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Masters course: Representations of Algebras

I discuss the basics of representation theory of algebras and quivers, including
Nakayama algebras, Auslander-Reiten theory, covering theory using graded mod-
ules and the representation theory of Dynkin and extended Dynkin quivers. (Be-
cause of lack of time, I was not able to discuss correspondences given by faithfully
balanced modules, homological conjectures, etc.)

Students are expected to already have some familiarity with rings and modules,
and topics such as categories, projective and injective modules, and Ext groups.

Here are some relevant books. The book by Erdmann and Holm is a good intro-
duction, aimed at bachelor students. The book by Assem, Simson and Skowronski
is a comprehensive introduction.

e I. Assem and F. U. Coelho, Basic representation theory of algebras, Springer
2020.

e I. Assem, D. Simson and A. Skowronski, Elements of the representation the-
ory of associative algebras. Volume 1, Techniques of representation theory,
CUP 2006.

e M. Auslander, I. Reiten and S. O. Smalg, Representation theory of Artin
algebras, CUP 1997.

e M. Barot, Introduction to the Representation Theory of Algebras, Springer
2015.

e H. Derksen and J. Weyman, An introduction to quiver representations, Amer-
ican Mathematical Society 2017.

e K. Erdmann and T. Holm, Algebras and Representation Theory, Springer
2018.

e P. Etingof et al., Introduction to representation theory, American Mathemat-
ical Society 2011.

e P. Gabriel and A. V. Roiter, Representations of finite dimensional algebras,
Springer 1977.



e R. Schiffler, Quiver Representations, Springer 2014.

e A. Skowronski and K. Yamagata, Frobenius algebras 1. Basic representation
theory, European Mathematical Society 2011.

e A. Skowronski and K. Yamagata, Frobenius algebras 2. Tilted and Hochschild
extension algebras, European Mathematical Society 2017.
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1 Algebras, quivers and representations

1.1 Algebras

Definition. Let K be a commutative ring. By an algebra over K or K-algebra we
mean a K-module R which is also a ring, such that the multiplication

RxR—R

is K-bilinear. Rings and algebras always have a one, denoted 1 or 15.

A homomorphism of algebras 6 : R — S is a K-module homomorphism which
is also a ring homomorphism. In particular, (1) = 15.

A subalgebra S of an algebra R is a K-submodule which is also a subring. In
particular, 1 € S.

Remarks. (1) Any ring is a Z-algebra in a unique way.

(2) To specify a K-algebra, it is equivalent to give a ring R and a ring homo-
morphism K — Z(R), where Z(R) is the centre of R.

(3) If R is a K-algebra, then any left R-module M becomes a K-module by
restriction, that is, Am = (Alg)m for A € K and m € M.

(4) If M is a K-module, then Endg (M) is a K-algebra in the natural way.
A representation of an algebra R is given by a K-module M and a K-algebra
homomorphism

6: R — Endg(M).

Using the formula
O(r)(m) =rm

we see that a representation of R is exactly the same thing as a left R-module.
(5) The category R-Mod of left R-modules is naturally a K-category, that is,
the spaces Hompg(X,Y) are naturally K-modules, and composition is K-bilinear.

Remark (Conventions). Because this course is mainly about representations of
finite-dimensional algebras over a field, from now on I shall assume that K is a
field, unless stated otherwise. But many definitions work for K an arbitrary ring.

I shall not yet assume that all algebra are finite-dimensional. If R is a K-
algebra, I write R-mod for the category of finite-dimensional R-module. Warning:
this is not the same as the category of finitely generated R-modules, unless R is
finite-dimensional.

Remark (Semisimplicity). Recall that a module M is semisimple if it satisfies the
following equivalent conditions.

(i) M is the sum of its simple submodules,

(ii) M is isomorphic to a direct sum of simple modules,
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(iii) every submodule of M is a direct summand, that is, for every submodule
N of M there is a submodule C' with N & C' = M.

It follows that any submodule or quotient of a semisimple module is semisimple,
and any direct sum of a family of semisimple modules is semisimple.

A ring R is semisimple if R is a semisimple R-module. It follows that every
module is semisimple. According to the Artin-Wedderburn Theorem, it is equiva-
lent that

R M, (Dq) x -+ x M, (D)

with the D; division rings (i.e. all nonzero elements are invertible).

Many natural f.d. algebras are semisimple, but once one has determined the
simple modules, the representation theory of such algebras is trivial, and so we are
mainly interested in non-semisimple algebras.

Examples (For motivation, without proofs). (1) The f.d. division algebras over R
are R, C and the quaternions H = {a + bi + ¢j + dk : a,b,c,d € R}.

(2) If G is a group then the group algebra is

KG = {Z ay,g : a, € K, all but finitely many zero}.

geG

Representations of K G correspond to representations of the group
p:G— GL(V).

Maschke’s theorem: if G is finite and its order is invertible in K, then KG is
semisimple.

(3) The polynomial ring K[z1,...,z,). If K is algebraically closed, f.d. K[z]-
modules are classified by Jordan normal form.

(4) The free algebra K (x1, ..., x,). It has basis the words in the x;. For example
K({x,y) has basis

Lz, y, 2 zy, yx,y°, 2°, 2%y, vy, 2y°, ya®, yzy, . ..

A f.d. K(z,y)-module with vector space K" is given by two n X n matrices X,V
and a homomorphism (K", X,Y) — (K™, X',Y’) is given by an m X n matrix
A with AX = X'A and AY = Y'A, so isomorphism is given by simultaneous
conjugacy.

This is the basic wild problem. The 1-dimensional representations are given
by a pair of elements of K. One can classify 2-dimensional representations, and



with enough work also n-dimensional representations for small n, but there is no
classification known, or expected, which works for all n.

(5) Let V' be a vector space. The tensor powers are

™™(V)=V®V® 8V,

n

where tensor products are over K and T°(V) = K. The tensor algebra is the
graded algebra

TV)=T'(V)=KoVeVeV)a(VaVelV)e...

neN

with the multiplication given by T™(V) @x T™ (V) = T"™ (V). If V is has basis
T1y. .oy Ty, then T(V) =2 K(x1,...,2,).

(6) The exterior algebra
AV)=T(V)/(v*:v € V).
If V has basis z1, ..., z, then in A(V') we have
0= (z; + mj)2 =27 + T + Tx; + x? = 2T, + ;T

and in fact
A(V) = K<$17 e 7$n>/($12, ZiZ; + .Tjﬂjz)

More generally, suppose that ¢ : V — K is a quadratic form, meaning that

(a) gq(Az) = A\%q(z) for A € K and x € V, and

(b) the map V x V — K, (z,y) — q(z +vy) — q(z) — ¢(y) is a bilinear form in
x and y.

The associated Clifford algebra is

C(V,q) =T(V)/(v* = q(v)L :v € V).
Now suppose that V' has basis x1,...,x, and there are ¢; € K with
G+ X)) = A oA
for Ai,..., A\, € K, then for i # 5 we have
citc; = q(zitu;) = (zitx;)? = v+ 4ae+a) = q(v)+q(y) = citaa+re+c

and in fact
C(V7 q) = K<x17 e 7xn>/(x12 - Ciwfix]' + 'x]'xl)
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One can show that A(V) and C(V,q) have basis the products x;, ...z; with
1< <.
For example the algebra of 3-d Euclidean space is given by V = R3 with

q(Az1 + Aoy + A3x3) = AT + A3 + ).
The Clifford algebra has basis

1,1’1, ZL‘Q,JIg,’i = I’ll’z,j = T2T3, k’ = $1ZL‘3,€ = ill'gl'g.

Then i* = 11Tom179 = —2323 = —1 and ij = T1097973 = k, etc, so 1,4, j, k span a
subalgebra isomorphic to H. Also 2 = —1, so 1,/ span a copy of C.

If char K # 2 and the bilinear form associated to ¢ is non-degenerate, then
C(V,q) semisimple. In physics spinors are important—they are elements of a

representation of a Clifford algebra.
(7) If G is a Lie group, one is usually interested in the representations
p:G— GLN(C)

which are continuous or smooth. As an algebraic version, one can take G =
GL,(K) and then one is interesed in the representations

p: GL,(K) = GLy(K)

such that each entry of p(g) is a rational function of the components of g. For
example the natural representaion of GLg(K) is

GL(K) = GLy(K), (i 2) - (ﬁ Z)

the determinant representation is

b

GLy(K) — GL(K), (‘CL y

) — ad — bc,
and the dual of the natural representation is

CLy(K) — GLy(K), A= (‘CL Z) (AT = 1 ( ’ _C) .

:ad—bc a

To study such representations, it suffices to understand the representations in which
all entries are homogeneous polynomials of fixed degree r. Such representations
correspond to representations of a f.d. algebra S(n,r) called the Schur algebra. In
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fact the symmetric group S, acts on 77 (V') where letting V' = K™ by permuting
the terms in a tensor, and S(n,r) can be defined as

S(n,r) = Endgg, (T"(V)).

For K of characteristic zero it is a semisimple algebra, but for K of positive charac-
teristic it need not be. The canonical reference for the Schur algebra is J.A. Green,
Polynomial representations of GL,,, second edition, Springer 2007.

(8) The Temperley-Lieb algebra T'L,(0) for n > 1 and § € K was invented to
help make computations in Statistical Mechanics. It has basis the diagrams with
two vertical rows of n dots, connected by n nonintersecting curves. For example

i S

Two diagrams are considered equal if the same vertices are connected. The product
is defined by

ab=4d"c

where c is obtained by concatenating a and b and deleting any loops, and r is the
number of loops removed. For example

N/ ) [ 7
- N[ G
\ >
D1 =
ST YT
A~
1 4
T

The algebra T'L,,(0) is f.d., with dimension the nth Catalan number. Let u; be
the diagram




Then u? = du;, uuiriuw; = u; and wu; = uu; if [i — j| > 1
One can show that

TLn((S) = K<’LL1, SN 7Un_1>/I

where [ is generated by these relations. For generic 6, T'L,,(d) is semisimple, but
for some ¢ it is not.

The Temperley-Lieb algebra is also important in Knot Theory.

The Markov trace is the linear map tr : TL,(J) — K sending a diagram to
0"~" where r is the number of cycles in the diagram obtained by joining vertices
at opposite ends.

The (Artin) braid group B, is the group generated by oy, ...,0,_1 subject to
the relations

0i0; = 0j0; (|i —j| > 1), 004410i = 04103041

One can show that the elements of B,, can be identified with braids

' |
. . ——s,
jlj: ) . im |

T T
. /

\._/
/
R

+

i

identifying two such braids if they are isotopic. The generators correspond to the
braids

T N | o -
i ! ] \ P -
an 7
) |
) ~ T ~ ! -
‘T\ B iy % S o :1-3
P4 —
L 5
=TT T T |




By joining the ends of a braid, one gets a knot (or a link if it is not connected),
for example

Moreover any knot arises from some braid (for some n).

Given 0 # A € K, there is a homomorphism 6 : KB, — TL,(5) where
§ = —A%2—1/A% with 0(0;) = Au;+(1/A), 0(0; ') = (1/A)u; + A. Composing with
the Markov trace, this gives a map tré : KB,, — K. One can show that the image
of an element of B, only depends on the knot obtained by joining the ends of the
braid, and it is a Laurent polynomial in A. It is essentially the Jones polynomial of
the knot, see Lemma 2.18 in D. Aharonov, V. Jones and Z. Landau, A polynomial
quantum algorithm for approximating the Jones polynomial, Algorithmica 2009.

(9) Suppose that G is a group, R is an algebra, and we have an action
GxR—=R, (g,7)—"7r
of G on R by algebra automorphisms. To be an action means that
I(hy)y = Wy Ly =,

and we want also that for all ¢ € G the map R — R, r — 9r is an algebra
homomorphism (necessarily an automorphism).
One can form the algebra of invariants

RY={reR:% =rforall g € G}
We can also form the skew group algebra

RxG = {Z ag * g : ay € R, all but finitely many zero}
geG

with the multiplication given by

(a* g)(b* h) = (a 7b) x (gh).

1.2 Idempotents and catalgebras

Definition. Let R be a ring.
(a) An element e € R is idempotent if €* = e.
(b) Idempotents ey, ..., e, are orthogonal if e;e; = 0 for i # j.
(c) A family of orthogonal idempotents ey, . .., e, is complete if e;+- - -+e, = 1g.
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Lemma. Let R be a ring and M an R-module.
(a) If e € R is an idempotent, then

eM ={m e M :em=m},

and if R is a K-algebra, then eM s a K-subspace of M.
(b) If eq, ..., e, is a complete family of orthogonal idempotents, then

M=eM&- - --Pde, M.
Proof. Straightforward. m

Proposition (Peirce decomposition). If eq, ..., e, is a complete family of orthog-
onal idempotents in R, then
R = @ €iR€j.

i5=1
Displaying this as a matriz
etRe; eiRes ... eiRe,
esRe; eaRes ... esRe,
R = ,
e, Re; e,Res ... e,Re,

multiplication in R corresponds to matriz multiplication.
Proof. Straightforward. m

Definition. Recall that an R-module P is projective if it satisfies the following
equivalent conditions.
(i) Hom(P, —) is an exact functor R-Mod — Ab.
(ii) Any short exact sequence 0 - X — Y — P — 0 is split.
(iii) Given an epimorphism 6 : Y — Z, any morphism P — Z factors through 6.
(iv) P is a direct summand of a free R-module.

Lemma. (i) If e is idempotent in R, then Re is a left ideal which is a direct
summand of R, so a projective left R-module, and if M is an R-module, then
Hompg(Re, M) = eM.

(i1) Any left ideal of R which is a direct summand of R is equal to Re for some
tdempotent e.

Proof. (i) Send 6 to 6(e) or m € eM to the map r — re,
(ii) If I is a direct summand, then the projection onto it is an idempotent
element of Endg(R) = R. O



Sometimes it is useful to consider non-unital rings and algebras, but usually
one wants some weaker form of unital condition, and there are many possibilities.
One possibility is rings “with enough idempotents”. In categorical language, this is
the theory of “rings with several objects”. 1 call the algebra version “catalgebras”,
since they correspond exactly to small K-categories.

Definition. By a catalgebra we mean a K-vector space R with a multiplication
R x R — R which is associative and K-bilinear, such that there exists a (possibly
infinite) family (e;);c;r of orthogonal idempotents which is complete in the sense

that
R = @ BZ‘RGJ‘.
ijel
If R is a catalgebra, then an R-module M is given by an additive group M and
an action
Rx M — M, (r,m) — rm

which is distributive over addition, satisfies (r7')m = r(r'm) and is unital in the

sense that
M=DeM.
iel
This last condition doesn’t depend on the choice of the idempotents, since it is
equivalent that RM = M. For example if m € M then RM = M implies m =
St remg. Now each r, = Yicr€irsi- Thus m =3 e;(3 0 rams) € >, M.
Observe that R is itself an R-module, but not in general finitely generated!

Also any subgroup L of M which is closed under the action is itself a module, for
if v € Lthenax =3 ,ex € RL.

Examples. (1) Any algebra is a catalgebra with 1z being a complete family of
orthogonal idempotents. Conversely, a catalgebra with a finite complete family of
orthogonal idempotents eq, ..., e, is an algebra with 1z =e; +--- + ¢,.

(2) The Temperley-Lieb algebras T'L,,(d) sit inside a catalgebra, with K-basis
given by the diagrams with a possibly different number of dots on each side, with
the composition of two diagrams being zero if they do not have a compatible
number of dots.

(3) There is a 1:1 correspondence

catalgebras R equipped with with a complete

small K-categories C < family of orthogonal idempotents (e;);cs

given as follows. Given C we set

R= (P Home(X,Y)
X,Yeob(C)
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with multiplication given by composition, or zero if two morphisms are not com-
posable. The identity morphisms (1x)xecon(c) are a complete family of orthogonal
idempotents. Conversely if R is a catalgebra and (e;);cr is a complete family of or-
thogonal idempotents, then one obtains a small category C with objects ob(C) = I,
morphisms Hom(i, j) = e; Re; and composition given by multiplication. Under this
correspondence there is an equivalence

R-Mod ~ Category of additive functors C — Ab.

P. Gabriel, Des categories abeliennes, Bull. Soc. Math. France 1962, Chapter 2,
section 1, prop 2, p347.
(4) Whereas any product of algebras is an algebra, any direct sum of catalgebras

DL
jeJ

is a catalgebra. If I is a set and R an algebra or catalgebra, then the set RU*!) of
matrices with entries in R, with rows and columns indexed by I, and only finitely
many non-zero entries is a catalgebra under matrix multiplication. The analogue
of Artin-Wedderburn for catalgebras is that the semisimple catalgbras are those of

the form
@D(I] XI]')
J
jed
for some sets J, I; and division algebras D;.

Remark. If R is a catalgebra, then Ry = R @ K becomes an algebra with multi-
plication
(r, (", X)) = (rr" + X" + N AN).

and 1z, = (0,1). We can identify R as an ideal in R;, and R-Mod is isomorphic
to the category of Ri-modules M satisfying RM = M. Moreover, if

O—L—M-—=N=0

is an exact sequence of R;-modules, then RM = M if and only if RL = L and
RN = N.

1.3 Representations of quivers and path algebras
Recall that K is a field.

Definition. A quiver is a quadruple @ = (Qo, @1, h, t) where Q) is a set of vertices,
()1 a set of arrows, and h,t : ()1 — )y are mappings, specifying the head and tail

vertices of each arrow,
t(a) o hla)
e — o .

10



Definition. The category of representations of @) over K is defined as follows.

A representation of @ is a tuple V = (V;, V,) consisting of a K-vector space V;
for each vertex ¢ and a K-linear map V, : V; — Vj for each arrow a : i — j in Q.
If there is no risk of confusion, we write a : V; — V; instead of V.

A homomorphism of representations ¢ : V. — W is given by K-linear maps
0; : V; — W, for each vertex, such that 6;V, = W, 0, for each arrow a : ¢ — j.

The composition of morphisms ¢ : U — V and 6 : V — W is given by

(00); = ;.
If V is a finite-dimensional representation, its dimension vector is dimV =

(dimV;) € N9° (where Ny = {0,1,2,...}.)

Remark. A homomorphism 6 : V' — W is an isomorphism if and only if 6; is
an isomorphism for each vertex 7, for in the latter case, the maps (6;)~! define a
morphism W — V which is inverse to 6.

Example. Let us compute the endomorphisms of the representation V' of the
quiver with vertices 1,2, 3, 4 represented by K, K, K, K? and arrows 1 — 4, 2 — 4,
3 — 4 represented by the maps with matrices

b () )

An endomorphism is given by matrices

r S

satisfying

L)@=C 16 Qo-C0) B)e-C90)

Solving gives that the matrices are

so End(V) = K.

Definition. Let ) be a quiver. A path in @) of length n > 0 in @ is a sequence
p = aias...a, of arrows satisfying t(a;) = h(a;41) for all 1 <i <mn,

al as an
0{— 00— O0:---0 < O,

The head and tail of p are h(ay) and t(a,). For each vertex i € () there is also a
trivial path e; of length zero with head and tail 7.

11



If @ has only finitely many vertices, the path algebra K@ is the free K-module
with basis the paths in @), equipped with the multiplication in which the product
of two paths given by p - ¢ = 0 if the tail of p is not equal to the head of ¢, and
otherwise p - ¢ = pq, the concatenation of p and ¢q. The one for the algebra is

]_:ZGZ‘.

1€Qo

More generally, if () has infinitely many vertices, K@) exists and is a catalgebra.
We write (K Q). for the ideal spanned by the non-trivial paths, or equivalently
the ideal generated by the arrows. Clearly

KQ=(KQ:® @ Kei, KQ/KQ,=EPKe;~Kx--xK

1€Q0 i€Qo

Examples. (i) The path algebra of the quiver 1 % 2 with loop b at 2 has basis
e1, es,a,b, ba, b, b%a, b, b3a, . ...
(ii) The algebra of lower triangular matrices in M, (K) is isomorphic to the
path algebra of the quiver
1=-2—=--—=n

with the matrix unit e¥ corresponding to the path from j to i, since

ol gkt — et (j=Fk)
0 (J#k).

(iii) The free algebra K(zy,...,x,) is the same as K where @) has one vertex
and loops x1, ..., T,.

Properties. (i) KQ is finite-dimensional if and only if ) is finite and has no
oriented cycles.

(ii) If 0 # a € KQe; and 0 # b € ¢;K(Q then ab # 0. Namely, look at the
longest paths p and ¢ involved in a and b. In the product, the path pg must be
involved.

(iii) e; KQe; is isomorphic to the free algebra on the set X of paths with head
and tail at ¢, but which don’t pass through 1.

(iv) Let @ be the oriented cycle with vertices 1,...,n and arrows a; : i — i+ 1
for i <n and a, : n — 1. Let T be the sum of all paths of length n,

T=a,...a001 4+ 10y ...03 + 2010y ... 03+ -+ Qp_q ...QA10,,
Then Z(KQ) = K|[T].

Proposition. The category of representations of Q) is equivalent to KQ-Mod.
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Proof. If V' is a KQ-module, then V = @e;V. We get a representation, also
denoted V, with V; = ¢,V and, for any arrow @ : ¢ — j, the map V, : V; =V} is
given by left multiplication by a € e; KQe;.

Conversely any representation V' determines a K@Q-module via V' = @ier Vi,
with the action of K given as follows:

- The trivial path e; acts on V' as the projection onto V;, and

- A nontrivial path ajas . ..a, acts by

aray . ..anv = Vo, (Vay (- . (Va,, (Vean))) - -+ )) € Vi) € V-

It is straightforward to extend these to functors, and then to check that they are
inverse equivalences. O

Remark. (1) Under this correspondence, submodules correspond to subrepresen-
tations. A subrepresentation W of a representation V' is given by a subspace
W; C V; for each vertex ¢ such that V,(WW;) C W; for all arrows a : i — j.

(2) The corresponding quotient representation V/W is given by the vector
spaces V;/W; and the induced maps V, : V;/W; — V;/W; for a :i — j.

(3) The direct sum V & W of two representations is given by the vector spaces
V; & W; and maps

0 W,

for an arrow a : ¢ — j. Similarly for direct sums over any indexing set.
(4) A sequence of representations

<‘/a O)W@Wz%%@wj

e VoV sV
is exact if and only if for each vertex ¢, the sequence of vector spaces
= ViV sV

is exact. The kernel, image and cokernel of a morphism can be computed vertex-
wise.

Notation. Let ¢ be a vertex.

(a) We write S[i] for the representation with Sfi|; = K, S[i]; = 0 for i # j
and all S[i], = 0. It is a simple representation, but there can be other simple
representations, for example we only get one K [z]-module.

(b) We define P[i| = KQe;. It is a projective K@-module, and KQ =
@z’er P[i]. Considered as a representation of ), the vector space at vertex j
has basis the paths from i to j. For i # j we have P[i] 2 P|j], since

Hom(Pli], S[j]) = Hom(K Qe;, S[j]) = e;S[j] = {K = J)

13



Example. For example for the quiver

a 4
173333,
b d

we have . .
P2 K 3 K* 2 K*,
b d
with bases eq, and a, b and ca, da, cb, db, and linear maps given by a(e;) = a,b(e;) =
b, c(a) = ca,c(b) = cb,d(a) = da,d(b) = db.

Example. Let Q be the quiver 1 = 2.

(i) S[1] is the representation K — 0, S[2] is the representation 0 — K.

P[1] is the representation K 4 K and P[2] = 5[2].

(ii) We have Hom(S[1], P[1]) = 0 and Hom(S[2], P[1]) = K.

(iii) The subspaces (K C V;,0 € V;) do not give a subrepresentation of
V = P[1], but the subspaces (0 C Vi, K C V5) do, and this subrepresentation
is isomorphic to S[2].

(iv) There is an exact sequence 0 — S[2] — P[1] — S[1] — 0.

(v) S[1] @ S[2] 2 K % K and for 0 # X € K we have K 2 K = P[1].

