
←−
T⊗B−

Y

and

F
Ext1A(T,−)
−→
←−

TorB1 (T,−)

X .

For the proof, we consider DT as a cotilting right A-module, so as a cotilting
left Aop-module, and B = EndAop(DT ). Use this in 1st version, and compose with
duality.

Examples. (1) The Bernstein-Gelfand-Ponomarev reflection functors fit this pic-
ture. If i is a sink in Q, the tilting module is

T = τ−1P [i]⊕
⊕
j ̸=i

P [j].

In fact, for any algebra A, if P [i] is a simple projective (and not injective), this
construction gives a tilting module, called an APR tilting module after Auslander,
Platzeck and Reiten, Coxeter functors without diagrams, 1979.

(2) A tilted algebra is one of the form B = EndA(T ) where A is hereditary and
AT is a tilting module. Then the torsion theory (X ,Y) is split.

(3) A concealed algebra is a tilted algebra of the form B = EndA(T ) where
A is representation-infinite connected hereditary and AT is a preprojective tilting
module.

There is some n > 0 with τnT = 0. If X is a module with X ∼= τ−(n−1)τn−1X,
for example if X is indecomposable and not preprojective, or not near the start of
the preprojective component, then since A is hereditary,

Ext1(T,X) ∼= DHom(X, τT ) ∼= DHom(τ−(n−1)τn−1X, τT )
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∼= DHom(τn−1X, τnT ) = 0

so X ∈ T . Thus T contains all but finitely many indecomposables and F contains
only finitely many indecomposables.

Then B-mod is obtained by reassembling these two pieces as X and Y .
There is an example worked out in detail on p336 of Assem, Simson and

Skowronski, Elements of the representation theory of associative algebras I.
A theorem of Happel and Vossieck, Minimal algebras of infinite representation

type with preprojective component, Manuscripta Math. 1983: If B is an algebra
with a preprojective component and B is minimal of infinite representation type,
meaning that B/BeB of finite representation type for all nonzero idempotents e,
then either B is Morita equivalent to the path algebra of an r-arrow Kronecker
quiver with r ≥ 2, or B is tame concealed, and there is a classification of all such
algebras.

5.4 Derived equivalences

I promised to talk about how tilting theory is related to derived categories, but to
do this properly would be too much of a digression. So I will only sketch things
briefly.

Definition. An A-module T is a generalized (or Miyashita) tilting module if
(i) proj. dimT < ∞, so there is a projective resolution 0 → Pr → · · · → P0 →

T → 0
(ii) Exti(T, T ) = 0 for all i > 0
(iii) There is an exact sequence 0 → A → T 0 → · · · → T r → 0 with T i ∈

add(T ).

The following was proved by Happel for gl. dimA <∞ and in general by Cline,
Parshall and Scott, Derived categories and Morita theory, J. Algebra 1986.

Theorem. Let T be a generalized tilting A-module. Then T is faithfully balanced,
and letting B = End(T )op, the module TB is a generalized tilting right B-module.
Moreover T induces inverse equivalences of triangulated categories

Db(A-mod) −→←− Db(B-mod)

The functor to the right is RHom(T,−), the right derived functor of Hom(T,−).
This can be defined abstractly, but to show it exists and compute it, one uses the
isomorphisms

Db(A-mod) ∼= D+,b(A-mod) ∼= K+,b(A-inj).

Then Hom(T,−) can be applied to a complex of injectives I ·, giving a complex
Hom(T, I ·) in D+(B-mod).
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Now if X is an A-module in degree 0, then RHom(T,X) is computed by taking
an injective resolution of X, so its n-th cohomology is Extn(T,X). This is nonzero
only for finitely many n, so RHom(T,X) ∈ D+,b(B-mod). Now any complex X
in Db(A-mod) can be built from modules in a finite number of degrees. Thus
RHom(T,X) ∈ D+,b(B-mod) ∼= Db(B-mod).

Similarly the functor to the left is LT ⊗B −, constructed using

Db(A-mod) ∼= D−,b(A-mod) ∼= K−,b(A-proj).

Using that T ⊗B − is left adjoint to HomA(T,−) one can show that LT ⊗B

− is left adjoint to RHomA(T,−). Then one can show that they are inverse
equivalences.

Now suppose A is hereditary. Then every object in Db(A-mod) is a direct sum
of stalk complexes - living in only one degree.

The shift X[n] of a complex X is given by X[n]i = X i+n and it multiplies the
differential by (−1)i.

Thus if X is an A-module considered as a complex in degree 0, then X[n] is a
module in degree −n.

Also Hom(X[i], Y [j]) ∼= Extj−i(X, Y ) which is zero for j < i.
Thus we can picture Db(A-mod) as below.

Now suppose in addition that T is a classical tilting module, so B is tilted.
If X is an A-module in degree 0, then it is isomorphic in the derived category

to its injective resolution, and RHom(T,X) is the complex

· · · → 0→ Hom(T, I0)→ Hom(T, I1)→ 0→ . . .

The cohomology in degree i is Exti(T,X).
If X ∈ T = (AT )

⊥1 then RHom(T,X) is in B-mod. It is in the class X = {Y :
TorB1 (T, Y ) = 0}.

If X ∈ F = (AT )
⊥0 then RHom(T,X) is a module in degree 1, so it is in

B-mod[−1]. It is in the shift of Y = {Y : T ⊗B Y = 0}.
Since the torsion theory (X ,Y) is splitting, we can picture Db(B-mod) as fol-
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lows.

5.5 Consequences for Grothendieck groups

Definition. We consider two types of Grothendieck groups.
If A is an abelian category, the Grothendieck group G0(A) is the additive

group generated by symbols [X] for each object X in A, modulo the relations
[Y ] = [X] + [Z] for any short exact sequence 0→ X → Y → Z → 0.

If C is an additive category, the Grothendieck group K0(C) is the additive
group generated by symbols [X] for each object X in C, modulo the relations
[Y ] = [X] + [Z] whenever Y ∼= X ⊕ Z.

Lemma. If A is a f.d. algebra with simples S[i] (i = 1, . . . , n) and indecomposable
projectives P [i], then:

(i) The map sending a module X to its dimension vector gives an isomorphism
G0(A-mod) ∼= Zn, [X] 7→ dimX, so G0(A-mod) is the free Z-module on the symbols
[S[i]].

(ii) K0(A-proj) is also isomorphic to Zn since it is the free Z-module on the
symbols [P [i]].

Proof. (i) is the Jordan-Hölder theorem and (ii) is Krull-Remak-Schmidt.

Theorem. If AM is a cotilting module and B = EndA(M), then there is an iso-
morphism

θ : G0(A-mod)→ G0(B-mod), [X] 7→ [HomA(X,M)]− [Ext1A(X,M)].

Thus the canonical basis of G0(A-mod) gives a new basis of G0(B-mod), hence
the name “tilting”.
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Proof. If we apply HomA(−,M) to a short exact sequence of A-modules, say 0→
X → Y → Z → 0 we get a long exact sequence of B-modules

0→ Hom(Z,M)→ Hom(Y,M)→ Hom(X,M)→

Ext1(Z,M)→ Ext1(Y,M)→ Ext1(X,M)→ 0.

Now the relations for G0(B-mod) imply that

θ([Y ]) = [HomA(Y,M)]− [Ext1A(Y,M)]

= [HomA(X,M)]− [Ext1A(X,M)] + [HomA(Z,M)]− [Ext1A(Z,M)]

= θ([X]) + θ([Z])

so that θ is well-defined.
Swapping the roles of A and B there is a map ϕ in the reverse direction.
If X ∈ cogenM or X ∈ ⊥0M , then ϕ(θ([X])) = [X]. Because any X belongs

to a short exact sequence whose ends are torsion and torsion-free, it follows that
ϕθ = 1. Similarly θϕ = 1.

Recall that we write #M for the number of isomorphism classes of indecom-
posable summands of M . Thus #A is the number of isomorphism classes of inde-
composable projective A-modules, so the number of isomorphism classes of simple
A-modules.

Corollary. Any partial (co)tilting module M has #M ≤ #A, with equality if and
only if M is (co)tilting.

Proof. If AM is a cotilting module and B = EndA(M), then Hom(−,M) gives
an antiequivalence between addM and B-proj, so #M is the rank of G0(B-mod),
which is the rank of G0(B-mod), which is #A.

By duality any tilting module has #A summands. By Bongartz, any partial
tilting module is a summand of a tilting module.

Theorem (Smalø, 1984). If (T ,F) is a torsion theory, then T is functorially finite
iff F is functorially finite.

Proof. By symmetry, it suffices to prove that if T is functorially finite, then so is
F .

The number of indec Ext-injectives in F
= number of indec injectives in F + number of non-injective indec Ext-injectives

in F
= number of indec injectives in F + number of non-projective indec Ext-

projectives in T
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= number of indec injectives in F + number of indec Ext-projectives in T -
number of indec projectives in T .

Since T is functorially finite, the direct sum of the indecomposable Ext-projectives
in T is a tilting module for A/ ann(T ). Thus we get

= number of indec injectives in F + #A/ ann(T ) - number of indec projectives
in T .

Now the number of indecomposable injectives I[i] not in F is the number of in-
decomposable Ext-injectives in T , which is the number of indecomposable injective
A/ ann(T )-modules, so it is #A/ ann(T ).

Similarly the number of indecomposable projectives not in T is #A/ ann(F).
So we get
= (#A−#A/ ann(T )) + #A/ ann(T )− (#A−#A/ ann(F)).
= #A/ ann(F).
Now by the dual of an earlier result, any Ext-injective in F is a partial cotilting

module for A/ ann(F). Thus the direct sumM of all indecomposable Ext-injectives
in F is a cotilting module for A/ ann(F).

Thus working in A/ ann(F)-mod, we have cogenM = ⊥1M . Now since M is
Ext-injective in F , Ext1(F ,M) = 0, so F ⊆ ⊥1M = cogenM ⊆ F .

Thus also F = cogenM as a module class in A-mod. Thus F is contravariantly
finite by the proposition at the end of §1.9, and it is covariantly finite since the
inclusion has a left adjoint.

5.6 Some tau-tilting theory

It was started by Adachi, Iyama and Reiten, τ -tilting theory, 2014, although there
was earlier work, see Derksen and Fei, General Presentations of Algebras and
Foundations of tau-tilting Theory, arxiv 2409.12743. It has led to a lot of other
work. We shall only do a little.

We have done all the necessary prerequisites in our theorems about functorially
finite torsion and torsion-free classes.

Lemma. (i) If M is an A-module, then #A/ ann(M) is the number of different
simple composition factors involved in M .

(ii) If M is τ -rigid, then the number of indecomposable Ext-projectives in genM
is #A/ ann(M) and #M ≤ #A/ ann(M).

Proof. (i) If S is involved in M , then S must be an A/ ann(M)-module. On the
other hand, M is faithful as an A/ ann(M)-module, so A/ ann(M) embeds in a
direct sum of copies of M , so if S is a simple for A/ ann(M), then it must be a
composition factor of M .
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(ii) M is a partial tilting module for A/ ann(M), and genM is a functorially
finite torsion class, so the direct sum of the indecomposable Ext-projectives is a
tilting module for A/ ann(M).

Definition. Let M be a τ -rigid A-module.
(i) M is a support τ -tilting module if #M = #A/ ann(M), or equivalently M is

the direct sum of the indecomposable Ext-projectives in genM , each with non-zero
multiplicity.

(ii) M is a τ -tilting module if it is a sincere support τ -tilting module, or equiv-
alently #M = #A. (Recall that sincere means that every simple module occurs
as a composition factor.)

Lemma. If M is τ -rigid, then T = ⊥0(τM) is a sincere functorially finite torsion
class. If T is the direct sum of the indecompsable Ext-projectives in T , then T is
a τ -tilting module, M ∈ add(T ) and ⊥0(τT ) = genT .

The module T is called the Bongartz completion of M .

Proof. τM is a τ−-rigid module, so we get a torsion theory (⊥0(τM), cogen τM).
The torsion class is functorially finite by Smalø’s theorem. The torsion class is
sincere, since no injective I[i] embeds in τM , so I[i] is not in the torsion-free class,
so its torsion submodule is non-zero, and this has S[i] as a submodule. Clearly
M ∈ T and it is Ext-projective since if X ∈ T , then

Ext1(M,X) ∼= DHom(X, τM)

and Hom(X, τM) = 0. Now
⊥0(τM) = T = genT ⊆ ⊥0(τT ) ⊆ ⊥0(τM)

where the second equality holds by the Auslander-Smalø theorem of functorially
finite torsion classes, the first inclusion since T is τ -rigid, and the second since
M ∈ add(T ).

The following is an analogue of a result known as Wakamatsu’s lemma.

Lemma. If M is τ -rigid and f : M ′ → X is a right add(M)-approximation of a
module X, then Hom(Ker(f), τM) = 0.

Proof. Replacing X by Im(f), we may suppose that f is surjective. Applying
Hom(−, τM) gives an exact sequence

Hom(M ′, τM)→ Hom(Ker(f),M)→ Ext1(X, τM)→ Ext1(M ′, τM).

The first hom space is zero since M is τ -rigid. Now the map Hom(M,M ′) →
Hom(M,X) induced by f is surjective, hence so is the map on Hom, hence by the
Auslander-Reiten formula, the map on Ext1 is injective.
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Theorem. A τ -rigid module M is τ -tilting iff genM = ⊥0(τM).

Proof. If M is τ -tilting, then its Bongartz completion T can have no new indecom-
posable summands, so add(M) = add(T ), and we get the result from the lemma.

Suppose genM = ⊥0(τM). Let T be the Bongartz completion of M . Then

genM ⊆ genT = ⊥0τT ⊆ ⊥0τM = genM

so all are equal. Take a minimal right add(M)-approximation of T , say f :M ′ → T .
It is surjective since T ∈ genM , so we get an exact sequence

0→ Ker(f)→M ′ → T → 0.

By the Wakamatsu-type lemma Hom(Ker(f), τM) = 0. Since ⊥0(τM) = ⊥0(τT )
we get Hom(Ker(f), τT ) = 0. Thus Ext1(T,Ker(f)) = 0. Thus the sequence
0→ Ker(f)→M ′ → T → 0 splits. Thus T ∈ add(M), so M is τ -tilting.

Corollary. Any basic τ -rigid module M which is not τ -tilting, is a direct summand
of at least two basic support τ -tilting modules.

Proof. genM and ⊥0(τM) are different functorially finite torsion classes containing
M , and we can take the direct sum of the indecomposable Ext-projectives in either.

Remark. It is useful to consider pairs (M,P ) where M is a module, P is a pro-
jective module and Hom(P,M) = 0, so that P is a direct sum of P [i] such that
S[i] is not a composition factor of M .

We call it a τ -rigid pair if M is τ -rigid.
We call it a support τ -tilting pair if #M + #P = #A. Note that we always

have ≤ for a τ -rigid pair. Also M is necessarily support τ -tilting.
We call a pair basic if M and P are basic.
One can show that any basic τ -rigid pair (M,P ), can be extended to a basic

support τ -tilting pair (M ⊕M ′, P ⊕ P ′), and if #M + #P = #A − 1, there are
exactly two ways to do it.

Thus we get mutations of support τ -tilting pairs where we remove any one
indecomposable summand, and replace it by the other possible extension of that
pair.

Such mutations are related to the mutations in cluster algebras.

Remark. There is a natural homomorphism

θ : K0(A-proj)→ G0(A-mod), θ([X]K) = [X]G.
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It is an isomorphism if gl. dimA <∞. For this, it suffices to see that it is surjective.
Now a projective resolution

0→ Pn → · · · → P0 → X → 0

gives

[X]G =
n∑

i=0

(−1)i[Pi]G ∈ Im θ.

In general, however, it is not an isomorphism.
Instead there is a bilinear map

⟨−,−⟩ : K0(A-proj)×G0(A-mod)→ Z, ([P ], [X]) 7→ dimHom(P,X).

and
⟨[P [i]], [S[j]]⟩ = dimHom(P [i], S[j]) = δij dimDi.

where Di = End(S[i])op. The matrix is invertible over Q, so gives a perfect pairing
between K0(A-proj)⊗Z Q and G0(A-mod)⊗Z Q.

Definition. The g-vector of a module M is

g(M) = [P0]− [P1] ∈ K0(A-proj)

where P1 → P0 →M → 0 is the minimal projective presentation.

Lemma. If M and X are modules, then

⟨g(M), [X]⟩ = dimHom(M,X)− dimHom(X, τM).

Proof. We have exact sequences

0→ τM → νP1 → νP0

and
0→ Hom(M,X)→ Hom(P0, X)→ Hom(P1, X)

so we get a commutative diagram with exact rows

0 −−−→ Hom(X, τM) −−−→ Hom(X, νP1) −−−→ Hom(X, νP0)∥∥∥ ∥∥∥
DHom(P1, X) −−−→ DHom(P0, X) −−−→ DHom(M,X) −−−→ 0
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Lemma. If M is τ -rigid, and P1
θ−→ P0

ϕ−→M → 0 is a minimal projective presen-
tation, then P0 and P1 have no direct summand in common.

Proof. The map Hom(P0,M) → Hom(P1,M) is surjective since its dual can be
identified with the map Hom(M, νP1)→ Hom(M, νP0) and the kernel of this map
is Hom(M, τM) = 0.

It suffices to show that any map s : P1 → P0 is in the radical. The composition
ϕs ∈ Hom(P1,M), so by the surjectivity, ϕs = tθ for some t : P0 → X.

Since ϕ is surjective and P0 is projective, we have t = ϕu for some u : P0 → P0.
Then ϕ(s − uθ) = 0. Thus since P1 is projective, s − uθ = θv for some

v : P1 → P1. Now θ is in the radical, hence so is s.

Theorem. Two τ -rigid modules with the same g-vector must be isomorphic.

By the lemma, the two modules have the same projectives in their mini-
mal projective presentations. Thus we are dealing with two homomorphisms in
Hom(P1, P0). Can reduce to the case of an algebra over an algebraically closed
field. Then it is a simple geometric argument. Hopefully we will do it later.

Remark. There are nice connections with semibricks. See Asai, Semibricks, IMRN
2020 and Ringel, Brick chain filtrations, arxiv 2411.18427

Also Demonet, Iyama and Jasso, tau-tilting finite algebras, bricks, and g-
vectors, IMRN 2019. For example the following are equivalent.

- A has only finitely many τ -tilting modules.
- Every torsion class in A-mod is functorially finite.
- A has only finitely many bricks.
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6 Varieties and schemes of algebras and modules

6.1 Varieties of algebras

First we need to discuss varieties. We work over an algebraically closed field K,
and follow Kempf, Algebraic varieties, 1993.

Definition. A space with functions consists of a topological space X and the
assignment of a set O(U) of regular functions for each open set U ⊆ X, satisfying:

(a) O(U) is a K-subalgebra of the algebra of all functions U → K, with point-
wise operations.

(b) If U is a union of open sets, U =
⋃
Uα, then f ∈ O(U) iff f |Uα ∈ O(Uα) for

all α.
(c) If f ∈ O(U), then D(f) = {u ∈ U | f(u) ̸= 0} is open in U and 1/f ∈

O(D(f)).
A morphism of spaces with functions is a continuous map θ : X → Y with the

property that for any open subset U of Y , and any f ∈ O(U), the composition

θ−1(U)
θ−→ U

f−→ K

is in O(θ−1(U)). In this way one gets a category of spaces with functions.

Properties. (1) If X is a space with functions and V ⊆ X is any subset, one
defines O(V ) to be the set of functions f : V → K such that each v ∈ V has an
open neighbourhood U in X such that f |V ∩U = g|V ∩U for some g ∈ O(U).

(2) Any subset V of a space with functions X becomes a space with functions
with the induced topology and induced functions, and the inclusion V → X is a
morphism. (Kempf, Exercise 1.5.3.)

(3) An embedding is a morphism θ : X → Y which induces an isomorphism
X → Im(θ). If so, then for any Z is a space with functions, a mapping ϕ : Z → X
is a morphism if and only if θϕ : Z → Y is a morphism.

(4) If X and Y are spaces with functions, then the set X × Y can be given the
structure of a space with functions, so that it becomes a product of X and Y in
the category of spaces with functions. See Kempf, Lemma 3.1.1. The topology is
not the usual product topology. Instead a basis of open sets is given by the sets

{(u, v) ∈ U × V : f(u, v) ̸= 0}

where U is open inX, V is open in Y and f(x, y) =
∑n

i=1 gi(x)hi(y) with gi ∈ O(U)
and hi ∈ O(V ).

(5) The diagonal map X → X ×X is an embedding, since if ∆X is its image,
then there is a morphism ∆X → X given by the composition ∆X → X×X p1−→ X.
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(6) The projection morphism p : X × Y → X is an open morphism, that is,
the image of any open set U is open. Namely, for y ∈ Y , the identity morphism
X → X and the morphism X → Y sending every element to y induce a morphism
iy : X → X×Y with iy(x) = (x, y). Now if U ⊆ X×Y , then p(U) =

⋃
y∈Y i

−1
y (U),

which is open.

Definition. Affine n-space is An = Kn considered as a space with functions with:
- The topology is the Zariski topology, so closed sets are of the form

V (S) = {(x1, . . . , xn) ∈ Kn | f(x1, . . . , xn) = 0 for all f ∈ S}

where S is a subset of the polynomial ring K[X1, . . . , Xn]. Equivalently, the sets

D(f) = {(x1, . . . , xn) ∈ Kn | f(x1, . . . , xn) ̸= 0}

with f ∈ K[X1, . . . , Xn] are a base of open subsets, and by noetherianness, any
open set is a finite union of D(f).

- If U is an open subset of An, then the set of regular functions O(U) consists of
the functions f : U → K such that each point u ∈ U has an open neighbourhood
W ⊆ U such that f |W = p/q with p, q ∈ K[X1, . . . , Xn] and q(x1, . . . , xn) ̸= 0 for
all (x1, . . . , xn) ∈ W .

