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Abstract

Given a collection of matrix similarity classes C1, . . . ,Ck, the additive matrix problem

asks under what conditions do there exist matrices Ai ∈ Ci for i = 1, . . . , k such that

A1 + · · ·+ Ak = 0. This and similar problems have been examined under various guises in

the literature. The results of Crawley-Boevey use the representation theory of quivers to

link the additive matrix problem to the root systems of quivers. We relate the results of

Crawley-Boevey to another partial solution offered by Silva et al. and develop some tools

to interpret the solutions of Silva et al. in terms of root systems.

The results of Crawley-Boevey require us to know the precise Jordan form of the

similarity classes; we address the problem of invoking Crawley-Boevey’s results when

only the invariant polynomials are known and we are not permitted to use polynomial

factorization.

We use the machinery of symmetric quivers and symmetric representations to study

the problem of finding symmetric matrix solutions to the additive matrix problem. We

show the reflection functors, defined for representations of deformed preprojective al-

gebras, can be defined for symmetric representations. We show every rigid irreducible

solution to the additive matrix problem can be realized by symmetric matrices and we use

algebraic geometry to show that in some circumstances there are solutions which cannot

be realized by symmetric matrices. We show there exist symmetric representations of

deformed preprojective algebras of root dimension vectors when the underlying quiver

is Dynkin or extended Dynkin of type Ãn or D̃n.
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Chapter 1

Introduction and Preliminary

Material

Representation theory builds connections between different types of objects in mathemat-

ics that may have no obvious connection, such as groups, algebras and quivers. This is

achieved by defining representations on the objects which “represent”, in some suitable

sense, the objects with structures from linear algebra. The collection of representations,

along with suitably defined morphisms, forms a category. Representing complicated

mathematical objects with appropriate linear algebra objects allows us to use the power

of linear algebra and category theory to study them under a common, well-understood

framework.

Let C1, . . . ,Ck ⊆Mn(K) be a collection of matrix similarity classes. The additive matrix

problem asks under what necessary and sufficient conditions on the C1, . . . ,Ck do there

exist matrices A1, . . . ,Ak ∈ Mn(K) such that Ai ∈ Ci for i = 1, . . . , k and A1 + · · · + Ak = 0.

The existence of such matrix tuples is linked to the existence of certain representations of

a particular deformed preprojective algebra, which is linked to certain representations of

a quiver. Crawley-Boevey shows that the resolution of several variants of the additive

matrix problem is linked, via representation theory, to the root systems of star-shaped

quivers.

The results of this thesis can be divided into three areas.

1. We compare the results obtained by Crawley-Boevey to the results obtained by

Silva et al. To do this we present some new techniques for studying the dimension

1



2 Chapter 1. Introduction

vectors of star-shaped quivers, in particular we present a set of conditions for a

dimension vector to be a root. The results of Silva et al. do not explicitly involve

quiver representations or root systems, but the results of Crawley-Boevey suggest

it is useful to consider these results in such terms. We use the new techniques to

express some of the results of Silva et al. in terms of root systems, this allows us to

compare them to Crawley-Boevey’s results.

2. The results of Crawley-Boevey assume precise knowledge of the Jordan structure of

the similarity classes. We consider these results when only the invariant polynomials

are known and it is not possible to perform any polynomial factorization. We present

a solution to this problem which is applicable when the similarity classes are closed.

In this case the Jordan blocks of the classes all have order one, but the precise

eigenvalues cannot be directly computed.

3. We consider the symmetric variant of the additive matrix problem, that is in which

we require the matrices to be symmetric. We show this is linked to the existence

of symmetric representations in a way analogous to the general additive matrix

problem. We explore symmetric representations and define symmetric representa-

tions of deformed preprojective algebras. We show that reflection functors, which

are important tools for understanding representations of deformed preprojective

algebras, are well-defined for symmetric representations also. We present several

results on the structure of the category of symmetric representations of deformed

preprojective algebras, some showing the structure is analogous to the general case,

some showing it is not.

In Chapter 2 we recall some basic facts about matrices and present some theorems

that are needed throughout. We develop some new polynomial operations in Chapter

3 which allow us to manipulate the roots of polynomials without factorizing them. We

look at the results of Crawley-Boevey and Silva et al. in Chapter 4 and develop some

machinery to compare them. We also use the machinery developed in Chapter 3 to

present a different approach to the results of Crawley-Boevey when only the invariant

polynomials are known. We define symmetric representations in Chapter 5, prove the

reflection functors have a symmetric analogue and explore the symmetric additive matrix

problem. In Chapter 6 we use algebraic geometry to show there exist certain solutions
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to the additive matrix problem which are not conjugate to solutions to the symmetric

additive matrix problem. We also show there always exist symmetric representations of a

given dimension vector of the deformed preprojective algebras constructed from Dynkin

or extended Dynkin (in most cases) quivers where the given dimension vector is a root.

1.1 Quivers, Roots and Representations

Here we recall the notions of quivers, quiver representations and root systems. These

elementary definitions and results are found in many references such as [ASS06], [ARS95]

and [Kac90].

1.1.1 Quivers

Definition 1.1.1. A quiver Q is a quadruple (Q0,Q1, h, t) where Q0 and Q1 are sets and

h, t : Q1 → Q0 are functions from Q1 to Q0. We call Q0 the set of vertices, Q1 the set of

arrows, h the head function and t the tail function. Given an arrow a ∈ Q1 we call h(a) and

t(a) the head and tail of a respectively.

From hereon all quivers are assumed to be finite, that is Q0 and Q1 are finite sets.

1.1.2 Roots and Dimension Vectors

Let Q be a quiver. A dimension vector α of Q is a vector with integer values indexed by the

vertices of Q, that is α ∈ ZQ0 . A dimension vector is positive if it is nonzero and all of its

entries are non-negative.

Let α, β be dimension vectors. The Ringel form 〈·, ·〉 is defined by

〈
α, β

〉
=

∑
i∈Q0

αiβi −
∑
a∈Q1

αt(a)βh(a).

The associated symmetric bilinear form (·, ·) is defined by (α, β) =
〈
α, β

〉
+

〈
β, α

〉
.

A simple root of Q, also called a coordinate vector, is a dimension vector with a 1 at a

single loop-free vertex and 0 elsewhere. We denote the simple root with a 1 at i ∈ Q0

(where i is loop-free) by εi. Let i ∈ Q0 the reflection at i is the function si : ZQ0 → ZQ0

defined by si(α) = α − (α, εi)εi. This is equivalent to si(α) j = α j for all j , i and

si(α)i =
∑

j adjacent to i

α j − αi.
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We say a dimension vector α is in the fundamental region if it is positive, has connected

support (that is the full subquiver formed by the nonzero vertices is a connected quiver)

and for every loop-free vertex i ∈ Q0 we have si(α)i ≥ αi.

Definition 1.1.2. Let α ∈ ZQ0 . We say α is a real root if there is a finite sequence of

reflections which take α to a simple root. We say α is an imaginary root if there is a finite

sequence of reflections which take either α or −α to a vector in the fundamental region.

We call a dimension vector a root if it is either a real root or an imaginary root.

If α is a root, then either α is a positive dimension vector, or −α is a positive dimension

vector.

1.1.3 Representations of Quivers

Here we recall the definition of a quiver representation and of a homomorphism between

two quivers representations.

Let Q be a quiver and K an algebraically closed field of characteristic zero. Unless oth-

erwise stated all fields are algebraically closed and of characteristic zero. A K-representation

V of Q (or simply a representation when the field is clear from the context) is an assignment

of a K-vector space Vi to each vertex i ∈ Q0 and of a K-linear map Va : Vt(a) → Vh(a) to each

arrow a ∈ Q1. Let V and W be K-representations. A homomorphism φ from V to W is an

assignment of a linear map φi : Vi → Wi to each vertex i ∈ Q0 such that for each arrow

a ∈ Q1 the intertwining relation φh(a)Va = Waφt(a) holds.

Unless otherwise stated all representations are finite dimensional, that is all their

vector spaces have finite dimension. If V is finite dimensional, then there is an associated

dimension vector dim(V) ∈ ZQ0 defined by dim(V)i = dim(Vi) for all i ∈ Q0. We denote by

RepK(Q) the category whose objects are K-representations of Q and whose morphisms are

the homomorphisms of K-representations. Given a representation X the identity morphism,

that is the homomorphism assigning the identity map 1Xi to each vertex i ∈ Q0, is denoted

1X.

The path algebra KQ of Q over K is the K-algebra whose underlying vector space has

basis: the set of all paths of Q (See [ARS95, Sec. III.1]). A path p is either an ordered

sequence of arrows p = ar . . . a1 of Q such that h(ai) = t(ai+1) for i = 1, . . . , r − 1 called a

nontrivial path, or the symbol ei for i ∈ Q0 called the trivial path at i. If p is a nontrivial path

we define the head of p as h(p) = h(ar) and the tail of p as t(p) = t(a1). We define the head
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and tail of a trivial path ei by h(ei) = i and t(ei) = i respectively. Multiplication of basis

elements is defined by path concatenation, that is if p, q ∈ KQ are paths (either trivial or

nontrivial) then

pq =



path formed by attaching p to the end of q if p, q nontrivial and t(p) = h(q),

p if q = et(p),

q if p = eh(q),

0 otherwise.

It is well known that the category of left KQ-modules with finite K-dimension is

equivalent to the category of finite dimensional K-representations of Q. See [ARS95, Sec.

III.1, Thm. 1.5].

1.2 Deformed Preprojective Algebras

Let Q be a quiver and K an algebraically closed field of characteristic zero. Let λ ∈ KQ0 ,

that is λ is a K-vector with entries indexed by vertices of Q.

1.2.1 Definition

Definition 1.2.1. We denote by Q the doubled quiver of Q, that is Q0 = Q0 and Q1 =

Q1∪{a∗ : h(a)→ t(a)∀a ∈ Q1}. Informally we form Q1 from Q1 by adjoining an extra arrow

a∗ for each a ∈ Q1 going in the reverse direction.

Example 1.2.2. Suppose we have a quiver Q

1 2

��

3

��
4

OO @@

5oo 6oo

the doubled quiver is Q

1 2

��

gg 3

��

VV

4

OO

��

@@

��
5oo 66 6oo 66

The following definition comes from [CBH98, Sec. 2].

Definition 1.2.3. Let I be the ideal of KQ given by

I =

〈∑
a∈Q1

(aa∗ − a∗a) −
∑
i∈Q0

λiei

〉
.
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Let Πλ(Q) = KQ/I, we call Πλ(Q) the deformed preprojective algebra of Q. When λ = 0 we

call Π0(Q) the preprojective algebra of Q and denote it Π(Q).

The category of left Πλ(Q) modules with finite K-dimension is equivalent to the full

subcategory of representations of Q whose objects are representations V of Q which, for

each i ∈ Q0, satisfy: ∑
a∈Q1 : h(a)=i

VaVa∗ −
∑

a∈Q1 : t(a)=i

Va∗Va = λi1Vi .

We denote this category by RepK(Πλ(Q)).

1.2.2 Reflection Functors

Recall the definition of a reflection si : ZQ0 → ZQ0 , where i ∈ Q0, of dimension vectors.

The definitions in the section come from [CBH98, Sec. 5] and [CB01, Sec. 2].

Definition 1.2.4. Let i ∈ Q0 be a loop-free vertex. Define ri : KQ0 → KQ0 to be

ri(λ) j = λ j − (εi, ε j)λi.

Note that ri is dual to si in the sense that ri(λ) ·α = λ · si(α) for all λ ∈ KQ0 and α ∈ ZQ0 .

We say the reflection at loop-free i ∈ Q0 is admissible for the pair (λ, α) if λi , 0. If the

reflection at i is admissible for (λ, α), then there is an equivalence of categories between

RepK(Πλ(Q)) and RepK(Πri(λ)(Q)) which acts as si on dimension vectors (see [CBH98, Thm.

5.1]). Such equivalences are known as reflection functors. We discuss reflection functors in

more detail in Section 5.2.

Definition 1.2.5. Let λ, λ′ ∈ KQ0 and α, α′ ∈ ZQ0 . We say the pairs (λ, α) and (λ′, α′) are

equivalent if there is a finite sequence i1, . . . , il ∈ Q0 of loop-free vertices such that

• ril . . . ri1(λ) = λ′,

• sil . . . si1(α) = α′, and

• the reflection at i j is admissible for the pair (ri j−1 . . . ri1(λ), si j−1 . . . si1(α)) for all j =

1, . . . , l.

So when (λ, α) and (λ′, α′) are equivalent, there exists an equivalence from RepK(Πλ(Q))

to representations of RepK(Πλ′(Q)) which acts as sil . . . si1 on dimension vectors where

α′ = sil . . . si1(α).
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1.2.3 Lifting of Representations

Definition 1.2.6. Let V be a representation of Q (this could also be a representation of

Πλ(Q) for some λ ∈ KQ0). Let π1(V) be the representation of Q obtained by discarding

the linear maps Va∗ for a ∈ Q1 and let π2(V) be the representation of Qop obtained by

discarding the linear maps Va for a ∈ Q1 (Qop is the opposite quiver of Q, obtained from Q

by switching the orientation of each arrow).

Let λ ∈ KQ0 and let V be a representation of Q, we say V lifts to a representation of

Πλ(Q) if there exists a representation X of Πλ(Q) such that π1(X) = V.

Given a positive dimension vector αwe say a collection of positive dimension vectors

(β1, . . . , βr) is a decomposition of α if α = β1 + · · ·+ βr. We say a decomposition (β1, . . . , βr) of

α is a root decomposition if each β1, . . . , βr is a root. We say a decomposition (β1, . . . , βr) of α

is compatible with λ if λ · βi = 0 for each i = 1, . . . , r.

Let α be a dimension vector. Recall the Ringel form 〈·, ·〉, the corresponding quadratic

form is the Tits form, q(α) = 〈α, α〉 = 1
2 (α, α), that is

q(α) =
∑
i∈Q0

α2
i −

∑
a∈Q1

αh(α)αt(α),

(see [CB01, Sec. 2]). Let p(α) = 1 − q(α).

Definition 1.2.7. Let R+
λ be the set of positive roots α with the property that λ · α = 0.

Let Σλ be the set of α ∈ R+
λ such that p(α) > p(β1) + · · · + p(βr) for all root decompositions

(β1, . . . , βr) of α compatible with λ with r ≥ 2.

Lemma 1.2.8. Suppose α ∈ Σλ. There exists α′ ∈ ZQ0 and λ′ ∈ KQ0 such that (α, λ) and

(α′, λ′) are equivalent, where either α′ is a simple root at a loop-free vertex or α′ is in the

fundamental region.

Proof. [CB01, Thm. 5.8]. �

Theorem 1.2.9. There exists a simple representation of Πλ(Q) of dimension vector α if

and only if α ∈ Σλ. If α is a real root, then this simple representation is unique up to

isomorphism and if α is imaginary, then there are infinitely many nonisomorphic simple

representations of dimension vector α.

Proof. The first part is proved in [CB01, Thm. 1.2] and the second part in the subsequent

remarks. �
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Chapter 2

Matrices

Matrices are one of the central objects of study in both linear algebra and representation

theory. Certain problems involving matrices can be expressed in terms of the representa-

tion theory of quivers. The additive matrix problem, which is the central focus this thesis,

is formally introduced in Chapter 4. We devote this chapter to material concerning matri-

ces (and endomorphisms of a vector space). In Section 2.1 we establish notation and recall

many definitions and results concerning matrices and matrix similarity, most of which

are standard. In Section 2.2 we give a construction for vector space endomorphisms of a

particular conjugacy class or conjugacy class closure, which we use in Chapter 4. We also

introduce a new construction for self-adjoint endomorphisms which we use in Chapter

5. Throughout let K be an algebraically closed field of characteristic zero.

2.1 Matrices and Matrix Similarity

The set Mn(K) is the K-algebra of square n by n matrices (with entries in K). Recall the

definition of a Jordan block, a Jordan matrix and matrix similarity. The definitions and

results in this section are standard concepts and results in elementary linear algebra and

can be found in references such as [Hal58] and [Gan59].

Let A ∈Mn(K). The spectrum Ψ(A) of A is the set of eigenvalues of A. The characteristic

polynomial charA ∈ K[x] of A is defined by charA(x) = det(xIn −A). The minimal polynomial

minA ∈ K[x] of A is the unique nonzero monic polynomial of minimal degree such that

minA(A) = 0. Let λ ∈ K. We have two notions of the multiplicity of λ in A. The algebraic

multiplicity of λ in A, denoted algrA(λ), is the number of factors of (x − λ) that appear in

9
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charA(x), and the geometric multiplicity of λ ∈ A, denoted geomA(λ), is the dimension of

the eigenspace of λ, that is dim{x ∈ Kn : (A − λIn)x = 0}. Alternatively, geomA(λ) is the

number of linearly independent eigenvectors associated to λ. We say the index of λ in A,

denoted idxA(λ), is the size of the largest Jordan block with eigenvalue λ appearing in a

Jordan decomposition of A. Note that geomA(λ), algrA(λ) and idxA(λ) are nonzero if and

only if λ ∈ Ψ(A).

Remark 2.1.1. We make use of the following well-known properties of matrices. Two

similar matrices A and B have the same spectrum, characteristic and minimal polynomial,

and for each λ ∈ K we have algrA(λ) = algrB(λ), geomA(λ) = geomB(λ) and idxA(λ) =

idxB(λ). Suppose p ∈ K[x] is a polynomial, we have p(X−1AX) = X−1p(A)X for each

nonsingular X ∈Mn(K).

Example 2.1.2. Both the characteristic and minimal polynomials are invariant under

similarity, however there exist matrices which have the same characteristic and minimal

polynomials but which are not similar. For instance consider the matrices

A =



1 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1


, B =



1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1


.

Both of these have characteristic polynomial (x − 1)4 and minimal polynomial (x − 1)2

but they are not similar as they have different Jordan normal forms (up to permutation

of blocks). However, there does exist a collection of polynomials which fully classify the

similarity of matrices, these are known as the invariant polynomials of a matrix.

Classifying matrices up to similarity is one of the central problems in linear algebra.

There are a variety of ways to determine whether two matrices are similar, most involve

computing some invariant of the similarity transformation. A collection of invariants

which completely classifies matrix similarity is called a complete set of invariants. The most

well-known of these is the collection of Jordan blocks which make up the Jordan normal

form of a matrix, another important complete set of invariants is the collection of invariant

polynomials. We discuss both of these below and show how to compute one from the

other.
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2.1.1 Invariant Polynomials

Definition 2.1.3. Let R be a ring and let A ∈ Rm×n be an m by n matrix (i.e. A has m rows

and n columns) with entries in R, and suppose X ⊆ {1, . . . ,m} and Y ⊆ {1, . . . ,n} such that

|X| = |Y| = j for some j ∈ {0, . . . ,min(m,n)}. We denote by AX,Y ∈M j(K) the j by j submatrix

of A consisting of only those rows indexed by X and only those columns indexed by Y.

The quantity det(AX,Y) is called a jth minor of A.

A submatrix of the form AX,X is called a principal submatrix, and det(AX,X) is called a

principal jth minor of A. By convention we take det(A∅,∅) = 1, that is the determinant of the

empty matrix (i.e. the matrix of size zero) is one.

Example 2.1.4. Let A =


2 2 0

0 4 −2

1 −4 −6

. The principal submatrices of A of order two are

A{1,2},{1,2} =

 2 2

0 4

 , A{1,3},{1,3} =

 2 0

1 −6

 , A{2,3},{2,3} =

 4 −2

−4 −6


The submatrix A{1,2,3},{1,2,3} = A and A∅,∅ = []. The principal second minors are det(A{1,2},{1,2}) =

8, det(A{1,3},{1,3}) = −12 and det(A{2,3},{2,3}) = −32.

Each square matrix of order n has a collection of n polynomials associated to it, these

are known as invariant polynomials and denoted ιA,1, . . . , ιA,n. In many cases not all of

these polynomials are nontrivial. Given two nonzero polynomials p, q ∈ K[x] the highest

common factor hcf(p, q) is the unique monic polynomial of highest degree which divides

both p and q. The following definition comes from [Gan59, Vol. I, Chap. VI, Sec. 3].1

Definition 2.1.5. Let A ∈Mn(K) and let

PA, j(x) = hcf{det((Inx − A)X,Y) : X,Y ⊆ {1, . . . ,n}, |X| = |Y| = j},

for all j = 0, . . . ,n, that is PA, j is the highest common factor of all the jth-minors of Inx−A.

Note that the PA, j are not the invariant polynomials, which are defined below.

The invariant polynomial ιA,p(x) of A is defined by

ιA,p(x) =
PA,p(x)

PA,p−1(x)
, for p = 1, . . . ,n.

1N.B. Gantmacher indexes the invariant polynomials in the reverse order, so Gant-

macher defines ιA,p(x) =
PA,n−p+1(x)
PA,n−p(x) for p = 1, . . . ,n. This is analogous to the definition we

use, however under Gantmacher’s definition we would have ιA,n | · · · | ιA,1 rather than
ιA,1 | · · · | ιA,n.
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The invariant polynomials satisfy the following properties.

• ιA,1(x) | ιA,2(x) | · · · | ιA,n(x) = minA(x), where p | q means p divides q,

• ιA,1(x)ιA,2(x) . . . ιA,n(x) = charA(x) = det(xIn − A),

• λ is a root of ιA,p if and only if λ is an eigenvalue of A with geometric multiplicity

no less than n − p + 1,

• A ∼ B if and only if they have the same set of invariant polynomials.

See [Gan59] for the proof of the above properties.

Example 2.1.6. We show here how to calculate the invariant polynomials of the matrix

A =


2 −2 0

0 2 0

0 −2 2

 .
We first compute the PA, j(x).

PA,3(x) = hcf{det(Inx − A)}

= (x − 2)3

= x3
− 6x2 + 12x − 8

PA,2(x) = hcf{(x − 2)2, 2(x − 2), 0}

= x − 2

PA,1(x) = hcf{x − 2, 2, 0}

= 1

PA,0(x) = 1.

Now we calculate the invariant polynomials using ιA,p(x) = PA,p(x)/PA,p−1(x):

ιA,3(x) = (x3
− 6x2 + 12x − 8)/(x − 2)

= (x − 2)2

= x2
− 4x + 4

ιA,2(x) = (x − 2)/1

= x − 2

ιA,1(x) = 1
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Note that when we calculate the Jordan normal form of A it has two blocks of eigenvalue

2, of sizes 2 and 1.

As both the invariant polynomials and the Jordan normal form (up to the order of the

blocks) form a complete set of invariants under similarity we show how to go back and

forth from a given Jordan normal form to a set of invariant polynomials. First we develop

some terminology to express the Jordan normal form.

2.1.2 Jordan Normal Form

We say a matrix is a Jordan normal form (or is in Jordan normal form) if it is block diagonal

with Jordan blocks along the diagonal. Let A be a square matrix of order n, let J(A) be

the set of all Jordan normal forms similar to A. We denote by Jn(λ) the Jordan block of

size n with eigenvalue λ.

