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I discuss the basics of representation theory of algebras and quivers, including
Nakayama algebras, Auslander-Reiten theory, covering theory using graded mod-
ules and the representation theory of Dynkin and extended Dynkin quivers. (Be-
cause of lack of time, I was not able to discuss correspondences given by faithfully
balanced modules, homological conjectures, etc.)

Students are expected to already have some familiarity with rings and modules,
and topics such as categories, projective and injective modules, and Ext groups.

Here are some relevant books. The book by Erdmann and Holm is a good intro-
duction, aimed at bachelor students. The book by Assem, Simson and Skowronski
is a comprehensive introduction.

• I. Assem and F. U. Coelho, Basic representation theory of algebras, Springer
2020.

• I. Assem, D. Simson and A. Skowroński, Elements of the representation the-
ory of associative algebras. Volume 1, Techniques of representation theory,
CUP 2006.

• M. Auslander, I. Reiten and S. O. Smalø, Representation theory of Artin
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• M. Barot, Introduction to the Representation Theory of Algebras, Springer
2015.

• H. Derksen and J. Weyman, An introduction to quiver representations, Amer-
ican Mathematical Society 2017.

• K. Erdmann and T. Holm, Algebras and Representation Theory, Springer
2018.

• P. Etingof et al., Introduction to representation theory, American Mathemat-
ical Society 2011.

• P. Gabriel and A. V. Roiter, Representations of finite dimensional algebras,
Springer 1977.
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• R. Schiffler, Quiver Representations, Springer 2014.

• A. Skowroński and K. Yamagata, Frobenius algebras 1. Basic representation
theory, European Mathematical Society 2011.

• A. Skowroński and K. Yamagata, Frobenius algebras 2. Tilted and Hochschild
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1 Algebras, quivers and representations

1.1 Algebras

Definition. Let K be a commutative ring. By an algebra over K or K-algebra we
mean a K-module R which is also a ring, such that the multiplication

R×R→ R

is K-bilinear. Rings and algebras always have a one, denoted 1 or 1R.
A homomorphism of algebras θ : R → S is a K-module homomorphism which

is also a ring homomorphism. In particular, θ(1R) = 1S.
A subalgebra S of an algebra R is a K-submodule which is also a subring. In

particular, 1R ∈ S.

Remarks. (1) Any ring is a Z-algebra in a unique way.
(2) To specify a K-algebra, it is equivalent to give a ring R and a ring homo-

morphism K → Z(R), where Z(R) is the centre of R.
(3) If R is a K-algebra, then any left R-module M becomes a K-module by

restriction, that is, λm = (λ1R)m for λ ∈ K and m ∈M .
(4) If M is a K-module, then EndK(M) is a K-algebra in the natural way.

A representation of an algebra R is given by a K-module M and a K-algebra
homomorphism

θ : R→ EndK(M).

Using the formula
θ(r)(m) = rm

we see that a representation of R is exactly the same thing as a left R-module.
(5) The category R-Mod of left R-modules is naturally a K-category, that is,

the spaces HomR(X, Y ) are naturally K-modules, and composition is K-bilinear.

Remark (Conventions). Because this course is mainly about representations of
finite-dimensional algebras over a field, from now on I shall assume that K is a
field, unless stated otherwise. But many definitions work for K an arbitrary ring.

I shall not yet assume that all algebra are finite-dimensional. If R is a K-
algebra, I write R-mod for the category of finite-dimensional R-module. Warning:
this is not the same as the category of finitely generated R-modules, unless R is
finite-dimensional.

Remark (Semisimplicity). Recall that a module M is semisimple if it satisfies the
following equivalent conditions.

(i) M is the sum of its simple submodules,
(ii) M is isomorphic to a direct sum of simple modules,
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(iii) every submodule of M is a direct summand, that is, for every submodule
N of M there is a submodule C with N ⊕ C =M .

It follows that any submodule or quotient of a semisimple module is semisimple,
and any direct sum of a family of semisimple modules is semisimple.

A ring R is semisimple if R is a semisimple R-module. It follows that every
module is semisimple. According to the Artin-Wedderburn Theorem, it is equiva-
lent that

R ∼= Mr1(D1)× · · · ×Mrn(Dn)

with the Di division rings (i.e. all nonzero elements are invertible).
Many natural f.d. algebras are semisimple, but once one has determined the

simple modules, the representation theory of such algebras is trivial, and so we are
mainly interested in non-semisimple algebras.

Examples (For motivation, without proofs). (1) The f.d. division algebras over R
are R, C and the quaternions H = {a+ bi+ cj + dk : a, b, c, d ∈ R}.

(2) If G is a group then the group algebra is

KG = {
∑
g∈G

agg : ag ∈ K, all but finitely many zero}.

Representations of KG correspond to representations of the group

ρ : G→ GL(V ).

Maschke’s theorem: if G is finite and its order is invertible in K, then KG is
semisimple.

(3) The polynomial ring K[x1, . . . , xn]. If K is algebraically closed, f.d. K[x]-
modules are classified by Jordan normal form.

(4) The free algebraK⟨x1, . . . , xn⟩. It has basis the words in the xi. For example
K⟨x, y⟩ has basis

1, x, y, x2, xy, yx, y2, x3, x2y, xyx, xy2, yx2, yxy, . . .

A f.d. K⟨x, y⟩-module with vector space Kn is given by two n× n matrices X, Y ,
and a homomorphism (Kn, X, Y ) → (Km, X ′, Y ′) is given by an m × n matrix
A with AX = X ′A and AY = Y ′A, so isomorphism is given by simultaneous
conjugacy.

This is the basic wild problem. The 1-dimensional representations are given
by a pair of elements of K. One can classify 2-dimensional representations, and
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with enough work also n-dimensional representations for small n, but there is no
classification known, or expected, which works for all n.

(5) Let V be a vector space. The tensor powers are

T n(V ) = V ⊗ V ⊗ · · · ⊗ V︸ ︷︷ ︸
n

,

where tensor products are over K and T 0(V ) = K. The tensor algebra is the
graded algebra

T (V ) =
⊕
n∈N

T n(V ) = K ⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ . . .

with the multiplication given by T n(V ) ⊗K Tm(V ) ∼= T n+m(V ). If V is has basis
x1, . . . , xn, then T (V ) ∼= K⟨x1, . . . , xn⟩.

(6) The exterior algebra

Λ(V ) = T (V )/(v2 : v ∈ V ).

If V has basis x1, . . . , xn then in Λ(V ) we have

0 = (xi + xj)
2 = x2i + xixj + xjxi + x2j = xixj + xjxi

and in fact
Λ(V ) ∼= K⟨x1, . . . , xn⟩/(x2i , xixj + xjxi).

More generally, suppose that q : V → K is a quadratic form, meaning that
(a) q(λx) = λ2q(x) for λ ∈ K and x ∈ V , and
(b) the map V × V → K, (x, y) 7→ q(x+ y)− q(x)− q(y) is a bilinear form in

x and y.
The associated Clifford algebra is

C(V, q) = T (V )/(v2 − q(v)1 : v ∈ V ).

Now suppose that V has basis x1, . . . , xn and there are ci ∈ K with

q(λ1x1 + · · ·+ λnxn) = c1λ
2
1 + · · ·+ cnλ

2
n

for λ1, . . . , λn ∈ K, then for i ̸= j we have

ci+cj = q(xi+xj) = (xi+xj)
2 = x2i+xixj+xjxi+x

2
j = q(xi)+q(xj) = ci+xixj+xjxi+cj

and in fact
C(V, q) ∼= K⟨x1, . . . , xn⟩/(x2i − ci, xixj + xjxi).
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One can show that Λ(V ) and C(V, q) have basis the products xi1 . . . xir with
i1 < · · · < ir.

For example the algebra of 3-d Euclidean space is given by V = R3 with

q(λ1x1 + λ2x2 + λ3x3) = λ21 + λ22 + λ23.

The Clifford algebra has basis

1, x1, x2, x3, i = x1x2, j = x2x3, k = x1x3, ℓ = i1x2x3.

Then i2 = x1x2x1x2 = −x21x22 = −1 and ij = x1x2x2x3 = k, etc, so 1, i, j, k span a
subalgebra isomorphic to H. Also ℓ2 = −1, so 1, ℓ span a copy of C.

If charK ̸= 2 and the bilinear form associated to q is non-degenerate, then
C(V, q) semisimple. In physics spinors are important—they are elements of a
representation of a Clifford algebra.

(7) If G is a Lie group, one is usually interested in the representations

ρ : G→ GLN(C)

which are continuous or smooth. As an algebraic version, one can take G =
GLn(K) and then one is interesed in the representations

ρ : GLn(K)→ GLN(K)

such that each entry of ρ(g) is a rational function of the components of g. For
example the natural representaion of GL2(K) is

GL2(K)→ GL2(K),

(
a b
c d

)
7→
(
a b
c d

)
,

the determinant representation is

GL2(K)→ GL1(K),

(
a b
c d

)
7→ ad− bc,

and the dual of the natural representation is

GL2(K)→ GL2(K), A =

(
a b
c d

)
7→ (A−1)T =

1

ad− bc

(
d −c
−b a

)
.

To study such representations, it suffices to understand the representations in which
all entries are homogeneous polynomials of fixed degree r. Such representations
correspond to representations of a f.d. algebra S(n, r) called the Schur algebra. In
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fact the symmetric group Sr acts on T r(V ) where letting V = Kn by permuting
the terms in a tensor, and S(n, r) can be defined as

S(n, r) := EndKSr(T
r(V )).

For K of characteristic zero it is a semisimple algebra, but for K of positive charac-
teristic it need not be. The canonical reference for the Schur algebra is J.A. Green,
Polynomial representations of GLn, second edition, Springer 2007.

(8) The Temperley-Lieb algebra TLn(δ) for n ≥ 1 and δ ∈ K was invented to
help make computations in Statistical Mechanics. It has basis the diagrams with
two vertical rows of n dots, connected by n nonintersecting curves. For example

Two diagrams are considered equal if the same vertices are connected. The product
is defined by

ab = δrc

where c is obtained by concatenating a and b and deleting any loops, and r is the
number of loops removed. For example

The algebra TLn(δ) is f.d., with dimension the nth Catalan number. Let ui be
the diagram
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Then u2i = δui, uiui±1ui = ui and uiuj = ujui if |i− j| > 1
One can show that

TLn(δ) ∼= K⟨u1, . . . , un−1⟩/I

where I is generated by these relations. For generic δ, TLn(δ) is semisimple, but
for some δ it is not.

The Temperley-Lieb algebra is also important in Knot Theory.
The Markov trace is the linear map tr : TLn(δ) → K sending a diagram to

δr−n where r is the number of cycles in the diagram obtained by joining vertices
at opposite ends.

The (Artin) braid group Bn is the group generated by σ1, . . . , σn−1 subject to
the relations

σiσj = σjσi (|i− j| > 1), σiσi+1σi = σi+1σiσi+1.

One can show that the elements of Bn can be identified with braids

identifying two such braids if they are isotopic. The generators correspond to the
braids

and the relations are as follows
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By joining the ends of a braid, one gets a knot (or a link if it is not connected),
for example

Moreover any knot arises from some braid (for some n).
Given 0 ̸= A ∈ K, there is a homomorphism θ : KBn → TLn(δ) where

δ = −A2−1/A2, with θ(σi) = Aui+(1/A), θ(σ−1i ) = (1/A)ui+A. Composing with
the Markov trace, this gives a map tr θ : KBn → K. One can show that the image
of an element of Bn only depends on the knot obtained by joining the ends of the
braid, and it is a Laurent polynomial in A. It is essentially the Jones polynomial of
the knot, see Lemma 2.18 in D. Aharonov, V. Jones and Z. Landau, A polynomial
quantum algorithm for approximating the Jones polynomial, Algorithmica 2009.

(9) Suppose that G is a group, R is an algebra, and we have an action

G×R→ R, (g, r) 7→ gr

of G on R by algebra automorphisms. To be an action means that

g(hr) = (gh)r, 1r = r,

and we want also that for all g ∈ G the map R → R, r 7→ gr is an algebra
homomorphism (necessarily an automorphism).

One can form the algebra of invariants

RG = {r ∈ R : gr = r for all g ∈ G}.

We can also form the skew group algebra

R ∗G = {
∑
g∈G

ag ∗ g : ag ∈ R, all but finitely many zero}

with the multiplication given by

(a ∗ g)(b ∗ h) = (a gb) ∗ (gh).

1.2 Idempotents and catalgebras

Definition. Let R be a ring.
(a) An element e ∈ R is idempotent if e2 = e.
(b) Idempotents e1, . . . , en are orthogonal if eiej = 0 for i ̸= j.
(c) A family of orthogonal idempotents e1, . . . , en is complete if e1+· · ·+en = 1R.
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Lemma. Let R be a ring and M an R-module.
(a) If e ∈ R is an idempotent, then

eM = {m ∈M : em = m},

and if R is a K-algebra, then eM is a K-subspace of M .
(b) If e1, . . . , en is a complete family of orthogonal idempotents, then

M = e1M ⊕ · · · ⊕ enM.

Proof. Straightforward.

Proposition (Peirce decomposition). If e1, . . . , en is a complete family of orthog-
onal idempotents in R, then

R =
n⊕

i,j=1

eiRej.

Displaying this as a matrix

R =


e1Re1 e1Re2 . . . e1Ren
e2Re1 e2Re2 . . . e2Ren
. . .

enRe1 enRe2 . . . enRen

 ,

multiplication in R corresponds to matrix multiplication.

Proof. Straightforward.

Definition. Recall that an R-module P is projective if it satisfies the following
equivalent conditions.

(i) Hom(P,−) is an exact functor R-Mod→ Ab.
(ii) Any short exact sequence 0→ X → Y → P → 0 is split.
(iii) Given an epimorphism θ : Y ↠ Z, any morphism P → Z factors through θ.
(iv) P is a direct summand of a free R-module.

Lemma. (i) If e is idempotent in R, then Re is a left ideal which is a direct
summand of R, so a projective left R-module, and if M is an R-module, then
HomR(Re,M) ∼= eM .

(ii) Any left ideal of R which is a direct summand of R is equal to Re for some
idempotent e.

Proof. (i) Send θ to θ(e) or m ∈ eM to the map r 7→ re,
(ii) If I is a direct summand, then the projection onto it is an idempotent

element of EndR(R) ∼= Rop.
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Sometimes it is useful to consider non-unital rings and algebras, but usually
one wants some weaker form of unital condition, and there are many possibilities.
One possibility is rings “with enough idempotents”. In categorical language, this is
the theory of “rings with several objects”. I call the algebra version “catalgebras”,
since they correspond exactly to small K-categories.

Definition. By a catalgebra we mean a K-vector space R with a multiplication
R×R→ R which is associative and K-bilinear, such that there exists a (possibly
infinite) family (ei)i∈I of orthogonal idempotents which is complete in the sense
that

R =
⊕
i,j∈I

eiRej.

If R is a catalgebra, then an R-module M is given by an additive group M and
an action

R×M →M, (r,m) 7→ rm

which is distributive over addition, satisfies (rr′)m = r(r′m) and is unital in the
sense that

M =
⊕
i∈I

eiM.

This last condition doesn’t depend on the choice of the idempotents, since it is
equivalent that RM = M . For example if m ∈ M then RM = M implies m =∑t

s=1 rsms. Now each rs =
∑

i∈I eirsi. Thus m =
∑

i ei(
∑

s rsims) ∈
∑

i∈I eiM .
Observe that R is itself an R-module, but not in general finitely generated!

Also any subgroup L of M which is closed under the action is itself a module, for
if x ∈ L then x =

∑
i∈I eix ∈ RL.

Examples. (1) Any algebra is a catalgebra with 1R being a complete family of
orthogonal idempotents. Conversely, a catalgebra with a finite complete family of
orthogonal idempotents e1, . . . , en is an algebra with 1R = e1 + · · ·+ en.

(2) The Temperley-Lieb algebras TLn(δ) sit inside a catalgebra, with K-basis
given by the diagrams with a possibly different number of dots on each side, with
the composition of two diagrams being zero if they do not have a compatible
number of dots.

(3) There is a 1:1 correspondence

small K-categories C ↔ catalgebras R equipped with with a complete
family of orthogonal idempotents (ei)i∈I

given as follows. Given C we set

R =
⊕

X,Y ∈ob(C)

HomC(X, Y )
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with multiplication given by composition, or zero if two morphisms are not com-
posable. The identity morphisms (1X)X∈ob(C) are a complete family of orthogonal
idempotents. Conversely if R is a catalgebra and (ei)i∈I is a complete family of or-
thogonal idempotents, then one obtains a small category C with objects ob(C) = I,
morphisms Hom(i, j) = ejRei and composition given by multiplication. Under this
correspondence there is an equivalence

R-Mod ≃ Category of additive functors C → Ab.

P. Gabriel, Des categories abeliennes, Bull. Soc. Math. France 1962, Chapter 2,
section 1, prop 2, p347.

(4) Whereas any product of algebras is an algebra, any direct sum of catalgebras⊕
j∈J

Rj

is a catalgebra. If I is a set and R an algebra or catalgebra, then the set R(I×I) of
matrices with entries in R, with rows and columns indexed by I, and only finitely
many non-zero entries is a catalgebra under matrix multiplication. The analogue
of Artin-Wedderburn for catalgebras is that the semisimple catalgbras are those of
the form ⊕

j∈J

D
(Ij×Ij)
j

for some sets J , Ij and division algebras Dj.

Remark. If R is a catalgebra, then R1 = R ⊕K becomes an algebra with multi-
plication

(r, λ)(r′, λ′) = (rr′ + λr′ + λ′r, λλ′).

and 1R1 = (0, 1). We can identify R as an ideal in R1, and R-Mod is isomorphic
to the category of R1-modules M satisfying RM =M . Moreover, if

0→ L→M → N → 0

is an exact sequence of R1-modules, then RM = M if and only if RL = L and
RN = N .

1.3 Representations of quivers and path algebras

Recall that K is a field.

Definition. A quiver is a quadruple Q = (Q0, Q1, h, t) where Q0 is a set of vertices,
Q1 a set of arrows, and h, t : Q1 → Q0 are mappings, specifying the head and tail
vertices of each arrow,

t(a)
• a−−→

h(a)
• .
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Definition. The category of representations of Q over K is defined as follows.
A representation of Q is a tuple V = (Vi, Va) consisting of a K-vector space Vi

for each vertex i and a K-linear map Va : Vi → Vj for each arrow a : i → j in Q.
If there is no risk of confusion, we write a : Vi → Vj instead of Va.

A homomorphism of representations θ : V → W is given by K-linear maps
θi : Vi → Wi for each vertex, such that θjVa = Waθi for each arrow a : i→ j.

The composition of morphisms ϕ : U → V and θ : V → W is given by
(θϕ)i = θiϕi.

If V is a finite-dimensional representation, its dimension vector is dimV =
(dimVi) ∈ NQ0

0 (where N0 = {0, 1, 2, . . . }.)

Remark. A homomorphism θ : V → W is an isomorphism if and only if θi is
an isomorphism for each vertex i, for in the latter case, the maps (θi)

−1 define a
morphism W → V which is inverse to θ.

Example. Let us compute the endomorphisms of the representation V of the
quiver with vertices 1, 2, 3, 4 represented by K,K,K,K2 and arrows 1→ 4, 2→ 4,
3→ 4 represented by the maps with matrices(

1
0

)
,

(
0
1

)
,

(
1
1

)
.

An endomorphism is given by matrices

(a), (b), (c),

(
p q
r s

)
satisfying(

1
0

)
(a) =

(
p q
r s

)(
1
0

)
,

(
0
1

)
(b) =

(
p q
r s

)(
0
1

)
,

(
1
1

)
(c) =

(
p q
r s

)(
1
1

)
Solving gives that the matrices are

(a), (a), (a),

(
a 0
0 a

)
so End(V ) = K.

Definition. Let Q be a quiver. A path in Q of length n > 0 in Q is a sequence
p = a1a2 . . . an of arrows satisfying t(ai) = h(ai+1) for all 1 ≤ i < n,

• a1←− • a2←− • · · · • an←− •.

The head and tail of p are h(a1) and t(an). For each vertex i ∈ Q0 there is also a
trivial path ei of length zero with head and tail i.
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If Q has only finitely many vertices, the path algebra KQ is the free K-module
with basis the paths in Q, equipped with the multiplication in which the product
of two paths given by p · q = 0 if the tail of p is not equal to the head of q, and
otherwise p · q = pq, the concatenation of p and q. The one for the algebra is

1 =
∑
i∈Q0

ei.

More generally, if Q has infinitely many vertices, KQ exists and is a catalgebra.
We write (KQ)+ for the ideal spanned by the non-trivial paths, or equivalently

the ideal generated by the arrows. Clearly

KQ = (KQ)+ ⊕
⊕
i∈Q0

Kei, KQ/(KQ)+ ∼=
⊕
i∈Q0

Kei ∼= K × · · · ×K

Examples. (i) The path algebra of the quiver 1
a−→ 2 with loop b at 2 has basis

e1, e2, a, b, ba, b
2, b2a, b3, b3a, . . . .

(ii) The algebra of lower triangular matrices in Mn(K) is isomorphic to the
path algebra of the quiver

1→ 2→ · · · → n

with the matrix unit eij corresponding to the path from j to i, since

eijekℓ =

{
euℓ (j = k)

0 (j ̸= k).

(iii) The free algebra K⟨x1, . . . , xn⟩ is the same as KQ where Q has one vertex
and loops x1, . . . , xn.

Properties. (i) KQ is finite-dimensional if and only if Q is finite and has no
oriented cycles.

(ii) If 0 ̸= a ∈ KQei and 0 ̸= b ∈ eiKQ then ab ̸= 0. Namely, look at the
longest paths p and q involved in a and b. In the product, the path pq must be
involved.

(iii) eiKQei is isomorphic to the free algebra on the set X of paths with head
and tail at i, but which don’t pass through i.

(iv) Let Q be the oriented cycle with vertices 1, . . . , n and arrows ai : i→ i+1
for i < n and an : n→ 1. Let T be the sum of all paths of length n,

T = an . . . a2a1 + a1an . . . a2 + a2a1an . . . a3 + · · ·+ an−1 . . . a1an,

Then Z(KQ) = K[T ].

Proposition. The category of representations of Q is equivalent to KQ-Mod.
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Proof. If V is a KQ-module, then V =
⊕

eiV . We get a representation, also
denoted V , with Vi = eiV , and, for any arrow a : i → j, the map Va : Vi → Vj is
given by left multiplication by a ∈ ejKQei.

Conversely any representation V determines a KQ-module via V =
⊕

i∈Q0
Vi,

with the action of KQ given as follows:
- The trivial path ei acts on V as the projection onto Vi, and
- A nontrivial path a1a2 . . . an acts by

a1a2 . . . anv = Va1(Va2(. . . (Van(vt(an))) . . . )) ∈ Vh(a1) ⊆ V.

It is straightforward to extend these to functors, and then to check that they are
inverse equivalences.

Remark. (1) Under this correspondence, submodules correspond to subrepresen-
tations. A subrepresentation W of a representation V is given by a subspace
Wi ⊆ Vi for each vertex i such that Va(Wi) ⊆ Wj for all arrows a : i→ j.

(2) The corresponding quotient representation V/W is given by the vector
spaces Vi/Wi and the induced maps Va : Vi/Wi → Vj/Wj for a : i→ j.

(3) The direct sum V ⊕W of two representations is given by the vector spaces
Vi ⊕Wi and maps (

Va 0
0 Wa

)
: Vi ⊕Wi → Vj ⊕Wj

for an arrow a : i→ j. Similarly for direct sums over any indexing set.
(4) A sequence of representations

· · · → V → V ′ → V ′′ → . . .

is exact if and only if for each vertex i, the sequence of vector spaces

· · · → Vi → V ′i → V ′′i → . . .

is exact. The kernel, image and cokernel of a morphism can be computed vertex-
wise.

Notation. Let i be a vertex.
(a) We write S[i] for the representation with S[i]i = K, S[i]j = 0 for i ̸= j

and all S[i]a = 0. It is a simple representation, but there can be other simple
representations, for example we only get one K[x]-module.

(b) We define P [i] = KQei. It is a projective KQ-module, and KQ =⊕
i∈Q0

P [i]. Considered as a representation of Q, the vector space at vertex j
has basis the paths from i to j. For i ̸= j we have P [i] ̸∼= P [j], since

Hom(P [i], S[j]) = Hom(KQei, S[j]) ∼= eiS[j] ∼=

{
K (i = j)

0 (i ̸= j).

13



Example. For example for the quiver

1
a−→
−→
b

3
c−→
−→
d

3,

we have
P [1] ∼= K

a−→
−→
b

K2
c−→
−→
d

K4,

with bases e1, and a, b and ca, da, cb, db, and linear maps given by a(e1) = a, b(e1) =
b, c(a) = ca, c(b) = cb, d(a) = da, d(b) = db.

Example. Let Q be the quiver 1
a−→ 2.

(i) S[1] is the representation K → 0, S[2] is the representation 0→ K.
P [1] is the representation K 1−→ K and P [2] ∼= S[2].
(ii) We have Hom(S[1], P [1]) = 0 and Hom(S[2], P [1]) ∼= K.
(iii) The subspaces (K ⊆ V1, 0 ⊆ V2) do not give a subrepresentation of

V = P [1], but the subspaces (0 ⊆ V1, K ⊆ V2) do, and this subrepresentation
is isomorphic to S[2].