Properties. (a) If X is a space with functions, then a mapping

θ : X → An, θ(x) = (θ1(x), . . . , θn(x))

is a morphism of spaces with functions iff the θi are regular functions on X. If θ is
a morphism, then since the ith projection πi : An → K is regular, so it θi = πiθ is
regular. Conversely suppose that θ1, . . . , θn are regular. Let U be an open subset
of An and f = p/q ∈ O(U) with q(u) ̸= 0 for u ∈ U . We need to show that fθ is
regular on θ−1(U). Now by assumption pθ = p(θ1(x), . . . , θn(x)) and qθ are regular
on U . Also qθ is non-vanishing on θ−1(U). Thus pθ/qθ is regular on θ−1(U).

(b) It follows that An × Am ∼= An+m.
(c) An n-dimensional vector space V can be considered as a space with functions

isomorphic to An by choosing any basis. Any linear map An → Am is a morphism
of spaces with functions, and an invertible linear map is an isomorphism, so a
different basis gives the same space with functions.

(d) X = An is separated, meaning that the diagonal

∆X = {(x, x) : x ∈ X}

is closed in X ×X, since

∆An = {(x1, . . . , xn, y1, . . . , yn) ∈ A2n : x1 = y1, . . . , xn = yn},

so it is closed. Note that if X is a topological space and X ×X is considered with
the product topology, then ∆X is closed if and only if X is Hausdorff.

43



Definition. An affine variety is a space with functions which is, or is isomorphic to,
a closed subset of An. If X is an affine variety, its coordinate ring is K[X] := O(X).
An (abstract) variety is a space with functions X which is separated and with a
finite open covering by affine varieties.

Note that an affine variety is a variety, since separatedness passes to subsets of
a space with functions equipped with the induced structure, for if Y is a subset of
X, then ∆Y = (Y × Y ) ∩∆X in X ×X.

Example. Determinantal varieties. If V and W are f.d. vector spaces then the
space Hom(V,W )≤r of linear maps of rank ≤ r is closed in Hom(V,W ), so an affine
variety. Namely, identifying this with Mn×m(K), it is defined by the vanishing of
all minors of size r + 1.

Recall that the radical of an ideal I in a commutative ring A is
√
I = {a ∈ A : an ∈ I for some n > 0}

It is an ideal. The ideal I is radical if I =
√
I. Equivalently, if the factor ring A/I

is reduced, that is, it has no nonzero nilpotent elements. Since K[X1, . . . , Xn] is a
UFD, if f is an irreducible polynomial in K[X1, . . . , Xn], then (f) is a prime ideal,
so K[X1, . . . , Xn]/(f) is a domain, so (f) is a radical ideal.

Theorem. Let X be a closed subset of An, say X = V (S) with S is a subset of
K[X1, . . . , Xn]. Then there is a canonical isomorphism

K[X] ∼= K[X1, . . . , Xn]/
√
I

where I is the ideal generated by S and
√
I is its radical.

The kernel of the canonical map K[X1, . . . , Xn] → K[X] is
√
I by Hilbert’s

Nullstellensatz. The fact that is is surjective is proved in Kempf §1.5.

Corollary. The assignment X 7→ K[X] gives an anti-equivalence between the cat-
egories of affine varieties and finitely generated reduced commutative K-algebras.
Moreover if Z is any space with functions, we get a bijection

Homspaces with functions(Z,X)→ HomK-algebras(K[X],O(Z))

sending θ : Z → X to the composition map f 7→ fθ.

Proof. The theorem shows that K[X] is a f.g. reduced commutative algebra, and
any such occurs. The statement about morphisms follows from our observation
about morphisms Z → An.
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Theorem. A product X × Y of varieties is a variety. If X and Y are affine
varieties, so is X × Y , and K[X × Y ] ∼= K[X]⊗K K[Y ].

Proof. Recall that the product X × Y exists for any two spaces with functions.
If X is closed in An and Y is closed in Am then X × Y is closed in An ×Am ∼=

An+m, so affine. Clearly K[X] ⊗K K[Y ] is a f.g. commutative algebra, and with
commutative algebra (using that K is algebraically closed) one can show it is
reduced. Now the categorical property shows that X × Y has coordinate ring
K[X]⊗K K[Y ].

In general, it is straightforward that if U ⊆ X and V ⊆ Y are open (resp.
closed) subsets, then U × V is open (resp. closed) in X × Y . Moreover with the
induced structure as a space with functions it is a categorical product.

Assuming that X and Y are separated, ∆X×Y is identified with ∆X×∆Y which
is closed in (X ×X)× (Y × Y ).

Properties. (i) If X is a variety and x ∈ X, then the singleton set {x} is closed
in X. This is easy to see for affine space, it follows immediately for X an affine
variety, and then for X an arbitrary variety.

(ii) Any variety is a noetherian topological space, that is it has the ascending
chain condition on open subsets. The noetherian property of polynomial rings
proves this for affine space, and then it follows for affine varieties and then for
arbitrary varieties.

(iii) In particular, any variety is quasi-compact, meaning that any open covering
has a finite subcovering. (Usually this is just called compactness, but in this context
it is called quasi-compactness, apparently to make clear that the topological spaces
needn’t be Hausdorff.)

(iv) For a subset Y of a topological space, the following are equivalent, and
then Y is called locally closed.
(1) Y is an open subset of a closed subset of X
(2) Y is open in its closure
(3) Y is the intersection of an open and a closed subset of X.

Definition. A subvariety Y of a variety X is a locally closed subset equipped with
the induced structure as a space with functions.

Clearly a closed subvariety of an affine variety is affine.

Proposition. If X is an affine variety and f ∈ K[X], then the open subset D(f) =
{x ∈ X : f(x) ̸= 0} is an affine variety and K[D(f)] ∼= K[X]f (the localization,
inverting f).
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Proof. We have an isomorphisms D(f) −→←−{(x, t) ∈ X × A1 : f(x)t = 1}, where
the map to the left sends (x, t) to x and the map to the right sends x to (x, 1/f(x)).
It is a morphism since 1/f ∈ O(D(f)).

Corollary. Any subvariety of a variety is a variety.

Proof. Suppose Y ⊆ X. We need to show that Y is a finite union of affine open
subsets. Since X is a finite union of affine opens, we may reduce to the case when
X is affine. We may also assume that Y is open in X. But then Y = X ∩ U with
U = D(f1)∪ · · · ∪D(fm), and then Y = V1∪ · · · ∪Vm with Vi = X ∩D(fi) a closed
subset of the affine variety D(fi), hence affine.

Example. If V and W are vector spaces, the set of injective linear maps Inj(V,W )
is an open subvariety in Hom(V,W ), since the complement is Hom≤r(V,W ) where
r = dimV − 1.

Remark. The example of D(f) shows that some open subvarieties of affine vari-
eties quasi-affine varieties are again affine. But this is not always true. For example
U = A2 \ {0} = D(X1) ∪D(X2) is not affine.

To see this, we show first that O(U) = K[X1, X2]. A function f ∈ O(U)
is determined by its restrictions fi to D(Xi) (i = 1, 2). Now fi ∈ O(D(Xi)) =
K[X1, X2, X

−1
i ]. Moreover the restrictions of f1 and f2 to D(X1) ∩ D(X2) =

D(X1X2) are equal, so f1 and f2 are equal as elements of K[X1, X2, 1/X1X2]. But
this is only possible if they are both in K[X1, X2], and equal. Thus f ∈ K[X1, X2].

Now the inclusion morphism θ : U → A2 induces a homomorphism O(A2) →
O(U) which is actually an isomorphism. Now the category of affine varieties is
anti-equivalent to the category of finitely generated reduced K-algebras. If U were
affine, then since the map on coordinate rings is an isomorphism, θ would have to
be an isomorphism. But is isn’t.

Definition. A (non-empty) topological space X is irreducible if it cannot be writ-
ten as a union of two proper closed subsets.

Properties. (1) X is irreducible iff every non-empty open subset U is dense in X.
Thus any non-empty open subset of an irreducible space is irreducible.

(2) An affine variety X is irreducible iff K[X] is a domain. (Kempf, Lemma
2.3.1.) In particular An is irreducible.

(3) Any variety is a finite union of maximal irreducible closed subvarieties, its
irreducible components.

(4) A product of irreducible varieties is irreducible. Indeed if X × Y = Z1 ∪Z2

with the Zi closed, then for all x ∈ X we have

Y = i−1
x (Z1) ∪ i−1

x (Z2),
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so by irreduciblity, one of the sets on the right is Y . Thus {x}× Y is contained in
Z1 or Z2. Thus X = X1 ∪X2 where

Xi =
⋂
y∈Y

i−1
y (Zi)

Thus by irreducibility, we have X = Xi for some i, so Zi = X × Y .

Definition. An algebraic group is a group which is also a variety, such that mul-
tiplication G×G→ G and inversion G→ G are morphisms of varieties.

A morphism of algebraic groups is a map which is a group homomorphism and
a morphism of varieties.

When considering an action of an algebraic group on a variety X we shall
suppose that the map G×X → X is a morphism of varieties.

The general linear group GLn(K) is the open subset D(det) of Mn(K), so an
affine variety. It is an algebraic group thanks to the formula g−1 = adj g/ det g. It
acts by left multiplication or by conjugation on Mn(K).

A linear algebraic group is an algebraic group which is isomorphic to a closed
subgroup of GLn(K). For example the special linear group, orthogonal group or
any finite group. The additive and multiplicative groups of the field are

Ga = (K,+) ∼= {
(
1 a
0 1

)
: a ∈ K}, Gm = (K \ {0},×) = GL1(K).

Any finite product of linear algebraic groups is a linear algebraic group, using that
GLn(K)×GLm(K) embeds in GLn+m(K).

Remark. Any linear algebraic group is an affine variety, and conversely one can
show that any affine algebraic group is linear, see for example Humphreys, Linear
algebraic groups, section 8.6. An elliptic curve is an example of an algebraic group
which is a projective variety, so not linear.

Lemma. A connected algebraic group is an irreducible variety.

Proof. Write the group as a union of irreducible components G = G1 ∪ · · · ∪ Gn.
Since G1 is not a subset of the union of the other components, some element g ∈ G1

does not lie in any other component. Now any two elements of an algebraic group
look the same, since multiplication by any h ∈ G defines an isomorphism G→ G.
It follows that every element of G lies in only one irreducible component. Thus G
is the disjoint union of its irreducible components. But then the components are
open and closed, and since G is connected, there is only one component.
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Let V be a vector space of dimension n, with basis e1, . . . , en. We write Bil(n)
for the set of bilinear maps V ×V → V . A map µ ∈ Bil(n) is given by its structure
constants (ckij) ∈ Kn3 with

µ(ei, ej) =
∑
k

ckijek.

Equivalently Bil(n) ∼= Hom(V ⊗ V, V ), Thus it is affine space An3 .
We write Ass(n) for the subset consisting of associative multiplications. This is

a closed subset of Bil(n), hence an affine variety, since it is defined by the equations

µ(µ(ei, ej), ek) = µ(ei, µ(ej, ek)),

that is ∑
p

cpijc
s
pk =

∑
q

csiqc
q
jk

for all s.
We write Alg(n) for the subset of associative unital multiplications, so algebra

structures on V .

Theorem. Alg(n) is an affine open subset of Ass(n), hence an affine variety.
The algebraic group GL(V ) acts by basis change, and the orbits correspond to
isomorphism classes of n-dimensional algebras.

Proof. (i) We use that a vector space A with an associative multiplication has a 1
if and only if there is some a ∈ A for which the maps ℓa, ra : A → A of left and
right multiplication by a are invertible.

Namely, if u = ℓ−1
a (a), then au = a. Thus aub = ab for all b, so since ℓa is

invertible, ub = b. Thus u is a left 1. Similarly there is a right 1, and they must
be equal.

(ii) For the algebra V with multiplication µ, write ℓµa and rµa for left and right
multiplication by a ∈ V . Then Alg(n) =

⋃
a∈V D(fa) where fa(µ) = det(ℓµa) det(r

µ
a ).

Thus Alg(n) is open in Ass(n).

(iii) The map
Alg(n)→ V, µ 7→ the 1 for µ

is a morphism of varieties, since onD(fa) it is given by (ℓµa)
−1(a), whose components

are rational functions, with det(ℓµa) in the denominator.

(iv) Alg(n) is affine. In fact

Alg(n) ∼= {(µ, u) ∈ Ass(n)× V | u is a 1 for µ}.

The right hand side is a closed subset, hence it is affine. Certainly there is a
bijection, and the maps both ways are morphisms.

(v) Last statement is clear.
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Example. The structure of Alg(n) is known for small n. For example Alg(4) has
5 irreducible components, of dimensions 15, 13, 12, 12, 9. See P. Gabriel, Finite
representation type is open, 1974.

6.2 Schemes and varieties of modules

More general than varieties are schemes. I only discuss affine schemes, using rep-
resentable functors rather than sheaves. See:

- M. Demazure and P. Gabriel, Groupes Algébriques, 1970. Partial English
translation, Introduction to Algebraic Geometry and Algebraic Groups, 1980.

- W. C. Waterhouse, Affine group schemes, 1979.
- D. Eisenbud and J. Harris, The geometry of schemes, 2000. (Chapter VI)

Let K be a commutative ring. We write K-comm for the category of commuta-
tive K-algebras, or equivalently commutative rings R equipped with a homomor-
phism K → R.

Definition. The category of affine (K-)schemes is the category of representable
(covariant) functors

F : K-comm→ Sets

with morphisms given by natural transformations. (These are not additive cate-
gories.)

Recall that a functor F is said to be representable if there is an object A in the
category (a commutative K-algebra) such that

F (−) ∼= HomK-comm(A,−).

By Yoneda’s lemma, the functorA 7→ HomK-comm(A,−) defines an anti-equivalence
from K-comm to the category of affine schemes.

Examples. (i) An is the affine scheme with An(R) = Rn. It is represented by the
polynomial ring K[X1, . . . , Xn], since

HomK-comm(K[X1, . . . , Xn], R) = Rn.

(ii) Any subset S of K[X1, . . . , Xn] defines a functor V(S) by

V(S)(R) = {(x1, . . . , xn) ∈ Rn : f(x1, . . . , xn) = 0 for all f ∈ S}.

It is an affine scheme, represented by the algebra K[X1, . . . , Xn]/(S).

Definition. The affine scheme represented by A is
- algebraic if A is f.g. as a K-algebra (and K is a noetherian ring).
- reduced if A is reduced.
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We immediately get:

Proposition. If K is an algebraically closed field, then there is an equivalence

Cat. of affine varieties→ Cat. of reduced affine algebraic schemes

X 7→ HomK-comm(K[X],−).

We usually identify an affine variety with the reduced affine algebraic scheme.
Note that if X is the functor, then the underlying set for the variety is X(K).

Lemma. Given an affine (algebraic) scheme F , there is a reduced affine (algebraic)
scheme Fred and a morphism Fred → F such that for all R the map

Fred(R)→ F (R)

is injective, and a bijection for R reduced. This defines a functor F 7→ Fred which
is right adjoint to the inclusion of reduced affine (algebraic) schemes into affine
(algebraic) schemes.

Proof. If F (−) = Hom(A,−) we set Fred(−) = Hom(Ared,−). The natural map
A→ Ared gives a morphism Fred → F .

For example V(S) is algebraic. It is reduced if and only if K[X1, . . . , Xn]/(S)
is reduced. The scheme V(S)red is represented by K[X1, . . . , Xn]/

√
(S)

Remark. If K is any commutative ring, then an affine group scheme over K is a
representable functor F : K-comm→ Groups. If A is the commutative K-algebra
representing F , then A becomes a Hopf algebra, see Waterhouse §1.4. For example
GLn is the affine group scheme with GLn(R) = GLn(R) for all R. It is represented
by the algebra K[Xij, 1/ det], so reduced.

Let A be a f.g. K-algebra (possibly non-commutative). A d-dimensional A-
module V can be considered as a homomorphism A → EndK(V ), or choosing a
basis of V , as a homomorphism A→Md(K).

Definition. Let A be a f.g. K-algebra and d a natural number. We define the
scheme Rep(A, d) (or Mod(A, d)) of d-dimensional A-modules to be the functor

K-comm→ Sets, R 7→ HomK-algebra(A,Md(R)).

Lemma. Rep(A, d) is an affine algebraic K-scheme.
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Proof. Write A as a quotient of a free algebra, say A = K⟨X1, . . . , Xk⟩/I. Then

Rep(A, d)(R) = {(A1, . . . , Ak) ∈Md(R)
k : p(A1, . . . , Ak) = 0 for all p ∈ I}.

Consider the polynomial ring S = K[Xrij : 1 ≤ r ≤ k, 1 ≤ i, j ≤ d] and let
Ur ∈ Md(S) be the matrix with (i, j) entry Xrij. If p ∈ K⟨X1, . . . , Xk⟩, then
considering it as a noncommutative polynomial, we obtain p(U1, . . . , Uk) ∈Md(S).
Then Rep(A, d)(R) is in bijection with

HomK-algebra(S/J,R).

where J is the ideal generated by all entries of p(U1, . . . , Uk) with p ∈ I.

Definition. If K is algebraically closed, the variety corresponding to the reduced
scheme is denoted Rep(A, d). Thus

Rep(A, d) = HomK-algebra(A,Md(K)),

and if A = K⟨X1, . . . , Xk⟩/I, we have

Rep(A, d) = {(A1, . . . , Ak) ∈Md(K)k : p(A1, . . . , Ak) = 0 for all p ∈ I}.

There is an action of GLd(K) on Rep(A, d) by conjugation, so given by (g · θ)(a) =
gθ(a)g−1. The orbits correspond to isomorphism classes of d-dimensional modules.

Examples. (1) Rep(A, 1) is the affine algebraic scheme given by the largest com-
mutative quotient of A, which is A/([A,A]), where [A,A] = {ab − ba : a, b ∈ A}.
Then the variety has coordinate ring

K[Rep(A, 1)] = (A/([A,A]))/
√
0.

(2) The nilpotent variety consists of the d × d nilpotent matrices over K. In
fact that dth power of such a matrix must be zero, so the nilpotent variety is

Nd = {A ∈Md(K) : Ad = 0} = Rep(K[x]/(xd), d)

(3) The commuting variety consists of the pairs of commuting matrices

Cd = {(A,B) ∈Md(K)2 : AB = BA} = Rep(K[x, y], d).

Definition. We can do the same thing with quivers and dimension vectors. For
an algebra A = KQ/I and a dimension vector α with d =

∑
i αi, we define an

affine scheme Rep(A,α) with

Rep(A,α)(R) = {θ ∈ HomK-algebra(A,Md(R)) : θ(ei) = Ii}
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where Ii is the block matrix with blocks of size αj, the ith diagonal block the
identity matrix and all other blocks zero. We can identify

Rep(A,α)(R) ⊆ Rep(KQ,α)(R) ∼=
∏
a:i→j

HomR(R
αi , Rαj).

The linear algebraic group

GL(α) =
∏
i∈Q0

GLαi
(K)

embedded diagonally in GLd(K) acts by conjugation on the variety Rep(A,α)
and the orbits correspond to the isomorphism classes of representations of A of
dimension vector α.

Example. Let Q be the quiver 1
a−→ 2

b−→ 3 and I the ideal generated by ba.

Rep(KQ/I, (2, 2, 1)) = {(a, b) ∈M2×2(K)×M1×2(K) : ba = 0}.

6.3 Geometric quotients and projective space

Definition. Suppose that a linear algebraic group G acts on a space with func-
tions X.

Let X/G be the set of orbits Gx and let π : X → X/G be the quotient map.
We can turn X/G into a space with functions via

- A subset U of X/G is open iff π−1(U) is open in X. (Thus also U is closed iff
π−1(U) is closed in X.)

- A function f : U → K is in O(U) iff fπ ∈ O(π−1(U)).

Lemma. X/G is a space with functions, π is a morphism, and it is a categorical
quotient in the category of spaces with functions. That is, any morphism ϕ : X →
Z which is constant on G-orbits factors uniquely as ψπ for some morphism ψ :
X/G→ Z.

The proof is easy.

Definition. If X is a variety and X/G is also variety, we call X/G or π a geometric
quotient.

Remark. (i) A necessary condition to have a geometric quotient is that the orbits
of G must be closed in X, since Gx is the inverse image of a point in X/G, and
any point in a variety is closed.

The multiplicative group Gm = GL1(K) acts on a vector space V by rescaling.
But the only closed orbit is {0}, so V/G is not a geometric quotient.
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(ii) If X/G is a geometric quotient, then it is a categorical quotient in the
category of varieties. Categorical quotients can exist more generally, but they may
not contain interesting information.

The closure of the Gm-orbit of x ∈ V is the subspace spanned by x, so it
contains 0. Suppose ϕ : X → Z is a morphism to a variety which is constant on
orbits and x ∈ X. Then ϕ(gx) = ϕ(x) for all g ∈ G. Thus Gmx ⊆ ϕ−1(ϕ(x)). Since
the singleton sets on Z are closed, so is this, so 0 ∈ ϕ−1(ϕ(x)), so ϕ(x) = ϕ(0).
Thus ϕ is constant. It follows that the map V → {pt} is a categorical quotient in
the category of varieties. Thus everything interesting is lost.

(iii) If the orbits aren’t closed, a better approach is ‘geometric invariant theory’.
More later, maybe. Even if the orbits of G are closed, there may not be a geometric
quotient. See for example H. Derksen, Quotients of algebraic group actions, in:
Automorphisms of affine spaces, 1995. Maybe you need to work with algebraic
spaces rather than varieties. See for example J. Kollár, Quotient spaces modulo
algebraic groups, Ann. of Math. 1997.

Lemma. If Y is a variety and G acts on G × Y by g(g′, y) = (gg′, y), then the
projection morphism p : G× Y → Y is a geometric quotient, i.e. (G× Y )/G ∼= Y .