Lemma 2.1.7. Let N ∈ J(A) and let λ ∈ Ψ(A). The algebraic multiplicity algrA(λ) is equal

to the number of times λ appears on the diagonal of N and the geometric multiplicity

geomA(λ) is equal to the number of Jordan blocks associated to λ appearing in N.

Proof. The first claim follows because the determinant of an upper-triangular matrix (in

this case xIn −N) is the product of its diagonal elements. The second follows because we

can write the kernel of N − λIn, as

ker(N − λIn) � ker(J1 − λIn1) ⊕ · · · ⊕ ker(Jp − λInp)

where ker(Ji − λIni) are the kernels of the Jordan blocks J1, . . . , Jp of N and n1, . . . ,np are

their respective sizes. So

dim(ker(N − λIn)) =

p∑
i=1

dim(ker(Ji − λIni))

Now as Ji is a Jordan block, we have dim(ker(Ji − λIni)) = 1 if Ji has eigenvalue λ (as the

kernal of a nilpotent Jordan block is the space of vectors with zeros in all but the first

entry) and 0 otherwise. So geomN(λ) = dim(ker(N − λIn)) is the number of Jordan blocks

associated to λ. �

Let J be a Jordan block, we say J is a Jordan block of A if J appears as a block in a Jordan

normal form of A.
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An integer partition µ = (µ1, . . . , µn) is a weakly descending sequence of non-negative

integers, that is µ1 ≥ µ2 ≥ · · · ≥ µn ≥ 0. We regard two partitions which differ by a string

of zeroes at the end as equivalent. Let P be the set of all integer partitions.

Definition 2.1.8. Let µA : Ψ(A) → P be defined by µA(λ) = (m1, . . . ,mgeomA(λ)) where

m1, . . . ,mgeomA(λ) are the sizes of the Jordan blocks associated to λ arranged in descending

order of size.

If an integer partition µ is given by µ = (µ1, . . . , µn), then µn+i for i > 0 is taken to be

zero. This is compatible with our convention of considering partitions which only differ

by a string of zeros at the end as equivalent.

Example 2.1.9. Let A,B ∈M13(K) such that

A ∼ diag(J2(4), J1(−3), J4(4), J1(−3), J3(4), J2(4)) and B ∼ diag(J4(−1), J4(−1), J1(0), J4(0)).

We have µA(4) = (4, 3, 2, 2) and µA(−3) = (1, 1), and we have µB(−1) = (4, 4) and µB(0) =

(4, 1).

Given the spectrum of A, the function µA completely describes the associated Jordan

normal forms (up-to reordering).

2.1.3 The Correspondence between Jordan Normal Form and Invariant Poly-

nomials

We introduce the concept of a derogatory matrix and define the companion matrix of a

polynomial. The companion matrix can be computed directly from the coefficients of the

polynomial, we use the fact that companion matrices are always nonderogatory and the

resulting properties to describe the correspondence between the Jordan normal form and

the invariant polynomials of a matrix.

Definition 2.1.10. Let A ∈Mn(K). The matrix A is called derogatory if minA(x) , charA(x).

Theorem 2.1.11. Let A ∈Mn(K). We have minA(x) =
∏
λ∈Ψ(A)(x − λ)idxA(λ).

Proof. See [Fin78, Thm. 7.17], in which the collection of sizes of Jordan blocks is called

the Segre characteristic (written with sizes of Jordan blocks of like eigenvalues bracketed

together). �

Theorem 2.1.12. Let A ∈Mn(K). The following are equivalent.
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1. A is derogatory,

2. There exists some λ ∈ Ψ(A) such that idxA(λ) , algrA(λ),

3. There exists some λ ∈ Ψ(A) such that geomA(λ) > 1.

Proof. (1) ⇒ (2): By definition charA(x) =
∏
λ∈Ψ(A)(x − λ)algrA(λ). If charA(x) , minA(x),

then by Theorem 2.1.11 there must be someλ ∈ Ψ(A) whose index differs from its algebraic

multiplicity.

(2)⇒ (3): If the index of λ ∈ Ψ(A) is smaller (by Lemma 2.1.7 it cannot be greater) than

the algebraic multiplicity, then the largest Jordan block associated to λ must have size

smaller than the number of times λ appears as a root of charA, so there must be more than

one Jordan block associated to λ, by Lemma 2.1.7 this implies a geometric multiplicity

greater than one.

(3)⇒ (1): Let λ ∈ K be such that geomA(λ) > 1. By Lemma 2.1.7 there exists more than

one Jordan block associated to λ. As the sum of their sizes must add up to algrA(λ) the

size of the largest (that is the idxA(λ)) must be strictly smaller than algrA(λ). By Theorem

2.1.11 minA(x) ,
∏
λ′∈Ψ(A)(x − λ′)algrA(λ′) = charA(x). �

We now introduce the companion matrix.

Definition 2.1.13. [Gan59, Vol. I, Chap. VI, Sec. 6] Let f ∈ K[x] be a monic polynomial, we

define the companion matrix C f of f as follows. Suppose f (x) = a0 +a1x+ · · ·+an−1xn−1 +xn,

the companion matrix of f is:

C f =



0 0 · · · 0 −a0

1 0 · · · 0 −a1

0 1 · · · 0 −a2

...
...

. . .
...

...

0 0 · · · 1 −an−1


The next lemma implies that a companion matrix is nonderogatory.

Lemma 2.1.14. Given a monic polynomial f ∈ K[x] we have charC f (x) = minC f (x) = f (x).

Proof. By [Gan59, Vol. I, Chap. VI, Sec. 6] and the fact that ιC f ,n = minC f (x). �

Theorem 2.1.15. Let A ∈ Mn(K), with invariant polynomials ιA,1 | · · · | ιA,n, we have that

A is similar to diag(CιA,1 , . . . ,CιA,n).
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Proof. [Gan59, Vol. I, Chap. VI, Sec. 6]. �

Definition 2.1.16. Let f be a polynomial and let ξ be a root of f , we denote the multiplicity

of ξ in f by mul f (ξ).

As companion matrices are nonderogatory we can see, by Theorems 2.1.12 and 2.1.15

and Lemma 2.1.7, that for each distinct rootξof ιA,p the blockCιA,p contributes precisely one

instance of JmulιA,p (ξ)(ξ) to the Jordan structure A, that is a Jordan matrix with eigenvalue

ξ of size mulιA,p(ξ).

The following theorem allows us to go between invariant polynomials and the Jordan

structure, as long as the spectrum is known.

Theorem 2.1.17. Let A be a square matrix with Jordan structure µA. We have, for i =

1, . . . ,n,

ιA,i(x) =
∏

λ∈Ψ(A)

(x − λ)µA(λ)n−i .

Let B be a square matrix with invariant polynomials ιB,1 | · · · | ιB,n, B has the following

Jordan structure µB. Let λ ∈ Ψ(B),

µB(λ) =
(
mulιB,n(λ),mulιB,n−1(λ), . . . ,mulιB,2(λ),mulιB,1(λ)

)
.

Proof. The results follow quite easily from Theorem 2.1.15.

Let λ ∈ Ψ(A) suppose µA(λ) = (p1, . . . , pr), that is there are r Jordan blocks of A with

eigenvalue λ. Theorem 2.1.15 implies λmust appear as a root in r invariant polynomials,

namely ιA,n, . . . , ιA,n−r. Furthermore the multiplicity of λ in ιA,i must be less than or equal

to the multiplicity of λ in ιA,i+1 as ιA,i | ιA,i+1. So, as p1, . . . , pr appear in descending order,

we conclude λ has multiplicity pi in ιA,n−i for i = 1, . . . , r. By convention µA(λ)i = 0 for

i > r, which proves the correctness of the first formula.

Let λ ∈ Ψ(B). By Theorem 2.1.15 it is easy to see the sizes of the Jordan blocks

associated to λ are given by the multiplicities of λ in the invariant polynomials. Recalling

that ιB,i | ιB,i+1 shows mulιB,n(λ),mulιB,n−1(λ), . . . ,mulιB,1(λ) is a nonincreasing sequence,

that is: a partition. �

So given either a Jordan normal form of a matrix or the invariant polynomials of a

matrix we can calculate one from the other, as long as we know the spectrum of the matrix.

If we have the Jordan structure then the spectrum must already be known, however if we
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begin with the invariant polynomials we need to be able to factorize them to obtain the

spectrum. The following definition and theorem provides another way to classify matrix

similarity.

Definition 2.1.18. Let A ∈Mn(K) and let ξ1, . . . , ξd be a list of all roots (possibly repeating)

of the minimal polynomial of A. Define n0,n1, . . . ,nd by ni = rank(
∏i

j=1(A− ξ jIn)), we call

(n0,n1, . . . ,nd) a dimension vector of A.

Note that a dimension vector of a matrix depends on how we order the list of roots of

the minimal polynomial, also note that in all cases n0 = n and nd = 0.

Theorem 2.1.19. Let A,B ∈Mn(K) and let ξ1, . . . , ξd be the roots of the minimal polynomial

of A and let (n0, . . . ,nd) be the dimension vector of A (with respect to the chosen ordering).

We have A ∼ B if and only if B has the same minimal polynomial and dimension vector

(with respect to the same ordering), i.e. rank(
∏i

j=1(B − ξ jIn)) = ni for i = 0, 1, . . . , d.

Proof. As noted previously similar matrices must have the same minimal polynomial.

Let λ ∈ Ψ(A), suppose {a1, . . . , aidxA(λ)} is the biggest subset of {1, . . . , d} such that ξa1 =

· · · = ξaidxA(λ) = λ. As
∏i

j=1(A − ξ jIn) (for some i = 0, . . . , d) is a polynomial in A and rank

is invariant under similarity we can assume A is in Jordan normal form. It is clear, for

i = 1, . . . , idxA(λ), that the difference in rank

rank

ai−1∏
j=1

(A − ξ jIn)

 − rank

 ai∏
j=1

(A − ξ jIn)

 = nai−1 − nai

is precisely the number of Jordan blocks with eigenvalue λ of size i or greater. This in-

formation is uniquely defined by the n0, . . . ,nd and the n0, . . . ,nd are themselves uniquely

defined by this information (as nd is always zero). Using this information we can pre-

cisely construct the Jordan structure µA : Ψ(A) → P. So as A ∼ B if and only if they

have the same Jordan structure, they are similar if and only if minA(x) = minB(x) and

rank(
∏i

j=1(B − ξ jIn)) = ni for i = 0, 1, . . . , d. �

2.1.4 Matrix Similarity Classes

Definition 2.1.20. A similarity class (or matrix similarity class) C is an orbit of Mn(K) under

the action of similarity. Similarity classes are irreducible quasi-projective varieties (see

[Hum75, Sec. 8.3]).



18 Chapter 2. Matrices

Given a similarity class C we extend the various invariants defined for individual

matrices to the class C. In particular we define Ψ(C), algrC, geomC, idxC, charC, minC

and ιC,1, . . . , ιC,n to be Ψ(A), algrA, geomA, idxA, charA, minA and ιA,1, . . . , ιA,n respectively,

for some A ∈ C. As these objects are invariants under similarity these definitions are

well-defined.

Definition 2.1.21. Let C be a a similarity class.

• The closure C of C is the topological closure in the Zariski sense.

• We say a C is closed if it is Zariski-closed, that is if C = C.

It is well known that a closed similarity class consists only of diagonalizable matrices.

Theorem 2.1.22. The Gerstenhaber-Hesselink theorem. If A,B ∈ Mn(K), then B is in the

closure of the similarity class of A if and only if rank((B−λIn)m) ≤ rank((A−λIn)m) for all

λ ∈ K and m ≥ 0.

Proof. [Ger59, Thm. 1.7]. �

The following corollary follows from the Gerstenhaber-Hesselink theorem and is also

a consequence of Theorem 2.1.19.

Corollary 2.1.23. If A,B ∈ Mn(K), then A is in the similarity class of B if and only if

rank((B − λIn)m) = rank((A − λIn)m) for all λ ∈ K and m ≥ 0.

Proof. Suppose A is in the similarity class of B, A is in the closure of the similarity class of B

and B is in the closure of the similarity class of A. Applying the Gersetenhaber-Hesselink

theorem to these facts derives the result.

Now suppose rank((B−λIn)m) = rank((A−λIn)m) the Gerstenhaber-Hesselink theorem

shows A and B are in the closures of the similarity classes of one another, hence are

similar. �

2.1.5 The Class of Matrices with Given Eigenvalues

Now we wish to discuss the set of all matrices in Mn(K) with given eigenvalues, say

ξ1, . . . , ξn ∈ K. If the eigenvalues are all pairwise distinct then this is precisely the

similarity class Cdiag of matrices similar to the diagonal matrix D = diag(ξ1, . . . , ξn). If the

eigenvalues are not all pairwise distinct then Cdiag does not contain all matrices with these



2.1. Matrices and Matrix Similarity 19

eigenvalues. For instance if ξ1 = ξ2, then E = diag
((
ξ1
0

1
ξ2

)
, ξ3, . . . , ξn

)
has the required

eigenvalues but E < Cdiag. Theorem 2.1.25 gives a description of the set of all matrices

with eigenvalues ξ1, . . . , ξn.

Lemma 2.1.24. Let A be a nonderogatory matrix and λ ∈ K, we have

rank((A − λIn)m) =


n −m if m = 0, 1, . . . , idxA(λ),

n − idxA(λ) if m > idxA(λ).

Proof. By Lemma 2.1.12 the nonderogatory matrix A has one Jordan block of size idxA(λ),

for each distinct eigenvalue λ ∈ Ψ(A), so we have rank((A − λIn)m) = n − m for m =

0, 1, . . . , idxA(λ) with the sequence stabilizing after that as required. If λ < Ψ(A), then

idxA(λ) = 0 and rank((A−λIn)m) = n for all m ≥ 0, so rank((A−λIn)m) = n−0 = n− idxA(λ)

as required. �

Theorem 2.1.25. Let ξ1, . . . , ξn ∈ K. The set of all matrices in Mn(K) with eigenvalues

ξ1, . . . , ξn is precisely C where C is the similarity class of all nonderogatory matrices with

eigenvalues ξ1, . . . , ξn ∈ K.

Proof. Suppose B ∈ C, by Theorem 2.1.22 (the Gerstenhaber-Hesselink theorem) we have

rank((B − λIn)m) ≤ rank((A − λIn)m) (for any A ∈ C). So, as A ∈ C is nonderogatory, we

have by Lemma 2.1.24

rank((B − λIn)m) ≤


n −m if m = 0, 1, . . . , idxC(λ),

n − idxC(λ) if m > idxC(λ).
(2.1)

Suppose λ ∈ Ψ(C), (2.1) implies

rank((B − λIn)idxC(λ)) ≤ n − idxC(λ),

which, by Theorem 2.1.12, implies

rank((B − λIn)algrC(λ)) ≤ n − algrC(λ).

So B has at least algrC(λ) eigenvalues equal to λ. That is algrB(λ) ≥ algrC(λ). However as∑
λ∈Ψ(C) algrC(λ) = n this implies algrB(λ) = algrC(λ) for λ ∈ Ψ(C) and algrB(λ) = 0 for all

λ < Ψ(C). So B has precisely the eigenvalues ξ1, . . . , ξn.

For the converse, suppose B has precisely the eigenvalues ξ1, . . . , ξn. Let us consider

λ = ξi for some i = 1, . . . ,n and the sequence rm = rank((B − λIn)m) for m ≥ 0. It is clear
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that

n = r0 > r1 > · · · > ridxB(λ) = ridxB(λ)+1 = · · · = ralgrB(λ) = ralgrB(λ)+1 = · · ·

From r0 to ridxB(λ) the inequalities are strict and the value of ridxB(λ), at which the se-

quence stabilizes, must be equal to n − algrB(λ). These two facts imply ri ≤ n − i for

i = 0, 1, . . . , algrB(λ), in terms of rank this is

rank((B − λIn)m) ≤ n −m = rank((A − λIn)m),

for some A ∈ C and m = 0, 1, . . . , algrB(λ) = idxC(λ) (by Lemma 2.1.24). For m > algrB(λ)

we have

rank((B − λIn)m) = n − algrB(λ) = n − idxC(λ) = rank((A − λIn)m).

If λ < Ψ(B), then rank((B − λIn)m) = n = rank((A − λIn)m), for some A ∈ C and m ≥ 0, as

λ < Ψ(C). So by the Gerstenhaber-Hesselink theorem B ∈ C. �

2.2 Constructions of Endomorphisms in a Given Conjugacy Class

or Class Closure

We now work with linear maps from a vector space to itself, that is endomorphisms of

a vector space, rather than matrices. We say two endomorphisms are conjugate if the

matrices they define, under some choice of basis, are similar. The classification of vector

space endomorphism by conjugacy works in exactly the same way as the classification of

matrices by similarity. The purpose of this section is twofold, first we give a construction

of all endomorphisms which lie in a given conjugacy class (or closure of a conjugacy

class), these constructions are found in the literature ([CB04] and [CB03]). The second

purpose is to give a construction of the self-adjoint endomorphisms in a given conjugacy

class (or its closure). The constructions of self-adjoint endomorphisms are new results.

Let V be a finite dimensional vector space over K, we denote the set of endomorphisms

of V by End(V). All vector spaces in this section are over K.

2.2.1 Endomorphisms of a Vector Space

Lemma 2.2.1. Let V0,V1 be vector spaces and let φ : V1 → V0 and φ∗ : V0 → V1 be linear

maps, we have dim(V0) − rank((φφ∗ + λ1V0)m) = dim(V1) − rank((φ∗φ + λ1V1)m) for any
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0 , λ ∈ K and m ≥ 0.

Proof. [CB04, Lem. 2.2]. �

The next theorem gives a construction of all endomorphisms in the closure of a given

conjugacy class.

Theorem 2.2.2. Let A,B ∈ End(V). Let ξ1, . . . , ξd ∈ K be a list of all roots of the minimal

polynomial of A, let (n0,n1, . . . ,nd) be the dimension vector with respect to this list. The

following statements are equivalent.

1. B is in the closure of the conjugacy class of A.

2. There exists a flag of subspaces

V = V0 ⊇ V1 ⊇ · · · ⊇ Vd = 0

such that dim(Vi) = ni and (B − ξ j1V)(V j−1) ⊆ V j for all 1 ≤ j ≤ d.

3. There exist vector spaces V = V0,V1, . . . ,Vd = 0, where dim(Vi) = ni, and linear

maps

V0

φ1
**
V1

φ2
**

φ∗1

jj V2

φ3
))

φ∗2

jj · · ·

φd−2 ,,

φ∗3

jj Vd−2

φd−1 ,,

φ∗d−2

jj Vd−1

φd
**

φ∗d−1

ll Vd
φ∗d

ll

such that

(a) B = φ∗1φ1 + ξ11V,

(b) φiφ∗i − φ
∗

i+1φi+1 = (ξi+1 − ξi)1Vi , for i = 1, . . . , d − 1.

Proof. [CB04, Thm. 2.1]. �

Theorem 2.2.4 gives a construction of all endomorphisms which lie precisely in a given

conjugacy class.

Lemma 2.2.3. Suppose we have the vector spaces and linear maps

V h // U
g //W

f // X .

If f is injective, then rank( f g) = rank(g) and if h is surjective, then rank(gh) = rank(g).
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Proof. A basis of im(g) is mapped by f to a linearly independent set of equal cardinality

as f is injective, so rank(g) = dim(im(g)) = dim(im( f g)) = rank( f g).

We have rank(gh) = dim(im(gh)), but as im(h) = U we have im(gh) = im(g) so

rank(gh) = rank(g). �

The following theorem is essentially the same as the one found in [CB03, Sec. 3] but

written in a manner analogous to Theorem 2.2.2.

Theorem 2.2.4. Let A,B ∈ End(V). Let ξ1, . . . , ξd ∈ K be a list of the zeros of the minimal

polynomial of A, let (n0,n1, . . . ,nd) be the associated dimension vector. The following

statements are equivalent.

1. The map B is in the conjugacy class of A.

2. There exists a flag of subspaces

V = V0 ⊇ V1 ⊇ · · · ⊇ Vd = 0

where dim(Vi) = ni, such that (B − ξ j1V)(V j−1) = V j for all 1 ≤ j ≤ d.

3. There exist vector spaces V = V0,V1, . . . ,Vd = 0, where dim(Vi) = ni, and linear

maps

V0

φ1
**
V1

φ2
**

φ∗1

jj V2

φ3
))

φ∗2

jj · · ·

φd−2 ,,

φ∗3

jj Vd−2

φd−1 ,,

φ∗d−2

jj Vd−1

φd
**

φ∗d−1

ll Vd
φ∗d

ll

such that:

(a) B = φ∗1φ1 + ξ11V,

(b) φiφ∗i − φ
∗

i+1φi+1 = (ξi+1 − ξi)1Vi , for i = 1, . . . , d − 1,

(c) the maps φi are surjective and the maps φ∗i are injective for i = 1, . . . , d.

Proof. (1) ⇒ (2): Let Vi = im(
∏i

j=1(B − ξ j1V)). Clearly (B − ξi1V)(Vi−1) = im(
∏i

j=1(B −

ξ j1V)) = Vi and as B is conjugate to A it has the same dimension vector, so dim(Vi) = ni.

(2) ⇒ (3): Let φi = (B − ξi1V)|Vi−1 and let φ∗i be the inclusion. Now for i = 1, . . . , d − 1

we have φiφ∗i = (B − ξi1V)|Vi−1φ
∗

i = (B − ξi1V)|Vi which is an endomorphism of Vi. Now

φ∗i+1φi+1 = φ∗i+1(B − ξi+11V)|Vi = (B − ξi+11V)|Vi when thought of as an endomorphism of
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Vi. So we have

φiφ
∗

i − φ
∗

i+1φi+1 = (B − ξi1V)
∣∣∣
Vi
− (B − ξi+11V)

∣∣∣
Vi

= (ξi+1 − ξi)1V
∣∣∣
Vi

= (ξi+1 − ξi)1Vi ,

so (3b) holds. Similarly φ∗1φ1 + ξ11V = B − ξ11V + ξ11V = B, so (3a) holds. Clearly φ∗i is

injective and by the definition of the flag V0, . . . ,Vd the map φi is surjective for i = 1, . . . , d,

so (3c) holds.

(3) ⇒ (1): We prove by induction on d. If d = 1, then there exists V0 = V,V1 = 0 and

maps φ1 = 0, φ∗1 = 0 and B = φ∗1φ1 + ξ11V = ξ11V, that is B is scalar. From the dimension

vector and minimal polynomial A must also be equal to ξ11V so B is trivially conjugate to

A.