(iv) There is an exact sequence 0→ S[2]→ P [1]→ S[1]→ 0.
(v) S[1]⊕ S[2] ∼= K

0−→ K and for 0 ̸= λ ∈ K we have K λ−→ K ∼= P [1].
(vi) Every representation of Q is isomorphic to a direct sum of copies of S[1],

S[2] and P [1]. Namely, given the representation V1
a−→ V2, take a basis (xi)i∈I of

Ker(Va). Extend it to a basis of V1 with elements (yj)j∈J . Then the elements
(Va(yj))j∈J are linearly independent in V2. Extend them to a basis of V2 with
elements (zℓ)ℓ∈L. Then

V ∼= S[1](I) ⊕ P [1](J) ⊕ S[2](L).

1.4 Algebras given by quivers with relations

We are interested in algebras of the form KQ/I. For simplicity we take Q to be a
finite quiver.

Any algebra R is a quotient of a free algebra K⟨X⟩/I, and if R is finitely
generated as an algebra we can take X to be finite. Similarly, if e1, . . . , en is a
complete set of orthogonal idempotents in an algebra R, then we can write

R ∼= KQ/I

for some quiver Q with vertex set {1, . . . , n}, in such a way that the ei correspond
to the trivial paths in KQ, and if R is finitely generated we can take Q to be finite.

14



Definition. By a relation forQ we mean an element a ∈ ejKQei for some i, j ∈ Q0,
so a K-linear combination of paths in Q which all have the head j and tail i.
A representation V of Q satisfies the relation a if the corresponding linear map
Vi → Vj is zero. If a, b ∈ ejKQei, we say that V satisfies the relation a = b if it
satisfies the relation a− b.

Lemma. Any ideal I in a path algebra KQ can generated by a set of relations, and
then the category of KQ/I-modules is equivalent to the category of representations
which satisfy these relations.

Proof. If I is an ideal and x ∈ I, then x =
∑

i,j∈Q0
ejxei and ejxei ∈ I.

Notation. Let R = KQ/I. If i is a vertex, we define P [i] = Rei, so it is a
projective R-module and

R =
⊕
i∈Q0

P [i].

In case I = 0 we already used this notation, but note that P [i] depends in I.
Considered as a representation of Q, the vector space P [i]j = ej(KQ/I)ei, so it
has basis given by the paths from i to j modulo I.

Recall that (KQ)+ is the ideal in KQ spanned by the non-trivial paths. Clearly
(KQ)n+ is the ideal spanned by paths of length ≥ n, andKQ/(KQ)+ ∼= K×· · ·×K.

Definition. An ideal I ⊆ KQ is admissible if
(1) I ⊆ (KQ)2+, and
(2) (KQ)n+ ⊆ I for some n.

Lemma. Suppose I is admissible. Then
(i) R = KQ/I is finite-dimensional
(ii) The KQ-modules S[i] are annihilated by I, so become simple R-modules.
(iii) The S[i] are the only simple R-modules up to isomorphism.
(iv) The modules P [i] are pairwise non-isomorphic.

Proof. (i) By (2), R is spanned by the paths of length < n.
(ii) This just needs I ⊆ (KQ)+, which is weaker than (1).
(iii) Let S be a simple R-module, and consider it as a KQ-module. Now

(KQ)+S is a submodule of S, so by simplicity it is equal to 0 or S. But IS = 0,
so (KQ)n+S = 0, so we must have (KQ)+S = 0. Thus S is a module for

KQ/(KQ)+ ∼= K × · · · ×K

so it is isomorphic to an S[i].
(iv) Hom(P [i], S[j]) ∼= Hom(Rei, S[j]) ∼= eiS[j], which is K if i = j, else 0.
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Examples. (1) A finite complex of K-vector spaces is a representation of the
quiver

1
a1−→ 2

a2−→ . . .
an−1−−−→ n

satisfying the admissible relations ai+1ai = 0 for 1 ≤ i < n− 1.
For n = 4 the representations P [i] are

P [1] = K → K → 0→ 0, P [2] = 0→ K → K → 0,

P [3] = 0→ 0→ K → K, P [4] = 0→ 0→ 0→ 0.

(2) A commutative square of K-vector spaces is a representation of the quiver

1
a−−−→ 2

b

y c

y
3

d−−−→ 4

satisfying the admissible relation db = ca. The projective P [1] is

K
1−−−→ K

1

y 1

y
K

1−−−→ K.

(3) A cyclically oriented square

1 a // 2

b
��

4

d

OO

3c
oo

with admissible relations cba and dc, has

P [1] = K 1 // K

1
��

0

OO

Koo

P [2] = 0 // K

1
��

K

OO

K
1
oo

P [3] = 0 // 0

��
K

OO

K
1
oo

P [4] = K 1 // K

1
��

K

1

OO

K
0
oo

For example in P [4] the arrow c sends the basis element bad in the vector space at
vertex 3 to cbad = 0, and not to e4, which is the basis element of the vector space
at vertex 4.

(4) [I. M. Gelfand and V. A. Ponomarev, Indecomposable representations of the
Lorentz group, Russian Math. Surv. 1968.] To classify certain infinite-dimensional

16



representations, called Harish-Chandra representations of the (Lie algebra of the)
group SL2(C), they reduce the problem to linear algebra, and it corresponds to f.d.
representations of the quiver

1
a−→
←−
c

2 loop b

with relations ba = 0, cb = 0 and b and ac nilpotent. To write this as admissible
relations we should impose bn = 0 and (ac)n = 0 for some large n.

(5) [I. Assem, T. Brustle, G. Charbonneau-Jodoin and P.-G. Plamondon, Gentle
algebras arising from surface triangulations, Algebra Number Theory 2010]. A
triangulation of an oriented surface with marked points on its boundary gives a
quiver with relations. For example (taken from the paper)

There is one vertex on each internal arc. Arrows go clockwise around the marked
points. The relations are the length two paths in an internal triangle. This is
related to Fukaya categories in symplectic geometry.

Example. The double Q of a quiver Q is obtained by adjoining an reverse arrow
a∗ : j → i for each arrow a : i→ j in Q. For example if Q is the quiver

then Q is the quiver
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The preprojective algebra for a finite quiver Q is

Π(Q) = KQ/(
∑
a∈Q

(aa∗ − a∗a))

This ideal is not necessarily admissible. For example if Q is a loop x, then Π(Q) =
K⟨x, x∗⟩/(xx∗ − x∗x) ∼= K[x, x∗].

Note that up to isomorphism, Π(Q) does not depend on the orientation of Q,
for if Q′ is obtained from Q by replacing a by a reverse arrow a′, then there is
an isomorphism Π(Q) → Π(Q′) sending a to (a′)∗, a∗ to −a′ and fixing all other
arrows.

Observe that if r =
∑

a∈Q(aa
∗ − a∗a) then eirej = 0 if i ̸= j, so Π(Q) is given

by the relations
ri = eirei =

∑
a∈Q,h(a)=i

aa∗ −
∑

a∈Q,t(a)=i

a∗a

for i ∈ Q0. For example if Q = • a−→ • b−→ • the relations are

a∗a = 0, aa∗ = b∗b, bb∗ = 0.

Later we will be able to determine the quivers Q whose preprojective algebra
is finite dimensional. The preprojective algebra is useful for studying sums of
matrices. This is illustrated by the following. See A. Mellit, Kleinian singularities
and algebras generated by elements that have given spectra and satisfy a scalar
sum relation, Algebra Discrete Math. 2004.

Theorem. Given k, d1, . . . , dk > 0, we have

K⟨x1, . . . , xk⟩/(x1 + · · ·+ xk, x
d1
1 , . . . , x

dk
k ) ∼= e0Π(Q)e0

where Q is star-shaped with central vertex 0 and arms

0
ai,1←−− (i, 1)

ai,2←−− . . .
ai,di−1←−−−− (i, di − 1)

for i=1,. . . ,k.

Proof. Let the algebra on the left be A and the one on the right be B = e0Π(Q)e0.
Now B is spanned by the paths in Q which start and end at vertex 0. If vertex
(i, j) is the furthest out that a path reaches on arm i, then it must involve aija∗ij,
and if j > 1, the relation

aija
∗
ij = a∗i,j−1ai,j−1

shows that this path is equal in B to a linear combination of paths which only
reach (i, j − 1). Repeating, we see that B is spanned by paths which only reach
out to vertices (i, 1). Thus we get a surjective map

K⟨x1, . . . xk⟩ → B
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sending each xi to ai1a∗i1. It descends to a surjective map θ : A→ B since it sends
x1 + · · ·+ xk to 0 and xdii is sent to

(ai1a
∗
i1)

di = ai1(a
∗
i1ai1)

di−1ai1

= ai1(ai2a
∗
i2)

di−1a∗i1

= ai1ai2(a
∗
i2ai2)

di−2a∗i2a
∗i1

= · · · =
= ai1ai2 . . . ai,di−1(a

∗
i,di−1ai,di−1)a

∗
i,di−1 . . . a

∗
i1 = 0

since a∗i,di−1ai,di−1 = 0.
To show that θ is an isomorphism it suffices to show that any A-module can

be obtained by restriction from a B-module, for if a ∈ Ker θ and M = θN , then
aM = θ(a)N = 0. Thus if A can be obtained from a B-module by restriction, then
aA = 0, so a = 0.

Thus take an A-module M . We construct a representation of Q by defining
V0 =M and V(i,j) = xjiM with aij the inclusion map, and a∗ij multiplication by xi.
This is easily seen to satisfy the preprojective relations, so it becomes a module for
Π(Q). Then e0V =M becomes a module for e0Π(Q)e0 = B. Clearly its restriction
via θ is the original A-module M .

The “Diamond Lemma” is due to Max Newman—see the exposition in P. M.
Cohn, Further Algebra. There is a version for rings by G. M. Bergman, The
diamond lemma for ring theory, Advances in Mathematics 1978. We formulate it
for quivers with relations. (For further discussion, see D. Farkas, C. Feustel and
E. Green, Synergy in the theories of Gröbner bases and path algebras, Canad. J.
Math. 1993.)

Definition. We consider the following setup. Let R = KQ/(S) for a quiver Q
and a set S of relations. We fix a well-ordering on the set of paths, such that if
w,w′ have the same head and tail and w < w′, then uwv < uw′v for all compatible
products of paths. This can be done by choosing a total ordering on the vertices
1 < 2 < · · · < n and on the arrows a < b < . . . and using the length-lexicographic
ordering on paths, so w < w′ if
- length w < length w′, or
- w = ei and w′ = ej with i < j, or
- length w = length w′ > 0 and w comes before w′ in the dictionary ordering.

We write the relations in S in the form

wj = sj (j ∈ J)

where each wj is a path and sj is a linear combination of smaller paths with the
same head and tail as wj.
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(i) Given a relation wj = sj and paths u, v such that uwjv is a path, the
associated reduction is the linear map KQ → KQ sending uwjv to usjv and any
other path to itself. We write f ⇝ g to indicate that g is obtained from f by
applying reduction with respect to some wj = sj and u, v. Clearly f − g ∈ (S).

(ii) We say that f ∈ KQ is irreducible if f ⇝ g implies g = f . It is equivalent
that no path involved in f can be written as a product uwjv.

(iii) We say that f is reduction-unique if there is a unique irreducible element
which can be obtained from f by a sequence of reductions. If so, the irreducible
element is denoted r(f).

(iv) We say that two reductions of f , say f ⇝ g and f ⇝ h, satisfy the diamond
condition if there exist sequences of reductions starting with g and h, which lead to
the same element, g ⇝ · · ·⇝ k, h⇝ · · ·⇝ k. (You can draw this as a diamond.)

In particular we are interested in this in the following two cases:
An overlap ambiguity is a path w which can be written as wiv and also as uwj

for some i, j and some non-trivial paths u, v, so that wi and wj overlap. There are
reductions w ⇝ siv and w ⇝ usj.

An inclusion ambiguity is a path w which can be written as wi and as uwjv for
some i ̸= j and some u, v. There are reductions w ⇝ si and w ⇝ usjw.

Lemma (Diamond Lemma). R = KQ/(S) is spanned by the irreducible paths, and
the following conditions are equivalent:

(a) The diamond condition holds for all overlap and inclusion ambiguities.
(b) Every element of KQ is reduction-unique.
(c) The irreducible paths give a basis of R.
In this case the algebra R has multiplication given by f.g = r(fg).

Example. Consider the algebra R = K⟨x, y⟩/(S) where S is given by

x2 = x, y2 = 1, yx = y − xy

and the alphabet ordering x < y. The ambiguities are:

xxx yyy yyx yxx.

The diamond condition holds since
xxx⇝ xx⇝ x and xxx⇝ xx⇝ x.
yyy ⇝ 1y = y and yyy ⇝ y1 = y.
yyx⇝ 1x = x and yyx⇝ y(y − xy) = y2 − yxy = y2 − (yx)y ⇝ y2 − (y − xy)y =
xyy = x(yy)⇝ x1 = x.
yxx⇝ (y−xy)x = yx−xyx⇝ yx−x(y−xy) = yx−xy+xxy ⇝ yx−xy+xy = yx
and yxx⇝ yx.

Thus the irreducible paths 1, x, y, xy induce a basis of R.
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On the other hand, if the relations were

x2 = x, y2 = 1, yx = 1− xy

Then yxx would not be reduction unique, since

(yx)x⇝ (1− xy)x = x− x(yx)⇝ x− x(1− xy) = x2y ⇝ xy

and
y(xx)⇝ yx⇝ 1− xy.

Example. The preprojective algebra for the quiver

1
a−→ 2

b−→ 3

with 1 < 2 < 3 and a < b < a∗ < b∗. The relations are

a∗a = 0, b∗b = aa∗, bb∗ = 0.

We have ambiguities
b∗bb∗ bb∗b

but the diamond condition fails, since b∗bb∗ reduces to 0 or aa∗b∗ and bb∗b reduces
to 0 or baa∗. But we can add the relations

aa∗b∗ = 0, baa∗ = 0

and then the diamond condition holds, for example

b∗(baa∗)⇝ b0 = 0, (b∗b)aa∗ ⇝ (aa∗)aa∗ = a(a∗a)a∗ ⇝ a0a∗ = 0.

Thus the preprojective algebra has basis given induced by the irreducible paths

e1, e2, e3, a, b, a
∗, b∗, aa∗, ba, a∗b∗.

I shall omit the following proof of the Diamond Lemma in my lec-
tures.

Lemma (1). If f ⇝ g and u′, v′ are paths, then either u′fv′ = u′gv′ or u′fv′ ⇝
u′gv′.

Proof. Suppose g is the reduction of f with respect to u, v and the relation wj = sj.
If u′u or vv′ are not paths, then u′fv′ = u′gv′. Else u′gv′ is the reduction of u′fv′
with respect to u′u, vv′ and the relation wj = sj.
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Lemma (2). Any f ∈ KQ can be reduced by a finite sequence of reductions to an
irreducible element, so the irreducible paths span R.

Proof. Any f ∈ KQ which is not irreducible involves paths of the form uwjv.
Among all paths of this form involved in f , let tip(f) be the maximal one. Consider
the set of tips of elements which cannot be reduced to an irreducible element. For
a contradiction assume this set is non-empty. Then by well-ordering it contains a
minimal element. Say it is tip(f) = w = uwjv. Writing f = λuwjv + f ′ where
λ ∈ K and f ′ only involving paths different from uwjv, we have f ⇝ g where
g = λusjv + f ′. By the properties of the ordering, usjv only involves paths which
are less than uwjv = w, so tip(g) < w. Thus by minimality, g can be reduced to
an irreducible element, hence so can f . Contradiction.

Lemma (3). The set of reduction-unique elements is a subspace of KQ, and the
assignment f 7→ r(f) is an endomorphism of it.

Proof. Consider a linear combination λf +µg where f, g are reduction-unique and
λ, µ ∈ K. Suppose there is a sequence of reductions (labelled (1))

λf + µg

(1)︷ ︸︸ ︷
⇝ · · ·⇝ h

with h irreducible. Let a be the element obtained by applying the same reductions
to f . By Lemma 2, a can be reduced by some sequence of reductions (labelled (2))
to an irreducible element. Since f is reduction-unique, this irreducible element
must be r(f).

f

(1)︷ ︸︸ ︷
⇝ · · ·⇝ a

(2)︷ ︸︸ ︷
⇝ · · ·⇝ r(f).

Applying all these reductions to g we obtain elements b and c, and after applying
more reductions (labelled (3)) we obtain an irreducible element, which must be
r(g).

g

(1)︷ ︸︸ ︷
⇝ · · ·⇝ b

(2)︷ ︸︸ ︷
⇝ · · ·⇝ c

(3)︷ ︸︸ ︷
⇝ · · ·⇝ r(g).

But h, r(f) are irreducible, so these extra reductions don’t change them:

λf + µg

(1)︷ ︸︸ ︷
⇝ · · ·⇝ h

(2)︷ ︸︸ ︷
⇝ · · ·⇝ h

(3)︷ ︸︸ ︷
⇝ · · ·⇝ h,

f

(1)︷ ︸︸ ︷
⇝ · · ·⇝ a

(2)︷ ︸︸ ︷
⇝ · · ·⇝ r(f)

(3)︷ ︸︸ ︷
⇝ · · ·⇝ r(f).

Now the reductions are linear maps, hence so is a composition of reductions, so h =
λr(f)+µr(g). Thus λf+µg is reduction-unique and r(λf+µg) = λr(f)+µr(g).
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Proof of the Diamond Lemma. The implications (c)⇒(b)⇒(a) are trivial.

(a)⇒(b). Since the reduction-unique elements form a subspace, it suffices to
show that every path is reduction-unique. For a contradiction, suppose not. Then
there is a minimal path w which is not reduction-unique. Let f = w. Suppose that
f reduces under some sequence of reductions to g, and under another sequence
of reductions to h, with g, h irreducible. We want to prove that g = h, giving a
contradiction. Let the elements obtained in each case by applying one reduction
be f1 and g1. Thus

f ⇝ g1 ⇝ · · ·⇝ g, f ⇝ h1 ⇝ · · ·⇝ h.

By the properties of the ordering, g1 and h1 are linear combinations of paths which
are less than w, so by minimality they are reduction-unique. Thus g = r(g1) and
h = r(h1). It suffices to prove that the reductions f ⇝ g1 and f ⇝ h1 satisfy
the diamond condition, for if there are sequences of reductions g1 ⇝ · · · ⇝ k and
h1 ⇝ · · ·⇝ k, combining them with a sequence of reductions k ⇝ · · ·⇝ r(k), we
have g = r(g1) = r(k) = r(h1) = h.

Thus we need to check the diamond condition for f ⇝ g1 and f ⇝ h1. Recall
that f = w, so these reductions are given by subpaths of w of the form wi and wj.
There are two cases:

(i) If these paths overlap, or one contains the other, the diamond condition
follows from the corresponding overlap or inclusion ambiguity. For example w
might be of the form u′wivv

′ = u′uwjv
′ where wiv = uwj is an overlap ambiguity

and u′, v′ are paths. Now condition (a) says that the reductions wiv ⇝ siv and
uwj ⇝ usj can be completed to a diamond, say by sequences of reductions siv ⇝
· · · ⇝ k and usj ⇝ · · · ⇝ k. Then Lemma 1 shows that the two reductions of w,
which are w = u′wivv

′ ⇝ u′sivv
′ and w = u′uwjv

′ ⇝ u′vsjv
′, can be completed to

a diamond by reductions leading to u′kv′.
(ii) Otherwise w is of the form uwivwjz for some paths u, v, z, and g1 = usivwjz

and h1 = uwivsjz (or vice versa). Writing si as a linear combination of paths,
si = λt+ λ′t′ + . . . , we have

r(g1) = r(usivwjz) = λr(utvwjz) + λ′r(ut′vwjz) + . . . .

Reducing each path on the right hand side using the relation wj = sj, we have
utvwjz ⇝ utvsjz, and ut′vwjz ⇝ ut′vsjz, and so on, so

r(g1) = λr(utvsjz) + λ′r(ut′vsjz) + . . . .

Collecting terms, this gives r(g1) = r(usivsjz). Similarly, writing sj as a linear
combination of paths, we have r(h1) = r(usivsjz). Thus r(h1) = r(g1), so the
diamond condition holds.
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(b)⇒(c) The ideal (S) is spanned by expressions of the form u(wj − sj)v, and
uwjv ⇝ usjv so r(uwjv) = r(usjv), so r(u(wj − sj)v) = 0. By linearity, any
element f ∈ (S) satisfies r(f) = 0. In particular, if a linear combination f of
irreducible paths is zero in R, then f ∈ (S), so f = r(f) = 0.

1.5 Radical and socle

Definition. Let M be a module for a ring R. The socle of M is the sum of its
simple submodules,

socM =
∑

S ⊆M simple

S.

The radical of M is the intersection of its maximal submodules.

radM =
⋂

U ⊆M , M/U simple

U

= {x ∈M : ϕ(x) = 0 for any homomorphism ϕ :M → S with S simple}
The quotient topM =M/ radM is called the top of M .

Properties. (i) socM is the unique largest semisimple submodule of M .

(ii) If θ : M → N then θ(socM) ⊆ socN and θ(radM) ⊆ radN , for if
ϕ : N → S and x ∈ radM , then ϕθ(x) = 0. Thus soc, rad and top define additive
functors R-Mod → R-Mod. It follows that soc(M ⊕ N) = socM ⊕ socN and
rad(M ⊕N) = radM ⊕ radN and top(M ⊕N) ∼= topM ⊕ topN .

(iii) rad(M/ radM) = 0 since the maximal submodules of M all contain radM ,
so are in 1:1 correspondence with the maximal submodules of M/ radM .

(iv) If M is semisimple, then radM = 0. For if M ∼=
⊕

i∈I Si, the projections
M → Si show that radM = 0.

(v) In general it is not true that if M/ radM is semisimple. For example
rad(ZZ) = ∩p primepZ = 0, but ZZ is not semisimple.

However, if M is artinian (has dcc on submodules), e.g. if M is a finite-
dimensional module for an algebra, then M/ radM is semisimple, and it is the
unique largest quotient of M which is semisimple.

Namely, we can write radM as a finite intersection of maximal submodules
U1∩· · ·∩Un. Then M/ radM embeds in (M/U1)⊕· · ·⊕(M/Un), so it is semisimple.
Conversely if M/N is semisimple, the canonical map M →M/N sends radM into
rad(M/N) = 0, so radM ⊆ N .

Recall that the Jacobson radical J(R) of a ring R is the intersection of its
maximal left ideals, so J(R) = rad(RR). It is an ideal in R, by functoriality or by
the following.
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Theorem. If R is a ring and x ∈ R, the following are equivalent
(i) xS = 0 for any simple left module S.
(ii) x ∈ I for every maximal left ideal I, i.e. x ∈ J(R).
(iii) 1− ax has a left inverse for all a ∈ R.
(iv) 1− ax is invertible for all a ∈ R.
(i’)-(iv’) The right-hand analogues of (i)-(iv).

Proof. (i) implies (ii). If I is a maximal left ideal in R, then R/I is a simple left
module, so x(R/I) = 0, so x(I + 1) = I + 0, so x ∈ I.

(ii) implies (iii). If there is no left inverse, then R(1− ax) is a proper left ideal
in R, so contained in a maximal left ideal I by Zorn’s Lemma. Now x ∈ I, and
1− ax ∈ I, so 1 ∈ I, so I = R, a contradiction.

(iii) implies (iv) 1 − ax has a left inverse u, and 1 + uax has a left inverse v.
Then u(1−ax) = 1, so u = 1+uax, so vu = 1. Thus u has a left and right inverse,
so it is invertible and these inverses are equal, and are themselves invertible. Thus
1− ax is invertible.

(iv) implies (i’). Suppose T is a simple right R-module with Tx ̸= 0. Then
there is t ∈ T with tx ̸= 0. By simplicity, there is a ∈ R with txa = t. Let b be an
inverse to 1− ax. Then

0 = t(1− xa)(1 + xba) = t(1− xa+ xba− xaxba) = t(1− xa+ x(1− ax)ba) = t.

Contradiction.

Lemma. If I is a left ideal in R which is nil, meaning that every element is
nilpotent, then I ⊆ J(R).

Proof. If x ∈ I and a ∈ R then ax ∈ I, so (ax)n = 0, so 1 − ax is invertible with
inverse 1 + ax+ (ax)2 + . . . .

Lemma (Nakayama’s Lemma). Suppose M is a finitely generated module for a
ring R.

(i) If J(R)M =M , then M = 0.
(ii) If N ⊆M is a submodule with N + J(R)M =M , then N =M .

Proof. (i) If M ̸= 0 then by Zorn’s lemma (using that M is finitely generated),
it has a maximal submodule N . Then M/N is simple, so J(R)(M/N) = 0, so
J(R)M ⊆ N . Contradiction.

(ii) Apply (i) to M/N .

Examples. (a) If R = KQ/I with I an admissible ideal, then J(R) is equal to
the ideal L = (KQ)+/I. Namely, for some n we have (KQ)n+ ⊆ I, so Ln = 0, so
L ⊆ J(R) by the lemma. On the other hand,

R/L ∼= KQ/(KQ)+ ∼= K × · · · ×K
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is semisimple as an algebra, so as an R-module. Now the canonical map R→ R/L
sends radR to rad(R/L) = 0, so J(R) = radR ⊆ L.

(b) If Q is a finite quiver then J(KQ) is spanned by the paths from i to j such
that there is no path from j to i.

The set I spanned by these paths is an ideal, and if Q has n vertices, then any
path in this ideal has length less than n, so In = 0. Thus I ⊆ J(KQ).

Conversely suppose that a ∈ J(KQ) involves a path p from i to j, and suppose
there exists a path q from j to i.

Then b = qaei ∈ eiKQei involves the path qp. Also b ∈ J(KQ), so if λ ∈ K,
then 1 − λb is invertible, say with inverse c. Then ei − λb is invertible in eiKQei
with inverse eicei. But eiKQei is isomorphic to a free algebra K⟨X⟩, so its only
invertible elements are the elements of K. Thus ei − λb is a multiple of ei. Thus
p = q = ei, but then b is a multiple of ei and then for suitable λ, ei − λb is not
invertible in eiKQei.