(vi) Every representation of () is isomorphic to a direct sum of copies of S[1],
S[2] and P[1]. Namely, given the representation Vi < Va, take a basis (;)sc; of
Ker(V,). Extend it to a basis of V; with elements (y;);es. Then the elements
(Va(yj))jes are linearly independent in V5. Extend them to a basis of V2 with
elements (z)per,. Then

V=snP e pPY e s2Ww.

1.4 Algebras given by quivers with relations

We are interested in algebras of the form K@ /I. For simplicity we take @ to be a
finite quiver.

Any algebra R is a quotient of a free algebra K(X)/I, and if R is finitely
generated as an algebra we can take X to be finite. Similarly, if e;,...,e, is a
complete set of orthogonal idempotents in an algebra R, then we can write

R~ KQ/I

for some quiver ) with vertex set {1,...,n}, in such a way that the e; correspond
to the trivial paths in K@), and if R is finitely generated we can take ) to be finite.
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Definition. By a relation for () we mean an element a € e; K Qe; for some 7, j € @y,
so a K-linear combination of paths in ) which all have the head j and tail .
A representation V' of Q) satisfies the relation a if the corresponding linear map
Vi = Vj is zero. If a,b € ¢;KQe;, we say that V satisfies the relation a = b if it
satisfies the relation a — b.

Lemma. Any ideal I in a path algebra K(Q can generated by a set of relations, and
then the category of KQ/I-modules is equivalent to the category of representations
which satisfy these relations.

Proof. 1f I is an ideal and x € I, then z =) e;jre; and e;xe; € 1. O

ivjeQU
Notation. Let R = KQ/I. If i is a vertex, we define P[i{] = Re;, so it is a
projective R-module and

R =P Pli.

i€Qo
In case I = 0 we already used this notation, but note that P[i| depends in I.

Considered as a representation of (), the vector space P[i]; = e;(KQ/I)e;, so it
has basis given by the paths from ¢ to 5 modulo I.

Recall that (K@) is the ideal in K@) spanned by the non-trivial paths. Clearly
(KQ)" is the ideal spanned by paths of length > n, and KQ/(KQ)+ = Kx---x K.

Definition. An ideal I C K@ is admissible if
(1) 1 C (KQ)?., and
(2) (KQ)% C I for some n.

Lemma. Suppose I is admissible. Then
(1) R = KQ/I is finite-dimensional
(11) The KQ-modules S[i] are annihilated by I, so become simple R-modules.
(iii) The S[i] are the only simple R-modules up to isomorphism.
(iv) The modules P[i] are pairwise non-isomorphic.

Proof. (i) By (2), R is spanned by the paths of length < n.

(ii) This just needs I C (K@), which is weaker than (1).

(iii) Let S be a simple R-module, and consider it as a K@-module. Now
(KQ)4S is a submodule of S, so by simplicity it is equal to 0 or S. But I.S = 0,
so (KQ)1S =0, so we must have (KQ)+S = 0. Thus S is a module for

KQ/(KQ): 2 K x -+ x K

so it is isomorphic to an S[i].
(iv) Hom(P[i], S[j]) = Hom(Re;, S[j]) = €;S[j], which is K if i = j, else 0. [

15



Examples. (1) A finite complex of K-vector spaces is a representation of the
quiver
N )

satisfying the admissible relations a;,1a; =0 for 1 <i<n — 1.
For n = 4 the representations P[i| are

Pll=K—-K—->0—0, P2=0—K—K—=0,

P3l=0—-0—-K—K, P4=0—-0—0-—0.
(2) A commutative square of K-vector spaces is a representation of the quiver

1 — 2
ol

3 154

satisfying the admissible relation db = ca. The projective P[1] is

K —— K
L]
K — K.

(3) A cyclically oriented square

with admissible relations cba and dc, has
Plll= K—=K P[2]= 0
b

K

0~—K

— =K PB=0——=0 Pl4=K—-1-K

0
I

—_

For example in P[4] the arrow ¢ sends the basis element bad in the vector space at
vertex 3 to cbad = 0, and not to e4, which is the basis element of the vector space
at vertex 4.

(4) [I. M. Gelfand and V. A. Ponomarev, Indecomposable representations of the
Lorentz group, Russian Math. Surv. 1968.] To classify certain infinite-dimensional
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representations, called Harish-Chandra representations of the (Lie algebra of the)
group SLy(C), they reduce the problem to linear algebra, and it corresponds to f.d.
representations of the quiver

1 : 2 loop b
with relations ba = 0, ¢b = 0 and b and ac nilpotent. To write this as admissible
relations we should impose 8" = 0 and (ac)™ = 0 for some large n.

(5) [I. Assem, T. Brustle, G. Charbonneau-Jodoin and P.-G. Plamondon, Gentle
algebras arising from surface triangulations, Algebra Number Theory 2010]. A
triangulation of an oriented surface with marked points on its boundary gives a
quiver with relations. For example (taken from the paper)

™~

/\

There is one vertex on each internal arc. Arrows go clockwise around the marked
points. The relations are the length two paths in an internal triangle. This is
related to Fukaya categories in symplectic geometry.

Example. The double Q of a quiver Q is obtained by adjoining an reverse arrow
a* : j — i for each arrow a : 7 — j in (). For example if () is the quiver

then @ is the quiver

17



The preprojective algebra for a finite quiver @) is

(Q) = KQ/()_(aa" — a*a))

acq

This ideal is not necessarily admissible. For example if @ is a loop z, then I1(Q) =
K(x,z*)/(xx* — x*x) = K[z, z*].

Note that up to isomorphism, I1(Q)) does not depend on the orientation of @,
for if @)’ is obtained from @) by replacing a by a reverse arrow a’, then there is
an isomorphism II(Q) — II(Q’) sending a to (a’)*, a* to —a’ and fixing all other
Arrows.

Observe that if r = > _o(aa” — a*a) then e;re; = 0 if i # j, so II(Q) is given

by the relations
r, = ere; = Z aa® — Z a*a
a€Q,h(a)=t acQ,t(a)=i

for i € Q. For example if Q = o 2 o 2, o the relations are
a*a =0, aa® =b"b, bb* = 0.

Later we will be able to determine the quivers () whose preprojective algebra
is finite dimensional. The preprojective algebra is useful for studying sums of
matrices. This is illustrated by the following. See A. Mellit, Kleinian singularities
and algebras generated by elements that have given spectra and satisfy a scalar
sum relation, Algebra Discrete Math. 2004.

Theorem. Given k,dy,...,d, > 0, we have
K{xy, .. o) /(4 4 a2 i) 2 eolT(Q)eg

where () is star-shaped with central vertex 0 and arms

Gj,d;—1

0 &L (i,1) &2 (i,d; — 1)

fori=1,... k.

Proof. Let the algebra on the left be A and the one on the right be B = eoI1(Q)ey.
Now B is spanned by the paths in @ which start and end at vertex 0. If vertex
(4,7) is the furthest out that a path reaches on arm 4, then it must involve a;;aj;,
and if 7 > 1, the relation

iy = G5 510551
shows that this path is equal in B to a linear combination of paths which only
reach (i,7 — 1). Repeating, we see that B is spanned by paths which only reach
out to vertices (i,1). Thus we get a surjective map

K(xy,...x) > B
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sending each x; to a;;a};. It descends to a surjective map 6 : A — B since it sends
1+ -+ 2, to 0 and x?i is sent to

(ana})™ = an(afyan) " an
= a1 (apay,) ay
= ana(alya:n) " 2akatil

* * *
= Gi1Gi2 - - aiydi—l(ai,di—lai7di—1)a’i,di—1 sy =0

since a; 4 1@ d;—1 = 0.

To show that # is an isomorphism it suffices to show that any A-module can
be obtained by restriction from a B-module, for if a € Kerf and M = 4N, then
aM = 6(a)N = 0. Thus if A can be obtained from a B-module by restriction, then
aA=0,s0a=0.

Thus take an A-module M. We construct a representation of @ by defining
Vo =M and Vj; ;) = xf M with a;; the inclusion map, and aj; multiplication by x;.
This is easily seen to satisfy the preprojective relations, so it becomes a module for
I1(Q). Then oV = M becomes a module for eyII(Q)ey = B. Clearly its restriction
via 0 is the original A-module M. m

The “Diamond Lemma” is due to Max Newman—see the exposition in P. M.
Cohn, Further Algebra. There is a version for rings by G. M. Bergman, The
diamond lemma for ring theory, Advances in Mathematics 1978. We formulate it
for quivers with relations. (For further discussion, see D. Farkas, C. Feustel and
E. Green, Synergy in the theories of Grobner bases and path algebras, Canad. J.
Math. 1993.)

Definition. We consider the following setup. Let R = KQ/(S) for a quiver @
and a set S of relations. We fix a well-ordering on the set of paths, such that if
w, w'" have the same head and tail and w < w’, then uwv < uw’v for all compatible
products of paths. This can be done by choosing a total ordering on the vertices
1 <2< ---<nandon the arrows a < b < ... and using the length-lexicographic
ordering on paths, so w < w’ if
- length w < length w’, or
-w=-¢; and W =e; with i < j, or
- length w = length w’ > 0 and w comes before w’ in the dictionary ordering.

We write the relations in S in the form

wj=s; (j€J)

where each wj; is a path and s; is a linear combination of smaller paths with the
same head and tail as w;.
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(i) Given a relation w; = s; and paths uw,v such that ww,v is a path, the
associated reduction is the linear map K@) — K( sending uw;v to us;v and any
other path to itself. We write f ~» g to indicate that g is obtained from f by
applying reduction with respect to some w; = s; and u,v. Clearly f — g € (S).

(ii) We say that f € KQ is irreducible if f ~» g implies g = f. It is equivalent
that no path involved in f can be written as a product uw;v.

(iii) We say that f is reduction-unique if there is a unique irreducible element
which can be obtained from f by a sequence of reductions. If so, the irreducible
element is denoted 7(f).

(iv) We say that two reductions of f, say f ~» g and f ~~ h, satisfy the diamond
condition if there exist sequences of reductions starting with g and h, which lead to
the same element, g ~» -+« ~» k, h ~> -+ ~» k. (You can draw this as a diamond.)

In particular we are interested in this in the following two cases:

An overlap ambiguity is a path w which can be written as w;v and also as ww;
for some ¢, 7 and some non-trivial paths u, v, so that w; and w; overlap. There are
reductions w ~» s;v and w ~ us;.

An inclusion ambiguity is a path w which can be written as w; and as uw;v for
some ¢ # j and some u,v. There are reductions w ~» s; and w ~» us;w.

Lemma (Diamond Lemma). R = KQ/(S) is spanned by the irreducible paths, and
the following conditions are equivalent:

(a) The diamond condition holds for all overlap and inclusion ambiguities.

(b) Every element of KQ is reduction-unique.

(¢) The irreducible paths give a basis of R. o

In this case the algebra R has multiplication given by f.g = r(fg).

Example. Consider the algebra R = K(x,y)/(S) where S is given by

=z, y=1 yr=y-—uy

and the alphabet ordering x < y. The ambiguities are:

The diamond condition holds since
TTX ~> TX ~ ¢ and TXT ~> T ~> T.
yyy ~ ly =y and yyy ~ yl = y.
yyz ~ lo =z and yu7 ~ y(y — 2y) = y* —yory = y* — (yx)y ~ y* — (y — 2y)y =
ryy = x(yy) ~ zl = z.
yrx ~ (y—xy)r = yr—ryr ~ yr—r(y—xy) = yr—ry+rry ~> yr—ry+ry = yx
and yTT ~ yu.
Thus the irreducible paths 1, z,y, xy induce a basis of R.
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On the other hand, if the relations were
=z =1 yr=1—ay
Then yxx would not be reduction unique, since
(yz)z ~ (1 —zy)z = — a(yz) ~ o — 2(l —ay) = 2%y ~ Y

and
y(xx) ~ yxr ~ 1 — zy.

Example. The preprojective algebra for the quiver
152253
with 1 <2 <3 and a < b < a* < b*. The relations are
a*a =0, b*b = aa”™, bb* = 0.

We have ambiguities L
b bb*  bb*b

but the diamond condition fails, since b*bb* reduces to 0 or aa*b* and bb*b reduces
to 0 or baa*. But we can add the relations

aa*b* =0, baa® =0
and then the diamond condition holds, for example
b*(baa™) ~» b0 =0, (b*b)aa™ ~~ (aa*)aa™ = a(a*a)a™ ~» ala* = 0.
Thus the preprojective algebra has basis given induced by the irreducible paths
e1,ea,e3,a,b,a*, b, aa*, ba,a*b*.

I shall omit the following proof of the Diamond Lemma in my lec-
tures.

Lemma (1). If f ~ g and u/,v" are paths, then either v’ fv' = u'gv" or u' fv' ~»
u'gv’.

Proof. Suppose g is the reduction of f with respect to u, v and the relation w; = s;.
If w'u or vv’" are not paths, then ' fv' = u'gv’. Else v/ gv’ is the reduction of u' fv’
with respect to w'u, vv’ and the relation w; = s;. O
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Lemma (2). Any f € KQ can be reduced by a finite sequence of reductions to an
wrreducible element, so the irreducible paths span R.

Proof. Any f € K@ which is not irreducible involves paths of the form uw,v.
Among all paths of this form involved in f, let tip(f) be the maximal one. Consider
the set of tips of elements which cannot be reduced to an irreducible element. For
a contradiction assume this set is non-empty. Then by well-ordering it contains a
minimal element. Say it is tip(f) = w = ww;v. Writing f = Auw;v + f" where
A € K and f’ only involving paths different from ww;v, we have f ~» g where
g = Aus;jv + f'. By the properties of the ordering, us;v only involves paths which
are less than uw;v = w, so tip(g) < w. Thus by minimality, g can be reduced to
an irreducible element, hence so can f. Contradiction. O

Lemma (3). The set of reduction-unique elements is a subspace of KQ, and the
assignment [+ r(f) is an endomorphism of it.

Proof. Consider a linear combination \f + pg where f, g are reduction-unique and
A, i € K. Suppose there is a sequence of reductions (labelled (1))

()
MApg S = h

with h irreducible. Let a be the element obtained by applying the same reductions
to f. By Lemma 2, a can be reduced by some sequence of reductions (labelled (2))
to an irreducible element. Since f is reduction-unique, this irreducible element
must be r(f).
(1) 2)
FoTTR S r(f).

Applying all these reductions to g we obtain elements b and ¢, and after applying
more reductions (labelled (3)) we obtain an irreducible element, which must be

r(9)-
(1) (2) (3)

—— g ——
But h,r(f) are irreducible, so these extra reductions don’t change them:

(1) (2) 3)

MApg S B h S S h S S h,

(1) (2) (3)
FETTRa SR r(f) S ().

Now the reductions are linear maps, hence so is a composition of reductions, so h =
Ar(f)+pr(g). Thus Af+pug is reduction-unique and r(A f+ug) = Ar(f)+ur(g). O
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Proof of the Diamond Lemma. The implications (c)=(b)=-(a) are trivial.

(a)=-(b). Since the reduction-unique elements form a subspace, it suffices to
show that every path is reduction-unique. For a contradiction, suppose not. Then
there is a minimal path w which is not reduction-unique. Let f = w. Suppose that
f reduces under some sequence of reductions to g, and under another sequence
of reductions to h, with g, h irreducible. We want to prove that g = h, giving a
contradiction. Let the elements obtained in each case by applying one reduction
be fi and ¢g;. Thus

forgiom g, [ b h

By the properties of the ordering, g; and h; are linear combinations of paths which
are less than w, so by minimality they are reduction-unique. Thus g = r(g;) and
h = r(hy). It suffices to prove that the reductions f ~» g; and f ~~ h; satisfy
the diamond condition, for if there are sequences of reductions g; ~~» --- ~» k and
hy ~> -+~ k, combining them with a sequence of reductions k ~ - -+ ~ r(k), we
have g = r(g1) = r(k) = r(h1) = h.

Thus we need to check the diamond condition for f ~~ ¢g; and f ~» h;. Recall
that f = w, so these reductions are given by subpaths of w of the form w; and w;.
There are two cases:

(i) If these paths overlap, or one contains the other, the diamond condition
follows from the corresponding overlap or inclusion ambiguity. For example w
might be of the form v'w;vv" = wuw;v" where w;v = uw; is an overlap ambiguity
and u’, v are paths. Now condition (a) says that the reductions w;v ~» s;v and
uw; ~ us; can be completed to a diamond, say by sequences of reductions s;v ~

- ~» k and us; ~» -+ ~» k. Then Lemma 1 shows that the two reductions of w,
which are w = v'w;vv" ~» u's;vv" and w = w'uw;v" ~ w'vs;v’, can be completed to
a diamond by reductions leading to u'kv’.

(ii) Otherwise w is of the form ww;vw;z for some paths u, v, z, and g1 = us;pw;z
and hy; = ww;vsjz (or vice versa). Writing s; as a linear combination of paths,
s; =X+ Nt'+ ..., we have

r(g1) = r(usjpw;z) = Ar(utvw;z) + N'r(ut'vw;z) + ... .

Reducing each path on the right hand side using the relation w; = s;, we have
utvw;z ~ utvs;z, and ut’ijz ~ ut’vsjz, and so on, so

r(g1) = Ar(utvs;z) + Nr(ut'vsjz) + ... .
Collecting terms, this gives 7(g1) = r(us;vs;z). Similarly, writing s; as a linear

combination of paths, we have r(hy) = r(us;vs;z). Thus r(hy) = r(g1), so the
diamond condition holds.
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(b)=(c) The ideal (.5) is spanned by expressions of the form u(w; — s;)v, and
uw;v ~> us;jv so r(uw;v) = r(us;v), so r(u(w; — s;)v) = 0. By linearity, any
element f € (S5) satisfies r(f) = 0. In particular, if a linear combination f of
irreducible paths is zero in R, then f € (5), so f =r(f) = 0. O

1.5 Radical and socle
Definition. Let M be a module for a ring R. The socle of M is the sum of its

simple submodules,
soc M = E S.
S C M simple

The radical of M is the intersection of its maximal submodules.

rad M = ﬂ U

U C M, M/U simple
={z € M : ¢(x) =0 for any homomorphism ¢ : M — S with S simple}
The quotient top M = M /rad M is called the top of M.

Properties. (i) soc M is the unique largest semisimple submodule of M.

(ii) If  : M — N then f(soc M) C socN and f(rad M) C rad N, for if
¢: N — S and z € rad M, then ¢0(x) = 0. Thus soc, rad and top define additive
functors R-Mod — R-Mod. It follows that soc(M & N) = soc M @ soc N and
rad(M & N) =rad M @ rad N and top(M & N) = top M @ top N.

(iii) rad(M/rad M) = 0 since the maximal submodules of M all contain rad M,
so are in 1:1 correspondence with the maximal submodules of M/rad M.

(iv) If M is semisimple, then rad M = 0. For if M = P
M — S; show that rad M = 0.

(v) In general it is not true that if M/rad M is semisimple. For example
rad(zZ) = Ny primePZ = 0, but zZ is not semisimple.

However, if M is artinian (has decc on submodules), e.g. if M is a finite-
dimensional module for an algebra, then M/rad M is semisimple, and it is the
unique largest quotient of M which is semisimple.

Namely, we can write rad M as a finite intersection of maximal submodules
UiN---NU,. Then M/rad M embeds in (M /U,)®---@(M/U,), so it is semisimple.
Conversely if M /N is semisimple, the canonical map M — M /N sends rad M into
rad(M/N) =0, sorad M C N.

Recall that the Jacobson radical J(R) of a ring R is the intersection of its
maximal left ideals, so J(R) = rad(gR). It is an ideal in R, by functoriality or by
the following.

iel S;, the projections
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Theorem. If R is a ring and x € R, the following are equivalent
(i) S =0 for any simple left module S.
(i1) x € I for every mazimal left ideal I, i.e. x € J(R).
(i1i) 1 — ax has a left inverse for all a € R.
(iv) 1 — ax is invertible for all a € R.
(i’)-(iv’) The right-hand analogues of (i)-(iv).

Proof. (i) implies (ii). If I is a maximal left ideal in R, then R/I is a simple left
module, so z(R/I)=0,s0 z(l +1)=1+0,s0 z € I.

(ii) implies (iii). If there is no left inverse, then R(1 — ax) is a proper left ideal
in R, so contained in a maximal left ideal I by Zorn’s Lemma. Now x € I, and
l—axrel,solel,sol =R, a contradiction.

(iii) implies (iv) 1 — az has a left inverse u, and 1 + wax has a left inverse v.
Then u(1—az) =1, so u = 1+uax, so vu = 1. Thus u has a left and right inverse,
so it is invertible and these inverses are equal, and are themselves invertible. Thus
1 — ax is invertible.

(iv) implies (i’). Suppose T is a simple right R-module with Tz # 0. Then
there is t € T with tx # 0. By simplicity, there is a € R with tza =t. Let b be an
inverse to 1 — ax. Then

0=1t(1—za)(l+ xba) =t(1 — xa+ zba — razrba) = t(1 — za + x(1 — azx)ba) = t.
Contradiction. O

Lemma. If I is a left ideal in R which is nil, meaning that every element is
nilpotent, then I C J(R).

Proof. If v € I and a € R then az € I, so (ax)” =0, so 1 — ax is invertible with
inverse 1+ az + (ax)* +.... O

Lemma (Nakayama’s Lemma). Suppose M is a finitely generated module for a
ring R.

(i) If J(R)M = M, then M = 0.

(11) If N C M is a submodule with N + J(R)M = M, then N = M.

Proof. (i) If M # 0 then by Zorn’s lemma (using that M is finitely generated),
it has a maximal submodule N. Then M/N is simple, so J(R)(M/N) = 0, so
J(R)M C N. Contradiction.

(ii) Apply (i) to M/N. O

Examples. (a) If R = KQ/I with I an admissible ideal, then J(R) is equal to
the ideal L = (KQ)4/I. Namely, for some n we have (KQ)} C I, so L™ = 0, so
L C J(R) by the lemma. On the other hand,

RILEKQ/KQ), 2K x - x K
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is semisimple as an algebra, so as an R-module. Now the canonical map R — R/L
sends rad R to rad(R/L) =0, so J(R) =rad R C L.

(b) If @ is a finite quiver then J(K Q) is spanned by the paths from i to j such
that there is no path from j to 7.

The set I spanned by these paths is an ideal, and if () has n vertices, then any
path in this ideal has length less than n, so I"™ = 0. Thus I C J(KQ).

Conversely suppose that a € J(K Q) involves a path p from i to j, and suppose
there exists a path ¢ from j to 1.

Then b = qae; € e; KQe; involves the path gp. Also b € J(KQ), so if A\ € K,
then 1 — A\b is invertible, say with inverse ¢. Then e; — Ab is invertible in e; K Qe;
with inverse e;ce;. But e; KQe; is isomorphic to a free algebra K(X), so its only
invertible elements are the elements of K. Thus e; — Ab is a multiple of e;. Thus
p = q = ¢;, but then b is a multiple of ¢; and then for suitable A\, e; — Ab is not
invertible in e; K Qe;.

Proposition/Definition. A ring R is called a local ring if it satisfies the following
equivalent conditions.

(1) R/J(R) is a division ring.

(i) The non-invertible elements of R form an ideal.

(i1i) There is a unique mazimal left ideal in R.

If so, then the ideal in (ii) and the left ideal in (iii) are equal to J(R).

Proof. (i) implies (ii). The elements of J(R) are not invertible, so it suffices to
show that any = ¢ J(R) is invertible. Now J(R) + x is an invertible element in
R/J(R), say with inverse J(R) + a. Then 1 —az,1 — xza € J(R). But this implies
ax and xa are invertible, hence so is x.

(ii) implies (iii). Clear.

(iii) implies (i). Since J(R) is the intersection of the maximal left ideals, it
is the unique maximal left ideal. Thus R = R/J(R) is a simple R-module, and
so a simple R-module. Then R = Endz(R)°, which is a division ring by Schur’s
Lemma. [l

Examples. (i) A ring of power series K[[z]]. The elements of the ideal (z) are
non-invertible, and all other elements are invertible.