Proof. The set of orbits is in bijection with Y . To check that they are the same
spaces with functions, we need to see

(i) A set U is open in Y ⇔ p−1(U) is open. The implication ⇒ holds because
p is a morphism. The other implication holds because U = p(p−1(U)) and any
projection morphism is open.

(ii) A function f on an open subset U of Y is regular⇔ fp is regular on G×U .
The implication ⇒ is because p is a morphism. The other implication holds since
f is the composition of fp and the morphism U → G× U , x 7→ (1, x).

Definition. Given an action of a linear algebraic group G on a variety X and
a morphism of varieties π : X → Y which is constant on G-orbits, we say that
π is a Zariski-locally-trivial principal G-bundle if each point in Y has an open
neighbourhood U , such that there is an isomorphism

ϕ : G× U → π−1(U)

with πϕ the projection onto U and such that ϕ commutes with the naturalG-action,
ϕ(g′g, u) = g′ϕ(g, u) for g, g′ ∈ G and u ∈ U .

Remark. A basic reference for fibre bundles in algebraic geometry is J.-P. Serre,
Espaces fibrés algébriques, Séminaire Claude Chevalley, 1958. In general a principal
G-bundle need not be Zariski-locally-trivial, but only locally trivial for the ‘étale
topology’; but be warned, this is a ‘Grothendieck topology’, which is not a topology
in the usual sense. However, Serre showed that SLn(K) and GLn(K) are ‘special’
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groups, meaning that any principal bundle for these groups is automatically Zariski-
locally-trivial.

Lemma. Let π : X → Y be a Zariski-locally-trivial principal G-bundle.
(i) π is surjective and each fibre π−1(y) is isomorphic to G.
(ii) π induces an isomorphism X/G ∼= Y , so X/G is a geometric quotient.
(iii) π is universally open, that is, if Z is a variety, and U is an open subset of
X × Z, then its image in Y × Z is open.
(iv) π is universally submersive, that is, if Z is a variety, and V is a subset of
Y × Z, then V is open if and only if its inverse image in X × Z is open.

Proof. Straightforward, using previous results.

Remark. The book Mumford, Fogarty and Kirwan, Geometric Invariant Theory,
3rd edition, 1994, claims in remark (4) on page 6 that any geometric quotient is
universally open. But this does not seem to be true. In the first edition universally
submersive was included as part of the definition of a geometric quotient. The
definition was changed in the second edition, but the remark was not.

Definition. If V is a vector space, then Gm acts on V∗ := V \ {0} by rescaling,
and we define projective space to be

P(V ) = V∗/Gm.

We can identify P(V ) with the set of 1-dimensional subspaces of V . Working with
coordinates, we define Pn = P(Kn+1) and denote the Gm-orbit of (x0, . . . , xn) by
[x0 : · · · : xn].

Proposition. P(V ) is a variety and the projection p : V∗ → P(V ) is a Zariski-
locally-trivial principal Gm-bundle, so a geometric quotient. In fact

Pn = U0 ∪ · · · ∪ Un

where Ui = {[x0 : · · · : xn] : xi ̸= 0} is an open subset of Pn isomorphic to An.

Proof. Ui is open, since it lifts to the open set

Wi = {(x0, . . . , xn) ∈ Kn+1 : xi ̸= 0}

of Kn+1
∗ . We have an isomorphism

Wi → Gm × An, (x0, . . . , xn) 7→ (xi, (x0/xi, . . . , x̂i/xi, . . . , xn/xi)).

The action of Gm on Wi corresponds to the multiplication action on the first factor
of Gm × An, so Ui = Wi/Gm

∼= An.
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To see that Pn is separated, it suffices to show that

Dij = ∆Pn ∩ (Ui × Uj)

is closed in Ui × Uj for all i, j. Identify Ui
∼= {x ∈ Kn+1 : xi = 1}. Then

Ui × Uj
∼= {(x, y) ∈ Kn+1 ×Kn+1 : xi = yj = 1},

and
Dij
∼= {(x, y) : xrys = xsyr for all r, s},

so it is closed.

Properties. (1) Pn is a disjoint union U0 ∪ V0 where

V0 = {[x0 : · · · : xn] | x0 = 0}

is a closed subvariety isomorphic to Pn−1. Repeating, we can write Pn as a disjoint
union of copies of An, An−1, . . . , A0 = {pt}.

(2) O(Pn) = K, so Pn is not affine for n > 0. For example a regular function f
on P1 induces regular functions on Ui

∼= A1, so there are polynomials p, q ∈ K[X]
with f([x:x1]) = p(x1/x0) for x0 ̸= 0 and f([x0 : x1])) = q(x0/x1) for x1 ̸= 0.
Thus p(t) = q(1/t) for t ̸= 0. Thus both p and q are constant polynomials, so f is
constant.

Definition. A (quasi)projective variety is a variety which is, or is isomorphic to,
a (locally) closed subset of Pn.

Example. A curve in A2, for example

{(x, y) ∈ A2 : y2 = x3 + x},

can be homogenized to give a curve in P2

{[w : x : y] ∈ P2 : y2w = x3 + xw2}.

Recall that P2 = A2 ∪ P1. On the affine space part w ̸= 0, we recover the original
curve. On the line at infinity w = 0 the equation is x3 = 0, which has solution
x = 0, giving rise to one point at infinity [w : x : y] = [0 : 0 : 1].

For the curve y3 = x3 + x, the points at infinity are [0 : 1 : ϵ] where ϵ3 = 1.

Theorem (Segre). There is a closed embedding of Pn × Pm in Pnm+n+m, given by

([x0 : · · · : xn], [y0 : · · · : ym]) 7→ [x0y0 : · · · : xiyj : · · · : xnym].

Thus a product of (quasi-)projective varieties is (quasi-)projective.

For a proof see Kempf, Theorem 3.2.1.
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6.4 Grassmannians

Definition. If V is a vector space of dimension n, the Grassmannian Gr(V, d) is
the set of subspaces of V of dimension d.

We write Inj(Kd, V ) for the set of injective linear maps Kd → V . It is open in
Hom(Kd, V ), so a variety. The group GLd(K) act on Inj(Kd, V ) by g · θ = θg−1.
The map

π : Inj(Kd, V )→ Gr(V, d), θ 7→ Im θ

is surjective and the fibres are the orbits of GLd(K), so it identifies Gr(V, d) with
Inj(Kd, V )/GLd(K). Thus Gr(V, d) becomes a space with functions and π a mor-
phism.

Theorem. (i) There is a closed embedding called the Plücker map of of Gr(V, d) in
PN , where N = ( n

d )− 1. Thus the Grassmannian Gr(V, d) is a projective variety.
(ii) π : Inj(Kd, V )→ Gr(V, d) is a Zariski-locally-trivial principal bundle.

We use the following facts.

Lemma (1). Given a mapping θ : X → Y between spaces with functions and
an open covering Y =

⋃
Uλ, the map θ is a closed embedding if and only if its

restrictions θλ : θ−1(Uλ)→ Uλ are closed embeddings.

Proof. Suppose the θλ are closed embeddings. Then Y \ Im θ is the union of the
sets Uλ \ Im θλ, so it is open in Y , hence Im θ is closed.

Clearly θ is 1-1, so it defines a bijective morphism X → Im θ. We need to show
that the inverse map g : Im θ → X is a morphism. But Im θ has an open covering
by sets of the form Uλ ∩ Im θ, and the restriction of g to each of these sets is a
morphism, hence so is g.

Lemma (2). If g : X → Y is a morphism of spaces with functions and Y is
separated, then the map X → X × Y , x 7→ (x, g(x)) is a closed embedding.

Proof. Its image is the inverse image of the diagonal ∆Y under the map X × Y →
Y × Y , (x, y) 7→ (g(x), y). Since Y is separated, this is closed. Now the projection
from X × Y → X gives an inverse map from the image to X.

Sketch proof of the theorem. Fixing a basis e1, . . . , en of V , we identify Inj(Kd, V )
with the set of n× d matrices of rank d.

Let I be a subset of {1, . . . , n} with d elements. If A ∈ Inj(Kd, V ), we write
AI for the square matrix obtained by selecting the rows of A in I. Then det(AI)
is a minor of A. We write A′

I for the (n− d)× d matrix obtained by deleting the
rows in I.

We write elements of PN in the form [xI ] with xI ∈ K, not all zero, where I
runs through the subsets of {1, . . . , n} of size d.
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We consider the morphism

f : Inj(Kd, V )→ PN , A 7→ [det(AI)].

The action of g ∈ GLd(K) on Inj(Kd, V ) sends A to Ag−1, and det((Ag−1)I) =
det(AI) det(g)

−1, so f is constant on the orbits of GLd(K). Thus it induces a
morphism f : Gr(V, d)→ PN .

Now PN has an affine open covering by the sets UJ = {[xI ] : xJ ̸= 0} for J
a subset of {1, . . . , n} with d elements. Then XJ = f−1(UJ) is an open subset
of Inj(Kd, V ) and YJ = f

−1
(UJ) is an open subset of Gr(V, d), and we get a

commutative diagram

XJ −−−→ XJ/GLd(K)
∼=−−−→ YJ −−−→ UJy y y y

Inj(Kd, V ) −−−→ Inj(Kd, V )/GLd(K)
∼=−−−→ Gr(V, d)

f−−−→ PN

(i) By Lemma 1 it suffices to show that YJ → UJ is a closed embedding for
all J . Now XJ consists of the matrices A such that AJ is invertible. Thus there is
an isomorphism of varieties

ϕJ : GLd(K)×M(n−d)×d(K)→ XJ , ϕJ(g,B) = B̂g−1,

where B̂ ∈ Mn×d(K) denotes the matrix A with AJ = Id and A′
J = B. This

ensures that ϕJ(g
′g,B) = g′ · ϕJ(g,B) (where we recall that the action of GLd(K)

on Inj(Kd, V ) is given by g′ · A = A(g′)−1). Thus

YJ ∼= XJ/GLd(K) ∼= M(n−d)×d(K),

so it is an affine variety. We can identify UJ with AN = {(xI)I : I ̸= J}, and the
map YJ → UJ with the map

M(n−d)×d(K)→ AN , B 7→ (det B̂I)I .

Now observe that if we take I to be equal to J , except that we omit the j element,
and instead insert the ith element of {1, . . . , n} \ J , then det(B̂I) = ±bij. For
example if J = {1, 2, . . . , d}, then

B̂ =



1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1
b11 b12 . . . b1d
b21 b22 . . . b2d
...

... . . . ...
bn−d,1 bn−d,2 . . . bn−d,d


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and if I = {1, . . . , j − 1, j + 1, . . . , d, d+ i}, then

B̂I =



1 . . . 0 0 0 . . . 0
... . . . ...

...
... . . . ...

0 . . . 1 0 0 . . . 0
0 . . . 0 0 1 . . . 0
... . . . ...

...
... . . . ...

0 . . . 0 0 0 . . . 1
bi1 . . . bi,j−1 bij bi,j+1 . . . bid


so det(B̂I) = (−1)d−jbij. Thus, up to sign, the map YJ → UJ is of the form
YJ → YJ × W for some morphism YJ → W , and by Lemma 2 this is a closed
embedding.

(ii) The YJ give an open cover of Gr(V, d), and the isomorphisms ϕJ shows that
the map π : Inj(Kd, V )→ Gr(V, d) is locally a projection.

Lemma (3). If Surj(V,Kc) ⊆ Hom(V,Kc) denotes the variety of surjective linear
maps, where c+ d = dimV , then the map Surj(V,Kc)→ Gr(V, d), ϕ 7→ Kerϕ is a
morphism of varieties.

Sketch. We check this locally. Identify Surj(V,Kc) with the set of matrices C ∈
Mc×n(K) of rank c.

Given a subset I of {1, . . . , n} of size d, let CI be the c× c matrix obtained by
deleting the columns in I and C ′

I the c × d matrix obtained by keeping only the
columns in I.

Let WI be the open subset of Surj(V,Kc) consisting of the matrices C with CI

invertible. As I varies, this gives an open cover of Surj(V,Kc). Thus it suffices to
show that the restriction to WI is a morphism.

Now we have a map of varieties

WI
f−→ Inj(Kd, V )

where f(C) is the n × d matrix A with AI = Id and A′
I = −(CI)

−1(C ′
I). Observe

that we have an exact sequence

0→ Kd A−→ Kn C−→ Kc → 0.

The composition is zero since it is CIA
′
I + C ′

IAI = 0. Thus the composition of f
and the map Inj(Kd, V )→ Gr(V, d) is the required map WI → Gr(V, d), and it is
a morphism of varieties.
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Remark. We have turned Gr(V, d) into a space with functions by realizing it as a
quotient Inj(Kd, V )/GLd(K), using the map sending an injective map to its image.
Using Lemma 3 and similar results, two other possibilities give the same structure.

(i) Surj(V,Kc)/GLc(K), and
(ii) Exact(Kd, V,Kc)/(GLd(K)×GLc(K)) where Exact(Kd, V,Kc) is the set of

exact sequences 0→ Kd → V → Kc → 0.

Lemma (4). The set S = {(U,U ′, θ) : θ(U) ⊆ U ′} is a closed subset of the product

Gr(V, d)×Gr(V ′, d′)× Hom(V, V ′).

Thus, fixing θ, the subset {(U,U ′) : θ(U) ⊆ U ′} is closed in Gr(V, d)×Gr(V ′, d′).

Proof. We realise

Gr(V, d) = Inj(Kd, V ′)/GL(d), Gr(V ′, d′) = Surj(V ′, Kc)/GLc(K),

where c = dimV ′ − d′. Then we have a closed subset

C = {(f, g, θ) ∈ Inj(Kd, V )× Surj(V ′, Kc)× Hom(V, V ′) : gθf = 0}

whose complement C ′ is sent under the map

π : Inj(Kd, V )× Surj(V ′, Kc)× Hom(V, V ′)→ Gr(V, d)×Gr(V ′, d′)× Hom(V, V ′)

to the complement S ′ of S. To show this is open, we factorize π as

Inj(Kd, V )× Surj(V ′, Kc)× Hom(V, V ′)
π1−→ Gr(V, d)× Surj(V ′, Kc)× Hom(V, V ′)

π2−→ Gr(V, d)×Gr(V ′, d′)× Hom(V, V ′).

Since Inj(Kd, V ) → Gr(V, d) is a Zariski-locally-trivial principal bundle it is uni-
versally open, so π1(C

′) is open, and then since Surj(V ′, Kc) → Gr(V ′, d′) is a
Zariski-locally-trivial principal bundle it too is universally open, so S ′ = π(C ′) =
π2(π1(C

′)) is open.

Remark. Let G be a linear algebraic group and let H be a closed subgroup. We
consider the action ofH on G by left multiplication (or by the formula h·g = gh−1),
the set of orbits G/H is then the set of right (respectively left) cosets of H in G.

(i) Fix θ0 ∈ Inj(Kd, V ), say with image W . It is easy to see that the map

GL(V )→ Inj(Kd, V ), g 7→ gθ0

is a Zariski-locally-trivial principal S-bundle, where

S = {s ∈ GL(V ) : sθ0 = θ0},
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the pointwise stabilizer of W , so Inj(Kd, V ) ∼= GL(V )/S.
(ii) The map

GL(V )→ Gr(V, d), g 7→ g(W )(= Im gθ0)

is a Zariski-locally-trivial principal H-bundle, where

H = {g ∈ GL(V ) : g(W ) = W},

the setwise stabilizer of W , so GL(V )/H ∼= Gr(V, d).
(iii) Fix 0 ≤ d1 ≤ · · · ≤ dk ≤ dimV . Using the lemma, the flag variety

Flag(V, d1, . . . , dk) = {0 ⊆ W1 ⊆ · · · ⊆ Wk ⊆ V : dimWi = di}

is a closed subset of
∏

i Gr(V, di), hence a projective variety. It is isomorphic to
GL(V )/P where P is the stabilizer of a given flag.

In fact quotients G/H are well-understood. It is known that:
-G/H is always a quasi-projective variety, so a geometric quotient. See T. A. Springer,

Linear Algebraic Groups, Second edition, 1998, Corollary 5.5.6.
- If H is a normal subgroup, G/H is an affine variety, so a linear algebraic

group. Springer, Proposition 5.5.10.
- G/H is a projective variety if and only if H contains a Borel subgroup (a

maximal closed connected soluble subgroup of G). Springer, Theorem 6.2.7. In
this case H is called a parabolic subgroup.

Definition. Let A = KQ/I and let M be a finite dimensional A-module. Recall
that its dimension vector is α ∈ NQ0 defined by αi = dim eiM . Let β be another
dimension vector and let d =

∑n
i=1 βi. We define

GrA(M,β) = {U ∈ Gr(M,d) : U is an A-submodule of M of dim. vector β}.

This is called a Quiver Grassmannian. This name is used even if A is not a path
algebra, because we can always reduce to this case, since we can consider M as a
KQ-module and GrA(M,β) = GrKQ(M,β).

Proposition. GrA(M,β) is a closed subset of Gr(M,d), so a projective variety.

Proof. Being a submodule is a closed condition. Namely, given a ∈ A we need
â(U) ⊆ U , where â : M → M is the homothety â(m) = am, and this is a closed
condition by Lemma 4.

Amongst the submodules U of dimension d, the ones of dimension vector β are
those with êi having rank ≤ βi. This is also a closed condition.

Alternatively, a submodule U is determined by the subspaces eiU ⊆ eiM , and
so GrA(M,β) could be defined as a closed subset of

∏n
i=1 Gr(eiM,βi).
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Remark. It is a theorem of M. Reineke that every projective variety is isomorphic
to a quiver Grassmannian for an indecomposable representation of a quiver. See
M. Reineke, Every projective variety is a quiver Grassmannian, Algebr. Represent.
Theory 2013. It turned out that the result could have been known earlier, see
for example the discussion in C. M. Ringel, Quiver Grassmannians and Auslander
varieties for wild algebras, J. Algebra 2014.

Remark. We can vary the module M at the same time. Given A as before and
dimension vectors α and β with

∑
αi = n and

∑
βi = d, we define

RepGr(A,α, β) = {(x, U) ∈ Rep(A,α)×Gr(Kn, d) : U ∈ GrA(Kx, β)}.

It is a closed subset, so a variety. To see this, for simplicity we do it without
dimension vectors.

RepGr(A, n, d) = {(x, U) ∈ Rep(A, n)×Gr(Kn, d) : U ∈ GrA(Kx, d)}.

Let c = n− d. Then we have a Zariski-locally-trivial principal GLd(K)×GLc(K)-
bundle

Exact(Kd, Kn, Kc)→ Gr(Kn, d).

The set lifts to

{(x, (θ, ϕ)) ∈ Rep(A, n)× Exact(Kd, Kn, Kc) : ϕx(a)θ = 0 for all a ∈ A}.

which is closed. Then using that the bundle is universally open, we get that our
subset is closed.

Now there is a morphism π : RepGr(A,α, β) → Rep(A,α) whose fibres are
π−1(x) ∼= GrA(Kx, β).
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7 Tools of algebraic geometry

7.1 Dimension

Definition. The dimension of a variety is the supremum of the n such that there
is a chain of distinct (non-empty) irreducible closed subsets X0 ⊂ X1 ⊂ · · · ⊂ Xn

in X. (dim ∅ = −∞.)

If X is an affine variety, dimX is the Krull dimension of K[X], the maximal
length of a chain of prime ideals P0 ⊂ P1 ⊂ · · · ⊂ Pn.

Any irreducible variety X has a function field

K(X) = colim
U
O(U)

where U runs through the nonempty open subsets of X. If X is an irreducible
affine variety, then K(X) is the field of fractions of K[X].

Lemma (1). If X is an irreducible affine variety, then dimX is the transcendence
degree of the field extension K(X)/K.

The proof is commutative algebra. As a consequence we get the following.

Lemma (2). (i) dimAn = n.
(ii) Any variety has finite dimension.
(iii) If X ⊆ Y is a locally closed subset, then dimX ≤ dimY , strict if Y is

irreducible and X is a proper closed subset.
(iv) If X is irreducible then dimX =transcendence degree of K(X)/K. Thus

if U is nonempty open in X, dimU = dimX.
(v) If X = Y1 ∪ · · · ∪ Yn, with the Yi locally closed in X, then dimX =

max{dimYi}.

Proof. (i) By commutative algebra.
(iii) If Xi is a chain of irreducible closed subsets in X, then Xi is a chain of

irreducible closed subsets of Y , and if Xi = Xi+1 then Xi is open in Xi, so

Xi+1 = Xi ∪ (Xi+1 ∩ (Xi \Xi))

a union of two closed subsets, so Xi+1 = Xi.
(v) for the special case when the Yi are open in X. Take a chain X0 ⊂ X1 ⊂

· · · ⊂ Xn in X. Then X0 meets some Yi. Consider the chain Yi ∩X0 ⊂ Yi ∩X1 ⊂
· · · ⊂ Yi ∩Xn in Yi. Now Yi ∩Xj is nonempty and open in Xj, hence irreducible.
The terms are distinct, for if Yi ∩Xj = Yi ∩Xj+1 then Xj+1 = Xj ∪ (Xj+1 \ Yi) is
a proper decomposition. Thus dimYi ≥ n.
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(ii) Combine (i), (iii) and the special case of (v).
(iv) X is a union of affine opens, and these all have function field K(X), so the

dimension is given by the transcendence degree.
(v) in general. Suppose F is an irreducible closed subset of X. Then F is the

union of the sets F ∩ Yi. By irreducibility, some F ∩ Yi = F . Thus F ∩ Yi is open
in F . Thus dimF = dimF ∩ Yi ≤ dimYi.

Definition. A morphism θ : X → Y of varieties, with X and Y irreducible, is
dominant if its image is dense in Y .