Proposition/Definition. A ring R is called a local ring if it satisfies the following
equivalent conditions.

(i) R/J(R) is a division ring.
(ii) The non-invertible elements of R form an ideal.
(iii) There is a unique maximal left ideal in R.
If so, then the ideal in (ii) and the left ideal in (iii) are equal to J(R).

Proof. (i) implies (ii). The elements of J(R) are not invertible, so it suffices to
show that any x /∈ J(R) is invertible. Now J(R) + x is an invertible element in
R/J(R), say with inverse J(R) + a. Then 1− ax, 1− xa ∈ J(R). But this implies
ax and xa are invertible, hence so is x.

(ii) implies (iii). Clear.
(iii) implies (i). Since J(R) is the intersection of the maximal left ideals, it

is the unique maximal left ideal. Thus R = R/J(R) is a simple R-module, and
so a simple R-module. Then R ∼= EndR(R)

op, which is a division ring by Schur’s
Lemma.

Examples. (i) A ring of power series K[[x]]. The elements of the ideal (x) are
non-invertible, and all other elements are invertible.

(ii) If I is an admissible ideal in KQ, then KQ/I is local if and only if Q has
exactly one vertex. For example R = K[x]/(xn) is local.

(iii) The set of upper triangular matrices with equal diagonal entries is a sub-
algebra of Mn(K), e.g.

{

a b c
0 a d
0 0 a

 : a, b, c, d ∈ K}
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It is local since if a = 0 the matrix is nilpotent, and if a ̸= 0 the matrix is invertible,
and the inverse is still in the subalgebra.

(iv) The exterior algebra

R = Λ(V ) ∼= K⟨x1, . . . , xn⟩/(x2i , xixj + xjxi).

The ideal I generated by the xi is nil and R/I ∼= K.

Remark. Let Q be a finite quiver. Sometimes it is useful to consider the power
series path algebra K⟨⟨Q⟩⟩, consisting of sums∑

p path

app

with ap ∈ K, but with no requirement that only finitely many are non-zero. Multi-
plication makes sense because any path p can be obtained as a product qq′ in only
finitely many ways. In the special case of a loop one gets the power series algebra
K[[x]]. Alternatively

K⟨⟨Q⟩⟩ ∼= lim←
n

KQ/(KQ)n+,

the (KQ)+-adic completion of KQ. Some properties:
(i) An element of K⟨⟨Q⟩⟩ is invertible if and only if the coefficient of each trivial

path ei is nonzero.
(ii) J(K⟨⟨Q⟩⟩) consists of the elements in which the trivial paths all have coef-

ficient zero, so it is the ideal generated by the arrows.
(iii) f.d. K⟨⟨Q⟩⟩-modules correspond exactly to f.d. modules M for KQ which

are nilpotent, meaning that (KQ)d+M = 0 for some d.

1.6 Finite length indecomposable modules

Definition. A composition series for an R-module M is a chain of submodules

0 =M0 ⊂M1 ⊂ · · · ⊂Mn =M

such that the quotients Mi/Mi−1 are simple. If so the length of the composition se-
ries is n and the composition factors are the quotientsM1/M0,M2/M1, . . . ,Mn/Mn−1.

It is easy to see that M has a composition series if and only if it has the acc
and the dcc on submodules, that is, it is noetherian and artinian.

We define lengthM to be the length of a composition series, or ∞ if there is
none. The Jordan-Hölder Theorem (proof omitted) says that any two composition
series have the same length, and the composition factors are the same, up to
reordering. Clearly if 0→ X → Y → Z → 0 is exact, then

lengthY = lengthX + lengthZ.

Clearly a finite-dimensional module for an algebra has finite length.
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Definition. A module M for a ring R is indecomposable if M ̸= 0 and there is no
direct sum decomposition M = X ⊕ Y with X and Y non-zero submodules of M .
It is equivalent that EndR(M) contains no idempotents except 0,1.

Examples. (i) A semisimple module is indecomposable if and only if it is simple.
(ii) For a quiver Q, the projective KQ-modules P [i] = KQei are indecompos-

able. If not, identifying
End(P [i]) = eiKQei

we get an idempotent e ∈ eiKQei with e ̸= 0, ei. Then 0 ̸= e ∈ KQei and
0 ̸= f = ei − e ∈ eiKQ and ef = 0. Contradiction.

Proposition. For a nonzero ring R we have

Every element of R
is nilpotent
or invertible

⇒ R is local ⇒ R has no idempotents except 0,1

Thus if M is a nonzero module, we have

Every endomorphism
of M is nilpotent

or invertible
⇒ End(M) is local ⇒ M is indecomposable

Proof. Suppose every element of R is nilpotent or invertible. We claim that the
non-invertible elements form an ideal I. Say x ∈ I and ax /∈ I. Then xn = 0,
so 0 = [(ax)−1a]nxn = 1. Now if x, y ∈ I and x + y is invertible, then letting
a = (x+ y)−1 we have ax = 1− ay, so ax is invertible. Contradiction.

Now suppose R is local. If e is a non-trivial idempotent, then e and 1 − e
are non-invertible (else e = e1 = eee−1 = ee−1 = 1). Thus both are in J(R), so
1 ∈ J(R). Contradiction.

The next result shows that for a finite length module, the three conditions are
equivalent.

Lemma (Fitting’s Lemma). If M is a finite length module and θ ∈ End(M), then
there is a decomposition as a direct sum of submodules

M =M0 ⊕M1

such that θ|M0 is a nilpotent endomorphism of M0 and θ|M1 is an invertible endo-
morphism of M1.

In particular, if M is indecomposable, then any endomorphism is nilpotent or
invertible, so End(M) is local.
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Proof. There are chains of submodules

Im(θ) ⊇ Im(θ2) ⊇ Im(θ3) ⊇ . . .

Ker(θ) ⊆ Ker(θ2) ⊆ Ker(θ3) ⊆ . . .

which must stabilize since M has finite length. Thus there is some n with Im(θn) =
Im(θ2n) and Ker(θn) = Ker(θ2n). We show that

M = Ker(θn)⊕ Im(θn).

If m ∈ Ker(θn) ∩ Im(θn) then m = θn(m′) and θ2n(m′) = θn(m) = 0, so m′ ∈
Ker(θ2n) = Ker(θn), so m = θn(m′) = 0. If m ∈ M then θn(m) ∈ Im(θn) =
Im(θ2n), so θn(m) = θ2n(m′′) for some m′′. Then m = (m − θn(m′′)) + θn(m′′) ∈
Ker(θn) + Im(θn).

Now it is easy to see that the restriction of θ to Ker(θn) is nilpotent, and its
restriction to Im(θn) is invertible.

We now apply the idea of the Jacobson radical to the module category.

Proposition/Definition. If X and Y are R-modules, we define rad(X, Y ) to be
the set of all θ ∈ Hom(X, Y ) satisfying the following equivalent conditions.
(i) 1X − ϕθ is invertible for all ϕ ∈ Hom(Y,X).
(ii) 1Y − θϕ is invertible for all ϕ ∈ Hom(Y,X).
Thus by definition rad(X,X) = J(End(X)).

Proof. (i) implies (ii). If u is an inverse for 1X −ϕθ then 1Y + θuϕ is an inverse for
1Y − θϕ.

Lemma. (a) rad defines an ideal in the module category, that is rad(X, Y ) is an
additive subgroup of Hom(X, Y ), and given maps X → Y → Z, if one is in the
radical, so is the composition.

(b) rad(X⊕X ′, Y ) = rad(X, Y )⊕rad(X ′, Y ) and rad(X, Y ⊕Y ′) = rad(X, Y )⊕
rad(X, Y ′).

Proof. (a) For a sum θ + θ′, let f be an inverse for 1 − ϕθ. Then 1 − ϕ(θ + θ′) =
(1− ϕθ)(1− fϕθ′), a product of invertible maps.

(b) Straightforward.

Definition. A module map θ : X → Y is a split mono if it has a retraction, that
is, there is a map ϕ : Y → X with ϕθ = 1X . Equivalently if θ is an isomorphism
of X with a direct summand of Y .

A module map θ : X → Y is a split epi if it has a section, that is, there is a map
ψ : Y → X with θψ = 1Y . Equivalently if θ identifies Y with a direct summand of
X.

29



Lemma. (i) If X has local endomorphism ring, then rad(X, Y ) is the set of maps
which are not split monos.

(ii) If Y has local endomorphism ring, then rad(X, Y ) is the set of maps which
are not split epis.

(iii) If X and Y have local endomorphism ring, then rad(X, Y ) is the set of
non-isomorphisms.

Proof. (i) Suppose θ ∈ Hom(X, Y ). If θ is a split mono there is ϕ ∈ Hom(Y,X)
with ϕθ = 1X , so 1X − ϕθ is not invertible. Conversely if there is some ϕ with
f = 1X − ϕθ not invertible, then ϕθ = 1X − f is invertible. Then (ϕθ)−1ϕθ = 1X ,
so θ is split mono.

(ii) is dual and (iii) follows.

Theorem (Krull-Remak-Schmidt Theorem). Every finite length module M is iso-
morphic to a direct sum of indecomposable modules,

M ∼= X1 ⊕ · · · ⊕Xn.

Moreover if M ∼= Y1 ⊕ · · · ⊕ Ym is another decomposition into indecomposables,
then m = n and the Xi and Yj can be paired off so that corresponding modules are
isomorphic.

Proof. The existence of a decomposition holds by induction on the length. Given
any two modules X and Y , we set

top(X, Y ) = Hom(X, Y )/ rad(X, Y ).

It is naturally an End(Y )-End(X)-bimodule, and in fact an End(Y )/J(End(Y ))-
End(X)/J(End(X))-bimodule. We apply this to an indecomposable X of finite
length and the module M . Then D = End(X)/J(End(X)) is a division ring and
top(X,M) is a right D-module. Moreover as a right D-module,

top(X,M) = top(X,X1 ⊕ · · · ⊕Xn) ∼= top(X,X1)⊕ · · · ⊕ top(X,Xn)

and

top(X,Xi) ∼=

{
D (Xi

∼= X)

0 (Xi ̸∼= X)

so the number of Xi isomorphic to X is equal to the length of top(X,M) as a right
D-module, so it is the same in any decomposition of M .

Definition. Clearly any finite length module M is isomorphic to a direct sum

M1 ⊕ · · · ⊕M1︸ ︷︷ ︸
r1

⊕ · · · ⊕Mn ⊕ · · · ⊕Mn︸ ︷︷ ︸
rn
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with the Mi indecomposable and Mi ̸∼= Mj for i ̸= j.
We define #M = n, the number of non-isomorphic indecomposable summands

in a decomposition of M .
We say M is basic if all ri = 1, that is, M can be written as a direct sum of

pairwise non-isomorphic indecomposable modules.
Given any R-module M , we write addM for the full subcategory of R-Mod

consisting of all modules isomorphic to a direct summand of a finite direct sum of
copies of M .

For example addR is the category of f.g. projective R-modules.
Clearly if M has finite length, then addM consists of the modules isomorphic

to a finite direct sum of copies of the Mi. The module

M ′ =M1 ⊕ · · · ⊕Mn

is the unique basic module, up to isomorphism, with addM = addM ′.

Definition. Let θ : X → Y be a map of R-modules.
(i) We say that θ is left minimal if for α ∈ End(Y ), if αθ = θ, then α is

invertible.
(ii) We say that θ is right minimal if for β ∈ End(X), if θβ = θ, then β is

invertible.

Lemma. Given a map θ : X → Y of finite length modules.
(i) There is a decomposition Y = Y0 ⊕ Y1 such that Im(θ) ⊆ Y1 and X → Y1 is

left minimal.
(ii) There is a decomposition X = X0 ⊕X1 such that θ(X0) = 0 and X1 → Y

is right minimal.

Proof. (i) Of all decompositions Y = Y0 ⊕ Y1 with Im(θ) ⊆ Y1 choose one with Y1
of minimal length. Let θ1 be the map X → Y1. Let α ∈ End(Y1) with αθ1 = θ1. By
the Fitting decomposition, Y1 = Im(αn)⊕ Ker(αn) for n ≫ 0. Now αnθ1 = θ1, so
Im(θ1) ⊆ Im(αn), and we have another decomposition Y = [Y0⊕Ker(αn)]⊕Im(αn).
By minimality, Ker(αn) = 0, so α is injective, and hence an isomorphism.

(ii) is dual.

Lemma. Let θi : Xi → Yi be finitely many maps between finite length modules. If
the θi are left (respectively right) minimal, then so is the map

⊕
iXi →

⊕
i Yi.

Proof. We prove it for right minimal (left minimal is similar). If not, then by
the lemma, there is a non-zero summand X ′ of

⊕
iXi on which the map is zero.

We may assume that X ′ is indecomposable, so has local endomorphism ring. Let
fi : X

′ → Xi be the projections. Since θ(X ′) = 0 we have θifi = 0 for all i. Since
X ′ is a summand there are gi : Xi → X ′ with 1X′ =

∑
i gifi. Thus some gifi is
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invertible, so fi is a split mono, with retraction r = (gifi)
−1gi. Then β = 1Xi

− fir
satisfies θiβ = θi, so by minimality β is invertible, but βfi = 0, so fi = 0, a
contradiction.

1.7 Left artinian rings

We’re interested in f.d. algebras over a field K, but some things we can do more
generally for left artinian rings.

Lemma. Let R be a left artinian ring and M an R-module. Then
(i) J = J(R) is a nilpotent ideal.
(ii) R/J is a semisimple ring.
(iii) R is left noetherian, so has finite length as a left R-module. Thus finite

length modules are the same as finitely generated modules.
(iv) There are only finitely many simple R-modules
(v) If M is an R-module, then radM = JM and socM = {m ∈M : Jm = 0}.
(vi) If M = radM or socM = 0 then M = 0.

Proof. (i) By the dcc we have Jn = J2n for some n. Suppose this is nonzero. Then
there is a nonzero left ideal I with JnI = I. Thus there is a minimal one. Let
L = {x ∈ I : Jnx = 0}. Clearly it is a left ideal and a proper subset of I. If
x ∈ I \L, then Jnx ⊆ I and Jn(Jnx) = Jnx ̸= 0, so by minimality Jnx = I. Thus
Rx = I. Thus I/L is simple. Thus Jn(I/L) = 0, so I = JnI ⊆ L. Contradiction.

(ii) Now R/J is semisimple as an R-module, so as an R/J-module, so it is a
semisimple ring.

(iii) Each J i/J i+1 is anR/J-module, so semisimple. Since they are also artinian,
they are finite direct sums of simples, so they are also noetherian. Thus R is
noetherian.

(iv) Any simple module is a composition factor of the finite-length module R/J .
(v) If N is a maximal submodule of M , then M/N is simple, and so J(M/N) =

0, so JM ⊆ N . Thus JM ⊆ radM . On the other hand M/JM is an R/J-module,
so semisimple. Then by functoriality, the map M → M/JM sends radM to
rad(M/JM) = 0, so radM ⊆ JM .

Any simple submodule S of M satisfies JS = 0, so Jm = 0 for all m ∈ socM ,
so socM is contained in the RHS. Now the RHS is an R/J-module, so semisimple,
so contained in socM .

(vi) If M = JM then M = JnM = 0. Any non-zero module has a non-zero f.g.
submodule, and that has a simple submodule by the dcc.

Notation. Let R be left artinian. We decompose RR into indecomposables, and
collect isomorphic terms, so

R ∼= P [1]r1 ⊕ · · · ⊕ P [n]rn
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with the P [i] non-isomorphic modules. The modules P [1], . . . , P [n] are are called
the principal indecomposable modules (pims).

Let Di = (End(P [i])/J(End(P [i])))op. Since P [i] is indecomposable of finite
length, it is a division algebra.

Let S[i] = P [i]/ radP [i].

Lemma. (i) The P [i] are a complete set of non-isomorphic indecomposable f.g.
projective R-modules.

(ii) The S[i] are a complete set of non-isomorphic simple R-modules, and Di
∼=

End(S[i])op.
(iii) R/J(R) ∼= Mr1(D1) × · · · × Mrn(Dn), and under this isomorphism, the

simple module S[i] corresponds to the module Dri
i .

Note that in case J(R) = 0, part (iii) recovers the Artin-Wedderburn decom-
position.

Proof. (i) They are projective and nonisomorphic. Any f.g. projective module is
a direct summand of a f.g. free module, so by the Krull-Remak-Schmidt Theorem
isomorphic to one of the P [i].

(ii) Since the construction of S[i] = P [i]/ radP [i] is functorial there is a natural
map

End(P [i])→ End(S[i])

and since P [i] is projective, it is surjective. Now End(P [i]) is a local ring, hence
so also is End(S[i]), so S[i] is indecomposable. Since it is semisimple, it is simple,
so End(S[i]) is a division ring. Thus we must have an isomorphism

End(P [i])/J(End(P [i]))→ End(S[i]).

Now the S[i] are non-isomorphic, for inverse isomorphisms between S[i] and
S[j] would lift to maps P [i]→ P [j]→ P [i] whose composition can’t be nilpotent,
so must be invertible, so P [i] ∼= P [j], so i = j.

Any simple module S has a non-zero map from some P [i], but then the map
P [i]→ S must give a non-zero map S[i]→ S, and this must be an isomorphism.

(iii) As an R-module, we have

R/J = R/ radR ∼=
⊕
i

(P [i]/ radP [i])ri =
⊕

S[i]ri .

Since Hom(S[i], S[j]) = 0 for i ̸= j we get

EndR(R/J) ∼= Mr1(End(S[1]))× · · · ×Mrn(End(S[n])).

Now use that
R/J ∼= EndR/J(R/J)

op = EndR(R/J)
op

Then S[i] ∼= Hom(R, S[i]) ∼=
⊕

j Hom(P [j], S[i])rj ∼= End(S[i])ri .
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Example. Let R be the set of matrices of shape∗ ∗ ∗∗ ∗ ∗
0 0 ∗

 ⊆M3(K).

It is a subalgebra, so an algebra. We can write it as R = S ⊕ I for a subalgebra S
and ideal I with

S =

∗ ∗ 0
∗ ∗ 0
0 0 ∗

 , I =

0 0 ∗
0 0 ∗
0 0 0

 .

Now I is a nil ideal, so I ⊆ J(R). Also

R/I ∼= S ∼= M2(K)×K

which is semisimple, so J(R) ⊆ I. Thus J(R) = I. Now we get the decomposition
R = Re11 ⊕Re22 ⊕Re33 where

P [1] = Re11 =

∗∗
0

 ∼= Re22, P [2] = Re33 =

∗∗
∗

 .

radP [1] = J(R)P [1] = 0 radP [2] = J(R)P [2] =

∗∗
0

 ∼= P [1].

Then Di = K, S[1] = P [1] is 2-dimensional and S[2] = P [2]/ radP [2] is 1-
dimensional.

Definition. Let R be a K-algebra. We say that a finite-dimensional R-module M
is split if in its decomposition into indecomposables, for each summand, the top of
the endomorphism ring is K.

We say that a finite-dimensional algebra R is basic or split if RR has this
property. It is equivalent that all ri = 1, respectively that all Di = K.

Proposition. (i) Any f.d. algebra is Morita equivalent to a basic one.
(ii) If K is algebraically closed, any f.d. module or algebra is split.
(iii) If I is an admissible ideal in KQ, then KQ/I is basic and split.

Proof. (i) Let P = P [1] ⊕ · · · ⊕ P [n]. It is a basic module. Since it involves all
of the indecomposable projective R-modules, it is a finitely generated projective
generator for R-Mod, so R is Morita equivalent to A = EndR(P )

op. Now

EndR(P/ radP )
op ∼= EndR(S[1]⊕ · · · ⊕ S[n])op ∼= D1 × · · · ×Dn
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and since the construction of P/ radP is functorial, there is a natural map

EndR(P )→ EndR(P/ radP ),

and it is surjective since P is projective. The kernel is a nil ideal since if θ is in the
kernel, then θ(P ) ⊆ radP = JP , so θn(P ) ⊆ JnP = 0 for n≫ 0. Thus the kernel
is the radical of EndR(P ), and so A is basic.

Theorem (Gabriel’s less famous theorem about quivers). If R is a f.d. K-algebra
which is basic and split, then R ∼= KQ/I for some quiver Q and admissible ideal I.

Proof. We have a decomposition R = P [1]⊕· · ·⊕P [n] without multiplicities. Using
the isomorphism R ∼= End(R)op, the projections onto the P [i] give a complete
family of orthogonal idempotents e1, . . . , en with P [i] = Rei.

Let J = J(R). By assumption e1, . . . , en induce a basis of R/J . We have

J =
⊕
i,j

ejJei.

and
J2 =

⊕
i,j

ejJ
2ei

so
J/J2 ∼=

⊕
i,j

(ejJei)/(ejJ
2ei).

Let Q be the quiver with Q0 = {1, . . . , n} and with

dim(ejJei)/(ejJ
2ei)

arrows from i to j, for all i, j. Define an algebra homomorphism

θ : KQ→ R

sending ei to ei, and sending the arrows from i to j to elements in ejJei inducing
a basis of the quotient. Let U = θ(KQ+). We have U ⊆ J and U + J2 = J . Thus
by Nakayama’s Lemma, U = J . It follows that θ is surjective.

Let I = Ker θ. If m is sufficiently large that Jm = 0, then θ(KQm
+ ) ⊆ Um = 0,

so KQm
+ ⊆ I. Suppose x ∈ I. Write it as x = u + v + w where u is a linear

combination of trivial paths, v is a linear combination of arrows, and w is in KQ2
+.

Since θ(ei) = ei and θ(v), θ(w) ∈ J , we must have u = 0. Now θ(v) = −θ(w) ∈ J2,
so that θ(v) induces the zero element of J/J2. Thus v = 0. Thus x = w ∈
KQ2

+.
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1.8 Injective modules and duality

Definition. Recall that an R-module E is injective if it satisfies the following
equivalent conditions.

(i) Hom(−, E) is an exact (contravariant) functor.
(ii) Any short exact sequence 0→ E → Y → Z → 0 is split.
(iii) Given an injective map θ : X ↪→ Y , any map X → E factors through θ.
(iv) (Baer’s criterion) Given any left ideal I in R, any map I → E lifts to a

map R→ E.

Definition. Let R be a K-algebra, as usual with our assumption that K is a field.
If M is a left (respectively right) R-module, then

DM = HomK(M,K)

is a right (respectively left) R-module.

Properties. (i) If P is a projective R-module, then DP is injective. Namely DR
is injective since

HomR(−, DR) ∼= HomK(−⊗R R,K) ∼= HomK(−, K) = D(−)

which is exact, and any P is a direct summand of a free module R(I), and so D(P )
is a direct summand of D(R(I)) ∼= D(R)I , a product of copies of D(R), which is
injective. Alternatively,

HomR(−, DP ) ∼= HomK(−⊗R P,K).

Since P is projective, it is flat. Thus this functor is exact.

(ii) If M is finite dimensional, then dimDM = M and we have a natural
isomorphism M → D(DM). Thus D gives antiequivalences

R-mod −→←− mod-R.

(iii) If R is a finite-dimensional K-algebra, and E is a f.d. injective R-module,
then DE is projective.

Namely, choose a f.d. free left R-module F with a surjective map F → DE.
Then E embeds in DF , but E is injective, so E is a direct summand of DF . Then
DE is a direct summand of F , so DE is projective.

Thus D induces an antiequivalence between the category of f.d. projective mod-
ules on one side and the category of f.d. injective modules on the other side.
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Remark. Many results about finite-dimensional K-algebras generalize to artin
algebras, that is, algebras over a commutative artinian ring K which are finitely
generated as a K-module. One needs to replace D by HomK(−, E) where E is the
injective envelope of the direct sum of the simple K-modules. (Injective envelopes
will be discussed later.)

Definition. For R a f.d. algebra, the Nakayama functor is the functor

ν(−) = DR⊗R − : R-mod→ R-mod.

Properties. (i) ν has right adjoint ν−(−) = HomR(DR,−).
(ii) We have ν(X) ∼= DHomR(X,R). Namely,

Dν(X) = HomK(DR⊗R X,K) ∼= HomR(X,HomK(DR,K))

by Hom-tensor adjointness, and then

HomK(DR,K) = D2R ∼= R,

so Dν(X) ∼= HomR(X,R). Now apply D.

(iii) HomR(X, νP ) ∼= DHomR(P,X) for X,P left R-modules with P projective.

Namely there is a map HomR(P,R)⊗RX → HomR(P,X) sending θ⊗ x to the
map sending p to θ(p)x. This is a natural transformation between functors of P .
Now for P = R it is easy to see that it is an isomorphism, so by functoriality it is
an isomorphism for any direct sum of copies of R, so for any f.g. free module F ,
and also it is an is an isomorphism for any direct summand of F , so for any f.g.
projective module P . Now applying D we get an isomorphism

DHomR(P,X) ∼= D(HomR(P,R)⊗RX) ∼= HomR(X,DHomR(P,R)) ∼= HomR(X, νP ).

(iv) ν restricts to an equivalence from the category of f.d. projective left modules
to the category of f.d. injective left modules.

We know that ν sends f.d. projective modules to f.d. injective modules. More-
over if P, P ′ are f.d. projective modules, then using (iii) twice we get

HomR(νP, νP
′) ∼= DHomR(P

′, νP ) ∼= HomR(P, P
′)

so ν is fully faithful on the category of f.d. projective modules. Now if I is a f.d.
injective module, then there is a f.g. free module with a surjective map onto DI,
say Rn → DI. Then the map I → DRn is injective, so a split mono. Thus I is
isomorphic to the image of an idempotent endomorphism of DRn ∼= ν(Rn). This
comes from an idempotent endomorphism of Rn, and if this has image P , then
I ∼= ν(P ). Thus the functor is dense.
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Notation. Let R be a finite-dimensional algebra, and let P [i] and S[i] be the
indecomposable projective and simple modules. We define I[i] = ν(P [i]). They
are a complete set of non-isomorphic indecomposable f.d. injective modules. Note
also that soc I[i] ∼= S[i] since

dimHom(S[j], I[i]) = dimHom(P [i], S[j]) =

{
dimDi (i = j)

0 (i ̸= j).