(ii) If I is an admissible ideal in K@), then KQ/I is local if and only if @) has
exactly one vertex. For example R = K|[z|/(z") is local.

(iii) The set of upper triangular matrices with equal diagonal entries is a sub-
algebra of M, (K), e.g.

ca,b,c,d € K}

——
o O
o o
ISEERS T
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It is local since if a = 0 the matrix is nilpotent, and if a # 0 the matrix is invertible,
and the inverse is still in the subalgebra.
(iv) The exterior algebra

R=AV)= K(x1,...,2,)/(2F, vi2; + 2;2;).
The ideal I generated by the z; is nil and R/I = K.

Remark. Let @) be a finite quiver. Sometimes it is useful to consider the power
series path algebra K ((Q)), consisting of sums

D ap

p path

with a, € K, but with no requirement that only finitely many are non-zero. Multi-
plication makes sense because any path p can be obtained as a product ¢¢’ in only
finitely many ways. In the special case of a loop one gets the power series algebra
K[[z]]. Alternatively

K{(Q) =1lim KQ/(KQ)Y,

the (K@), -adic completion of K@Q. Some properties:

(i) An element of K((Q)) is invertible if and only if the coefficient of each trivial
path e; is nonzero.

(i) J(K{(Q))) consists of the elements in which the trivial paths all have coef-
ficient zero, so it is the ideal generated by the arrows.

(iii) f.d. K((Q))-modules correspond exactly to f.d. modules M for K@) which
are nilpotent, meaning that (KQ)%1M = 0 for some d.

1.6 Finite length indecomposable modules

Definition. A composition series for an R-module M is a chain of submodules
O=MyCcMyC---CM,=M

such that the quotients M;/M;_; are simple. If so the length of the composition se-
ries is n and the composition factors are the quotients My /Mo, Mo /My, ..., My /M, 1.

It is easy to see that M has a composition series if and only if it has the acc
and the dcc on submodules, that is, it is noetherian and artinian.

We define length M to be the length of a composition series, or oo if there is
none. The Jordan-Holder Theorem (proof omitted) says that any two composition
series have the same length, and the composition factors are the same, up to
reordering. Clearly if 0 - X — Y — Z — 0 is exact, then

length Y = length X + length Z.

Clearly a finite-dimensional module for an algebra has finite length.
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Definition. A module M for a ring R is indecomposable if M # 0 and there is no
direct sum decomposition M = X &Y with X and Y non-zero submodules of M.
It is equivalent that Endg(M) contains no idempotents except 0,1.

Examples. (i) A semisimple module is indecomposable if and only if it is simple.
(ii) For a quiver @, the projective K@Q-modules P[i] = KQe; are indecompos-
able. If not, identifying
End(P[i]) = e;KQe;

we get an idempotent e € e¢;KQe; with e # 0,e;. Then 0 # e € KQe; and
04 f=e —e€eKQ and ef =0. Contradiction.

Proposition. For a nonzero ring R we have

FEvery element of R
15 nilpotent = R s local = R has no idempotents except 0,1
or invertible

Thus if M is a nonzero module, we have

Every endomorphism
of M s nilpotent = End(M) is local = M is indecomposable
or invertible

Proof. Suppose every element of R is nilpotent or invertible. We claim that the
non-invertible elements form an ideal /. Say x € [ and ax ¢ I. Then 2™ = 0,
so 0 = [(ax) 'a]"z™ = 1. Now if z,y € I and = + y is invertible, then letting
a= (z+y)~ " we have ax = 1 — ay, so ax is invertible. Contradiction.

Now suppose R is local. If e is a non-trivial idempotent, then e and 1 — e
are non-invertible (else € = el = eee™! = ee™! = 1). Thus both are in J(R), so
1 € J(R). Contradiction. O

The next result shows that for a finite length module, the three conditions are
equivalent.

Lemma (Fitting’s Lemma). If M is a finite length module and 6 € End(M), then
there is a decomposition as a direct sum of submodules

M = My ® M,

such that 0|y, is a nilpotent endomorphism of My and 8|y, is an invertible endo-
morphism of M.

In particular, if M is indecomposable, then any endomorphism is nilpotent or
invertible, so End(M) is local.
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Proof. There are chains of submodules
Im(#) D Im(6?) D Im(6®) D ...

Ker(f) C Ker(6?) C Ker(6?) C ...

which must stabilize since M has finite length. Thus there is some n with Im(0") =
Im(6?") and Ker(0") = Ker(6?"). We show that

M = Ker(0") @ Im(6").

If m € Ker(6") N Im(A") then m = "(m’) and 6?"(m’) = 6"(m) = 0, so m’ €
Ker(6?") = Ker(6"), so m = 6"(m’) = 0. If m € M then 6"(m) € Im(0") =
Im(6?"), so (m) = 0**(m") for some m”. Then m = (m — *(m”)) + 0"(m") €
Ker(6™) + Im(0™).

Now it is easy to see that the restriction of 6 to Ker(6") is nilpotent, and its
restriction to Im(6") is invertible. O

We now apply the idea of the Jacobson radical to the module category.

Proposition/Definition. If X and Y are R-modules, we define rad(X,Y") to be
the set of all 0 € Hom(X,Y') satisfying the following equivalent conditions.

(1) 1x — @0 is invertible for all ¢ € Hom(Y, X).

(ii) 1y — 0¢ is invertible for all ¢ € Hom(Y, X).

Thus by definition rad(X, X) = J(End(X)).

Proof. (i) implies (ii). If u is an inverse for 1x — @6 then 1y + fu¢ is an inverse for

Lemma. (a) rad defines an ideal in the module category, that is rad(X,Y) is an
additive subgroup of Hom(X,Y'), and given maps X — Y — Z, if one is in the
radical, so is the composition.

(b) rad( X X" Y) =rad(X,Y)®rad(X',Y) and rad(X, Y ®@Y’) = rad(X,Y)®
rad(X,Y”).

Proof. (a) For a sum 0 4+ &', let f be an inverse for 1 — ¢f. Then 1 — ¢(0 + 0') =
(1 —9¢0)(1 — fpf), a product of invertible maps.
(b) Straightforward. O

Definition. A module map 0 : X — Y is a split mono if it has a retraction, that
is, there is a map ¢ : Y — X with ¢f = 1x. Equivalently if € is an isomorphism
of X with a direct summand of Y.

A module map 0 : X — Y is a split epi if it has a section, that is, there is a map
Y Y — X with ¢ = 1y. Equivalently if 6 identifies Y with a direct summand of
X.
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Lemma. (i) If X has local endomorphism ring, then rad(X,Y") is the set of maps
which are not split monos.

(11) If Y has local endomorphism ring, then rad(X,Y") is the set of maps which
are not split epis.

(i5i) If X and Y have local endomorphism ring, then rad(X,Y’) is the set of
non-isomorphisms.

Proof. (i) Suppose # € Hom(X,Y'). If € is a split mono there is ¢ € Hom(Y, X)
with ¢f = 1x, so 1x — @0 is not invertible. Conversely if there is some ¢ with
f = 1x — ¢0 not invertible, then ¢ = 1x — f is invertible. Then (¢0) ¢80 = 1y,
so 6 is split mono.

(ii) is dual and (iii) follows. O

Theorem (Krull-Remak-Schmidt Theorem). Every finite length module M is iso-
morphic to a direct sum of indecomposable modules,

M=X & & X,

Moreover if M =2 Y, ® --- @ Y,, is another decomposition into indecomposables,
then m = n and the X; and Y; can be paired off so that corresponding modules are
isomorphic.

Proof. The existence of a decomposition holds by induction on the length. Given
any two modules X and Y, we set

top(X,Y) = Hom(X,Y)/rad(X,Y).

It is naturally an End(Y)-End(X)-bimodule, and in fact an End(Y')/J(End(Y"))-
End(X)/J(End(X))-bimodule. We apply this to an indecomposable X of finite
length and the module M. Then D = End(X)/J(End(X)) is a division ring and
top(X, M) is a right D-module. Moreover as a right D-module,
and
D (X;=X
top(x, X = { P X=X
0 (Xi#X)

so the number of X; isomorphic to X is equal to the length of top(X, M) as a right
D-module, so it is the same in any decomposition of M. O

Definition. Clearly any finite length module M is isomorphic to a direct sum

M@ @M & - SM, G - M,

~~ ~~
T1 Tn
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with the M, indecomposable and M; 2 M; for i # j.

We define #M = n, the number of non-isomorphic indecomposable summands
in a decomposition of M.

We say M is basic if all r; = 1, that is, M can be written as a direct sum of
pairwise non-isomorphic indecomposable modules.

Given any R-module M, we write add M for the full subcategory of R-Mod
consisting of all modules isomorphic to a direct summand of a finite direct sum of
copies of M.

For example add R is the category of f.g. projective R-modules.

Clearly if M has finite length, then add M consists of the modules isomorphic
to a finite direct sum of copies of the M;. The module

M =M@ &M,
is the unique basic module, up to isomorphism, with add M = add M’.

Definition. Let 6 : X — Y be a map of R-modules.

(i) We say that 0 is left minimal if for o € End(Y), if af = 6, then « is
invertible.

(ii) We say that 0 is right minimal if for § € End(X), if 68 = 6, then § is

invertible.

Lemma. Giwen a map 0 : X — 'Y of finite length modules.

(i) There is a decomposition Y =Yy @ Yy such that Im(0) C Y] and X — Y] is
left minimal.

(ii) There is a decomposition X = Xo @ X1 such that 0(Xy) =0 and X; — Y
15 right manimal.

Proof. (i) Of all decompositions Y = Yy @ Y] with Im(6) C Y; choose one with Y}
of minimal length. Let #; be the map X — Y. Let o € End(Y7) with af; = 6;. By
the Fitting decomposition, Y; = Im(a™) & Ker(a™) for n > 0. Now a"6; = 61, so
Im(6;) C Im(a™), and we have another decomposition Y = [Yy@&Ker(a™)]®Im(a™).
By minimality, Ker(a™) = 0, so « is injective, and hence an isomorphism.

(i) is dual. O

Lemma. Let 0; : X; — Y, be finitely many maps between finite length modules. If
the 0; are left (respectively right) minimal, then so is the map @, X; — P, ;.

Proof. We prove it for right minimal (left minimal is similar). If not, then by
the lemma, there is a non-zero summand X’ of €, X; on which the map is zero.
We may assume that X’ is indecomposable, so has local endomorphism ring. Let
fi + X’ = X, be the projections. Since #(X’) = 0 we have 0, f; = 0 for all 7. Since
X' is a summand there are g; : X; — X' with 1x» = >, g;f;. Thus some g;f; is
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invertible, so f; is a split mono, with retraction r = (g; ;) '¢;. Then B = 1x, — fir
satisfies 6;5 = 6;, so by minimality [ is invertible, but Sf; = 0, so f; = 0, a
contradiction. O

1.7 Left artinian rings

We're interested in f.d. algebras over a field K, but some things we can do more
generally for left artinian rings.

Lemma. Let R be a left artinian ring and M an R-module. Then

(i) J = J(R) is a nilpotent ideal.

(i) R/J is a semisimple ring.

(11i) R is left noetherian, so has finite length as a left R-module. Thus finite
length modules are the same as finitely generated modules.

(iv) There are only finitely many simple R-modules

(v) If M is an R-module, then rad M = JM and soc M = {m € M : Jm = 0}.

(vi) If M =rad M or soc M =0 then M = 0.

Proof. (i) By the dcc we have J" = J?" for some n. Suppose this is nonzero. Then
there is a nonzero left ideal I with J"I = [. Thus there is a minimal one. Let
L ={xeI:Jw =0} Clearly it is a left ideal and a proper subset of I. If
x € I\ L, then J*z C I and J"(J"z) = J"x # 0, so by minimality J"z = I. Thus
Rx = 1. Thus I/L is simple. Thus J"(I/L) =0, so I = J"I C L. Contradiction.

(ii) Now R/J is semisimple as an R-module, so as an R/J-module, so it is a
semisimple ring.

(iii) Each J*/J" is an R/J-module, so semisimple. Since they are also artinian,
they are finite direct sums of simples, so they are also noetherian. Thus R is
noetherian.

(iv) Any simple module is a composition factor of the finite-length module R/.J.

(v) If N is a maximal submodule of M, then M /N is simple, and so J(M/N) =
0,s0 JM C N. Thus JM C rad M. On the other hand M/JM is an R/J-module,
so semisimple. Then by functoriality, the map M — M/JM sends rad M to
rad(M/JM) =0,sorad M C JM.

Any simple submodule S of M satisfies JS = 0, so Jm = 0 for all m € soc M,
so soc M is contained in the RHS. Now the RHS is an R/J-module, so semisimple,
so contained in soc M.

(vi) If M = JM then M = J"M = 0. Any non-zero module has a non-zero f.g.
submodule, and that has a simple submodule by the dcc. m

Notation. Let R be left artinian. We decompose pR into indecomposables, and
collect isomorphic terms, so

R=P1"@--- @ Pn™
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with the P[i| non-isomorphic modules. The modules P[1],..., P[n| are are called
the principal indecomposable modules (pims).

Let D; = (End(P[i])/J(End(P]i])))°?. Since P[i] is indecomposable of finite
length, it is a division algebra.

Let S[i] = P[i]/rad P[i].

Lemma. (i) The P[i| are a complete set of non-isomorphic indecomposable f.g.
projective R-modules.

(ii) The S[i] are a complete set of non-isomorphic simple R-modules, and D; =
End(ST[é])o.

(i) R/J(R) = M, (Dy) x --- x M, (D,), and under this isomorphism, the
simple module S[i] corresponds to the module D" .

Note that in case J(R) = 0, part (iii) recovers the Artin-Wedderburn decom-
position.

Proof. (i) They are projective and nonisomorphic. Any f.g. projective module is
a direct summand of a f.g. free module, so by the Krull-Remak-Schmidt Theorem
isomorphic to one of the P[i].

(ii) Since the construction of S[i| = P[i]/ rad P[i] is functorial there is a natural
map

End(P[i]) — End(S]i])

and since P[i] is projective, it is surjective. Now End(P][i]) is a local ring, hence
so also is End(S]i]), so S[i] is indecomposable. Since it is semisimple, it is simple,
so End(S[i]) is a division ring. Thus we must have an isomorphism

End(P[i])/J(End(P[i])) — End(S[i]).

Now the S[i] are non-isomorphic, for inverse isomorphisms between S[i] and
S[j] would lift to maps P[i] — P[j] — P[i] whose composition can’t be nilpotent,
so must be invertible, so P[i] & P[j], so i = j.

Any simple module S has a non-zero map from some P[i], but then the map
Pli] — S must give a non-zero map S[i] — S, and this must be an isomorphism.

(iii) As an R-module, we have

R/J = R/rad R = EP(P[i]/ rad P[i])" = P Si]".

Since Hom(S[i], S[j]) = 0 for i # j we get
Endg(R/J) = M, (End(S[1])) x - -+ x M,, (End(S[n])).

Now use that
R/J = EndR/J(R/J)"p = Endg(R/J)?

Then S[i] & Hom(R, S[i]) = @, Hom(P[j], S[i]) = End(S[i])". O
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Example. Let R be the set of matrices of shape

M;(K).

o % ¥

o % ¥

* % %
N

It is a subalgebra, so an algebra. We can write it as R = S @ [ for a subalgebra S
and ideal I with

* * 0 0 0 =
S=|*x x 0], I=10 0 «
0 0 = 000
Now I is a nil ideal, so I C J(R). Also

R/I =S5 My(K)x K

which is semisimple, so J(R) C I. Thus J(R) = I. Now we get the decomposition
R = Re'' @ Re* @ Re3® where

*
P[l] = Re'' = [ % | @ Re*?, P[2] = Re® =
0

rad P[1] = J(R)P[1] =0 rtad P[2] = J(R)P[2] = .| = Pl

Then D; = K, S[1] = P[1] is 2-dimensional and S[2] = P[2]/rad P[2] is 1-
dimensional.

Definition. Let R be a K-algebra. We say that a finite-dimensional R-module M
is split if in its decomposition into indecomposables, for each summand, the top of
the endomorphism ring is K.

We say that a finite-dimensional algebra R is basic or split if grR has this
property. It is equivalent that all r; = 1, respectively that all D, = K.

Proposition. (i) Any f.d. algebra is Morita equivalent to a basic one.
(11) If K is algebraically closed, any f.d. module or algebra is split.
(153) If I is an admissible ideal in KQ, then KQ/I is basic and split.

Proof. (i) Let P = P[1] @ --- @ P[n]. Tt is a basic module. Since it involves all
of the indecomposable projective R-modules, it is a finitely generated projective
generator for R-Mod, so R is Morita equivalent to A = Endz(P)%. Now

Endg(P/rad P)” = Endg(S[1] & --- @& S[n))? = Dy x --- x D,
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and since the construction of P/rad P is functorial, there is a natural map
Endg(P) — Endg(P/rad P),

and it is surjective since P is projective. The kernel is a nil ideal since if 6 is in the
kernel, then 0(P) Crad P = JP, so 0"(P) C J"P =0 for n > 0. Thus the kernel
is the radical of Endg(P), and so A is basic. O

Theorem (Gabriel’s less famous theorem about quivers). If R is a f.d. K-algebra
which is basic and split, then R = KQ/I for some quiver Q and admissible ideal I.

Proof. We have a decomposition R = P[1|®- - -@® P[n| without multiplicities. Using
the isomorphism R = End(R)°, the projections onto the Pli] give a complete
family of orthogonal idempotents ey, ..., e, with P[i] = Re;.

Let J = J(R). By assumption ey, ..., e, induce a basis of R/J. We have

J = @ 6]'(]67;.
1]

and
J2 = @ €; :]261'
4.

SO
T/ = @Pejei)/(e; %),
2%
Let @ be the quiver with Qo = {1,...,n} and with

dim(e; Je;)/(ejJ?e;)
arrows from ¢ to j, for all 7, j. Define an algebra homomorphism
0: KQ— R

sending e; to e;, and sending the arrows from i to j to elements in e;Je; inducing
a basis of the quotient. Let U = §(KQ, ). We have U C J and U + J? = J. Thus
by Nakayama’s Lemma, U = J. It follows that 6 is surjective.

Let I = Ker . If m is sufficiently large that J™ = 0, then §(KQ7) C U™ =0,
so KQT' C I. Suppose x € I. Write it as © = u + v + w where u is a linear
combination of trivial paths, v is a linear combination of arrows, and w is in K Qi.
Since 0(e;) = e; and 0(v), (w) € J, we must have u = 0. Now §(v) = —0(w) € J?,
so that 6(v) induces the zero element of J/J?. Thus v = 0. Thus z = w €
KQ2. O
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1.8 Injective modules and duality

Definition. Recall that an R-module E is injective if it satisfies the following
equivalent conditions.

(i) Hom(—, F) is an exact (contravariant) functor.

(ii) Any short exact sequence 0 — E — Y — Z — 0 is split.

(iii) Given an injective map 6 : X — Y, any map X — F factors through 6.

(iv) (Baer’s criterion) Given any left ideal I in R, any map I — E lifts to a
map R — E.

Definition. Let R be a K-algebra, as usual with our assumption that K is a field.
If M is a left (respectively right) R-module, then

DM = Homg (M, K)
is a right (respectively left) R-module.

Properties. (i) If P is a projective R-module, then DP is injective. Namely DR
is injective since

Homp(—, DR) = Homg (— ®g R, K) = Homg(—, K) = D(—)

which is exact, and any P is a direct summand of a free module R(), and so D(P)
is a direct summand of D(R") = D(R)!, a product of copies of D(R), which is
injective. Alternatively,

Hompg(—, DP) = Homg(— ®g P, K).

Since P is projective, it is flat. Thus this functor is exact.

(ii) If M is finite dimensional, then dim DM = M and we have a natural
isomorphism M — D(DM). Thus D gives antiequivalences

R-mod : mod-R.

(iii) If R is a finite-dimensional K-algebra, and E is a f.d. injective R-module,
then DFE is projective.

Namely, choose a f.d. free left R-module F' with a surjective map F' — DFE.
Then E embeds in DF, but E is injective, so F is a direct summand of DF'. Then
DEF is a direct summand of F, so DFE is projective.

Thus D induces an antiequivalence between the category of f.d. projective mod-
ules on one side and the category of f.d. injective modules on the other side.
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Remark. Many results about finite-dimensional K-algebras generalize to artin
algebras, that is, algebras over a commutative artinian ring K which are finitely
generated as a K-module. One needs to replace D by Homg(—, F) where F is the
injective envelope of the direct sum of the simple K-modules. (Injective envelopes
will be discussed later.)

Definition. For R a f.d. algebra, the Nakayama functor is the functor
v(—) = DR ®g — : R-mod — R-mod.

Properties. (i) v has right adjoint v~ (—) = Homg(DR, —).
(ii) We have v(X) = D Hompg(X, R). Namely,

Dv(X) = Homg (DR ®r X, K) = Homg (X, Homg (DR, K))
by Hom-tensor adjointness, and then
Homy (DR, K) = DR = R,

so Dv(X) = Hompg(X, R). Now apply D.
(iii) Homg(X, vP) = D Hompg(P, X) for X, P left R-modules with P projective.

Namely there is a map Homg(P, R) ® g X — Hompg(P, X) sending  ® x to the
map sending p to 6(p)z. This is a natural transformation between functors of P.
Now for P = R it is easy to see that it is an isomorphism, so by functoriality it is
an isomorphism for any direct sum of copies of R, so for any f.g. free module F,
and also it is an is an isomorphism for any direct summand of F', so for any f.g.
projective module P. Now applying D we get an isomorphism

DHompg(P, X) = D(Hompg(P, R)®rX) = Hompg(X, D Homg(P, R)) = Hompg (X, vP).

(iv) v restricts to an equivalence from the category of f.d. projective left modules
to the category of f.d. injective left modules.

We know that v sends f.d. projective modules to f.d. injective modules. More-
over if P, P’ are f.d. projective modules, then using (iii) twice we get

Hompg(vP,vP") = D Hompg(P',vP) = Homg(P, P')

so v is fully faithful on the category of f.d. projective modules. Now if [ is a f.d.
injective module, then there is a f.g. free module with a surjective map onto DI,
say R" — DI. Then the map I — DR" is injective, so a split mono. Thus [ is
isomorphic to the image of an idempotent endomorphism of DR"™ = v(R"™). This
comes from an idempotent endomorphism of R"™, and if this has image P, then
I = y(P). Thus the functor is dense.

37



Notation. Let R be a finite-dimensional algebra, and let P[i] and S[i] be the
indecomposable projective and simple modules. We define I[i| = v(P[i]). They
are a complete set of non-isomorphic indecomposable f.d. injective modules. Note
also that soc I[i] = S[i] since

dimD; (i = j)
0 (i # 7).
Note that if R = KQ/I with I admissible, then P[i| = Re; and

dim Hom(S[j], I[i]) = dim Hom(P}i], S[j]) = {

Ii] = v(Re;) = D Hompg(Re;, R) = D(e;R).
Thus considering I[i] as a representation of ), the vector space at vertex j is
I[i]; = e;D(e;R) = D(e;Re;),

which has as basis the dual basis associated a basis of e;[Re; given by the paths
from j to ¢« modulo the relations.

Examples. (1) For the quiver
1523351
with relations a;,1a; = 0, the injective are
IN=K—=0—0—02=5]1],

I2]=K —- K —0— 02 P[1],
IB3=0—K— K — 0 P2,
I[4=0—-0—K— K= P[3].

(2) For the commutative square

1 —2 592

the injective I[4] is

so I[4] = P[1].
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1.9 Module classes, envelopes and covers

Definition. We shall call a subcategory C of R-Mod a module class provided

(i) It is a full subcategory,

(ii) It is closed under isomorphisms, that is, if X Y and X € C = Y € C,

(iii) It is closed under finite direct sums and summands, that is, X @ Y € C iff
X, Y eC.

If a module class consists of finite length modules, it is determined by the
indecomposables it contains.