Lemma (3). If θ : X → Y is a morphism of varieties and X is irreducible, then
Z = Im θ is irreducible, the restricted map θ′ : X → Z is dominant and it induces
an injection K(Z)→ K(X). Thus dimZ ≤ dimX.

The proof is straightforward.

Lemma (Main Lemma). If π : X → Y is a dominant morphism of irreducible
varieties then any irreducible component of a fibre π−1(y) has dimension at least
dimX−dimY . Moreover, there is a nonempty open subset U ⊆ Y with dimπ−1(u) =
dimX − dimY for all u ∈ U .

See §I.8 of D. Mumford, The red book of varieties and schemes, 2nd edition,
1999.

Examples. (1) dimX × Y = dimX + dimY . Reduce to the case of irreducible
varieties, and then consider the projection X × Y → Y .

(2) A hypersurface in An is an irreducible closed subset of An of dimension n−1.
They are exactly the zero sets V (f) of irreducible polynomials f ∈ K[X1, . . . , Xn].

Namely, if f is irreducible then V (f) is irreducible, a proper closed subset of
An, so dimension < n, but a fibre of f : An → K, so of dimension ≥ n− 1.

Conversely if X ⊆ An is an irreducible closed subset of dimension n − 1 then
X = V (I), so X ⊆ V (g) for some non-zero g ∈ I. But then X ⊆ V (f) for some
irreducible factor f of g, and these are equal by dimensions.

(3) The commuting variety Cd is irreducible of dimension d2 + d. (Theorem of
Motzkin and Taussky, 1955.) We follow R. M. Guralnick, A note on commuting
pairs of matrices, 1992.

A d× d matrix A is regular or non-derogatory if it satisfies the following equiv-
alent conditions

• in it’s Jordan normal form, each Jordan block has a different eigenvalue,

• its minimal polynomial is equal to its characteristic polynomial,
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• the matrices I, A,A2, . . . , Ad−1 are linearly independent.

• it turns Kd into a cyclic K[X]-module,

• all eigenspaces are at most one-dimensional,

• the only matrices which commute with A are polynomials in A,

The set of regular matrices is an open subset U of Md(K).
Suppose B is any matrix and R is regular. Consider the map

f : A1 →Md(K), f(λ) = R + λB.

The image meets U . Thus f−1(Md(K) \ U) is a proper closed subset of A1, so
finite. Thus R+ λB is regular for all but finitely many λ. Thus B + νR is regular
for all but finitely many ν ∈ K.

Every matrix A commutes with a regular matrix R. To see this we may suppose
that A is in Jordan normal form. Now if A has diagonal blocks Jni

(λi) with the
λi not necessarily distinct, then it commutes with the matrix with diagonal blocks
Jni

(µi), with the µi distinct.
Suppose (A,B) ∈ Cd and there is an open setW of Cd containing (A,B) but not

meeting C ′
d = Cd ∩ (Md×U). Consider the map g : A1 → Cd, g(ν) = (A,B+ νR).

Then g−1(C ′
d) and g−1(W ) are non-empty open subsets of A1 which don’t meet.

Impossible. Thus C ′
d is dense in Cd.

Let P be the set of polynomials of degree ≤ d−1. Now the map h : P×U → Cd,
(f(t), B) 7→ (f(B), B)) has image C ′

d. Thus Cd = Imh, and since P × U is
irreducible, so is Cd. Also this map is injective, so dimCd = dimU+dimP = d2+d.

7.2 Constructibility, upper semicontinuity and completeness

We give three important applications of the main lemma.

Definition. A subset of a variety is constructible if it is a finite union of locally
closed subsets.

Example. The punctured x-axis {(x, 0) : x ̸= 0} is locally closed in A2. Its
complement C is not locally closed, but it is constructible, the union of the plane
minus the x-axis, and the origin. Clearly C is the image of the map A2 → A2,
(x, y) 7→ (xy, y).

Lemma. (i) The class of constructible subsets is closed under finite unions and
intersections, complements, and inverse images.

(ii) If V is a constructible subset of X and V is irreducible, then there is a
nonempty open subset U of V with U ⊂ V .
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Proof. (i) Exercise.
(ii) Write V as a finite union of locally closed subsets Vi. Then V =

⋃
i Vi.

Thus some Vi = V . Then Vi is open in V .

Theorem (Chevalley’s Constructibility Theorem). The image of a morphism of
varieties θ : X → Y is constructible. More generally, the image of any constructible
set is constructible.

Proof. Sketch. We may assume that X is irreducible and then that Y = Im(θ).
The main lemma says that Im(θ) contains a dense open subset U of Y . Thus it
suffices to prove that the image under θ of X \ θ−1(U) is constructible. Now work
by induction on dimension.

Example. Let A = KQ/I. The set {x ∈ Rep(A,α) : Kx is indecomposable } is
constructible in Rep(A,α). Here Kx denotes the A-module of dimension vector α
corresponding to x.

If α = β + γ, then there is a direct sum map

f : Rep(A, β)× Rep(A, γ)→ Rep(A,α)

sending (x, y) to the representation which has x and y as diagonal blocks. It is a
morphism of varieties. Thus the map

GL(α)× Rep(A, β)× Rep(A, γ)→ Rep(A,α), (g, x, y) 7→ g.f(x, y)

has as image all modules which can be written as a direct sum of modules of
dimensions β and γ. This is constructible. Thus so is the union of these sets over
all non-trivial decompositions α = β + γ. Hence so is its complement, the set of
indecomposables.

Definition. A function f : X → Z is upper semicontinuous if {x ∈ X : f(x) < n}
is open for all n ∈ Z. Equivalently {x ∈ X : f(x) ≥ n} closed for all n.

Clearly a composition of a morphism and an upper semicontinuous function is
upper semicontinuous.

Examples. (1) The map Hom(V,W ) → Z, θ 7→ dimKer θ is upper semicontinu-
ous, since the set where it is ≥ t is the set of maps of rank ≤ r = dimV − t, so
identifying with matrices, the set where all minors of size r + 1 are zero.

(2) On the variety {(θ, ϕ) ∈ Hom(U, V ) × Hom(V,W ) : ϕθ = 0}, the map
(θ, ϕ) 7→ dim(Kerϕ/ Im θ) is upper semicontinuous, since it is equal to dimKer θ+
dimKerϕ− dimU .

Definition. The local dimension of a variety X at a point x ∈ X, denoted dimxX
is the infemum of the dimensions of neighbourhoods of x. Equivalently it is the
maximal dimension of an irreducible component containing x.
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Any point x ∈ X has a local ring

OX,x = colim
x∈U

O(U)

where the colimit is over all open neightbourhoods U of x, and then dimxX is the
Krull dimension of this local ring.

Theorem (Upper Semicontinuity Theorem). If θ : X → Y is a morphism, then
the function X → Z, x 7→ dimx θ

−1(θ(x)) is upper semicontinuous.

Proof. Sketch. We may assume that X is irreducible, and then that Y = Im(θ).
By the Main Lemma, the minimal value of the function is dimX − dimY , and
it takes this value on an open subset θ−1(U) of X. Thus need to know for the
morphism X \ θ−1(U)→ Y \ U . Now use induction.

Definition. A cone in a vector space is a subset which contains 0 and is closed
under multiplication by λ ∈ K. In particular any subspace is a cone.

Corollary. Suppose X is a variety, V is a vector space, and for each x we have a
cone Vx in V in such a way that Y = {(x, v) ∈ X × V : v ∈ Vx} is a closed subset
of X × V . Then the function X → Z, x 7→ dimVx is upper semicontinuous.

Proof. Note that if C is a closed cone in V , then every irreducible component of C
contains 0, so dim0C = dimC. Namely, let D be an irreducible component of C,
there is a scaling map f : A1×D → C, so D ⊆ Im f ⊆ C. Now Im f is irreducible,
so equal to D, and it contains 0.

Now if ix : V → X × V is the map ix(v) = (x, v), then Vx = i−1
x (Y ), so it is

closed in V , and if θ : Y → X is the projection, then θ−1(x) ∼= Vx.
Composing the upper semicontinuous function Y → Z, (x, v) 7→ dim(x,v) θ

−1(θ(x))
with the zero section ϕ : X → Y , x 7→ (x, 0) gives an upper semicontinuous func-
tion

X → Z, x 7→ dim(x,0) θ
−1(θ(x)) = dim0 Vx = dimVx

since Vx is a cone.

Example. The function Rep(A, d)→ Z, x 7→ dimEndA(Kx) is upper semicontin-
uous. An element of Rep(A, d) is a homomorphism x : A→Md(K), and Kx is Kd

considered as an A-module using x. We can identify EndA(Kx) as a subspace of
Md(K), so it is a cone, and

Y = {(x,B) ∈ Rep(A, d)×Md(K) : B ∈ EndA(Kx))}

= {(x,B) ∈ Rep(A, d)×Md(K) : Bx(a) = x(a)B for all a ∈ A}

is a closed subset of Rep(A,α)× EndK(K
d).
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A variation: for a fixed finite-dimensional module M , the maps Rep(A, d)→ Z,
x 7→ dimHomA(M,Kx) and dimHomA(M,Kx) are upper semicontinuous.

Another variation: the map Rep(A, d) × Rep(A, e) → Z given by (x, y) 7→
dimHomA(Kx, Ky) is upper semicontinuous.

Definition. A variety X is complete or proper over K if it is universally closed,
that is, for any variety Y , the projection X × Y → Y is a closed map. (Image of
a closed set is closed.)

Properties. (1) A closed subvariety of a complete variety is complete.
(2) A product of complete varieties is complete
(3) If X is complete and θ : X → Y is a morphism, then the image is closed

and complete. (The image is the projection of the graph, hence closed using sepa-
ratedness.)

(4) A complete affine or quasi-projective variety is projective, since there is an
embedding X → Pn.

Theorem. Projective varieties are complete.

Proof. It suffices to prove this for Pn. Let V = Kn+1, let V∗ = V \ {0} and let
p : V∗ → Pn be the morphism sending a nonzero vector (x0, . . . , xn) to [x0 : · · · : xn].

Let C be closed in Pn×Y . We need to show that its image under the projection
to Y is closed.

If y ∈ Y then Vy = {0} ∪ {v ∈ V∗ : (p(v), y) ∈ C} is a cone in V . Also
Z = {(v, y) : v ∈ Vy} is closed in V × Y . Namely, p gives a morphism (p, 1) :
V∗ × Y → Pn × Y . Then (p, 1)−1(C) is closed in V∗ × Y = (V × Y ) \ ({0} × Y ), so
Z = (p, 1)−1(C) ∪ ({0} × Y ) is closed in V × Y .

Thus the function y 7→ dimVy is upper semicontinuous. Thus {y ∈ Y : dimVy =
0} is open. This is the complement of the image of C.

Example. Given A and dimension vectors α and β, we have a closed subset

RepGr(A,α, β) ⊆ Rep(A,α)×Gr(Kn, d)

where n =
∑

i αi and d =
∑

i βi. Since Grassmannians are projective varieties,
and projective varieties are complete, we get that

{x ∈ Rep(A,α) : Kx has a submodule of dimension β}

which is the image of the projection

RepGr(A,α, β)→ Rep(A,α)

is closed. Taking the union over all β ̸= 0, α, and then the complement, we get
that the set

Simple(A,α) = {x ∈ Rep(A,α) : Kx is a simple module}

is open in Rep(A,α).
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7.3 Orbits

Let G be a (linear) algebraic group. For simplicity we assume G is connected.
Suppose G acts on a variety X. We are interested in the orbits Gx for x ∈ X.

Properties. (i) The orbit Gx = {gx : g ∈ G} is a locally closed subset of X.
The map G → X, g 7→ gx is a morphism, so its image Gx is constructible.

Since G is connected, it is an irreducible variety, so Gx is irreducible. Thus Gx
contains a nonempty open subset U of Gx. Left multiplication by g ∈ G induces an
isomorphism X → X, so gU is an open subset of gGx = Gx. Thus Gx =

⋃
g∈G gU

is an open subset of Gx. Thus Gx is locally closed.

(ii) Gx and Gx are irreducible varieties.
We know Gx is irreducible, and Gx is non-empty dense open subset of it, so

also irreducible.

(iii) The stabilizer StabG(x) = {g ∈ G : gx = x} is a closed subgroup of G, and
dimGx = dimG− dimStabG(x).

Clearly the stabilizer is closed. The morphism G → Gx, g 7→ gx is surjective.
Its fibres are cosets of StabG(x), so all are isomorphic as varieties to StabG(x), so
they have the same dimension. Then the Main Lemma gives dimGx = dimG −
dimStabG(x).

(iv) The closure Gx is the union of Gx with orbits of smaller dimension.
Clearly Gx is G-stable, so a union of orbits. If Gy is one of them and dimGy ̸<

dimGx, then Gy = Gx, so Gy is open in Gx, so C = Gx \ Gy is closed in X. If
Gy ̸= Gx then C contains Gx, which is nonsense.

(v) The closure Gx contains a closed orbit.
An orbit of minimal dimension contained in Gx must be closed.

(vi) Any irreducible component Y of X is G-stable.
If θ : G × Y → X is the action, then Im(θ) is irreducible and contains Y , so

equals Y But it also contains gy for all g ∈ G and y ∈ Y .

(vii) The orbit Gx is open in X if and only if dimGx = dimxX.
If it is open, then dimxX = dimxGx = dimGx, since all points of the orbit

look the same. Let Y be a irreducible component of X containing x, then Y
contains Gx, so also Gx, so Y = Gx by dimensions. Thus Gx is open in Y . If Z
is the union of all other irreducible components, then it is disjoint from Gx. Thus
Gx ⊆ X \ Z ⊆ Y . Thus Gx is open in X \ Z, and X \ Z is open in X.

Proposition. The map X → Z, x 7→ dimStabG(x) is upper semicontinuous. Thus
the set

X≤s = {x ∈ X : dimStabG(x) ≤ s} = {x ∈ X : dimGx ≥ dimG− s}
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is open and the set

Xs = {x ∈ X : dimStabG(x) = s} = {x ∈ X : dimGx = dimG− s}

is locally closed.

Proof. Let Z = {(g, x) ∈ G ×X : gx = x} and let π : Z → X be the projection.
Now

dim(1,x) π
−1π(1, x) = dim1 StabG(x) = dimStabG(x)

since StabG(x) is a group, so every point looks the same.

Example. We show that τ -rigid modules for a f.d. algebra A are determined by
their g-vectors.

Let P0 and P1 be projective A-modules.
The group G = Aut(P0)× Aut(P1) acts on Hom(P1, P0) via (g, h) · θ = gθh−1.
Now G is open in End(P0)× End(P1), so they have the same dimension.
Fix an exact sequence

P1
θ−→ P0

ϕ−→M → 0.

Then
StabG(θ) = {(g, h) ∈ Aut(P0)× Aut(P1) : gθ = θh}

⊆ W := {(g, h) ∈ End(P0)× End(P1) : gθ = θh}.

Letting
V = {(k, h) ∈ Hom(P0, P1)× End(P1) : θ(h− kθ) = 0}

we get an exact sequence

0→ Hom(P0,Ker θ)
α−→ V

β−→ W
γ−→ End(M)→ 0

where γ(g, h) is the induced unique a ∈ End(M) with aϕ = ϕg, β(k, g) = (θk, h),
and α(b) = (b, 0). Also there is an exact sequence

0→ Hom(P0, P1)
k 7→(k,kθ))−−−−−−→ V

(k,h)7→h−kθ−−−−−−−→ Hom(P1,Ker θ)→ 0.

Thus
dimW = dimEnd(M) + dimV − dimHom(P0,Ker θ)

= dimEnd(M) + dimHom(P0, P1) + dimHom(P1,Ker θ)− dimHom(P0,Ker θ)

Applying the exact functor Hom(Pi,−) to the exact sequence 0→ Ker θ → P1 →
P0 →M → 0, this becomes

= dimEnd(M)+dimHom(P0, P1)+dimEnd(P1)−dimHom(P1, P0)+dimHom(P1,M)
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− dimHom(P0, P1) + dimEnd(P0)− dimHom(P0,M)

Now suppose that P1 → P0 → M → 0 is a minimal projective presentation of
M . Recall that the g-vector of M is g(M) = [P0]− [P1] ∈ K0(A-proj) and

dimHom(P0, X)−dimHom(P1, X) = ⟨g(M), [X]⟩ = dimHom(M,X)−dimHom(X, τM).

Thus

dimW = − dimHom(P1, P0)− dimEnd(P0) + dimEnd(P1) + dimHom(M, τM)

Thus dimension of the orbit of θ is

dimG− dimStabG(θ) = dimEnd(P0) + dimEnd(P1)− dimW

= dimHom(P1, P0)− dimHom(M, τM).

Since also Hom(P1, P0) is affine space, its dimension at any point is equal to its
dimension. It follows that the orbit is open if and only if M is τ -rigid.

As mentioned in the section on τ -tilting theory, the projectives occuring in the
minimal projective presentation of a τ -rigid module M have no indecomposable
summand in common. Thus the projectives are uniquely determined by g(M).
Thus if M ′ is another τ -rigid module with g(M ′) = g(M), its minimal projective
presentation is given by an element θ′ of Hom(P1, P0). Now the orbits of θ and θ′

are open, so by irreducibility the must intersect, so they are the same. It follows
that M ′ ∼= M .

Let G be a connected algebraic group acting on a variety X. If the set of orbits
X/G was a variety, we could study its dimension and its irreducible components.
Unfortunately it is usually not a variety, so we will do the best we can. The basic
idea is that if all orbits have dimension e, then the number of parameters for the
action should be dimX − d. Actually we want to be able to define the number of
parameters for any G-stable constructible subset of X.

First without a group action. Given a constructible subset Y of a variety X

Proposition/Definition. If Y ⊆ X is a constructible subset of X, then it can be
written as a disjoint union

Y = Z1 ∪ · · · ∪ Zn

with the Zi being irreducible locally closed subsets of X. Moreover

max{dimZi} = dimY

and we denote this dimY , and

#{i : dimZi = dimZ}

is the number of top-dimensional irreducible components of Z. We denote this
topZ.
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The proof is an exercise. Now suppose that G acts on X. We define

X(d) := {x ∈ X : dimGx = d}.

It is the same as XdimG−d using the notation before, so a locally closed G-stable
subset of X. Similarly we define

X(≤d) := {x ∈ X : dimGx ≤ d}.

This is the complement of X≤dimG−d−1, so a closed G-stable subset of X.

Definition. Suppose Y is a G-stable constructible subset of X. We define the
number of parameters and number of top-dimensional families by

dimG Y = max{dim(Y ∩X(d))− d : d ≥ 0},

topG Y =
∑
{top(Y ∩X(d)) : d ≥ 0, dim(Y ∩X(d))− d = dimG Y }.

The following properties are easy.

Properties. (i) If Y1, Y2 areG-stable subsets then dimG(Y1∪Y2) = max{dimG Y1, dimG Y2}.
(ii) dimG Y = 0 if and only if Y contains only finitely many orbits, and if so,

topG Y is the number of orbits.
(iii) If Y contains a constructible subset Z meeting every orbit, then dimG Y ≤

dimZ.
(iv) If f : Z → X is a morphism and the inverse image of each orbit has

dimension ≤ d, then dimGX ≥ dimZ − d.
(v) dimG Y = max{dim(Y ∩X(≤d))− d : d ≥ 0}.

Lemma. Suppose G acts on X and that π : X → Y is constant on orbits. Suppose
that the image of any closed G-stable subset of X is a closed subset of Y . Then
the function π(X)→ Z, y 7→ dimG(π

−1(y)) is upper semicontinuous.

Proof. We show first that for the function dim and for any r, the set

{y ∈ Y : dimπ−1(y) ≥ r}

is closed in Y . By the Upper Semicontinuity Theorem, the set

Cr = {x ∈ X : dimx π
−1(π(x)) ≥ r}

is closed in X. It is also a G-stable subset, so by hypothesis π(Cr) is closed. Now
if y ∈ Y then dimπ−1(y) = max{dimx π

−1(y) : x ∈ π−1(y)}. Thus

{y ∈ Y : dimπ−1(y) ≥ r} = π(Cr),
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so it is closed in Y .
Now X(≤d) = {x ∈ X : dimGx ≤ d} is closed in X, and πd, which is the

restriction of π to this set, sends closed G-stable subsets to closed subsets, so

{y ∈ Y : dimπ−1
d (y) ≥ r}

is closed in Y . Then

{y ∈ Y : dimG π
−1(y) ≥ r} =

⋃
d

{y ∈ Y : dimπ−1
d (y) ≥ d+ r}

which is closed in Y . This the function is upper semicontinuous.

7.4 Tangent spaces

Definition. Given an algebra A, its enveloping algebra is Ae = A⊗K A
op. To give

an A-A-bimodule L (on which the actions of K on the right and left are the same)
is the same as giving a left Ae-module, where A = A⊗K A

op. In particular we can
consider A as an Ae-module. Also the bimodule A ⊗K A corresponds to Ae as a
left Ae-module.

The Hochschild cohomology of a bimodule L can be defined to be

Hn(A,L) = ExtnAA(A,L).

Here the subscript AA means we’re working with bimodules, so with Ae-modules.
If L is an A-A-bimodule, then the set of derivations R→ L is

Der(A,L) = {d ∈ HomK(A,L) : d(ab) = ad(b) + d(a)b for all a, b ∈ A}

Observe that d(1) = 0 since d(1) = d(1 · 1) = 1d(1) + d(1)1 = 2d(1). An inner
derivation is one of the form d(a) = aℓ−ℓa for some ℓ ∈ L. This defines a subspace
Inn(A,L) ⊆ Der(A,L)

Lemma. (i) H0(A,L) ∼= {x ∈ L : ax = xa for all a ∈ A}
(ii) H1(A,L) ∼= Der(A,L)/Inn(A,L).