Note that if R = KQ/I with I admissible, then P [i] = Rei and

I[i] = ν(Rei) = DHomR(Rei, R) = D(eiR).

Thus considering I[i] as a representation of Q, the vector space at vertex j is

I[i]j = ejD(eiR) = D(eiRej),

which has as basis the dual basis associated a basis of eiRej given by the paths
from j to i modulo the relations.

Examples. (1) For the quiver

1
a1−→ 2

a2−→ 3
a3−→ 4

with relations ai+1ai = 0, the injective are

I[1] = K → 0→ 0→ 0 ∼= S[1],

I[2] = K → K → 0→ 0 ∼= P [1],

I[3] = 0→ K → K → 0 ∼= P [2],

I[4] = 0→ 0→ K → K ∼= P [3].

(2) For the commutative square

1
a−−−→ 2

b

y c

y
3

d−−−→ 4

the injective I[4] is
K

1−−−→ K

1

y 1

y
K

1−−−→ K

so I[4] ∼= P [1].
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1.9 Module classes, envelopes and covers

Definition. We shall call a subcategory C of R-Mod a module class provided
(i) It is a full subcategory,
(ii) It is closed under isomorphisms, that is, if X ∼= Y and X ∈ C ⇒ Y ∈ C,
(iii) It is closed under finite direct sums and summands, that is, X ⊕ Y ∈ C iff
X, Y ∈ C.

If a module class consists of finite length modules, it is determined by the
indecomposables it contains.

Examples. (i) All modules, finite length modules, f.d. modules for an algebra,
the zero module, the projective modules, the injective modules, the semisimple
modules.

(2) Any intersection of module classes.
(3) IfM is any collection of modules, then addM, is the smallest module class

containing M. It consists of all modules isomorphic to a direct summand of a
finite direct sum of modules inM.

Definition. Let C be a module class and X a module, not necessarily in C.
(i) A left C-approximation (or preenvelope) of X is a morphism θ : X → C

with C ∈ C, such that the induced map

Hom(C,C ′)→ Hom(X,C ′)

is surjective for all C ′ ∈ C. That is, for any θ′ : X → C ′ there is f : C → C ′ with
θ′ = fθ.

A C-envelope (or hull) of X is a left minimal left C-approximation of X.

(ii) A right C-approximation (or precover) of X is a morphism θ : C → X with
C ∈ C, such that the induced map

Hom(C ′, C)→ Hom(C ′, X)

is surjective for all C ′ ∈ C. That is, for any θ′ : C ′ → X with C ′ in C, there is
f : C ′ → C with θ′ = θf .

A C-cover of X is a right minimal right C-approximation.

Lemma. If X has a C-envelope (resp. cover), then it is unique up to isomorphism,
and it is a direct summand of any left (resp. right) C-approximation.

Proof. Straightforward.
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Lemma. (a) A morphism θ : X → I is an injective envelope of X if and only
if I is injective, θ is a monomorphism, and Im θ is an essential submodule of I,
meaning that if U is a nonzero submodule of I, then U ∩ Im θ ̸= 0.

(b) A morphism ϕ : P → X is a projective cover of X if and only if P is pro-
jective. ϕ is an epimorphism, and Kerϕ is a superfluous submodule of P , meaning
that if U is a submodule of P with U +Kerϕ = P , then U = P .

Proof. (a) By the injective property, and the fact that every module can be em-
bedded in some injective module, θ is a left injective approximation if and only if
I is injective and θ is a monomorphism.

Suppose that θ is left minimal and U is a submodule of I with U ∩ Im θ = 0.
Then U⊕Im θ is a submodule of I, and by the injective property there is a morphism
α such that the diagram

X −−−→ U ⊕ Im θ −−−→ I∥∥∥ p

y α

y
X −−−→ U ⊕ Im θ −−−→ I

commutes, where p is the projection onto Im θ. Then α is an isomorphism, but
U ⊆ Kerα, so U = 0.

Suppose that Im θ is essential and αθ = θ. Then Im θ∩Kerα = 0 so Kerα = 0,
so α is mono. Since I is injective, α must be a split mono, so I = Imα ⊕ Y . But
then Y ∩ Im θ = 0, so Y = 0, so α is an epi.

(b) Dual.

Remark. For an arbitrary ring, injective envelopes always exist.
Projective covers do not always exist: observe that the canonical map Z →

Z/2Z is not a projective cover of Z/2Z as a Z-module, since 2Z+ 3Z = Z. Now if
P → Z/2Z were a projective cover, it would be a summand of this map. But Z is
indecomposable, so it would be isomorphic to this map.

Injective envelopes and projective covers (when they exist) are denoted X →
E(X) and P (X) → X. They exist for f.d. algebras. We show how to construct
them.

Lemma. Suppose R is left artinian and X is an R-module.
(a) A homomorphism to an injective module θ : X → I is an injective envelope

if and only if the induced map socX → soc I is an isomorphism.
(b) A homomorphism from a projective module ϕ : P → X is a projective cover

if and only if the induced map topP → topX is an isomorphism.

Proof. (a) Since soc I is semisimple, we have soc I = θ(socX)⊕ U for some U . If
θ is an injective envelope, then U = 0, so the map on socles is an isomorphism.
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Conversely if the map on socles is an isomorphism, then socKer θ = 0, so
θ is injective, and if U is a non-zero submodule of I with U ∩ Im θ = 0, then
U ∩ soc I = 0, so socU = 0 so U = 0.

(b) Similar, using part (vi) of the first lemma about left artinian rings.

Remark. Suppose R is a finite-dimensional algebra and X is an R-module.
(a) One gets an injective envelope of X as follows. Write socX as a direct sum

of copies of the simple modules S[i]. Let I be the corresponding direct sum of the
injective modules I[i]. Since R is noetherian, an arbitrary direct sum of injective
modules is injective, so I is injective. Let θ0 : socX → I be the map given by the
inclusions S[i] ∼= soc I[i] ↪→ I[i]. By the injective property, it extends to a map
θ : X → I, which is an injective envelope by the lemma.

(b) One gets an projective cover of X as follows. Write topX as a direct sum
of copies of the simple modules S[i]. Let P be the corresponding direct sum of the
projective modules P [i]. Let ϕ0 : P → topX be the map given by the canonical
maps P [i] → S[i]. Then by the projective property, it lifts to a map ϕ : P → X,
which is a projective cover by the lemma.

Remark. To use this explicitly, it is useful to be able to compute the socle and top
of an R-module X. This is very easy when R = KQ/I with I an admissible ideal.
Then R-modules are identified with representations of Q satisfying the relations
defining the ideal I, and recall that a representation X is given by a vector space
Xi for each vertex i and a linear map Xa : Xi → Xj for each arrow a : i→ j. Now
the simple R-modules are the simples S[i], so a semisimple R-module is exactly
a representation X in which all the linear maps Xa are zero. Now the socle of a
representation X is the unique largest semisimple subrepresentation, so given by
the subspaces

(socX)i =
⋂

a an arrow with tail at i

KerXa.

Now J(R) = KQ+/I and

KQ+ =
∑

a an arrow

aKQ,

so
J(R) =

∑
a an arrow

aR

where if a is an arrow in Q then a also denotes its image in R. By the lemma at
the start of the section on left artinian rings, we have radX = J(R)X, so

radX =
∑

a an arrow

aRX =
∑

a an arrow

aX.
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This means that if X is considered as a representation of Q, then radX is the
subrepresentation given by the subspaces

(radX)i =
∑

a an arrow with head at i

ImXa.

Let’s explore left and right approximations a little more, for use later on. Hence-
forth work inside the category R-mod of finite-dimensional modules for an alge-
bra R.

Definition. Let C be a module class in R-mod.
We say that C is covariantly finite if every f.d. moduleX has a left C-approximation.

If so, it has a C-envelope. Namely, if θ : X → C is a left C-approximation, then
by the lemma in section 1.6 there is a decomposition C = C0 ⊕ C1 such that
Im θ ⊆ C1 and the map X → C1 is left minimal. Now clearly this map is also a
left C-aproximation, so it is a C-envelope.

We say that C is contravariantly finite if every f.d. module X has a right C-
approximation. If so, it has a C-cover.

We say that C is functorially finite if it is covariantly and contravariantly finite.

Example. If the inclusion i : C → R-mod has a left adjoint L, then any module C
is covariantly finite. Namely, by assumption for any module X and module C ∈ C,
there is a bijection

Hom(X,C)→ Hom(LX,C), θ 7→ θ′

and this is a natural transformation in X, meaning that

(θf)′ = θ′L(f) for all f : X ′ → X

and a natural transformation in C, meaning that

(gθ)′ = gθ′ for all g : C → C ′ in C. (∗)

Now given a module X, the identity map 1LX : LX → LX is θ′ for some θ : X →
LX. Then θ is a left C-approximation of X, since if ϕ : X → C with C ∈ C, then
(ϕ′θ)′ = ϕ′θ′ = ϕ′ by (*) and using that θ′ = 1LX . Since the map θ 7→ θ′ is a
bijection, we deduce ϕ′θ = ϕ, so ϕ factors through θ. Also θ is left minimal in the
strong sense, for if g : LX → LX and gθ = θ, then

1LX = θ′ = (gθ)′ = gθ′ = g1LX = g

and for left minimality we only need to know that g is an isomorphism.
Similarly if i has a right adjoint R, then the morphism i(RM)→M is a C-cover,

so C is contravariantly finite.
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Lemma. If M is a f.d. R-module, then addM is functorially finite in R-mod.

Proof. For any f.d. module X we take a basis of HomR(X,M), say with n elements.
This gives a map X → Mn which is a left addM -approximation. Similarly for a
right addM -approximation use a basis of HomR(M,X) to get a map Mn → X.

For injective envelopes and projective covers of finite-dimensional modules for
a finite-dimensional algebra R we could have used addR and addDR. For use
much later, we record the following.

Definition. IfM is a collection of f.d. modules, the modules generated byM are
the module class

genM = {N : ∃ epimorphism M ′ ↠ N with M ′ ∈ addM}.

The modules cogenerated byM are the module class

cogenM = {N : ∃ monomorphism N ↪→M ′ with M ′ ∈ addM}.

Proposition. If R is f.d. and M is a f.d. R-module, then genM is covariantly
finite, and dually cogenM is contravariantly finite.

Proof. Given X, take a projective cover P → X. Take a left addM -approximation
P →M ′. Take the pushout

P −−−→ M ′y y
X −−−→ G

Since P → X is onto, so is M ′ → G, so G ∈ genM . If f : X → G′ with
G′ ∈ genM , then there is a map from M ′′ onto G′ with M ′′ ∈ addM . Since P is
projective, the composition P → X → G′ lifts to a map P → M ′′. Since the map
P → M ′ is an approximation, the map P → M ′′ factors as P → M ′ → M ′′. Now
the two maps X → G′ and M ′ → M ′′ → G′ agree on P , so there is an induced
map of the pushout G → G′. Thus the map X → G′ factors as X → G → G′.
Thus the map X → G is a left genM -approximation.

1.10 Homological algebra for finite-dimensional algebras

We consider modules for a f.d. algebra R.

Definition. Recall that a projective resolution of a module M is an exact sequence

· · · → P2
d2−→ P1

d1−→ P0
ϵ−→M → 0
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with the Pi projective. Letting Ω0M = M and ΩiM = Im di for i > 0, it breaks
into short exact sequences

0→ Ωi+1M → Pi → ΩiM → 0

for all i ≥ 0. It is a minimal projective resolution if the maps Pi → ΩiM are
projective covers for all i ≥ 0. Dually for an injective resolution

0→M
ϵ−→ I0

d0−→ I1
d1−→ I2 → . . . ,

setting Ω0M =M and ΩiM = Im di−1 we get exact sequences

0→ ΩiM → I i → Ωi+1M → 0

for all i ≥ 0 and it is a minimal injective resolution if the maps ΩiM → I i are
injective envelopes for all i.

The minimal projective and injective resolutions of M exist and are unique up
to (non-unique) isomorphism. For example one constructs the minimal projective
resolution of M be taking a projective cover of M . This has kernel Ω1M . Then
take a projective cover of this, and so on.

Example. Recall that the cyclically oriented square

1 a // 2

b
��

4

d

OO

3c
oo

with admissible relations cba and dc, has

P [1] = K 1 // K

1
��

0

OO

Koo

P [2] = 0 // K

1
��

K

OO

K
1
oo

P [3] = 0 // 0

��
K

OO

K
1
oo

P [4] = K 1 // K

1
��

K

1

OO

K
0
oo

The simple modules have minimal projective resolutions

0→ P [1]→ P [4]→ P [2]→ P [1]→S[1]→ 0,

0→ P [3]→ P [2]→S[2]→ 0,

0→ P [1]→ P [4]→ P [3]→S[3]→ 0,

0→ P [1]→ P [4]→S[4]→ 0.
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For example the projective cover of S[1] is P [1], giving an exact sequence

0→ Ω1S[1]→ P [1]→ S[1]→ 0

which is
0 −→ 0 // K

1
��

0

OO

Koo

−→ K
1 // K

1
��

0

OO

Koo

−→ K // 0

��
0

OO

0oo

−→ 0

and the projective cover of Ω1S[1] is P [2], giving an exact sequence

0→ Ω2S[1]→ P [2]→ Ω1S[1]→ 0

which is
0 −→ 0 // 0

��
K

OO

0oo

−→ 0 // K

1
��

K

OO

K
1
oo

−→ 0 // K

1
��

0

OO

Koo

−→ 0

so Ω2S[1] ∼= S[3], etc.

Lemma (1). dimExtk(S[i],M) is equal to dimDi times the multiplicity of I[i] as
a summand of Ik in the minimal injective resolution of M .

dimExtk(M,S[j]) is equal to dimDj times the multiplicity of P [j] as a sum-
mand of Pk in the minimal projective resolution of M .

Proof. Let 0 → M → I0 → I1 → . . . be the minimal injective resolution of M .
Recall that Extk(S[i],M) is the kth cohomology of the complex

0→ Hom(S[i], I0)→ Hom(S[i], I1)→ . . .

Now the differential in this complex is zero, for a homomorphism S[i] → In has
image contained in soc In. The map ΩnM → In is an injective envelope, so soc In

is contained in the image of this map, so it is killed by the map In → In+1, and
hence the composition S[i]→ In → In+1 is zero.

Thus Extk(S[i],M) ∼= Hom(S[i], Ik), and the dimension of this is dimDi times
the multiplicity of I[i] as a summand of Ik.

Lemma (2). If R = KQ/I with I admissible, then the number of arrows from i
to j is dimExt1(S[i], S[j]).

Proof. Since I is admissible, I ⊆ (KQ)2+. Now P [i] = (KQ/I)ei, so radP [i] =
((KQ)+/I)ei, and rad radP [i] = ((KQ)2+/I)ei. Thus

top radP [i] =
radP [i]

rad radP [i]
∼= ((KQ)+/(KQ)

2
+))ei

∼=
⊕
j

S[j]nij
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where nij is the number of arrows from i to j. Then in the minimal projective
resolution of S[i],

· · · → P1 → P [i]→ S[i]→ 0

P1 is the projective cover of radP [i], so also of the top of radP [i], so the multiplicity
of P [j] is nij. Thus dimExt1(S[i], S[j]) = nij.

Recall that a module X has projective dimension ≤ n if it has a terminating
projective resolution of the form

0→ Pn → · · · → P0 → X → 0.

Since this resolution can be used to compute Ext groups, it implies that Extj(X, Y ) =
0 for all j > n and all modules Y , and it is in fact equivalent to this, for if you
take any projective resolution of X and break it into short exact sequences

0→ Ωi+1X → Pi → ΩiX → 0

with Ω0X = X, then applying Hom(−, Y ), the long exact sequence gives for j > 0
an exact sequence

Extj(Pi, Y )→ Extj(Ωi+1X, Y )→ Extj+1(ΩiX, Y )→ Extj+1(Pi, Y )

and the outer terms here are zero since Pi is projective and j > 0, so Extj(Ωi+1X, Y ) ∼=
Extj+1(ΩiX, Y ) (dimension shifting). Thus we get

Ext1(ΩnX, Y ) ∼= Ext2(Ωn−1X, Y ) ∼= . . . ∼= Extn+1(Ω0X, Y ) = Extn+1(X, Y ) = 0

Thus ΩnX is projective, and so X has a terminating projective resolution

0→ ΩnX → Pn−1 · · · → P0 → X → 0.

Dually, a module Y has injective dimension ≤ n if it has a terminating injective
resolution

0→ Y → I0 → · · · → In → 0.

Lemma (3). The following are equivalent for a module M and n ≥ 0.
(i) proj. dimM ≤ n.
(ii) Extn+1(M,S) = 0 for all simples S.
(iii) the minimal projective resolution of M has Pn+1 = 0.
Similarly for the injective dimension.

Proof. (iii) implies (i) implies (ii) are clear.
(ii) implies (iii). Use Lemma (1) above.
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Recall that the (left) global dimension of a ring R is the supremum of the
projective dimensions of its (left) modules.

Proposition. The global dimension of a f.d. algebra is the maximum of the pro-
jective dimensions of its simple modules.

Proof. If every simple S has a projective resolution of length ≤ n, then every
semisimple module has a projective resolution of length ≤ n, so every semisimple
module has projective dimension ≤ n.

Now if 0→ X ′ → X → X ′′ → 0 is exact, then

proj. dimX ≤ max{proj. dimX ′, proj. dimX ′′}

since applying Hom(−, Y ) to this short exact sequence gives a long exact sequence

· · · → Extn+1(X ′′, Y )→ Extn+1(X, Y )→ Extn+1(X ′, Y )→ . . .

so if the outer terms vanish for all Y , so does the middle term.
Now since R is finite-dimensional, every module X has a filtration

X ⊇ J(R)X ⊇ J(R)2X ⊇ · · · ⊇ J(R)NX = 0

in which the successive quotients are semisimple. By induction on the length of
a filtration with semisimple quotients, we deduce that proj. dimX ≤ n. Thus
gl. dimR ≤ n.

Corollary. For a f.d. algebra, the left and right global dimensions are the same.

Proof. Suppose the right global dimension is ≤ n. Take a simple left module S
and its minimal projective resolution

· · · → P1 → P0 → S → 0

Dualizing it gives an injective resolution of the simple right module DS

0→ DS → DP0 → DP1 → . . .

Now this is a minimal injective resolution, and inj. dimDS ≤ n, so by Lemma (3),
DPn+1 = 0. Thus Pn+1 = 0, so proj. dimS ≤ n. Thus the left global dimension is
≤ n. Now we get the reverse inequality by considering Rop.

A hereditary algebra is one with global dimension ≤ 1. Any path algebra over
a field is hereditary - see §4.5 of my lecture notes on homological algebra. Here we
do it for quivers without oriented cycles.

47



Theorem. If Q is a quiver without oriented cycles, then KQ is hereditary. Any
f.d. hereditary algebra which is split and basic arises this way.

Proof. If i is a vertex, radP [i] has basis the nontrivial paths with tail at i. Each
such path is of the form pa for some arrow a with tail at i and some path p with
tail at h(a). These paths give a basis of P [h(a)]. This gives an isomorphism

radP [i] ∼=
⊕
a∈Q1

t(a)=i

P [h(a)]

so S[i] has projective dimension ≤ 1. For the converse, the algebra can be given
as R = KQ/I with I admissible. Consider the exact sequence of KQ-modules

0→ I/(I.KQ+)→ KQ+/(I.KQ+)→ KQ+/I → 0.

The middle module is annihilated by I, so this is a sequence of R-modules. The
RH module is a submodule of R = KQ/I, so it is projective as an R-module. Thus
the sequence splits. Letting

M = KQ+/(I.KQ+), N = I/(I.KQ+)⊕KQ+/I.

we deduce that M ∼= N . Thus M/(KQ+)M ∼= N/(KQ+)N , which gives

KQ+/KQ
2
+
∼= (I/(KQ+.I + I.KQ+))⊕ (KQ+/KQ

2
+).

Thus by dimensions, I = KQ+.I + I.KQ+. Now by admissibility I ⊆ KQ2
+. Then

assuming that I ⊆ KQk
+ we get

I = KQ+.I + I.KQ+ ⊆ KQk+1
+ .

Thus I ⊆ KQk
+ for all k. But if I ̸= 0, then it contains a nonzero element x, and

this involves a path of some length d, and then x /∈ KQd+1
+ .

1.11 Projective-injective modules and uniserial modules

Modules which are both projective and injective can be useful. Any indecompos-
able projective-injective has simple top and simple socle.

Lemma (1). Let R be a f.d. algebra and let P be a left ideal which is a direct
summand of R, hence projective, and suppose that P is also injective. Let S =
socP and let I = SR be the ideal generated by S. If M is an indecomposable
R-module, then either M is isomorphic to a direct summand of P or IM = 0, so
that M is an R/I-module.
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Proof. Suppose IM ̸= 0. Then SM ̸= 0. Thus there is some m ∈M with Sm ̸= 0.
Thus the homomorphism θ : R → M given by θ(r) = rm has θ(S) ̸= 0. Now P
is a direct sum of some modules I[i], so S is the corresponding direct sum of the
S[i]. Thus some θ(S[i]) ̸= 0 for some i. Thus the restriction of θ to I[i] is injective.
Thus I[i] embeds in M . But by injectivity its image must be a direct summand of
M . Thus M ∼= I[i] by indecomposability.

Example. The commutative square algebra R with source 1 and sink 4 has P [1] ∼=
I[4]. But the other indecomposable projectives are not injective. By the lemma,
any indecomposable R-module is either isomorphic to P [1], or is a module for the
algebra given by the square with two zero relations.

Definition. We define the following classes of f.d. algebras with the obvious im-
plications. They are all left-right symmetric.

R symmetric⇒ R Frobenius⇒ R self-injective⇒ R QF-3

(i) R is symmetric if RRR
∼= RDRR. Equivalently if there is a bilinear form

(−,−) : R×R→ K which is
- non-degenerate: (a, b) = 0∀b⇒ a = 0, (a, b) = 0∀a⇒ b = 0,
- associative: (ab, c) = (a, bc), and
- symmetric: (a, b) = (b, a).

The corresponding map R → DR is a 7→ (a,−). It follows that I[i] = ν(P [i]) =
DR⊗R P [i] ∼= R⊗R P [i] ∼= P [i].

(ii) R is Frobenius if RR ∼= RDR. Equivalently if there is a bilinear form which
is non-degenerate and associative.

(iii) R is self-injective (or quasi-Frobenius) if RR is an injective module. Equiva-
lently the modules P [i] and I[j] are the same, up to a permutation. It is equivalent
that a module is projective if and only if it is injective.

(iv) R is QF-3 (in the sense of Thrall) if R has a faithful f.d. projective-injective
module.

Recall that a module M is faithful if r ∈ R and rm = 0 for all m ∈ M , then
r = 0, that is, if the map R→ EndK(M) is injective.

Examples. (1) The group algebra KG of a finite group is symmetric with

(a, b) = coefficient of 1 in ab =
∑
g∈G

λgµg−1

where a =
∑

g∈G λgg and b =
∑

h∈G µhh.
(2) If Q is an oriented cycle quiver with n vertices and k ≥ 0, then R =

KQ/KQk+1
+ is Frobenius, and it is symmetric ⇔ n|k. The bilinear form (a, b) is

the sum of the coefficients of the paths of length k in ab. The symmetry comes
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from the fact that if p, q are paths with pq a path of length a multiple of n, then
so is qp.

(3) The commutative square algebra with source 1 and sink 4 is QF-3. The
module I[4] ∼= P [1] is faithful.

(4) For a commutative algebra the concepts are the same [Namely (ii)⇒(i) since
(a, b) = (1a, b) = (1, ab) = (1, ba) = (b, a), (iii)⇒(ii) since the algebra is basic, and
(iv)⇒(iii) since if there is a faithful projective-injective module, there is one of
the form Re for an idempotent e. But then commutativity gives (1 − e)Re = 0,
contradicting faithfulness unless e = 1.] Commutative Frobenius algebras appear
in topological quantum field theory.

Lemma (2). (i) A f.d. R-module M is faithful if and only if there is an embedding
R→Mn for some n, that is, R ∈ cogenM .

(ii) A f.d. faithful module M has every indecomposable projective-injective mod-
ule as a direct summand.

(iii) If R is QF-3, then E(R) is a faithful projective-injective module.

Proof. (i) If R ↪→ Mn, r ∈ R and rm = 0 for all m ∈ M , then rx = 0 for all
x ∈Mn, so r1 = 0 for 1 ∈ R. Thus r = 0.

Conversely, if M is faithful, choose a basis m1, . . . ,mn of M . This gives a map
R → Mn, r 7→ (rm1, . . . , rmn). If r 7→ 0, then rmi = 0 for all i, so rm = 0 for all
m ∈M .

(ii) Since R embeds in Mn, so does any indecomposable projective P , and if P
is also injective, then it is a direct summand of Mn, so also of M by Krull-Remak-
Schmidt.

(iii) By assumption there is a f.d. faithful projective-injective module M . Then
there is an embedding R→Mn, and this is a left injective approximation, so it has
the injective envelope E(R) as a direct summand. Thus E(R) is also projective,
and since it has R as a submodule it is faithful.

Definition. A module M is uniserial if its submodules are totally ordered by
inclusion, that is, if N,N ′ ⊆M , then either N ⊆ N ′ or N ′ ⊆ N . Since we are only
considering f.d. modules, it is equivalent that M has a unique composition series.