Examples. (i) All modules, finite length modules, f.d. modules for an algebra,
the zero module, the projective modules, the injective modules, the semisimple
modules.

(2) Any intersection of module classes.

(3) If M is any collection of modules, then add M, is the smallest module class
containing M. It consists of all modules isomorphic to a direct summand of a
finite direct sum of modules in M.

Definition. Let C be a module class and X a module, not necessarily in C.
(i) A left C-approximation (or preenvelope) of X is a morphism 0 : X — C
with C' € C, such that the induced map

Hom(C,C") — Hom(X, C")

is surjective for all C" € C. That is, for any ¢ : X — C’ there is f : C' — C’ with
0 = fo.
A C-envelope (or hull) of X is a left minimal left C-approximation of X.

(ii) A right C-approximation (or precover) of X is a morphism 0 : C' — X with
C € C, such that the induced map

Hom(C’,C') — Hom(C', X)

is surjective for all C’ € C. That is, for any ¢ : C' — X with C’ in C, there is
f:C"— C with 6/ =6f.
A C-cover of X is a right minimal right C-approximation.

Lemma. If X has a C-envelope (resp. cover), then it is unique up to isomorphism,
and it is a direct summand of any left (resp. right) C-approzimation.

Proof. Straightforward. ]
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Lemma. (a) A morphism 6 : X — I is an injective envelope of X if and only
if I is injective, 0 is a monomorphism, and Im @ is an essential submodule of I,
meaning that if U is a nonzero submodule of I, then U NIm @ # 0.

(b) A morphism ¢ : P — X is a projective cover of X if and only if P is pro-
jective. ¢ is an epimorphism, and Ker ¢ is a superfluous submodule of P, meaning
that if U is a submodule of P with U 4+ Ker ¢ = P, then U = P.

Proof. (a) By the injective property, and the fact that every module can be em-
bedded in some injective module, # is a left injective approximation if and only if
I is injective and € is a monomorphism.

Suppose that € is left minimal and U is a submodule of I with U NIm# = 0.
Then U®Im 6 is a submodule of I, and by the injective property there is a morphism
a such that the diagram

X — Us®Imb —— I

| | |
X — UsIml — I

commutes, where p is the projection onto Im#. Then « is an isomorphism, but
UCKera,soU =0.

Suppose that Im 6 is essential and af = 0. Then ImONKera = 0 so Kera = 0,
so « is mono. Since [ is injective, o must be a split mono, so I = Ima @ Y. But
then Y NIm6é =0, s0 Y =0, so « is an epi.

(b) Dual. O

Remark. For an arbitrary ring, injective envelopes always exist.

Projective covers do not always exist: observe that the canonical map Z —
Z/27Z is not a projective cover of Z/27 as a Z-module, since 27 + 37 = Z. Now if
P — 7, /27 were a projective cover, it would be a summand of this map. But Z is
indecomposable, so it would be isomorphic to this map.

Injective envelopes and projective covers (when they exist) are denoted X —
E(X) and P(X) — X. They exist for f.d. algebras. We show how to construct
them.

Lemma. Suppose R is left artinian and X is an R-module.

(a) A homomorphism to an injective module 6 : X — I is an injective envelope
iof and only if the induced map soc X — soc I is an isomorphism.

(b) A homomorphism from a projective module ¢ : P — X is a projective cover
if and only if the induced map top P — top X is an isomorphism.

Proof. (a) Since soc [ is semisimple, we have soc I = #(soc X) @ U for some U. If
0 is an injective envelope, then U = 0, so the map on socles is an isomorphism.
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Conversely if the map on socles is an isomorphism, then socKerf = 0, so
0 is injective, and if U is a non-zero submodule of I with U N Im# = 0, then
UNsocl =0,s0socU =0so0U =0.

(b) Similar, using part (vi) of the first lemma about left artinian rings. O

Remark. Suppose R is a finite-dimensional algebra and X is an R-module.

(a) One gets an injective envelope of X as follows. Write soc X as a direct sum
of copies of the simple modules S[i]. Let I be the corresponding direct sum of the
injective modules [[i]. Since R is noetherian, an arbitrary direct sum of injective
modules is injective, so [ is injective. Let 6y : soc X — I be the map given by the
inclusions S[i] = soc I[i] — I[i]. By the injective property, it extends to a map
0 : X — I, which is an injective envelope by the lemma.

(b) One gets an projective cover of X as follows. Write top X as a direct sum
of copies of the simple modules S[i]. Let P be the corresponding direct sum of the
projective modules P[i]. Let ¢g : P — top X be the map given by the canonical
maps P[i] — S[i]. Then by the projective property, it lifts to a map ¢ : P — X,
which is a projective cover by the lemma.

Remark. To use this explicitly, it is useful to be able to compute the socle and top
of an R-module X. This is very easy when R = K@ /I with I an admissible ideal.
Then R-modules are identified with representations of () satisfying the relations
defining the ideal I, and recall that a representation X is given by a vector space
X, for each vertex 7 and a linear map X, : X; — X for each arrow a : i — j. Now
the simple R-modules are the simples S]i], so a semisimple R-module is exactly
a representation X in which all the linear maps X, are zero. Now the socle of a
representation X is the unique largest semisimple subrepresentation, so given by
the subspaces
(soc X); = ﬂ Ker X,.

a an arrow with tail at 4

Now J(R) = KQ4/I and

KQ,= ) aKQ,

a an arrow

SO

a an arrow

where if @ is an arrow in @) then a also denotes its image in R. By the lemma at
the start of the section on left artinian rings, we have rad X = J(R)X, so

rad X = Z aRX = Z aX.

a an arrow a an arrow
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This means that if X is considered as a representation of (), then rad X is the
subrepresentation given by the subspaces

(rad X); = > Im X,.

a an arrow with head at @

Let’s explore left and right approximations a little more, for use later on. Hence-
forth work inside the category R-mod of finite-dimensional modules for an alge-
bra R.

Definition. Let C be a module class in R-mod.

We say that C is covariantly finite if every f.d. module X has a left C-approximation.
If so, it has a C-envelope. Namely, if 6 : X — C' is a left C-approximation, then
by the lemma in section 1.6 there is a decomposition C' = Cy & C such that
Im6 C ) and the map X — (] is left minimal. Now clearly this map is also a
left C-aproximation, so it is a C-envelope.

We say that C is contravariantly finite if every f.d. module X has a right C-
approximation. If so, it has a C-cover.

We say that C is functorially finite if it is covariantly and contravariantly finite.

Example. If the inclusion i : C — R-mod has a left adjoint L, then any module C
is covariantly finite. Namely, by assumption for any module X and module C' € C,
there is a bijection

Hom(X,C) — Hom(LX,C), 6+~ 6
and this is a natural transformation in X, meaning that
Of) =0'L(f) forall f: X — X
and a natural transformation in €', meaning that
(g0) = g0 forallg:C —C" inC. ()

Now given a module X, the identity map 1;x : LX — LX is 0’ for some 0 : X —
LX. Then 6 is a left C-approximation of X, since if ¢ : X — C with C' € C, then
(¢'0) = ¢'0' = ¢' by (*) and using that ' = 1,x. Since the map 6 — 6 is a
bijection, we deduce ¢’ = ¢, so ¢ factors through 6. Also 6 is left minimal in the
strong sense, for if g : LX — LX and g# = 6, then

lix=0=(g0) =gt =glix =g

and for left minimality we only need to know that ¢ is an isomorphism.
Similarly if 7 has a right adjoint R, then the morphism i(RM) — M is a C-cover,
so C is contravariantly finite.

42



Lemma. If M is a f.d. R-module, then add M s functorially finite in R-mod.

Proof. For any f.d. module X we take a basis of Homg(X, M), say with n elements.
This gives a map X — M" which is a left add M-approximation. Similarly for a
right add M-approximation use a basis of Homg (M, X) to get a map M™ — X. O

For injective envelopes and projective covers of finite-dimensional modules for
a finite-dimensional algebra R we could have used add R and add DR. For use
much later, we record the following.

Definition. If M is a collection of f.d. modules, the modules generated by M are
the module class

gen M = {N : 3 epimorphism M’ — N with M’ € add M}.
The modules cogenerated by M are the module class
cogen M = {N : 3 monomorphism N — M’ with M’ € add M}.

Proposition. If R is f.d. and M is a f.d. R-module, then gen M is covariantly
finite, and dually cogen M is contravariantly finite.

Proof. Given X, take a projective cover P — X . Take a left add M-approximation

P — M'. Take the pushout
P — M

Ll

X — G

Since P — X is onto, so is M' — G, so G € gen M. If f : X — G with
G' € gen M, then there is a map from M” onto G’ with M” € add M. Since P is
projective, the composition P — X — G’ lifts to a map P — M”. Since the map
P — M’ is an approximation, the map P — M" factors as P — M’ — M". Now
the two maps X — G’ and M’ — M" — G’ agree on P, so there is an induced
map of the pushout G — G’. Thus the map X — G’ factors as X — G — G
Thus the map X — G is a left gen M-approximation. O

1.10 Homological algebra for finite-dimensional algebras

We consider modules for a f.d. algebra R.

Definition. Recall that a projective resolution of a module M is an exact sequence

PP P S M0
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with the P; projective. Letting QoM = M and ;M = Imd; for i > 0, it breaks
into short exact sequences

0— QM — P, — QM —0

for all © > 0. It is a minimal projective resolution if the maps P, — ;M are
projective covers for all ¢ > 0. Dually for an injective resolution

0 MSOS ray e,
setting Q°M = M and O'M = Imd'~! we get exact sequences
0— QM —I'— QM -0

for all 7 > 0 and it is a minimal injective resolution if the maps Q°M — I° are
injective envelopes for all 7.

The minimal projective and injective resolutions of M exist and are unique up
to (non-unique) isomorphism. For example one constructs the minimal projective
resolution of M be taking a projective cover of M. This has kernel 2, M. Then
take a projective cover of this, and so on.

Example. Recall that the cyclically oriented square

2
|
3

a
—_—

QU
= —

-
(&

with admissible relations cba and dc, has

—_

Plll= K—+K P]2l= 0—=K P[3]= 0
[ R A
K K

0—K K

Lo

-
1

The simple modules have minimal projective resolutions

0 — P[1] — P[4] — P[2] — P[1] —»S[1] = 0,
0 — P[3] — P[2] =S[2] — 0,

0 — P[l] — P[4] — P[3] =S[3] — 0,

0 — P[1] — P[4] —S[4] — 0.



For example the projective cover of S[1] is P[1], giving an exact sequence

0— 5[l — P[1] — S[1] =0

1]

~—K 0<—0

which is

lH

—_—

—K — K — — 0

0 K
o]
0—K 0

and the projective cover of Q;S[1] is P|[2], giving an exact sequence

0—

—_

0 — QS[1] — P2] = 2S[1] — 0

which is
00— 0—0 — 0—sK — 0——K —0
[ T O

so Q,5[1] = S[3], etc.

Lemma (1). dim Ext*(S[i], M) is equal to dim D; times the multiplicity of I[i] as
a summand of I¥ in the minimal injective resolution of M.

dim Ext* (M, S[j]) is equal to dim D; times the multiplicity of P[j] as a sum-
mand of Py in the minimal projective resolution of M.

Proof. Let 0 — M — I° — I' — ... be the minimal injective resolution of M.
Recall that Ext®(S[i], M) is the kth cohomology of the complex

0 — Hom(S[i], I°) — Hom(S[i], I') — ...

Now the differential in this complex is zero, for a homomorphism S[i] — I™ has
image contained in soc I"™. The map "M — [I" is an injective envelope, so soc I™
is contained in the image of this map, so it is killed by the map I™ — I"*! and
hence the composition S[i] — I"™ — "1 is zero.

Thus Ext*(S[i], M) = Hom(S[i], I*), and the dimension of this is dim D; times
the multiplicity of I[i] as a summand of I*. O

Lemma (2). If R = KQ/I with I admissible, then the number of arrows from i
to j is dim Ext*(S[i], S[;]).

Proof. Since I is admissible, I C (KQ)3. Now P[i] = (KQ/I)e;, so rad P[i] =
(KQ)+/I)e;, and radrad P[] = ((KQ)%/I)e;. Thus

rad P|i]

tOp rad P[Z] = m

= ((KQ)+/(KQ)%))e; = @ S
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where n;; is the number of arrows from 7 to j. Then in the minimal projective
resolution of S|,
-++— Py — P[i] = S[i] = 0

P is the projective cover of rad P[i], so also of the top of rad P[i], so the multiplicity
of P[j] is n;;. Thus dim Ext'(S[i], S[j]) = ny;. O

Recall that a module X has projective dimension < n if it has a terminating
projective resolution of the form

0O—+PFP,— - —=F—=X—=0

Since this resolution can be used to compute Ext groups, it implies that Ext/(X,Y) =
0 for all j > n and all modules Y, and it is in fact equivalent to this, for if you
take any projective resolution of X and break it into short exact sequences

0= 11X —>P—->0%bX—=0

with 29X = X, then applying Hom(—,Y"), the long exact sequence gives for j > 0
an exact sequence

Ext/(P;,Y) — Ext’ (Q1 X,Y) — Ext/ T (Q,X,Y) — Ext/T' (P, Y)

and the outer terms here are zero since F; is projective and j > 0, so Ext’ (Q1X,Y) =
Ext/t1(Q;X,Y) (dimension shifting). Thus we get

Ext'(Q2,X,Y) & Ext*(Q, 1X,Y) = ... 2 Ext"™(QX,Y) = Ext""(X,Y) =0
Thus €2, X is projective, and so X has a terminating projective resolution
0—-Q.X—>PFP,_1--—F—>X—0.

Dually, a module Y has injective dimension < n if it has a terminating injective
resolution
0—=Y =1"= ... 5 I"=0.

Lemma (3). The following are equivalent for a module M and n > 0.
(i) proj.dim M < n.
(ii) Ext™™ (M, S) = 0 for all simples S.
(111) the minimal projective resolution of M has P,11 = 0.
Similarly for the injective dimension.

Proof. (iii) implies (i) implies (ii) are clear.
(ii) implies (iii). Use Lemma (1) above. O
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Recall that the (left) global dimension of a ring R is the supremum of the
projective dimensions of its (left) modules.

Proposition. The global dimension of a f.d. algebra is the maximum of the pro-
jective dimensions of its simple modules.

Proof. 1f every simple S has a projective resolution of length < n, then every
semisimple module has a projective resolution of length < n, so every semisimple
module has projective dimension < n.

Now if 0 - X’ — X — X” — 0 is exact, then

proj. dim X < max{proj.dim X', proj. dim X"}
since applying Hom(—,Y) to this short exact sequence gives a long exact sequence
coo = Ext"THX"Y) = Ext"TH(X,Y) = Ext"THXY) — ...

so if the outer terms vanish for all Y, so does the middle term.
Now since R is finite-dimensional, every module X has a filtration

XDJR)XDJR?PXD---DJRNX =0

in which the successive quotients are semisimple. By induction on the length of
a filtration with semisimple quotients, we deduce that proj.dim X < n. Thus
gl.dim R < n. [l

Corollary. For a f.d. algebra, the left and right global dimensions are the same.

Proof. Suppose the right global dimension is < n. Take a simple left module S
and its minimal projective resolution

= PP =2 FB—=5—=0

Dualizing it gives an injective resolution of the simple right module DS

Now this is a minimal injective resolution, and inj. dim DS < n, so by Lemma (3),
DP,.1 =0. Thus P,.1 =0, so proj.dim S < n. Thus the left global dimension is
< n. Now we get the reverse inequality by considering R°P. O]

A hereditary algebra is one with global dimension < 1. Any path algebra over
a field is hereditary - see §4.5 of my lecture notes on homological algebra. Here we
do it for quivers without oriented cycles.
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Theorem. If Q) is a quiver without oriented cycles, then K@ is hereditary. Any
f.d. hereditary algebra which is split and basic arises this way.

Proof. 1f i is a vertex, rad P[i] has basis the nontrivial paths with tail at i. Each
such path is of the form pa for some arrow a with tail at ¢ and some path p with
tail at h(a). These paths give a basis of P[h(a)]. This gives an isomorphism

rad Pli] = @5 P[h(a)]
ac@Qq
t(a)=i

so S[i] has projective dimension < 1. For the converse, the algebra can be given
as R = KQ/I with I admissible. Consider the exact sequence of K@Q-modules

0—1/(I.KQty) > KQi/(I.KQy) — KQ4+/I — 0.

The middle module is annihilated by I, so this is a sequence of R-modules. The
RH module is a submodule of R = KQ/I, so it is projective as an R-module. Thus
the sequence splits. Letting

M=KQ/(I.KQ:), N=I/(I.KQ:)®KQ./I

we deduce that M 2 N. Thus M/(KQ,)M = N/(KQ)N, which gives

KQu/KQ% = (I/(KQy I+ 1.KQy)) ® (KQy/KQY).

Thus by dimensions, I = KQ4.I +1.KQ,. Now by admissibility I C KQ?%. Then
assuming that I C K Qi we get

[=KQ,I+IKQ, CKQ:

Thus I C K Q’j for all k. But if I # 0, then it contains a nonzero element x, and

this involves a path of some length d, and then x ¢ K Q‘fl. O

1.11 Projective-injective modules and uniserial modules

Modules which are both projective and injective can be useful. Any indecompos-
able projective-injective has simple top and simple socle.

Lemma (1). Let R be a f.d. algebra and let P be a left ideal which is a direct
summand of R, hence projective, and suppose that P is also injective. Let S =
soc P and let I = SR be the ideal generated by S. If M is an indecomposable
R-module, then either M is isomorphic to a direct summand of P or IM = 0, so
that M is an R/I-module.

48



Proof. Suppose IM # 0. Then SM # 0. Thus there is some m € M with Sm # 0.
Thus the homomorphism 6 : R — M given by 0(r) = rm has 6(S) # 0. Now P
is a direct sum of some modules [[i], so S is the corresponding direct sum of the
Sli]. Thus some 6(S[i]) # 0 for some 7. Thus the restriction of 6 to I[i] is injective.

Thus [[i] embeds in M. But by injectivity its image must be a direct summand of
M. Thus M = I[i] by indecomposability. O

Example. The commutative square algebra R with source 1 and sink 4 has P[1] =
I[4]. But the other indecomposable projectives are not injective. By the lemma,
any indecomposable R-module is either isomorphic to P[1], or is a module for the
algebra given by the square with two zero relations.

Definition. We define the following classes of f.d. algebras with the obvious im-
plications. They are all left-right symmetric.

R symmetric = R Frobenius = R self-injective = R QF-3

(i) R is symmetric if RRr = rDRg. Equivalently if there is a bilinear form
(—,—): R x R — K which is

- non-degenerate: (a,b) = 0¥b = a =0, (a,b) = 0Va = b =0,

- associative: (ab,c) = (a, bc), and

- symmetric: (a,b) = (b, a).

The corresponding map R — DR is a — (a,—). It follows that I[i] = v(Pi]) =
DR ®g Pli] = R®g Pli] = P[i].

(ii) R is Frobenius if RR = rDR. Equivalently if there is a bilinear form which
is non-degenerate and associative.

(iii) Ris self-injective (or quasi-Frobenius) if R is an injective module. Equiva-
lently the modules P[i] and I[j] are the same, up to a permutation. It is equivalent
that a module is projective if and only if it is injective.

(iv) Ris QF-3 (in the sense of Thrall) if R has a faithful f.d. projective-injective
module.

Recall that a module M is faithful if r € R and rm = 0 for all m € M, then
r = 0, that is, if the map R — Endg (M) is injective.

Examples. (1) The group algebra KG of a finite group is symmetric with

(a,b) = coefficient of 1 in ab = Z Aghtg-1

geG

where a = 3, Agg and b=}, . piph.
(2) If @ is an oriented cycle quiver with n vertices and k& > 0, then R =

KQ/KQ"*" is Frobenius, and it is symmetric < n|k. The bilinear form (a,b) is
the sum of the coefficients of the paths of length k£ in ab. The symmetry comes
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from the fact that if p, g are paths with pq a path of length a multiple of n, then
so is gp.

(3) The commutative square algebra with source 1 and sink 4 is QF-3. The
module [[4] = P[1] is faithful.

(4) For a commutative algebra the concepts are the same [Namely (ii)=-(i) since
(a,b) = (1la,b) = (1,ab) = (1,ba) = (b, a), (ili)=-(ii) since the algebra is basic, and
(iv)=-(iii) since if there is a faithful projective-injective module, there is one of
the form Re for an idempotent e. But then commutativity gives (1 — e)Re = 0,
contradicting faithfulness unless e = 1.] Commutative Frobenius algebras appear
in topological quantum field theory.

Lemma (2). (i) A f.d. R-module M is faithful if and only if there is an embedding
R — M™ for some n, that is, R € cogen M.

(ii) A f.d. faithful module M has every indecomposable projective-injective mod-
ule as a direct summand.

(111) If R is QF-3, then E(R) is a faithful projective-injective module.

Proof. (i) f R < M™, r € R and rm = 0 for all m € M, then rz = 0 for all
reM" sorl=0for1e€ R. Thusr =0.

Conversely, if M is faithful, choose a basis my,...,m, of M. This gives a map
R — M" rw (rmq,...,rmy,). If r — 0, then rm; = 0 for all i, so rm = 0 for all
m e M.

(ii) Since R embeds in M™, so does any indecomposable projective P, and if P
is also injective, then it is a direct summand of M", so also of M by Krull-Remak-
Schmidt.

(iii) By assumption there is a f.d. faithful projective-injective module M. Then
there is an embedding R — M™, and this is a left injective approximation, so it has
the injective envelope E(R) as a direct summand. Thus F(R) is also projective,
and since it has R as a submodule it is faithful. n

Definition. A module M is uniserial if its submodules are totally ordered by
inclusion, that is, if N, N C M, then either N C N’ or N’ C N. Since we are only
considering f.d. modules, it is equivalent that M has a unique composition series.

Example. If S and T are simple modules and 0 — S — M — T" — 0 is non-split,
then M is uniserial. (If L is a submodule with L # 0,5, M, then L 4+ S = M, and
LN S =0, so the sequence splits.)

Lemma (3). Let M be a f.d. R-module.
(i) If M is uniserial, it is indecomposable, has simple top and socle, and only

finitely many submodules. Moreover any submodule or quotient of M is uniserial.
(i) M is a uniserial R-module if and only if D(M) is a uniserial R°P-module.

50



(111) M is uniserial if and only if the chain
M 2radM Drad®?M D --- Drad” ' M Drad" M =0
1S a composition series for some n.

Proof. (i) and (ii) are trivial. For (iii) It suffices to show that if the chain is a
composition series, then every submodule L of M is equal to rad’ M, some i. Let
i be maximal with I, C rad* M If i = n then I = 0, otherwise rad’ M/ rad™t M
is simple, so rad”™! M is the unique maximal submodule of rad’ M. Since L is not
contained in rad”™™ M, we must have L = rad’ M. O

Definition. A f.d. algebra R is a Nakayama algebra if the indecomposable projec-
tive left and right R-modules are uniserial. It is equivalent that the indecomposable
projective left modules and the indecomposable injective left modules are all unis-
erial.

Proposition (1). If R = KQ/I with Q connected and I admissible, then R is
Nakayama if and only if Q is a linear or cyclic quiver.

Proof. If the quiver is linear or cyclic, then for each vertex i there is a unique
maximal path a, ...a; with tail at i and not in I. Then rad’ P[4] is spanned by the
paths ay ...a; with £ > j. Thus the radical series is a composition series. Thus
PJi] is uniserial. Similarly for the indecomposable projective right modules.
Conversely, if two arrows a,b have tail at ¢ then the submodules Ra and Rb
of Re; = Pli] are incomparable, for if Ra C Rb, then there is x € K@ with
a—xb e I C (KQ,)? which is impossible. Similarly for right modules if two
arrows have tail at . O]

Proposition (2). For a f.d. algebra R we have the following.
(i) If R is Nakayama, then R/I is Nakayama for any ideal I.
(ii) If R is Nakayama, then R is QF-3.
(iii) If R/J(R)? is QF-3, then R Nakayama.
Thus, for example, R is Nakayama if and only if R/I is QF-8 for all I.