Suppose d > 1. Let us identify V1 with im(A − ξ11V) and let A1 = A|V1 . Clearly A1

has minimal polynomial roots ξ2, . . . , ξd and associated dimension vector (n1, . . . ,nd). Let

B1 = φ1φ∗1 + ξ11V1 , hence we have

B1 = φ∗2φ2 + ξ21V1

φiφ
∗

i − φ
∗

i+1φi+1 = (ξi+1 − ξi)1Vi , for i = 2, . . . , d − 1.

So by the inductive hypothesis B1 is contained in the conjugacy class of A1. By Corollary

2.1.23 we have

rank((B1 − λ1V1)m) = rank((A1 − λ1V)m), for λ ∈ K,m ≥ 1

Now A1 is the restriction of A to V1 = im(A − ξ11V), so

rank((A1 − λ1V)m) = rank((A − ξ11V)(A − λ1V)m). (2.2)

If λ = ξ1 and m = 0, then rank(B − λ1V)m = rank(A − λ1V)m trivially. Suppose m ≥ 1, we

have

(B − λ1V)m = (B − ξ11V)m = (φ∗1φ1)m = φ∗1(φ1φ
∗

1)m−1φ1 = φ∗1(B1 − λ1V1)m−1φ1.

So, using (2.2), we have

rank((B − λ1V)m) = rank(φ∗1(B1 − λ1V1)m−1φ1) = rank((B1 − λ1V1)m−1) = rank((A − λ1V)m)
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We use the fact that φ∗1 is injective and φ1 surjective and Lemma 2.2.3 in the above rank

formula. If λ , ξ1, then by Lemma 2.2.1 we have

rank((B − λ1V)m) = n0 − n1 + rank((B1 − λ1V1)m).

Using the fact that

ker((A − ξ11V)(A − λ1V)m) = ker(A − ξ11V) ⊕ ker((A − λ1V)m)

we have

rank((A − λ1V)m) = n0 − n1 + rank((A1 − λ1V)m). (2.3)

So we conclude rank((B − λ1V)m) = rank((A − λ1V)m) for all λ ∈ K and m ≥ 0. Hence,

by Corollary 2.1.23, B is in the conjugacy class of A. �

2.2.2 Self-Adjoint Endomorphisms of a Vector Space

We introduce symmetric bilinear forms in this section. The basic definitions and well-

known results can be found in references such as [Hal58], [Kap03] and [Lam05].

Let (·, ·) be a bilinear form on V. We say (·, ·) is symmetric if (x, y) = (y, x) for all x, y ∈ V.

Let x ∈ V, we say (·, ·) is nondegenerate if (x, y) = 0, for all y ∈ V, implies x = 0.

Given a linear map g : V →W between two vector spaces V,W endowed with nonde-

generate symmetric bilinear forms (·, ·)V, (·, ·)W respectively, the adjoint of g with respect to

the bilinear forms is the unique linear map g∗ : W → V such that (v, g∗(w))V = (g(v),w)W for

all v ∈ V and w ∈W.2

If (·, ·)V, (·, ·)W are symmetric bilinear forms (but not necessarily nondegenerate), then

we say two map g : V → W and g∗ : W → V are adjoint to each another with respect to the

bilinear forms if (v, g∗(w))V = (g(v),w)W for all v ∈ V and w ∈ W. If we are given only g,

then without the nondegeneracy of the bilinear forms the existence and uniqueness of the

adjoint is not guaranteed.

A linear map f ∈ End(V) where V is endowed with a symmetric bilinear form (·, ·) is

self-adjoint with respect to (·, ·) if ( f (x), y) = (x, f (y)) for all x, y ∈ V.

2Note that we sometimes use the superscripted star g∗ notation simply to denote a
function distinct from g which is not necessarily the adjoint of g. If we intend g∗ to be the
adjoint of g, then this must be explicitly stated when defining g∗, otherwise it need not be
the adjoint.
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Unless otherwise stated (·, ·) is a nondegenerate symmetric bilinear form defined on

V.

Definition 2.2.5. Let W ⊆ V be a subspace of V. The orthogonal complement W⊥ ⊆ V is a

vector subspace of V defined by W⊥ = {v ∈ V : (v,w) = 0,∀w ∈W}.

Remark 2.2.6. Let W ⊆ V be a subspace of V and let (·, ·) be a nondegenerate symmetric

bilinear form, we have dim(W⊥) = dim(V) − dim(W) (see [Lam05, Chap. I, Prop. 1.3]),

this implies dim(W) = dim(V/W⊥). There is a natural isomorphism from W to V/W⊥

given by w 7→ w + W⊥ (see [Hal58, Sec. 48]).

Note: we use the notation v + W to write elements of V/W where v ∈ V.

Lemma 2.2.7. Suppose V is a vector space endowed with a symmetric bilinear form (·, ·)V.

Let W be a vector space and let φ : V → W and ψ : W → V be linear maps such that φ is

surjective and ψφ : V → V is self-adjoint with respect to (·, ·)V. Let (·, ·)W be the bilinear

form defined on W given by (w,w′)W = (v, ψ(w′))V where v ∈ φ−1(w), (where φ−1(w) is the

preimage of w). We have that (·, ·)W is well-defined and symmetric, φ and ψ are adjoint

with respect to (·, ·)V and (·, ·)W and φψ is self-adjoint with respect to (·, ·)W.

Furthermore if ψ is injective and (·, ·)V is nondegenerate, then (·, ·)W is also non-

degenerate.

Proof. We first show (·, ·)W is well-defined, let w,w′ ∈W and v, v′ ∈ φ−1(w), we have

(v, ψ(w′))V − (v′, ψ(w′))V = (v − v′, ψ(w′))V

= (v − v′, ψφ(v′′))V, (where v′′ ∈ φ−1(w′), as φ is onto)

= (ψφ(v − v′), v′′)V, (by self-adjointness)

= (ψ(w − w), v′′)V

= (0, v′′)V = 0

So (v, ψ(w′))V = (v′, ψ(w′))V. We now show symmetry. Let w,w′ ∈W, we have

(w,w′)W = (v, ψ(w′))V, (for some v ∈ φ−1(w))

= (v, ψφ(v′))V, (for some v′ ∈ φ−1(w′))

= (ψ(w), v′)V, (by self-adjointness of ψφ and φ(v) = w)

= (v′, ψ(w))V

= (w′,w)W.
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By definition we have (φ(v),w)W = (v, ψ(w))V for all v ∈ V and w ∈W, as v ∈ φ−1(φ(v)), so

φ andψ are adjoints. We now show φψ is self-adjoint with respect to (·, ·)W. Let w,w′ ∈W,

we have

(φψw,w′)W = (ψw, ψw′)V = (ψw′, ψw)V = (φψw′,w)W = (w, φψw′)W.

Now suppose ψ is injective and (·, ·)V is nondegenerate. Let w′ ∈ W and suppose

(w,w′)W = 0 for all w ∈ W, as im(φ) = W we have (v, ψ(w′))V = 0 for all v ∈ V. By

the nondegeneracy of (·, ·)V we have ψ(w′) = 0 which implies w′ = 0 therefore (·, ·)W is

nondegenerate. �

The next theorem is a new result which gives a construction of all self-adjoint endo-

morphisms which lie in the closure of a given conjugacy class.

Theorem 2.2.8. Let V be a vector space endowed with a nondegenerate symmetric bilinear

form (·, ·). Let A,B ∈ End(V) such that A is self-adjoint with respect to (·, ·). Let ξ1, . . . , ξd ∈

K be a list of the zeros of the minimal polynomial of A, let (n0,n1, . . . ,nd) be the associated

dimension vector. The following statements are equivalent.

1. The map B is in the closure of the conjugacy class of A and B is self-adjoint with

respect to (·, ·).

2. There exists vector spaces V = V0,V1, . . . ,Vd = 0 endowed with symmetric bilinear

forms (·, ·)i (not necessarily nondegenerate), where dim(Vi) = ni, (·, ·)0 = (·, ·) and

there exist linear maps

V0

φ1
**
V1

φ2
**

φ∗1

jj V2

φ3
))

φ∗2

jj · · ·

φd−2 ,,

φ∗3

jj Vd−2

φd−1 ,,

φ∗d−2

jj Vd−1

φd
**

φ∗d−1

ll Vd
φ∗d

ll

such that

(a) B = φ∗1φ1 + ξ11V,

(b) φiφ∗i − φ
∗

i+1φi+1 = (ξi+1 − ξi)1Vi , for i = 1, . . . , d − 1,

(c) φ∗i is the adjoint of φi with respect to the appropriate bilinear forms for i =

1, . . . , d.

Proof. (1)⇒ (2): By Theorem 2.2.2 there exists a flag of subspaces

V = W0 ⊇W1 ⊇ · · · ⊇Wd−1 ⊇Wd = 0
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such that dim(W j) = n j for j = 0, 1, . . . , d and (B − ξ j1V)(W j−1) ⊆ W j for j = 1, . . . , d. Let

Vi = V/W⊥i . By Remarks 2.2.6 dim(Vi) = ni for i = 0, 1, . . . , d. Let φi : Vi−1 → Vi be the

surjection defined by

φi(v + W⊥i−1) = v + W⊥i

and let φ∗i : Vi → Vi−1 be defined by

φ∗i (v + W⊥i ) = (B − ξi1V)v + W⊥i−1.

To show φ∗i is well-defined we show (B − ξi1V) maps W⊥i into W⊥i−1. Let v ∈ W⊥i , so

(v, v′) = 0 for all v′ ∈ Wi. Now let v′′ ∈ Wi−1 we have ((B − ξi1V)v, v′′) = (v, (B − ξi1V)v′′)

by self-adjointness. Now (B − ξi1V)v′′ ∈ Wi so (v, (B − ξi1V)v′′) = 0 as v ∈ W⊥i . Therefore

((B − ξi1V)v, v′′) = 0 for all v′′ ∈Wi−1, so (B − ξi1V)v ∈W⊥i−1.

We prove the linear maps satisfy the deformed preprojective relations, we make use of

the natural isomorphisms between Wi and V/W⊥i for i = 0, 1, . . . , d referred to in Remark

2.2.6. We have, for all v ∈ V,

(φ∗1φ1 + ξ11V)v = φ∗1φ1(v + W⊥0 ) + ξ1v

= (B − ξ11V)(v + W⊥1 ) + ξ1v

= ((B − ξ11V)v + W⊥0 ) + ξ1v

= (B − ξ11V + ξ11V)v

= Bv.

For all i = 1, . . . , d − 1 and v ∈ Vi we have

(φiφ
∗

i − φ
∗

i+1φi+1)v = φi(B − ξi1V)(v + W⊥i ) − (B − ξi+11V)φi+1(v + W⊥i )

= φi((B − ξi1V)v + W⊥i−1) − (B − ξi+11V)(v + W⊥i+1)

= ((B − ξi1V)v + W⊥i ) − ((B − ξi+11V)v + W⊥i )

= (B − ξi1V)v − (B − ξi+11V)v

= (ξi+1 − ξi)v

Let (·, ·)0 = (·, ·). By induction on i = 1, . . . , d we endow each Vi with a symmetric

bilinear form such that φi is the adjoint of φ∗i . Assume (·, ·)i−1 is a symmetric bilinear form

on Vi−1, using the fact that φi is surjective let (·, ·)i be the symmetric bilinear form on Vi
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constructed in Lemma 2.2.7 using

Vi−1

φi
** Vi

φ∗i

kk .

The lemma ensures φi and φ∗i are adjoints.

(2) ⇒ (1): By Theorem 2.2.2 we have that B is in the closure of the conjugacy class

of A, all we need to show is that B is self-adjoint with respect to (·, ·) = (·, ·)0. Now

φ∗1φ1 = B− ξ11V is clearly self-adjoint with respect to (·, ·)0, as is a multiple of the identity

map, so as self-adjointness is closed under addition B is self-adjoint. �

The next theorem is a new result which gives a construction of all self-adjoint endo-

morphisms which lie precisely in a given conjugacy class.

Theorem 2.2.9. Let V be a vector space endowed with a nondegenerate symmetric bilinear

form (·, ·). Let A,B ∈ End(V) such that A is self-adjoint with respect to (·, ·). Let ξ1, . . . , ξd ∈

K be a list of the zeros of the minimal polynomial of A, let (n0,n1, . . . ,nd) be the associated

dimension vector. The following statements are equivalent.

1. The map B is in the conjugacy class of A and B is self-adjoint with respect to (·, ·).

2. There exist vector spaces V = V0,V1, . . . ,Vd = 0 endowed with nondegenerate

symmetric bilinear forms (·, ·)i, where dim(Vi) = ni, (·, ·)0 = (·, ·) and there exists

linear maps

V0

φ1
**
V1

φ2
**

φ∗1

jj V2

φ3
))

φ∗2

jj · · ·

φd−2 ,,

φ∗3

jj Vd−2

φd−1 ,,

φ∗d−2

jj Vd−1

φd
**

φ∗d−1

ll Vd
φ∗d

ll

such that

(a) B = φ∗1φ1 + ξ11V,

(b) φiφ∗i − φ
∗

i+1φi+1 = (ξi+1 − ξi)1Vi , for i = 1, . . . , d − 1,

(c) the maps φi are surjective and φ∗i are injective,

(d) φ∗i is the adjoint of φi with respect to the appropriate bilinear forms for i =

1, . . . , d.

Proof. (1) ⇒ (2): By Theorem 2.2.4 there exist vector spaces V = V0,V1, . . . ,Vd−1,Vd = 0

with dim(Vi) = ni and linear maps φi and φ∗i satisfying all the conditions except for
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adjointness of φi and φ∗i . We show there exist nondegenerate symmetric bilinear forms

on the vector spaces which ensure adjointness.

Let (·, ·)0 = (·, ·) (note this is nondegenerate). By induction on i = 1, . . . , d we endow

each Vi with a symmetric bilinear form such that φi is the adjoint of φ∗i . Assume (·, ·)i−1

is a nondegenerate symmetric bilinear form on Vi−1, using the fact that φi is surjective let

(·, ·)i be the symmetric bilinear form on Vi constructed in Lemma 2.2.7 using

Vi−1

φi
** Vi

φ∗i

kk .

The lemma ensures φi and φ∗i are adjoints and futhermore, as (·, ·)i−1 is nondegenerate and

φ∗i is injective, (·, ·)i is nondegenerate.

(2)⇒ (1): By Theorem 2.2.4 B is in the conjuugacy class of A and by the same argument

of Theorem 2.2.8 B is self-adjoint with respect to (·, ·). �

Given a vector space V endowed with a symmetric nondegenerate bilinear form (·, ·),

the orthogonal group O(V) ⊆ End(V) is the group of automorphisms which preserve

(·, ·), that is φ ∈ O(V) if and only if (φ(x), φ(y)) = (x, y) for all x, y ∈ V. The conditions of

Theorem 2.2.9 are equivalent to A and B being orthogonally conjugate, that is conjugate

via an orthogonal transformation. This is proven in [Kap03, Thm. 70] as well as in

Theorem 6.1.7. We attempted to show that the conditions of Theorem 2.2.8 are equivalent

to B being in the closure of the conjugacy class of A under the orthogonal group (i.e. B is

in the closure of O(V)A = {U−1AU : U ∈ O(V)}) but were unable to do so. This question

remains an open problem.
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Chapter 3

The Kronecker and Root Sum

We introduce some new machinary in this chapter which we use in Section 4.4. Here

we define two polynomial operations: the Kronecker sum of two polynomials and the

root sum operation on one polynomial. Let R be an integral domain. The Kronecker

sum takes two polynomials in R[x] and returns another polynomial in R[x]. The root

sum takes a polynomial in R[x] of degree n and returns a polynomial in R[x, y1, . . . , yn].

The usefulness of the Kronecker sum and root sum become apparent in Theorems 3.1.3

and 3.2.11 respectively, where we show how they can be used to manipulate the roots

of their operands. In Section 4.4 we make use of the fact that it is possible to compute

both operations without having to factor the given polynomials (i.e. the operations can

be computed from the coefficients in a finite number of steps).

Suppose polynomials f and g have degrees n and m and can be written as a product

of distinct linear factors, suppose f has roots ξ1, . . . , ξn and g has roots ζ1, . . . , ζm. Their

Kronecker sum has degree nm and has roots: all possible sums of the roots of f and g,

that is ξi + ζ j for i = 1, . . . ,n and j = 1, . . . ,m. The root sum of f has degree n! in x and

has roots ξσ(1)y1 + · · · ξσ(n)yn where σ is a permutation of {1, . . . ,n}. It may be helpful to

think of the root sum as having roots which are linear combinations of y1, . . . , yn where

the coefficients are the roots of f .

3.1 The Kronecker Sum of Two Polynomials

Remark 3.1.1. Let f , g ∈ R[x] where f (x) = a0+a1x+· · ·+anxn and g(x) = b0+b1x+· · ·+bmxm.

Recall the resultant Res( f , g, x) of f and g in x is the determinant of the Sylvester matrix.

31
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The Sylvester matrix is a square matrix of size n + m given by

an an−1 · · · a1 a0 0 · · · 0

0 an an−1 · · · a1 a0 · · · 0
...

. . .
. . .

. . .
...

. . .
. . .

...

0 · · · 0 an an−1 · · · a1 a0

bm bm−1 · · · b1 b0 0 · · · 0

0 bm bm−1 · · · b1 b0 · · · 0
...

. . .
. . .

. . .
...

. . .
. . .

...

0 · · · 0 bm bm−1 · · · b1 b0


That is the first m rows are built by progressively shifting the coefficients an, . . . , a0 and

the final n rows are built by shifting bm, . . . , b0. For example, suppose f (x) = 3x2 + 6x − 3

and g(x) = 8x − 4, the Sylvester matrix is given by
3 6 −3

8 −4 0

0 8 −4

 ,
so the resultant of f and g in x is 48.

Suppose we can write f and g in factored form f (x) = an(x − ξ1) . . . (x − ξn) and

g(x) = bm(x − ζ1) . . . (x − ζm) where ξi, ζ j ∈ R, we can write the resultant in terms of the

linear factors of f and g. By [Lan02, Prop. 8.3] we have

Res( f (x), g(x), x) = am
n bn

m

n∏
i=1

m∏
j=1

(ξi − ζ j).

Definition 3.1.2. Let f , g ∈ R[x] where f (x) = a0 + a1x + · · · + anxn and g(x) = b0 + b1x +

· · ·+ bmxm. Let y be an indeterminate, we define the Kronecker sum of f and g with respect

to x by

f ⊕K g = (−1)nmRes( f (x − y), g(y), y).

If the polynomials are multivariate polynomials, then it must be made clear from the

context which variable the operation is in terms of, for example suppose f , g ∈ R[x, y, z]

we must say which of x, y, z the Kronecker sum is in terms of.

The following theorem is applicable whenever we can write the operands of the

Kronecker sum as products of linear factors.
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Theorem 3.1.3. Suppose f , g ∈ R[x] such that we can write f (x) = an(x − ξ1) . . . (x − ξn)

and g(x) = bm(x − ζ1) . . . (x − ζm) where an, ξ1, . . . , ξn, bm, ζ1, . . . , ζm ∈ R, we have

f ⊕K g = am
n bn

m

n∏
i=1

m∏
j=1

(x − ξi − ζ j).

Proof. The roots of f (x) are ξ1, . . . , ξn and the roots of g(x) are ζ1, . . . , ζm. The resultant of

f and g in x can be written as Res( f (x), g(x), x) = am
n bn

m
∏n

i=1
∏m

j=1(ξi − ζ j). Now consider

f (x− y) and g(y) as polynomials in y. The roots of f (x− y) are x−ξ1, . . . , x−ξn as f (x− y) =

(−1)nan(y−x+ξ1) . . . (y−x+ξn). So Res( f (x−y), g(y), y) = (−1)nmam
n bn

m
∏n

i=1
∏m

j=1(x−ξi−ζ j)

as required. �

Theorem 3.1.4. The Kronecker sum is commutative and associative.

Proof. Let f , g ∈ R[x], it is always possible to find an extension field L such that f , g ∈ L[x]

and f and g factor into linear factors with roots in L (see [Art91, Chap. 13, Prop. 5.3]). We

can then write f ⊕K g as in Theorem 3.1.3. As the roots of the Kronecker sum are: all the

possible sums of the roots of the operands, both commutativity and associativity follow

from the commutativity and associativity of addition. �

Example 3.1.5. Suppose f (x) = x2
−10x+24 = (x−4)(x−6), g(x) = x3+x2

−6x = (x−2)(x+3)x,

then by Theorem 3.1.3

f ⊕K g = (x − 4 − 2)(x − 6 − 2)(x − 4 + 3)(x − 6 + 3)(x − 4)(x − 6)

= (x − 8)(x − 1)(x − 3)(x − 4)(x − 6)2

= x6
− 28x5 + 311x4

− 1736x3 + 5052x2
− 7056x + 3456.

We now calculate f ⊕K g from the definition to show this yields the same answer. We have

f (x − y) = y2 + (10 − 2x)y + (x2
− 10x + 24). The Kronecker sum is therefore:

f ⊕K g = (−1)6Res( f (x − y), f (y), y)

= det



1 10 − 2x x2
− 10x + 24 0 0

0 1 10 − 2x x2
− 10x + 24 0

0 0 1 10 − 2x x2
− 10x + 24

1 1 −6 0 0

0 1 1 −6 0


= x6

− 28x5 + 311x4
− 1736x3 + 5052x2

− 7056x + 3456.
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3.2 The Root Sum of a Polynomial

The root sum, Rg is a unary operation on a polynomial g in R[x] of degree n, with respect

to x. The resulting polynomial has n extra indeterminates so is in R[x, y1, . . . , yn]. The

definition is given in terms of the coefficients of g but in Theorem 3.2.11 we show it is

possible to write the root sum in terms of the roots of g (whenever g can be written

as a product of linear factors), the theorem therefore justifies the name root sum. The

definition and Theorem 3.2.11 give two methods for computing the root sum, in Section

3.2.3 we give a third method. In Section 3.2.4 we give an example of computing the root

sum using all three methods and show they agree.

3.2.1 Integer Partitions, Integer Compositions and Symmetric Polynomials

We establish some notation before giving the definition of the root sum. For a non-negative

integer n we denote by Σn the group of permutations of {1, . . . ,n}. Recall the definition of

an integer partition introduced in Section 2.1.2, we introduce the related concept of an

integer composition.

Definition 3.2.1. An integer composition is a finite sequence of non-negative integers r =

(r1, . . . , rn) for some n such that r1, . . . , rn ≥ 0, the integers r1, . . . , rn are called the parts of

r. Let r = (r1, . . . , rn) be an integer composition. Let ν ∈ Σn, define ν · r to be the permuted

composition given by (rν−1(1), . . . , rν−1(n)).

Let the group of permutations in Σn which fix r be denoted Σr
n, that is Σr

n = {σ ∈

Σn : rσ−1(i) = ri, i = 1, . . . ,n} (this defines a left group action of Σn on the set of integer

compositions with n parts). We denote the set of left-cosets of Σr
n in Σn by Σn/Σr

n. This

is not generally a group as Σr
n is not generally a normal subgroup of Σn. We identify Σr

n

with a set of representatives of the cosets.