Example. If S and T are simple modules and 0→ S →M → T → 0 is non-split,
then M is uniserial. (If L is a submodule with L ̸= 0, S,M , then L+ S =M , and
L ∩ S = 0, so the sequence splits.)

Lemma (3). Let M be a f.d. R-module.
(i) If M is uniserial, it is indecomposable, has simple top and socle, and only

finitely many submodules. Moreover any submodule or quotient of M is uniserial.
(ii) M is a uniserial R-module if and only if D(M) is a uniserial Rop-module.
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(iii) M is uniserial if and only if the chain

M ⊇ radM ⊇ rad2M ⊇ · · · ⊇ radn−1M ⊇ radnM = 0

is a composition series for some n.

Proof. (i) and (ii) are trivial. For (iii) It suffices to show that if the chain is a
composition series, then every submodule L of M is equal to radiM , some i. Let
i be maximal with L ⊆ radiM If i = n then L = 0, otherwise radiM/ radi+1M
is simple, so radi+1M is the unique maximal submodule of radiM . Since L is not
contained in radi+1M , we must have L = radiM .

Definition. A f.d. algebra R is a Nakayama algebra if the indecomposable projec-
tive left and right R-modules are uniserial. It is equivalent that the indecomposable
projective left modules and the indecomposable injective left modules are all unis-
erial.

Proposition (1). If R = KQ/I with Q connected and I admissible, then R is
Nakayama if and only if Q is a linear or cyclic quiver.

Proof. If the quiver is linear or cyclic, then for each vertex i there is a unique
maximal path an . . . a1 with tail at i and not in I. Then radj P [i] is spanned by the
paths ak . . . a1 with k ≥ j. Thus the radical series is a composition series. Thus
P [i] is uniserial. Similarly for the indecomposable projective right modules.

Conversely, if two arrows a, b have tail at i then the submodules Ra and Rb
of Rei = P [i] are incomparable, for if Ra ⊆ Rb, then there is x ∈ KQ with
a − xb ∈ I ⊆ (KQ+)

2, which is impossible. Similarly for right modules if two
arrows have tail at i.

Proposition (2). For a f.d. algebra R we have the following.
(i) If R is Nakayama, then R/I is Nakayama for any ideal I.
(ii) If R is Nakayama, then R is QF-3.
(iii) If R/J(R)2 is QF-3, then R Nakayama.
Thus, for example, R is Nakayama if and only if R/I is QF-3 for all I.

Proof. (i) Write R =
⊕

Pi with Pi indecomposable projective. Then R/I =⊕
Pi/IPi, a direct sum of uniserial modules, so the indecomposable projective

left R/I-modules are uniserial. Similarly for right modules.
(ii) It suffices to show that if P is indecomposable projective, then so is its

injective envelope E(P ). Since P has simple socle, so does E(P ). Thus it is
indecomposable. Thus it is uniserial, so it has simple top. If θ : P ′ → E(P )
is its projective cover, then P ′ is indecomposable. This gives an exact sequence
0 → Ker θ → θ−1(P ) → P → 0. Now θ−1(P ) is uniserial, so indecomposable, but
this sequence splits, so we must have Ker θ = 0.
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(iii) Let J = J(R). First suppose J2 = 0. We show that any indecomposable
projective left R-module P is uniserial. Now JP is semisimple, so we need to show
it is zero or simple. By the QF-3 property, E(P ) is projective. If P ⊆ JE(P ), then
JP = 0. Thus suppose P ̸⊆ JE(P ). We decompose E(P ) into indecomposables,
E(P ) =

⊕
Pi. Then one of the maps topP → topPi is an isomorphism, so P → Pi

is an isomorphism, so P is injective, so E(P ) = P . Then JP is semisimple, but P
has simple socle, so JP is simple or zero.

Now we show by induction that any indecomposable projective P for R/Jn is
uniserial for n ≥ 2. For n = 2 this is done. Suppose n > 2. Then P/J2P is
projective for R/J2, and it has simple top, so it is indecomposable, so JP/J2P is
zero or simple. Thus JP is a module for R/Jn−1 which is zero or has simple top,
so by induction it is uniserial. Thus P is uniserial.

Thus indecomposable projective left R-modules are uniserial. Similarly we have
it for right modules. Thus R is Nakayama.

Theorem. Any indecomposable module for a Nakayama algebra is uniserial. Thus
any indecomposable module is a quotient of an indecomposable projective, so there
are only finitely many indecomposable modules - Nakayama algebras have finite
representation type.

Proof. We prove this for Nakayama algebras R by induction on dimR. Now R has
an indecomposable projective-injective module P . We can embed it as a left ideal
in R. Let I = SR, the ideal generated by S = socP . Then any indecomposable
module for R is either isomorphic to P , so uniserial, or an indecomposable module
for R/I, so uniserial by induction.

Recall that f.d. representation of a quiver is nilpotent if there is some m such
that any path of length ≥ m is zero in the representation. For a quiver without
oriented cycles all representations are nilpotent. If I is an admissible ideal then
any KQ/I-module corresponds to a nilpotent representation of Q.

Corollary. (i) Any f.d. indecomposable nilpotent representation M of a linear or
cyclic quiver Q is isomorphic to (KQ/KQm

+ )ei for some vertex i and some m.
(ii) Any f.d. indecomposable representation of a cyclic quiver is either nilpotent

or isomorphic to one of the form

V
1−→ V

1−→ . . .
1−→ V

x−→ V (the two ends identified)

where V = K[x]/(f(x)n) with f(x) a monic irreducible polynomial ̸= x in K[x].
In particular if K is algebraically closed, f(x) = x − λ, then V ∼= Kn and x
corresponds to the Jordan block Jn(λ).
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Proof. (i) M is a module for KQ/(KQ+)
k for some k, which is Nakayama.

(ii) Let Q be cyclic with N vertices. Let T ∈ KQ be the sum of all paths
of length N . Then T is a central element of KQ, so it induces an element of
EndKQ(M). By Fitting’s Lemma, this element must be nilpotent or invertible. If
nilpotent, then M is nilpotent. If invertible, then all paths of length N in M must
be invertible. Thus all arrows in M must be invertible. Thus M is of the indicated
form for some for some K[x]-module V on which x acts invertibly. Now V must
be indecomposable, so it has the stated form.
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2 Auslander-Reiten Theory
Throughout, R is a f.d. K-algebra, and we consider f.d. modules.

2.1 The transpose of a module

We consider the contravariant functor M 7→M∨ = HomR(M,R),

R-mod −→←− Rop-mod.

It gives antiequivalences

f.g. projective left R-modules −→←− f.g. projective left Rop-modules.

Definition. Given a left (or right) module M , we fix a minimal projective presen-
tation

P1
f−→ P0

g−→M → 0.

That is, g : P0 → M and f : P1 → Ker(g) are projective covers. The transpose
TrM is the cokernel of the map f∨ : P∨0 → P∨1 . If M is a left R-module, then
TrM is a left Rop-module. Thus there is an exact sequence

0→M∨ → P∨0 → P∨1 → TrM → 0

Note that Tr doesn’t define a functor on the module categories.

Properties. (i) Up to isomorphism, TrM doesn’t depend on the choice of minimal
projective presentation of M . Namely, two different minimal projective presenta-
tions of M fit in a commutative diagram

P1
f−−−→ P0

g−−−→ M −−−→ 0y y ∥∥∥
P ′1

f ′−−−→ P ′0
g′−−−→ M −−−→ 0

and the minimality ensures that the vertical maps are isomorphisms. Applying
(−)∨, one sees that the two different constructions of TrM are isomorphic.

(ii) If P is projective, then TrP = 0. Clear.

(iii) Tr(M ⊕N) ∼= TrM ⊕TrN . Use that the direct sum of minimal projective
presentations of M and N is a minimal projective presentation of M ⊕N .

(iv) If M has no nonzero projective summand, the same is true for TrM , and
P∨0 → P∨1 → TrM → 0 is a minimal projective presentation. We do this in three
steps.
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(a) Using that P1 → Im(f) is a projective cover, we show that Tr(M) has no
nonzero projective summand. Suppose Q is a projective summand of TrM . Let
h be the composition of the map P∨1 → TrM and the projection onto Q. It is
surjective, so since Q is projective, it is a split epi. Thus h∨ : Q∨ → P1 is a split
mono. Say P1 = Im(h∨)⊕C. Now hf∨ = 0, so fh∨ = 0, so Im(h∨) ⊆ Ker f . Thus
P1 = Ker f + C. Now since the map P1 → Im f is a projective cover, we have
C = P1, so h∨ = 0 so h = 0, so Q = 0.

(b) Using that g : P0 → M is a projective cover, we show that P∨1 → TrM
is a projective cover. Since it is a surjective map from a projective, if not, it
must be that it is not minimal. It follows that there is a non-zero summand Q
of P∨1 whose image in TrM is zero. Thus Q ⊆ Im(f∨). Since P∨0 → Im(f∨) is
onto and Q is projective, the inclusion Q → Im(f∨) lifts to a map t : Q → P∨0 .
Then clearly f∨t is the inclusion i : Q → P∨1 . Applying the duality, we get that
t∨f = i∨ : P1 → Q∨. But g : P0 → M is a projective cover, so induces an
isomorphism on tops, P0/ radP0 → M/ radM . Thus Im(f) = Ker(g) ⊆ radP0.
Since the radical is functorial, it follows that Im(t∨f) ⊆ radQ∨. But i is a split
mono, so i∨ is a split epi, so surjective, a contradiction.

(c) Using that M has no nonzero projective summand, we show that P∨0 →
Im(f∨) is a projective cover. It suffices to show that there is no no-zero summand
Q of P∨0 whose image under f∨ is zero. If i : Q→ P∨0 is the inclusion, then f∨i = 0.
Then i∨f = 0. Now i is a split monomorphism, so i∨ is a split epimorphism, so
there is a decomposition P0 = Ker(i∨) ⊕ C. But then Ker(g) = Im(f) ⊆ Ker(i∨).
Thus g induces an isomorphism P/Ker g →M . Now

P0

Ker g
=

Ker(i∨)⊕ C
Ker g

∼=
Ker(i∨)

Ker g
⊕ C.

Since M has no non-zero projective summand, C = 0, so Ker(i∨) = P0, so i∨ = 0,
so i = 0, so Q = 0. Contradiction.

[Another way to think of this is to use complexes. Given a projective presen-
tation

P1
f−→ P0

g−→M → 0,

consider P1 → P0 as a 2-term complex of projective modules. Then (a) P1 → Im(f)
is a projective cover if and only if this complex has no summand of the form
Q → 0 with Q a nonzero projective, (b) P0 → M is a projective cover if and
only if the complex has no summand isomorphic to Q

1−→ Q, and (c) M has no
nonzero projective summand if and only if this complex has no summand of the
form 0→ Q. Now if P1 → P0 has no summand of any of these forms, then neither
does the complex P∨0 → P∨1 .]
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(v) If M has no nonzero projective summand, then TrTrM ∼= M . Namely, by
(iv), TrTrM is the cokernel of the map P∨∨1 → P∨∨0 , that is, P1 → P0.

Proposition. Tr induces a bijection between isomorphism classes of indecom-
posable non-projective left R-modules and indecomposable non-projective left Rop-
modules.

Definition. Given modules M,N , we denote by Homproj(M,N) the set of all maps
M → N which can be factorized through a projective module M → P → N .

Clearly Homproj(M,N) is a subspace of Hom(M,N), for example if θ factors
through P and θ′ factors throught P ′ then θ+θ′ factors through P ⊕P ′. Moreover
Homproj is an ideal in the module category.

We define Hom(M,N) = Hom(M,N)/Homproj(M,N). These form the Hom
spaces in a category, the stable module category, denoted R-mod.

Theorem. The transpose defines inverse anti-equivalences

R-mod −→←− Rop-mod.

Proof. First we show that Tr defines a contravariant functor fromR-mod toRop-mod.
Any map θ :M →M ′ can be lifted to a map of projective presentations

P1
f−−−→ P0

g−−−→ M −−−→ 0

θ1

y θ0

y θ

y
P ′1

f ′−−−→ P ′0
g′−−−→ M ′ −−−→ 0

Applying ()∨ there is an induced map ϕ.

P ′∨0
f ′∨−−−→ P ′∨1

p′−−−→ TrM ′ −−−→ 0

θ∨0

y θ∨1

y ϕ

y
P∨0

f∨−−−→ P∨1
p−−−→ TrM −−−→ 0

The map ϕ depends on θ0 and θ1, which are not uniquely determined. We show
that any choices lead to the same element of Hom(TrM ′,TrM). For this we may
assume that θ = 0, and need to show that ϕ factors through a projective.

Thus assume that θ is zero. Then g′θ0 = 0. Thus there is h : P0 → P ′1 with
θ0 = f ′h. This gives h∨ : P ′∨1 → P∨0 with θ∨0 = h∨f ′∨. Now we have a commutative
diagram

P ′∨0
f ′∨−−−→ P ′∨1

p′−−−→ TrM ′ −−−→ 0

θ∨0

y f∨h∨

y 0

y
P∨0

f∨−−−→ P∨1
p−−−→ TrM −−−→ 0.
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Taking the difference of the vertical maps, there is also a commutative diagram

P ′∨0
f ′∨−−−→ P ′∨1

p′−−−→ TrM ′ −−−→ 0

0

y θ∨1 −f∨h∨
y ϕ

y
P∨0

f∨−−−→ P∨1
p−−−→ TrM −−−→ 0.

But then (θ∨1−f∨h∨)f ′∨ = 0. Thus there is a map s : TrM ′ → P∨1 with θ∨1−f∨h∨ =
sp′. It follows that psp′ = ϕp′, so since p′ is surjective, ϕ = ps, so ϕ factors through
a projective.

Thus a morphism g : M → M ′ gives a well-defined morphism Tr g = [ϕ] ∈
Hom(TrM ′,TrM). It is straightforward that this construction behaves well on
compositions of morphsms, so that the transpose defines a contravariant functor
R-mod to Rop-mod.

Now clearly the transpose sends any projective module to 0, so it sends any
morphism factoring through a projective to 0, so it descends to a contravariant
functor R-mod to Rop-mod. Now it is straightforward that it is an antiequivalence.

2.2 The Auslander-Reiten translate and formula

Definition. We define R-mod as the category with Hom spaces

Hom(M,N) = Hom(M,N)/Hominj(M,N)

where Hominj(M,N) is the maps factoring through an injective module.

Lemma (1). Hom(M,N) ∼= Hom(DN,DM), so D gives an antiequivalence be-
tween Rop-mod and R-mod.

Proof. Straightforward.

Definition. The Auslander-Reiten translate is τ = DTr and the inverse construc-
tion is τ− = TrD.

By the results of the previous section we have inverse bijections

isoclasses of non-projective indec mods
τ−→
←−
τ−

isoclasses of non-injective indec mods

and inverse equivalences

R-mod
τ−→
←−
τ−

R-mod.
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Applying D to the exact sequence defining TrM , we see that there is an exact
sequence

0→ τM → ν(P1)→ ν(P0)→ ν(M)→ 0.

Thus τ con be computed by taking a minimal projective presentation of M , apply-
ing the Nakayama functor (which turns each P [i] into I[i]) and taking the kernel.

Example. For the commutative square with source 1 and sink 4, the simple S[2]
has minimal projective presentation

P [4]→ P [2]→ S[2]→ 0

so we get
0→ τS[2]→ I[4]→ I[2]

so τS[2] ∼= P [3].

Lemma (2). If M is an R-module, then
(i) proj. dimM ≤ 1 ⇔ Hom(DR, τM) = 0 ⇔ there is no non-zero map from

an injective module to τM .
(ii) inj. dimM ≤ 1 ⇔ Hom(τ−M,R) = 0 ⇔ there is no non-zero map from

τ−M to a projective module.

Proof. (i) Recall that ν−(−) = Hom(DR,−), and that ν−(ν(P )) ∼= P . Thus we get
0→ ν−(τM)→ ν−(ν(P1))→ ν−(ν(P0)) exact, so 0→ ν−(τM)→ P1 → P0. Thus
proj. dimM ≤ 1 iff P1 → P0 is injective iff ν−(τM) = 0 iff Hom(DR, τM) = 0.

(ii) Dual.

Lemma (3). Given a right R-module M , a left R-module N , m ∈ M and n ∈ N
let fmn : M∨ → N be the map defined by fmn(α) = α(m)n. It is a left R-module
map. This gives a map

θMN : DHom(M∨, N)→ Hom(M,DN), θMN(ξ) = (m 7→ (n 7→ ξ(fmn))).

which is a natural transformation of functors in M and N . Moreover θMN is an iso-
morphism for M projective, and in general the image of θMN is Homproj(M,DN).

Proof. The first part is clear. Clearly θMN is well-defined. Both DHom(M∨, N)
and Hom(M,DN) define functors which are contravariant in M and N , and it is
straightforward that θMN is natural in M and N .

For M projective, the map is an isomorphism, since it is for M = R. Thus
given a map f :M → P with P projective, we get a commutative diagram

DHom(P∨, N) Hom(P,DN)

b

y a

y
DHom(M∨, N)

θMN−−−→ Hom(M,DN)
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where the top horizontal map is the natural isomorphism θPN and the vertical
maps are induced by f . Any map M → DN factoring through P is in the image
of a, so in Im(θMN).

Varying P , we get Homproj(M,DN) ⊆ Im(θMN).
Now take a basis of M∨. This defines a map M → P , where P = Rn. Then

P∨ → M∨ is onto. Thus Hom(M∨, N) → Hom(P∨, N) is 1-1. Thus b is onto.
Thus Im(θMN) = Im(a) ⊆ Homproj(M,DN).

Theorem (Auslander-Reiten formula). There are isomorphisms

Hom(τ−N,M) ∼= DExt1(M,N) ∼= Hom(N, τM).

Proof. Given a minimal projective presentation P1 → P0 → M → 0, write Ω1M
for the image of P1 → P0, so there is an exact sequence

0→ Ω1M → P0 →M → 0

and hence an exact sequence

0→ Hom(M,N)→ Hom(P0, N)→ Hom(Ω1M,N)→ Ext1(M,N)→ 0.

Also we have an exact sequence

0→M∨ → P∨0 → P∨1 → TrM → 0

so
0→ (TrM)∨ → P1 → P0

so
0→ (TrM)∨ → P1 → Ω1M → 0.

and hence an exact sequence

0→ Hom(Ω1M,N)→ Hom(P1, N)→ Hom((TrM)∨, N).

Applying Hom(−, N) to the exact sequence 0 → Ω1M → P0 → M → 0 gives an
exact sequence

· · · → Hom(P0, N)→ Hom(Ω1M,N)→ Ext1(M,N)→ 0.

Applying the dualityD and using that θP∨
i ,N

gives an isomorphismDHom(Pi, N)→
Hom(P∨i , DN), we get a commutative diagram with exact rows and columns:
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0y
DExt1(M,N)y

DHom((TrM)∨, N) −−−→ DHom(P1, N) −−−→ DHom(Ω1M,N) −−−→ 0

θTrM,N

y ∥∥∥ y
0 −−−→ Hom(TrM,DN) −−−→ Hom(P∨1 , DN) −−−→ Hom(P∨0 , DN)y

Hom(TrM,DN)y
0

By the Snake Lemma we get an isomorphism DExt1(M,N)→ Hom(TrM,DN).
Now use Lemma 1 to rewrite this as Hom(N,DTrM), or use that Tr gives in-

verse anti-equivalences betweenR-mod andRop-mod to rewrite it as Hom(M,TrDN).

Corollary. If R is hereditary, then τ and τ− are functorial, given by

τ(−) ∼= DExt1(−, R), τ−(−) ∼= Ext1(DR,−),

and we have

Hom(τ−N,M) ∼= DExt1(M,N) ∼= Hom(N, τM).

Proof. If proj. dimM ≤ 1, it has a minimal projective presentation

0→ P1
f−→→ P0

g−→→M → 0

with f injective. Applying Hom(−, R) gives a long exact sequence

0→M∨ → P∨0 → P∨1 → Ext1(M,R)→ Ext1(P0, R) = 0,

so TrM ∼= Ext1(M,R). This gives the formula for τ , and also

τ−(M) ∼= Tr(DM) ∼= Ext1(DM,R) ∼= Ext1(DR,M).

Now use Lemma 2. We have Hom(τ−N,M) ∼= Hom(τ−N,M) if inj. dimN ≤ 1,
and Hom(N, τM) ∼= Hom(N, τM) if proj. dimM ≤ 1.
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Remark. I was asked to justify the claim that the transpose (or equivalently the
AR translate) cannot in general be given by a functor on the module categories.

Let R be the commutative square algebra with P [1] ∼= I[4]. Suppose that there
is a functor T : R-mod → R-mod with T (M) = τM for all M and inducing the
translate τ : R-mod→ R-mod on morphisms. There are nonzero maps

I[4]/S[4]
f1−→ I[2]

f2−→ I[1], I[4]/S[4]
f3−→ I[3]

f4−→ I[1].

such that f2f1 = f4f3. Applying T , one can check that the modules are sent to the
following modules, and suppose that the fi are sent to maps gi.

radP [1]
g1−→ S[3]

g2−→ I[4]/S[4], radP [1]
g3−→ S[2]

g4−→ I[4]/S[4].

Now any indecomposable projective module has socle S[4], so there are no non-
zero maps from I[4]/S[4], I[2] or I[3] to a projective. Thus the fi do not factor
through a projective. Thus the gi are non-zero. But g2g1 and g4g3 have images
S[3] and S[2], so they cannot be equal. [In fact their difference factorizes through
the injective I[4].]

Note that if one allows T (M) = τM ⊕ PM for suitable projective modules PM ,
then there is always a functor, see M. Auslander and I. Reiten, On a theorem of
E. Green on the dual of the transpose, in: Representations of finite-dimensional
algebras, 1991.

2.3 Auslander-Reiten sequences

Definition. Given X, a map f : X → Y is a source map for X if it is left minimal,
not a split mono, and any map X →M which is not split mono factors through f .

Given Z, a map g : Y → Z is a sink map for Z if it is right minimal, not a split
epi, and any map M → Z which is not split epi factors through g.

Remarks. (i) IfX has a source map, then it is easy to see thatX is indecomposable
and the map is unique up to isomorphism, that is, if X → Y and X → Y ′ are
source maps, then there is an isomorphism Y → Y ′ giving a commutative triangle.
Similarly for sink maps.

(ii) I[i] → I[i]/ soc I[i] is a source map for I[i], and radP [i] → P [i] is a sink
map for P [i].

Definition. By an Auslander-Reiten sequence we mean an exact sequence

0→ X
f−→ Y

g−→ Z → 0

where f is a source map for X and g is a sink map for Z.
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Remarks. (i) An AR sequence is determined up to isomorphism by either of the
end terms.

(ii) If : 0→ X → Y → Z → 0 is an AR sequence, then it is not split, but you
get a split exact sequence whenever you take its pullback along a map ending in
Z which is not a split epi, or the pushout along a map starting in X which is not
a split mono. Hence the name that Auslander and Reiten used, an almost split
sequence.

Lemma. If M is a (f.d.) A-B-bimodule, and soc(AM) and soc(MB) are simple,
then they are equal.

Proof. Since the socle is functorial, if θ ∈ EndA(M) then θ(soc(AM)) ⊆ soc(AM).
Thus soc(AM) is a B-submodule of M . Since soc(MB) is simple, it must be
contained in any non-zero B-submodule of M , so soc(MB) ⊆ soc(AM). Dually
we get the other incluson.

Theorem. Let Z be a non-projective indecomposable R-module, and let X = τZ be
the corresponding non-injective indecomposable module. (Or equivalently let X be
non-injective indecomposable and let Z = τ−X.) Then there exists an Auslander-
Reiten sequence

0→ X
f−→ Y

g−→ Z → 0.

Proof. Ext1(Z,X) is an End(X)-End(Z)-bimodule.
As a right End(Z) module it is isomorphic to DEnd(Z), so has simple socle S,

corresponding to the fact that End(Z) as a left End(Z)-module is a quotient of
End(Z), so has simple top, since Z is indecomposable.

As a left End(X) module it is isomorphic to DEnd(X), so has simple socle T ,
corresponding to the fact that End(X) as a right End(X)-module is a quotient of
End(X), so has simple top, since X is indecomposable.

By the lemma, S = T . Let

ξ : 0→ X → Y → Z → 0

be an exact sequence corresponding to a non-zero element of S.
(a) Since ξ ̸= 0 the map f is not a split mono and g is not a split epi.
(b) Suppose M → Z not a split epi. The map Hom(Z,M) → End(Z) has

image contained in the radical of End(Z).
Thus the map Hom(Z,M) → End(Z) has image contained in the radical of

End(Z).
Thus the map DEnd(Z) → DHom(Z,M) kills the socle of DEnd(Z) as a

End(Z)-module.
Thus the map Ext1(Z,X) → Ext1(M,X) kills ξ. Thus the pullback of ξ by

M → Z splits.
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Using a section of this pullback we get a map M → Y whose composition is
the original map M → Z.

(b’) By duality, if X →M is not a split mono, it factors through f .
(c) If g is not right minimal, then there is non-invertible α ∈ End(Y ) with

gα = g. Then g induces non-invertible β ∈ End(X) with αf = fβ. Now βn = 0
for some n, so 0 = fβn = αnf , so αn = rg for some r : Z → Y . But then
g = gαn = grg, so since g is epi, gr = 1Z , contradicting that g is not split epi.
Thus g is right minimal.

(c’) Similarly f is left minimal.

Corollary. Every indecomposable module has a source map and a sink map.
(i) If X is indecomposable non-injective, then the map X → Y in the AR

sequence starting at X is a source map, and if X = I[i], then I[i] → I[i]/ soc I[i]
is a source map.