Proof. (i) Write R = @ P, with P; indecomposable projective. Then R/I =
@ P;/IP;, a direct sum of uniserial modules, so the indecomposable projective
left R/I-modules are uniserial. Similarly for right modules.

(ii) It suffices to show that if P is indecomposable projective, then so is its
injective envelope E(P). Since P has simple socle, so does E(P). Thus it is
indecomposable. Thus it is uniserial, so it has simple top. If § : P’ — E(P)
is its projective cover, then P’ is indecomposable. This gives an exact sequence
0 — Kerf — 0~1(P) — P — 0. Now 67!(P) is uniserial, so indecomposable, but
this sequence splits, so we must have Kerf = 0.
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(iii) Let J = J(R). First suppose J? = 0. We show that any indecomposable
projective left R-module P is uniserial. Now JP is semisimple, so we need to show
it is zero or simple. By the QF-3 property, F(P) is projective. If P C JE(P), then
JP = 0. Thus suppose P € JE(P). We decompose E(P) into indecomposables,
E(P) =@ P,. Then one of the maps top P — top P, is an isomorphism, so P — P,
is an isomorphism, so P is injective, so E(P) = P. Then JP is semisimple, but P
has simple socle, so JP is simple or zero.

Now we show by induction that any indecomposable projective P for R/J" is
uniserial for n > 2. For n = 2 this is done. Suppose n > 2. Then P/J?P is
projective for R/J?, and it has simple top, so it is indecomposable, so JP/J*P is
zero or simple. Thus JP is a module for R/J"~ which is zero or has simple top,
so by induction it is uniserial. Thus P is uniserial.

Thus indecomposable projective left R-modules are uniserial. Similarly we have
it for right modules. Thus R is Nakayama. O]

Theorem. Any indecomposable module for a Nakayama algebra is uniserial. Thus
any indecomposable module is a quotient of an indecomposable projective, so there
are only finitely many indecomposable modules - Nakayama algebras have finite
representation type.

Proof. We prove this for Nakayama algebras R by induction on dim R. Now R has
an indecomposable projective-injective module P. We can embed it as a left ideal
in R. Let I = SR, the ideal generated by S = soc P. Then any indecomposable
module for R is either isomorphic to P, so uniserial, or an indecomposable module
for R/I, so uniserial by induction. O

Recall that f.d. representation of a quiver is nilpotent if there is some m such
that any path of length > m is zero in the representation. For a quiver without
oriented cycles all representations are nilpotent. If I is an admissible ideal then
any K()/I-module corresponds to a nilpotent representation of Q.

Corollary. (i) Any f.d. indecomposable nilpotent representation M of a linear or
cyclic quiver Q is isomorphic to (KQ/KQ')e; for some vertex i and some m.

(ii) Any f.d. indecomposable representation of a cyclic quiver is either nilpotent
or isomorphic to one of the form

vivs. . Lhvavy (the two ends identified)
where V- = Klz|/(f(z)") with f(x) a monic irreducible polynomial # x in Klx].

In particular if K is algebraically closed, f(x) = x — X\, then V. = K" and z
corresponds to the Jordan block J, ().

52



Proof. (i) M is a module for KQ/(KQ)* for some k, which is Nakayama.

(ii) Let @ be cyclic with N vertices. Let T € K(@Q be the sum of all paths
of length N. Then T is a central element of K@), so it induces an element of
Endgqg(M). By Fitting’s Lemma, this element must be nilpotent or invertible. If
nilpotent, then M is nilpotent. If invertible, then all paths of length N in M must
be invertible. Thus all arrows in M must be invertible. Thus M is of the indicated
form for some for some K[z]-module V' on which x acts invertibly. Now V' must
be indecomposable, so it has the stated form. O
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2 Auslander-Reiten Theory

Throughout, R is a f.d. K-algebra, and we consider f.d. modules.

2.1 The transpose of a module

We consider the contravariant functor M +— M"Y = Homg(M, R),
R-mod : R°P-mod.
It gives antiequivalences
f.g. projective left R-modules : f.g. projective left R°’-modules.

Definition. Given a left (or right) module M, we fix a minimal projective presen-
tation
nLprS Mo

That is, g : Py — M and f : P, — Ker(g) are projective covers. The transpose
Tr M is the cokernel of the map fY : Py — P). If M is a left R-module, then
Tr M is a left R°’-module. Thus there is an exact sequence

0—->M'—-F —-P —TrM—0

Note that Tr doesn’t define a functor on the module categories.

Properties. (i) Up to isomorphism, Tr M doesn’t depend on the choice of minimal
projective presentation of M. Namely, two different minimal projective presenta-
tions of M fit in a commutative diagram

p—tap M —0
R N 0
1 0 ’

and the minimality ensures that the vertical maps are isomorphisms. Applying
(—)Y, one sees that the two different constructions of Tr M are isomorphic.

(ii) If P is projective, then Tr P = 0. Clear.

(iii) Te(M & N) = Tr M & Tr N. Use that the direct sum of minimal projective
presentations of M and N is a minimal projective presentation of M & N.

(iv) If M has no nonzero projective summand, the same is true for Tr M, and
Py — P/ — Tr M — 0 is a minimal projective presentation. We do this in three
steps.
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(a) Using that P, — Im(f) is a projective cover, we show that Tr(M) has no
nonzero projective summand. Suppose () is a projective summand of Tr M. Let
h be the composition of the map P’ — Tr M and the projection onto Q. It is
surjective, so since @) is projective, it is a split epi. Thus AY : Q¥ — P is a split
mono. Say P, = Im(hY)@® C. Now hfY =0, so fhY =0, so Im(h") C Ker f. Thus
P, = Ker f + C. Now since the map P, — Im f is a projective cover, we have
C=P,s0h"=0s0h=0,s0Q=0.

(b) Using that g : Py — M is a projective cover, we show that P — Tr M
is a projective cover. Since it is a surjective map from a projective, if not, it
must be that it is not minimal. It follows that there is a non-zero summand @)
of P’ whose image in Tr M is zero. Thus @ C Im(f"). Since Py — Im(f") is
onto and @ is projective, the inclusion @ — Im(f") lifts to a map ¢t : Q — Py.
Then clearly fYt is the inclusion i : Q@ — P)’. Applying the duality, we get that
tVf =14V : P — QY. But g : By — M is a projective cover, so induces an
isomorphism on tops, Py/rad Py — M/rad M. Thus Im(f) = Ker(g) C rad F.
Since the radical is functorial, it follows that Im(¢Vf) C rad QY. But i is a split
mono, so ¢” is a split epi, so surjective, a contradiction.

(c) Using that M has no nonzero projective summand, we show that Py —
Im(fY) is a projective cover. It suffices to show that there is no no-zero summand
Q of Py whose image under f" is zero. If i : Q — Py is the inclusion, then f¥i = 0.
Then Vf = 0. Now ¢ is a split monomorphism, so ¢" is a split epimorphism, so
there is a decomposition Py = Ker(i¥) @& C. But then Ker(g) = Im(f) C Ker(:").
Thus ¢ induces an isomorphism P/Kerg — M. Now

Py Ker(iV)o C _, Ker(iV) o0
Kerg ~ Kerg —  Kerg '

Since M has no non-zero projective summand, C' = 0, so Ker(i¥) = Py, so ¥ =0,
so i =0, so Q = 0. Contradiction.

Another way to think of this is to use Complexes. Given a pro'ective presen-
.]
tation

consider P; — P, as a 2-term complex of projective modules. Then (a) P, — Im(f)
is a projective cover if and only if this complex has no summand of the form
Q) — 0 with @ a nonzero projective, (b) Py — M is a projective cover if and

only if the complex has no summand isomorphic to @ N @, and (¢) M has no
nonzero projective summand if and only if this complex has no summand of the
form 0 — ). Now if P, — Fj has no summand of any of these forms, then neither
does the complex Py — Py.]
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(v) If M has no nonzero projective summand, then Tr Tr M = M. Namely, by
(iv), Tr Tr M is the cokernel of the map P)’Y — FyY, that is, P, — F.

Proposition. Tr induces a bijection between isomorphism classes of indecom-
posable non-projective left R-modules and indecomposable non-projective left R°P-
modules.

Definition. Given modules M, N, we denote by Hom™ (M, N) the set of all maps
M — N which can be factorized through a projective module M — P — N.
Clearly HomP (M, N) is a subspace of Hom(M, N), for example if @ factors
through P and #’ factors throught P’ then 6+ 6’ factors through P& P’. Moreover
HomP is an ideal in the module category.
We define Hom(M, N) = Hom(M, N)/ Hom™ (M, N). These form the Hom
spaces in a category, the stable module category, denoted R-mod.

Theorem. The transpose defines inverse anti-equivalences
R-mod ., * R°’-mod.

Proof. First we show that Tr defines a contravariant functor from R-mod to R°’-mod.
Any map 6 : M — M’ can be lifted to a map of projective presentations

f

P, sy Py —2 5 M —— 0

el

/

PP —0

Applying ()¥ there is an induced map ¢.

A2 /
Py Ly P —— 0

o Wl

J AN -V N 1 ¥/ |

The map ¢ depends on 6y and #;, which are not uniquely determined. We show
that any choices lead to the same element of Hom(Tr M’, Tr M). For this we may
assume that 6 = 0, and need to show that ¢ factors through a projective.
Thus assume that 6 is zero. Then ¢'6y = 0. Thus there is h : By — P with
0o = f'h. This gives h¥ : P}¥Y — Py with 6§ = hY V. Now we have a commutative
diagram
J ARy - N RV —

o el

Py L py 2 M —— 0,
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Taking the difference of the vertical maps, there is also a commutative diagram

f/

Py L Py P e M —— 0

o]

Py L Py 2 M —— 0.

But then () — f¥Yh") "V = 0. Thus thereisamap s : Tr M' — P} with ) — fVh" =
sp’. Tt follows that psp’ = ¢p’, so since p' is surjective, ¢ = ps, so ¢ factors through
a projective.

Thus a morphism g : M — M’ gives a well-defined morphism Trg = [¢] €
Hom(Tr M', Tr M). It is straightforward that this construction behaves well on
compositions of morphsms, so that the transpose defines a contravariant functor
R-mod to R°P-mod.

Now clearly the transpose sends any projective module to 0, so it sends any
morphism factoring through a projective to 0, so it descends to a contravariant
functor R-mod to R°’-mod. Now it is straightforward that it is an antiequivalence.

[]

2.2 The Auslander-Reiten translate and formula

Definition. We define R-mod as the category with Hom spaces
Hom(M, N) = Hom(M, N)/ Hom™ (M, N)

where Hom™ (M, N) is the maps factoring through an injective module.

Lemma (1). Hom(M, N) = Hom(DN,DM), so D gives an antiequivalence be-

tween R°P-mod and R-mod.
Proof. Straightforward. m

Definition. The Auslander-Reiten translate is 7 = D Tr and the inverse construc-
tionis 7~ =Tr D.

By the results of the previous section we have inverse bijections

T

isoclasses of non-projective indec mods . ” isoclasses of non-injective indec mods

T

and inverse equivalences
.

R-mod " R-mod.

T
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Applying D to the exact sequence defining Tr M, we see that there is an exact
sequence
0—=717M —v(P) = v(P) »v(M)—D0.

Thus 7 con be computed by taking a minimal projective presentation of M, apply-
ing the Nakayama functor (which turns each P[i] into I[i]) and taking the kernel.

Example. For the commutative square with source 1 and sink 4, the simple S[2]
has minimal projective presentation

P[4] — P[2] — S[2] = 0

so we get
0— 75[2] — I[4] — I]2]

so 75[2] = P[3].
Lemma (2). If M is an R-module, then

(1) proj.dim M < 1 < Hom(DR,7M) = 0 < there is no non-zero map from
an injective module to TM .

(i7) inj.dim M < 1 < Hom(7~M,R) = 0 < there is no non-zero map from
T~ M to a projective module.

Proof. (i) Recall that v~ (=) = Hom(DR, —), and that v~ (v(P)) = P. Thus we get
0—=v (M) = v (v(P)) = v (v(P)) exact,so 0 - v~ (M) — P, — Fy. Thus
proj. dim M < 1iff P, — P, is injective iff v~ (7 M) = 0 iff Hom(DR,7M) = 0.

(ii) Dual. O
Lemma (3). Given a right R-module M, a left R-module N, m € M and n € N
let fon : MY — N be the map defined by fon(a) = a(m)n. It is a left R-module
map. This gives a map

Orpn : DHom(MY, N) — Hom(M,DN), Oynx(&) = (m— (n— &(fmn)))-
which is a natural transformation of functors in M and N. Moreover Oy is an iso-
morphism for M projective, and in general the image of Oyrn is HomP™ (M, DN).

Proof. The first part is clear. Clearly 0yy is well-defined. Both D Hom(MY, N)
and Hom(M, DN) define functors which are contravariant in M and N, and it is
straightforward that 6,y is natural in M and N.

For M projective, the map is an isomorphism, since it is for M = R. Thus
given a map f : M — P with P projective, we get a commutative diagram

DHom(PY,N) —— Hom(P, DN)
a |
DHom(MY, N) 2%, Hom(M, DN)
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where the top horizontal map is the natural isomorphism fpy and the vertical
maps are induced by f. Any map M — DN factoring through P is in the image
of a, so in Im(Opsn).

Varying P, we get Hom™ (M, DN) C Im(0y/n).

Now take a basis of MY. This defines a map M — P, where P = R". Then
PY — MY is onto. Thus Hom(M", N) — Hom(P",N) is 1-1. Thus b is onto.
Thus Im(fxn) = Im(a) € HomP™ (M, DN). O

Theorem (Auslander-Reiten formula). There are isomorphisms
Hom(7~ N, M) = DExt'(M, N) = Hom(N, 7 M).

Proof. Given a minimal projective presentation P, — Py — M — 0, write QM
for the image of P, — P, so there is an exact sequence

0—9YM—PFPy—M—0
and hence an exact sequence
0 — Hom(M, N) — Hom(P,, N) — Hom(Q, M, N) — Ext'(M, N) — 0.
Also we have an exact sequence
0—-M'—F/ - P —-TcM—0

SO
0— (TrM)" — P, — P,

SO
0= (Tr M) — P, — UM —0.

and hence an exact sequence
0 — Hom(, M, N) — Hom(P;, N) — Hom((Tr M)", N).

Applying Hom(—, N) to the exact sequence 0 — 9 M — Py — M — 0 gives an
exact sequence

-++ = Hom(Py, N) — Hom(, M, N) — Ext'(M, N) — 0.

Applying the duality D and using that 6pv y gives an isomorphism D Hom(F;, N) —
Hom(PY, DN), we get a commutative diagram with exact rows and columns:
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DExt'(M, N)

D Hom((Tr M)¥,N) —— DHom(P,,N) —— DHom(QM,N) — 0

O M,N ‘

0 —— Hom(TrM,DN) —— Hom(P),DN) —— Hom(PY, DN)

Hom(Tr M, DN)

0

By the Snake Lemma we get an isomorphism D Ext'(M, N) — Hom(Tr M, DN).
Now use Lemma 1 to rewrite this as Hom(N, D Tr M), or use that Tr gives in-

verse anti-equivalences between R-mod and R°P-mod to rewrite it as Hom(M, Tr DN)).
[

Corollary. If R is hereditary, then T and 7~ are functorial, given by
7(—) 2 DExt'(—,R), 7 (-)~Ext'(DR,-),
and we have
Hom(r™N, M) = DExt'(M, N) = Hom(N,7M).
Proof. If proj.dim M < 1, it has a minimal projective presentation
0P Lo Py S M —0
with f injective. Applying Hom(—, R) gives a long exact sequence
0— MY — P/ - P/ — Ext'(M,R) — Ext'(Py, R) =0,
so Tr M = Ext'(M, R). This gives the formula for 7, and also
77 (M) = Tr(DM) = Ext' (DM, R) = Ext' (DR, M).
Now use Lemma 2. We have Hom(7~N, M) = Hom(7~ N, M) if inj. dim N < 1,
and Hom(N, 7M) = Hom(N, 7M) if proj.dim M < 1. O
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Remark. I was asked to justify the claim that the transpose (or equivalently the
AR translate) cannot in general be given by a functor on the module categories.

Let R be the commutative square algebra with P[1] = I[4]. Suppose that there
is a functor T': R-mod — R-mod with T (M) = 7M for all M and inducing the
translate 7 : R-mod — R-mod on morphisms. There are nonzero maps

I[4]/S[4] 25 112) 2 111),  114)/S14] 2 113) 2 171].

such that fof; = fif3. Applying T', one can check that the modules are sent to the
following modules, and suppose that the f; are sent to maps g;.

rad P[1] £ S[3] & I[4]/S[4], rad P[1] £ S[2] 2 1[4]/S[4]

Now any indecomposable projective module has socle S[4], so there are no non-
zero maps from I[4]/S[4], I[2] or I[3] to a projective. Thus the f; do not factor
through a projective. Thus the g; are non-zero. But gog; and g,93 have images
S[3] and S[2], so they cannot be equal. [In fact their difference factorizes through
the injective [4].]

Note that if one allows T'(M) = 7 M @ Py, for suitable projective modules Py,
then there is always a functor, see M. Auslander and I. Reiten, On a theorem of
E. Green on the dual of the transpose, in: Representations of finite-dimensional
algebras, 1991.

2.3 Auslander-Reiten sequences

Definition. Given X, amap f: X — Y is a source map for X if it is left minimal,
not a split mono, and any map X — M which is not split mono factors through f.

Given Z, amap g : Y — Z is a sink map for Z if it is right minimal, not a split
epi, and any map M — Z which is not split epi factors through g.

Remarks. (i) If X has a source map, then it is easy to see that X is indecomposable
and the map is unique up to isomorphism, that is, if X — Y and X — Y’ are
source maps, then there is an isomorphism Y — Y” giving a commutative triangle.
Similarly for sink maps.

(i) I[i] — I[i]/socI[i] is a source map for I[i], and rad P[i] — PJi] is a sink
map for PJi].

Definition. By an Auslander-Reiten sequence we mean an exact sequence

0sxLySz50

where f is a source map for X and g is a sink map for Z.
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Remarks. (i) An AR sequence is determined up to isomorphism by either of the
end terms.

(i) If:0 > X =Y - Z — 01is an AR sequence, then it is not split, but you
get a split exact sequence whenever you take its pullback along a map ending in
Z which is not a split epi, or the pushout along a map starting in X which is not
a split mono. Hence the name that Auslander and Reiten used, an almost split
sequence.

Lemma. If M is a (f.d.) A-B-bimodule, and soc(aM) and soc(Mp) are simple,
then they are equal.

Proof. Since the socle is functorial, if € Enda(M) then §(soc(4M)) C soc(4M).
Thus soc(4M) is a B-submodule of M. Since soc(Mg) is simple, it must be
contained in any non-zero B-submodule of M, so soc(Mp) C soc(4M). Dually
we get the other incluson. n

Theorem. Let Z be a non-projective indecomposable R-module, and let X = 77 be
the corresponding non-injective indecomposable module. (Or equivalently let X be
non-injective indecomposable and let Z = 7= X.) Then there exists an Auslander-
Reiten sequence

0Xx5Hy 4 z50.

Proof. Ext'(Z, X) is an End(X)-End(Z)-bimodule.

As a right End(Z) module it is isomorphic to DEnd(Z), so has simple socle S,
corresponding to the fact that End(Z) as a left End(Z)-module is a quotient of
End(Z), so has simple top, since Z is indecomposable.

As a left End(X) module it is isomorphic to DEnd(X), so has simple socle 7,
corresponding to the fact that End(X) as a right End(X)-module is a quotient of
End(X), so has simple top, since X is indecomposable.

By the lemma, S =T Let

E0=>X—->Y—>2—-0

be an exact sequence corresponding to a non-zero element of S.

(a) Since £ # 0 the map f is not a split mono and ¢ is not a split epi.

(b) Suppose M — Z not a split epi. The map Hom(Z, M) — End(Z) has
image contained in the radical of End(Z7).

Thus the map Hom(Z, M) — End(Z) has image contained in the radical of
End(7)

Thus the map DEnd(Z) — DHom(Z, M) kills the socle of DEnd(Z) as a
End(Z)-module.

Thus the map Ext'(Z, X) — Ext'(M, X) kills £&. Thus the pullback of ¢ by
M — Z splits.
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Using a section of this pullback we get a map M — Y whose composition is
the original map M — Z.

(b’) By duality, if X — M is not a split mono, it factors through f.

(c) If g is not right minimal, then there is non-invertible o € End(Y) with
ga = g. Then g induces non-invertible 5 € End(X) with af = f3. Now " =
for some n, so 0 = ff" = a"f, so a" = rg for some r : Z — Y. But then
g = ga™ = grg, so since g is epi, gr = 1z, contradicting that ¢ is not split epi.
Thus ¢ is right minimal.

(¢’) Similarly f is left minimal. O

Corollary. FEvery indecomposable module has a source map and a sink map.

(i) If X is indecomposable non-injective, then the map X — Y in the AR
sequence starting at X is a source map, and if X = I[i], then I[i] — I[i]/soc I[i]
1S a source map.

(i1) If Z is indecomposable non-projective, then the map Y — Z in the AR
sequence ending at Z is a sink map, and if Z = P[i|, then rad P[i] — Pli] is a sink
map.

2.4 Irreducible maps

Recall that given modules X,Y, we have defined rad(X,Y) C Hom(X,Y). If
X is indecomposable it is the set of maps which are not split monos. If YV is
indecomposable it is the set of maps which are not split epis. If X and Y are
indecomposable it is the set of non-isomorphisms.

We define rad*(X,Y) to be the set of all homomorphisms X — Y which can
be written as a composition

xLmwsy

with f € rad(X, M) and g € rad(M,Y"). This is a subspace of rad(X,Y").

Definition. A map 0 : X — Y is irreducible if

(a) it is in rad(X,Y’), and

(b) for any factorization § = gf with f: X — M and g : M — Y, either f is
split mono or g is split epi.

In the original definition by Auslander and Reiten, (a) was replaced by (a’) 6
is not a split mono or a split epi.

Now suppose that X,Y are indecomposable. In this case the two definitions
are the same, and it is equivalent that

0 € rad(X,Y) \ rad?*(X,Y).

Thus there is an irreducble map X — Y if and only if irr(X,Y) # 0, where we
define
irr(X,Y) = rad(X,Y)/rad*(X,Y).

63



Note that this is naturally an End(Y)-End(X)-bimodules, and in fact a Dy-Dx-
bimodule, where D is the division algebra End(X)/J(End(X)).

Properties. (i) Any irreducible map is mono or epi, since it factors through its
image.

(ii) The kernel/cokernel of an irreducible epi/mono is indecomposable (exer-
cise).

(iii) Any source or sink map is irreducible. For example if § : X — Y is a
source map, and it has a factorization # = gf with f not a split mono, then by
the source map property there is h : Y — M with f = h#. Thus f = hgf, so by
minimality hg is an automorphism, so g is a split epi.

(iv) If X is indecomposable and 0 : X — Y] @ Y3 is irreducible, then so is each
component ; : X — Y;. Namely, suppose 6, = gf with f : X — M not split mono
and g : M — Y] not split epi, then 6 factors as

WG

X——MaY, ——=Y,0Y,

and the first map is not a split mono and the second is not a split epi.

Similarly if Y is indecomposable and 6 : X; & Xy — Y is irreducible, then so is
each component.

[Note that with condition (a’) in the definition of an irreducible map, this
would fail, for if X is indecomposable and 6 : X — Y is irreducible, then using the
decomposition Y =Y & 0, this says that X — 0 should be irreducible, but it is a
split epi.|

(v) If X — Y is a source map for X, then the irreducible maps X — Z are
exactly the compositions X — Y — Z with Y — Z split epi. Such compositions
are irreducible by (iv), and any irreducible map factors this way be the source map
property.