Proof. The bimodule of non-commutative 1-forms for A is the kernel of the multi-
plication map A⊗K A→ A, so

0→ Ω1A→ A⊗K A→ A→ 0.

Now Der(A,L) is isomorphic to HomAA(Ω
1A,L) as a vector space via the maps

sending a derivation d to the map θ with θ(
∑

i ai ⊗ a′i) =
∑

i aid(a
′
i) and sending

a map θ to the derivation d with d(a) = θ(a⊗ 1− 1⊗ a).
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We get an exact sequence

0→ HomAA(A,L)→ HomAA(A⊗K A,L)→ Hom(Ω1A,L)→ Ext1AA(A,L)→ 0

now the middle two terms are isomorphic to L and Der(A,L), and the map sends
ℓ ∈ L to the corresponding inner derivation.

Lemma. If M and N are A-modules, then considering HomK(M,N) as an A-A-
bimodule, we have H1(A,HomK(M,N)) ∼= Ext1A(M,N).

Proof. The exact sequence for Ω1A is split as a sequence of right A-modules, so
tensoring with M we get an exact sequence of A-modules

0→ Ω1A⊗A M → A⊗K M →M → 0

Thus Ext1A(M,N) is isomorphic to the cokernel of the map

HomA(A⊗K M,N)→ HomA(Ω
1A⊗A M,N).

We can identify the right hand term with HomAA(Ω
1A,HomK(M,N)) so with

Der(A,HomK(M,N)), and then the image of the map is Inn(A,HomK(M,N)).

In the special case when A is commutative and L is an A-module, considered
as a bimodule with the same action on each side, the inner derivations are all zero.

Definition. If X is a variety and p ∈ X, then there is a local ring OX,p of germs
of functions at p. There is a homomorphism OX,p → K, f 7→ f(p). Its kernel is
the maximal ideal mp. Now p makes K into an OX,p-module, denoted pK, and also
into a bimodule, denoted pKp. The tangent space of X at p ∈ X is the set of point
derivations

Tp(X) = Der(OX,p, pKp)

= {ξ ∈ O∗
X,p : ξ(fg) = f(p)ξ(g) + ξ(f)g(p) for all f, g ∈ OX,p}

∼= (mp/m
2
p)

∗

∼= Ext1OX,p
(pK, pK).

where ∗ is duality into the field K.
If θ : X → Y is a morphism of varieties, then one gets a homomorphism of

algebras θ∗ : OY,θ(p) → OX,p, and this induces a linear map

dθp : TpX → Tθ(p)Y, ξ 7→ ξ ◦ θ∗.

If X θ−→ Y
ϕ−→ Z, then d(ϕθ)p is the composition

TpX
dθp−−→ Tθ(p)Y

dϕθ(p)−−−→ Tϕθ(p)Z.
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Definition. Given an affine scheme X = HomK-comm(A,−) and a point p ∈ X(K)
corresponding to a K-algebra homomorphism A→ K, we define

TpX = Der(A, pKp) ∼= Ext1A(pK, pK).

If X is reduced and algebraic, this corresponds to the definition for varieties.
Again, a morphism θ : X→ Y induces a linear map

dθp : TpX→ Tθ(p)Y.

Proposition. Let X = HomK-comm(A,−) and p ∈ X(K), so p is a K-alggebra
map A→ K.

(i) Let K[ϵ]/(ϵ2) be the algebra of dual numbers and π : K[ϵ]/(ϵ2) → K the
projection. Then we have a mapping

X(π) : X(K[ϵ]/(ϵ2))→ X(K)

and we can identify

TpX = {ϕ ∈ X(K[ϵ]/(ϵ2)) : X(π)(ϕ) = p}.

(ii) Suppose A = K[X1, . . . , Xn]/I, so we can identify

X(K) = {p ∈ Kn : f(p) = 0 for all f ∈ I }.

Then we have an isomorphism

TpX→ {v ∈ Kn :
n∑

i=1

vi
∂f

∂Xi

(p) = 0 ∀f ∈ I}, ξ 7→ (ξ(X1), . . . , ξ(Xn)).

Proof. (i) A linear map ϕ : A → K[ϵ]/(ϵ2) whose composition with π is p can be
written in the form ϕ(a) = p(a)+ ϵξ(a) for some linear map ξ ∈ HomK(A,K), and
then ϕ is an algebra homomorphism if and only if ξ is a derivation.

(ii) Considering K as a bimodule over K[X1, . . . , Xn] using p, we have an iso-
morphism

Der(K[X1, . . . , Xn], pKp)→ Kn, ξ 7→ (ξ(X1), . . . , ξ(Xn))

with inverse sending v ∈ Kn to the derivation ξ given by

ξ(f) =
n∑

i=1

vi
∂f

∂Xi

(p).

Now

Der(A,K) = {ξ ∈ Der(K[X1, . . . , Xn], K) : ξ(f) = 0 for all f ∈ I }
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Lemma. If U is an open subset of X and p ∈ U , the induced map TU,p → TX,p is
an isomorphism. If U is locally closed in X, the induced map is injective.

Proof. If U is open, the local rings are the same. More generally, we may assume
that X is affine and U is closed in X. Then use that the map K[X] → K[U ] is
surjective.

Examples. (i) Any point p ∈ An has TpAn ∼= Kn. In coordinate free terms, if V
is a f.d. vector space, TpV ∼= V .

(ii) Since GLn(K) is open in Mn(K), we have Tg GLn(K) ∼= Mn(K) for all g.
Explicitly we have an isomorphism

Mn(K)→ Tg GLn(K) = {ϕ ∈ GLn(K[ϵ]/(ϵ2)) : π(ϕ) = g}, v 7→ g + ϵv

There is a morphism of schemes θ : GLn → GLn given by inversion. For any
g ∈ GLn(K), it induces a linear map

dθg :Mn(K) ∼= Tg GLn(K)→ Tg−1 GLn(K) ∼= Mn(K)

via
g−1 + ϵ dθg(v) = (g + ϵv)−1 ∈ GLn(K[ϵ]/(ϵ2)).

Then

1 = (g + ϵv)(g + ϵv)−1

= (g + ϵv)(g−1 + ϵ dθg(v))

= 1 + ϵ(vg−1 + g dθg(v)).

so dθg(v) = −g−1vg−1. In particular dθ1(v) = −v.
(iii) The Lie algebra of a linear algebraic group G is g = T1G. If g ∈ G, there

is a map cg : G→ G, x 7→ gxg−1, and hence d(cg)1 : g→ g. This defines an action
of G on g, the adjoint action

Ad : G→ GL(g), g 7→ d(cg)1.

Taking the tangent space map gives a linear map

ad = d(Ad)1 : g→ EndK(g).

Defining [u, v] = ad(u)(v) turns g into a Lie algebra.

(iv) ConsiderG = GLn(K) again. For v ∈Mn(K), we have 1+ϵv ∈ GLn(K[ϵ]/(ϵ2)).
Then

cg(1 + ϵv) = g(1 + ϵv)g−1 = 1 + ϵgvg−1,

75



so d(cg)1(v) = gvg−1 for v ∈Mn(K). Then Ad(g)(v) = gvg−1, so working with the
scheme, if u ∈Mn(K), then

Ad(1 + ϵu)(v) = (1 + ϵu)v(1 + ϵu)−1

= (1 + ϵu)v(1− ϵu)
= v + ϵ(uv − vu).

Thus [u, v] = ad(u)(v) = uv − vu.

The next definition and theorem were skipped in the lecture, but
part (iv) is needed below.

Definition. A variety X is smooth (or nonsingular, or regular) at p ∈ X if
dimTpX = dimpX, or equivalently if the local ring OX,p is a ‘regular’ local ring,
which means that dimmp/m

2
p = dimOX,p. The variety X is smooth if it is smooth

at all points. Similarly for a scheme. A smooth scheme must be reduced.

Clearly An and Pn are smooth.

Theorem. For a variety X we have:
(i) The function X → Z, p 7→ dimTpX is upper semicontinuous;
(ii) If X is irreducible, then dimTpX = dimX for all p in a nonempty open subset
of X;
(iii) The set of smooth points of X is a dense open subset of X;
(iv) dimTpX ≥ dimpX for all p ∈ X.
(v) Any point in an intersection of irreducible components cannot be smooth.

Proof. (i) Follows from upper semicontinuity for cones.
(ii) We use that any irreducible variety of dimension n − 1 is birational to a

hypersurface in An (see Hartshorne, Algebraic Geometry, Proposition I.4.9). Thus
we only need to prove the statement for a hypersurface. Say X = V (f) for f ∈
K[X1, . . . , Xn] an irreducible polynomial. For p ∈ X we have

TpX = {(v1, . . . , vn) ∈ Kn |
n∑

i=1

vi
∂f

∂Xi

(p) = 0}.

which has the right dimension if some ∂f/∂Xi(p) ̸= 0.
In characteristic 0, if all partial derivatives ∂f/∂Xi are identically zero then f

is constant. In characteristic ℓ this is not true, for example a+ bXℓ
1 + cXℓ

2X
2ℓ
3 , but

all exponents must be multiples of ℓ, and choosing an ℓ-th root of each coefficient,
one gets that f is an ℓ-th power, here

f =
(

ℓ
√
a+

ℓ
√
bX1 +

ℓ
√
cX2X

2
3

)ℓ
,
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contradicting irreducibility of f .
Thus some partial derivative ∂f/∂Xi is not identically zero. If it vanishes on

X, then it is in (f), which is impossible by degrees. Thus X ∩ D(∂f/∂Xi) is a
dense open subset of X with the right property.

(iii) Reduce to the irreducible case, which is (ii).
(iv) Reduce to the irreducible case, when it follows from (i), (ii).
(v) Regular local rings are domains, so have a unique minimal prime ideal.

Theorem. If θ ∈ Rep(A, d) and the corresponding module M = θK
d satisfies

Ext1A(M,M) = 0, then the corresponding orbit OM = GLd(K)θ is open. The
converse holds if the scheme Rep(A, d) is reduced (at θ).

Proof. We identify EndK(M) with Md(K). Then θ is the action A → EndK(M).
Also Md(K) becomes an A-A bimodule.

Now θ is a K-point of the scheme Rep(A, d), and Tθ Rep(A, d) is the set of K-
algebra homomorphisms A→Md(K[ϵ]/(ϵ2)) such that the composition to Md(K)
is θ. Such homomorphisms can be written in the form θ+ϵd where d : A→Md(K)
is a derivation.

Thus Tθ Rep(A, d) ∼= Der(A,EndK(M))).
Then Tθ Rep(A, d) is a subspace of this, equal if the scheme is reduced.
The action of GLd(K) on Rep(A, d) defines a morphism

m : GLd(K)→ Rep(A, d), m(g) = gθ

where (gθ)(a) = gθ(a)g−1 for a ∈ A. We can consider this as the map on K-points
of a morphism of schemes GLd → Rep(A, d) which on R-valued points is given by
the same formula. To compute the map on tangent spaces for these schemes we
compute

(1+ϵvθ)(a) = (1 + ϵv)θ(a)(1 + ϵv)−1

= (1 + ϵv)θ(a)(1− ϵv)
= θ(a) + ϵ(vθ(a)− θ(a)v)

so dm1 :Md(K)→ Tθ Rep(A, d) is given by dm1(v) = (a 7→ vθ(a)− θ(a)v). Thus
the image of dm1 is the set of inner derivations from A to EndK(M). Since GLd is
reduced, we can factor the morphism on schemes as

GLd → Rep(A, d)→ Rep(A, d)

so the image of dm1 is contained in Tθ Rep(A, d). Thus

Tθ Rep(A, d)

Im(dm1)
⊆ Tθ Rep(A, d)

Im(dm1)
∼=

Der(A,EndK(M))

Inn(A,EndK(M))
∼= H1(A,EndK(M)) ∼= Ext1A(M,M).
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Now if Ext1A(M,M) = 0, then the map on tangent spaces

dm1 : GLd(K)→ Tθ Rep(A, d)

is surjective and has kernel EndA(M). Thus

dimOM = dimθOM ≤ dimθ Rep(A, d) ≤ dimTθ Rep(A, d)

= dimT1GLd(K)− dimEndA(M) = dimOM .

Thus dimOM = dimθ Rep(A, d), so the orbit is open.
Conversely, if OM is open in Rep(A, d), then TθOM = Tθ Rep(A, d). It follows

that the map T1GL(d) → Tθ Rep(A, d) is onto. If also Rep(A, d) is reduced at θ,
then the map T1GL(α)→ Tθ Rep(A, d) is onto. Thus Ext1A(M,M) = 0.

Remark. The analogue of the theorem hold with dimension vectors in case A =
KQ/I. In particular if A = KQ, then Rep(KQ,α) is an affine space, so reduced
and smooth.

One can show that if θ ∈ Rep(A, d) and Ext2(θK
d, θK

d) = 0, then Rep(A, d) is
smooth at θ, so reduced, so Tθ Rep(A, d) = Tθ Rep(A, d) in this case. For details
see section 6.4 of Crawley-Boevey and Sauter, On quiver Grassmannians and orbit
closures for representation-finite algebras, 2016, or the work of Geiß cited there.
The proof uses H2(A,EndK(M)).
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8 Applications to representations of algebras

8.1 Degenerations of modules

We consider the variety Rep(A, d) of A-module structures on Kd. The elements
are K-algebra homomorphisms x : A→ Md(K), and the corresponding A-module
is Kx := xK

d.
The group GLd(K) acts by conjugation, for x ∈ Rep(A, d) and g ∈ GLd(K) we

have (g.x)(a) = gx(a)g−1 ∈Md(K).
Th orbits are correspond to the isomorphism classes of d-dimensionalA-modules.

We write OM for the orbit corresponding to a module M , so if M ∼= Kx, then
OM = GLd(K)x. Also

dimOM = dimGLd(K)− dimStabGLd(K)(x) = d2 − dimEndA(M)

since StabGLd(K)(x) ∼= AutA(M) is non-empty open in EndA(M).

Definition. If M and N are modules of the same dimension d, we say that M
degenerates to N if ON ⊆ OM in Rep(A, d). To see that this is a partial order,
use that the orbit closure OM is the union of OM and orbits of strictly smaller
dimension.

Proposition. Given A-modules M and N of the same dimension d, consider the
following conditions:

(i) There is a finite sequence of modules M = M0,M1, . . . ,Mn = N and exact
sequences 0→ Li →Mi → L′

i → 0 with Mi+1
∼= Li ⊕ L′

i.
(ii) M degenerates to N .
(iii) dimHom(X,M) ≤ dimHom(X,N) for all X.
Then we have (i) ⇒ (ii) ⇒ (iii).

The relations given by (i), (ii) and (iii) can be denotes ≤ext, ≤deg and ≤hom.

Proof. (i)⇒ (ii). Since the relation of degeneration is transitive, it suffices to prove
this for one exact sequence 0 → L → M → L′ → 0, say with L has dimension e,
and N ∼= L ⊕ L′. Taking a basis of L and extending it to a basis of M , we have
M ∼= Kx for some x ∈ Rep(A, d) where

x(a) =

(
y(a) w(a)
0 z(a)

)
for a ∈ A, for suitable matrix-valued linear maps y, z, w on A. Clearly then
y ∈ Rep(A, e) and z ∈ Rep(A, d − e) with L ∼= Ky and L′ ∼= Kz. For t ∈ K,
consider the map xt : A→Md(K) given by

xt(a) =

(
y(a) tw(a)
0 z(a)

)
.
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For t ̸= 0, this can be written as

xt(a) =

(
tI 0
0 I

)(
y(a) w(a)
0 z(a)

)(
tI 0
0 I

)−1

so xt is a K-algebra homomorphism A → Md(K), and in the same orbit as x.
For t = 0 it is also clear that x0 is a K-algebra homomorphism, corresponding to
L ⊕ L′. Thus M degenerates to L ⊕ L′. (We have a map f : A1 → Rep(A, d),
t 7→ xt. Now f−1(OM) is closed and contains all t ̸= 0, so it contains 0, so x0 ∈ OM ,
so OL⊕L′ ⊆ OM .)

(ii) ⇒ (iii). Use that dimHomA(X,−) is upper semicontinuous.

Example. Recall that the nilpotent variety is

Nd = {A ∈Md(K) : Ad = 0} ∼= Rep(K[T ]/(T d), d),

and the group GLd(K) acts by conjugation. The orbits are classified by partitions
λ = (λ1, λ2, . . . ) of d (that is, decreasing sequences of non-negative integers with
sum d). The Young diagram of shape λ has rows of length λi. For example for
(4, 2, 1) it is

The corresponding orbit is the conjugacy class of the nilpotent matrix A in Jordan
normal with Jordan blocks of sizes given by the lengths of the columns. In the
example,

A =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

In terms of modules, the orbit is OM(λ) where M(λ) is the K[T ]/(T d)-module with
vector space Kd and T acting as A.

Observe that
Hom(K[T ]/(T i),M(λ)) ∼= KerAi

which has dimension λ1 + λ2 + · · ·+ λi.
Suppose condition (iii) holds for M(λ) and M(µ).
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Thus dimHom(X,M(λ)) ≤ dimHom(X,M(µ)) for all X.
Thus dimHom(K[T ]/(T i),M(λ)) ≤ dimHom(K[T ]/(T i),M(µ)) for all i.
Thus dimλ1 + · · ·+ λi ≤ µ1 + · · ·+ µi for all i.
This is called the dominance ordering of partitions, denoted λ ⊴ µ.
Now the dominance order is generated by the following move: λ ⊴ µ if µ is

obtained from λ by moving a corner block from a column of length j to a column
further to the right to make it of length i < j, for example (6, 6, 4, 2) ⊴ (6, 6, 5, 1)
since

(See for example I. G. Macdonald, Symmetric functions and Hall polynomials, I,
(1.16).) We want to show in this case that there is an exact sequence

0→ L→M(λ)→ L′ → 0

with M(µ) ∼= L ⊕ L′. Now M(λ) = K[T ]/(T j) ⊕ K[T ]/(T i−1) ⊕ C and M(µ) =
K[T ]/(T j−1)⊕K[T ]/(T i)⊕ C, so the exact sequence

0→ K[T ]/(T i)

 −1
T j−i


−−−−−→ K[T ]/(T i−1)⊕K[T ]/(T j)

(
T j−i 1

)
−−−−−−−→ K[T ]/(T j−1)→ 0

will do.
It follows that (iii) implies (i). Thus all three conditions are equivalent, and

M(λ) degenerates to M(µ) if and only if λ ⊴ µ.
This is the Gerstenhaber-Hesselink Theorem.
For the partition (1d) := (1, 1, . . . ) the corresponding module is M(1d) ∼=

K[T ]/(T d), and the matrix is the Jordan block of size d.
We have (1d) ⊴ µ for all µ. Thus M(1d) degenerates to any other module.

Thus Nd = OM(1d). Thus Nd is irreducible of dimension

dimGLd(K)− dimEnd(M(1d)) = d2 − d.

Remark. Two beautiful but difficult results:
- M degenerates to N ⇔ ∃ an exact sequence 0 → Z → Z ⊕M → N → 0 for
some module Z [G. Zwara, Degenerations of finite-dimensional modules are given
by extensions, 2000].
- If A has finite representation type, then (ii) and (iii) in the theorem are equiv-
alent. If also all indecomposable modules X have Ext1(X,X) = 0, for example
A is the path algebra of a Dynkin quiver, then (i) is also equivalent [G. Zwara,
Degenerations for modules over representation-finite algebras, 1999].
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Lemma. If C is a finite-dimensional algebra, then the variety N(C) of nilpotent
elements in C is irreducible of dimension dimC − s, where s is the sum of the
dimensions of the simple C-modules.

Proof. Since K is algebraically closed, we can write C = S ⊕ J(C), where S is
semisimple, so S ∼= Md1(K)⊕ · · · ⊕Mdr(K). Then N(C) ∼= Nd1 × . . . Ndr × J(C),
so it is irreducible of dimension

dimN(C) =
∑
i

(d2i − di) + dim J(C) = dimC −
∑
i

di.

Proposition. If A is a finitely generated algebra, d > 0, and r ∈ N, then the set

Ind(A, d)r = {x ∈ Rep(A, d) : Kx is indecomposable and dimEndA(Kx) = r}

is a closed subset of

Rep(A, d)≤r = {x ∈ Rep(A, d) : dimEndA(Kx) ≤ r},

which is an open subset of Rep(A, d).

Proof. By the upper semicontinuity result for cones, the function

Rep(A, d)→ Z, x 7→ dimN(EndA(Kx))

is upper semicontinuous. Now by the lemma Ind(A, d)r is equal to

{x ∈ Rep(A, d) : dimEndA(Kx) ≤ r}∩{x ∈ Rep(A, d) : dimN(EndA(Kx)) ≥ r−1}.

Finally, we consider closed orbits in module varieties. Given a module M , we
write grM for the semisimple module with the same composition factors as M .
Clearly it can be obtained by a sequence of short exact sequences, soM degenerates
to grM .

Recall that a complex representation V of a finite group is determined by its
character. This can be generalized to modules for an arbitrary algebra, but can
only determine the semisimple modules up to isomorphism. Moreover for fields
of positive characteristic, one also needs to consider the other coefficients of the
characteristic polynomial.

Let θ be d× d matrix or an endomorphism of a d-dimensional vector space. Its
characteristic polynomial is

χθ(t) = det(t1− θ) = td − c1(θ)td−1 + c2(θ)t
d−2 + · · ·+ (−1)dcd(θ)

Thus c1(θ) = tr(θ) and cd(θ) = det(θ).
Let M be a d-dimensional module for an algebra A. For a ∈ A we write âM for

the homothety, M →M , m 7→ am.
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Lemma. Given a f.d. A-module M and a simple module S, the multiplicity of S
in M is given by

[M : S] =
1

dimS
min

a∈Ann(S)
{Order of zero at t = 0 of χâM (t)}.