(ii) If Z is indecomposable non-projective, then the map Y → Z in the AR
sequence ending at Z is a sink map, and if Z = P [i], then radP [i]→ P [i] is a sink
map.

2.4 Irreducible maps

Recall that given modules X, Y , we have defined rad(X, Y ) ⊆ Hom(X, Y ). If
X is indecomposable it is the set of maps which are not split monos. If Y is
indecomposable it is the set of maps which are not split epis. If X and Y are
indecomposable it is the set of non-isomorphisms.

We define rad2(X, Y ) to be the set of all homomorphisms X → Y which can
be written as a composition

X
f−→M

g−→ Y

with f ∈ rad(X,M) and g ∈ rad(M,Y ). This is a subspace of rad(X, Y ).

Definition. A map θ : X → Y is irreducible if
(a) it is in rad(X, Y ), and
(b) for any factorization θ = gf with f : X → M and g : M → Y , either f is

split mono or g is split epi.
In the original definition by Auslander and Reiten, (a) was replaced by (a’) θ

is not a split mono or a split epi.
Now suppose that X, Y are indecomposable. In this case the two definitions

are the same, and it is equivalent that

θ ∈ rad(X, Y ) \ rad2(X, Y ).

Thus there is an irreducble map X → Y if and only if irr(X, Y ) ̸= 0, where we
define

irr(X, Y ) = rad(X, Y )/ rad2(X, Y ).
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Note that this is naturally an End(Y )-End(X)-bimodules, and in fact a DY -DX-
bimodule, where DX is the division algebra End(X)/J(End(X)).

Properties. (i) Any irreducible map is mono or epi, since it factors through its
image.

(ii) The kernel/cokernel of an irreducible epi/mono is indecomposable (exer-
cise).

(iii) Any source or sink map is irreducible. For example if θ : X → Y is a
source map, and it has a factorization θ = gf with f not a split mono, then by
the source map property there is h : Y → M with f = hθ. Thus f = hgf , so by
minimality hg is an automorphism, so g is a split epi.

(iv) If X is indecomposable and θ : X → Y1 ⊕ Y2 is irreducible, then so is each
component θi : X → Yi. Namely, suppose θ1 = gf with f : X →M not split mono
and g :M → Y1 not split epi, then θ factors as

X

f
θ2


−−−→M ⊕ Y2

g 0
0 1Y2


−−−−−−−→ Y1 ⊕ Y2

and the first map is not a split mono and the second is not a split epi.
Similarly if Y is indecomposable and θ : X1⊕X2 → Y is irreducible, then so is

each component.
[Note that with condition (a’) in the definition of an irreducible map, this

would fail, for if X is indecomposable and θ : X → Y is irreducible, then using the
decomposition Y = Y ⊕ 0, this says that X → 0 should be irreducible, but it is a
split epi.]

(v) If X → Y is a source map for X, then the irreducible maps X → Z are
exactly the compositions X → Y → Z with Y → Z split epi. Such compositions
are irreducible by (iv), and any irreducible map factors this way be the source map
property.

Dually, the if Y → Z is a sink map for Z, the irreducible maps X → Z are the
compositions X → Y → Z with X → Y split mono.

Recall from the proof of the Krull-Remak-Schmidt Theorem, that if M is an
indecomposable module and Y is a module, we set

t(M,Y ) =
Hom(M,Y )

rad(M,Y )
,

and if we write µM(Y ) for the multiplicity of M as a direct summand of Y , then
we have

µM(Y ) = lengthEnd(M)(t(M,Y )) = lengthDM
(t(M,Y )) =

dim t(M,Y )

dimDM

.
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Theorem. Let M be indecomposable.
(i) If f : X → Y is a source map, then dim irr(X,M) = µM(Y ). dimDM ,
(ii) If g : Y → Z is a sink map, then dim irr(M,Z) = µM(Y ). dimDM .

Proof. (ii) Since g is a sink map, either Ker g is zero, or Ker g → Y is a source
map. Either way, the map Ker g → Y is in rad(Ker g, Y ). Since g is a radical
homomorphism, composition with g induces left exact sequences

0→ Hom(M,Ker g)→ Hom(M,Y )→ rad(M,Z)

and
0→ Hom(M,Ker g)→ rad(M,Y )→ rad2(M,Z)

and since g is a sink map, these are exact on the right. For example any map
θ ∈ rad2(M,Z) can be written as a composition θ = ψϕ with ϕ ∈ rad(M,X)
and ψ ∈ rad(X,Z). But then ψ is not a split epi, so it factorizes as gχ for some
χ ∈ Hom(X, Y ), and then θ = g(χϕ), and χϕ ∈ rad(M,Y ). Thus

dim irr(M,Z) = dim[Hom(M,Y )/ rad(M,Y )] = dim t(M,Y ) = µM(Y ). dimDM .

For (i) use duality.

Corollary (1). For given indecomposables X and Z, there are only finitely many
indecomposable modules M , up to isomorphism, with irr(X,M) or irr(M,Z) non-
zero.

Corollary (2). If Z is indecomposable and non-projective, and X = τZ, then for
any indecomposable M we have dim irr(X,M) = dim irr(M,Z).

Definition. LetR be a f.d. algebra with indecomposable projectives P [1], . . . , P [n],
simples S[i] and injectives I[i], and Di = End(S[i])op. If M is a f.d. R-module, its
dimension vector dimM ∈ Nn

0 is given by

(dimM)i = [M : S[i]] = the multiplicity of S[i] as a composition factor of M

Note that

dimHom(P [i],M) = dimHom(M, I[i]) = dimDi · [M : S[i]],

the equality of the first two being by the property of the Nakayama functor, and
the equality of the first and third since both are additive on short exact sequences
0→M ′ →M →M ′′ → 0, and equality is clear if M is simple.

In case R = KQ/I with I admissible, and Q having vertices 1, . . . , n, this
coincides with the dimension vector for representations of quivers, since P [i] = Rei
and Di = 1, so [M : S[i]] = dimHom(P [i],M) = dim eiM .
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Corollary (3). Suppose X is indecomposable and suppose we know
(i) dimX and dimDX , and
(ii) dimM , dimDM and dim irr(X,M) for the indecomposable modules M such

that irr(X,M) ̸= 0.
Then we can determine whether X is injective, and if not, determine dim τ−(X),

by (∑
M

dim irr(X,M)

dimDM

dimM

)
− dimX =

{
− dimS[i] (X ∼= I[i])

dim τ−(X) (X not injective)

Moreover, if X is not injective, then Dτ−(X)
∼= DX so they have the same dimen-

sion, and for M indecomposable we have dim irr(M, τ−(X)) = dim irr(X,M)

Proof. The term in brackets is the dimension vector of Y , where X → Y is a source
map for X. For the isomorphism Dτ−(X)

∼= DX , use that τ gives an equivalence
R-mod→ R-mod.

2.5 Auslander-Reiten quiver

Definition. (i) Given a f.d. algebra R, the Auslander-Reiten quiver ΓR of R has
vertices corresponding to the isomorphism classes of indecomposable R-modules,
and an arrow X → Y if and only if there is an irreducible map X → Y .

Thus ΓR has finitely many vertices if and only if the algebra has finite repre-
sentation type.

(ii) The AR translate gives a bijection

non-projective vertices→ non-injective vertices

In pictures we indicate this by drawing dotted lines or arrows X 99K τX. This
makes the AR quiver into a ‘translation quiver’.

(iii) We can label each arrow X → Y in ΓR with the pair of integers (a, b),
where

a = multiplicity of X as a summand of the sink map of Y = dim irr(X, Y )/ dimDX

b = multiplicity of Y as a summand of the source map of X = dim irr(X, Y )/ dimDY

This makes ΓR into a ‘valued quiver’. Maybe less confusing is to label each vertex
X with the number dimDX and each arrowX → Y with the number dim irr(X, Y ).

(iv) When drawing ΓR, if a = b, we can instead draw this number of unlabelled
arrows from X to Y .

(v) In my examples, the relevant modules will usually all have DX = K. This
is automatic if K is algebraically closed. Then we draw dim irr(X, Y ) unlabelled
arrows from X to Y .
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Examples. For a Nakayama algebra, the irreducible maps between indecompos-
ables are the monos X → Y with simple cokernel and the epis X → Y with simple
kernel.

(i) The linear quiver with three vertices.

The algebra R = K[t]/(t3).

Lemma (Harada-Sai). A composition of 2n − 1 non-isomorphisms between inde-
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composables of dimension (or length) ≤ n must be zero.

Proof. We show for m ≤ n that a composition of 2m−1 non-isomorphisms between
indecomposables of dimension ≤ n has rank ≤ n−m.

If m = 1 this is clear. If m > 1, a composition of 2m− 1 non-isomorphisms can
be written as a composition

X
f−→ Y

g−→ Z
h−→ W

where f and h are compositions of 2m−1 − 1 non-isomorphisms. By induction
rank f, rankh ≤ n −m + 1. If either has strictly smaller rank, we’re done. Thus
suppose that rank f = rankh = rankhgf = n−m+ 1.

This implies that Ker f = Kerhgf and Imhgf = Imh. It follows that Y =
Kerhg⊕ Im f and Z = Kerh⊕ Im gf . For example if y ∈ Y then hg(y) = hgf(x),
so y = f(x) + (y − f(x)) ∈ Im f +Kerhg, and if y ∈ Im f ∩Kerhg then y = f(x)
and hgf(x) = 0, so x ∈ Kerhgf = Ker f , so y = 0.

By indecomposability f is onto and h is 1-1. Thus dimY = dimZ = n−m+1
and g is an isomorphism. Contradiction.

Definition. A f.d. algebra R is connected if there is no proper decomposition R ∼=
R1 × R2. Equivalently, if we can’t partition the set of indecomposable projectives
{P [1], . . . , P [n]} into two subsets such that there are no non-zero homomorphisms
between the projectives in the two subsets. If R = KQ/I with I admissible, it is
equivalent that Q is connected.

Theorem (Auslander). Suppose R is connected. If C is a connected component
of the AR quiver, and there is a bound on the dimension of the indecomposable
modules in C, then C is finite and is the whole of the AR quiver of R.

Proof. Suppose M,N are indecomposable modules with Hom(M,N) ̸= 0. For
i ≥ 0 we consider a chain of maps

M =M0
f1−→M1

f2−→M2
f3−→ . . .

fi−→Mi
gi−→ N

with the Mj indecomposable, fj irreducible and gifi . . . f1 ̸= 0. Such a chain exists
if i = 0. If gi is not an isomorphism, then it is not a split mono, so it factors
through the source map Mi → E. Then we get a chain of size i+1 by taking Mi+1

to be one of the summands of E.
Suppose all indecomposables in C have dimension ≤ n. If M is in C, then by

Harada-Sai any such chain must have length i < 2n − 1. Thus the construction
must terminate, with gi an isomorphism, for some i < 2n−1. Thus there is a chain
of irreducible maps from M to N of length < 2n − 1. Dually if N is in C.
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Now choose some M in C. There is a projective P [i] with Hom(P [i],M) ̸= 0,
so P [i] ∈ C. Since the algebra R is connected, it follows that all projectives are in
C. Thus C is the whole AR quiver.

Now for any indecomposable there is a chain of irreducible maps of length
< 2n − 1 from a projective P [i]. Thus C is finite.

Corollary (First Brauer-Thrall Conjecture, proved originally by Roiter using a dif-
ferent method). If there is a bound on the dimensions of indecomposable R-modules,
then R has only finitely many indecomposable modules (Finite representation type.)

Definition. A brick or Schurian module is a module Z with End(Z) a division
ring. By Schur’s lemma any simple module is a brick, and clearly any brick is
indecomposable.

An indecomposable module Z is directing if there is no cycle of non-zero non-
isomorphisms between indecomposable modules that includes Z, so Z → Z1 →
· · · → Zk → Z with k ≥ 0. In particular, taking k = 0, a directing module Z has
no nonzero non-isomorphisms Z → Z, so it is a brick.

Proposition. Let Z be an indecomposable module. Suppose there is a bound on
the length of paths in the AR quiver ending at Z. Then Z is directing.

Proof. By induction on the bound. If zero, then Z is simple projective. But
then there is no non-zero non-isomorphism from an indecomposable module to Z.
Otherwise, decompose the sink map Y1 ⊕ · · · ⊕ Ym → Z. If there is a cycle, say
Z → Z1 → · · · → Zk → Z, then the map Zk → Z factors through the sink map,
so for some i there are non-zero maps Zk → Yi → Z. Now the map Zk → Yi is
either an isomorphism, or not. Either way we see that Yi is in a cycle. Impossible
by induction.

Definition. A module M is sincere if each component of its dimension vector is
nonzero, so [M : S[i]] ̸= 0 for all i. Equivalently Hom(P [i],M) ̸= 0 for all i.
Equivalently Hom(M, I[i]) ̸= 0 for all i.

Note that any faithful module M is sincere, since R embeds as a submodule of
a direct sum Mn, and hence

0 < [R : S[i]] ≤ [Mn : S[i]] = n[M : S[i]].

Lemma. If M is sincere and directing, then proj. dimM ≤ 1, inj. dimM ≤ 1 and
Ext1(M,M) = 0.

Proof. If proj. dimM ≥ 2, then there is a non-zero map I[i]→ τM for some i. But
then one gets a cycle M → I[i]→ τM → E →M , where E is any indecomposable
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direct summand of the middle term of the AR sequence between τM and M .
Similarly for injective dimension.

Now Ext1(M,M) ∼= Hom(M, τM), and this is zero, for if M → τM is a non-
zero map, either it is an isomorphism, or not, and either way one gets a cycle using
τM → E →M as before.

Proposition. If M is directing and M ′ is indecomposable, of the same dimension
vector, then M ∼= M ′.

Proof. Replacing R by R/Ann(M ⊕M ′), we may suppose that M ⊕M ′ is faithful,
and hence sincere. Thus M is sincere. Let 0→ P1 → P0 →M → 0 be a projective
resolution of M . Then for any module X we have

dimHom(M,X)− dimExt1(M,X) = dimHom(P0, X)− dimHom(P1, X).

This only depends on the dimension vector of X, so

dimHom(M,M ′)− dimExt1(M,M ′) = dimHom(M,M)− dimExt1(M,M) > 0,

so Hom(M,M ′) ̸= 0. Similarly Hom(M ′,M) ̸= 0 using an injective resolution
of M , or thinking of DM and DM ′ as modules for Rop. Thus M ∼= M ′ by the
directing property.

2.6 Knitting construction

Preparation. Given a connected algebra R, for each i, compute dimP [i] and
dimDi, and find the dimension vectors of the indecomposable summands of radP [i].

Construction. We construct a full subquiver Γ′ of ΓR iteratively, beginning with
the empty set. Although Γ′ might be infinite, after only finitely many steps it is
finite, without oriented cycles, and closed under predecessors. Thus the modules X
in it are directing, so uniquely determined by their dimension vectors. We record
these as well as dimDX and dim irr(X, Y ).

Iterative step. We adjoin to Γ′ any indecomposable module Z such that all
predecessors are already in Γ′.

(i) If Z is projective, say Z = P [i], we need that all indecomposable summands
of radP [i] are in Γ′. We get started with a simple projective.

(ii) If Z is non-projective, say Z = τ−X, then we need that X is in Γ′, and since
dim irr(M,Z) = dim(X,M), we need that Γ′ contains all arrows starting at
X. Thus:

(a) if X is a summand of radP [j] for some j, then Γ′ must contain P [j].

70



(b) if M is non-injective, then dim irr(X, τ−M) = dim irr(M,X), so if
irr(M,X) ̸= 0 then Γ′ must contain τ−M .

If so, then(∑
M

dim irr(X,M)

dimDM

dimM

)
− dimX =

{
− dimS[i] (X ∼= I[i])

dim τ−(X) (X not injective.)

Outcome.
(a) We might not get started, if there is no simple projective, or we might get

stuck, if Γ′ contains some summands of radP [i], but not all of them.
(b) Terminate after a finite number of steps with the AR quiver ΓR.
(c) Go on forever, and Γ′ is a union of connected components of ΓR, called

‘preprojective’ components.

Examples. (i) The commutative square.

(ii) The quiver 1← 2→ 3.
(iii) A quiver of type D4 with a zero relation:

(iv) An example where one gets stuck.
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(v) A quiver of type E6:

(vi) The 4-subspace quiver, the Kronecker quiver, a Kronecker quiver with
another vertex i, such that the radical of P [i] never appears.
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(vii) An example where not all dimDi = 1.

R =

(
K L
0 L

)
⊆M2(L)

where L/K is a field extension of degree 3. Then

P [1] = Re11 ∼=
(
K
0

)
, P [2] = Re22 ∼=

(
L
L

)
,

so D1 = K, D2 = L and radP [2] ∼= P [1]3. The AR quiver, showing the dimension
vectors of the indecomposables, the dimDX and dim irr(X, Y ), is

Dually one can construct “preinjective components” starting with a simple in-
jective.

2.7 Covering theory via graded modules

The knitting procedure fails for many algebras. But a tool called ‘covering theory’,
due to Riedtmann (1980), Bongartz and Gabriel (1981), and Gabriel (1981), can
often be used to make it work. By Gordon and Green (1982) it is essentially
equivalent to study graded modules.

Definition. A vector space V is Z-graded if it is equipped with a decomposition

V =
⊕
n∈Z

Vn.

where the Vn are subspaces. An element of V is homogeneous of degree n if it is in
Vn. If V is f.d., only finitely many Vn are nonzero.

An algebra R is Z-graded if it is equipped with a decomposition

R =
⊕
n∈Z

Rn, Rn.Rm ⊆ Rn+m.
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If R is graded, an R-module M is Z-graded if it is equipped with a decomposition

M =
⊕
n∈Z

Mn, Rn.Mm ⊆Mn+m.

A submodule N of M is graded or homogeneous if N =
⊕

Nn where Nn =
N ∩Mn. Similarly for an ideal in R.

We only consider f.d. graded modules, and write R-grmod for the category of
f.d. Z-graded R-modules, with

HomR-grmod(M,N) = {θ ∈ HomR(M,N) | θ(Mn) ⊆ Nn for all n ∈ Z}.
Examples. (i) The path algebra R = KQ is Z-graded with Rn = the K-span of
the paths of length n. Alternatively, choose a degree for each arrow, and define
the degree of a path to be the sum of the degrees of its arrows.

(ii) R =Mr(K) can be graded with Rn = {(aij) : aij = 0 for i− j ̸= n}.
Proposition. Let R be a graded algebra.

(i) 1 ∈ R0.
(ii) A submodule or ideal is homogeneous if and only if it is generated by ho-

mogeneous elements.
(iii) A quotient of a module or algebra by a homogeneous submodule or ideal is

graded.
(iv) R-grmod ∼= R̂-mod where R̂ is catalgebra smash product of R and Z,

consisting of matrices (aij) with rows and columns indexed by Z and only finitely
many non-zero entries aij ∈ Ri−j. Pictorially

R̂ =


. . .

R0 R−1 R−2
R1 R0 R−1
R2 R1 R0

. . .

 .

Proof. (i) if 1 =
∑
rn and r ∈ Ri then the degree i part of r = r1 = 1r gives

r = rr0 = r0r, so r0 is a one for R.
(ii)-(iv) Straightforward.

Remark. This all generalizes to group-graded algebras.

Example. Given an algebra R such as
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we grade KQ by setting deg a = deg c = 1 and deg b = 0. Then the relations
are homogeneous elements of KQ, so the ideal they generate is homogeneous, so
R = KQ/I is graded. The smash product catalgebra R̂ is given by the quiver

with the corresponding relations. The vertex denoted in corresponds to matrix
with (n, n) entry ei and the other entries zero. The arrow a from 1n to 1n+1 is
given by the matrix with (n+ 1, n) entry a and other entries zero, etc.

Given a graded R-module M , the corresponding representation of R̂ is given
by putting the vector space eiMn at vertex in. Then Mn is the direct sum of the
vector spaces at vertices with subscript n. In particular, if we are only interested
in graded modules living in degrees between −N and 0, then we deal with the
truncated catalgebra

This is now a f.d. algebra. Perhaps we can use knitting with it. We show how it
can be used to understand modules for the original algebra R.
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Theorem (1). A f.d. graded algebra R is local if and only if R0 is local.

Proof. Suppose that R is local. The intersection J(R)∩R0 is a proper ideal in R0,
so to show that R0 is local, it suffices to show that it contains all non-invertible
elements a of R0. Now if a were invertible in R, then (a−1)0 would be an inverse
for a in R0, a contradiction. Thus since R is local, a ∈ J(R).

Now suppose that R0 is local. The ideal in R generated by
⋃
n̸=0Rn is

L := (
⋃
n̸=0

Rn) = I ⊕
⊕
n̸=0

Rn, I =
∑
n̸=0

RnR−n ⊆ R0.

If a ∈ Rn and b ∈ R−n with n ̸= 0, then a is nilpotent, so not invertible, so ab is
not invertible in R, so it is not invertible in R0, so ab ∈ J(R0). Clearly also I is
an ideal in R0, so I ⊆ J(R0), so I is nilpotent. Say IN = 0.

It suffices to show that L is nilpotent, for then L ⊆ J(R), so that R/J(R) is a
quotient of R/L ∼= R0/I, which is local. Suppose that R lives in d different degrees.
It suffices to show that any product ℓ1ℓ2 . . . ℓdN of homogeneous elements of L is
zero. Suppose not. Let di be the degree of ℓ1ℓ2 . . . ℓi. We have dN + 1 numbers
d0, d1, . . . , ddN taking at most d different values, so some value must occur at least
N + 1 times. Say

di1 = di2 = · · · = diN+1

with i1 < i2 < · · · < iN+1. Then we can write the product as

ℓ1 . . . ℓi1(ℓi1+1 . . . ℓi2)(ℓi2+1 . . . ℓi3) . . . (ℓiN+1 . . . ℓiN+1
)ℓiN+1+1 . . . ℓdN

But each of the bracketed terms has degree 0, so is in I, so their product is zero.

Definition. Given a graded module M and i ∈ Z we write M(i) for the module
with shifted grading M(i)n =Mi+n.

There is a forgetful functor F : R-grmod→ R-mod which forgets the grading.

Lemma (1). If M,N are f.d. graded R-modules, then HomR(FM,FN) can be
graded as a vector space, with

HomR(FM,FN) =
⊕
n∈Z

HomR-grmod(M,N(n)).

In this way
EndR(FM) =

⊕
n∈Z

HomR-grmod(M,M(n))

becomes a graded algebra.
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Proof. Given a homomorphism θ : FM → FN , we get linear maps θn : M → N
defined by

θn(m) =
∑
i∈Z

θ(mi)i+n

where a subscript k applied to an element of a graded module picks out the degree
k component of the element.

Now if a ∈ R is homogeneous of degree d, then (am)i = a.mi−d, so

θn(am) =
∑
i

θ((am)i)i+n =
∑
i

θ(a.mi−d)i+n =
∑
i

(aθ(mi−d))i+n

=
∑
i

a.θ(mi−d)i+n−d =
∑
j

a.θ(mj)j+n = aθn(m).

Thus θn ∈ HomR-grmod(M,N(n)). Clearly θ is the sum of the θn, and this is a finite
sum since M is f.d. The rest is clear.

Corollary. (i) A graded module M is indecomposable if and only if the ungraded
module FM is indecomposable.

(ii) If M and N are indecomposable graded modules with FM ∼= FN , then M
is isomorphic to N(n) for some n.

Proof. (i) By Theorem 1, EndR(FM) is local iff its degree zero part is local. This is
EndR(FM)0 = EndR-grmod(M). Now the ungraded module FM is indecomposable
if and only if its endomorphism algebra EndR(FM) is local. The graded module
M is indecomposable if and only if its endomorphism algebra EndR-grmod(M) has
no non-trivial idempotents, and since it is f.d., it is equivalent that it is local.

(ii) Suppose θ : FM → FN is an isomorphism. Then θ−1θ = 1FM , so (θ−1θ)0 =
1M , so

∑
n(θ
−1)−nθn = 1M . Since End(FM) is local, some (θ−1)nθn is invertible, so

θn :M → N(n) is a split mono of graded modules, and hence an isomorphism.

Setup. Let R = KQ/I with I admissible, and grade it by choosing a degree ≥ 0
for each arrow, in such a way that the relations are homogeneous. Then R lives in
non-negative degrees, so since it is f.d., it lives in degrees [0, d] for some d.

Recall that graded R-modules correspond to modules for a catalgebra R̂. Given
n ≤ m, graded modules living in degrees [n,m] = {i ∈ Z : n ≤ i ≤ m] correspond
to modules for a truncation of the catalgebra which is an actual algebra. It is

R̃ =



R0 0 · · · 0 0
R1 R0 · · · 0 0
R2 R1 · · · 0 0
...

... . . . ...
...

Rm−n−1 Rm−n−2 · · · R0 0
Rm−n Rm−n−1 · · · R1 R0


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We write F also for the forgetful functor from R̃-mod to R-mod.

Theorem (2). Suppose R lives in degrees [0, d] with d ≥ 0 and R̃ is the truncation
corresponding to degrees [n,m]. If ξ : 0→ X → Y → Z → 0 is an AR sequence of
R̃-modules, and Z lives in degrees [n+ d,m− 2d], then F (ξ) is an AR sequence of
R-modules.

Proof. (Sketch) The simple R-modules are SR[i], where i is vertex in Q. We can
consider this as a graded module non-zero only in degree 0. Then SR[i](−j) is the
same module, but living in degree j. For j ∈ [n,m] it corresponds to the module
SR̃[ij].