Dually, the if Y — Z is a sink map for Z, the irreducible maps X — Z are the
compositions X — Y — Z with X — Y split mono.

Recall from the proof of the Krull-Remak-Schmidt Theorem, that if M is an
indecomposable module and Y is a module, we set

Hom(M,Y)

tMLY) = rad(M,Y) '

and if we write p/(Y') for the multiplicity of M as a direct summand of Y, then
we have

dim t(M,Y)

(V) = lengthy,qy (¢(M,Y)) = lengthp ((M,Y)) = dim D,
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Theorem. Let M be indecomposable.
(i) If f: X =Y is a source map, then dimirr(X, M) = pp (V). dim Dy,
(i) If g : Y — Z is a sink map, then dimirr(M, Z) = pup (V). dim Dy,.

Proof. (ii) Since g is a sink map, either Ker g is zero, or Kerg — Y is a source
map. Either way, the map Kerg — Y is in rad(Kerg,Y). Since g is a radical
homomorphism, composition with g induces left exact sequences

0 — Hom(M, Ker g) — Hom(M,Y') — rad(M, Z)
and
0 — Hom (M, Ker g) — rad(M,Y) — rad*(M, Z)

and since ¢ is a sink map, these are exact on the right. For example any map
0 € rad*(M,Z) can be written as a composition § = ¢ with ¢ € rad(M,X)
and ¢ € rad(X, Z). But then ¢ is not a split epi, so it factorizes as gx for some
X € Hom(X,Y), and then 6 = g(x¢), and x¢ € rad(M,Y’). Thus

dimirr(M, Z) = dim[Hom(M,Y)/rad(M,Y)] = dimt(M,Y) = pp (V). dim Dyy.
For (i) use duality. O

Corollary (1). For given indecomposables X and Z, there are only finitely many
indecomposable modules M, up to isomorphism, with irv(X, M) or irr(M, Z) non-
zero.

Corollary (2). If Z is indecomposable and non-projective, and X = 77, then for
any indecomposable M we have dimirr(X, M) = dimirr(M, Z).

Definition. Let R be af.d. algebra with indecomposable projectives P[1],..., P[n],
simples S[i] and injectives [[i], and D; = End(S[i])°?. If M is a f.d. R-module, its
dimension vector dim M € N is given by

(dim M); = [M : S[i]] = the multiplicity of S[i] as a composition factor of M
Note that
dim Hom(P[i], M) = dim Hom(M, I[i]) = dim D, - [M : S[i]],

the equality of the first two being by the property of the Nakayama functor, and
the equality of the first and third since both are additive on short exact sequences
0—> M — M — M"— 0, and equality is clear if M is simple.

In case R = KQ/I with I admissible, and @ having vertices 1,...,n, this
coincides with the dimension vector for representations of quivers, since P[i| = Re;
and D; =1, so [M : S[i]] = dim Hom(P[i], M) = dim e; M.
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Corollary (3). Suppose X is indecomposable and suppose we know

(i) dim X and dim Dy, and

(11) dim M, dim Dy; and dimirr(X, M) for the indecomposable modules M such
that irr(X, M) # 0.

Then we can determine whether X is injective, and if not, determine dim 7~ (X),
by

Zdlm%rr(X’M)di_mM dim X = —‘dl_mS[z] (X:][z.]). |
dim Dy, dim7(X) (X not injective)

Moreover, if X 1is not injective, then D.- xy = Dx so they have the same dimen-
sion, and for M indecomposable we have dimirr(M, 7 (X)) = dimirr(X, M)

Proof. The term in brackets is the dimension vector of Y, where X — Y is a source
map for X. For the isomorphism D.-(x) = Dx, use that 7 gives an equivalence

R-mod — R-mod. O

2.5 Auslander-Reiten quiver

Definition. (i) Given a f.d. algebra R, the Auslander-Reiten quiver I'p of R has
vertices corresponding to the isomorphism classes of indecomposable R-modules,
and an arrow X — Y if and only if there is an irreducible map X — Y.

Thus I'r has finitely many vertices if and only if the algebra has finite repre-
sentation type.

(ii) The AR translate gives a bijection
non-projective vertices — non-injective vertices

In pictures we indicate this by drawing dotted lines or arrows X --+ 7X. This
makes the AR quiver into a ‘translation quiver’.

(iii) We can label each arrow X — Y in 'y with the pair of integers (a,b),
where

a = multiplicity of X as a summand of the sink map of ¥ = dimirr(X,Y")/dim Dy
b = multiplicity of ¥ as a summand of the source map of X = dimirr(X,Y)/dim Dy

This makes I'g into a ‘valued quiver’. Maybe less confusing is to label each vertex
X with the number dim Dx and each arrow X — Y with the number dim irr(X,Y).

(iv) When drawing ', if a = b, we can instead draw this number of unlabelled
arrows from X to Y.

(v) In my examples, the relevant modules will usually all have Dy = K. This
is automatic if K is algebraically closed. Then we draw dimirr(X,Y") unlabelled
arrows from X to Y.
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Examples. For a Nakayama algebra, the irreducible maps between indecompos-
ables are the monos X — Y with simple cokernel and the epis X — Y with simple

kernel.
(i) The linear quiver with three vertices.
[ e 3
o I PL1=T8 .
K E—30
vTS Sy o
Gt L - = Wy

= |y 9
e Yo oun s,

D01
RS S 513 D T =<0

. QH__::_I}_’L::_ \°_(?~_“1 — 3|

-3 48 ]

The algebra R = K[t]/(t).
A=FIE/ed .

S £ sa?)

Y N A

r‘!) "-Ll:l] -
C_. \} S — o— -
B I ol E__ 2 &%)
—sbA S e} K ax__» .
?&@ wene

<Lstmtalo — km/&i_”—g _gir;ma;:;
— uii-? /€+ Y F(*Vtﬁ@‘ﬂ[ﬂ /fF‘) . k[f:v(b -

Lemma (Harada-Sai). A composition of 2" — 1 non-isomorphisms between inde-
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composables of dimension (or length) < n must be zero.

Proof. We show for m < n that a composition of 2™ — 1 non-isomorphisms between
indecomposables of dimension < n has rank <n — m.

If m =1 this is clear. If m > 1, a composition of 2" — 1 non-isomorphisms can

be written as a composition

xLyszhw
where f and h are compositions of 2”~! — 1 non-isomorphisms. By induction
rank f,rankh < n —m + 1. If either has strictly smaller rank, we’re done. Thus
suppose that rank f = rank h = rank hgf =n —m + 1.

This implies that Ker f = Kerhgf and Imhgf = Imh. It follows that ¥ =
Kerhg®Im f and Z = Ker h@ Im gf. For example if y € Y then hg(y) = hgf(x),
soy = f(z)+ (y— f(z)) € Im f + Ker hg, and if y € Im f N Ker hg then y = f(x)
and hgf(x) =0, s0 z € Kerhgf = Ker f, so y = 0.

By indecomposability f is onto and A is 1-1. Thus dimY =dimZ =n—m+1
and ¢ is an isomorphism. Contradiction. m

Definition. A f.d. algebra R is connected if there is no proper decomposition R =
Ry x Ry. Equivalently, if we can’t partition the set of indecomposable projectives
{P]1],..., P[n]} into two subsets such that there are no non-zero homomorphisms
between the projectives in the two subsets. If R = KQ/I with I admissible, it is
equivalent that () is connected.

Theorem (Auslander). Suppose R is connected. If C' is a connected component
of the AR quiver, and there is a bound on the dimension of the indecomposable
modules in C, then C' is finite and is the whole of the AR quiver of R.

Proof. Suppose M, N are indecomposable modules with Hom(M, N) # 0. For
i > 0 we consider a chain of maps

VAR VAL VAELNY VARLNSRELNY VAE NS\

with the M; indecomposable, f; irreducible and g;f; ... fi # 0. Such a chain exists
if 1 = 0. If g; is not an isomorphism, then it is not a split mono, so it factors
through the source map M; — E. Then we get a chain of size i + 1 by taking M;,,
to be one of the summands of F.

Suppose all indecomposables in C' have dimension < n. If M is in C', then by
Harada-Sai any such chain must have length ¢ < 2" — 1. Thus the construction
must terminate, with g; an isomorphism, for some ¢ < 2" — 1. Thus there is a chain
of irreducible maps from M to N of length < 2™ — 1. Dually if NV is in C.
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Now choose some M in C. There is a projective P[i] with Hom(P[i], M) # 0,
so P[i] € C. Since the algebra R is connected, it follows that all projectives are in
C. Thus C' is the whole AR quiver.

Now for any indecomposable there is a chain of irreducible maps of length
< 2™ —1 from a projective P[i]. Thus C' is finite. O

Corollary (First Brauer-Thrall Conjecture, proved originally by Roiter using a dif-
ferent method). If there is a bound on the dimensions of indecomposable R-modules,
then R has only finitely many indecomposable modules (Finite representation type.)

Definition. A brick or Schurian module is a module Z with End(Z) a division
ring. By Schur’s lemma any simple module is a brick, and clearly any brick is
indecomposable.

An indecomposable module Z is directing if there is no cycle of non-zero non-
isomorphisms between indecomposable modules that includes Z, so Z — Z; —
-+ = 7 — Z with k£ > 0. In particular, taking £ = 0, a directing module Z has
no nonzero non-isomorphisms Z — 7, so it is a brick.

Proposition. Let Z be an indecomposable module. Suppose there is a bound on
the length of paths in the AR quiver ending at Z. Then Z is directing.

Proof. By induction on the bound. If zero, then Z is simple projective. But
then there is no non-zero non-isomorphism from an indecomposable module to Z.
Otherwise, decompose the sink map Y1 & --- ®Y,, — Z. If there is a cycle, say
Z — Zy — -+ — Zp — Z, then the map 7, — Z factors through the sink map,
so for some ¢ there are non-zero maps 7, — Y; — Z. Now the map 7, — Y is
either an isomorphism, or not. Either way we see that Y; is in a cycle. Impossible
by induction. O

Definition. A module M is sincere if each component of its dimension vector is
nonzero, so [M : S[i]] # 0 for all i. Equivalently Hom(P[i], M) # 0 for all 7.
Equivalently Hom(M, I[i]) # 0 for all 4.

Note that any faithful module M is sincere, since R embeds as a submodule of
a direct sum M"™, and hence

0 < [R:S[)] < [M™: S[i]] =n[M : S[i]l.

Lemma. If M is sincere and directing, then proj.dim M < 1, inj.dim M <1 and
Ext'(M, M) = 0.

Proof. 1f proj.dim M > 2, then there is a non-zero map I[i] — 7M for some i. But
then one gets a cycle M — I[i| - 7M — E — M, where E is any indecomposable
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direct summand of the middle term of the AR sequence between 7M and M.
Similarly for injective dimension.

Now Ext'(M, M) = Hom(M,7M), and this is zero, for if M — 7M is a non-
zero map, either it is an isomorphism, or not, and either way one gets a cycle using
TM — E — M as before. O

Proposition. If M is directing and M’ is indecomposable, of the same dimension
vector, then M = M’.

Proof. Replacing R by R/ Ann(M & M'), we may suppose that M @ M’ is faithful,
and hence sincere. Thus M is sincere. Let 0 — P, — Py — M — 0 be a projective
resolution of M. Then for any module X we have

dim Hom(M, X) — dim Ext' (M, X) = dim Hom(FP,, X) — dim Hom(P;, X).
This only depends on the dimension vector of X, so
dim Hom(M, M") — dim Ext'(M, M") = dim Hom(M, M) — dim Ext' (M, M) > 0,

so Hom(M, M') # 0. Similarly Hom(M’, M) # 0 using an injective resolution
of M, or thinking of DM and DM’ as modules for R?. Thus M = M’ by the
directing property. O

2.6 Knitting construction

Preparation. Given a connected algebra R, for each i, compute dim P[i| and
dim D;, and find the dimension vectors of the indecomposable summands of rad P/[i].

Construction. We construct a full subquiver I'' of I'g iteratively, beginning with
the empty set. Although I might be infinite, after only finitely many steps it is
finite, without oriented cycles, and closed under predecessors. Thus the modules X
in it are directing, so uniquely determined by their dimension vectors. We record
these as well as dim Dy and dimirr(X,Y).

Iterative step. We adjoin to I any indecomposable module Z such that all
predecessors are already in I.

(i) If Z is projective, say Z = P[i], we need that all indecomposable summands
of rad P[i] are in IV. We get started with a simple projective.

(i) If Z is non-projective, say Z = 7~ X, then we need that X is in I, and since
dimirr(M, Z) = dim(X, M), we need that I contains all arrows starting at
X. Thus:

(a) if X is a summand of rad P[j] for some j, then I must contain P[j].
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(b) if M is non-injective, then dimirr(X,7~M) = dimirr(M,X), so if
irr(M, X') # 0 then I'" must contain 7~ M.

If so, then

Zdlm%rr(X,M)di_m]\/[ ~dim X = —.dl_mS[Z] (X:I[‘Z]). .
dim Dy, dim 7 (X) (X not injective.)

Outcome.

(a) We might not get started, if there is no simple projective, or we might get
stuck, if T” contains some summands of rad P[i], but not all of them.

(b) Terminate after a finite number of steps with the AR quiver I'g.

(¢) Go on forever, and I is a union of connected components of I'g, called
‘preprojective’ components.

Examples. (i) The commutative square.

\ —a-
S ‘f'
Q=
g
I
[\
'*?.*- /"f \ la
- "/—l’ - Yz ~ 1
N By, AT ey

(ii) The quiver 1 -2 — 3.
(iii) A quiver of type D, with a zero relation:
{

L]
7

A

iy
X

BT // [ TR \.:‘___.,_",
3 .~ B -
N ,%_L' "--‘- - \\_.(‘1- T \
e -m T~z

e w

(iv) An example where one gets stuck.
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(vi) The 4-subspace quiver, the Kronecker quiver, a Kronecker quiver with
another vertex ¢, such that the radical of P[i] never appears.
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(vii) An example where not all dim D; = 1.

R— (IO( é) C My(L)

where L/K is a field extension of degree 3. Then

P[1] = Rey; = ([()() ,  P[2] = Regy = (ﬁ) ;

so Dy = K, Dy = L and rad P[2] = P[1]®>. The AR quiver, showing the dimension
vectors of the indecomposables, the dim Dx and dimirr(X,Y), is

\’L-"J g v
- (3) b - [?”1 ) f:_._ — fo;“)
N AR
i \ /

-_

3}
r

rJ
-
—

s (| 6F/ e ,
f 3 T[I’ﬂ

Dually one can construct “preinjective components” starting with a simple in-
jective.

2.7 Covering theory via graded modules

The knitting procedure fails for many algebras. But a tool called ‘covering theory’,
due to Riedtmann (1980), Bongartz and Gabriel (1981), and Gabriel (1981), can
often be used to make it work. By Gordon and Green (1982) it is essentially
equivalent to study graded modules.

Definition. A vector space V' is Z-graded if it is equipped with a decomposition
V=PV,
nez

where the V,, are subspaces. An element of V' is homogeneous of degree n if it is in
V,. If V is f.d., only finitely many V,, are nonzero.
An algebra R is Z-graded if it is equipped with a decomposition

R=ER.  RuRyC R

nel
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If R is graded, an R-module M is Z-graded if it is equipped with a decomposition
M= M,  Ry,My;C Mymp.

nez
A submodule N of M is graded or homogeneous if N = @ N,, where N,, =
N N M,,. Similarly for an ideal in R.

We only consider f.d. graded modules, and write R-grmod for the category of
f.d. Z-graded R-modules, with

Hompg grmod(M, N) = {6 € Homg(M, N) | 6(M,) C N, for all n € Z}.

Examples. (i) The path algebra R = K@ is Z-graded with R, = the K-span of
the paths of length n. Alternatively, choose a degree for each arrow, and define
the degree of a path to be the sum of the degrees of its arrows.

(ii) R = M,(K) can be graded with R,, = {(a;;) : a;; = 0 for i — j # n}.

Proposition. Let R be a graded algebra.

(1) 1 € Ry.

(i1) A submodule or ideal is homogeneous if and only if it is generated by ho-
mogeneous elements.

(i1i) A quotient of a module or algebra by a homogeneous submodule or ideal is
graded.

(iv) R-grmod = R-mod where R is catalgebra smash product of R and Z,
consisting of matrices (a;;) with rows and columns indexed by Z and only finitely
many non-zero entries a;; € R;_;. Pictorially

) Ry R_1 R_s
R = Ry, Ry R_;
Ry Ry Ry

Proof. (i) if 1 = > r, and r € R; then the degree ¢ part of r = r1 = 1r gives
r =1rry =1Tor, SO 1y is a one for R.
(ii)-(iv) Straightforward. O

Remark. This all generalizes to group-graded algebras.

Example. Given an algebra R such as

a’L‘-—-O , tzo ’ bo\c ch



we grade K@) by setting dega = degc = 1 and degb = 0. Then the relations
are homogeneous elements of K@, so the ideal they generate is homogeneous, so
R = KQ/I is graded. The smash product catalgebra R is given by the quiver

lav— 1,
2l . b
lLio—, 14
NN
.| ‘,C
|‘!h~£_a~ 1

with the corresponding relations. The vertex denoted i, corresponds to matrix
with (n,n) entry e; and the other entries zero. The arrow a from 1, to 1,.; is
given by the matrix with (n + 1,n) entry a and other entries zero, etc.

Given a graded R-module M, the corresponding representation of R is given
by putting the vector space e; M,, at vertex i,,. Then M, is the direct sum of the
vector spaces at vertices with subscript n. In particular, if we are only interested
in graded modules living in degrees between —N and 0, then we deal with the
truncated catalgebra

’O'_~—'—'ﬂl-‘1N

La ]
L

This is now a f.d. algebra. Perhaps we can use knitting with it. We show how it
can be used to understand modules for the original algebra R.
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Theorem (1). A f.d. graded algebra R is local if and only if Ry is local.

Proof. Suppose that R is local. The intersection J(R)N Ry is a proper ideal in Ry,
so to show that Ry is local, it suffices to show that it contains all non-invertible
elements a of Ry. Now if a were invertible in R, then (a™!)y would be an inverse
for a in Ry, a contradiction. Thus since R is local, a € J(R).

Now suppose that Ry is local. The ideal in R generated by | J,, 20 I 18

L=(JR)=T®oER., =) R.R,CR,

n#0 n#0 n#0

Ifa e R, and b € R_,, with n # 0, then a is nilpotent, so not invertible, so ab is
not invertible in R, so it is not invertible in Ry, so ab € J(Ry). Clearly also I is
an ideal in Ry, so I C J(Ry), so [ is nilpotent. Say IV = 0.

It suffices to show that L is nilpotent, for then L C J(R), so that R/J(R) is a
quotient of R/L = Ry/I, which is local. Suppose that R lives in d different degrees.
It suffices to show that any product ¢1/s...¢;n of homogeneous elements of L is
zero. Suppose not. Let d; be the degree of (105 ...¢;. We have dN + 1 numbers
do,dq, ..., dgn taking at most d different values, so some value must occur at least
N + 1 times. Say

di, =dy, =---=d

IN+1

with 41 < iy < --- <iny1. Then we can write the product as

El . .&'1 (éz'l—&—l .. -Eiz)(giz—i-l . 613) Ce (éiN-i-l .. 'EiN+1)€iN+1+1 Ce de

But each of the bracketed terms has degree 0, so is in I, so their product is zero. [

Definition. Given a graded module M and i € Z we write M (i) for the module
with shifted grading M (i), = M; .
There is a forgetful functor F': R-grmod — R-mod which forgets the grading.

Lemma (1). If M, N are f.d. graded R-modules, then Hompg(FM,FN) can be
graded as a vector space, with

Homp(FM,FN) = @ Homp_geamea (M, N(n)).

neL

In this way
EndR(FM) = @ HomR—grmod(Mu M(”))

becomes a graded algebra.
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Proof. Given a homomorphism 6 : FM — FN, we get linear maps 0, : M — N
defined by
u(m) = 3 0(m,);cn
1€EZL
where a subscript k£ applied to an element of a graded module picks out the degree
k component of the element.
Now if a € R is homogeneous of degree d, then (am); = a.m;_q4, so

On(am) = Z 0((am)i)irn = Z O(ami—a)in = Z(Ge(mwd))wn

i

= Z a.0(m;_q)isn—a = Z a.0(m;)jin = ab,(m).
( J
Thus 6,, € Homp grmoea (M, N(n)). Clearly 6 is the sum of the 6,,, and this is a finite
sum since M is f.d. The rest is clear. O

Corollary. (i) A graded module M is indecomposable if and only if the ungraded
module F'M 1is indecomposable.
(ii) If M and N are indecomposable graded modules with FM = FN, then M

is isomorphic to N(n) for some n.

Proof. (i) By Theorem 1, Endg(F M) is local iff its degree zero part is local. This is
Endg(FM)o = Endp.grmod(M ). Now the ungraded module F'M is indecomposable
if and only if its endomorphism algebra Endg(F M) is local. The graded module
M is indecomposable if and only if its endomorphism algebra Endg_grmoda(M ) has
no non-trivial idempotents, and since it is f.d., it is equivalent that it is local.

(ii) Suppose 6 : FM — FN is an isomorphism. Then 670 = 1y, so (0710)¢ =
Ly, 80>, (071)_n0, = 1ar. Since End(F M) is local, some (071),,0, is invertible, so
0, : M — N(n) is a split mono of graded modules, and hence an isomorphism. [

Setup. Let R = KQ/I with I admissible, and grade it by choosing a degree > 0
for each arrow, in such a way that the relations are homogeneous. Then R lives in
non-negative degrees, so since it is f.d., it lives in degrees [0, d] for some d.

Recall that graded R-modules correspond to modules for a catalgebra R. Given
n < m, graded modules living in degrees [n,m| = {i € Z : n < i < m] correspond
to modules for a truncation of the catalgebra which is an actual algebra. It is

Ry 0 -0 0

Ry Ry <o 00
A
Rmfnfl Rmfn72 T RO 0

Rm—n Rm—n—l e Rl RO
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We write F also for the forgetful functor from R-mod to R-mod.

Theorem (2). Suppose R lives in degrees [0, d) with d > 0 and R is the truncation
corresponding to degrees [n,m]. If£:0— X =Y — Z — 0 is an AR sequence of
R-modules, and Z lives in degrees [n+ d, m —2d], then F(£) is an AR sequence of
R-modules.

Proof. (Sketch) The simple R-modules are Sg[i], where i is vertex in ). We can
consider this as a graded module non-zero only in degree 0. Then Sg[i](—7) is the
same module, but living in degree j. For j € [n,m] it corresponds to the module
Silij]-

The trivial idempotents e; € R are homogeneous of degree 0, so the correspond-
ing projective module Pg[i] = Re; is graded, and lives in degrees [0,d]. Then the
module Pg[i](—j) lives in degrees [j,j + d|. Thus if j € [n,m — d] then Pg[i](—j)
corresponds to an R-module. It corresponds to Pgli;]. Thus F(Pg[i;]) = Pgli.

Similarly, if j € [n + d, m| then F(I3[i;]) = Igli].

Take a minimal R-module projective presentation

P—-F—-2Z—0

Now P, only involves projective covers of simples in degrees [n + d,m — 2d]. Thus
Py lives in degrees [n + d, m — dJ, so P; only involves projective covers of simples
in degrees [n+d, m —d|. Thus P, and P; only involve projectives Pji;] which are
sent under the forgetful functor to Pg[i]. Thus the F/(F;) are projective R-modules

and
F(P)— F(P) —» F(Z)—0

is a minimal projective presentation of F\(Z).
Now 757 is computed using the exact sequence

0— TRZ — VR(P1> — VR<P0)-

Since the modules vz(P;) only involve injective envelopes of simples in degrees
[n+d,m —d|, F(vp(P;)) is injective, and isomorphic to vg(F'(F;)). Thus

0= F(rpZ) = F(va(Py)) = F(vg(h)),
is identified with the sequence

0= 7rE(Z) — vr(F(P)) — vr(F(F)).
Thus TpF(Z) = F(132) = F(X).