Example 3.2.2. We have Σ3 = {id, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}. Let r = (1, 1, 2), so we

have Σr
3 = {id, (1 2)} and Σn/Σr

3 = {id, (2 3), (1 3)} is a set of representatives of the cosets.

Let r = (2, 1, 3), so we have Σr
3 = {id} and so Σn/Σr

3 = Σn.

Recall integer partitions from Section 2.1.2, we can think of an integer partition µ =

(µ1, . . . , µn) as an integer composition such that the parts are arranged in descending order

(recall that we don’t distinguish between partitions which differ only by a string a zeros

at the end, we think of a partition consiting only of zeros as being equivalent to (0)). We
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denote the set of all integer partitions by P. If µ , (0), then let L(µ) be the number of

nonzero parts of µ, if µ = (0), then let L(µ) = 1. If i > L(µ), then we define µi = 0.

Let t ≥ 0 and let P(t) be the set of integer partitions which sum to t. Let n ≥ 0 and let

Pn(t) be the set of integer partitions which sum to t and have at most n parts. let Pn(t) be

the set of integer partitions which sum to t and have no part exceeding n.

For each composition r we can uniquely write r = ν ·µwhere ν ∈ Σn/Σr
n and µ ∈ P. We

introduce two families of symmetric polynomials: the monomial symmetric polynomials

and the elementary symmetric polynomials, these definitions can be found in [Mac95]

and [Art91, Chap. 14].

Definition 3.2.3. Let µ ∈ Pn(t) be a integer partition, summing to t ≥ 0. The monomial

symmetric polynomials mµ(y1, . . . , yn) in n variables is defined by

mµ(y1, . . . , yn) =
∑

ν∈Σn/Σ
µ
n

y(ν·µ)1
1 . . . y(ν·µ)n

n .

Definition 3.2.4. Let 0 ≤ i ≤ n. The ith elementary symmetric polynomial in n variables is

denoted ei(y1, . . . , yn) and defined by e0(y1, . . . , yn) = 1 and, for i > 0, by

ei(y1, . . . , yn) =
∑

1≤ j1<···< ji≤n

y j1 . . . y ji

Let µ ∈ Pn(t) be an integer partition for some t ≥ 0 with no part greater than n. We define

eµ(y1, . . . , yn) =

L(µ)∏
i=1

eµi(y1, . . . , yn).

Let T be a finite set, we denote the power-set of T as P(T), that is the set of all

subsets of T, and denote by Pi(T) the set of all subsets of T of cardinality i, that is

Pi(T) = {S ∈ P(T) : |S| = i}. Using this notation we can write the ith elementary symmetric

polynomial as

ei(y1, . . . , yn) =
∑

S∈Pi({1,...,n})

∏
s∈S

ys.

Lemma 3.2.5. If p ∈ R[x] is a polynomial with coefficients in a ring R such that we can

write p(x) =
∏n

i=1(x − ξi) for some roots ξ1, . . . , ξn ∈ R, then the expanded form of p is

written

p(x) =

n∑
i=0

xn−iei(−ξ1, . . . ,−ξn).

Proof. [Art91, Chap 14, 3.3] �
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Lemma 3.2.6. Let t ≥ 0 and let µ ∈ Pn(t) be an integer partition, we can write mµ in terms

of elementary symmetric polynomials by

mµ(y1, . . . , yn) =
∑

η∈Pn(t)

Eµ,ηeη(y1, . . . , yn),

where Eµ,η are integer coefficients defined combinatorially in [BRW96, Sec. 2] (where it is

denoted M(e,m)ηµ), which depend only on µ and η.

Proof. The monomial symmetric and elementary symmetric polynomials both form bases

over the vector space of symmetric polynomials of degree t. See [BRW96, Sec. 2]. �

The values of Eµ,η can be computed from the formula above or from combinatorial

descriptions given in [BRW96, Sec. 2].

Definition 3.2.7. Let n ≥ 1 be fixed. Given a set S and an integer composition r = (r1, . . . , rn)

let F(S, r) be the set of maps from S to {1, . . . ,n}with fibres of size r1, . . . , rn, that is

F(S, r) = {p : S→ {1, . . . ,n} : |p−1( j)| = r j, j = 1, . . . ,n}.

Given an integer composition r = (r1, . . . , rn) and a set S we can think of F(S, r) as the

set of functions which distribute the elements of S between n ordered boxes such that ri

elements go into box i, for i = 1, . . . ,n. Suppose S = {a, b, c} and r = (0, 1, 2) then F(S, r)

contains three functions, each function places one of a, b, c into box 1, places the other two

in box 2 and places no elements in box 0.

3.2.2 Root Sum Definition and Properties

We now give the definition of the root sum, although the purpose of this definition may

not be immediately clear, the important thing to note is that it can be constructed using the

coefficients of the polynomial g(x) without any need to factorize. Theorem 3.2.11 proves

the key property which justifies the name “root sum” and explains its purpose.

Definition 3.2.8. Let g ∈ R[x] be g(x) = a0 + a1x + a2x2 + · · ·+ anxn where a0, . . . , an ∈ R. Let

t ≥ 0 and let η ∈ Pn(t), we define γη ∈ R[y1, . . . , yn] by

γη(y1, . . . , yn) =
∑

µ∈Pn(t)

Eµ,η

∑
S∈Pt(Σn)

∑
p∈F(S,µ)

∏
σ∈S

yσ(p(σ)). (3.1)

The root sum Rg ∈ R[x, y1, . . . , yn] of g is defined by

Rg(x, y1, . . . , yn) =

n!∑
t=0

xn!−t
∑

η∈Pn(t)


L(η)∏
i=1

an−ηi

γη(y1, . . . , yn). (3.2)
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The following lemmas and theorem justify the name “root sum”, by showing how we

can write it in terms of the roots of g(x).

Lemma 3.2.9. Let t ≥ 0 and let µ ∈ Pn(t). Suppose we are given constants βν ∈ R where

ν ∈ Σn/Σ
µ
n and indeterminates y1, . . . , yn, we have∑

ν∈Σn/Σ
µ
n

βν
∑

S∈Pt(Σn)

∑
p∈F(S,ν·µ)

∏
σ∈S

yσ(p(σ)) =

 ∑
ν∈Σn/Σ

µ
n

βν


 ∑

S∈Pt(Σn)

∑
p∈F(S,µ)

∏
σ∈S

yσ(p(σ))

 .
Proof. There is a bijection from F(S, ν·µ) to F(S, µ) given by p 7→ ν·p (where (ν·p)(σ) = ν(p(σ))

for σ ∈ S). To see this note that p ∈ F(S, ν · µ) if and only if |p−1( j)| = (ν · µ) j = µν−1( j) for all

j = 1, . . . ,n which occurs if and only if |p−1(ν−1( j))| = |(ν · p)−1( j)| = µ j for all j = 1, . . . ,n.

So we can write∑
ν∈Σn/Σ

µ
n

βν
∑

S∈Pt(Σn)

∑
p∈F(S,ν·µ)

∏
σ∈S

yσ(p(σ)) =
∑

ν∈Σn/Σ
µ
n

βν
∑

S∈Pt(Σn)

∑
p∈F(S,µ)

∏
σ∈S

yσ(ν(p(σ)))

There is a bijection from Pt(Σn) to Pt(Σn) given by S 7→ S′ where S′ = {σν : σ ∈ S}, and a

bijection from F(S, µ) to F(S′, µ) given by p 7→ p′ where p′(σ) = p(σν−1) for σ ∈ S′. So we

can write∑
ν∈Σn/Σ

µ
n

βν
∑

S∈Pt(Σn)

∑
p∈F(S,µ)

∏
σ∈S

yσ(ν(p(σ))) =
∑

ν∈Σn/Σ
µ
n

βν
∑

S∈Pt(Σn)

∑
p∈F(S,µ)

∏
σ∈S

y(σν)(p(σνν−1))

=
∑

ν∈Σn/Σ
µ
n

βν
∑

S∈Pt(Σn)

∑
p∈F(S,µ)

∏
σ∈S

y(σν)(p′(σν))

=
∑

ν∈Σn/Σ
µ
n

βν
∑

S∈Pt(Σn)

∑
p∈F(S,µ)

∏
σ∈S′

yσ(p′(σ))

As the summations run through every S ∈ Pt(Σn) and p ∈ F(S, µ) exactly once, the

bijections S 7→ S′ and p 7→ p′ have no effect on the sum so can be reversed. As βν is

the only part of the expression depending on ν, we can place the summation over Σn/Σ
µ
n

within parentheses as required. �

Lemma 3.2.10. Suppose g ∈ R[x] and we are able to write g(x) = (x − ξ1) . . . (x − ξn). The

product
∏
σ∈Σn

(x −
∑n

i=1 yσiξi) is equal to

n!∑
t=0

xn!−t
∑

µ∈Pn(t)

mµ(−ξ1, . . . ,−ξn)
∑

S∈Pt(Σn)

∑
p∈F(S,µ)

∏
σ∈S

yσ(p(σ)). (3.3)

Proof. Let χ =
∏
σ∈Σn

(x −
∑n

i=1 yσiξi). By Lemma 3.2.5 we have

χ =

n!∑
t=0

xn!−tet(. . . ,−
n∑

i=1

yσiξi︸      ︷︷      ︸
σ∈Σn

, . . . )
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In the above et has one variable for each element of Σn, as et is a symmetric polynomial

the order does not matter. Below we write et as a sum over subsets of Σn.

=

n!∑
t=0

xn!−t
∑

S∈Pt(Σn)

∏
σ∈S

(−
n∑

i=1

yσiξi)

We expand the product of sums into a sum of products.

=

n!∑
t=0

xn!−t
∑

S∈Pt(Σn)

∑
p : S→{1,...,n}

∏
σ∈S

yσ(p(σ))(−ξp(σ))

=

n!∑
t=0

xn!−t
∑

S∈Pt(Σn)

∑
p : S→{1,...,n}

∏
σ∈S

yσ(p(σ))

∏
σ∈S

(−ξp(σ))

Now
∏
σ∈S(−ξp(σ)) is equal to

∏n
i=1(−ξi)ri where ri = |p−1(i)| for i = 1, . . . ,n, that is p ∈ F(S, r)

where r = (r1, . . . , rn). We can write r = ν · µ for some unique µ ∈ Pn(t) and ν ∈ Σn/Σ
µ
n .

We introduce summations over Pn(t) and Σn/Σ
µ
n and restrict the summation over p : S→

{1, . . . ,n} to p ∈ F(S, ν · µ).

=

n!∑
t=0

xn!−t
∑

µ∈Pn(t)

∑
ν∈Σn/Σ

µ
n

∑
S∈Pt(Σn)

∑
p∈F(S,ν·µ)

n∏
i=1

(−ξi)(ν·µ)i
∏
σ∈S

yσ(p(σ))

=

n!∑
t=0

xn!−t
∑

µ∈Pn(t)

∑
ν∈Σn/Σ

µ
n

 n∏
i=1

(−ξi)(ν·µ)i

 ∑
S∈Pt(Σn)

∑
p∈F(S,ν·µ)

∏
σ∈S

yσ(p(σ))

︸                                                        ︷︷                                                        ︸
This part is of the form found in Lemma 3.2.9

By Lemma 3.2.9 we can replace p ∈ F(S, ν · µ) with p ∈ F(S, µ) and place the
∑
ν∈Σn/Σ

µ
n

within the parentheses, where it defines a monomial symmetric polynomial.

=

n!∑
t=0

xn!−t
∑

µ∈Pn(t)

mµ(−ξ1, . . . ,−ξn)
∑

S∈Pt(Σn)

∑
p∈F(S,µ)

∏
σ∈S

yσ(p(σ)),

which is equal to (3.3). �

Theorem 3.2.11. Let g ∈ R[x] be g(x) = a0 + a1x + a2x2 + · · · + anxn where a0, . . . , an ∈ R

such that we are able to write g(x) = (x − ξ1) . . . (x − ξn) for ξ1, . . . , ξn ∈ R, note that this

requirement forces g to be monic so an = 1. We have

Rg(x, y1, . . . , yn) =
∏
σ∈Σn

(x −
n∑

i=1

yσiξi).

Proof. By Lemma 3.2.10 the right hand side of the above expression is equal to (3.3), i.e.

n!∑
t=0

xn!−t
∑

µ∈Pn(t)

mµ(−ξ1, . . . ,−ξn)
∑

S∈Pt(Σn)

∑
p∈F(S,µ)

∏
σ∈S

yσ(p(σ)),
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by Lemma 3.2.6 we can write mµ(−ξ1, . . . ,−ξn) as
∑
η∈Pn(t) Eµ,ηeη(−ξ1, . . . ,−ξn) which by

Lemma 3.2.5 is equal to
∑
η∈Pn(t) Eµ,η

∏L(η)
i=1 an−ηi . Substituting this into (3.3) and rearrang-

ing
∑
µ∈Pn(t) and Eµ,η gives us an expression equal to Rg(x, y1, . . . , yn). �

It would be preferable if Theorem 3.2.11 could be formulated such that g is not required

to be monic. It is likely that such a formulation could be found however time restrictions

prevent us from determining this. The requirement that g is monic is however suitable

for our purposes.

3.2.3 An Recursive Method for Computing the Root Sum

Suppose g ∈ R[x] is monic. We have two methods for computing the root sumRg: directly

from the definition or from the roots of g if the roots are known. Theorem 3.2.12 gives

a recursive method for computing the root sum which does not depend on knowing the

roots of g. An example of each method is given in Section 3.2.4.

Theorem 3.2.12. Suppose g ∈ R[x] is monic. Let

Fg,1(x, y1) = yn
1 g(x/y1),

Fg,m(x, y1, . . . , ym) =
Fg,m−1(x, y1, . . . , ym−1) ⊕K yn

mg(x/ym)∏m−1
i=1 Fg,m−1(x, y1, . . . , yi − ym︸  ︷︷  ︸

ith position

, . . . , ym−1)
,

for m = 2, 3, . . . . We have Rg(x, y1, . . . , yn) = Fg,n(x, y1, . . . , yn).

Proof. By [Art91, Chap. 13, Prop. 5.3] it is always possible to find a field containing R

such that g can be written as a product of linear factors with each root in the field. Let L be

such a field. Let g(x) = (x − ξ1) . . . (x − ξn) where ξ1, . . . , ξn ∈ L. Let Pm = {η : {1, . . . ,m} ↪→

{1, . . . ,n}}, that is the set of injective maps sending {1, . . . ,m} to {1, . . . ,n}. We prove by

induction that 1

Fg,m(x, y1, . . . , ym) =
∏
η∈Pm

(x −
m∑

i=1

yiξη(i)).

1N.B. we are taking the product over Pm on the right-hand side.
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Suppose m = 1, we have

Fg,1(x, y1) = yn
1 g(x/y1)

= yn
1(x/y1 − ξ1) . . . (x/y1 − ξn)

=

n∏
i=1

(x − ξiy1).

In this case η ∈ P1 maps to a single value in {1, . . . ,n}.

Suppose the induction hypothesis is true for m − 1, we prove it is true for m.

Fg,m(x, y1, . . . , ym) =
Fg,m−1(x, y1, . . . , ym−1) ⊕K yn

mg(x/ym)∏m−1
i=1 Fg,m−1(x, y1, . . . , yi − ym︸  ︷︷  ︸

ith position

, . . . , ym−1)

We expand the numerator using Theorem 3.1.3:

∏
η∈Pm−1

(x −
m−1∑
i=1

yiξη(i)) ⊕K
n∏

i=1

(x − ξiym) =

n∏
i=1

∏
η∈Pm−1

(x −
m−1∑
j=1

y jξη( j) − ξiym)

=
∏
η∈Qm

(x −
m∑

j=1

y jξη( j))

where Qm = {η : {1, . . . ,m} → {1, . . . ,n} : η |{1,...,m−1} is injective }, that is: all maps η from

{1, . . . ,m} to {1, . . . ,n} such that when restricted to the first m − 1 domain values, η is

injective, though η(m) can take any value in {1, . . . ,n}.

Now the denominator:

m−1∏
i=1

∏
η∈Pm−1

(x −
m−1∑

j=1: j,i

y jξη( j) − (yi − ym)ξη(i)) =

m−1∏
i=1

∏
η∈Pm−1

(x −
m−1∑
j=1

y jξη( j) + ξη(i)ym)

=
∏
η∈Rm

(x −
m∑

j=1

y jξη( j))

where Rm = {η : {1, . . . ,m} → {1, . . . ,n} : η |{1,...,m−1} is injective and ∃i ∈ {1, . . . ,m − 1} such

that η(m) = η(i)}. It is clear that Rm is a subset of Qm, therefore

Fg,m(x, y1, . . . , ym) =
∏

η∈Qm\Rm

(x −
m∑

j=1

y jξη( j)).

We now show Pm = Qm \ Rm.

If η ∈ Pm, then Pm restricted to {1, . . . ,m − 1} is injective, so η ∈ Qm. By injectivity

η(m) , η(i) for any i = 1, . . . ,m − 1, so η < Rm.

Suppose η ∈ Qm \ Rm, and suppose η(i) = η( j) for some i, j = 1, . . . ,m. If i, j < m, then

(as η restricted to {1, . . . ,m − 1} is injective) we have i = j. Suppose i < m and j = m, this
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would imply η ∈ Rm contradicting the definition of η. Similarly for j < m and i = m. As

the only other possibility is i = j = m this proves η is injective.

So Fg,m(x, y1, . . . , ym) =
∏
η∈Pm

(x −
∑m

j=1 y jξη( j)). Let us consider m = n. In this case

Pn = {η : {1, . . . ,n} ↪→ {1, . . . ,n}}, which implies η ∈ Pn is surjective. So Pn = Σn. By

Theorem 3.2.11 Fg,m(x, y1, . . . , ym) is equal to Rg(x, y1, . . . , yn). �

3.2.4 Worked Example

We compute the root sum of an example polynomial below using all three method to

show they agree.

Example 3.2.13. Let f (x) = x2
−x−6 = (x−3)(x+2). The root sumR f (x, y1, y2) is of degree

2 in x. We compute R f from the definition. Recall that R f is built from polynomials

γη(y1, y2) where η ∈ P2(t) and t = 0, 1, 2, which are defined by

γη(y1, y2) =
∑

µ∈P2(t)

Eµ,η

∑
S∈Pt(Σ2)

∑
p∈F(S,µ)

∏
σ∈S

yσ(p(σ)).

The partition sets which appear in the first summation (and those which contain the

arguments η ∈ P2(t) for t = 0, 1, 2) are:

P2(0) = P2(0) = {(0)}, P2(1) = P2(1) = {(1)}, P2(2) = P2(2) = {(2), (1, 1)}.

The powersets of Σ2 = {id, (1 2)} in the second summation are:

P0(Σ2) = {∅}, P1(Σ2) = {{id}, {(1 2)}}, P2(Σ2) = {Σ2}.

The sets of maps in the third summation are: (the notation [σ, . . . ] 7→ [l1, . . . ] means the

permutation σ is mapped to the integer l1,. . . )

F(∅, (0)) = {0}, i.e. the empty map 0: ∅ → {1, 2}

F({id}, (1)) =
{
[id] 7→ [1]

}
,

F({(1 2)}, (1)) =
{
[(1 2)] 7→ [1]

}
,

F(Σ2, (2)) =
{
[id, (1 2)] 7→ [1, 1]

}
,

F(Σ2, (1, 1)) =
{
[id, (1 2)] 7→ [1, 2], [id, (1 2)] 7→ [2, 1]

}
.
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Using these we compute the γη by substituting them into (3.1):

γ(0)(y1, y2) = E(0),(0)

γ(1)(y1, y2) = E(1),(1)(y1 + y2)

γ(2)(y1, y2) = E(2),(2)(y1y2) + E(1,1),(2)(y2
1 + y2

2)

γ(1,1)(y1, y2) = E(2),(1,1)(y1y2) + E(1,1),(1,1)(y2
1 + y2

2)

To compute γη(y1, y2) we need the coefficients Eµ,η (see Lemma 3.2.6). We compute these

directly from their definition:

m(0)(y1, y2) = 1

= e(0)(y1, y2)

m(1)(y1, y2) = y1 + y2

= e(1)(y1, y2)

m(1,1)(y1, y2) = y1y2

= e(2)(y1, y2)

m(2)(y1, y2) = y2
1 + y2

2

= (y1 + y2)2
− 2y1y2

= e(1,1)(y1, y2) − 2e(2)(y1, y2)

From this we read off the coefficients: E(0),(0) = 1, E(1),(1) = 1, E(2),(2) = −2, E(2),(1,1) = 1,

E(1,1),(1,1) = 0 and E(1,1),(2) = 1. We substitute these values into the γη polynomials.

γ(0)(y1, y2) = 1

γ(1)(y1, y2) = y1 + y2

γ(2)(y1, y2) = y2
1 + y2

2 − 2y1y2

γ(1,1)(y1, y2) = y1y2

The products of coefficients of g that appear in the root sum are: a0 = −6, a1 = −1, a2 = 1
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and a1a1 = 1. So the root sum (3.2) R f (x, y1, y2) is:

x2
∑

η∈P2(0)


L(η)∏
i=1

a2−ηi

γη(y1, y2) + x
∑

η∈P2(1)


L(η)∏
i=1

a2−ηi

γη(y1, y2) +
∑

η∈P2(2)


L(η)∏
i=1

a2−ηi

γη(y1, y2)

= x2a2γ(0)(y1, y2) + xa1γ(1)(y1, y2) + a0γ(2)(y1, y2) + a2
1γ(1,1)(y1, y2)

= x2a2 + xa1(y1 + y2) + a0(y2
1 + y2

2 − 2y1y2) + a2
1y1y2

= x2
− x(y1 + y2) − 6(y2

1 + y2
2 − 2y1y2) + y1y2

= x2
− (y1 + y2)x − 6y2

1 + 13y1y2 − 6y2
2.

We now use Theorem 3.2.11 to compute the root sum polynomial from the roots of

g(x) to ensure it agrees with the definition.

R f (x, y1, y2) = (x − 3y1 + 2y2)(x − 3y2 + 2y1)

= x2
− (y1 + y2)x − 6y2

1 + 13y1y2 − 6y2
2,

which is equal to the result obtained from the definition.

We now use Theorem 3.2.12 to compute the root sum using the third method. We

have

F f ,1(x, y1) = y2
1 f (x/y1)

= y2
1((x/y1)2

− x/y1 − 6)

= x2
− xy1 − 6y2

1.