The trivial idempotents ei ∈ R are homogeneous of degree 0, so the correspond-
ing projective module PR[i] = Rei is graded, and lives in degrees [0, d]. Then the
module PR[i](−j) lives in degrees [j, j + d]. Thus if j ∈ [n,m− d] then PR[i](−j)
corresponds to an R̃-module. It corresponds to PR̃[ij]. Thus F (PR̃[ij]) ∼= PR[i].

Similarly, if j ∈ [n+ d,m] then F (IR̃[ij]) ∼= IR[i].
Take a minimal R̃-module projective presentation

P1 → P0 → Z → 0

Now P0 only involves projective covers of simples in degrees [n+ d,m− 2d]. Thus
P0 lives in degrees [n + d,m − d], so P1 only involves projective covers of simples
in degrees [n+ d,m− d]. Thus P0 and P1 only involve projectives PR̃[ij] which are
sent under the forgetful functor to PR[i]. Thus the F (Pi) are projective R-modules
and

F (P1)→ F (P0)→ F (Z)→ 0

is a minimal projective presentation of F (Z).
Now τR̃Z is computed using the exact sequence

0→ τR̃Z → νR̃(P1)→ νR̃(P0).

Since the modules νR̃(Pi) only involve injective envelopes of simples in degrees
[n+ d,m− d], F (νR̃(Pi)) is injective, and isomorphic to νR(F (Pi)). Thus

0→ F (τR̃Z)→ F (νR̃(P1))→ F (νR̃(P0)),

is identified with the sequence

0→ τRF (Z)→ νR(F (P1))→ νR(F (P0)).

Thus τRF (Z) ∼= F (τR̃Z)
∼= F (X).

Now there is a homomorphism EndR̃(Z) → EndR(F (Z)) whose image is the
degree 0 part. It induces an isomorphism on tops.
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This induces a map EndR̃(Z)→ EndR(F (Z)) giving an isomorphism on tops.
This gives DEndR(F (Z))→ DEndR̃(Z) giving an isomorphism on socles.
This gives a map Ext1R(F (Z), F (X))→ Ext1

R̃
(Z,X) giving an isomorphism on

socles.
Now AR sequences are defined by elements of the socle, so the forgetful functor

sends an AR sequence to an AR sequence.

Construction. Take a range of degrees [−N, 0] with N ≫ 0, which we consider
to be finite, but arbitrarily large.

Now knit. If, eventually the knitted modules live in degrees ≤ −2d, then the
subsequent AR sequences are sent by the forgetful functor to AR sequences of
R-modules.

If also the knitted modules are eventually all shifts of finitely many R-modules,
then they give a finite connected component of the AR quiver of R. By Auslander’s
Theorem it is the whole AR quiver.

Examples. (i) The algebra R as in the example above.
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Observe that the modules along the two vertical arrows correspond, with the
modules on the right hand arrow being the shifts of the modules on the left hand
arrow one place up the ladder. Moreover the modules to the right of each arrow
also correspond. Thus you can be sure that all further knitting will follow the same
pattern.

Now take the part of the AR quiver between the two vertices arrows. You can
be sure that the forgetful functor sends it to a finite connected component of the
AR quiver of R. Thus it is the whole of the AR quiver of R. You need to identify
the two vertical arrows, giving a Möbius band.

(ii) (Omitted in the lecture) A Nakayama algebra (so we can compute its
AR quiver anyway).

We grade it with deg a = 1 and the other arrows of degree 0. Algebra R̃ is of the
following form, where for simplicity we label the vertices 10, 20, 30, 1−1, 2−1, 3−1,−2 , . . .
as 1, 2, 3, 4, 5, 6, 7, . . . .

→ 9
c−→ 8

b−→ 7
a−→ 6

c−→ 5
b−→ 4

a−→ 3
c−→ 2

b−→ 1

Knitting gives the following.

Again we observe that the pattern repeats, so the AR quiver of R is the part
between the two vertical arrows, with the arrows identified. The cross means that
at that place it is not an AR sequence (since 654 is projective and 543 is injective).

(iii) Q with one vertex and loops p, q with relations p2 = qpq, q2 = pqp, p3 =
q3 = 0. There is no non-trivial grading, so we can’t get started.
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In the case when this process works, and R has finite representation type, every
R-module is gradeable. In general that is not true. For example the quiver with
arrows from 1 to 2 and 3, and from 2 to 3. Grade it with the arrow from 1 to 3 of
degree 1 and the others of degree 0. Then the module which is K at each vertex,
identity for each arrow is not gradeable.

Theorem (3). If the field K has characteristic zero, and R is graded, then any
R-module M with Ext1(M,M) = 0 is gradeable.

Proof. Omitted. The result is possibly folklore. This proof here comes from
Keller, Murfet and van den Bergh, On two examples by Iyama and Yoshino. For
simplicity, assume that K is algebraically closed.

Let d : R→ R be the map defined by d(a) = deg(a)a for a homogeneous. It is
a derivation since d(ab) = deg(ab)ab = (deg(a) + deg(b))ab = ad(b) + d(a)b. It is
called the Euler derivation.

Let E =M ⊕M as a vector space, with R-module action given by a(m,m′) =
(am, d(a)m+ am′). This is an R-module structure and there is an exact sequence

0→M
( 01 )−−→ E

( 10 )−−→M → 0

By assumption this is split, so there is a map M → E of the form m 7→ (m,∇(m)).
Moreover the map ∇ :M →M satisfies

∇(am) = d(a)m+ a∇(m)

so it is a connection on M with respect to d. Since M is f.d.,

M =
⊕
λ∈K

M (λ)

where M (λ) is the λ-generalised eigenspace for ∇. Now for any λ ∈ K and a
homogeneous we have

(∇− λ− deg(a))(am) = a(∇− λ)(m)

so
(∇− λ− deg(a))N(am) = a(∇− λ)N(m)

for all N ≥ 1, so a(M (λ)) ⊆M (λ+deg(a)). Let T be a set of coset representatives for
Z as a subgroup of K under addition. Then every element λ ∈ K can be written
uniquely as t+ n for some t ∈ T and n ∈ Z, and M is gradeable with

Mn =
⊕
t∈T

M (t+n).
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2.8 An example of a self-injective algebra of finite represen-
tation type

Proposition. If P is an indecomposable projective-injective R-module which is not
simple, then there is an AR-sequence

0→ radP
f−→ P ⊕ radP/ socP

g−→ P/ socP → 0

where f(x) = (x, x) and g(x, y) = x− y.

Proof. Exercise.

Lemma. Suppose P is a projective-injective summand of R, S = socP and I =
SR. If

0→ X → Y → Z → 0

is any AR sequence which is not of the form above for some summand of P , then
X, Y, Z are killed by I, so this is also an AR sequence of R/I-modules.

Proof. Let P ′ be an indecomposable summand of P . It can’t occur as X or Z
since it is projective-injective. If it occurs as a summand of Y , then there is an
irreducible map X → P ′. Thus X is a summand of radP ′. Thus X ∼= radP ′, and
the sequence is as in the last proposition.

Example. Consider the algebra with quiver

and relations bacb = 0, bc = λbac and a2 = cb for λ ∈ K. It is a special case of a
penny-farthing.

Then ba2 = bcb = λbacb = 0, and hence also a4 = cbcb = 0. Also a2c = cbc =
λcbac = λa3c. Then a4 = 0 ⇒ a3c = 0 ⇒ a2c = 0. Thus also cbc = 0.

If K has characteristic not 2, one can change generators to get λ = 0. If K has
characteristic 2 this is not possible.

If λ ̸= 0 there is no suitable grading.
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The projectives are

They have dimensions 6 and 4. Thus the algebra has dimension 10. Observe that
the projectives have simples socles, and both simples occur. Thus the algebra
embeds in the direct sum of the two injectives, which also has dimension 10. Thus
the algebra is self-injective.

We pass to R/I where I = socR (already an ideal), so add the relations a3 =
cba = acb = 0 and bac = 0, so bc = 0. We only lose the two projective-injective
modules. The new algebra has a grading with all arrows of degree 1, so its covering
and indecomposable projectives as follows (where we show the indecomposable
summands of their radicals).
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Knitting gives

Then we insert the original projective-injectives to get the AR quiver of R.
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3 Representations of quivers
Let Q be a quiver and let R = KQ. We consider f.d. R-modules.

3.1 Bilinear and quadratic forms

We consider ZQ0 as column vectors, with rows indexed by Q0. Let ϵ[i] be the
coordinate vector associated to a vertex i ∈ Q0. Thus ϵ[i]j = δij. The dimension
vector of a module X is dimX ∈ ZQ0 .

Definition. The Ringel form is the bilinear form ⟨−,−⟩ on ZQ0 defined by

⟨α, β⟩ =
∑
i∈Q0

αiβi −
∑
a∈Q1

αt(a)βh(a)

The corresponding quadratic form q(α) = ⟨α, α⟩ is called the Tits form. There is
a corresponding symmetric bilinear form

(α, β) = q(α + β)− q(α)− q(β) = ⟨α, β⟩+ ⟨β, α⟩.

For example
(α, ϵ[i]) = 2αi −

∑
a:j→i

αj −
∑
a:i→j

αj.

Note that q and (−,−) don’t depend on the orientation of Q. The radical of q is
rad q = {α ∈ ZQ0 : (α, β) = 0 for all β ∈ ZQ0}.
Theorem (Standard resolution). If X is a KQ-module (not necessarily f.d.), then
it has projective resolution

0→
⊕
a∈Q1

KQeh(a) ⊗K et(a)X →
⊕
i∈Q0

KQei ⊗K eiX → X → 0.

For a proof see §4.5 of my lecture notes on Homological algebra. This shows
KQ is left hereditary and:

Corollary. If X and Y are (f.d.) KQ-modules, then

⟨dimX, dimY ⟩ = dimHom(X, Y )− dimExt1(X, Y ).

Proof. Apply Hom(−, Y ) to the projective resolution to get an exact sequence

0→ Hom(X, Y )→
⊕
i∈Q0

Hom(KQei ⊗K eiX, Y )→

→
⊕
a∈Q1

Hom(KQeh(a) ⊗K et(a)X, Y )→ Ext1(X, Y )→ 0.

Now Hom(KQej⊗K eiX, Y ) ∼= HomK(eiX,Hom(KQej, Y )) ∼= HomK(eiX, ejY ) so
it has dimension (dimX)i(dimY )j.
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Lemma. If X is a KQ-module which is a brick with Ext1(X,X) = 0, then
End(X) = K, so q(dimX) = 1.

Proof. By assumption End(X) is a division algebra, say of dimension d. Now
if i is a vertex, then eiX is naturally a module for this division algebra, so its
K-dimension is a multiple of d. Thus dimX = dβ for some β ∈ ZQ0 . Then

d = dimEnd(X)− dimExt1(X,X) = q(dimX) = q(dβ) = d2q(β)

so q(β) = 1/d. But it is an integer, so d = 1.

3.2 Classification of quivers

A quiver is Dynkin if it is obtained by orienting one of the following graphs:

A quiver is extended Dynkin if it is obtained by orienting one of the following. In
each case we define δ ∈ NQ0

0 .
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Properties. (1) Any extended Dynkin quiver has at least one vertex i with δi = 1.
Such a vertex is called an extending vertex. Deleting an extending vertex, one
obtains the corresponding Dynkin quiver.

(2) δ is in the radical of q. For this, we need to check that (δ, ϵ[i]) = 0 for all i.
That is, 2δi is equal to the sum over δj running over all edges i− j.

Lemma (1). Every connected quiver is either Dynkin, or has an extended Dynkin
subquiver.

Proof. This is an easy case-by-case analysis. If there is a loop, it contains Ã0. If
there is a cycle it contains Ãn. If there is a vertex of valency 4 it contains D̃4. If
there are two vertices of valency 3 it contains D̃n. Thus (unless it is An) it is a star
with three arms. If all arms have length > 1 then contains Ẽ6. If two arms have
length 1 then it is Dynkin. Thus suppose one arm has length 1. If both remaining
arms have length > 2 then it contains Ẽ7. Thus suppose one has length 2. If the
other length is 2,3,4 then it is Dynkin, if > 4 it contains Ẽ8.

Theorem. (i) If Q is Dynkin, then q is positive definite, that is q(α) > 0 for all
0 ̸= α ∈ ZQ0.

(ii) If Q is extended Dynkin, then q is positive semidefinite, that is q(α) ≥ 0
for all α ∈ ZQ0. Moreover α ∈ rad q ⇔ q(α) = 0⇔ α ∈ Zδ.

(iii) If Q is connected and not Dynkin or extended Dynkin, then there is α ∈ NQ0

0

with (α, ϵ[i]) ≤ 0 for all i and q(α) < 0. Moreover NQ0

0 ∩ rad q = {0}.
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Proof. (ii) For i ̸= j we have (ϵ[i], ϵ[j]) ≤ 0. Thus

0 ≤ −1

2

∑
i ̸=j

(ϵ[i], ϵ[j])δiδj

(
αi
δi
− αj
δj

)2

=
∑
i ̸=j

(ϵ[i], ϵ[j])αiαj −
1

2

∑
i ̸=j

(ϵ[i], ϵ[j])δi
α2
j

δj
− 1

2

∑
i ̸=j

(ϵ[i], ϵ[j])δj
α2
i

δi

=
∑
i ̸=j

(ϵ[i], ϵ[j])αiαj −
∑
i ̸=j

(ϵ[i], ϵ[j])δi
α2
j

δj

=
∑
i ̸=j

(ϵ[i], ϵ[j])αiαj −
∑
j

(∑
i ̸=j

(ϵ[i], ϵ[j])δi

)
α2
j

δj

=
∑
i ̸=j

(ϵ[i], ϵ[j])αiαj −
∑
j

((δ, ϵ[j])− (ϵ[j], ϵ[j])δj)
α2
j

δj

=
∑
i ̸=j

(ϵ[i], ϵ[j])αiαj +
∑
j

(ϵ[j], ϵ[j])α2
j

=
∑
i,j

(ϵ[i], ϵ[j])αiαj = (α, α) = 2q(α).

Thus q is positive semidefinite. If q(α) = 0 then αi/δi = αj/δj whenever there
is an edge i−j, so since Q is connected, αi/δi is independent of i, so α is a multiple
of δ. Since some δi = 1, α ∈ Zδ. Trivially α ∈ Zδ ⇒ α ∈ rad q ⇒ q(α) = 0.

(i) Follows by embedding in the corresponding extended Dynkin diagram.
(iii) Take an extended Dynkin subquiver Q′ with radical vector δ. If all vertices

of Q are in Q′, take α = δ. If i is a vertex not in Q′ but connected to Q′ by an
arrow, take α = 2δ + ϵ[i]. Now suppose 0 ̸= β ∈ rad q. If βi = 0, then since
(β, ϵ[i]) = 0, there is no arrow connecting i to any vertex j with βj ̸= 0. Thus,
since Q is connected, βi ̸= 0 for all i. Now 0 = (α, β) =

∑
i βi(α, ϵ[i]) < 0, a

contradiction.

Definition. We suppose that Q is Dynkin or extended Dynkin. The roots are the
elements of

∆ = {α ∈ ZQ0 | α ̸= 0, q(α) ≤ 1}.

(One can define roots for arbitrary Q, but the definition is more complicated.)
A root α is real if q(α) = 1, otherwise it is imaginary. In the Dynkin case all

roots are real. In the extended Dynkin case the imaginary roots are rδ with r ̸= 0.

Lemma (2). Any root α is positive or negative (that is, α or −α ∈ NQ0

0 ).
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Proof. Write α = α+ − α− with α+, α− ∈ NQ0

0 having disjoint support, then
(α+, α−) ≤ 0. But then

1 ≥ q(α) = q(α+) + q(α−)− (α+, α−) ≥ q(α+) + q(α−)

so one of α+, α− is an imaginary root, hence a multiple of δ. But then since α+

and α− have disjoint support, the other must be zero.

Lemma (3). If Q is Dynkin, then ∆ is finite.

Proof. Two proofs: (i) Embed in an extended Dynkin quiver with radical vector δ
and extending vertex i. Roots α for Q correspond to roots with αi = 0. Now

q(α± δ) = q(α)± (α, δ) + q(δ) = q(α) = 1

so β = α ± δ is a root, and hence positive or negative. Now βi = ±1. Thus
−δj ≤ αj ≤ δj for all j.

(ii) ∆ is a discrete subset of the closed bounded (hence compact) subset {α ∈
RQ0 : q(α) ≤ 1} of RQ0 .

3.3 Cartan and Coxeter matrices

Definition. If R is a finite-dimensional algebra, with indecomposable projective
modules P [1], . . . , P [n] and simple modules S[1], . . . , S[n], the Cartan matrix C of
R is given by Cij = [P [j] : S[i]], the multiplicity of S[i] as a composition factor of
P [j].

This has nothing to do with (generalized) Cartan matrices in Lie theory. Now
suppose that Q is a quiver with no oriented cycles. Then C is the matrix with
rows and columns indexed by Q0 and

Cij = dimHom(P [i], P [j]) = dim eiKQej = number of paths from j to i.

Lemma (1). The jth column is of C is dimP [j] and the jth row is (dim I[j])T .
For any α ∈ ZQ0 we have

⟨dimP [j], α⟩ = αj = ⟨α, dim I[j]⟩.

It follows that C is invertible, with (C−1)ij = ⟨ϵ[j], ϵ[i]⟩.

Proof. dim eiP [j] = dim eiKQej = Cij = dimD(eiKQej) = dim ejI[i]. When
α = dimX, we have

⟨dimP [j], α⟩ = dimHom(P [j], X)− dimExt1(P [j], X) = dim ejX
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⟨α, dim I[j]⟩ = dimHom(X, I[j])− dimExt1(X, I[j]) =

= dimHom(P [j], X) = dim ejX

It follows for all α by additivity. Now using that dimP [j] =
∑

iCijϵ[i], the equality
⟨dimP [j], ϵ[k]⟩ = δjk gives that

∑
iCij⟨ϵ[i], ϵ[k]⟩ = δjk.

Definition. The Coxeter matrix is Φ = −CTC−1. That is, it is the matrix with
ΦdimP [i] = − dim I[i] for all i. Thus ΦdimP = − dim ν(P ) for any projective
module P .

Lemma (2). If X has no projective summand, then dim τX = ΦdimX.

Proof. If 0 → P1 → P0 → X → 0 is the minimal projective resolution, then
P1 → P0 → X → 0 is a minimal projective presentation, so one gets a sequence

0→ τX → ν(P1)→ ν(P0)→ ν(X)→ 0

Since X has no projective summand, Hom(X,R) = 0, so ν(X) = 0. Thus

dim τX = dim ν(P1)− dim ν(P0) = Φ(dimP0 − dimP1) = ΦdimX.

Lemma (3). We have ⟨α, β⟩ = −⟨β,Φα⟩ = ⟨Φα,Φβ⟩. Moreover Φα = α if and
only if α ∈ rad q.

Proof. ⟨dimP [i], β⟩ = βi = ⟨β, dim I[i]⟩ = −⟨β,ΦdimP [i]⟩, and now use that the
dimP [i] span ZQ0 .

Now Φα = α if and only if ⟨β, α − Φα⟩ = 0 for all β. But this is ⟨β, α⟩ +
⟨α, β⟩.

Lemma (4). If Q is Dynkin, then ΦN = 1 for some N > 0.

Proof. q(Φα) = q(α), so Φ induces a map from the set of roots ∆ to itself. Since Φ
is invertible this map is injective, and since ∆ is finite, this map is a permutation.
Thus it has finite order, say ΦN(α) = α for all α ∈ ∆. Since ϵ[i] ∈ ∆, it follows
that ΦN(α) = α for all α ∈ ZQ0 .

3.4 Gabriel’s Theorem

Lemma (1). If Q is connected, without oriented cycles, then knitting gives a pre-
projective component and a preinjective component, and either

(i) the preprojective and preinjective components are the same, and KQ has
finite representation type, or

(ii) the preprojective and preinjective components are disjoint, and KQ has
infinite representation type.
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Proof. We have radP [i] =
⊕

t(a)=i P [h(a)] and I[i]/ soc I[i] =
⊕

h(a)=i I[t(a)], so
each arrow a : i → j gives irreducible maps P [j] → P [i] and I[j] → I[i]. Since
Q is connected, knitting gives connected components, and if the preprojective
component contains one injective, then it is the preinjective component.

Examples. (i)

(ii)

and

Definition. If Q is extended Dynkin and X is a KQ-module, we define

defect(X) = ⟨δ, dimX⟩ = −⟨dimX, δ⟩ ∈ Z.

Observe that this only depends on the dimension vector of X, so it is additive on
short exact sequences.
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Lemma (2). If Q is extended Dynkin without oriented cycles, then for any vertex
i we have

defect(P [i]) = −δi, defect(I[i]) = δi

and if 0 → X → Y → Z → 0 is an AR sequence, then defect(X) = defect(Z).
Thus all preprojective modules have defect < 0 and all preinjective modules have
defect > 0, so the preprojective and preinjective components are disjoint and KQ
has infinite representation type.

Proof. The first statement is clear. Now

defect(X) = ⟨δ, dimX⟩ = ⟨δ, dim τZ⟩ = ⟨δ,ΦdimZ⟩ = −⟨dimZ, δ⟩ = defect(Z).

Lemma (3). If ξ : 0 → X → Y → Z → 0 is a non-split exact sequence of f.d.
modules for any algebra, then dimEnd(Y ) < dimEnd(X ⊕ Z).

Proof. Applying Hom(−, Y ) to the short exact sequence gives a long exact sequence

0→ Hom(Z, Y )→ Hom(Y, Y )→ Hom(X, Y )→ . . .

so that
dimEnd(Y ) ≤ dimHom(Z, Y ) + dimHom(X, Y ).

Similarly, applying Hom(X,−) gives

dimHom(X, Y ) ≤ dimHom(X,X) + dimHom(X,Z).

Now applying Hom(Z,−) gives the long exact sequence

0→ Hom(Z,X)→ Hom(Z, Y )→ End(Z)
c−→ Ext1(Z,X)

and the connecting map c is nonzero since it sends 1Z to the element in Ext1(Z,X)
represented by ξ, so

dimHom(Z, Y ) < dimHom(Z,X) + dimHom(Z,Z).

Combining these three inequalities we get the result.

Theorem (Gabriel). (i) If Q is a connected quiver, then KQ has finite represen-
tation type if and only if Q is Dynkin.

(ii) If Q is Dynkin, then the assignment X ⇝ dimX gives a 1:1 correspondence
between indecomposable modules and positive roots.
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Proof. (i) Suppose Q is Dynkin, so there is N > 0 with ΦN = 1. If KQ has infinite
representation type, and X is in the preprojective component, then τ−NX has
dimension vector Φ−N dimX = dimX, so since the modules in the preprojective
component are uniquely determined by their dimension vectors, we get τ−NX ∼= X,
which is nonsense.

If Q is non-Dynkin, then it has an extended Dynkin subquiver, and since any
representation of this quiver can be considered as a representation of Q (with any
extra vector spaces or linear maps zero), it suffices to show that this subquiver has
infinite representation type. Thus we may assume Q is extended Dynkin.

If Q is an oriented cycle, we know it has infinite representation type. If it has
no oriented cycles, Lemma 2 gives the result.

(ii) By Lemma 1, every indecomposable is preprojective, so directing, so uniquely
determined by its dimension vector. Also every indecomposable X is a brick and
Ext1(X,X) = 0, so by the lemma in §3.1, dimX is a root.

Now suppose α is a positive root. There are modules of dimension vector α, so
let X be one with dimEnd(X) minimal. If it decomposes, say X = U ⊕ V , then
Ext1(U, V ) = Ext1(V, U) = 0 by Lemma 3. Thus

1 = q(α) = dimEnd(U ⊕ V )− dimExt1(U ⊕ V, U ⊕ V )

= q(dimU) + q(dimV ) + dimHom(U, V ) + dimHom(V, U)

≥ 1 + 1 + 0 + 0 = 2,

a contradiction. Thus X is indecomposable, so there is an indecomposable of
dimension vector α.

There are lots of other ways to prove this theorem. The original paper is
P. Gabriel, Unzerlegbare Darstellungen. I, Manuscripta Math. 6 (1972), 71–103;
correction, ibid. 6 (1972), 309. The Tits form is so named, because of a simple
geometric argument of Tits, mentioned in this paper, which shows that if K is
an infinite field and Q is not Dynkin, then KQ has infinite representation type.
The most famous proof, which introduced certain reflection functors (which later
became part of ‘tilting theory’), is I. N. Bernstein, I. M. Gelfand and V. A. Pono-
marev, Coxeter functors, and Gabriel’s theorem (Russian), Uspehi Mat. Nauk 28
(1973), no. 2(170), 19–33, English translation: Russian Math. Surveys 28 (1973),
no. 2, 17–32. The proof for K algebraically closed in my earlier Oxford lecture
notes from 1992, followed Tits and an argument of Ringel, using Lemma 3 and
other homological algebra, but avoiding Auslander-Reiten theory.
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3.5 Regular modules

To begin with, Q is a connected non-Dynkin quiver without oriented cycles. As
for any f.d. algebra, we have bijections

{non-projective indecomposables}
τ−→
←−
τ−
{non-injective indecomposables},

and τP = 0 and τ−I = 0 for P projective and I injective. Also, since KQ is
hereditary, we have natural isomorphisms

Hom(X, τY ) ∼= DExt1(Y,X) ∼= Hom(τ−X, Y ).

Since Q is connected non-Dynkin, the preprojective and preinjective components
are disjoint.

Definition. An indecomposable module is preprojective or preinjective if it is in
the preprojective or preinjective component, so of the form τ−nP [i] or τnI[i] re-
spectively. Otherwise it is regular.

A module is preprojective, preinjective or regular if each indecomposable sum-
mand is. The corresponding module classes are P , I, R.