Proof. Given an exact sequence 0 → X → Y → Z → 0 of A-modules, the endo-
morphism âY has upper triangular block form, so

χâY (t) = χâX (t)χâZ (t) = χâX⊕Z
(t).

Thus we may assume that M is semisimple. Next we may assume that M ⊕ S is
faithful. Thus A is semisimple. Now if M ∼= Sk ⊕ N with [N : S] = 0, then the
smallest order we could hope to get is if a acts on S as 0 and invertibly on N .
This is possible, for writing A as a product of matrix algebras we can take a to
correspond to 0 in the block for S and 1 in the other blocks. With this order, the
formula holds.

Recall that Rep(A, d) = HomK-alg(A,Md(K)), so if a ∈ A and x ∈ Rep(A, d),
then x(a) ∈Md(K).

Theorem. (i) Given a ∈ A, the map cai : Rep(A, d)→ K sending x to ci(x(a)) is
a regular map which is constant on the orbits of GLd(K).

(ii) If x, y ∈ Rep(A, d), then grKx
∼= grKy if and only if cai (x) = cai (y) for all

i and all a.
(iii) Any orbit closure OM contains a unique orbit of semisimple modules,

namely OgrM .
(iv) An orbit OM is closed if and only if M is semisimple.

Proof. (i) Clear.
(ii) If cai (x) = cai (y) for all i and a, then for all a, the characteristic polynomials

of âKx and âKy are equal so by the lemma grKx
∼= grKy.

Conversely for any a, i, the the function cai is constant on OM , so it takes the
same constant value on OM , so on OgrM . Thus if grKx

∼= grKy, then cai takes the
same values on the orbits of x and y.

(iii) We know that OM contains OgrM . If OM contains another orbit of semisim-
ple modules N , then by continuity the functions cai are equal on OM and on the
orbit ON , and then N ∼= grM by (ii).

(iv) Clear.
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8.2 The variety AlgRep and global dimension

For a finite-dimensional algebra A, Rep(A, d) is the set of K-algebra maps A →
Md(K). We set

AlgRep(r, d) = {(a, x) ∈ Alg(r)× HomK(K
r,Md(K)) : x ∈ Rep(Ka, d)}

where Ka denotes the algebra structure on Kr given by a. This is a closed subset,
so an affine variety. The group GLd(K) acts by conjugation on the second factor.

The following is a reformulation of Lemma 3.2 in P. Gabriel, Finite repre-
sentation type is open, 1975. This reformulation is mentioned in C. Geiss, On
degenerations of tame and wild algebras, 1995.

Theorem (Gabriel). The projection π : Alg Rep(r, d) → Alg(r) sends GLd(K)-
stable closed subsets to closed subsets.

Before the proof we need a lemma.

Lemma (1). If X is a variety, then the projection X × Inj(Kd, V ) → X sends
GLd(K)-stable closed subsets to closed subsets. Similarly for the projection X ×
Surj(V,Kc)→ X.

Proof. We factor it as

X × Inj(Kd, V )→ X ×Gr(V, d)→ X

Now the map Inj(Kd, V ) → Gr(V, d) is universally submersive, so it sends open
subsets of X× Inj(Kd, V ) to open subsets of X×Gr(V, d). Thus it sends GLd(K)-
stable closed subsets of X× Inj(Kd, V ) to closed subsets of X×Gr(V, d). Now use
that Gr(V, d) is complete.

Proof of the theorem. Choose N ≥ d and let V = (Kr)N , a vector space of dimen-
sion rN . An element a ∈ Alg(r) turns Kr into an algebra Ka, and it turns V into
the free Ka-module (Ka)

N of rank N . Let

W = {(a, θ) ∈ Alg(r)× Surj(V,Kd) : Ker θ is a Ka-submodule of (Ka)
N}.

Let e = N −d. By Lemma (3) in section 6.4 we know that the map Surj(V,Kd)→
Gr(V, e) sending θ to Ker θ is a morphism of varieties, and using Lemma (4) in
section 6.4. we know that the set {(U, ϕ) ∈ Gr(V, e) × EndK(V ) : ϕ(U) ⊆ U} is
a closed subset of the product. Using these, it can be checked that W is a closed
subset of the product. We have a commutative diagram

W −−−→ Alg(r)× Surj(V,Kd)

g

y p

y
AlgRep(r, d)

π−−−→ Alg(r)

84



where p is the projection and g sends (a, θ) to the pair consisting of a and the
induced Ka-module structure on Kd. Now g is onto since any d-dimensional Ka-
module is a quotient of a free module of rank N .

One can check using the affine open covering of Surj(V,Kd) that g is a morphism
of varieties.

Suppose Z ⊆ AlgRep(r, d) is GLd(K)-stable and closed. Then g−1(Z) is also.
Thus it is a GLd(K)-stable closed subset of Alg(r) × Surj(V,Kd). Thus π(Z) =
p(g−1(Z)) is closed by the lemma.

Lemma (2). Any algebra A has a projective resolution as an A-A-bimodule

→ A⊗ A⊗ A→ A⊗ A→ A→ 0

(where tensor products are over the base field K). Here the maps are

bn : A⊗n+1 → A⊗n, a0 ⊗ a1 ⊗ · · · ⊗ an 7→
n−1∑
i=0

(−1)ia0 ⊗ · · · ⊗ (aiai+1)⊗ · · · ⊗ an

Tensoring with a left A-module X, one gets a projective resolution of X,

→ A⊗ A⊗X → A⊗X → X → 0.

The complex of bimodules is sometimes called the standard complex. In MacLane,
Homology, the resolution of X is called the un-normalized bar resolution of X.

Proof. Define a map (of right A-modules) hn : A⊗n → A⊗n+1 by hn(a1⊗· · ·⊗an) =
1⊗ a1 ⊗ · · · ⊗ an. One easily checks that b1h1 = 1 and

bn+1hn+1 + hnbn = 1 (n ≥ 1).

Also b1b2 = 0 and then by induction bnbn+1 = 0 for all n ≥ 1 since

bn+1bn+2hn+2 = bn+1(1−hn+1bn+1) = bn+1−bn+1hn+1bn+1 = bn+1−(1−hnbn)bn+1 = 0.

Now clearly Im(hn+2) generates A⊗n+3 as a left A-module, and the bi are left A-
module maps (in fact bimodule maps), so bn+1bn+2 = 0. Finally if x ∈ Ker(bn)
then x = (bn+1hn+1 + hnbn)(x) implies x ∈ Im(bn+1), giving exactness.

Applying − ⊗A X with a left A-module X to the standard complex gives an
exact sequence. This is because the terms in the standard complex are projective
right A-modules, so if you break it into short exact sequences of right A-modules,
all of them are split.

Proposition (Schofield, 1985). For any i, the map

AlgRep(r, d)→ Z, (a, x) 7→ dimExtiKa
(Kx, Kx)

is upper semicontinuous.
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Proof. Applying HomA(−, Y ) to the projective resolution of X given by the stan-
dard complex, with Y another A-module, and using that HomA(A ⊗ M,Y ) ∼=
HomK(M,Y ), we see that ExtiA(X, Y ) is computed as the cohomology of a com-
plex

0→ HomK(X, Y )→ HomK(A⊗X, Y )→ HomK(A⊗ A⊗X, Y )→ . . .

Taking A = Ka and X = Y = Kx for (a, x) ∈ AlgRep(r, d), we see that
the terms in this complex are fixed vector spaces V i, and the maps are given by
morphisms fi : Alg Rep(r, d)→ HomK(V

i, V i+1). Thus we get a morphism

AlgRep(r, d)→ {(θ, ϕ) ∈ Hom(V i−1, V i)× Hom(V i, V i+1) : ϕθ = 0}.

Now use that the map (θ, ϕ) 7→ dim(Kerϕ/ Im θ) is upper semicontinuous.

Corollary (Schofield). The algebras of global dimension ≤ g form an open subset
of Alg(r), as do the algebras of finite global dimension. There is an integer Nr,
depending on r, such that any algebra of dimension r of finite global dimension has
global dimension ≤ Nr.

Proof. A has global dimension≤ g if and only if Extg+1
A (M,N) = 0 for allM,N . By

the long exact sequences, it is equivalent that Extg+1
A (M,N) = 0 for all simple M

and N . Thus it is equivalent that Extg+1
A (M,M) = 0 for M = grA. Consider the

pairs (a, x) ∈ AlgRep(r, r) such that Extg+1
Ka

(Kx, Kx) ̸= 0. By upper semicontinuity
this is a closed subset of AlgRep(r, r). It is also stable under GLr(K), so its image
in Alg(r) is closed. This is the set of algebras of global dimension > g. Thus the
algebras of global dimension ≤ g form an open subset Dg. Now since varieties are
noetherian topological spaces, the chain of open sets

D0 ⊆ D1 ⊆ D2 ⊆ . . .

stabilizes.

8.3 Tame and wild algebras

Let A and B be K-algebras and d ∈ N.
There is a 1-1 correspondence between K-algebra homomorphisms θ : A →

Md(B) up to conjugacy by an element of GLd(B) and A-B-bimodules M which
are free of rank d over B. (Recall that we always want K to act centrally on
bimodules.)

Namely, given θ we send it to the bimodule M given by M = Bn with the left
and right actions given by

a

b1...
bn

 = θ(a)

b1...
bn

 ,

b1...
bn

 b =

b1b...
bnb

 .
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Conversely given such a bimodule, we choose a basis of it as a right B-module,
and send a ∈ A to the matrix of the homothety M → M , m 7→ am with respect
to this basis.

If A and B are finitely generated and s ∈ N, then a homomorphism θ : A →
Md(B) induces a morphism of varieties

f : Rep(B, s)→ Rep(A, ds)

sending a K-algebra map B → Ms(K) to the composition A → Md(B) →
Md(Ms(K)) ∼= Mds(K). In terms of the corresponding A-B-bimodule M , we have
M ⊗B Kx

∼= Kf(x) for all x ∈ Rep(B, s).
If X is an affine variety, with coordinate ring B = K[X], then there is a 1-1

correspondence between maps of varieties X → Rep(A, d) and K-algebra homo-
morphisms θ : A→Md(K[X]).

Namely, given θ we get a map Rep(K[X], 1)→ Rep(A, d), and we can identify
Rep(K[X], 1) withX. On the other hand, given a mapX → Rep(A, d), we consider
X as a reduced scheme and Rep(A, d) as the reduced subscheme for the scheme
Rep(A, d), and take the composition

X → Rep(A, d)→ Rep(A, d)

Now Rep(A, d) is an affine scheme, so it is of the form HomK-comm(C,−) for some
commutative K-algebra C. The category of affine schmemes is opposite to the
category of commutative K-algebras, so the morphism corresponds to a homo-
morphism of K-algebras C → K[X], thus to an element of Rep(A, d)(K[X]) =
HomK-alg(A,Md(K[X])), giving the homomorphism θ.

Definition. A f.d. algebra A is of tame representation type if, for any d, there are a
finite number of A-K[T ]-bimodules M1, . . . ,MN , f.g. and free over K[T ], such that
all but finitely many indecomposable A-modules of dimension d are isomorphic to
Mi ⊗K[T ] K[T ]/(T − λ) for some i and λ.

Equivalently, for any d, there are a finite number of morphisms A1 → Rep(A, d)
such that the images meet all but finitely many orbits of indecomposables in
Rep(A, d).

Remarks. (i) In the definition of tame can delete the “but finitely many” by includ-
ing additional maps A1 → Rep(A, d) which are constant. In terms of bimodules it
means including bimodules of the form M = X ⊗K K[T ] where X is a given left
A-module.

(ii) By an observation of Drozd (mentioned in Lemma 3 in Dowbor and Skowron-
ski, On the representation type of locally bounded categories, 1986) we can in-
stead use A-R-bimodules, f.g. free over R, where R is a localization K[T ]f with
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0 ̸= f ∈ K[T ]. Namely, given such a bimodule M , take a finite subset which gen-
erates it as a right R-module, and let N0 be the right K[T ]-submodule generated
by this subset. Then N = AN0 is an A-K[T ]-subbimodule of M , and since A is
finite dimensional, N is f.g. over K[T ]. It is also torsion-free, so free over K[T ].
Now the inclusion of N in M gives an exact sequence of A-K[T ]-bimodules.

0→ N →M → C → 0

Since R is a localization of K[T ], it is flat over K[T ], so the sequence

0→ N ⊗K[T ] R→M ⊗K[T ] R→ C ⊗K[T ] R→ 0

is exact. Also the middle term is isomorphic to the localization of M , so it is M
itself, and then the first map is surjective since we started with a generating set of
M as an R-module. Thus we have N ⊗K[T ]R ∼= M , and so if λ ∈ K and f(λ) ̸= 0,
so that R/(T − λ) is a 1-dimensional R-module, we have

R/(T − λ) ∼= K[T ]/(T − λ)

as K[T ]-modules, so

M ⊗R R/(T − λ) ∼= N ⊗K[T ] R⊗R R/(T − λ) ∼= N ⊗K[T ] K[T ]/(T − λ).

(iii) We may also drop the requirement that the A-K[T ]-bimodules are free over
K[T ]. For if M is an A-K[T ]-bimodule which is f.g. over K[T ], then for a suitable
localization R = K[T ]f with 0 ̸= f ∈ K[T ], the A-R-bimodule M ⊗K[T ] R is f.g.
free over R. One just needs to take f so that it annihilates the torsion submodule
of M considered as a K[T ]-module.

Examples. (a) Any algebra of finite representation type is clearly tame by this
definition (but this case is usually excluded).

(b) Path algebras of extended Dynkin quivers are tame. For example for the
Kronecker quiver and the four-subspace quiver, the 1-parameter families are given
by the representations with matrices
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with λ ∈ K. These define maps A1 → Rep(A, d) for d = 2n and d = 6n respec-
tively. For each dimension d not of the form 2n or 6n respectively, there are only
finitely many isomorphism classes of indecomposables of dimension d. For d = 2n
or 6n, there are only finitely many isomorphism classes of indecomposables not
isomorphic to a module in the appropriate family.

(c) String algebras are tame, see Butler and Ringel, Auslander-Reiten sequences
with few middle terms and applications to string algebras, 1987. They are the
algebras KQ/I where:

- I is an admissible ideal generated by paths
- at most two arrows start (respectively end) at any vertex
- for any arrow a there is at most one arrow b such that ab (respectively ba) is

a path not in I.

(d) Tubular algebras are tame. The easiest examples are the ‘canonical alge-
bras’ associated to extended Dynkin diagram, for example associated to Ẽ6 is the
canonical algebra

with the relation that the sum of all paths from top to bottom is zero. See C. M.
Ringel, Tame algebras and integral quadratic forms, 1984, §3.7 for the canonical
algebras and Chapter 5 for the classification of the indecomposable modules.

Definition. We write A-mod for the category of f.d. A-modules. Let us say that
a functor F : B-mod→ A-mod is a representation embedding if

(i) F sends indecomposable modules to indecomposable modules.
(ii) If X and Y are B-modules and F (X) ∼= F (Y ) then X ∼= Y .
(iii) F is naturally isomorphic to a tensor product functor M ⊗B − for an

A-B-bimodule which is finitely generated projective over B.
An algebra A is wild if there is a representation embedding from K⟨X, Y ⟩-

modules to A-modules.

Remarks. (a) Note that (i) and (ii) hold if F is fully faithful, since if X is an
indecomposable B-module, then EndA(F (X)) ∼= EndB(X) has no non-trivial idem-
potents, and if F (X) ∼= F (Y ) then there are inverse isomorphisms, which since F
is full come from morphisms between X and Y , and then since F is faithful, these
must be inverse isomorphisms.
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(b) One can also work with functors on the whole module categories F :
B-Mod → A-Mod. This is necessary to prove results about ‘generic’ modules,
see Crawley-Boevey, Tame algebras and generic modules, 1991.

Lemma. (i) If I is an ideal in A then the natural functor A/I-mod→ A-mod is
a fully faithful representation embedding.

(ii) For any n there is a fully faithful representation embedding

K⟨X1, . . . , Xn⟩-mod→ K⟨X, Y ⟩-mod.

Thus if A is wild there is a representation embedding B-mod → A-mod for any
finitely generated algebra B.

Proof. (i) is the tensor product functor A/I⊗A/I and the claim is trivial.
For (ii) Let B = K⟨X1, . . . , Xn⟩. Consider the A-B-bimodule M = θB

n+2 given
by the homomorphism θ : A→Mn+2(B) sending X and Y to the matrices C and
D,

C =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
0 0 0 . . . 0

 , D =



0 0 0 . . . 0 0 0
1 0 0 . . . 0 0 0
X1 1 0 . . . 0 0 0
0 X2 1 . . . 0 0 0
...

...
...

...
...

...
0 0 0 . . . Xn 1 0


These matrices are in S. Brenner, Decomposition properties of some small diagrams
of modules, 1974. If U is a B-module, then M ⊗B U ∼= θU

n+2. We want to show
that if U, V are B-modules, then the map

HomB(U, V )→ HomK⟨X,Y ⟩(θU
n+2, θV

n+2), θ 7→ diag(θ, . . . , θ)

is a bijection. Clearly it is injective, so we want it to be surjective. Now any
morphism in HomK⟨X,Y ⟩(θU

n+2, θV
n+2) is given by an (n + 2)× (n + 2) matrix of

linear maps U → V , say Θ = (θij) such that CΘ = ΘC and DΘ = ΘD. The
condition CΘ = ΘC gives

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
0 0 0 . . . 0


θ11 θ12 . . .
θ21 θ22 . . .
...

... . . .

 =

θ11 θ12 . . .
θ21 θ22 . . .
...

... . . .



0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
0 0 0 . . . 0


so θi+1,j = θi,j−1 for 1 ≤ i, j ≤ n + 2, where the terms are zero if i or j are out
of range. This forces Θ to be constant on diagonals, and zero below the main
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diagonal,

Θ =


θ1 θ2 θ3 . . . θn+1 θn+2

0 θ1 θ2 . . . θn θn+1
...

...
...

...
...

0 0 0 . . . θ1 θ2
0 0 0 . . . 0 θ1

 .

Now the condition DΘ = ΘD gives θi = 0 for i > 1 and Xiθ1 = θ1Xi for all i.
Thus θ1 is a B-module map U → V .

Examples. (i) Path algebras of connected quivers which are not Dynkin or ex-
tended Dynkin are wild. For example, letting B = K⟨X, Y ⟩, for the path algebra
A of the three arrow Kronecker quiver or five subspace quiver, consider the A-B-
bimodule which is the direct sum of the indicated powers of B, with the natural
action of B, and with the A-action given by the indicated matrices, acting as left
multiplication.

(ii) The algebra A = K[x, y, z]/(x, y, z)2 is wild. (This argument is taken from
Ringel, The representation type of local algebras, 1975)

Let C be the full subcategory of A-Mod consisting of the modules M which
are free over K[z]/(z2), or equivalently with Ker ẑM = Im ẑM , where ẑM is the
homothety M →M , m 7→ zm.

Given a K⟨X, Y ⟩-module V , we send it to the A-module V 2 with

x =

(
0 X
0 0

)
, y =

(
0 Y
0 0

)
, z =

(
0 1
0 0

)
.

This is a tensor product functor, and it gives a functor F : K⟨X, Y ⟩-Mod→ C.
There is also functor G : C → K⟨X, Y ⟩-Mod, sending M to Im ẑM , with the

action of X and Y given by

X(zm) = xm, Y (zm) = ym.
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These are well-defined, for if zm = zm′, then m − m′ ∈ Ker ẑM = Im ẑM , so
m−m′ = zm′′ for some m′′, so x(m−m′) = xzm′′ = 0. Now the composition

K⟨X, Y ⟩-Mod
F−→ C

G−→ K⟨X, Y ⟩-Mod

is isomorphic to the identity functor. Also, if G(M) = 0 then M = 0. It follows
that F is a representation embedding.

(iii) The algebra K[x, y] is wild (Gelfand and Ponomarev), in fact even the
algebra K[x, y]/(x2, xy2, y3) is wild (Drozd).

Theorem (Drozd). Any finite dimensional algebra is tame or wild, and not both.

The proof of the first part is difficult and will be discussed later. The second
part follows from the following.

Lemma. If A is wild, then there is r > 0 with dimGLrd(K) Rep(A, rd) ≥ d2 for all d,
so dimGLe(K) Rep(A, e) > e for e = 2r2. If A is tame, then dimGLd(K)Rep(A, d) ≤ d
for all d.

Proof. If M is an A-B-bimodule, free of rank r over B, then choosing a free basis
of M , one obtains a homomorphism A → Mr(B), and this gives a morphism of
varieties

Mod(B, d)→ Mod(A, rd)

corresponding to the functor M ⊗B −.
If A is wild we have a map

Rep(K⟨X, Y ⟩, d)→ Rep(A, rd).

The inverse image of any orbit is an orbit, so

dimGLrd(K) Rep(A, rd) ≥ dimGLd(K) Rep(K⟨X, Y ⟩, d).

Now Rep(K⟨X, Y ⟩, d) ∼= Md(K)2, so dimRep(K⟨X, Y ⟩, d) = 2d2. Also every orbit
of GLd(K) has dimension ≤ dimGLd(K) = d2. It follows that

dimGLd(K) Rep(K⟨X, Y ⟩, d) ≥ 2d2 − d2 = d2

so dimGLrd(K) Rep(A, rd) ≥ d2.
If A is tame, we can suppose that any d-dimensional module is isomorphic to

a direct sum of

Mi1 ⊗K[T ]/(T − λ1)⊕ · · · ⊕Mim ⊗K[T ]/(T − λm)

where the sum of the ranks of the Mij is d. In particular m ≤ d. This defines a
map

Am → Rep(A, d).

The union of the images of these maps, over all possible choices is a constructible
subset of Rep(A, d) of dimension ≤ d which meets every orbit, giving the claim.
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Theorem (Geiß). A degeneration of a wild algebra is not tame.