F f ,2(x, y1, y2) =
F f ,1(x, y1) ⊕K y2

2 f (x/y2)

F f ,1(x, y1 + y2)

We use the resultant formula in Definition 3.1.2 to compute F f ,1(x, y1) ⊕K y2
2 f (x/y2). We

have

F f ,1(x − z, y1) = (x − z)2
− (x − z)y1 − 6y2

1

= z2 + z(y1 − 2x) + x2
− xy1 − 6y2

1,

y2
2 f (z/y2) = y2

2((z/y2)2
− z/y2 − 6)

= z2
− zy2 − 6y2

2,
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so we have

F f ,1(x, y1) ⊕K y2
2 f (x/y2) = (−1)4Res(F f ,1(x − z, y1), y2

2 f (z/y2), z)

= det



1 y1 − 2x x2
− xy1 − 6y2

1 0

0 1 y1 − 2x x2
− xy1 − 6y2

1

1 −y2 −6y2
2 0

0 1 −y2 −6y2
2


= x4

− (2y1 + 2y2)x3
− (11y2

2 − 3y2y1 + 11y2
1)x2 + (12y3

2 + 11y2
1y2 + 11y2

2y1 + 12y3
1)x

+ 36y4
2 − 6y3

2y1 − 84y2
1y2

2 − 6y3
1y2 + 36y4

1.

The denominator is: F f ,1(x, y1 + y2) = x2
− x(y1 + y2) − 6y2

1 − 12y1y2 − 6y2
2.

We determine the coefficients of F f ,2(x, y1, y2) by expanding

F f ,1(x, y1 + y2)F f ,2(x, y1, y2) = F f ,1(x, y1) ⊕K y2
2 f (x/y2)

and then building a linear system by comparing coefficients of the monomials in x, y1 and

y2. The linear system has a unique solution as F f ,1(x, y1+y2) divides F f ,1(x, y1)⊕K y2
2 f (x/y2).

This method yields

R f (x, y1, y2) = F f ,2(x, y1, y2) = x2
− (y2 + y1)x − 6y2

1 + 13y1y2 − 6y2
2.

So all three methods yields the same result for R f (x, y1, y2).
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The Additive Matrix Problem

Given a k-tuple of matrix similarity classes C1, . . . ,Ck of order n in an algebraically closed

field K of characteristic zero, the additive matrix problem asks under what necessary and

sufficient conditions on C1, . . . ,Ck does there exist matrices A1, . . . ,Ak such that Ai ∈ Ci for

i = 1, . . . , k and A1 + · · ·+Ak = 0. The problem is currenly open in its most general form but

solutions exist to several related problems, for instance when the C1, . . . ,Ck are closed, or

where we require the A1, . . . ,Ak to be irreducible (irreducible is defined in Section 4.1.3).

This chapter looks at the solutions obtained in the literature by Crawley-Boevey and Silva

et al. and introduces a new approach of the author to the Crawley-Boevey results. The

solutions of Crawley-Boevey and Silva et al. each solve a different variant of the general

additive matrix problem, but we compare the two solutions in the case where the two

problems intersect.

The solutions of Crawley-Boevey in Section 4.1 relate the additive matrix problem to

the existence of particular representations of a deformed preprojective algebra constructed

from the similarity classes. The existence of these representations are related to the

existence of certain roots of the quiver used to construct the deformed preprojective

algebra. In Section 4.2 we derive some results about the positive roots and dimension

vectors of star-shaped quivers (which are defined in Section 4.1). The solutions of Silva

et al. in Section 4.3 do not explicitly involve quivers and representations so we use the

results derived in Section 4.2 to write them in terms comparable to the results of Crawley-

Boevey. We introduce a new approach devised by the author to solving the additive matrix

problem in Section 4.4 which enables us to obtain necessary and sufficient conditions for

the existence of solutions when the classes are closed and the eigenvalues are not known

45
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apart from the invariant polynomials.

Throughout this chapter K is an algebraically closed field of characteristic zero.

4.1 Crawley-Boevey’s Solutions

The main results of this section are Theorems 4.1.14 and 4.1.16. Both are partial answers

to the additive matrix problem and both rely on being able to compute the Jordan normal

forms of the similarity classes.

Section 4.1.1 defines some crucial terminology that shall be used often. Section 4.1.2

describes the categorical relationship between solutions to the additive matrix problem

and representations of deformed preprojective algebras. Section 4.1.3 contains the theo-

rems described above.

4.1.1 Tuples of Similarity Classes

Definition 4.1.1. A star-shaped quiver Q is a connected quiver which consists of a central

vertex and a number of arms, that is linear quivers which are joined to each other only at

the central vertex. A linear quiver is a quiver of the form ◦ ◦ · · · ◦ .

Given a star-shaped quiver Q with k arms, we assume an ordering on the arms so

they are indexed i = 1, . . . , k. The arm vertices are denoted [i, j] (or sometimes i, j when it

does not result in confusion), that is [i, j] is the jth vertex from the centre on the ith arm.

The central vertex is denoted 0 and by convention [i, 0] means 0 for every i = 1, . . . , k. The

arrow between [i, j] and [i, j − 1] is denoted ai, j.

We say an arm is of length d ≥ 1 if it has d arrows. The number of vertices, excluding

the central vertex, is also d but we define the length by the number of arrows rather than

vertices to avoid ambiguity. It is sometimes useful to think of an arm as including the

central vertex and sometimes useful to exclude the central vertex. When referring to the

arms of a star-shaped quiver it is crucial to state explicitly whether or not the central

vertex is included.
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Example 4.1.2. The quiver below is a star-shaped quiver.

[1, 1]

{{

[1, 2]oo [1, 3]oo

Q = 0 [2, 1]oo [2, 2]oo

[3, 1]

cc

[3, 2]oo

To fully describe a star-shaped quiver we need only specify the number of arms, the

length of each arm and the orientation of the arrows. Let V be a K-vector space with

dim(V) = n. Let k ≥ 2 and C1, . . . ,Ck ⊆ End(V) be a k-tuple of nonscalar conjugacy

classes. The restriction to nonscalar conjugacy classes entails no loss of generality. To

see this suppose i, j ∈ {1, . . . , k} such that i , j and Ci is scalar. The class Ci contains only

one endomorphism Ai = c1V where c ∈ K. Let C′j = {A + c1V : A ∈ C j}, it is easy to see

this is also a conjugacy class. The additive matrix problem with C1, . . . ,Ck is equivalent

to the problem with C j replaced with C′j and Ci removed. This process continues until

either all scalar classes are removed, or we get down to two conjugacy classes. Suppose

there are two classes C1,C2, if precisely one of these is scalar, then there is no solution

to the additive matrix problem, if both are scalar then a solution exists if and only if

trace(C1) = −trace(C2).

Definition 4.1.3. For i = 1, . . . , k let di =
∑
λ∈Ψ(Ci) idxCi(λ) (which is deg(minCi(x)) by

Theorem 2.1.11). We define the quiver Q associated to C1, . . . ,Ck to be the star-shaped

quiver with k arms, where arm i is of length di − 1 and all arrows are orientated towards

the central vertex.

For each i = 1, . . . , k let ξi,1, . . . , ξi,di be a list of the roots of the minimal polynomial

minCi(x) of Ci. The following definitions are in respect to these lists, that is they depend

on the orders chosen.

Definition 4.1.4. Let Q be the star-shaped quiver associated to C1, . . . ,Ck.

• Let α ∈ ZQ0 be the dimension vector of Q defined by α0 = n and αi, j = rank(
∏ j

l=1(A−

ξi,l1V)) where A ∈ Ci for i = 1, . . . , k and j = 1, . . . , di − 1. This does not depend on

the choice of A ∈ Ci.

• Let λ ∈ KQ0 be the K-vector of Q defined by λ0 = −
∑k

i=1 ξi,1 and for each i = 1, . . . , k

and j = 1, . . . , di − 1 let λi, j = ξi, j − ξi, j+1.
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Note that the ith arm (with the central vertex) of α, with a zero appended to the end,

is precisely the dimension vector of Ci in the sense of Definition 2.1.18 (with respect to the

list ξi,1, . . . , ξi,di).

Remark 4.1.5. The quiver Q, dimension vector α ∈ ZQ0 and K-vectorλ ∈ KQ0 associated to

C1, . . . ,Ck are fixed by the conjugacy classes. It is not true, however, that Q, α andλ entirely

fix the conjugacy classes. Fixing Q fixes the number of conjugacy classes and the degrees

of their minimal polynomials, fixing α fixes the dimension vectors of C1, . . . ,Ck and fixing

λ fixes the differences between roots of the minimal polynomial of each C1, . . . ,Ck and

fixes
∑k

i=1 trace(Ci).

To see how far Q, α and λ fix the conjugacy classes let C′1, . . . ,C
′

k ⊆ End(V) be a

collection of conjugacy classes. The quiver, dimension vector and K-vector associated

to C′1, . . . ,C
′

k is Q, α and λ respectively if and only if C′i = {Ai + bi1V : Ai ∈ Ci} for some

b1, . . . , bk ∈ K such that b1 + · · · + bk = 0.

4.1.2 Functors from Representations to Tuples of Endomorphisms

We define a functor from the category of representations of Πλ(Q) of a particular di-

mension vector to a category consisting of certain endomorphism tuples. We are given

matrix similarity classes in this part of the section from which we define conjugacy classes

for the endomorphisms of a given vector space. We say an endomorphism θ of an n-

dimensional vector space V corresponds to a matrix A ∈ Mn(K) if V can be given a basis

such that θ(v) = Av for all v ∈ Kn.

Let C1, . . . ,Ck ⊆ Mn(K) be matrix similarity classes. Let Q, α and λ be defined as in

Section 4.1.1. Given a vector space V of dimension n let Ci(V) and Ci(V) be defined by

Ci(V) =
{
θ ∈ End(V) : θ corresponds to a matrix in Ci

}
,

Ci(V) =
{
θ ∈ End(V) : θ corresponds to a matrix in Ci

}
.

Definition 4.1.6. Let X be a representation of Q, where Q is a star-shaped quiver, we call

the representation of the linear quiver consisting of the central vertex and the ith arm,

obtained by selecting the corresponding maps and vector spaces, the ith arm component of

X.

Definition 4.1.7. We say a representation X of Πλ(Q) is strict if for each a ∈ Q1 we have

Xa injective and Xa∗ surjective.
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Lemma 4.1.8. Given a vector space V of dimension n and a tuple (A1, . . . ,Ak) of linear

maps such that Ai ∈ Ci(V) (resp. Ai ∈ Ci(V)) for i = 1, . . . , k and
∑k

i=1 Ai = 0 there exists

a representation (resp. strict representation) X of Πλ(Q) of dimension vector α such that

Ai = Xai,1Xa∗i,1
+ ξi,11V for i = 1, . . . , k.

Proof. For each arm i = 1, . . . , k the ith arm component of X is obtained from Ai using

Theorem 2.2.2 (resp. Theorem 2.2.4), this is well-defined as the central vector space of

each component is the same, i.e. V. The theorem ensures that the deformed preprojective

relations on the arms are satisfied and that Ai = Xai,1Xa∗i,1
+ ξi,11V. The central deformed

preprojective relation is also satisfied as 0 =
∑k

i=1 Ai =
∑k

i=1(Xai,1Xa∗i,1
+ξi,11V) which implies∑k

i=1 Xai,1Xa∗i,1
= −

∑k
i=1 ξi,11V = λ01V. �

Representations and Closures of Similarity Classes

Recall that the category of representations of Πλ(Q) is denoted RepK(Πλ(Q)). Let R(α) be

the full subcategory of RepK(Πλ(Q)) consisting of all representations of dimension vector

α.

Let C be the category with objects given by

ob(C) =
{
(V,A1, . . . ,Ak) : V is an n-dimensional K-vector space,

Ai ∈ Ci(V) for i = 1, . . . , k and
k∑

i=1

Ai = 0
}
.

and morphisms between A,A′ ∈ ob(C), where A = (V,A1, . . . ,Ak) and A′ = (V′,A′1, . . . ,A
′

k),

given by

hom
C

(A,A′) = {φ : V → V′ : A′iφ = φAi for i = 1, . . . , k}.

We define a functor F from R(α) to C. Given a representation X of R(α) we define

the target object F (X) = (X0,A1, . . . ,Ak) by Ai = Xai,1Xa∗i,1
+ ξi,11X0 for i = 1, . . . , k. Given

a morphism φ : X → Y of representations X,Y of R(α) we define the target morphism

F (φ) : F (X)→ F (Y) by F (φ) = φ0.

Theorem 4.1.9. F is a functor.

Proof. Let X be a representation of R(α). We first show F (X) = (X0,A1, . . . ,Ak) is an

object in C. By Theorem 2.2.2 we have Ai ∈ Ci(X0) for i = 1, . . . , k and by the deformed
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preprojective relation at the central vertex we have
∑k

i=1 Ai =
∑k

i=1 Xai,1Xa∗i,1
+

∑k
i=1 ξi,11X0 =

0.

Let φ : X → Y be a morphism of representations where X,Y are objects of R(α), we

show F (φ) is a target morphism. Let F (X) = (X0,A1, . . . ,Ak) and F (Y) = (Y0,A′1, . . . ,A
′

k).

Now F (φ) = φ0 and for each i = 1, . . . , k we have

φ0Ai = φ0Xai,1Xa∗i,1
+ ξi,1φ0

= Yai,1φi,1Xa∗i,1
+ ξi,1φ0

= Yai,1Ya∗i,1
φ0 + ξi,1φ0

= A′iφ0.

So for F (φ) : F (X)→ F (Y) we have F (φ) ∈ hom
C

(F (X),F (Y)). Let X be a representation

of R(α), we have F (1X) = 1X0 which is clearly the identity morphism of F (X). Let

X,Y,Z be representations of R(α) and φ : X → Y, ψ : Y→ Z be homomorphisms, we have

F (ψφ) = (ψφ)0 = ψ0φ0 = F (ψ)F (φ). So F is a functor from R(α) to C. �

A functor H from a category L to a category M is dense (or essentially surjective) if

for each B ∈ M there is an object A ∈ L such that H(A) is isomorphic to B. We say H

is surjective if for each B ∈ M there is an object A ∈ L such that H(A) = B. A surjective

functor is also dense by definition.

Lemma 4.1.10. The functor F is surjective.

Proof. Let (V,A1, . . . ,Ak) be an object of C, and let X be the representation of Πλ(Q)

obtained from this given by Lemma 4.1.8, note that X0 = V. Let (X0,A′1, . . . ,A
′

k) = F (X)

so for i = 1, . . . , k we have A′i = Xai,1Xa∗i,1
+ ξi,11X0 which, by Lemma 4.1.8, is equal to Ai so

F (X) = (X0,A′1, . . . ,A
′

k) = (V,A1, . . . ,Ak). �

Strict Representations and Similarity Classes

Let R̃epK(Πλ(Q)) be the full subcategory of strict representations of Πλ(Q). Let R̃(α) be the

full subcategory R̃epK(Πλ(Q)) consisting of strict representations of dimension vector α.

Let C be the full subcategory of C consisting of objects (V,A1, . . . ,Ak) such that Ai ∈ Ci(V)

for i = 1, . . . , k. Let G be the functor F restricted to R̃(α).

Let X be an object of R̃(α) and write G(X) = (V,A1, . . . ,Ak). By Theorem 2.2.4 we have

Ai ∈ Ci(V) for each i = 1, . . . , k so G(X) is a functor from R̃(α) to C.
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Lemma 4.1.11. The functor G is surjective.

Proof. The proof is essentially the same as in Lemma 4.1.10. �

Lemma 4.1.12. The functor G is fully faithful.

Proof. Let X,Y be strict representations, the map hom
R̃(α)(X,Y) → homC(G(X),G(Y)) is

given by φ 7→ φ0, for each φ : X→ Y.

We show G is faithful, i.e. the map between hom-spaces is injective. Let φ,ψ ∈

hom
R̃(α)(X,Y) and suppose G(φ) = G(ψ), we show φ = ψ. Now by definition G(φ) = G(ψ)

implies φ0 = ψ0, we prove the remaining maps are equal by induction. Let i = 1, . . . , k and

j = 1, . . . , di − 1, we show that φi, j−1 = ψi, j−1 implies φi, j = ψi, j. Recall that the intertwining

relations for φ at the arrows ai, j and a∗i, j are the respective commutative squares.

Xi, j−1

φi, j−1

��

Xi, j

φi, j

��

? _
Xai, joo

Yi, j−1 Yi, j? _

Yai, j

oo

(4.1)

Xi, j−1

φi, j−1

��

Xa∗i, j // // Xi, j

φi, j

��
Yi, j−1 Ya∗i, j

// // Yi, j

(4.2)

The intertwining relation (4.1) is φi, j−1Xai, j = Yai, jφi, j. For ψ the same relation is ψi, j−1Xai, j =

Yai, jψi, j. Suppose φi, j−1 = ψi, j−1, the intertwining relations imply Yai, jφi, j = Yai, jψi, j which,

by the injectivity of Yai, j , implies φi, j = ψi, j.

We show G is full, i.e. the map between hom-spaces is surjective. Suppose θ ∈

homC(G(X),G(Y)). We construct a map φ from X to Y such that G(φ) = θ. Let φ0 = θ.

SupposeG(X) = (X0,A1, . . . ,Ak) andG(Y) = (Y0,A′1, . . . ,A
′

k), the property A′iθ = θAi gives

the relation Yai,1Ya∗i,1
φ0 = φ0Xai,1Xa∗i,1

for each i = 1, . . . , k. We construct the remaining maps

ofφ by induction. Let i = 1, . . . , k and j = 1, . . . , di−1. Assumeφi, j−1 exists and the relation

Yai, jYa∗i, j
φi, j−1 = φi, j−1Xai, jXa∗i, j

(4.3)

is satisfied. We construct φi, j : Xi, j → Yi, j such that the intertwining relations (4.1) and

(4.2) for ai, j and a∗i, j are satisfied. For each x ∈ Xi, j let φi, j(x) = Ya∗i, j
φi, j−1(x′) where x′ ∈ Xi, j−1

is chosen such that x = Xa∗i, j
(x′). Such an x′ exists because Xa∗i, j

is surjective. We show
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this is well-defined. Suppose x′, x′′ ∈ Xi, j−1 have x = Xa∗i, j
(x′) = Xa∗i, j

(x′′), by (4.3) we

have Yai, jYa∗i, j
φi, j−1(x′ − x′′) = φi, j−1Xai, jXa∗i, j

(x′ − x′′). Now Xa∗i, j
(x′ − x′′) = x − x = 0 so

Yai, jYa∗i, j
φi, j−1(x′ − x′′) = 0. Since Yai, j is injective we have Ya∗i, j

φi, j−1(x′ − x′′) = 0. So

Ya∗i, j
φi, j−1(x′) and Ya∗i, j

φi, j−1(x′′) give the same definition of φi, j(x).

Now we show the intertwining relation (4.1) holds for φi, j−1 and φi, j. Let x ∈ Xi, j, we

have Yai, jφi, j(x) = Yai, jYa∗i, j
φi, j−1(x′) where x′ ∈ Xai, j−1 is such that x = Xa∗i, j

(x′). By (4.3) we

have Yai, jYa∗i, j
φi, j−1(x′) = φi, j−1Xai, jXa∗i, j

(x′) = φi, j−1Xai, j(x), so Yai, jφi, j(x) = φi, j−1Xai, j(x).

Now we show the intertwining relation (4.2) holds for φi, j−1 and φi, j. Let x′ ∈ Xi, j−1

and let x = Xa∗i, j
(x′). We have φi, jXa∗i, j

(x′) = φi, j(x) = Ya∗i, j
φi, j−1(x′′) where x′′ ∈ Xai, j−1 is such

that x = Xa∗i, j
(x′′). As x = Xa∗i, j

(x′), and the definition of φi, j is well-defined, it is permissible

to take x′′ = x′, so we have φi, jXa∗i, j
(x′) = Ya∗i, j

φi, j−1(x′) as required.

To complete the induction we show that, when j < di − 1, we have Yai, j+1Ya∗i, j+1
φi, j =

φi, jXai, j+1Xa∗i, j+1
. The deformed preprojective relations for X and Y at i, j are

λi, j1Xi, j = Xa∗i, j
Xai, j − Xai, j+1Xa∗i, j+1

,

λi, j1Yi, j = Ya∗i, j
Yai, j − Yai, j+1Ya∗i, j+1

.
(4.4)

By the intertwining relations (4.2) and (4.1) we have φi, jXa∗i, j
Xai, j = Ya∗i, j

Yai, jφi, j, which

when substituted into (4.4) yields λi, jφi, j + φi, jXai, j+1Xa∗i, j+1
= λi, jφi, j + Yai, j+1Ya∗i, j+1

φi, j, which

completes the induction. �

A functor is an equivalence if it is both fully-faithful and dense. Both F and G are

surjective, and therefore dense, but only G is necessarily fully-faithful. The diagram

below shows the relations between the categories and functors.

R(α) oo
full subcategory

? _

F dense
��

R̃(α)

G �

��
C oo

full subcategory
? _C

(4.5)

4.1.3 The Theorems

Most of the following definitions and theorems come from [CB03]. Let V be a vector space

of dimension n.

Definition 4.1.13. Let k ≥ 1. A tuple of linear maps A1, . . . ,Ak ∈ End(V) is said to be

irreducible if there is no common nontrivial invariant subspace of the maps, that is for any

subspace U ⊆ V such that AiU ⊆ U for all i = 1, . . . , k we have either U = 0 or U = V.
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We say two k-tuples of endomorphisms are conjugate if they are simultaneously con-

jugate. Let C1, . . . ,Ck ⊆ End(V) be a tuple of conjugacy classes and let Q, α and λ be the

associated star-shaped quiver, dimension vector and K-vector as defined in Section 4.1.1.

Recall the definition of Σλ given in Section 1.2.

Theorem 4.1.14. There exist endomorphisms Ai ∈ Ci for each i = 1, . . . , k, such that∑k
i=1 Ai = 0 and A1, . . . ,Ak is an irreducible k-tuple of linear maps if and only if α ∈ Σλ.

Furthermore if α is a real root then A1, . . . ,Ak is the only such irreducible solution (up to

conjugacy), and if α is imaginary then there are infinitely many nonconjugate irreducible

solutions.

Proof. [CB03, Thm. 1] �

In the case where an irreducible solution is the only irreducible solution to the additive

matrix problem, up to conjugacy, we say it is a rigid solution.

Theorem 4.1.16 gives a necessary and sufficient condition for the existence of matrices

in conjugacy class closures. This condition is weaker than the one in Theorem 4.1.14, in

particular note the absence of the irreducibility condition.

Lemma 4.1.15. There exist endomorphisms Ai ∈ Ci for each i = 1, . . . , k, such that
∑k

i=1 Ai =

0 if and only if there exists a representation in Rep(Πλ(Q)) of dimension vector α.

Proof. Recall the functor F from the previous section. As F is dense the existence of a

representation in R(α) is equivalent to the existence of the required tuple. �

Theorem 4.1.16. There exist endomorphisms Ai ∈ Ci for each i = 1, . . . , k, such that∑k
i=1 Ai = 0 if and only if there exists a root decomposition (β1, · · · , βr) of α such that

β1, . . . , βr ∈ R+
λ .