Now there is a homomorphism Endz(Z) — Endg(F(Z)) whose image is the
degree 0 part. It induces an isomorphism on tops.
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This induces a map End;(Z) — End,(F(Z)) giving an isomorphism on tops.

This gives DEnd,(F(Z)) — DEnd;(Z) giving an isomorphism on socles.

This gives a map Exty(F(Z), F(X)) — Extj(Z, X) giving an isomorphism on
socles.

Now AR sequences are defined by elements of the socle, so the forgetful functor
sends an AR sequence to an AR sequence. n

Construction. Take a range of degrees [—N,0] with N > 0, which we consider
to be finite, but arbitrarily large.

Now knit. If, eventually the knitted modules live in degrees < —2d, then the
subsequent AR sequences are sent by the forgetful functor to AR sequences of
R-modules.

If also the knitted modules are eventually all shifts of finitely many R-modules,
then they give a finite connected component of the AR quiver of R. By Auslander’s
Theorem it is the whole AR quiver.

Examples. (i) The algebra R as in the example above.

/
- ,_I ...... e | -
4 . 3 |
| Vi PN
I AT
1 - s L A 5 Vd
™ -~
/ s N AN AT
e = 2 3 T
& & / I~ \ P
1 . \ i - \r - _\ 53 |

79



Observe that the modules along the two vertical arrows correspond, with the
modules on the right hand arrow being the shifts of the modules on the left hand
arrow one place up the ladder. Moreover the modules to the right of each arrow
also correspond. Thus you can be sure that all further knitting will follow the same
pattern.

Now take the part of the AR quiver between the two vertices arrows. You can
be sure that the forgetful functor sends it to a finite connected component of the
AR quiver of R. Thus it is the whole of the AR quiver of R. You need to identify
the two vertical arrows, giving a Mobius band.

(ii) (Omitted in the lecture) A Nakayama algebra (so we can compute its
AR quiver anyway).
3

- . 2
ﬁ/v\ﬁ whtw abe =0 'mwm;i g
2

|

- w —

o
| L 2. |

We grade it with dega = 1 and the other arrows of degree 0. Algebra R is of the
following form, where for simplicity we label the vertices 1¢, 29,30, 1-1,2_1,3_1,_2, ...
as 1,2,3,4,5,6,7,....

595857 %6 555453525
Knitting gives the following.
T W2 r biess
. Lma/l \“r%l 1654 {765
/‘\ 7N /!\,’Cg/‘ N
) % o / / \\“/A \\7/
\z/g\?/‘\ﬁ SN

Again we observe that the pattern repeats, so the AR quiver of R is the part
between the two vertical arrows, with the arrows identified. The cross means that
at that place it is not an AR sequence (since 654 is projective and 543 is injective).

(iii) @ with one vertex and loops p, ¢ with relations p* = gpq, ¢* = pgp, p* =
3 = 0. There is no non-trivial grading, so we can’t get started.
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In the case when this process works, and R has finite representation type, every
R-module is gradeable. In general that is not true. For example the quiver with
arrows from 1 to 2 and 3, and from 2 to 3. Grade it with the arrow from 1 to 3 of
degree 1 and the others of degree 0. Then the module which is K at each vertex,
identity for each arrow is not gradeable.

Theorem (3). If the field K has characteristic zero, and R is graded, then any
R-module M with Ext' (M, M) = 0 is gradeable.

Proof. Omitted. The result is possibly folklore. This proof here comes from
Keller, Murfet and van den Bergh, On two examples by Iyama and Yoshino. For
simplicity, assume that K is algebraically closed.

Let d : R — R be the map defined by d(a) = deg(a)a for a homogeneous. It is
a derivation since d(ab) = deg(ab)ab = (deg(a) + deg(b))ab = ad(b) + d(a)b. It is
called the Fuler derivation.

Let E = M & M as a vector space, with R-module action given by a(m,m’) =
(am,d(a)m 4 am'). This is an R-module structure and there is an exact sequence

)
0= M- g U9 g

By assumption this is split, so there is a map M — E of the form m — (m, V(m)).
Moreover the map V : M — M satisfies

V(am) = d(a)m + aV(m)
so it is a connection on M with respect to d. Since M is f.d.,
= @
AeK

where M®™ is the A-generalised eigenspace for V. Now for any A € K and a
homogeneous we have

(V = X — deg(a))(am) = a(V = A)(m)
(V = A — deg(a)) (am) = a(V — 3)" (m)

for all N > 1, so a(MW) C M©A+dee@) Let T be a set of coset representatives for
7. as a subgroup of K under addition. Then every element A € K can be written
uniquely as t +n for some t € T and n € Z, and M is gradeable with

M, = P M.

teT

81



2.8 An example of a self-injective algebra of finite represen-
tation type

Proposition. If P is an indecomposable projective-injective R-module which is not
simple, then there is an AR-sequence

0—radP L P@rad P/soc P % P/socP — 0
where f(z) = (x,Z) and g(x,y) =T — y.

Proof. Exercise.
]

Lemma. Suppose P is a projective-injective summand of R, S = soc P and I =
SR. If
0=-X—=Y—=>2-=0

is any AR sequence which is not of the form above for some summand of P, then
X,Y, Z are killed by I, so this is also an AR sequence of R/I-modules.

Proof. Let P’ be an indecomposable summand of P. It can’t occur as X or Z
since it is projective-injective. If it occurs as a summand of Y, then there is an
irreducible map X — P’. Thus X is a summand of rad P’. Thus X = rad P/, and
the sequence is as in the last proposition. O]

Example. Consider the algebra with quiver

b
G f_\‘
Si

e

and relations bacb = 0, bc = \bac and a? = cb for A € K. It is a special case of a
penny-farthing.

Then ba®? = bcb = Mbachb = 0, and hence also a* = cbeb = 0. Also a’c = cbe =
Acbac = Aadc. Then a* = 0 = a3c = 0 = a’c = 0. Thus also cbc = 0.

If K has characteristic not 2, one can change generators to get A = 0. If K has
characteristic 2 this is not possible.

If X # 0 there is no suitable grading.
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The projectives are

PL) ” l &1 Pl
\
AN
D
ﬁy/

nl-\t
o [}

4

2
[
“ka
|
TN
v
w“

o

They have dimensions 6 and 4. Thus the algebra has dimension 10. Observe that
the projectives have simples socles, and both simples occur. Thus the algebra
embeds in the direct sum of the two injectives, which also has dimension 10. Thus

the algebra is self-injective.

We pass to R/I where I = soc R (already an ideal), so add the relations a® =
cba = achb = 0 and bac = 0, so bc = 0. We only lose the two projective-injective
modules. The new algebra has a grading with all arrows of degree 1, so its covering
and indecomposable projectives as follows (where we show the indecomposable

summands of their radicals).

q

L‘_tn
“4><_ 3
1% nia
ﬁf>< 5
5 - b 14
# I L
i -
3 G 7
at“ “ 571
7N 4
] 2
9
-
5 ¢
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Knitting gives

/3/41\1,/ \?l
NP
NN
— o

Then we insert the original projective-injectives to get the AR quiver of R.

e :
\P%/_,/..\./ﬂ\r
= - !
= { , , ///
Ne N g
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3 Representations of quivers

Let @ be a quiver and let R = K. We consider f.d. R-modules.

3.1 Bilinear and quadratic forms

We consider Z? as column vectors, with rows indexed by Qg. Let €[i] be the
coordinate vector associated to a vertex i € (Jg. Thus €[i]; = J;;. The dimension
vector of a module X is dim X € Z%.

Definition. The Ringel form is the bilinear form (—, —) on Z%° defined by
(o, B) = Z ;i — Z Q4 (a)Bn(a)
i€Qo a€Q1

The corresponding quadratic form g(a) = (o, «) is called the Tits form. There is
a corresponding symmetric bilinear form

(o, B) = qla+ B) — q(a) — q(B) = (o, B) + (B, a).

(o, €li]) = 2a; — Z aj — Z aj.

a:j—1 ai—j

For example

Note that ¢ and (—, —) don’t depend on the orientation of ). The radical of q is
radq = {a € Z% : (a, B) = 0 for all B € Z%}.

Theorem (Standard resolution). If X is a KQ-module (not necessarily f.d.), then
it has projective resolution

0= P KQenw ®x erX = @ KQe; @k e,X — X — 0.

a€Q1 1€Q0

For a proof see §4.5 of my lecture notes on Homological algebra. This shows
KQ is left hereditary and:

Corollary. If X and Y are (f.d.) KQ-modules, then
(dim X, dimY) = dim Hom(X,Y) — dim Ext'(X,Y).
Proof. Apply Hom(—,Y") to the projective resolution to get an exact sequence

0 — Hom(X,Y) — @D Hom(KQe; @k €,X,Y) —

1€Qo
— @ Hom(KQepa) @ ey X,Y) — Ext'(X,Y) — 0.
ac@n
Now Hom(KQe; @k ¢, X,Y) = Hompg (e; X, Hom(KQe;, Y)) = Homg (e, X, e;Y) so
it has dimension (dim X ),;(dimY");. O
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Lemma. If X is a KQ-module which is a brick with Ext'(X,X) = 0, then
End(X) = K, so ¢(dim X) = 1.

Proof. By assumption End(X) is a division algebra, say of dimension d. Now
if 7 is a vertex, then ;X is naturally a module for this division algebra, so its
K-dimension is a multiple of d. Thus dim X = df3 for some 8 € Z%. Then

d = dim End(X) — dim Ext' (X, X) = ¢(dim X) = ¢(dj) = d*q(B)

so ¢(B) = 1/d. But it is an integer, so d = 1. O

3.2 Classification of quivers

A quiver is Dynkin if it is obtained by orienting one of the following graphs:

A, . (n31 vechus)
B e o e i
£, S S

F—, 4 — ,-._&—- =

£q S RS

A quiver is extended Dynkin if it is obtained by orienting one of the following. In
each case we define § € N§°.
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Properties. (1) Any extended Dynkin quiver has at least one vertex ¢ with §; = 1.
Such a vertex is called an extending vertex. Deleting an extending vertex, one
obtains the corresponding Dynkin quiver.

(2) ¢ is in the radical of ¢. For this, we need to check that (9, €[i]) = 0 for all i.
That is, 20; is equal to the sum over ¢; running over all edges ¢ — j.

Lemma (1). Every connected quiver is either Dynkin, or has an extended Dynkin
subquiver.

Proof. This is an easy case-by-case analysis. If there is a loop, it contains A,. If
there is a cycle it contains A,. If there is a vertex of valency 4 it contains D,. If
there are two vertices of valency 3 it contains D,,. Thus (unless it is A,) it is a star
with three arms. If all arms have length > 1 then contains Eg. If two arms have
length 1 then it is Dynkin. Thus suppose one arm has length 1. If both remaining
arms have length > 2 then it contains E7. Thus suppose one has length 2. If the
other length is 2,3,4 then it is Dynkin, if > 4 it contains E. O

Theorem. (i) If Q) is Dynkin, then q is positive definite, that is q(«) > 0 for all
0+#acZ%,

(i1) If Q is extended Dynkin, then q is positive semidefinite, that is q(a) > 0
for all a € Z2. Moreover a € rad ¢ & q(a) =0 < o € Z4.

(111) If Q is connected and not Dynkin or extended Dynkin, then there is a € NOQO
with (a, e[i]) < 0 for all i and q(a) < 0. Moreover N&° Nradq = {0}.
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Proof. (ii) For i # j we have (¢[i], €[j]) < 0. Thus

0< 2 S (el el (f;— - 3—)

i#£]
= 2 (el elihaue; - % (el elia 5 % (e, €l
#J i# J oy i
=) _(e[i], e[j])aiar; — Z(e[z], e[j])diﬁ
7] i#j J
= 2 _(elil, eliDeaia; = 3 (Dem,emm) o
i#] J i#j Jj

Z 04@04] + Z

7]

= Z Doy = (o, @) = 2q(w).

Thus ¢ is positive semidefinite. If g(a) = 0 then «;/d; = «;/0; whenever there
is an edge 7 — 7, so since () is connected, «;/0; is independent of i, so «v is a multiple
of . Since some 0; =1, o € Z6. Trivially o € Z0 = a € rad ¢ = ¢(a) = 0.

(i) Follows by embedding in the corresponding extended Dynkin diagram.

(iii) Take an extended Dynkin subquiver @) with radical vector §. If all vertices
of @ are in )/, take o = 0. If i is a vertex not in Q" but connected to @' by an
arrow, take v = 26 + €[i]. Now suppose 0 # 8 € radq. If 5; = 0, then since
(B, €[i]) = 0, there is no arrow connecting i to any vertex j with 8; # 0. Thus,
since @) is connected, §; # 0 for all i. Now 0 = (o, ) = >, fi(a,€li]) < 0, a
contradiction. O

Definition. We suppose that () is Dynkin or extended Dynkin. The roots are the
elements of

A={acZ¥»|a#0,qa) <1}

(One can define roots for arbitrary @), but the definition is more complicated.)
A root « is real if g(a) = 1, otherwise it is imaginary. In the Dynkin case all
roots are real. In the extended Dynkin case the imaginary roots are rd with r # 0.

Lemma (2). Any root o is positive or negative (that is, o or —a € NZ°).
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Proof. Write o = ot — o~ with at,a~ € N having disjoint support, then
(a™,a”) < 0. But then

1> g(a) =q(a™) +q(a”) = (a",a7) = g(a”) +q(a”)

so one of ™, a~ is an imaginary root, hence a multiple of 6. But then since o™
and o~ have disjoint support, the other must be zero. O

Lemma (3). If Q is Dynkin, then A is finite.

Proof. Two proofs: (i) Embed in an extended Dynkin quiver with radical vector &
and extending vertex i. Roots a for () correspond to roots with a; = 0. Now

gla£0) = q(a) £ (@,0) +¢(0) = g(a) =1

so f§ = a £ is a root, and hence positive or negative. Now [; = +1. Thus
_5j S Q; S 5j for all j

(ii) A is a discrete subset of the closed bounded (hence compact) subset {a €
R? : g(a) < 1} of RP, O

3.3 Cartan and Coxeter matrices

Definition. If R is a finite-dimensional algebra, with indecomposable projective
modules P[1],..., P[n] and simple modules S[1],. .., S[n|, the Cartan matriz C of
R is given by C;; = [P][j] : S[i]], the multiplicity of S[i] as a composition factor of
Pj).

This has nothing to do with (generalized) Cartan matrices in Lie theory. Now
suppose that () is a quiver with no oriented cycles. Then C' is the matrix with
rows and columns indexed by )y and

Ci; = dim Hom(P[i], P[j]) = dim e; KQe; = number of paths from j to 1.

Lemma (1). The jth column is of C' is dim P[j] and the jth row is (dim I[;])7.
For any o € Z2° we have

<dl_HlP[]],O£> =Q; = <O./,dl_m[[j]>
It follows that C' is invertible, with (C~1);; = (e[j], €[d]).
Proof. dime;P[j] = dime;KQe; = C;; = dim D(e;KQe;) = dime;l[i]. When

a = dim X, we have
(dim P[j], o) = dim Hom(P[j], X) — dim Ext'(P[j], X) = dime; X
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(o, dim I[j]) = dim Hom(X, I[j]) — dim Ext' (X, I[j]) =
= dim Hom(P[j], X) = dime; X
It follows for all a by additivity. Now using that dim P[j] = ). Cj;€[i], the equality

(dim P[j], e[k]) = ;) gives that . Cy;{e[t], e[k]) = ;. H
Definition. The Cozeter matriz is ® = —CTC~!. That is, it is the matrix with
& dim P[i] = —dim [[¢] for all &. Thus ®dim P = —dim v(P) for any projective
module P.

Lemma (2). If X has no projective summand, then dim7X = ® dim X.

Proof. f 0 - P, - Py — X — 0 is the minimal projective resolution, then
P, — Py — X — 0 is a minimal projective presentation, so one gets a sequence

0—=7X —=v(P)—vF) —-vX)—0
Since X has no projective summand, Hom(X, R) = 0, so v(X) = 0. Thus
dim7X = dimv(P;) — dimv(Fy) = ®(dim Py — dim P;) = ® dim X.
[

Lemma (3). We have (o, ) = —(B, Pa) = (Par, PB). Moreover a = « if and
only if o € radq.

Proof. (dim Pli], B) = 8; = (8,dim I[i]) = —(B, ® dim P[i]), and now use that the
dim P[i] span Z%.

Now ®a = « if and only if (8,0 — Pa) = 0 for all . But this is (8, a) +
(o, B). O

Lemma (4). If Q is Dynkin, then ® =1 for some N > 0.

Proof. q(®a) = q(a), so ® induces a map from the set of roots A to itself. Since ®
is invertible this map is injective, and since A is finite, this map is a permutation.
Thus it has finite order, say ®V(a) = a for all @ € A. Since €[i] € A, it follows
that ®V(a) = « for all a € Z%. O

3.4 Gabriel’s Theorem

Lemma (1). If Q is connected, without oriented cycles, then knitting gives a pre-
projective component and a preinjective component, and either

(i) the preprojective and preinjective components are the same, and KQ has
finite representation type, or

(ii) the preprojective and preinjective components are disjoint, and K@ has
infinite representation type.
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Proof. We have rad P[i] = @,,—; P[h(a)] and I[i]/socI[i] = @, [[t(a)], so
cach arrow a : ¢ — j gives irreducible maps P[j] — PJi] and I[j] — I[i]. Since
() is connected, knitting gives connected components, and if the preprojective
component contains one injective, then it is the preinjective component. O

Examples. (i)

4 3 a® »
s a Yy 7N 7 AN / ¥ AN
T e — i — as iy —~ % — 3

\2?‘; 4 \113’;‘? </ AN -~ AN
N : 2 12
m»,/ \3‘ / \1 VRN
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~ /
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Z) -—)q \‘
5 ‘ .
\ 2t
(““*E’*‘}mﬁ—— . 7
\ ﬁl‘ = ~
Zué S S\ " 5 - \
LT M — .
234 / \ e
and
. 2345
AN N
/w" \;\zm‘\“fg/\ 234, — L34
N/ N S AN
T Y S P
Z O\ 2 s I

Definition. If ) is extended Dynkin and X is a KQ-module, we define
defect(X) = (§,dim X) = —(dim X, §) € Z.

Observe that this only depends on the dimension vector of X, so it is additive on
short exact sequences.
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Lemma (2). If Q is extended Dynkin without oriented cycles, then for any vertex
1 we have

defect(P[i]) = —d;, defect(I[i]) = o;

and if 0 - X =Y — Z — 0 is an AR sequence, then defect(X) = defect(Z2).
Thus all preprojective modules have defect < 0 and all preinjective modules have
defect > 0, so the preprojective and preinjective components are disjoint and K@)
has infinite representation type.

Proof. The first statement is clear. Now
defect(X) = (§,dim X) = (§,dim77) = (§, dim Z) = —(dim Z, §) = defect(Z).
]

Lemma (3). If £ : 0 - X = Y — Z — 0 is a non-split exact sequence of f.d.
modules for any algebra, then dim End(Y) < dim End(X & 7).

Proof. Applying Hom(—,Y") to the short exact sequence gives a long exact sequence
0 - Hom(Z,Y) — Hom(Y,Y) - Hom(X,Y) — ...

so that
dim End(Y') < dimHom(Z,Y) + dim Hom(X,Y").

Similarly, applying Hom (X, —) gives
dim Hom(X,Y") < dim Hom(X, X) 4+ dim Hom(X, 7).
Now applying Hom(Z, —) gives the long exact sequence
0 — Hom(Z, X) — Hom(Z,Y) — End(Z) < Ext'(Z, X)

and the connecting map c is nonzero since it sends 1, to the element in Ext'(Z, X )
represented by &, so

dimHom(Z,Y) < dim Hom(Z, X) + dim Hom(Z, Z).
Combining these three inequalities we get the result. O]

Theorem (Gabriel). (i) If Q is a connected quiver, then KQ has finite represen-
tation type if and only if Q) is Dynkin.

(i) If Q is Dynkin, then the assignment X ~~ dim X gives a 1:1 correspondence
between indecomposable modules and positive roots.

92



Proof. (i) Suppose @ is Dynkin, so there is N > 0 with ®" = 1. If K@ has infinite
representation type, and X is in the preprojective component, then 7=V X has
dimension vector =¥ dim X = dim X, so since the modules in the preprojective
component are uniquely determined by their dimension vectors, we get 7™V X = X
which is nonsense.

If @ is non-Dynkin, then it has an extended Dynkin subquiver, and since any
representation of this quiver can be considered as a representation of ) (with any
extra vector spaces or linear maps zero), it suffices to show that this subquiver has
infinite representation type. Thus we may assume () is extended Dynkin.

If @ is an oriented cycle, we know it has infinite representation type. If it has
no oriented cycles, Lemma 2 gives the result.

(ii) By Lemma 1, every indecomposable is preprojective, so directing, so uniquely
determined by its dimension vector. Also every indecomposable X is a brick and
Ext!'(X, X) = 0, so by the lemma in §3.1, dim X is a root.

Now suppose « is a positive root. There are modules of dimension vector «, so
let X be one with dim End(X) minimal. If it decomposes, say X = U @&V, then
Ext'(U,V) = Ext!(V,U) = 0 by Lemma 3. Thus

1 =¢q(a) =dimEnd(U® V) —dimExt' (U V,U® V)

= q(dim U) + ¢(dim V') 4+ dim Hom(U, V') + dim Hom(V, U)
>14+14+0+0=2,

a contradiction. Thus X is indecomposable, so there is an indecomposable of
dimension vector «. O

There are lots of other ways to prove this theorem. The original paper is
P. Gabriel, Unzerlegbare Darstellungen. I, Manuscripta Math. 6 (1972), 71-103;
correction, ibid. 6 (1972), 309. The Tits form is so named, because of a simple
geometric argument of Tits, mentioned in this paper, which shows that if K is
an infinite field and ) is not Dynkin, then K() has infinite representation type.
The most famous proof, which introduced certain reflection functors (which later
became part of ‘tilting theory’), is I. N. Bernstein, I. M. Gelfand and V. A. Pono-
marev, Coxeter functors, and Gabriel’s theorem (Russian), Uspehi Mat. Nauk 28
(1973), no. 2(170), 19-33, English translation: Russian Math. Surveys 28 (1973),
no. 2, 17-32. The proof for K algebraically closed in my earlier Oxford lecture
notes from 1992, followed Tits and an argument of Ringel, using Lemma 3 and
other homological algebra, but avoiding Auslander-Reiten theory.
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3.5 Regular modules

To begin with, () is a connected non-Dynkin quiver without oriented cycles. As
for any f.d. algebra, we have bijections

{non-projective indecomposables} " {non-injective indecomposables},

T

and 7P = 0 and 771 = 0 for P projective and [ injective. Also, since K@ is
hereditary, we have natural isomorphisms

Hom(X,7Y) = DExt'(Y, X) = Hom(7~ X, Y).

Since () is connected non-Dynkin, the preprojective and preinjective components
are disjoint.

Definition. An indecomposable module is preprojective or preinjective if it is in
the preprojective or preinjective component, so of the form 77" P[i] or 7"I[i] re-
spectively. Otherwise it is regular.

A module is preprojective, preinjective or reqular if each indecomposable sum-
mand is. The corresponding module classes are P, Z, R.

- D .

Properties. (a) A module X is
(i) preprojective < 77X = 0 for m > 0,
(ii) preinjective < 77X =0 for m > 0,
(iii) regular & X = 777X =0 for all m € Z.
This is clear.

(b) There are no non-zero maps from right to left in the diagram, that is,
Hom(Y, X) = 0 if Y is preinjective and X is preprojective, Y is preinjective and
X is regular, or Y is regular and X is preprojective,

For example if Y is preprojective and X is not, then X = 777X for m > 0,

S0
Hom(X,Y) = Hom(r ™7™ X,Y) =2 Hom(7"X,7"Y) =0

for m > 0, etc.