Thus by Drozd’s Theorem, a degeneration of a wild algebra is wild, and if an
algebra degenerates to a tame algebra, it is tame.

Proof. We had the following lemma. Suppose a linear algebraic group G acts on
a variety X and that π : X → Y is constant on orbits. Suppose that the image
of any closed G-stable subset of X is a closed subset of Y . Then the function
π(X)→ Z, y 7→ dimG(π

−1(y)) is upper semicontinuous.
Gabriel’s theorem says that the projection π : Alg Rep(r, d) → Alg(r) sends

GLd(K)-stable closed subsets to closed subsets. It follows that

Wd = {x ∈ Alg(r) : dimGLd(K) Rep(Kx, d) > d}

is closed in Alg(r), and it is obviously GLr(K)-stable.
Suppose x, y ∈ Alg(r), Kx is wild and y ∈ GLr(K)x. By the lemma, x ∈ Wd for

some d. Then the orbit of x is contained in Wd, and hence so is the orbit closure.
Thus y ∈ Wd. Thus by the lemma, Ky is not tame.

Examples. (a) The algebra

A = K⟨a, b⟩/(a2 − bab, b2 − aba, (ab)2, (ba)2)

degenerates to
B = K⟨a, b⟩/(a2, b2, (ab)2, (ba)2)

and B is a string algebra, so tame, hence A is tame.
The degeneration is given as follows. For t ∈ K, let At = K⟨a, b⟩/(a2−tbab, b2−

taba, (ab)2, (ba)2). The elements 1, a, b, ab, ba, aba, bab are a basis, and writing the
multiplication in terms of this basis gives an element xt ∈ Alg(7) with Kxt ∼= At.
Now the map A1 → Alg(7), t 7→ xt is a map of varieties, A0

∼= B and At
∼= A for

t ̸= 0.
The algebra A arises when one studies representations of the quaternion group

G of order 8 over an algebraically closed field K of field of characteristic 2. Namely,
KG is a local self-injective algebra. Thus it has simple socle S, which is an ideal
in KG, and apart from the free module, all other indecomposable modules are
annihilated by S, so are KG/S-modules. Now KQ/S ∼= A.

[At the moment, no classification of the indecomposable modules for this algebra
A seems to be known.]

(b) (Omitted in the lecture) A problem raised by I. M. Gelfand, The coho-
mology of infinite dimensional Lie algebras: some questions of integral geometry,
1971 is the classification of the representations of the quiver

◦
a1←−
−→
b1

◦
a2−→
←−
b2

◦
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with b1a1 = b2a2 nilpotent. To turn it into a f.d. algebra, we use the admissible
relations b1a1 = b2a2 and (b1a1)

n = 0 for some n.
This algebra is isomorphic to the algebra given by the quiver with vertices 1, 2,

a loop c at 1 and arrows a : 2 → 1 and b : 1 → 2 and non-admissible relations
ba = 0, (bca)n = 0 and c2 − c = 0. Namely, since c is idempotent, we can send it
to the trivial path at left hand vertex and e1 − c to the trivial path at the right
hand vertex.

For t ∈ K we can change the last relation to c2 − tc = 0. This gives a family
of algebras At. In fact At has basis given by the paths which occur as a proper
subpath of (bca)n, so the dimension d doesn’t depend on t. Also, using these bases
for all t, we get a map A1 → Alg(d).

The algebras At with t ̸= 0 are all isomorphic. Thus A0 is a degeneration of
A1. Now the algebra A0 is a string algebra, so tame. Thus A1 is tame. Thus the
Gelfand problem is tame in a suitable sense.

The modules for A1 and similar algebras (eg clannish or skew gentle) were
classified independently by V. M. Bondarenko and by me.

Remark. An algebra A is of strongly unbounded type if there are infinitely many
d, such that there are infinitely many non-isomorphic indecomposable A-modules
of dimension d.

The second Brauer-Thrall conjecture states that an algebra of infinite repre-
sentation type must be of strongly unbounded representation type. It is proved
(for algebras over an algebraically closed field) by the efforts of Bautista, Bon-
gartz, Gabriel, Nazarova, Roiter, Salmeron and others. See Bautista, On algebras
of strongly unbounded representation type, 1985.

The method of Geiss’s Theorem shows that a degeneration of an algebra of
unbounded representation type cannot be of finite representation type. Gabriel
used this, together with the second Brauer-Thrall conjecture to prove that the set
of algebras of finite representation type is open in Alg(r).
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9 Matrix reductions and Drozd’s Theorem
This chapter is non-examinable. We discuss A. V. Roiter and M. M. Kleiner’s
formalism of ‘matrix reductions’ and their use in the proof of Yu. A. Drozd’s ‘Tame
and Wild’ Theorem. We work over an algebraically closed field K.

9.1 Bocses and corings

Roiter’s eventual setting for his matrix reductions was with the notion of a ‘bocs’,
a bimodule over a category with coalgebra structure. The references are:

A. V. Roiter, Matrix problems and representations of BOCS’s, in: Representa-
tions and Quadratic Forms (Yu. A. Mitropol’skii, editor). Inst. Mat. Akad. Nauk
Ukrain. SSR, Kiev, 1979, pp. 3-38;

A. V. Roiter, Matrix problems and representations of BOCSs, in: Representa-
tions of Algebras I, SLN 831, 1980.

It is easier to work with a non-categorical version. This is the notion of a
‘coring’.

Definition. Let A be a ring. A coring over A is an A-A-bimodule C equipped
with A-A-bimodule homomorphisms

µ : C → C ⊗A C, ϵ : C → A

the comultiplication and the counit, such that the following diagram commutes

C
µ−−−→ C ⊗A C

µ

y µ⊗1

y
C ⊗A C

1⊗µ−−−→ C ⊗A ⊗AC

and the following compositions are the identity

C
µ−→ C ⊗A C

1⊗ϵ−−→ C ⊗A A ∼= C

C
µ−→ C ⊗A C

ϵ⊗1−−→ A⊗A C ∼= C.

We write (A,C) for the pair. By abuse of terminology, we might call this a bocs.

Definition. The category Rep(A,C) of representations of a bocs (A,C) has:
- Objects are A-modules V
- The set of morphisms from V to V ′ is HomA(C ⊗A V, V

′).
- The composition of f : C ⊗A V → V ′ and f ′ : C ⊗A V

′ → V ′′ is

C ⊗A V
µ⊗1−−→ C ⊗A C ⊗A V

1⊗f−−→ C ⊗A V
′ f ′
−→ V ′′.

- The identity morphism is ϵ⊗ 1 : C ⊗ V → V ,
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Observe that A is naturally an A-coring with the identity maps, and Rep(A,A)
is isomorphic to A-Mod.

Note that a morphism V → V ′ can also be given by an A-A-bimodule map
C → HomK(V, V

′).

Remark. A left C-comodule is an A-module X equipped with an A-module ho-
momorphisms ν : X → C ⊗A X such that

X
ν−−−→ C ⊗A X

ν

y µ⊗1

y
C ⊗A X

1⊗ν−−−→ C ⊗A C ⊗A X

commutes and
X

ν−→ C ⊗A X
ϵ⊗1−−→ A⊗A X ∼= X

is the identity map.
A homomorphism of C-comodules θ : X → X ′ is an A-module map such that

X
ν−−−→ C ⊗A X

θ

y 1⊗θ

y
X ′ ν′−−−→ C ⊗A X

′

commutes.
This gives a category of C-comodules. It is an additive category, but in general

it does not have kernels if CA is not flat, and we can’t even in general talk about
‘subcomodules’.

Given an A-module V , one can turn C ⊗A V into a C-comodule via the map

C ⊗A V
µ⊗1−−→ C ⊗A (C ⊗A V ).

It is called an induced comodule.
Given A-modules V and V ′ there is a 1-1 correspondence between A-module

homomorphisms f : C ⊗A V → V ′ and C-comodule maps θ : C ⊗A V → C ⊗A V
′

given by
- θ is the composition

C ⊗A V
µ⊗1−−→ C ⊗A C ⊗A V

1⊗f−−→ C ⊗A V
′

- f is the composition

C ⊗A V
θ−→ C ⊗A V

′ ϵ⊗1−−→ A⊗A V ∼= V.

Thus Rep(A,C) is equivalent to the category of induced comodules.
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The main purpose here is to turn tensor product functors into fully faithful
functors. If M is an A-B-bimodule, then one get a tendsor product functor

M ⊗B − : B-Mod→ A-Mod,

but in general it is not fully faithful. We are interested in the case when M
is f.g. projective over B. Given a f.g. projective right B-module P , we write
P∨ := HomB(P,B). It is a f.g. projective left B-module. Note that if X is any
right B-module, then there is an isomorphism

X ⊗B P
∨ → HomB(P,X), m⊗ ϕ 7→ (p 7→ xϕ(p)).

In particular there is an isomorphismM⊗BM
∨ → HomB(M,M) asA-A-bimodules,

so the homothety A→ HomB(M,M), a 7→ (m 7→ am) gives A-A-bimodule map

δ : A→M ⊗B M
∨.

There is also an evaluation map

ev :M∨ ⊗A M → B, ϕ⊗m 7→ ϕ(m).

which is a B-B-bimodule map.

Proposition. Let (A,C) be a bocs and M an A-B-bimodule which is f.g. projective
as a B-module. Then CB :=M∨ ⊗A C ⊗A M becomes a coring over B via

CB =M∨ ⊗ C ⊗A M
1⊗µ⊗1−−−−→M∨ ⊗A C ⊗A C ⊗A M

∼= M∨ ⊗A C ⊗A A⊗A C ⊗A M

1⊗1⊗δ⊗1⊗1−−−−−−−→M∨ ⊗A C ⊗A M ⊗B M
∨ ⊗A C ⊗A M ∼= CB ⊗B C

B

and
CB =M∨ ⊗ C ⊗A M

1⊗ϵ⊗1−−−→M∨ ⊗A A⊗A M ∼= M∨ ⊗A M
ev−→ B.

Moreover there is a fully faithful functor

Rep(B,CB)→ Rep(A,C)

sending a B-module V to M ⊗B V .

Proof. Straightforward.

Definition. A bocs (A,C) is normal if there is some g ∈ C with µ(g) = g⊗ g and
ϵ(g) = 1. Thus g is a grouplike element of C.
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9.2 Differential graded algebras and biquivers

Roiter and Kleiner first formalized matrix reductions using differential graded cat-
egories.

- A. V. Rŏıter and M. M. Kleiner, Representations of differential graded cat-
egories, in: Representations of algebras (Proc. Internat. Conf., Carleton Univ.,
Ottawa, Ont., 1974), pp. 316-339, Lecture Notes in Math., Vol. 488, Springer-
Verlag, Berlin-New York, 1975

- M. M. Klĕıner and A. V. Rŏıter, Representations of differential graded cat-
egories (Russian), in: Matrix problems (Russian), pp. 5-70, Akad. Nauk Ukrain.
SSR, Inst. Mat., Kiev, 1977

I will explain a noncategorical version. Different versions can be found in:
- Crawley-Boevey, Matrix problems and Drozd’s theorem, in: Topics in algebra,

1990.
- Bautista, Salmeron and Zuazua, Differential Tensor Algebras and Their Mod-

ule Categories, 2009.

Definition. A differential graded algebra (dga) is a pair (Λ, d) where Λ as a graded
K-algebra, so

Λ =
⊕
n∈Z

Λn

with ΛnΛm ⊆ Λn+m, and d : Λ → Λ is a K-linear differential which raises degree
by 1, so

d(Λn) ⊆ Λn+1

and d ◦ d = 0, and which satisfies the the graded Leibnitz rule

d(ab) = d(a)b+ (−1)deg aad(b)

for a homogeneous.

Here we use cohomological numbering. One could instead use homological
numbering with Λn = Λ−n, so that d reduces degees by 1.

In any graded algebra Λ, one can show that 1 ∈ Λ0, so that Λ0 is an algebra.

Proposition (Roiter correspondence). (i) Given a normal bocs (A,C) one gets a
dga (Λ, d) as follows. Fix a grouplike element g ∈ C. Let A = Λ0, let C = Ker ϵ,
and let

Λ = TA(C)

the tensor algebra of C over A, with C in degree 1. The differential is determined
by

d(a) = ag − ga ∈ C
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for a ∈ A, and for c ∈ C with µ(c) =
∑

i ci ⊗ c′i,

d(c) = µ(c)− g ⊗ c− c⊗ g =
∑
i

(ci − gϵ(ci))⊗ (c′i − ϵ(c′i)g) ∈ C ⊗A C.

(ii) Given a dga (Λ, d), such that Λ is the tensor algebra over A = Λ0 of the
A-A-bimodule Λ1, one gets a normal bocs (A,C) as follows. Let

C = A⊕ Λ1

with the A-A-bimodule structure given by

a(b, x) = (ab, ax+ d(a)b), (a, x)b = (ab, xb),

the coring structure given by

µ : C → C ⊗A C, (a, x) 7→ (a, x)⊗ (1, 0) + (1, 0)⊗ (0, x) + d(x),

ϵ : C → A, (a, x) 7→ a

and grouplike element g = (1, 0).
(iii) These constructions are inverse, up to suitable equivalences.

For more, see T. Brzezinski, Flat connections and (co)modules, arxiv:math/0608170v2

Proof. Straightforward. Note that given a bocs (A,C) with grouplike g, the exact
sequence

0→ C → C
ϵ−→ A→ 0

is split as a sequence of left A-modules, with section A→ C, a 7→ ag and split as
a sequence of right modules, with section a 7→ ga.

Definition. A biquiver is a quiver with two types of arrows, solid of degree 0 and
dotted of degree 1. Then KQ becomes a graded algebra with the degree of a path
being the number of dotted arrows in the path.

A differential biquiver is a differential graded algebra of the form (KQ, d) where
Q is a finite biquiver, and d is a differential with d(ei) = 0 for each trivial path ei.

For example
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Clearly A = KQ0 is the path algebra of the quiver Q0 of solid arrows. There
is an isomorphism ⊕

α:i99Kj

Aej ⊗ eiA→ KQ1

sending ej⊗ei in the summand corresponding to α to α. Thus KQ1 is a projective
A-A-bimodule, and KQ is the tensor algebra of KQ1 over A. Thus there is a bocs
corresponding to the dga (KQ, d).

Definition. Given a dbq (Q, d), we define a category of representations Rep(Q, d)
as follows.

- Objects are representations V of Q0, the quiver of solid arrows given by a
vector space Vi for each vertex and a linear map a : Vi → Vj for each solid arrow
a : i→ j.

- A morphism f : V → V ′ is given by linear maps pi : Vi → V ′
i for each vertex

and linear maps α : Vi → V ′
j for each dotted arrow α : i → j, satisfying one

relation a′pi − pja = “d(a)” for each solid arrow a : i→ j, where “d(a)” means the
map Vi → V ′

j obtained from d(a) by replacing dotted arrows by the corresponding
linear maps and solid arrows by the linear maps defining V and V ′ appropriately.
For example

- The composition f ′′ = f ′f of morphisms f : V → V ′ and f ′ : V ′ → V ′′ is
given by p′′i = p′ipi and if α : i → j, then α′′ = p′jα + α′pi + “d(α)”, where again
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“d(α)” is obtained from d(α) by appropriate substitutions. In the example

The identity morphism 1 : V → V is given by the maps pi = 1Vi
and the zero

map α : Vi → Vi for all dotted arrows α : i→ j.

Proposition. For a dbq (Q, d), the category Rep(Q, d) is equivalent to the category
of representations of the corresponding bocs (A,C).

Proof. By construction A = KQ0, so an A-module is given by a representation of
Q0. Thus objects in Rep(Q, d) correspond to objects in Rep(A,C).

To give a morphism f : V → V ′ in Rep(A,C), it is equivalent to give an
A-A-bimodule map f : C → HomK(V, V

′).
Now C = A ⊕ KQ1 with its natural structure as a right A-module and left

A-module structure given by

a(b, x) = (ab, ax+ d(a)b).

The bimodule map f : C → HomK(V, V
′) restricts to give a map KQ1 →

HomK(V, V
′), and since ⊕

α:i99Kj

Aej ⊗ eiA ∼= KQ1

an A-A-bimodule map KQ1 → HomK(V, V
′) is determined by elements in

ej HomK(V, V
′)ei ∼= HomK(eiV, ejV

′) = Hom(Vi, V
′
j )
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for each dotted arrow α : i 99K j. Call the elements just α. To extend this to a
map f : C → HomK(V, V

′) we need to give the image of the element (1, 0) ∈ C. It
is a K-linear map p : V → V ′. This must be compatible with the A-A-bimodule
structure, so we need that f(a, 0) = f((1, 0)a) = f(1, 0)a = pa, which is the map
V → V ′, v 7→ p(av), and f(a + d(a)) = f(a(1, 0)) = af(1, 0) = ap, which is the
map v 7→ ap(v). Thus we need ap(v) − p(av) = f(d(a)) = “d(a)”. Since d is zero
on the trivial paths ei, it follows that p(eiv) = eip(v), so p restricts to linear maps
pi : Vi → Vi, and then if a : i→ j is an arrow, a′pi − pja = “d(a)”, etc.

Definition. A dbq (Q, d) is:
- Linear if for any arrow a, d(a) is a linear combination of paths of length at

most 2.
- Triangular if the arrows can be ordered so that d(a) only involves smaller

arrows than a.
More generally one can ask for triangularity with respect to the solid arrows,

or with respect to the dotted arrows, meaning that these arrows can be ordered so
that the differential of one of these arrow only involves smaller arrows of this type,
together with arbitrary arrows of the other type.

Lemma. If (Q, d) is triangular, then
(a) A morphism f : V → V ′ is invertible if and only if all pi are invertible.

(This only needs triangularity of the dotted arrows)
(b) Given a representation V , vector spaces V ′

i , invertible maps pi : Vi → V ′
i and

maps αi : Vi → V ′
i for dotted arrows α : i→ j, there is a unique representation V ′

such that this data gives a homomorphism V → V ′. (This only needs triangularity
of the solid arrows)

Proof. (a) Clearly if f is invertible, then the pi must be invertible. Conversely,
given a morphism f with the pi invertible, we can construct a morphism f ′ with
f ′f = 1 by taking p′i = p−1

i and working up the ordering of the dotted arrows
α : i→ j, choosing α′ so that

pjα + α′pi + “d(α)”

is zero. Similarly we can construct f ′′ with ff ′′ = 1. Thus f ′ = f ′′ is an inverse
for f .

(b) Working up the ordering of the solid arrows a : i → j we construct linear
maps a′ : V ′

i → V ′
j so that

a′pi − pja = “d(a)” .
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9.3 Bimodule matrix problems

Definition. A bimodule matrix problem (of the most general sort) is given by a
tuple (R,E, π) where R is a finite-dimensional algebra, E is a finite dimensional
R-R-bimodule, and π : E → R is a surjective bimodule map. We define a category
of representations Rep(R,E, π) via:

- Objects are pairs (P, e) where P is a finitely generated projective R-module
and e : P → E⊗RP is a section of the surjective map π⊗1 : E⊗RP → R⊗RP ∼= P ,
meaning that (π ⊗ 1)e = 1P .

- Morphisms (P, e) → (P ′, e′) are homomorphisms θ : P → P ′ such that the
following diagram commutes.

P
e−−−→ E ⊗R P

θ

y 1⊗θ

y
P ′ e′−−−→ E ⊗R P

′.

This type of category appeared with the name ‘lift category’ in Crawley-Boevey,
Matrix reductions for Artinian rings and an application to rings of finite represen-
tation type, J. Alg. 1993. The following special cases were already considered by
Roiter, Matrix problems and representations of bisystems, J. Soviet Math. 1975
and Drozd, Matrix problems and categories of matrices, J. Soviet Math. 1975.

Remark. Special cases.
(1) Given (R,M) where R is a f.d. algebra and M is an R-R-bimodule, let

E = R ⊕ M and let π be the projection onto R. In this case we can identify
Rep(R,E, π) as the category Rep(R,M) with

- objects are pairs (P,m) where P is a finitely generated projective R-module
and m : P → E ⊗R P is an R-module map

- morphisms (P,m) → (P ′,m′) are homomorphisms θ : P → P ′ such that the
following diagram commutes.

P
m−−−→ M ⊗R P

θ

y 1⊗θ

y
P ′ m′
−−−→ M ⊗R P

′.

(2) Given (A,B,N) where A and B are f.d. algebras and N is an A-B-bimodule,
let R = A ⊕ B and let M be N considered as an R-R-bimodule by restriction on
each side. In this case we can identify Rep(R,M) as the category Rep(A,B,N)
with

- Objects are triples (P,Q, n) where P is a f.g. projective A-module, Q is a f.g.
projective B-module and n : P → N ⊗B Q is an A-module map
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- Morphisms (P,Q, n) → (P ′, Q′, n′) are pairs (θ, ϕ) with θ : P → P ′ and
ϕ : Q→ Q′ homomorphisms, such that the following diagram commutes.

P
n−−−→ N ⊗B Q

θ

y 1⊗ϕ

y
P ′ n′
−−−→ N ⊗B Q

′.

(3) Let A be a f.d. algebra. Then A is naturally an A-A-bimodule, and
Rep(A,A,A) is the category with:

- Objects are morphisms between f.g. projective A-modules α : P → Q, or
equivalently 2-term complexes of projectives, with P in degree −1 and Q in degree
0.

- Morphisms are pairs of morphisms (θ, ϕ) giving a commutative square, or
equivalently morphisms of complexes.