Proof. Use Lemma 4.1.15 and either [CB06, Thm. 2] or [CB01, Thm. 3.3]. �

4.2 Star-Shaped Quivers

Section 4.2 presents some results that are needed in Sections 4.3 and 4.4. Section 4.3

examines the solutions obtained to certain additive matrix problems by Silva et al. and

shows that in certain circumstances the results of Silva et al. and Crawley-Boevey agree.
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Section 4.4 introduces a new method for solving a particular subset of the additive matrix

problem.

This section specifically looks at star-shaped quivers, defined in Section 4.1.1, and

their dimension vectors. The main result of this section is a new condition, for a certain

class of dimension vectors, which determines whether the dimension vectors are roots.

The result is given by Theorems 4.2.25 and 4.2.28. Let Q be a star-shaped quiver with k

arms. The length of the ith arm is written di − 1, the arm-lengths are described by di − 1

rather than di to be consistent with our use of di in other sections.

Definition 4.2.1. Let α be a dimension vector of Q. We say α is nonincreasing if for each

arm i = 1, . . . , k we have αi, j−1 ≥ αi, j for j = 1, . . . , di − 1, that is the values on the arms do

not get larger as one goes out along them.

Definition 4.2.2. Let α be a positive nonincreasing dimension vector. The nonzero i-arm

length of α is the number of nonzero elements on the i-arm of α and is denoted zi(α).

Example 4.2.3. The following dimension vector α is positive, nonincreasing with nonzero

arm lengths z1(α) = 1, z2(α) = 2 and z3(α) = 3.

5 0 0

α = 16 9 4

6 6 2 0

Definition 4.2.4. Let α be a positive nonincreasing dimension vector of Q. We say α is

arm-fundamental if any reflection on the arm vertices increases the value at that vertex,

that is si, j(α)i, j ≥ αi, j where i = 1, . . . , k and j = 1, . . . , di − 1.

Definition 4.2.5. Let Q be a star-shaped quiver and let α be a dimension vector of Q. Let

i = 1, . . . , k and j = 1, . . . , di. We define the gradient of α at i, j to be

∇i, j(α) =


αi,di−1 if j = di,

αi, j−1 − αi, j otherwise.

Lemma 4.2.6. Let α be a dimension vector of Q. Let i = 1, . . . , k and j = 1, . . . , di − 1

and let α̃ be the dimension vector obtained by reflecting α at the [i, j] vertex. The effect

of reflecting at an arm vertex is to permute the gradients on either side of the vertex,

that is ∇i, j(α̃) = ∇i, j+1(α), ∇i, j+1(α̃) = ∇i, j(α) and ∇i′, j′(α̃) = ∇i′, j′(α) for all i′ = 1, . . . , k and

j′ = 1, . . . , di such that if i′ = i, then j′ < { j, j + 1}.
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Proof. A reflection at i, j only changes the [i, j] vertex which in turn only affects the [i, j]

and [i, j + 1] gradient. So

∇i, j(α̃) = α̃i, j−1 − α̃i, j = αi, j−1 − (αi, j−1 + αi, j+1 − αi, j) = αi, j − αi, j+1 = ∇i, j+1(α)

∇i, j+1(α̃) = α̃i, j − α̃i, j+1 = (αi, j−1 + αi, j+1 − αi, j) − αi, j+1 = αi, j−1 − αi, j = ∇i, j(α)

The formula for α̃i, j is derived from the definition of reflection in Section 1.1.2. �

Lemma 4.2.7. A positive dimension vector α of Q is arm-fundamental if and only if for

each i = 1, . . . , k we have ∇i, j(α) ≥ ∇i, j+1(α) for all j = 1, . . . , di − 1.

Proof. α is arm-fundamental if si, j(α)i, j ≥ αi, j for all i = 1, . . . , k and j = 1, . . . , di − 1, that

is if αi, j−1 + αi, j+1 − αi, j ≥ αi, j. Rearranging this gives αi, j−1 − αi, j ≥ αi, j − αi, j+1, which is

∇i, j(α) ≥ ∇i, j+1(α). �

The next theorem says that if a positive dimension vector with positive central vertex

is a root, then it must be nonincreasing.

Theorem 4.2.8. Let β be a positive dimension vector of Q such that β0 > 0. If βi, j−1 < βi, j

for any i = 1, . . . , k and j = 1, . . . , di − 1, then β is not a root.

Proof. Suppose for some i, j we have βi, j−1 < βi, j, this implies ∇i, j = βi, j−1 − βi, j < 0. By

Lemma 4.2.6 a sequence of reflections along the i-arm (excluding the central vertex) can

permute ∇i, j(β) and ∇i,di(β). Let β̃ be the dimension vector resulting from this sequence of

reflection. We have ∇i,di(β̃) = β̃i,di−1 < 0, yet as β0 > 0 we must have β̃0 > 0 as we have

not reflected on the central vertex. So β̃ (and therefore β) cannot be a root as the nonzero

entries must be either all positive or all negative. �

Definition 4.2.9. Let α be arm-fundamental, we say an arm i of α is steadily sloping if

∇i,1(α) = ∇i,2(α).

Definition 4.2.10. Let α be a dimension vector. Let P(α) be the set of all dimension vectors

of Q obtained from α by a sequence of reflections of α on the arm vertices.

Lemma 4.2.11. If α is nonincreasing and positive then all P(α) are nonincreasing and

positive furthermore there is a unique arm-fundamental dimension vector in P(α).

Proof. If α is nonincreasing and positive, then this says precisely that each ∇i, j is non-

negative. Reflections on the arms of α permute the sequence ∇i,1(α), . . . ,∇i,di(α) so each
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dimension vector of P(α) is nonincreasing and positive. By Lemma 4.2.7, permuting

each sequence of gradients so they are in descending order gives an arm-fundamental

dimension vector, clearly this is unique. �

Definition 4.2.12. Let α (with α0 ≥ 2) be an arm-fundamental dimension vector. Let S(α)

be the dimension vector defined by S(α)i, j = αi, j for j = 1, . . . , di − 1 and i = 1, . . . , k and

S(α)0 = α0 − 1. Let T(α) be the unique arm-fundamental dimension vector in P(S(α)).

T(α) is well-defined as S(α) has S(α)0 ≥ 1 so is positive, and as ∇i,1(α) ≥ 1 for each i =

1, . . . , k (due to α being arm-fundamental) we have ∇i,1(S(α)) ≥ 0 so S(α) is nonincreasing.

Theorem 4.2.13. Let α be an arm-fundamental dimension vector. Let I be the index set of

all steadily sloping arms. Let β = S(α) and γ = T(α). We have γi,1 = αi,1 − 1 for all i ∈ I

and γi′,1 = αi′,1 for all i′ < I.

Proof. For each steadily sloping arm i of α we have ∇i,1(α) = ∇i,2(α). Therefore ∇i,1(β) =

∇i,1(α)−1 and ∇i,2(β) = ∇i,2(α). Clearly the unique arm-fundamental element γ of P(β) has

∇i,1(γ) = ∇i,2(β) = ∇i,2(α) = ∇i,1(α). So ∇i,1(γ) = α0 − 1− γi,1 = α0 − αi,1 hence γi,1 = αi,1 − 1.

For each non-steadily sloping arm i′ we have ∇i′,1(α) ≥ ∇i′,2(α) + 1. Therefore ∇i′,1(β) =

∇i′,1(α) − 1 ≥ ∇i′,2(α) and ∇i,2(β) = ∇i,2(α). So the unique arm-fundamental γ ∈ P(β) has

∇i′,1(γ) = ∇i′,1(α) − 1 which gives α0 − 1 − γi′,1 = α0 − αi′,1 − 1 and hence γi′,1 = αi′,1. �

Lemma 4.2.14. If α is an arm-fundamental dimension vector (with α0 ≥ 3) such that each

arm i has zi(α) ≥ 1, then each arm i of T(α) has zi(T(α)) ≥ 1.

Proof. Let i = 1, . . . , k be an arm of α. If ∇i,1(α) = 1, then as α is arm-fundamental the ith

arm (with the central vertex) must look like

α0
∇i,1(α)=1

α0 − 1
∇i,2(α)=1

α0 − 2
∇i,3(α)=1

· · · 1 0 · · · 0

and as α0 ≥ 3 we must have zi(α) ≥ 2. Now the ith arm of S(α) looks like

α0 − 1
∇i,1(S(α))=0

α0 − 1
∇i,2(S(α))=1

α0 − 2
∇i,3(S(α))=1

· · · 1 0 · · · 0

To reflect this to T(α) we permute the gradients until they are in descending order. As

there are at least two nonzero gradients on the ith arm in S(α) we have ∇i,1(T(α)) = 1 so

zi(T(α)) ≥ 1.



4.2. Star-Shaped Quivers 57

Suppose ∇i,1(α) ≥ 2, as zi(α) ≥ 1 we must have ∇i,2(α) , 0. Now we have ∇i,1(S(α)) ≥ 1

and ∇i,2(S(α)) , 0. As the ith arm gradients of T(α) are the (possibly permuted) ith arm

gradients of S(α), T(α) has at least two nonzero i-arm gradients. Therefore zi(T(α)) ≥ 1. �

Theorem 4.2.15. Let α be an arm-fundamental dimension vector such that zi(α) ≥ 1 for

i = 1, . . . , k. Let I ⊆ {1, . . . , k} be a subset of the arms of Q such that |I| ≥ 3. If
∑

i∈I αi,1 = α0,

then there can be at most one steadily sloping arm indexed by I.

Proof. Suppose i, i′ ∈ I such that i , i′ are steadily sloping. So ∇i,1(α) = ∇i,2(α) which

implies α0 − αi,1 = αi,1 − αi,2, hence αi,1 ≥ α0/2 and similarly αi′,1 ≥ α0/2. Let J = I \ {i, i′},

we have

α0 =
∑
r∈I

αr,1 = αi,1 + αi′,1 +
∑
r∈J

αr,1 ≥ α0 +
∑
r∈J

αr,1.

We have |J| ≥ 1 (as |I| ≥ 3) and αi,1 ≥ 1 (as zi(α) ≥ 1) for each i = 1, . . . , k therefore we have∑
r∈J αr,1 > 0 so

∑
r∈I αr,1 > α0 which is a contradiction. �

4.2.1 Arm-Fundamental Dimension Vectors with Shallowest Slope

Let k ≥ 2 and let Q be a quiver with k + 1 arms. We now consider positive dimension

vectors such that the value on the (k + 1)-arm drops by one each vertex as one moves

away from the centre. Such dimension vectors appear in Section 4.3.2 when we consider

the conjugacy class of nonderogatory matrices with prescribed eigenvalues. The main

results of this section are Theorems 4.2.25 and 4.2.28 which give necessary and sufficient

conditions for such a dimension vector (under additional restrictions) to be a root of Q.

Definition 4.2.16. Let α be a positive dimension vector. We say the ith arm of α has

shallowest slope if the ith arm (with the central vertex) is of the form

α0 α0 − 1 α0 − 2 · · · 2 1 0 · · · 0 ,

that is: the ith arm is of length greater or equal to α0 − 1, αi, j = α0 − j for j = 1, . . . , α0 − 1

and αi, j = 0 for j ≥ α0. Equivalently if ∇i, j(α) = 1 for j = 1, . . . , α0 − 1 and zero otherwise.

Example 4.2.17. Suppose k = 3, the following dimension vector of a star-shaped quiver,
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with k + 1 arms, has shallowest slope on its (k + 1)th arm.

4 3 2 1

5 2 1

4 3 2

3 2

We are interested in positive nonincreasing dimension vectors of Q whose k + 1 arm

has shallowest slope, that is dimension vectors of the form given below for some n ≥ 1

(the (k + 1)th arm is at the top).

α = n n − 1 n − 2 · · · 2 1 0 · · · 0

k arms of arbitrary length

Definition 4.2.18. Let H be the set of dimension vectors α of Q such that α is arm-

fundamental, has α0 ≥ 2, has zi(α) ≥ 1 for i = 1, . . . , k and has shallowest k + 1 slope. Let

Hn be the set of dimension vectors α of H such that α0 = n, clearly H =
⋃

n≥2 Hn.

We have Hn = ∅whenever n− 1 is greater than the length of the k + 1 arm (as it cannot

have shallowest slope), therefore the set H is finite. The finiteness of H, however, is not

important for this section and, if one prefers, one can think of the arms of Q as having

arbitrarily large length.

Theorem 4.2.19. If α ∈ H is a root, then
∑k

i=1 αi,1 ≥ α0.

Proof. Suppose
∑k

i=1 αi,1 < α0. Let β = s0(α), that is the dimension vector obtained by

reflecting α at the central vertex. So

β0 =

k+1∑
i=1

αi,1 − α0 =

k∑
i=1

αi,1 + (α0 − 1) − α0 =

k∑
i=1

αi,1 − 1 < α0 − 1 = αk+1,1 = βk+1,1,

so β0 < βk+1,1, by Theorem 4.2.8 β is not a root. �

Theorem 4.2.20. Let α ∈ H. If
∑k

i=1 αi,1 > α0, then α is an imaginary root.

Proof. Let β = s0(α), that is the dimension vector obtained by reflecting α at the central

vertex.

β0 =

k∑
i=1

αi,1 + (α0 − 1) − α0 > α0 − 1,

which implies β0 ≥ α0 so α is in the fundamental region and hence an imaginary root. �
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Recall from the previous section S(α) is the same as α except for S(α)0 = α− 1 and T(α)

is the unique arm-fundamental vector in P(S(α)).

Lemma 4.2.21. Let α ∈ H. If
∑k

i=1 αi,1 = α0, then s0(α) = S(α) and T(α) is the unique

arm-fundamental dimension vector of P(s0(α)).

Proof. s0(α)0 =
∑k+1

i=1 αi,1 − α0 =
∑k

i=1 αi,1 + (α0 − 1) − α0 = α0 − 1 = S(α)0, so s0(α) = S(α).

The second statement follows by definition. �

Lemma 4.2.22. Let n ≥ 3, if α ∈ Hn such that
∑k

i=1 αi,1 = α0, then T(α) ∈ Hn−1.

Proof. By definition we have T(α)0 = n − 1 and clearly T(α)0 has shallowest k + 1 slope

(all gradients on the (k + 1)th arm are either one or zero). By Lemma 4.2.14 we have

zi(T(α)) ≥ 1 for each i = 1, . . . , k, so we have T(α) ∈ Hn−1 �

N.B. let α ∈ H, although the (k + 1)th arm of α is steadily sloping, by convention we

exclude this arm from consideration when discussing the steadily sloping arms of α, for

instance if we say α has no steadily sloping arms, then we mean that none of the arms

1, . . . , k is steadily sloping.

Theorem 4.2.23. If α ∈ H such that α0 ≥ 3,
∑k

i=1 αi,1 = α0 and α has no steadily sloping

arms, then α is an imaginary root.

Proof. By Lemma 4.2.21 the dimension vector obtained by reflectingα on the central vertex

is S(α) so let γ = T(α). Let n = α0 so that α ∈ Hn. By Lemma 4.2.22 we have γ ∈ Hn−1.

Clearly γ0 = α0−1 and by Theorem 4.2.13 γi,1 = αi,1 for all i = 1, . . . , k, as α has no steadily

sloping arms. So we have

k∑
i=1

γi,1 =

k∑
i=1

αi,1 = α0 = γ0 + 1,

therefore
∑k

i=1 γi,1 > γ0. As γ ∈ H, Theorem 4.2.20 implies γ and α are imaginary roots. �

Lemma 4.2.24. Let α ∈ H such that α0 ≥ 4. If
∑k

i=1 αi,1 = α0, then for each i = 1, . . . , k

zi(α) ≥ 2 implies zi(T(α)) ≥ 2.

Proof. The condition
∑k

i=1 αi,1 = α0 implies S(α)0 = α0 − 1. So ∇i,1(S(α)) = ∇i,1(α) − 1. As

we obtain T(α) from S(α) by permuting the gradients, the only circumstance in which

zi(T(α)) < zi(α), for some i ∈ {1, . . . , k} is if ∇i,1(α) = 1. Suppose ∇i,1(α) = 1, as α is

arm-fundamental we have zi(α) = α0 − 1 ≥ 3. Now ∇i,1(S(α)) = 0 and by performing the
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reflection to obtain T(α) this gradient is permuted to the end of the arm, thus reducing

the nonzero length by one. So zi(T(α)) = zi(α) − 1 ≥ 2. �

The following theorems give necessary and sufficient conditions for a dimension

vector in H to be a root. We consider two separate cases depending on the number of

arms, we first consider the case where k ≥ 3. Remember however that Q has k + 1 arms.

Theorem 4.2.25. Let k ≥ 3, α ∈ H is a root if and only if
∑k

i=1 αi,1 ≥ α0.

Proof. If α is a root, then
∑k

i=1 αi,1 ≥ α0 by Theorem 4.2.19.

We use induction to show that if
∑k

i=1 αi,1 ≥ α0, then α is a root. We first prove this for

α ∈ H2. As α is arm-fundamental and zi(α) ≥ 1 for each i = 1, . . . , k we must have αi,1 = 1

for i = 1, . . . , k (clearly we must also have αk+1,1 = 1). As k ≥ 3, this implies that α satisfies∑k
i=1 αi,1 ≥ α0, we show this property implies α is a root. Let β = s0(α), so

β0 =

k∑
i=1

αi,1 + αk+1,1 − α0 = k + 1 − 2 = k − 1 ≥ 2.

So reflecting α at the central vertex does not decrease the value at the central vertex,

therefore α is in the fundamental region, and hence an (imaginary) root.

Now we show that if the induction hypothesis is true for all dimension vectors in

Hn−1, where n ≥ 3, then it is true for all dimension vectors in Hn.

Let α ∈ Hn and let β = s0(α). If
∑k

i=1 αi,1 > α0, then by Theorem 4.2.20 α is an imaginary

root. Suppose instead that
∑k

i=1 αi,1 = α0, by Lemma 4.2.21 this implies β = S(α). By

Theorem 4.2.15 α can have no more than one steadily sloping arm. If α has no steadily

sloping arms then by Theorem 4.2.23 α is a root. Suppose that α has one steadily sloping

arm, say i′ ∈ {1, . . . , k}. Let γ = T(α). By Theorem 4.2.13 we have

k∑
i=1

γi,1 =

k∑
i=1:
i,i′

αi,1 + (αi′,1 − 1) =

k∑
i=1

αi,1 − 1 = α0 − 1 = γ0.

So we have
∑k

i=1 γi,1 ≥ γ0. By Lemma 4.2.22 we have γ ∈ Hn−1 which, by the induction

hypothesis, implies γ and α are roots. �

We now look at the case where k = 2.

Lemma 4.2.26. Let k = 2. If α ∈ H such that
∑k

i=1 αi,1 = α0, then α has two steadily sloping

arms if and only if z1(α) = z2(α) = 1.



4.2. Star-Shaped Quivers 61

Proof. Suppose z1(α) = z2(α) = 1, as α is arm-fundamental we have, for i = 1, 2, ∇i,1(α) =

α0 − αi,1 ≥ αi,1 so αi,1 ≤ α0/2. Let i ∈ {1, 2}, if we have αi,1 < α0/2, then α1,1 + α2,1 = α0

implies α3−i,1 > α0/2 so α1,1 = α2,1 = α0/2 (note that this case arrises only if α0 is even).

So for i = 1, 2 we have ∇i,1(α) = α0 − α0/2 = α0/2 and ∇i,2(α) = α0/2. So both arms are

steadily sloping.

Suppose α has two steadily sloping arms, we have ∇i,1(α) = ∇i,2(α) for i = 1, 2, this

implies α0 − αi,1 = αi,1 − αi,2, which gives αi,1 ≥ α0/2. Using a similar argument to the one

above we conclude from α1,1 + α2,1 = α0 that α1,1 = α2,1 = α0/2. As both arms are steadily

sloping we conclude α1,2 = α2,2 = 0 so z1(α) = z2(α) = 1. �

Lemma 4.2.27. Let k = 2 and α ∈ H. If α is a root and z1(α) = z2(α) = 1, then α0 = 2.

Proof. If α is a root and z1(α) = z2(α) = 1, then we can think of α as a dimension vector of a

quiver of underlying type Dn+2, so by the representation theory of quivers of underlying

type Dn+2 we must have α0 = 2. �

Theorem 4.2.28. Suppose k = 2, α ∈ H is a root if and only if
∑k

i=1 αi,1 ≥ α0 and either

α0 = 2 or at least one of z1(α), z2(α) is not equal to 1.1

Proof. If α ∈ H is a root, then by Theorem 4.2.19
∑k

i=1 αi,1 ≥ α0 and by Lemma 4.2.27 we

have either α0 = 2 or at least one of z1(α), z2(α) is not equal to 1.

We use induction to show that if α ∈ H satisfies
∑k

i=1 αi,1 ≥ α0 and either α0 = 2 or at

least one of z1(α), z2(α) is not equal to 1, then α is a root. We first prove this for α ∈ H2, in

this case we have α0 = 2, α1,1 = α2,1 = α3,1 = 1 with all other entries zero. This is both a

(real) root and satisfies
∑k

i=1 αi,1 ≥ α0.

Now we show that if the hypothesis is true for all dimension vectors in Hn−1, where

n ≥ 3, then it is true for all dimension vectors in Hn. Let α ∈ Hn. Suppose at least one of

z1(α), z2(α) is not equal to 1.

If
∑k

i=1 αi,1 > α0, then by Theorem 4.2.20 α is an (imaginary) root. Suppose that∑k
i=1 αi,1 = α0 and let β = s0(α). We have

β0 =

k∑
i=1

αi,1 + (α0 − 1) − α0 = n − 1,

1The condition “eitherα0 = 2 or at least one of z1(α), z2(α) is not equal to 1” is equivalent
to “z1(α) = z2(α) = 1 implies α0 = 2”.
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that is β = S(α). Let γ = T(α), by Lemma 4.2.22 we have γ ∈ Hn−1. If n ≥ 4, then by Lemma

4.2.24 for any i = 1, 2 such that zi(α) ≥ 2 we have zi(γ) ≥ 2 so at least one of z1(γ), z2(γ) is

not equal to 1. By the induction hypothesis this proves γ is a root, which proves α is also.

Suppose finally that n = 3, in this case γ0 = 2. By Lemma 4.2.26 α can have no more than

one steadily sloping arm. If α has no steadily sloping arms then α is a root by Theorem

4.2.23. Suppose that α has one steadily sloping arm, say i′ ∈ {1, 2}, we have by Theorem

4.2.13

k∑
i=1

γi,1 =

k∑
i=1:
i,i′

αi,1 + (αi′,1 − 1) =

k∑
i=1

αi,1 − 1 = α0 − 1 = γ0.

So we have
∑k

i=1 γi,1 ≥ γ0 and γ0 = 2. By the induction hypothesis, as γ ∈ Hn−1, we have

that γ is a root, therefore so is α. �

4.3 Silva’s Solutions

Let K be an algebraically closed field of characteristic zero, let V be a K-vector space of

dimension n ≥ 2. Let k ≥ 2 and let C1, . . . ,Ck ⊂ End(V) be nonscalar conjugacy classes. As

seen in Section 4.1.1 the nonscalar restriction entails no loss of generality. Let c1, . . . , cn ∈ K.