Properties. (a) A module X is
(i) preprojective ⇔ τmX = 0 for m≫ 0,
(ii) preinjective ⇔ τ−mX = 0 for m≫ 0,
(iii) regular ⇔ X ∼= τ−mτmX = 0 for all m ∈ Z.
This is clear.

(b) There are no non-zero maps from right to left in the diagram, that is,
Hom(Y,X) = 0 if Y is preinjective and X is preprojective, Y is preinjective and
X is regular, or Y is regular and X is preprojective,

For example if Y is preprojective and X is not, then X ∼= τ−mτmX for m ≥ 0,
so

Hom(X, Y ) ∼= Hom(τ−mτmX, Y ) ∼= Hom(τmX, τmY ) = 0

for m≫ 0, etc.

(c) R is closed under extensions and images; P is closed under extensions and
submodules; I is closed under extensions and quotients.
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Suppose 0 → X → Y → Z → 0 is exact with X,Z regular. If Y has a
preinjective summand U , then the map U → Y → Z is zero, so the inclusion
U → Y factors through X, which is impossible. Similarly if Y has a preprojective
summand U then the map X → Y → U is zero, so the projection Y → U factors
through Z, which is impossible.

Now suppose that θ : X → Y with X, Y regular. There is no nonzero map
from a preinjective to Y , so also none to Im θ. Similarly there is no nonzero map
from Im θ to a preprojective. Thus Im θ is regular.

Rest is straightforward.

(d) τ and τ− define inverse equivalences from R to itself.

From now on we suppose that Q is extended Dynkin without oriented cycles.

Lemma (1). There is N > 0 such that ΦN dimX = dimX for regular X.

Proof. Zδ is an additive subgroup of ZQ0 . Since δ ∈ rad q,

∆ ∪ {0} = {α ∈ ZQ0 : q(α) ≤ 1}.

is a union of cosets of Zδ.
Let e be an extending vertex. If α ∈ ∆ ∪ {0}, then the coset of α contains

β = α−αeδ, a vector with βe = 0, which is either the zero vector, or a root for the
corresponding Dynkin quiver. Thus the set of these cosets (∆ ∪ {0})/Zδ is finite.

Recall that q(Φα) = q(α) for any α, and Φα = α if and only if α ∈ rad q = Zδ.
Thus Φ induces a permutation of the finite set (∆ ∪ 0)/Zδ. Thus there is some
N > 0 with ΦN the identity on (∆∪ 0)/Zδ. Since ϵ[i] ∈ ∆ for all i ∈ Q0, it follows
that ΦN is the identity on ZQ0/Zδ.

Now ΦN dimX − dimX = rδ, for some r ∈ Z. Then by induction we have
ΦmN dimX = dimX + mrδ for all m ∈ Z. Since X is regular, this must be
positive for all m. This forces r = 0.

Lemma (2). (i) An indecomposable module is preprojective, regular, or preinjective
according to whether its defect is < 0, 0 or > 0.

(ii) An arbitrary module is regular if and only if it is defect-semistable, meaning
that it has defect 0 and all submodules have defect ≤ 0.

(iii) R is closed under kernels and cokernels, so it is an abelian category and
the inclusion functor R → KQ-mod is exact.

Proof. (i) We have seen that the preprojectives have defect < 0 and the preinjec-
tives have defect > 0. Thus we must show that if X is regular, then defect(X) = 0.
Say dimX = α. Then ΦNα = α. Let β = α + Φα + . . .ΦN−1α. Clearly Φβ = β,
so β = rδ. Now

0 = ⟨β, δ⟩ =
N−1∑
i=0

⟨Φiα, δ⟩ = N⟨α, δ⟩,
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so ⟨α, δ⟩ = 0.
(ii) If X is regular and Y is an indecomposable preinjective submodule, then

there must be a non-zero map from Y to an indecomposable summand of X, which
is impossible. Conversely, if X has no submodules of defect > 0, then it has no
preinjective summand, and if X has defect 0, then it can also have no preprojective
summand.

(iii) If θ : X → Y with X, Y regular, then Im θ is regular, so the exact sequence
0 → Ker θ → X → Im θ → 0 shows that Ker θ has defect 0, and since there is no
map from a preinjective to Ker θ, it is regular. Dually for Coker θ. The inclusion
functor is exact since kernels and cokernels are computed in KQ-mod.

Lemma (3). Suppose α is a positive real root. If ⟨δ, α⟩ ≠ 0 or α ≤ δ, then there
is an indecomposable X of dimension α.

(If ⟨δ, α⟩ ̸= 0 then X is preprojective or preinjective, so a directing module, so
a brick without self-extensions, and the unique indecomposable of this dimension
vector.)

Proof. Pick a module X of dimension α with dimEnd(X) minimal. We show that
if X decomposes as X = U⊕V with U, V ̸= 0. We show that ⟨δ, α⟩ = 0 and δ ≤ α,
contrary to the assumptions.

By minimality, Ext1(U, V ) = Ext1(V, U) = 0. Then

1 = q(α) = q(dimU) + q(dimV ) + dimHom(U, V ) + dimHom(V, U).

Thus, without loss of generality, q(dimU) = 0, so dimU ∈ Zδ, so δ ≤ α. Now
q(dimV ) = q(α) = 1, so the Hom spaces must be zero. Thus ⟨dimV, dimU⟩ = 0,
so ⟨dimV, δ⟩ = 0, so ⟨α, δ⟩ = 0.

3.6 Tubular structure

We continue with R = KQ with Q extended Dynkin without oriented cycles.

Definition. A regular module X is regular-simple if it is simple in the category
R. That is, X is non-zero, and it has no proper non-trivial regular submodule.

A regular module X is regular-uniserial if if is uniserial in the categoryR. That
is, the regular submodules of X are totally ordered by inclusion.

Similarly we can define the regular-top, regular-socle, a regular-composition se-
ries and the regular-length of a regular module.

Note that since τ is an equivalence on the abelian category R, so also exact on
R, so it preserves the regular length, etc.
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Lemma. Suppose S is a regular-simple of dimension vector α. Then
(i) End(S) is a division algebra, and either Ext1(S, S) = 0 and End(S) = K,

so that α is a real root, or dimExt1(S, S) = dimEnd(S) and α is an imaginary
root.

(ii) S is periodic under τ , with period dividing N , and τS ∼= S if and only if α
is an imaginary root.

Proof. (i) S is a brick by Schur’s Lemma for the abelian category R. Now if
Ext1(S, S) = 0, then End(S) = K by the lemma in §3.1. On the other hand if
Ext1(S, S) ̸= 0, then it is a module for the division algebra End(S), so its dimension
is at least dimEnd(S). Then 0 ≤ q(α) = dimEnd(S)− dimExt1(S, S) ≤ 0.

(ii) The modules τ jS are regular simple for all j. If α is a real root, then
⟨α,ΦNα⟩ = ⟨α, α⟩ = 1, so Hom(S, τNS) ̸= 0, so S ∼= τNS by Schur’s Lemma for
the abelian category R, so the period divides N .

If α is an imaginary root, then Ext1(S, S) ̸= 0, so Hom(S, τS) ̸= 0, so S ∼= τS
by Schur’s Lemma.

If τS ∼= S then Φα = α, so α is radical, so α = rδ is an imaginary root.

Example. Consider the ‘four subspace quiver’ of type D̃4

If dimX = α then defect(X) = ⟨δ, α⟩ = α1 + α2 + α3 + α4 − 2α5.
(a) The module S12 given by

is regular-simple. There are 6 modules like this, denoted Sij with 0 ≤ i < j ≤ 4
where the vertices i and j are copies of K. The minimal projective resolution of
S12 is

0→ P [5]→ P [1]⊕ P [2]→ S12 → 0

so τS12 is given by the exact sequence

0→ τS12 → I[5]→ I[1]⊕ I[2]
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so τS12
∼= S34.

(b) If U, V,W,Z are distinct 1-dimensional subspaces of K2, they give a KQ-
module

It is indecomposable of defect 0, so regular. Moreover it is regular simple. Namely,
suppose N is a proper non-trivial regular submodule N of dimension α. Then

0 = defect(N) = α1 + α2 + α3 + α4 − 2α5.

If α5 = 2, this implies that N is the whole module. If α5 = 0, it implies that
N − 0. Thus α5 = 1, so two of α1, α2, α3, α4 must be 1 and two must be 0. But
then the 1-dimensional subspace N5 must contain two of U, V,W,Z, so two distinct
1-dimensional subspaces, which is impossible.

(c) Using the subspace W twice gives a module M via

(It is indecomposable since U, V,W already give an indecomposable representation
of the Dynkin quiver D4.) The module M is indecomposable and regular. It fits
into an exact sequence

that is, 0 → S34 → M → S12 → 0. This is the AR sequence ending at S12.
Moreover this sequence shows the only proper non-trivial regular submodule of M ,
so it is regular-uniserial.
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Theorem (1). For any r ≥ 1 and any regular-simple S, there is a unique regular-
uniserial module S{r} with regular-length r and regular-top S. Its regular com-
position factors, working from the top down, are S, τS, τ 2S, . . . , τ r−1S. The AR
sequence ending at S{r} has the form

0→ (τS){r} → (τS){r − 1} ⊕ S{r + 1} → S{r} → 0

where we set T{0} = 0 for T regular simple.

Thus if S has τ -period p, the connected component of the AR quiver containing
S is of the form

The dotted lines must be identified, to give a tube

In particular, for period 1, the component looks as follows
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Proof. We prove the existence, uniqueness and properties of S{r} and the form of
the AR sequence ending at S{r − 1} for all S by induction on r. If r = 1 this is
clear, with S{1} = S, so assume r ≥ 1 and the claims are true for r′ ≤ r.

If r > 1 the AR sequence ending at S{r− 1} shows that there is an irreducible
map S{r} → S{r−1}. Applying τ gives an irreducible map τ(S{r})→ τ(S{r−1}).
By uniqueness, and since τ is an equivalence on R, we have τ(S{r}) ∼= (τS){r}
and τ(S{r − 1}) ∼= (τS){r − 1}. Thus, even for r = 1, the AR sequence ending at
S{r} has the form

0→ (τS){r} → (τS){r − 1} ⊕ S{r + 1} → S{r} → 0

for some module S{r + 1} of regular-length r + 1. We can determine the regular-
socle of S{r+1} by examining Hom(T, S{r+1}) for regular simples T . Applying
Hom(T,−) to the AR sequence, we get

dimHom(T, (τS){r−1}⊕S{r+1}) ≤ dimHom(T, (τS){r})+dimHom(T, S{r}).

Now clearly (τS){r−1} must be the unique regular submodule of S{r} of regular-
length r − 1, so

Hom(T, (τS){r − 1}) ∼= Hom(T, S{r}).
Thus

dimHom(T, S{r + 1}) ≤ dimHom(T, (τS){r}) =

{
dimEnd(τ rS) (T ∼= τ rS)

0 (otherwise).

It follows that S{r+1} must have regular socle τ rS. Also there is an irreducible epi
S{r + 1} → S{r} and S{r} is regular-uniserial with regular composition factors
S, τS, . . . , τ r−1S. By regular-lengths, the kernel of this epi must be τ rS. Thus
S{r + 1} is regular-uniserial with the expected regular-composition factors.

Now suppose that X is another regular-uniserial module of regular-length r+1
and regular-top S. The quotient modulo its regular-socle must be S{r}, and by
the properties of AR sequences, the map X ↠ S{r} must factor through (τS){r−
1}⊕S{r+1}. Now the composition via the first summand kills the regular-length
2 submodule of X. Thus the composition X → S{r + 1} → S{r} must not kill
this submodule. It follows that the map X → S{r + 1} must be injective. Thus
by regular-lengths, it is an isomorphism.

Remark. Note that if S is a regular-simple, then S{r} is a brick if and only if S
only occurs once as a regular-composition-factor of S{r}, which is if and only if
r ≤ p, where p is the τ -period of S.

Corollary. Every indecomposable regular module is regular-uniserial, so isomor-
phic to S{r} for some r and some S.
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Proof. Suppose X is a regular indecomposable which is not regular-uniserial. Let
S{r} be a quotient of X which is regular-uniserial of maximal regular-length. By
the AR property, the map X → S{r} factors through (τS){r − 1} ⊕ S{r + 1}.
Now the composition via the first summand cannot be surjective, so (since S{r} is
regular-uniserial), the composition X → S{r+1} → S{r} must be surjective. But
then the map X → S{r + 1} must be surjective, contradicting maximality.

Theorem (2). (a) If S is regular simple of τ -period p > 1, then

dimS + dim τS + · · ·+ dim τ p−1S = δ.

(b) Regular simples S, T of τ -period > 1 of the same dimension vector α must
be isomorphic.

(c) All but finitely many regular simples have τ -period 1.

Proof. (a) We know α = dimS is a real root. Let k be maximal such that the
root β = α − kδ is still positive. Then β is a real root and β ≤ δ, so there is an
indecomposable X of dimension β. Clearly X is regular, and since ⟨α, β⟩ = 1, X
is in the same tube as S, thus we may replace S by any regular-composition-factor
of X, and hence assume that 0 ≤ α ≤ δ.

Then δ − α is also a real root ≤ δ. Thus there is an indecomposable R of
dimension δ − α, clearly regular.

As ⟨α, δ − α⟩ = −1, 0 ̸= Ext1(S,R) ∼= DHom(R, τS), so reg-topR ∼= τS. As
⟨δ−α, α⟩ = −1, 0 ̸= Ext1(R, S) ∼= DHom(τ−S,R), so reg-socR ∼= τ−S. It follows
that R must at least involve τS, τ 2S, . . . , τ p−1S, so

dimS + dim τS + · · ·+ dim τ p−1S ≤ dimS + dimR = δ.

Also the sum is invariant under Φ, so it is a multiple of δ.
(b) Hom(S, T ) ̸= 0 since 1 = ⟨α, α⟩ = dimHom(S, T ) − dimExt1(S, T ), so

S ∼= T .
(c) There are only finitely many positive roots < δ.

Remark. With more work, one can show that:

- For Q of type Ãn with p arrows clockwise and q arrows anticlockwise, there
are tubes with periods p and q, and all other tubes have period 1.

The supports of the regular simples are given by the maximal anticlockwise and
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clockwise paths. An example with p = 4 and q = 2 is as follows.

Note that the Kronecker quiver 1 −→−→ 2 has p = q = 1, so all tubes have period 1.

- Otherwise, the Dynkin quiver corresponding to Q has a central vertex and
three arms, and there are tubes of period equal to the number of vertices in each
arm (including the central vertex), and all other tubes have period 1.

To see this, by duality, we may choose an extending vertex e which is a source,
so that S[e] is injective. In the AR quiver of the Dynkin quiver, the indecomposable
module X of dimension vector δ′ = δ− ϵ[e] will lie on the τ -orbit of the projective
module corresponding to the central vertex. Then each arm of the Dynkin quiver
will give a subquiver of the AR quiver which is ‘wing’ for X. For example an arm
of length 4 gives a wing

Now if Y is one of the modules in the circled region, then

⟨dimY, dimX⟩ = dimHom(Y,X)− dimExt1(Y,X)

= dimHom(Y,X)− dimHom(X, τY ) = 0,

where τ denotes the AR translate for the Dynkin quiver, and

⟨dimY, dimS[e]⟩ = ⟨dimY, dim I[e]⟩ = dimHom(Y, I[e]) = 0
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since Y is not supported at e. Thus

defect(Y ) = ⟨dimY, δ⟩ = ⟨dimY, dimX + dimS[e]⟩ = 0,

so Y is regular, and module in the circled region form part of a tube with period
equal to the length of the arm. For example, for the following orientation of D̃5

with extending vertex e = 6, the corresponding Dynkin quiver has arms of length
2, 2, 3. Its AR quiver is as follows.

The module X is shown, as are the circled parts of the three wings, corresponding
to tubes with period 2,2,3.

3.7 Parameterizing the tubes

We continue with R = KQ with Q extended Dynkin without oriented cycles. We
show that the tubes are indexed by the projective line. The projective line over K
is

P1 := {irreducible homogeneous polynomials h(x, y) ∈ K[x, y] up to scalars }.

The K-points are the polynomials of degree 1,

P1(K) = {λx+ µy : λ, µ ∈ K, not both zero}.
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If a homogeneous polynomial of degree d doesn’t involve yd, then it is a multiple
of x, so by irreduciblity it is a scalar multiple of x. It follows that

P1 = {x} ∪ {xdf(y/x) : f(t) ∈ K[t] irreducible of degree d}.

If K is algebraically closed, there are only the K-points.
Let e be an extending vertex, P = P [e], p = dimP . Clearly ⟨p, p⟩ = 1 =

⟨p, δ⟩. Thus δ + p is a positive real root and ⟨δ + p, δ⟩ = 1, so there is a unique
indecomposable L of dimension δ + p. Now P and L are preprojective, are bricks,
and have no self-extensions.

Now dimHom(P,L) = ⟨p, p+δ⟩ = 2. Also, since P is directing Hom(L, P ) = 0.
Then also Ext1(L, P ) = 0 since ⟨dimL, dimP ⟩ = ⟨p+ δ, p⟩ = ⟨p, p⟩ − ⟨p, δ⟩ = 0.

Example. For simplicity, we take the orientation

of D̃4 with extending vertex e = 5. The preprojective component starts as follows

We fix a basis a, b of Hom(P,L). For d ≥ 0, let K[x, y]d be the space of
homogeneous polynomials of degree d. Given an irreducible polynomial h(x, y) ∈
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K[x, y]d, we consider the vector spaces and linear maps

K[x, y]d−1
x−→
−→
y

K[x, y]d/Kh(x, y).

Both vector spaces have dimension d. We use these to define a map of KQ-modules

θh : P⊗KK[x, y]d−1 → L⊗K (K[x, y]d/Kh(x, y)), θh(p⊗g) = a(p)⊗xg+b(p)⊗yg.

Theorem. (a) Every tube contains a unique module in the set

Σ = {X : X is a brick, dimX ∈ Zδ and (reg-topX)e ̸= 0}

(b) If h(x, y) is a irreducible homogeneous polynomial of degree d, then Coker(θh) ∈
Σ of dimension vector dδ, and if h′(x, y) is another irreducible polynomial of de-
gree d, then Coker(θh) ∼= Coker(θh′) if and only if h, h′ are scalar multiples of each
other.

(c) This gives a bijection between P1 and the set of isomorphism classes of
modules in Σ, so the set of tubes in the AR quiver.

Proof. (Sketch)
(a) Follows from Theorem 2 in §3.6.

(b) for the case d > 1. We can write h(x, y) = xdf(y/x) with f(t) ∈ K[t]
irreducible of degree d. We set V = K[t]/(f(t)), a simple K[t]-module of dimension
d > 1. We can identify θh with the map

θV : P ⊗ V → L⊗ V, θV (p⊗ v) = a(p)⊗ v + b(p)⊗ tv.

Similarly let h′ correspond to simple module V ′.
A K[t]-module homomorphism ϕ : V → V ′ induces a map Coker(θV ) →

Coker(θV ′) via the commutative diagram

P ⊗ V θV−−−→ L⊗ V −−−→ Coker(θV ) −−−→ 0

1⊗ϕ
y 1⊗ϕ

y ψ

y
P ⊗ V ′ θV ′−−−→ L⊗ V ′ −−−→ Coker(θV ′) −−−→ 0.

This gives a linear map

HomK[t](V, V
′)→ Hom(Coker(θV ),Coker(θV ′)).

Now if h, h′ are scalar multiples of each other, then V, V ′ are isomorphic, and this
gives an isomorphism of the cokernels.
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Conversely, we claim that this map is always surjective. Applying Hom(L ⊗
V,−) to the exact sequence

0→ Ker(θV ′)→ P ⊗ V ′ → Im(θV ′)→ 0

gives exact sequence

→ Ext1(L⊗ V,Ker(θV ′))→ Ext1(L⊗ V, P ⊗ V ′)→ Ext1(L⊗ V, Im(θV ′))→ 0.

Now Ext1(L, P ) = 0, so Ext1(L⊗ V, Im(θV ′)) = 0. Thus, applying Hom(L⊗ V,−)
to the exact sequence

0→ Im(θV ′)→ L⊗ V ′ → Coker(θV ′)→ 0

gives an exact sequence

0→ Hom(L⊗ V, Im(θV ′))→ Hom(L⊗ V, L⊗ V ′)→ Hom(L⊗ V,Coker(θV ′))→ 0

It follows that any map ψ : Coker(θV )→ Coker(θV ′) lifts to a map L⊗V → L⊗V ′,
and since End(L) = K this is of the form 1⊗ϕ for some linear map V → V ′. This
induces a map Im(θV ) → Im(θV ′), and since P is projective, this lifts to a map
P ⊗V → P ⊗V ′. Again this is of the form 1⊗ϕ′, for some linear map ϕ′ : V → V ′.
Now since (1⊗ ϕ)θV = θV ′(1⊗ ϕ′), we see that

a(p)⊗ ϕ(v) + b(p)⊗ ϕ(tv) = a(p)⊗ ϕ′(v) + b(p)⊗ tϕ′(v)

for p ∈ P and v ∈ V . Now P = P [e] = KQee, where e is the extending vertex, and
so a(ee) and b(ee) are linearly independent in L. Thus ϕ = ϕ′ ∈ HomK[t](V, V

′), so
the map

HomK[t](V, V
′)→ Hom(Coker(θV ),Coker(θV ′))

is indeed surjective.
Now if Coker(θV ) ∼= Coker(θV ′), then there is a nonzero map ψ between them,

so there is a nonzero map ϕ ∈ HomK[t](V, V
′), so V and V ′ are isomorphic (since

they are simple). Thus h(x, y) and h′(x, y) are multiples of each other.
On the other hand, taking V ′ = V , our surjective map is a surjective algebra

homomorphism
EndK[t](V )→ End(Coker(θV )),

and EndK[t](V ) is a field extension of K of degree d, hence so is End(Coker(θV )). It
follows that Coker(θV ) is a brick, so indecomposable, and it must be regular since
the indecomposable preprojective and preinjective modules all have endomorphism
algebra K. Since it is regular, Coker(θV ) has defect 0, and P and L have defect
−1, so Ker(θV ) has defect 0, but it is preprojective, so it must be 0. Finally,

106



if Coker(θV ) has regular top T , then dimTe = dimHom(P, T ) = ⟨p, dimT ⟩ =
⟨p+ δ, dimT ⟩ = dimHom(L, T ) ̸= 0.

(b) for the case d = 1. We have h(x, y) = λx + µy, so we can identify θh with
λb− µa : P → L. Thus we consider 0 ̸= θ ∈ Hom(P,L).

As before, an isomorphism between the cokernels lifts to maps between P and
L as

P
θ−−−→ L −−−→ Coker(θ) −−−→ 0

ϕ′

y ϕ

y y
P

θ′−−−→ L −−−→ Coker(θ′) −−−→ 0

Now End(P ) = K = End(L), so ϕ and ϕ′ are multiplication by a scalar, and ϕ is
non-zero. Thus θ is a multiple of θ′.

Suppose θ is not mono. Now Ker θ and Im θ are preprojective (since they embed
in P and L), and so they have defect ≤ −1. Now the sequence

0→ Ker θ → P → Im θ → 0

is exact, so −1 = defect(P ) = defect(Ker θ) + defect(Im θ) ≤ −2, a contradiction.
Let X = Coker θ, and consider ξ : 0→ P

θ−→ L→ X → 0. Apply Hom(−, P ) to
get Ext1(X,P ) = K. Apply Hom(−, L) to get Hom(X,L) = 0. Apply Hom(X,−)
to get End(X) = K. Now X is indecomposable of dimension δ, so has defect 0, so
is regular. Now (reg-topX)e ̸= 0 as before.

(c) We need to show that every X ∈ Σ arises as a Coker(θh). Now if X has
dimension kδ, then composition with a and b induce maps ca, cb : Hom(L,X) →
Hom(P,X), and these are k-dimensional spaces.

If there is some 0 ̸= v ∈ Hom(L,X) with a linear relation λca(v) + µcb(v) = 0,
then the composition of v with θ = λa + µb is zero, so there is a non-zero map
Coker(θ) → X, so X is in the same tube as Coker(θ), so isomorphic to it, and
θ = θh for a suitable homogeneous polynomial of degree 1.

Otherwise cb is an isomorphism, so we can turn Hom(L,X) into a K[t]-module
with t acting as −(cb)−1ca. It will be a simple module, but we don’t know that
now, so let V be a simple submodule of it. We have dimV > 1 since there is
no relation between ca(v) and cb(v) for 0 ̸= v ∈ V . We have a evaluation map
ev : L⊗ V → X, v ⊗ ϕ 7→ ϕ(v), and clearly ev ̸= 0. Also

evθV (p⊗ v) = ev(a(p)⊗ v + b(p)⊗ tv) = v(a(p)) + (tv)(b(p))

= v(a(p)) + (−c−1b cav)(b(v)) = v(a(p))− (cav)(v) = 0.

Thus we get a non-zero map Coker(θV ) → X, so these two modules are in the
same tube, so isomorphic.
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Example. In the example before, the module L can be given by the indicated
matrices, and then a map P → L is given by a linear map K → K2 as indicated

with a, b ∈ K not both zero. The cokernel is isomorphic to

where λ, µ ∈ K are not both zero and satisfy aλ+ bµ = 0. This module is regular
simple unless (λ µ) is a multiple of one of the other maps, say (1 0), when the
module is not regular simple since it has regular submodule

The theorem ensures that if K is infinite, there are infinitely many indecom-
posable modules of dimension δ. Combined with the tubular structure of regular
modules, one can deduce the following. The proof is omitted.
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Corollary. (i) If X is indecomposable, then dimX is a root.
(ii) If α is a positive real root, there is a unique indecomposable module with

dimension vector α.
(iii) If α is a positive imaginary root, there are indecomposable modules with

dimension vector α, and if the field K has infinitely many elements, there are
infinitely many such modules.
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