P
α−−−→ Q

ϕ

y θ

y
P ′ α′
−−−→ Q′

This category is closely related to A-mod. This correspondence is what is used
in τ -tilting theory. Let C be the full subcategory of Rep(A,A,A) given by the
maps α : P → Q such that

P
α−→ Q→ Cokerα→ 0

is a minimal projective presentation of Cokerα. Equivalently Imα ⊆ radQ and
Kerα ⊆ radP . By properties of projective covers, any object in Rep(A,A,A) can
be written as a direct sum

(P, 0, 0)⊕ (Q,Q, 1Q)⊕ (P ′, Q′, α)

where the last term is in C.
Thus the indecomposable objects are (P [i], 0, 0), (P [i], P [i], 1) and the inde-

composable objects of C.
Also there is a functor Rep(A,A,A) → A-mod sending (X, Y, α) to Cokerα.

This restricts to a functor F : C → A-mod which is a representation equivalence,
meaning that F is full, dense, and it reflects isomorphisms (which means that if a
morphism is sent by F to an isomorphism, then it is an isomorphism).

It follows that F gives a bijection between the isomorphism classes of indecom-
posable objects in C and in A-mod.
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Definition. An additive category is said to have split idempotents if for every
idempotent endomorphism θ of an object X there are morphisms f : X → Y and
g : Y → X such that gf = θ and fg = 1Y .

Applying this to θ and θ′ = 1− θ gives objects and morphisms

Y
f←−
−→
g

X
f ′
−→
←−
g′

Y ′

with gf + g′f ′ = 1X as well, showing that X ∼= Y ⊕ Y ′ and θ corresponds to the
projection onto Y .

Lemma. Rep(A,E, π) is an additive category with split idempotents.

Proof. It is straightforward that it is additive. Let θ : (P, e) → (P, e) be an
idempotent endomorphism. Then P = Im θ⊕Ker θ. Let f : P → Im θ be the map
induced by θ and g : Im θ → P the inclusion. Then gf = θ and fg = 1Im θ (since
θ is idempotent). We need to find a map e′ : Im θ → E ⊗ Im θ such that f and g
give morphisms between (P, e) and (Im θ, e′).

The map 1⊗ g : E⊗ Im θ → E⊗P is a kernel for 1⊗ (1− θ) : E⊗P → E⊗P .
Now (1− θ)g = 0, so

0 = e(1− θ)g = (1⊗ (1− θ))eg

so eg factors as (1⊗ g)e′ for some e′ : Im θ → E ⊗ Im θ, and this works.

Theorem. There is a correspondence between bimodule matrix problems (R,E, π)
and triangular linear dbqs (Q, d), such that they have equivalent categories of rep-
resentations.

Thus the category of maps between projectives arises as Rep(Q, d) for some
triangular linear dbq (Q, d). Also Rep(Q, d) has split idempotents. Also, the
matrix reductions which we shall study for dbqs in the next section can be done
purely in the context of bimodule matrix problems of the form (R,E, π). This is
done in the paper of Crawley-Boevey mentioned above.

This theorem is mentioned, without an explicit statement, in the introduction
to the paper of Crawley-Boevey cited at the start of this section.

Proof. (Sketch) Given (R,E, π), we may suppose that R is basic. Choose a com-
plete set of primitive orthogonal idempotents e1, . . . , en. Since R is basic and we
are working over an algebraically closed field, we have R = J ⊕ S where J is the
Jacobson radical and S is the semisimple subalgebra spanned by the ei.
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There is some h ∈ E with π(h) = 1, and replacing h with
n∑

i=1

eihei

we may suppose that sh = hs for all s ∈ S. The assignment δ(r) = rh−hr defines
a derivation δ : R→M which vanishes on S, where M = Kerπ.

We write D for the duality HomK(−, K). If V is a right S-module and W is a
left S-module, then we can identify

V ⊗S W =
n⊕

i=1

V ei ⊗K eiW

and if V and W are finite-dimensional, we get a natural isomorphism

DW ⊗S DV → D(V ⊗W ).

Also, if V and W are left S-modules, and X is a f.d. S-S-bimodule, then there is
a natural isomophism

HomS(V,X ⊗S W )→ HomS(DX ⊗S V,W ).

When choosing a basis of an S-S-bimodule V , because of the decomposition

V =
n⊕

i,j=1

ejV ei,

we can ensure that each basis element is in ejV ei for some i, j.
We construct a differential biquiver as follows. The vertex set forQ is {1, . . . , n}.

The solid arrows a : i → j correspond to basis elements of DM in ejDMei. The
dotted arrows α : i→ j correspond to basis elements of DJ in ejDJei.

The multiplication map m : J ⊗S J → J gives a map Dm : DJ → DJ ⊗S

DJ . We define the differential of the dotted arrows by d(α) = Dm(α), a linear
combination of compositions of two dotted arrows.

The left action ℓ : J ⊗S M → M , the right action r : M ⊗S J → M and the
restriction of the derivation δ : R→M to J dualize to give maps

Dℓ : DM → DM ⊗S DJ, Dr : DM → DJ ⊗S DM, Dδ : DM → DJ

We define the differential of the solid arrows by d(a) = Dδ(a) +Dℓ(a)−Dr(a), a
linear combination of paths of degree 1 and length at most 2.

Using the graded Leibnitz rule we can define d on an arbitrary path in Q. We
have d2 = 0, so it is a differential. This is essentially associativity in R and for the
action on M and the derivation property.
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Thus we get a dbq. By construction it is linear, and by choosing bases working
up the dual of the radical series

(J2)⊥ ⊆ (J3)⊥ ⊆ · · · ⊆ DJ

(M1)
⊥ ⊆ (M2)

⊥ ⊆ · · · ⊆ DM, M0 =M, Mi+1 = JMi +MiJ

we can ensure that it is triangular.
The reverse construction is clear. Given a linear dbq (Q, d), let S be the

semisimple subalgebra of KQ spanned by the trivial paths, J the dual of the
subspace spanned by the dotted arrows, M the dual of the subspace spanned by
the solid arrows, etc.

We define an equivalence Rep(Q, d) → Rep(R,E, π) as follows. An object in
Rep(Q, d) is a KQ0-module, so given by an S-module V and an S-module map
a : DM ⊗S V → V . Let P = R ⊗S V . As V runs through all S-modules up
to isomorphism, P runs through the projective R-modules up to isomorphism.
Now the maps a correspond 1:1 with S-module maps a : V → M ⊗S V . These
correspond 1:1 with the R-module sections e of π ⊗ 1 : E ⊗R P → P via

e : R⊗S V = P → E⊗R P = E⊗RR⊗S V ∼= E⊗S V, e(r⊗ v) = ra(v)+ rh⊗ v.

A morphism f : V → V ′ in Rep(Q, d), where V and V ′ are given by maps
a : DM ⊗S V → V and a′ : DM ⊗S V

′ → V ′, is given by an S-module map
p : V → V ′ and an S-module map α : DJ ⊗S V → V ′ satisfying a condition
corresponding to a′pi − pja = “d(a)” for all solid arrows a : i→ j. This is

p a− a′ (1⊗ p) = α (Dδ ⊗ 1)− α (1⊗ a) (Dr ⊗ 1) + a′ (1⊗ α) (Dℓ⊗ 1).

as a map DM ⊗S V → V ′. The corresponding equation for p and α : V → J ⊗S V
′

is

(1⊗ p) a− a′ (1⊗ p) = (δ ⊗ 1) α− (r ⊗ 1) (1⊗ α) a+ (ℓ⊗ 1) (1⊗ a′) α

as maps V →M ⊗S V
′.

Consider the objects (P, e) and (P ′, e′) given by V, a and V ′, a′. Any R-module
map θ : P = R⊗S V → R⊗S V

′ = P ′ corresponds to an S-module map

V → R⊗S V
′ = (S ⊕ J)⊗ V ′ ∼= V ′ ⊕ (J ⊗S V

′).

so is given by a pair of maps p, α. One can check that the condition for θ to be a
morphism between the objects (P, e) and (P ′, e′) is exactly the condition above on
p and α.

One also needs to check that composition corresponds, but this is omitted.
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9.4 Matrix reductions

We do an example. We start with representations of the quiver (or dbq) 1 a−→ 2
b←− 3.

Homomorphisms are given by intertwining matrices

Using the normal form for rectangular matrices under row and column oper-
ations, and part (b) of the lemma in §9.2 we get that any representation is iso-
morphic to one in which the matrix a has block form ( I 0

0 0 ). Morphisms between
representations of this form are given as follows:

This corresponds to representations of a new dbq (Q′, d′).
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This easily generalizes to the following.

Theorem (Edge reduction). Let (Q, d) be a dbq with a solid edge a which is not
a loop and with d(a) = 0. Then there is a new dbq (Q′, d′) and an equivalence
Rep(Q, d)← Rep(Q′, d′). The quiver Q′ has one more vertex than Q.

The new dbq is constructed from the old one, and we indicate this by writing
(Q, d)→ (Q′, d′).

Note that if there is a loop a at a vertex i with d(a) = 0, then the repre-
sentations with Vi = K, a a scalar, and all other vector spaces and arrows zero,
are nonisomorphic and indecomposable, so this can’t happen if (Q, d) has finite
representation type.

Now reducing edge b in the same way gives

Then reducing c gives
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Since d(g) = ζ, a morphism f : V → V ′ satisfies g′p5 − p4g = ζ.
Taking pi = 1Vi

, ζ = −g, α = 0, etc. we get that any representation is isomor-
phic to one with g = 0.

Then any morphism between such representations has ζ = 0. This corresponds
to the following dbq.

In general we get:

Theorem (Regularization of an arrow). If a is a solid arrow with d(a) a dotted
arrow, or more generally a nonzero linear combination of dotted arrows, then there
is a reduction (Q, d) → (Q′, d′) and an equivalence Rep(Q, d) ← Rep(Q′, d′). The
number of arrows decreases.

Now in order to regularize h we make a substitution, replacing η by η′ = η− θ.
Thus the dbq has d(h) = η′ and d(φ) = λα + (η′ + θ)γ. Now we can regularize h
to get
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(There is an error in the picture. The differential of φ should be λα + θγ.)
Now there are no solid arrows, so the indecomposable representations are ex-

actly the representations given by a one-dimensional vector space at a vertex, zero
elsewhere. The dotted arrows give dual bases of the Hom spaces between indecom-
posables. The differential encodes the composition of homomorphisms. Because of
triangularity, the dotted arrows with differential zero give dual bases of the spaces
of irreducible maps between indecomposables.

Note that any triangular dbq of finite representation type must reduce after
a finite number of steps of edge reduction and regularization to a dbq like this,
with no solid arrows. Namely, each step of edge reduction increases the number of
vertices, but this is bounded by the number of indecomposable representations, and
between any two steps of edge reduction, only finitely many steps of regularization
are possible, as each reduces the number of arrows.

End of lecture on 2026-01-29. Provisional script for the next
lecture follows (subject to change).

9.5 Layered dbqs and Drozd’s theorem

Theorem (Drozd’s Tame and Wild Theorem). Any f.d. algebra (over an alge-
braically closed field) is either tame or wild.

We need a generalization of triangular dbqs.
- The original paper, Drozd, Tame and wild matrix problems, Amer. Math.

Soc. Transl. 1986, used ‘almost free bocses’.
- When I wrote my paper Crawley-Boevey, On tame algebras and bocses, Proc.

London Math. Soc. 1988, I found it necessary to make some changes, and used
‘layered bocses’.
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- A more recent treatment is given by Bautista, Salmeron and Zuazua, Differ-
ential Tensor Algebras and Their Module Categories, 2009.

Here I will sketch a proof, essentially as in my paper, but without the categorical
setup.

Definition. A layered dbq is given by the following:
- A biquiver Q with solid and dotted arrows of degree 0 and 1.
- A set of solid loops in Q, called minimal loops, at most one at each vertex.
- A nonzero polynomial g(x) ∈ K[x] for each minimal loop a.
Given this data, let K̃Q be the algebra obtained from KQ by inverting the

g(a). It is the path algebra of a quiver with, for each minimal loop a, a new loop
ℓa of degree 0 at the same vertex i, modulo relations g(a)ℓa = ℓag(a) = ei. These
relations are homogeneous of degree 0, so K̃Q is still graded,

K̃Q =
⊕
n≥0

K̃Q
n
.

and it is still the tensor algebra of K̃Q
1

over K̃Q
0
.

- A differential d making K̃Q into a dga, with d(ei) = 0 and d(a) = 0 and
d(ℓa) = 0 for all minimal loops a.

We get a category of representations Rep(Q, d) as before.
- A representation is a K̃Q

0
-module, so a representation of the quiver of solid

arrows such that ga(a) is invertible for each minimal loop a.
- A homomorphism f : V → V ′ is given by linear maps pi : Vi → V ′

i for each
vertex and α : Vi → V ′

j for each dotted arrow αi : i 99K j such that a′pi − pja =
“d(a)′′ for each solid arrow a : i→ j.

- We assume triangularity for the solid arrows.
- Instead of triangularity for dotted arrows, which we cannot preserve, we as-

sume that a morphism f : V → V ′ is invertible if and only if all pi are invertible.
The dimension vector of a representation V has components dimVi. The total

dimension is the sum of the components.

Theorem. Let (Q, d) be layered dbq. Then either:
(Tame) For any n, there are finitely many K̃Q

0
-K[x, gi(x)

−1]-bimodules Bi, f.g.
free over K[x, gi(x)

−1], such that
- The functor Bi ⊗ − : K[x, gi(x)

−1]-mod → Rep(Q, d) preserves indecompos-
ability and sends non-isomorphic modules to non-isomorphic representations, and

- All but finitely many f.d. indecomposable representations of (Q, d) of total
dimension n are isomorphic to Bi ⊗ N for some i and some finite dimensional
indecomposable K[x, gi(x)

−1]-module N .
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or
(Wild) There is a K̃Q

0
-K⟨x, y⟩-bimodule, f.g. free over K⟨x, y⟩, such that the

tensor product functor K⟨x, y⟩-mod→ Rep(Q, d)
- sends indecomposable modules to indecomposable representations
- sends non-isomorphic modules to non-isomorphic representations.

Given a f.d. algebra A, we have seen that there is a dbq (Q, d) whose repre-
sentations correspond to 2-terms complexes of projectives A-modules. The the-
orem above applies to this dbq, and shows that the algebra A is tame or wild.
One complication is that it gives A-B-bimodules which are not necessarily free
over B. For tameness, I explained how to get around this in the remarks after
the definition of tameness. For wildness, a similar trick is possible. There is an
A-K⟨X, Y ⟩-bimodule, f.g. over K⟨X, Y ⟩. Tensoring with K[X, Y ] there is an A-
K[X, Y ]-bimodule, f.g. over K[X, Y ]. Then tensoring up to K[X, Y ]f for some
nonzero polynomial f ∈ K[X, Y ] we get an A-K[X, Y ]f -bimodule, f.g. free over
K[X, Y ]f . Then K[X, Y ]f is known to be wild, so we can compose this with a
representation embedding K⟨X, Y ⟩-mod→ K[X, Y ]f -mod.

Theorem (Wild configurations). If a : i→ j is a solid arrow, not a minimal loop,
then (Q, d) is wild if

(i) d(a) = 0 and there is a minimal loop at i or j, or
(ii) There are minimal loops b and c at i and j, say with polynomials f(x) and

g(x), and
d(a) = h(b, c)α

with α a dotted arrow and h(x, y) non-invertible in K[x, y, f(x)−1, g(y)−1].

Proof. For example if a is a loop at i and b is the minimal loop at i, with polynomial
f(x), then in case (i) one takes the representation of K̃Q

0
given by K⟨x, y⟩3 with

b acting as an upper triangular Jordan block with eigenvalue λ not a root of f(x)
and a acting as 0 0 0

x 0 0
0 y 0


We omit details and the other cases.

We need new versions of the reductions.

(a) Edge reduction. If a : i → j is a solid edge and d(a) = 0 and there is
no minimal loop at i or j, there is a reduction (Q, d) → (Q′, d′) replacing a by
i L99 k L99 j, giving an equivalence R(Q, d)← R(Q′, d′).
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What has improved? The norm of a representation V is∑
solid arrows a : i → j

dimVi dimVj.

It is the number of entries in the matrices for a representation. When we reduce
an edge a : i→ j, if Vi and Vj are nonzero, then V comes from a representation of
(Q′, d′) of smaller norm.

(b) Regularization. If a : i→ j is a solid arrow of degree 0 and d(a) is a nonzero
linear combination of dotted arrows, there is a reduction (Q, d) → (Q′, d′) giving
an equivalence R(Q, d)← R(Q′, d′). This has similar behaviour for the norm.

(c) Theorem (Unravelling a loop). Suppose a is a minimal loop at vertex i
with polynomial f(x). Let g(x) be a polynomial and n ≥ 0. There is a reduction
(Q, d) → (Q′, d′) and a fully faithful functor R(Q, d) ← R(Q′, d′) such that any
representation of total dimension ≤ n with g(a) not invertible comes from one of
smaller norm.

Sketch. Let λ1, . . . , λk be the roots of g(x) which are not roots of f(x). By
Fitting’s Lemma and Jordan normal form, the matrix for a is similar to a diagonal
block matrix where the first block a′ does not have any of the λi as an eigenvalue,
and the other blocks are Jordan blocks Jr(λj) with r ≤ n, say with njr such blocks
of this form. Collecting identical Jordan blocks gives a diagonal block matrix where
the first block is a′ and the other blocks are of the form

λjI I

λjI
. . .
. . . I

λjI


with r copies of λjI on the diagonal, and where I is an identity matrix of size njr.

Now, as in the case of edge reduction, we need to consider a homomorphism
between two representations of this form, and see that the matrices take block
form. We then encode the blocks using a new dbq Q′. The loop at vertex i is now
marked with the polynomial f(x)g(x) and there are new vertices indexed by pairs
(j, r) with 1 ≤ j ≤ k and 1 ≤ r ≤ n picking out a block matrix as displayed above.
There are also many new arrows. For example an arrow b from some other vertex
ℓ to i still gives an arrow ℓ→ i, but it also gives r arrows ℓ→ (j, r) for each (j, r).

Two silly reductions:

(d) Localization. If a is minimal loop with polynomial f(x), replace it with a
polynomial f(x)g(x). One gets a reduction (Q, d) → (Q′, d′) with a fully faithful
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functor R(Q, d) ← R(Q′, d′) whose image is the representations with g(a) invert-
ible.

(e) Deleting a vertex gives a reduction (Q, d) → (Q′, d′) and a fully faithful
functor R(Q, d) ← R(Q′, d′) whose image is the representations which are zero at
the vertex.

We now come to the proof of tame and wild theorem. Suppose (Q, d) is not
wild. We show that for any n, there are a finite number of sequences of reductions

(Q, d)


→ · · · → (Q1, d1)

. . .

→ · · · → (QN , dN)

leading to minimal dbqs (meaning that there are no solid arrows except minimal
loops), and such that every representation of Q of total dimension ≤ n is in the
image of one of the compositions of functors R(Q, d) ← · · · ← R(Qi, di). This
gives tameness.

First consider reductions deleting any set of vertices. Then we only need to
worry about sincere representations, and we can be sure that the norm will reduce.

Let a be a solid arrow, not a minimal loop, but otherwise minimal in the
ordering of the solid arrows. There are the following possibilities.

(1) If d(a) = 0 and a is an edge, then by the wild configurations, there are no
minimal loops at either end, and we can do edge reduction.

(2) If d(a) = 0 and a is a loop at vertex i, then by the wild configurations there
is no minimal loop at i, and we can nominate a as a new minimal loop with the
constant polynomial f(x) = 1.

(3) If d(a) ̸= 0 and there is no minimal loop at either end, then we can regularize.
(4) If d(a) ̸= 0 and there is a minimal loop at one end, say loop b at the head.

Then we have
d(a) = f1(b)α1 + · · ·+ fk(b)αk

for distinct dotted arrows αj and non-zero polynomials fj(x). The representations
with f1(b) not invertible come from unravelling the loop b with the polynomial
f1(x). The representations with f1(b) invertible come from the dbq with the poly-
nomial g(x)f1(x) for b, which is obtained by localization. But for this dbq, since
f1(b) is invertible, we can make a substitution, replacing α1 by

α′
1 = f1(b)α1 + · · ·+ fk(b)αk,

so that d(a) = α′
1, and then regularize a.

(5) If d(a) ̸= 0 and there minimal loops b and c at the start and end of a
(possibly b = c if a is a loop). Let the polynomials for b and c be f(x) and g(x).
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We can write
d(a) = h1(b, c)α1 + · · ·+ hk(b, c)αk

for distinct dotted arrows αj and polynomials hj(x, y) ∈ K[x, y, f(x)−1, g(y)−1].
Replacing αj with α′

j = g(c)−Nαjf(b)
−N for N sufficiently large, we may assume

that hj(x, y) ∈ K[x, y] for all j.
Using that K(x)[y] is a principal ideal domain, there is a localization R̃ =

K[x, y, ϕ(x)−1] such that the ideal in R̃ generated by h1, . . . , hk is principal, so of
the form (h0) with h0 ∈ K[x, y]. Then h0 divides the hj, and the ideal generated
by the quotients hj/h0 is R̃.

We use loop unravelling to get the representations in which ϕ(b) is not invertible.
For the remaining representations we can localize, so that the minimal loop b has
associated polynomial f(x)ϕ(x). This ensures that ϕ(b) is invertible.

By a theorem of Seshadri, f.g. projective modules for a polynomial ring over a
principal ideal domain are free, see C. S. Seshadri, Triviality of vector bundles over
the affine space K2, Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 456-458.

This applies to R̃. It follows that it is a Hermite ring, which for a commutative
ring means that any tuple of elements which generates the whole ring as an ideal
can occur as the first row of an invertible matrix.

Thus there is an invertible k×k matrix over R̃ with first row (h1/h0, . . . , hk/h0).
Making a substitution among the αj using this matrix, we may suppose that

d(a) = h0(b, c)α1.

Note that because of this substitution we would not be able to preserve triangularity
of the dotted arrows. Now because of the wild configurations, h0(x, y) must be
invertible in the ringK[x, y, (f(x)ϕ(x))−1, g(y)−1]. Thus after another substitution,
we can regularize.
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