The problem addressed by Silva et al. in [NS99], [Sil90] and several other papers is called

the recognition problem and is of the form: given the conjugacy classes C1, . . . ,Ck and

eigenvalues c1, . . . , cn under what conditions does there exist Ai ∈ Ci for i = 1, . . . , k such

that A1 + · · · + Ak has eigenvalues c1, . . . , cn. This is close to the problems addressed in

Section 4.1 but differs in that we do not specify the exact Jordan structure of A1 + · · · + Ak

but only the eigenvalues.

We give the solution presented by Silva et al. in Section 4.3.1 and in Section 4.3.2 we

compare this solution to the one given by Crawley-Boevey.

4.3.1 The Main Theorem

For each i = 1, . . . , k let ηi be an eigenvalue of Ci of maximal geometric multiplicity,

let ri = rank(Ai − ηi1V) where A ∈ Ci (this is equal to minξ∈Ψ(Ci){rank(Ai − ξIn)}), let

ti =
∑k

l=1 rl − ri, and let si be the number of nonconstant invariant polynomials of Ci.

Recall that we denote the invariant polynomials of Ci by ιCi,1, . . . , ιCi,n.
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Theorem 4.3.1. There exists Ai ∈ Ci such that A1 + · · ·+ Ak has eigenvalues c1, . . . , ck if and

only if

1.
∑k

i=1 trace(Ci) = c1 + · · · + ck,

2. For each i = 1, . . . , k we have

n−ti∏
j=1

ιCi, j(x + ηi −

k∑
l=1

ηl)
∣∣∣∣ n∏

p=1

(x − cp). (4.6)

3. If k = 2 and deg(ιC1,n) = deg(ιC2,n) = 2 (in this case let ιCi,n(x) = (x − ηi)(x − υi) for

i = 1, 2), then there exists a permutation π : {1, . . . ,n} → {1, . . . ,n} such that:

cπ(2i−1) + cπ(2i) = η1 + η2 + υ1 + υ2 for 1 ≤ i ≤ n − s2,

cπ(i) = η1 + η2 for 2(n − s2) < i ≤ n + s1 − s2,

cπ(i) = υ1 + η2 for n + s1 − s2 < i ≤ n.

Proof. [Sil90, Thm. 7] and [NS99, Thm. 2]. 2 �

Although the problem of Silva et al. is not to find endomorphisms which sum to

zero, we can easily rephrase the problem so that it does. Finding k endomorphisms in

prescribed conjugacy classes which sum to an endomorphism with prescribed eigenvalues (i.e.

c1, . . . , cn) is equivalent to finding k + 1 endomorphisms, which sum to zero, where the

first k are in prescribed conjugacy classes and the last one has prescribed eigenvalues (i.e.

−c1, . . . ,−cn).

To say an endomorphism has prescribed eigenvalues is equivalent to saying it has pre-

scribed characteristic polynomial (in this case (x + c1) . . . (x + cn)). By Theorem 2.1.25 the

set of endomorphisms with prescribed characteristic polynomial is the closure of the con-

jugacy class containing nonderogatory endomorphisms with the prescribed characteristic

polynomial. This is not, in general, the same problem considered by Crawley-Boevey,

however under a certain condition, given below, the two problems coincide.

Remark 4.3.2. If C1, . . . ,Ck are closed and Ck+1 consists of nonderogatory endomophisms,

then Theorems 4.3.1 and 4.1.16 coincide (with appropriate modifications to the c1, . . . , cn,

i.e. negation).

2Silva et al. considers the k = 2 and k ≥ 3 cases in separate papers, but we amalgamate
the theorems into one here.
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We use the machinary developed in Section 4.2 to interpret the conditions of Theorem

4.3.1 in terms of dimension vectors and relate it to Theorem 4.1.16 in the case where the

two conditions coincide.

4.3.2 Comparing the Results of Crawley-Boevey and Silva et al.

Let C1, . . . ,Ck be closed and let Ck+1 be the conjugacy class consisting of nonderogatory

endomorphisms with characteristic polynomial (x + c1) . . . (x + cn).

Both Theorem 4.3.1 and 4.1.16 are of the form: “there exists Ai ∈ Ci such that A1+· · ·+Ak

has eigenvalues c1, . . . , cn if and only if some conditions on the C1, . . . ,Ck and the c1, . . . , cn

are satisifed”. The purpose of this section to show the “conditions on the C1, . . . ,Ck and

the c1, . . . , cn” in both Theorem 4.3.1 and 4.1.16 are equivalent. Thought time restrictions

prevent us from showing this completely we make some progress towards it.

Let ξi,1, . . . , ξi,di for i = 1, . . . , k + 1, Q, α ∈ ZQ0 and λ ∈ KQ0 be defined as in Section

4.1.1. Note α0 = n, ξk+1, j = −c j for j = 1, . . . ,n. We assume α is arm-fundamental. By the

following lemma this does not result in any loss of generality.

Lemma 4.3.3. If we choose an ordering of theξi,1, . . . , ξi,di such that algrCi
(ξi, j) > algrCi

(ξi, j′)

implies j < j′ for j, j′ ∈ {1, . . . , di} for each i = 1, . . . , k, then α is arm-fundamental.

Proof. Suppose we choose such an ordering, this is equivalent to saying: for each

i = 1, . . . , k the ξi,1, . . . , ξi,di are arranged in descending order of algebraic multiplic-

ity. As the C1, . . . ,Ck are closed the ξi,1, . . . , ξi,di are distinct, therefore we have αi, j =

rank(
∏ j

l=1(A − ξi,l1V)) = n −
∑ j

l=1 algrCi
(ξi,l) (for A ∈ Ci). So ∇i, j(α) = n −

∑ j−1
l=1 algrCi

(ξi,l) −

(n −
∑ j

l=1 algrCi
(ξi,l)) = algrCi

(ξi, j). So α is arm-fundamental on the ith arm for i = 1, . . . , k.

The Ck+1 class is nonderogatory (but not necessarily closed), this implies the (k + 1)th arm

has shallowest slope, hence is trivially arm-fundamental (recall Theorem 2.1.24). �

By the above lemma we can safely assume the eigenvalue ηi of Ci, chosen to have

maximal geometric (and algebraic, as Ci is closed) multiplicity, is ξi,1 for i = 1, . . . , k. We

consider the case where the underlying graph of Q is not Dn+2, by the following lemma

this assumption implies Condition 3 of Theorem 4.3.1 is satisfied trivially.

Lemma 4.3.4. The associated quiver Q has underlying graph Dn+2 if and only if k = 2 and

deg(ιC1,n) = deg(ιC2,n) = 2.
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Proof. Q has underlying graph Dn+2 if and only if k = 2 and d1 = d2 = 2. As minCi(x) =

ιCi,n(x) for i = 1, 2, it follows that d1 = d2 = 2 is equivalent to deg(ιC1,n) = deg(ιC2,n) = 2. �

Remark 4.3.5. It can be shown thatλ·α = 0 is equivalent to
∑k+1

i=1 trace(Ci) = 0. By Theorem

2.2.4, for any Ai ∈ Ci, there exists vector spaces and maps as given in the theorem. Using

this result we take the trace of each Ai and use the fact that trace(AB) = trace(BA) for

approprately sized endomorphisms A and B to derive the result.

It follows easily from Theorem 4.1.16 that λ · α = 0 is a necessary condition for a

solution to the additive matrix problem to exist. By Remark 4.3.5 this is equivalent to∑k+1
i=1 trace(Ci) = 0 which is equivalent to Condition 1 in Theorem 4.3.1.

The following lemma gives the necessary and sufficient condition for Condition 2 of

Theorem 4.3.1 to be satisfied trivially, that is for the left-hand sides of (4.6) to be equal to

1.

Lemma 4.3.6. Let Q have underlying type different from Dn+2. Condition 2 of Theorem

4.3.1 is satisfied trivially if and only if α is a root.

Proof. As Ck+1 is a conjugacy class consisting of nonderogatory matrices, Lemma 2.1.24

implies the k + 1 arm of α has shallowest slope. As the C1, . . . ,Ck are nonscalar, the

nonzero arm-lengths z1(α), . . . , zk(α) are all nonzero. By Lemma 4.3.3 we assume α is

arm-fundamental so that α ∈ H, and that
∑k

i=1 ri ≥ n is equivalent to
∑k

i=1 αi,1 ≥ α0. By

Theorem 4.2.25 or Theorem 4.2.28 (depending on where k ≥ 3 or k = 2 respectively) we

have
∑k

i=1 αi,1 ≥ α0 if and only if α is a root.

We show
∑k

i=1 ri ≥ n if and only if the divisibility condition (4.6) is trivial. Let

i ∈ {1, . . . , k}. The nonconstant invariant polynomials of Ci are ιCi,n−si+1(x), . . . , ιCi,n(x). As

the left-hand side of (4.6) is a product of ιCi,1(x), . . . , ιCi,n−ti(x), it is equal to 1 if and only if

n−ti < n−si+1, which (as n−si = ri by their definitions) is equivalent to n−
∑k

l=1 rl+ri < ri+1,

which is equivalent to n −
∑k

l=1 rl ≤ 0, which is equivalent to
∑k

l=1 rl ≥ n. �

So if α is a root and Q does not have underlying type Dn+2, then both Theorem 4.3.1

and Theorem 4.1.16 imply there exists a solution to the additive matrix problem if and

only if λ · α = 0.

Due to time limitations it was not possible to address the case where α is not a root or

where Q has underlying type Dn+2. It seems reasonable to conjecture that if α is not a root
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(and Q does not have underlying type Dn+2), then the nontrivial factors of the left-hand

side of (4.6) can be used to construct a root decomposition (β1, . . . , βr) of α compatible

with λ. Each linear factor of the left-hand side of (4.6), for some i ∈ {1, . . . , k}, implies there

exists some p ∈ {1, . . . ,n} and j ∈ {1, . . . , di} such that cp = ξi,1 −
∑k

l=1 ξl,1 − ξi, j. This can

be expressed as λ · β = 0 where β is a particular positive real root consisting only of ones

and zeros. Let β1, . . . , βr be a list of such positive roots (the possible sizes of such lists is

not immediately clear) and let γ = α − (β1 + · · · + βr), we have α = β1 + · · · + βr + γ and

λ · β1 = · · · = λ · βr = λ · γ = 0. If it can be shown that each summand is a positive root,

then this result could be the beginning of a more general theorem comparing the results

of Silva et al. and Crawley-Boevey.

4.4 A New Approach to the Additive Matrix Problem with Closed

Conjugacy Classes using Invariant Polynomials

We introduce a new approach to solving the additive matrix problem when all conjugacy

classes are closed. This approach builds on Theorem 4.1.16 of Crawley-Boevey. Let V be

a K-vector space. Let k ≥ 2 and let C1, . . . ,Ck ⊆ End(V) be a k-tuple of closed conjugacy

classes, so Ci = Ci for i = 1, . . . , k. Let Q be the star-shaped quiver associated to C1, . . . ,Ck.

Let ξi,1, . . . , ξi,di be a list of the roots of the minimal polynomial of Ci for i = 1, . . . , k.

Recall the definitions of α ∈ ZQ0 and λ ∈ KQ0 in Section 4.1.1 and recall that these depend

on the orderings of the ξi,1, . . . , ξi,di . Let us consider those orderings which makes α arm-

fundamental. There may be many such orderings and these may give different values for

λ. Let Λ be the set of all such λ over these orderings.

In this setting Theorem 4.1.16 is equivalent to: there exists Ai ∈ Ci for i = 1, . . . , k such

that
∑k

i=1 Ai = 0 if and only if there exists some root decomposition β = (β1, . . . , βl) of α and

some λ ∈ Λ such that (β1, . . . , βl) is compatible with λ (recall the definitions from Section

1.2.3). It is easy to see this occurs if and only if

Mβ(z1, . . . , zl) =
∏
λ∈Λ

(λ · (β1z1 + · · · + βlzl)) = 0, (4.7)

where z1, . . . , zl is a collection of indeterminates.

As there is a finite number of root decompositions of α, determining whether the

conditions of Theorem 4.1.16 are satisfied is equivalent to checking whether for any of the



4.4. A New Approach to the Additive Matrix Problem using Invariant Polynomials 67

finite number of root decompositions (β1, . . . , βl) of α we have Mβ(z1, . . . , zl) = 0.

We show that (4.7) can be computed using the coefficients of the invariant polynomials

of C1, . . . ,Ck without calculating the eigenvalues directly. Note that given λ ∈ Λ and

β ∈ ZQ0 the scalar productλ·β can be expressed as an linear combination of the ξi,1, . . . , ξi,di

for i = 1, . . . , k with integral coefficients. The different elements of Λ are produced by

different orderings of the ξi,1, . . . , ξi,di . In Section 4.4.1 we establish notation to make the

orderings explicit. We show, in Remark 4.4.9, that it is possible to calculate the unique

arm-fundamental dimension vector α without factoring the invariant polynomials.

In Section 4.4.1 we introduce explicit notation for the different orderings, in Section

4.4.2 we introduce, for each i = 1, . . . , k, an n-tuple of polynomials gi,1, . . . , gi,n from which

(4.7) can be constructed. In Section 4.4.3 we show how to write (4.7) in terms of the

roots of gi,1, . . . , gi,n. Recall the two operations introduced in Chapter 3: the Root sum and

Kronecker sum of a polynomial. In Section 4.4.4 we define the matrix sum polynomial

Sβ(z1, . . . , zl) using the Kronecker sum and the root sum and show this is precisely equal

to (4.7) as defined above.

4.4.1 Orderings of Eigenvalues

Definition 4.4.1. Let R be an integral domain, let ξ1, . . . , ξn ∈ R be distinct and let g(x) =

(x−ξ1) . . . (x−ξn). An ordering of the roots of g(x) is a bijective mapω from the set {1, . . . ,n}

to the set of roots of g, that is a bijection ω : {1, . . . ,n} → {ξ1, . . . , ξn}. Such a map gives the

set of roots an ordering, that is ω(i) is the ith root of g under the ordering ω. Let Σg be the

set of all orderings of the roots of g.

As the roots are distinct it is clear that Σg is isomorphic to Σn, the group of permutations

of {1, . . . ,n}.

Definition 4.4.2. Let C ⊆ End(V) be a closed conjugacy class. An ordering of the distinct

eigenvalues of C is an ordering of the roots of the minimal polynomial of C. Let the set of

such orderings be denoted ΣC.

Let C = (C1, . . . ,Ck) and let ΣC =
∏k

i=1 ΣCi . Recall the definitions of α and λ given in

Section 4.1.1, and recall that these depend on the orderings chosen for the roots of the

minimal polynomials minCi . We introduce terminology for these objects which makes the

dependence on the orderings explicit.
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Definition 4.4.3. Let ω ∈ ΣC. Let αω ∈ ZQ0 be the dimension vector of Q given by αω0 = n

and

α
ω

i, j = rank
( j∏

l=1

(Ai − ωi(l)1V)
)
, for Ai ∈ Ci,

let λω ∈ KQ0 be the K-vector given by λω0 = −
∑k

i=1ωi(1) and λωi, j = ωi( j)−ωi( j + 1) for each

i = 1, . . . , k and j = 1, . . . , di − 1. The definition of αω is well-defined as the rank does not

depend on our choices of Ai ∈ Ci for i = 1, . . . , k.

Recall the definition of the gradient ∇i, j of a dimension vector at vertex [i, j], given in

Section 4.2. Recall from Section 2.1 that the algebraic multiplicity of an eigenvalue ξ of C

(that is the multiplicity of ξ in the characteristic polynomial) is denoted algrC(ξ). As C is

closed, the geometric and algebraic multiplicities of C are the same, however we continue

to use the term algebraic multiplicity to distinguish from the concept of the multiplicity

of a root of a polynomial.

Lemma 4.4.4. Let ω ∈ ΣC. We have ∇i, j(αω) = algrCi
(ωi( j)).

Proof. Recall from the proof of Lemma 4.3.3 that rank(
∏ j−1

l=1 (Ai−ξi,l1V)) = n−
∑ j−1

l=1 algrCi
(ξi,l)

for Ai ∈ Ci as Ci is closed.

α
ω

i, j−1 − α
ω

i, j = rank
( j−1∏

l=1

(Ai − ωi(l)1V)
)
− rank

( j∏
l=1

(Ai − ωi(l)1V)
)

= (n −
j−1∑
l=1

algrCi
(ωi(l))) − (n −

j∑
l=1

algrCi
(ωi(l))) = algrCi

(ωi( j)),

where Ai ∈ Ci for i = 1, . . . , k. �

4.4.2 Multiplicity Preserving Orderings and the Multiplicity Factorization

Definition 4.4.5. Let C be a closed conjugacy class. We say an ordering ω ∈ ΣC of the

distinct eigenvalues of C preserves multiplicity if ω−1(ψ) < ω−1(ψ′) implies algrC(ψ) ≥

algrC(ψ′) where ψ,ψ′ ∈ Ψ(C) (Recall Ψ(C) is the set of eigenvalues of C). Let the set of

multiplicity preserving orderings be denoted ΞC.

Effectively, a multiplicity preserving ordering ensures eigenvalues with higher alge-

braic multiplicities appear before eigenvalues with lower algebraic multiplicities. Let

C = (C1, . . . ,Ck) be a set of closed conjugacy classes and let ΞC = ΞC1 × · · · × ΞCk .

Lemma 4.4.6. ω ∈ ΞC if and only if αω is arm-fundamental.
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Proof. Use Lemmas 4.2.6 and 4.4.4. �

Recall the definition of the invariant polynomials ιC,1 | · · · | ιC,n for a conjugacy class C.

Definition 4.4.7. Let C ⊆ End(V) be a closed conjugacy class. For each i = 1, . . . , k define

the multiplicity factorization of C by

g j(x) =
ιC,n− j+1(x)
ιC,n− j(x)

for j = 1, . . . ,n − 1 and let gn(x) = ιC,1(x). As ιC,p are monic so are the g j. Note that many

of the g j may be trivial (i.e. g j(x) = 1). As ιC,1 | · · · | ιC,n we have g1, . . . , gn ∈ K[x].

The next lemma explains the name multiplicity factorization.

Lemma 4.4.8. Let C ⊆ End(V) be a closed conjugacy class with multiplicity factorization

g1, . . . , gn. The roots of g j are precisely the eigenvalues of C which have multiplicity j.

Proof. By definition the roots of g j are the roots of ιC,n− j+1(x) which are not also roots of

ιC,n− j(x). From the properties of invariant polynomials given in Section 2.1.1 we see that

g j has for its roots the eigenvalues of C which have geometric (and algebraic) multiplicity

less than j + 1 but not less than n − n + j = j. As each invariant polynomial has distinct

roots the result follows. �

For each i = 1, . . . , k, let gi,1(x), . . . , gi,n(x) be the multiplicity factorization of Ci. and let

di, j = deg(gi, j).

Remark 4.4.9. Given the invariant polynomials of a conjugacy class Ci the multiplic-

ity factorization gi,1, . . . , gi,n can be computed without polynomial factorization. We

have gi,n(x) = ιCi,1(x) by definition and for j = 1, . . . ,n − 1 we expand the equation

ιCi,n− j(x)gi, j(x) = ιCi,n− j+1(x) and obtain the coefficients of gi, j(x) by solving a linear system.

The fact that ιCi,n− j(x) divides ιCi,n− j+1(x) ensures the system has a unique solution.

Let ω ∈ ΣC, by Lemma 4.4.8, the degree di, j of gi, j is the number of eigenvalues of

Ci which have algebraic multiplicity j. By Lemma 4.4.4 the di, j’s give us the number of

gradients∇i, j(αω) equal to j on the ith arm of αω. To ensure αω is arm-fundamental (and so

ω ∈ ΞC) we construct each arm of αω such that it has the appropriate number of gradients

of each size and such that the gradients are arranged in descending order. Although

we do not give an algorithm to construct arm-fundamental αω here, it is clear that such

an algorithm exists and relies only on the degrees of the multiplicity factorizations of

C1, . . . ,Ck.
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4.4.3 The Scalar Product λω · β where ω is Multiplicity Preserving

Let β be a dimension vector. As previously noted we can write the scalar product λω · β

as an integral combination of the roots of the minimal polynomials. Let z1, . . . , zl be

indeterminates and let (β1, . . . , βl) be a decomposition of α. It is easy to see that we can

also write λω · (β1z1 + · · · βlzl) as an integral combination of the z1, . . . , zl and the roots of

the minimal polynomials and that these integer coeficients depend only on the β1, . . . , βl.

The following lemma shows, for general orderings ω of the distinct eigenvalues, how

to write λω · β in terms the values of ω and the gradients of β.

Lemma 4.4.10. Let β be a dimension vector of Q and let ω ∈ ΣC, we have

λω · β = −

k∑
i=1

di∑
j=1

ωi( j)∇i, j(β). (4.8)

Proof.

λω · β = λ
ω

0 β0 +

k∑
i=1

di−1∑
j=1

λ
ω

i, jβi, j

= −

k∑
i=1

(
β0ωi(1) −

di−1∑
j=1

βi, jωi( j) +

di∑
j=2

βi, j−1ωi( j)
)

= −

k∑
i=1

(
β0ωi(1) −

di−1∑
j=2

βi, jωi( j) +

di−1∑
j=2

βi, j−1ωi( j) − βi,1ωi(1) + βi,di−1ωi(di)
)

= −

k∑
i=1

(
ωi(1)(β0 − βi,1) +

di−1∑
j=2

ωi( j)(βi, j−1 − βi, j) + βi,di−1ωi(di)
)

= −

k∑
i=1

( di−1∑
j=1

ωi( j)(βi, j−1 − βi, j) + ωi(di)βi,di−1

)
= −

k∑
i=1

di∑
j=1

ωi( j)∇i, j(β).

�

Remark 4.4.11. Multiplicity preserving orderings ensure eigenvalues with the same mul-

tiplicity are arranged in contiguous blocks. Let C be a closed conjugacy class with

multiplicity factorization g1, . . . , gn. Let ξ j,1, . . . , ξ j,d j be the roots of g j for j = 1, . . . ,n

(collectively these are also the roots of minC). A multiplicity preserving ordering ω ∈ ΞC

arranges the roots of minC in blocks as below

roots of gn︷          ︸︸          ︷
ξn,1, . . . , ξn,dn , . . . ,

roots of g j︷        ︸︸        ︷
ξ j,1, . . . , ξ j,d j ,

roots of g j−1︷                ︸︸                ︷
ξ j−1,1, . . . , ξ j−1,d j−1 , . . . ,

roots of g2︷         ︸︸         ︷
ξ2,1, . . . , ξ2,d2 ,

roots of g1︷         ︸︸         ︷
ξ1,1, . . . , ξ1,d1

(4.9)

Different multiplicity preserving orderings permute the roots within the contiguous

blocks.
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We can identify ω ∈ ΞC with a unique n-tuple of orderings ρ = (ρ1, . . . , ρn) where ρ j

is an ordering of the roots of g j, that is there is a bijection from
∏n

j=1 Σg j to ΞC. Although

we do not give an explicit construction of the bijection here, it is straight-forward to see

how it can be constructed using the degrees of the multiplicity factorizations.