(c) R is closed under extensions and images; P is closed under extensions and
submodules; 7 is closed under extensions and quotients.
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Suppose 0 — X — Y — Z — 0 is exact with X, Z regular. If Y has a
preinjective summand U, then the map U — Y — Z is zero, so the inclusion
U — Y factors through X, which is impossible. Similarly if Y has a preprojective
summand U then the map X — Y — U is zero, so the projection Y — U factors
through Z, which is impossible.

Now suppose that 6 : X — Y with X, Y regular. There is no nonzero map
from a preinjective to Y, so also none to Im#. Similarly there is no nonzero map
from Im @ to a preprojective. Thus Im 0 is regular.

Rest is straightforward.

(d) 7 and 7~ define inverse equivalences from R to itself.

From now on we suppose that @) is extended Dynkin without oriented cycles.
Lemma (1). There is N > 0 such that ® dim X = dim X for reqular X .
Proof. 76 is an additive subgroup of Z%°. Since § € rad g,

AU{0} = {a € Z? : q(a) < 1}.

is a union of cosets of ZJ.

Let e be an extending vertex. If & € A U {0}, then the coset of o contains
b = a— a0, a vector with 8, = 0, which is either the zero vector, or a root for the
corresponding Dynkin quiver. Thus the set of these cosets (A U {0})/Zd is finite.

Recall that ¢(®a) = ¢(«) for any a, and Pa = « if and only if a € rad g = Z4.
Thus ¢ induces a permutation of the finite set (A U 0)/ZJ. Thus there is some
N > 0 with ®V the identity on (AUO0)/Zd. Since €[i] € A for all i € Q, it follows
that ®" is the identity on Z% /Zd.

Now &V dim X — dim X = rJ, for some r € Z. Then by induction we have
®™N dim X = dim X + mrd for all m € Z. Since X is regular, this must be
positive for all m. This forces r = 0. O

Lemma (2). (i) An indecomposable module is preprojective, reqular, or preinjective
according to whether its defect is < 0,0 or > 0.

(i1) An arbitrary module is reqular if and only if it is defect-semistable, meaning
that it has defect 0 and all submodules have defect < 0.

(111) R is closed under kernels and cokernels, so it is an abelian category and
the inclusion functor R — KQ-mod is ezxact.

Proof. (i) We have seen that the preprojectives have defect < 0 and the preinjec-
tives have defect > 0. Thus we must show that if X is regular, then defect(X) = 0.
Say dim X = a. Then ®Ya = a. Let B = a4+ ®Pa + ...V ta. Clearly &3 = 3,
so B =rd. Now

N-1

0=(8,0) =Y (®'a,8) = N(a, ),

1=0
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so {a,d) = 0.

(i) If X is regular and Y is an indecomposable preinjective submodule, then
there must be a non-zero map from Y to an indecomposable summand of X, which
is impossible. Conversely, if X has no submodules of defect > 0, then it has no
preinjective summand, and if X has defect 0, then it can also have no preprojective
summand.

(iii) If 0 : X — Y with X, Y regular, then Im @ is regular, so the exact sequence
0 — Kerf - X — Im6f — 0 shows that Ker 8 has defect 0, and since there is no
map from a preinjective to Ker 6, it is regular. Dually for Coker f. The inclusion
functor is exact since kernels and cokernels are computed in K @Q-mod. O]

Lemma (3). Suppose « is a positive real root. If (6,a) # 0 or a < 6, then there
s an indecomposable X of dimension «.

(If (6, ) # 0 then X is preprojective or preinjective, so a directing module, so
a brick without self-extensions, and the unique indecomposable of this dimension
vector.)

Proof. Pick a module X of dimension o with dim End(X') minimal. We show that
if X decomposes as X = U@V with U,V # 0. We show that (4,a) = 0 and § < «,
contrary to the assumptions.

By minimality, Ext'(U, V) = Ext'(V,U) = 0. Then

1 =¢q(a) =q(dimU) + ¢(dim V) + dim Hom(U, V') + dim Hom(V, U).

Thus, without loss of generality, ¢(dimU) = 0, so dimU € Zd, so § < a. Now
q(dim V') = ¢(a) = 1, so the Hom spaces must be zero. Thus (dim V,dimU) = 0,
so (dim V;,0) = 0, so («,0) = 0. O

3.6 Tubular structure
We continue with R = K@ with @ extended Dynkin without oriented cycles.

Definition. A regular module X is reqular-simple if it is simple in the category
R. That is, X is non-zero, and it has no proper non-trivial regular submodule.

A regular module X is regular-uniserial if if is uniserial in the category R. That
is, the regular submodules of X are totally ordered by inclusion.

Similarly we can define the reqular-top, reqular-socle, a reqular-composition se-
ries and the regular-length of a regular module.

Note that since 7 is an equivalence on the abelian category R, so also exact on
R, so it preserves the regular length, etc.
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Lemma. Suppose S is a reqular-simple of dimension vector a.. Then

(i) End(S) is a division algebra, and either Ext'(S,S) = 0 and End(S) = K,
so that « is a real root, or dim Ext'(S,S) = dim End(S) and « is an imaginary
r0o0t.

(i1) S is periodic under T, with period dividing N, and 7S = S if and only if «
1S an imaginary root.

Proof. (i) S is a brick by Schur’s Lemma for the abelian category R. Now if
Ext'(S,S) = 0, then End(S) = K by the lemma in §3.1. On the other hand if
Ext!(S,9) # 0, then it is a module for the division algebra End(S), so its dimension
is at least dim End(S). Then 0 < ¢(a) = dim End(S) — dim Ext'(S, S) < 0.

(ii) The modules 775 are regular simple for all j. If a is a real root, then
(a, ®Va) = (o, a) = 1, so Hom(S,7VS) # 0, so S = 7V by Schur’s Lemma for
the abelian category R, so the period divides N.

If o is an imaginary root, then Ext'(S,S) # 0, so Hom(S,75) # 0, so S = 78
by Schur’s Lemma.

If 7S =2 S then ®a = «, so « is radical, so a = rd is an imaginary root. O]

Example. Consider the ‘four subspace quiver’ of type Dy

__\_; ’./_

If dim X = « then defect(X) = (§,a) = a1 + as + a3z + a4 — 2as.
(a) The module Sj5 given by

\}//

o ¢ X~ XK

is regular-simple. There are 6 modules like this, denoted S5;; with 0 <1 < j <4
where the vertices ¢ and j are copies of K. The minimal projective resolution of
Slg is

0— P[5 = P[1]® P2] = S12 =0

so 7512 is given by the exact sequence

0— 7512 = I[5] = I[1] & I[2]
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SO 7'512 = 534.
(b) If U, V,W, Z are distinct 1-dimensional subspaces of K?, they give a KQ-
module

L
\/>>‘;<2
"7
Z

It is indecomposable of defect 0, so regular. Moreover it is regular simple. Namely,
suppose N is a proper non-trivial regular submodule N of dimension a. Then

0 = defect(N) = a1 + as + ag + ay — 2as.

If a5 = 2, this implies that N is the whole module. If a5 = 0, it implies that
N — 0. Thus as = 1, so two of ay, as, asz, ay must be 1 and two must be 0. But
then the 1-dimensional subspace N5 must contain two of U, V, W, Z, so two distinct
1-dimensional subspaces, which is impossible.

(c) Using the subspace W twice gives a module M via

U

N

B

"7

W

(It is indecomposable since U, V, W already give an indecomposable representation
of the Dynkin quiver Ds.) The module M is indecomposable and regular. It fits
into an exact sequence

O

U
\/x“ Vﬁki/w
7

-
°/
(V]
that is, 0 — S33 — M — S;3 — 0. This is the AR sequence ending at Si».

Moreover this sequence shows the only proper non-trivial regular submodule of M,
so it is regular-uniserial.

W - — 0

O—

0
v
W

N LS

W
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Theorem (1). For any r > 1 and any regular-simple S, there is a unique reqular-
uniserial module S{r} with reqular-length r and regular-top S. Its regqular com-
position factors, working from the top down, are S,7S,7%S,...,7""1S. The AR
sequence ending at S{r} has the form

0= (rS){r} > (TS){r—1}aeS{r+1} - S{r} =0
where we set T{0} =0 for T regular simple.

Thus if S has 7-period p, the connected component of the AR quiver containing
S is of the form

) . . ’
‘ ‘ )
|

VA T NN AN \j
I Ty T T TR
SO G NN
LTS Deata /TSW &3
2N o N . N 7N

S < S - ==~ 77 e S T S

v . v 5 ' }
& \‘L?M\\b P

The dotted lines must be identified, to give a tube

In particular, for period 1, the component looks as follows

NN
K
7%
] Siﬂ
e
S
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Proof. We prove the existence, uniqueness and properties of S{r} and the form of
the AR sequence ending at S{r — 1} for all S by induction on r. If » = 1 this is
clear, with S{1} = S, so assume r > 1 and the claims are true for " <.

If » > 1 the AR sequence ending at S{r — 1} shows that there is an irreducible
map S{r} — S{r—1}. Applying 7 gives an irreducible map 7(S{r}) — 7(S{r—1}).
By uniqueness, and since 7 is an equivalence on R, we have 7(S{r}) = (7.5){r}
and 7(S{r — 1}) = (75){r — 1}. Thus, even for r = 1, the AR sequence ending at

S{r} has the form
0= (rS){r} = (#S{r—-1}eS{r+1} - S{r} -0

for some module S{r + 1} of regular-length r + 1. We can determine the regular-
socle of S{r + 1} by examining Hom(7", S{r + 1}) for regular simples 7. Applying
Hom(7T, —) to the AR sequence, we get

dim Hom(7, (7S){r —1} & S{r+1}) < dimHom(T, (7S){r}) + dim Hom(T, S{r}).

Now clearly (7.5){r — 1} must be the unique regular submodule of S{r} of regular-
length » — 1, so
Hom (7, (7S){r — 1}) = Hom(T, S{r}).

Thus

dim End(7"S) (T'=1"S)

dim Hom(T,, S{r + 1}) < dim Hom(T, (5){r}) = {0 (otherwise).

It follows that S{r-+1} must have regular socle 77S. Also there is an irreducible epi
S{r + 1} — S{r} and S{r} is regular-uniserial with regular composition factors
S,7S,..., 777 1S. By regular-lengths, the kernel of this epi must be 77S. Thus
S{r + 1} is regular-uniserial with the expected regular-composition factors.

Now suppose that X is another regular-uniserial module of regular-length r + 1
and regular-top S. The quotient modulo its regular-socle must be S{r}, and by
the properties of AR sequences, the map X — S{r} must factor through (7.5){r —
1} @ S{r+1}. Now the composition via the first summand kills the regular-length
2 submodule of X. Thus the composition X — S{r + 1} — S{r} must not kill
this submodule. It follows that the map X — S{r + 1} must be injective. Thus
by regular-lengths, it is an isomorphism. ]

Remark. Note that if S is a regular-simple, then S{r} is a brick if and only if S
only occurs once as a regular-composition-factor of S{r}, which is if and only if
r < p, where p is the 7-period of S.

Corollary. Fvery indecomposable reqular module is regular-uniserial, so isomor-
phic to S{r} for some r and some S.
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Proof. Suppose X is a regular indecomposable which is not regular-uniserial. Let
S{r} be a quotient of X which is regular-uniserial of maximal regular-length. By
the AR property, the map X — S{r} factors through (7.5){r — 1} @ S{r + 1}.
Now the composition via the first summand cannot be surjective, so (since S{r} is
regular-uniserial), the composition X — S{r+1} — S{r} must be surjective. But
then the map X — S{r + 1} must be surjective, contradicting maximality. O

Theorem (2). (a) If S is reqular simple of T-period p > 1, then
dim S 4+ dim 7S + - - - + dim 77719 = 6.

(b) Regular simples S, T of T-period > 1 of the same dimension vector o must
be isomorphic.
(c) All but finitely many regular simples have T-period 1.

Proof. (a) We know a = dim S is a real root. Let k& be maximal such that the
root § = a — ko is still positive. Then [ is a real root and 5 < ¢, so there is an
indecomposable X of dimension 8. Clearly X is regular, and since (o, 3) =1, X
is in the same tube as S, thus we may replace S by any regular-composition-factor
of X, and hence assume that 0 < o < 4.

Then 6 — « is also a real root < 9. Thus there is an indecomposable R of
dimension § — «, clearly regular.

As (a,0 —a) = —1, 0 # Ext' (S, R) & DHom(R,7S), so reg-top R = 75. As
(6 —a,a) = —1,0 # Ext' (R, S) = DHom(7~S, R), so reg-soc R = 7~ S. Tt follows

that R must at least involve 7.5, 725, ..., 7P 1S, so
dimS +dim7S 4 --- + dim777'S < dim S + dim R = §.

Also the sum is invariant under @, so it is a multiple of §.

(b) Hom(S,T) # 0 since 1 = {(a,a) = dimHom(S,7T) — dim Ext*(S,T), so
ST,

(c) There are only finitely many positive roots < 4. O

Remark. With more work, one can show that:

- For Q of type A,, with p arrows clockwise and ¢ arrows anticlockwise, there
are tubes with periods p and ¢, and all other tubes have period 1.
The supports of the regular simples are given by the maximal anticlockwise and
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clockwise paths. An example with p =4 and ¢ = 2 is as follows.

Note that the Kronecker quiver 1 :; 2 has p = ¢ = 1, so all tubes have period 1.

- Otherwise, the Dynkin quiver corresponding to () has a central vertex and
three arms, and there are tubes of period equal to the number of vertices in each
arm (including the central vertex), and all other tubes have period 1.

To see this, by duality, we may choose an extending vertex e which is a source,
so that S[e] is injective. In the AR quiver of the Dynkin quiver, the indecomposable
module X of dimension vector ' = § — €[e] will lie on the 7-orbit of the projective
module corresponding to the central vertex. Then each arm of the Dynkin quiver
will give a subquiver of the AR quiver which is ‘wing’ for X. For example an arm
of length 4 gives a wing

Now if Y is one of the modules in the circled region, then
(dim Y, dim X) = dim Hom(Y, X) — dim Ext' (Y, X)

= dim Hom(Y, X') — dim Hom(X, 7Y") = 0,
where 7 denotes the AR translate for the Dynkin quiver, and

(dim Y, dim S[e]) = (dim Y dim 7[e]) = dim Hom(Y, 7[e]) = 0
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since Y is not supported at e. Thus

defect(Y) = (dim Y, 9) = (dim Y, dim X + dim S|e]) = 0,

so Y is regular, and module in the circled region form part of a tube with period
equal to the length of the arm. For example, for the following orientation of Ds

5
N

l-T
L
o
! 2

with extending vertex e = 6, the corresponding Dynkin quiver has arms of length
2,2,3. Its AR quiver is as follows.

The module X is shown, as are the circled parts of the three wings, corresponding
to tubes with period 2,2,3.

3.7 Parameterizing the tubes

We continue with R = K@ with @) extended Dynkin without oriented cycles. We
show that the tubes are indexed by the projective line. The projective line over K
is

P! := {irreducible homogeneous polynomials h(z,y) € K[z,y] up to scalars }.
The K-points are the polynomials of degree 1,
PY(K) = {\x + py : A\, u € K, not both zero}.
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If a homogeneous polynomial of degree d doesn’t involve y?, then it is a multiple
of z, so by irreduciblity it is a scalar multiple of x. It follows that

P' = {2} U {2%f(y/x) : f(t) € K[t] irreducible of degree d}.

If K is algebraically closed, there are only the K-points.

Let e be an extending vertex, P = Ple|, p = dim P. Clearly (p,p) = 1 =
(p,0). Thus § + p is a positive real root and (6 + p,d) = 1, so there is a unique
indecomposable L of dimension § + p. Now P and L are preprojective, are bricks,
and have no self-extensions.

Now dim Hom(P, L) = (p,p+9) = 2. Also, since P is directing Hom(L, P) = 0.
Then also Ext'(L, P) = 0 since (dim L, dim P) = (p + 6, p) = (p, p) — (p,d) = 0.

Example. For simplicity, we take the orientation

1

s

|

N

$

of D, with extending vertex e = 5. The preprojective component starts as follows

2
2 ‘%{ ‘13*
S
3 \ / % \ / 1 \ /
N1 /“' 7 [13-‘ 3
e 'i $ B3 - g = [5?/
§ q;\
%7 \\12‘;7. gl\,g/s”\
NN
5 'l; | 1
4 a
I A

We fix a basis a,b of Hom(P,L). For d > 0, let K[z,y|s be the space of
homogeneous polynomials of degree d. Given an irreducible polynomial h(z,y) €
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K|z, y]4, we consider the vector spaces and linear maps

Ko, ylas = Kz, yla/ Kh(z,y).

Y

Both vector spaces have dimension d. We use these to define a map of KQ)-modules
On: POrK[r,yla1 — Lok (K[z,yla/Kh(z,y)), Oh(p®g) = a(p)®@Tg+b(p)®Yg.
Theorem. (a) Every tube contains a unique module in the set

Y ={X:X isabrick, dim X € Z§ and (reg-top X). # 0}

(b) If h(x,y) is a irreducible homogeneous polynomial of degree d, then Coker(6,) €
Y of dimension vector d§, and if W (x,y) is another irreducible polynomial of de-
gree d, then Coker(0),) = Coker(6y) if and only if h, h' are scalar multiples of each
other.

(c) This gives a bijection between P! and the set of isomorphism classes of
modules in 33, so the set of tubes in the AR quiver.

Proof. (Sketch)
(a) Follows from Theorem 2 in §3.6.

(b) for the case d > 1. We can write h(x,y) = z%f(y/x) with f(t) € K|[t]
irreducible of degree d. We set V' = K|[t]/(f(t)), a simple K [t]-module of dimension
d > 1. We can identify 6, with the map

Oy : PRV =LV, Oy(p®v)=a(p)®@v+b(p) tv.

Similarly let A’ correspond to simple module V.
A KJt]-module homomorphism ¢ : V' — V'’ induces a map Coker(fy) —
Coker(fy) via the commutative diagram

PV %5 LoV — Coker(fy) — 0
- N
PoV My LoV —— Coker(fy) — 0.
This gives a linear map
Hom ) (V, V') — Hom(Coker(6y ), Coker(6y)).

Now if h, h' are scalar multiples of each other, then V, V' are isomorphic, and this
gives an isomorphism of the cokernels.
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Conversely, we claim that this map is always surjective. Applying Hom(L ®
V, —) to the exact sequence

0— Ker(@v/) — P X V, — Im(QV/) — 0
gives exact sequence
— Ext' (L ®@ V,Ker(6y/)) — Ext*' (L@ V,P® V') = Ext'(L ® V,Im(y)) — 0.

Now Ext!(L, P) = 0, so Ext'(L ® V,Im(6y~)) = 0. Thus, applying Hom(L ® V, —)
to the exact sequence

0 — Im(fy) - L® V' — Coker(6y+) — 0
gives an exact sequence
0 — Hom(L ® V,Im(6y+)) - Hom(L ® V, L ® V') — Hom(L @ V, Coker(6y)) — 0

It follows that any map v : Coker(6y) — Coker(6y-) lifts to a map L&V — LV,
and since End(L) = K this is of the form 1 ® ¢ for some linear map V' — V’. This
induces a map Im(0y) — Im(6y-), and since P is projective, this lifts to a map
PRV — PV’ Again this is of the form 1® ¢', for some linear map ¢’ : V" — V',
Now since (1 ® ¢)0y = 0y(1 ® ¢'), we see that

a(p) ® ¢(v) + b(p) @ ¢(tv) = a(p) ® ¢'(v) + b(p) ® td'(v)

for p € Pand v € V. Now P = Ple] = KQe,, where e is the extending vertex, and
so a(e.) and b(e.) are linearly independent in L. Thus ¢ = ¢' € Homg(V, V'), so
the map

Hom ) (V, V') — Hom(Coker(6y ), Coker(6y-))

is indeed surjective.

Now if Coker(6y) = Coker(6y), then there is a nonzero map ¥ between them,
so there is a nonzero map ¢ € Homgp(V,V’), so V and V' are isomorphic (since
they are simple). Thus h(z,y) and A'(x,y) are multiples of each other.

On the other hand, taking V' = V, our surjective map is a surjective algebra
homomorphism

Endgpg (V) — End(Coker(8y)),

and End gy (V) is a field extension of K of degree d, hence so is End(Coker(6y)). It
follows that Coker(6fy ) is a brick, so indecomposable, and it must be regular since
the indecomposable preprojective and preinjective modules all have endomorphism
algebra K. Since it is regular, Coker(fy) has defect 0, and P and L have defect
—1, so Ker(fy) has defect 0, but it is preprojective, so it must be 0. Finally,
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if Coker(fy) has regular top T, then dim7, = dimHom(P,T) = (p,dimT) =
(p+6,dimT) = dim Hom(L, T) # 0.

(b) for the case d = 1. We have h(z,y) = A\x + py, so we can identify ), with
Ab — pa : P — L. Thus we consider 0 # 6 € Hom(P, L).
As before, an isomorphism between the cokernels lifts to maps between P and

L as
9

P > L Coker(f) —— 0
I !
P25 » Coker(f') —— 0

Now End(P) = K = End(L), so ¢ and ¢’ are multiplication by a scalar, and ¢ is
non-zero. Thus # is a multiple of ¢'.

Suppose # is not mono. Now Ker 6 and Im 6 are preprojective (since they embed
in P and L), and so they have defect < —1. Now the sequence

0— Kerf - P—Im06 —0

is exact, so —1 = defect(P) = defect(Ker #) + defect(Im @) < —2, a contradiction.

Let X = Coker 6, and consider £ : 0 — P YL X 0. Apply Hom(—, P) to
get Ext'(X, P) = K. Apply Hom(—, L) to get Hom(X, L) = 0. Apply Hom(X, —)
to get End(X) = K. Now X is indecomposable of dimension d, so has defect 0, so
is regular. Now (reg-top X). # 0 as before.

(c) We need to show that every X € ¥ arises as a Coker(6). Now if X has
dimension kd, then composition with a and b induce maps ¢,, ¢, : Hom(L, X') —
Hom(P, X), and these are k-dimensional spaces.

If there is some 0 # v € Hom(L, X') with a linear relation Ac,(v) + pey(v) = 0,
then the composition of v with § = Aa + ub is zero, so there is a non-zero map
Coker(#) — X, so X is in the same tube as Coker(#), so isomorphic to it, and
0 = 0, for a suitable homogeneous polynomial of degree 1.

Otherwise ¢, is an isomorphism, so we can turn Hom(L, X) into a K[t]-module
with ¢ acting as —(cp) 'c,. It will be a simple module, but we don’t know that
now, so let V' be a simple submodule of it. We have dimV > 1 since there is
no relation between ¢,(v) and ¢,(v) for 0 # v € V. We have a evaluation map
ev: LRV — X, v® ¢ ¢(v), and clearly ev # 0. Also

evly (p @ v) = ev(a(p) ® v+ b(p) ® tv) = v(a(p)) + (tv)(b(p))

= v(a(p)) + (=6 'cav)(b(v)) = v(a(p)) — (cav)(v) = 0.
Thus we get a non-zero map Coker(fy) — X, so these two modules are in the
same tube, so isomorphic. ]
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Example. In the example before, the module L can be given by the indicated
matrices, and then a map P — L is given by a linear map K — K? as indicated

where A\, u € K are not both zero and satisfy a\ + b = 0. This module is regular

simple unless (A ) is a multiple of one of the other maps, say (1 0), when the
module is not regular simple since it has regular submodule

0
(o\\)K

kb 7
~a %

N

The theorem ensures that if K is infinite, there are infinitely many indecom-
posable modules of dimension §. Combined with the tubular structure of regular
modules, one can deduce the following. The proof is omitted.

0
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Corollary. (i) If X is indecomposable, then dim X is a root.

(i1) If « is a positive real root, there is a unique indecomposable module with
dimension vector a.

(i11) If o is a positive imaginary root, there are indecomposable modules with

dimension vector o, and if the field K has infinitely many elements, there are
infinitely many such modules.
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