Remark 4.4.12. For i = 1, . . . , k let Fi be the bijection from
∏n

j=1 Σgi, j to ΞCi . Let H =∏k
i=1

∏n
j=1 Σgi, j . There is a bijection F from H to ΞC given by F (ρ) = (F1(ρ(1)), . . . ,Fk(ρ(k))),

where ρ = (ρ(1), . . . ,ρ(k)) ∈ H, that is ρ(i) = (ρi,1, . . . , ρi,n) where ρi, j ∈ Σgi, j for i = 1, . . . , k

and j = 1, . . . ,n.

The following lemma shows how to write λω ·β in terms of the roots of the multiplicity

factorizations when the ordering ω is multiplicity preserving. Let Ri( j) =
∑n

l= j+1 di,l, note

that Ri( j)+1 is the position of the first root of multiplicity j under a multiplicity preserving

ordering and Ri( j) + di, j is the position of the last.

Lemma 4.4.13. Let β be a dimension vector of Q. For some ω ∈ ΞC we have

λω · β = −

k∑
i=1

n∑
j=1

di, j∑
p=1

∇i,Ri( j)+p(β)F −1(ω)i, j(p),

Proof. By Lemma 4.4.10 we haveλω ·β = −
∑k

i=1
∑di

j=1ωi( j)∇i, j(β) and by Remarks 4.4.12ω is

uniquely identified with a tuple F −1(ω) ∈ H and ω assigns the indices Ri( j) + 1, . . . ,Ri( j) +

di, j to the roots of gi, j, therefore

λω · β = −

k∑
i=1

n∑
j=1

di, j∑
p=1

ωi(Ri( j) + p)∇i,Ri( j)+p(β)

We use the fact that F : H→ ΞC is a bijection to get

λω · β = −

k∑
i=1

n∑
j=1

di, j∑
p=1

F
−1(ω)i, j(p)∇i,Ri( j)+p(β).

�

Remark 4.4.14. In Lemma 4.4.13 we are given ω ∈ ΞC, if instead we are given ρ ∈ H we

can rewrite the statement of the lemma as

λF (ρ)
· β = −

k∑
i=1

n∑
j=1

di, j∑
p=1

∇i,Ri( j)+p(β)ρi, j(p).
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4.4.4 Main Theorem

Recall the Kronecker sum and root sum operations on polynomials introduced in Chapter

3. Let β = (β1, . . . , βl) be a root decomposition of αω where ω ∈ ΞC (recall that αω is

arm-fundamental and can be computed as in Remark 4.4.9). Let z = (z1, . . . , zl) be an

l-tuple of indeterminates. We show how the operations defined in Chapter 3, applied to

the multiplicity factorization, are used to construct a polynomial Sβ(z1, . . . , zl) which is

precisely equal to (4.7). For i = 1, . . . , k, j = 1, . . . ,n and p = 1, . . . , di, j, let

Di, j,p(z) =

l∑
q=1

∇i,Ri( j)+p(βq)zq.

Definition 4.4.15. We define the matrix sum polynomial by

Sβ(z1, . . . , zn) =

k,n⊕
K

i, j=1

Rgi, j(x,Di, j,1(z), . . . ,Di, j,di, j(z))
∣∣∣∣
x=0
.

Note that the above is constructed by a finite number of applications of the root

sum and Kronecker sum operations (all with respect to x) and variable substitution.

The following theorem along with Remark 4.4.14 shows the matrix sum polynomial is

equivalent to (4.7). Recall that H =
∏k

i=1
∏n

j=1 Σgi, j .

Theorem 4.4.16. We have

k,n⊕
K

i, j=1

Rgi, j(x,Di, j,1(z), . . . ,Di, j,di, j(z)) =
∏
ρ∈H

(x −
k∑

i=1

n∑
j=1

di, j∑
p=1

ρi, j(p)Di, j,p(z))

Proof. For each i = 1, . . . , k and j = 1, . . . ,n let (yi,j,1, . . . , yi,j,di, j) be a family of variables,

where di, j = deg(gi, j). For each polynomial of the multiplicity factorization gi,1, . . . , gi,n of

Ci we compute the root sum, by Theorem 3.2.11 the root sum is:

Rgi, j(x, yi,j,1, . . . , yi,j,di, j) =
∏
ρ∈Σgi, j

(x −
di, j∑
p=1

yi, j,pρ(p))

By repeated use of the Kronecker sum (with respect to x) we “glue together” each of

the root sums, by Theorem 3.1.3 this expression is:

k,n⊕
K

i, j=1

Rgi, j(x, yi,j,1, . . . , yi,j,di, j) =
∏
ρ∈H

(x −
k∑

i=1

n∑
j=1

di, j∑
p=1

yi, j,pρi, j(p)).

Note that the order we do the “gluing” does not matter as the Kronecker sum is commu-

tative and associative. For each i, j, p we substitute Di, j,p(z) in to yi, j,p. �
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Recall the bijection F : H→ ΞC from Section 4.4.3.

Corollary 4.4.17. Recall (4.7), we have Mβ(z1, . . . , zn) = 0 if and only if Sβ(z1, . . . , zn) = 0.

Proof. By Remark 4.4.14 we have, for ρ ∈ H,

k∑
i=1

n∑
j=1

di, j∑
p=1

Di, j,p(z)ρi, j(p) =

k∑
i=1

n∑
j=1

di, j∑
p=1

l∑
q=1

∇i,Ri( j)+p(βq)ρi, j(p)zq =

l∑
q=1

λF (ρ)
· βqzq,

so by Theorem 4.4.16 Sβ(z1, . . . , zn) = 0 if and only if
∑l

q=1 λ
F (ρ)
· βqzq = 0 for some ρ ∈ H.

As F is a bijection this is equivalent to
∑l

q=1 λ
ω
· βqzq = 0 for some ω ∈ ΞC, which, by (4.7),

occurs if and only if Mβ(z1, . . . , zn) = 0. �

Theorem 4.4.18. There exists Ai ∈ Ci for i = 1, . . . , k such that A1 + · · ·+ Ak = 0 if and only

there exists some root decomposition β = (β1, . . . , βl) of α such that Sβ(z1, . . . , zl) = 0.

Proof. By Corollary 4.4.17 and the remarks in the introduction. �

The results in this section show that it is possible to solve the additive matrix problem

where the conjugacy classes are closed in such a way that does not require knowing the

eigenvalues exactly, as long as we know the invariant polynomials. These results only

apply in the case where the conjugacy classes are closed, if we work with more general

conjugacy classes then we cannot use multiplicity preserving orderings in order to make

the dimension vector arm-fundamental. Due to time restrictions it was not possible to

study this case.



74 Chapter 4. The Additive Matrix Problem



Chapter 5

Symmetric Quivers and Symmetric

Representations

In Section 5.1 we define the concepts of a symmetric quiver and of a symmetric rep-

resentation of a symmetric quiver. These definitions appear in the literature (see for

example [Shm06]). We extend these concepts and define the symmetric representations

of a deformed preprojective algebra. In Section 5.2 we extend the concept of the reflection

functor, defined in Section 1.2.2 for representations of deformed preprojective algebras,

to symmetric representations. In Section 5.3 we describe the relationships between vari-

ous categories of symmetric representations and categories of symmetric solutions to the

additive matrix problem. This is analogous to the result in Section 4.1.2. We use the

results of this chapter to show that every rigid irreducible solution to the additive matrix

problem is conjugate to a symmetric solution.

Let K be an algebraically closed field of characteristic zero.

5.1 Symmetric Representations of Deformed Preprojective Al-

gebras

The concept of a symmetric quiver has been studied by several authors in the literature, see

for instance [DW02] or [Shm06]. We use the definitions given in [Shm06], though we use

them in a far less general setting. Symmetric quivers are quivers along with an involution,

defined on the vertices and arrows, which defines the symmetry. Symmetric representa-

tions are isomorphic to their “dual representations” via particular isomorphisms called

75
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symmetrizations (they are called signed-forms in [Shm06]). We show in Section 5.1.2

that for certain symmetric quivers, having such an isomorphism on a representation is

equivalent to defining a nondegenerate symmetric bilinear form on each vector space

such that the involution on arrows pairs each linear map with its adjoint.

5.1.1 Symmetric Quivers and Symmetric Representations

Definition 5.1.1. Let Q be a quiver. Let ι : Q0 ∪Q1 → Q0 ∪Q1 be a bijective map such that

ι(Q0) = Q0 and ι(Q1) = Q1, ι2 = id and t(ι(a)) = ι(h(a)) and h(ι(a)) = ι(t(a)) for all a ∈ Q1.

We say (Q, ι) is a symmetric quiver.

Definition 5.1.2. Let (Q, ι) be a symmetric quiver. A dimension vectorα ∈ ZQ0 is symmetric

if αi = αι(i).

From hereon every α is assumed to be symmetric unless otherwise specified. We are

almost ready to introduce the definition of a representation of a symmetric quiver and

the dual representation, but first we recall some facts from linear algebra.

Remark 5.1.3. Let V be a K-vector space, we recall the defintion of the dual space V∗ of

V. The dual space is the K-vector space defined by V∗ = { f : V → K where f is a linear

functional}. Let V,W be finite dimensional vector spaces and let θ : V → W be a linear

map. Every such map gives rise to a linear map θ∗ : W∗ → V∗ called the dual of θ given

by θ∗( f )(v) = f (θ(v)) for all f ∈ W∗, v ∈ V.1 Taking the dual of linear maps gives an

isomorphism: ∗ : hom(V,W)→ hom(W∗,V∗). The map is injective as if θ∗( f )(v) = 0 for all

v ∈ V and f ∈ W∗, then f (θ(v)) = 0 for all v ∈ V and f ∈ W∗. This implies θ(v) = 0 for all

v ∈ V so θ = 0, and as dim(hom(W∗,V∗)) = dim(hom(V,W)) the map is surjective.

Now we take W = V∗ so that θ∗ : V∗∗ → V∗. The double dual V∗∗ is {g : V∗ → K : g is a

linear functional}. If V is finite dimensional, then V∗∗ is naturally isomorphic to V. The

isomorphism τV : V → V∗∗ is given by τV(v)( f ) = f (v) for all f ∈ V∗ and v ∈ V.

We show this is a natural isomorphism: τV is injective as if τV(v) = 0, then τV(v)( f ) =

f (v) = 0 for all f ∈ V∗, which implies v = 0. We have dim(V) = dim(V∗) = dim(V∗∗) which

implies τV is surjective also. We show τV is natural, let g ∈ hom(V,U) for some finite

1Throughout Section 5.1 we use the superscript ∗ notation to denote either the dual
space or the dual map. That we have previously used this notation for adjoints of linear
maps is intentional as nondegenerate symmetric bilinear forms allow us to identify adjoint
maps with dual maps.
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dimensional vector space U. Taking the dual gives an isomorphism from hom(V,U) to

hom(V∗∗,U∗∗) via θ 7→ θ∗∗.

V∗∗ θ∗∗ // U∗∗

V θ //

τV

OO

U

τU

OO

We want to show τU(θ(v)) = θ∗∗(τV(v)) for all v ∈ V. We have τU(θ(v)) ∈ U∗∗ so for all

f ∈ U∗ and v ∈ V we have τU(θ(v))( f ) = f (θ(v)) = θ∗( f )(v) = τV(v)(θ∗( f )) = θ∗∗(τV(v))( f ).

So as V is naturally isomorphic to V∗∗ we can define equality between the maps

θ : V → V∗ and θ∗ : V∗∗ → V∗, from hereon we write θ = θ∗ to mean θ(v) = θ∗(τV(v)) for

all v ∈ V.

Definition 5.1.4. Let (Q, ι) be a symmetric quiver. A representation V of (Q, ι) is just a

representation of Q. We define the dual representation V∗ of V to be the representation of

(Q, ι) given by: (V∗)i = (Vι(i))∗ for each i ∈ Q0 and (V∗)a = (Vι(a))∗ for each a ∈ Q1.

Definition 5.1.5. Let (Q, ι) be a symmetric quiver. Let V be a representation of (Q, ι). A

symmetrization on V is a collection of isomorphisms (Ji : Vi → V∗i )i∈Q0 such that Jι(i) = J∗i .

Definition 5.1.6. Let (Q, ι) be a symmetric quiver. Given a representation V of (Q, ι) and a

symmetrization (Ji)i∈Q0 on V we say V is symmetric with respect to J if J is an isomorphism

between V and V∗.2

Definition 5.1.7. Let (Q, ι) be a symmetric quiver. Let V be a representation of (Q, ι). We

say V is symmetrizable if there exists a symmetrization J on V such that that V is symmetric

with respect to J.

Definition 5.1.8. Let (Q, ι) be a symmetric quiver. Let V,W be representations of (Q, ι),

and JV, JW be symmetrizations such that V and W are symmetric with respect to JV and

JW respectively. We define a morphism of symmetric representations f : V → W to be a

morphism of representations such that JV
i (v)(v′) = JW

i ( fi(v))( fι(i)(v′)) for all v ∈ Vi, v′ ∈ Vι(i)

and i ∈ Q0.

Let (Q, ι) be a symmetric quiver. Let RepΣ
K(Q, ι) be the category of symmetric representa-

tions of (Q, ι), that is the category whose objects are pairs (V, J) where V is a representation

of Q and J is a symmetrization on V such that V is symmetric with respect to V. The

morphisms are the morphisms of symmetric representations.

2That is J an isomorphism of representations rather than just a collection of isomor-
phisms of vector spaces.
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5.1.2 The Symmetric Double of a Quiver

Let Q be a quiver without loops, we form a symmetric quiver (Q, ι) as follows: Q is the

doubled quiver (defined in Section 1.2), let ι(i) = i for all i ∈ Q0 and let ι(a) = a∗ and

ι(a∗) = a for all a ∈ Q1. We call (Q, ι) the symmetric double of Q.

We write RepΣ
K(Πλ(Q)) for the full subcategory of RepΣ

K(Q, ι), consisting of symmetric

representations of (Q, ι) which satisfy

∑
a∈Q1 : h(a)=i

VaVa∗ −
∑

a∈Q1 : t(a)=i

Va∗Va = λi1Vi

for each i ∈ Q0.

Given an isomorphism from a vector space V to its dual we can identify V with V∗.

Let Q be a quiver without loops and (Q, ι) its symmetric double. Let V be a representation

of Q. A symmetrization J on V identifies each vector space Vi with its dual, this is

equivalent to assigning a nondegenerate symmetric bilinear form on each vector space

given by (x, y)i = Ji(x)(y). We show that the defining properties of a symmetrization are

equivalent to the bilinear form being nondegenerate and symmetric and that V being

symmetric with respect to J is equivalent to Va and Va∗ being adjoints of one another for

each a ∈ Q1, with respect to the appropriate bilinear forms.

Theorem 5.1.9. Let V be a representation of (Q, ι). Let J be an assignment of linear maps

Ji : Vi → V∗i to each i ∈ Q0 and let (x, y)i = Ji(x)(y) for x, y ∈ Vi.

• For i ∈ Q0: Ji is an isomorphisms if and only if (·, ·)i is nondegenerate and Ji = J∗i if

and only if (·, ·)i is symmetric.

• If the above two properties hold (i.e. J is a symmetrization), then V is symmetric

with respect to J if and only if for each a ∈ Q1 we have (Va(x), y)h(a) = (x,Vι(a)(y))t(a)

for all x ∈ Vt(a), y ∈ Vh(a).

Proof. Let i ∈ Q0. Let x ∈ Vi. Suppose Ji : Vi → V∗i is an isomorphism we show (·, ·)i

is nondegenerate. Suppose (x, y)i = 0 for all y ∈ Vi, that is Ji(x)(y) = 0, this implies

Ji(x) = 0. As Ji is an isomorphism we have x = 0 so (·, ·)i is nondegenerate. Now suppose

(·, ·)i is nondegenerate we show Ji is an isomorphism. If Ji(x) = 0 for some x ∈ Vi, then

(x, y)i = 0 for all y ∈ Vi. By nondegeneracy this implies x = 0 so Ji is injective, and as

dim(V) = dim(V∗) we have that Ji is an isomorphism.
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Suppose Ji = J∗i we show (·, ·)i is symmetric. Recall the definition of the natural

isomorphism τVi : Vi → V∗∗i , given by τVi(v)( f ) = f (v), in Remark 5.1.3. Let x, y ∈ Vi, we

have

(x, y)i = Ji(x)(y) = J∗i (τVi(x))(y) = τVi(x)(Ji(y)) = Ji(y)(x) = (y, x)i.

Now suppose (·, ·)i is symmetric we show Ji = J∗i . Let x, y ∈ Vi, we have

Ji(x)(y) = (x, y)i = (y, x)i = Ji(y)(x) = τVi(x)(Ji(y)) = J∗i (τVi(x))(y)

So Ji = J∗i in the sense of Remark 5.1.3, as required.

Now suppose J is a symmetrization on V. Let a ∈ Q1. Let V be symmetric with respect

to J. We show Va is the adjoint of Vι(a). As V is symmetric we have Jh(a)Va = V∗
ι(a)Jt(a) for

each a ∈ Q1. Let x ∈ Vt(a) and y ∈ Vh(a) we have

(Va(x), y)h(a) = Jh(a)(Va(x))(y)

= (Jh(a)Va)(x)(y)

= (V∗ι(a)Jt(a))(x)(y)

= V∗ι(a)(Jt(a)(x))(y)

= Jt(a)(x)(Vι(a)(y))

= (x,Vι(a)(y))t(a).

Now suppose for each a ∈ Q1 we have (Va(x), y)h(a) = (x,Vι(a)(y))t(a) for all x ∈ Vt(a), y ∈ Vh(a)

we show this implies (Ji)i∈Q0 is an isomorphism from V to V∗. Let x ∈ Vt(a) and y ∈ Vh(a),

we have

(Jh(a)Va)(x)(y) = (Va(x), y)h(a)

= (x,Vι(a)(y))t(a)

= Jt(a)(x)(Vι(a)(y))

= V∗ι(a)(Jt(a)(x))(y)

= (V∗ι(a)Jt(a))(x)(y).

So V∗
ι(a)Jt(a) = Jh(a)Va for each a ∈ Q1, which shows the J satisfies the intertwining relations.

So J is an isomorphism from V to V∗. Therefore V is symmetric with respect to J. �

So given a pair (V, J) of the category RepΣ
K(Q, ι), we can define a nondegenerate sym-

metric bilinear form on each Vi such that the Va and Va∗ are adjoints of each other with
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respect to the appropriate bilinear forms. Given such an assignment of bilinear forms it

is clear by Theorem 5.1.9 that these define a symmetrization on V such that V is symmet-

ric. Furthermore given pairs (V, JV) and (W, JW) of RepΣ
K(Q, ι), it is clear that a morphism

of representations f : V → W is a morphism of symmetric represenations if and only if

( f (x), f (y))W
i = (x, y)V

i for all x, y ∈ Vi where (·, ·)V
i = JV

i (x)(y) and (·, ·)W
i = JW

i (x)(y) for all

i ∈ Q0.

5.2 Symmetric Reflection Functors

We show here that the reflection functor introduced in Section 1.2, which establishes

equivalences between certain categories of representations of deformed preprojective al-

gebras, can be extended to establish equivalences between certain categories of symmetric

representations.

Let Q be a quiver and (Q, ι) its symmetric double, without loss of generality we can

assume there exists a vertex i ∈ Q0 such that no arrow in Q1 has its tail at i. Let λ ∈ KQ0

and let α ∈ ZQ0 be a positive dimension vector. Let V be a symmetric representation

of Πλ(Q) of dimension vector α with respect to a symmetrization, recall from Theorem

5.1.9 that fixing the symmetrization is equivalent to fixing a nondegenerate symmetric

bilinear form at each vertex. After giving some preliminary results in Section 5.2.1 we

give the target objects of the reflection functor in Section 5.2.2 and the target morphisms

in Section 5.2.3. We prove the reflection functor is an equivalence of categories in Section

5.2.4. The methodology in this section is adapted from the results on reflection functors

of categories of representations found in [CBH98, Sec. 5] and [CB01, Sec. 2].

5.2.1 Preliminary Results and Notation

Let us fix i ∈ Q0 such that no arrow a ∈ Q1 has t(a) = i. Let us suppose that λi , 0, that

is we assume the reflection at i is admissible for the pair (λ, α) (note that our assumption

that no arrow has a tail at i implies i is loop-free). Let Hi = {a1, . . . , ak} be the set of arrows

which have i as their head, and let us write t j = t(a j). Let V⊕ =
⊕k

j=1 Vt j . For each

j = 1, . . . , k let µ j : Vt j ↪→ V⊕ and π j : V⊕ � Vt j be the standard inclusions and projections
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respectively. So we have the following vector spaces and maps

Vt1

Va1rr

� z

µ1

&&
Vi

Va∗1

22

Va∗k

%%

V⊕
π1

ffff

πkrrrrVtk

Vak

ee

+ �

µk
22

The space V⊕ is equipt with the symmetric nondegenerate bilinear form

(x, y)⊕ =

k∑
j=1

(π j(x), π j(y))t j .

Definition 5.2.1. Let µ : Vi → V⊕ be defined by µ =
∑k

j=1 µ jVa∗j
and π : V⊕ → Vi by

π = 1
λi

∑k
j=1 Va jπ j.

Lemma 5.2.2. We have that π and 1
λi
µ are adjoints.

Proof. We compute the adjoint of µ. Let x ∈ Vi, y ∈ V⊕, we have

(µx, y)⊕ =

k∑
j=1

(µ jVa∗j
x, y)⊕ =

k∑
j=1

k∑
r=1

(πrµ jVa∗j
x, πry)tr

=

k∑
j=1

(Va∗j
x, π jy)t j (as πrµ j = 1 if r = j and zero otherwise)

=

k∑
j=1

(x,Va jπ jy)i = (x,
k∑

j=1

Va jπ jy)i

So the adjoint of µ is
∑k

j=1 Va jπ j hence π and 1
λi
µ are adjoints. �

Lemma 5.2.3. The composition πµ : Vi → Vi is πµ = 1Vi .

Proof. Follows from the deformed preprojective relations. �

So µπ : V⊕ → V⊕ is an idempotent endomorphism of V⊕, as (µπ)(µπ) = µ(πµ)π = µπ.

Lemma 5.2.4. The map (1V⊕ − µπ) : V⊕ → V⊕ has im(1V⊕ − µπ) ⊆ ker(π).

Proof. Apply π to it. π(1V⊕ − µπ) = π − πµπ = π − 1V⊕π = 0 by Lemma 5.2.3. �

Lemma 5.2.5. We can write V⊕ as im(µ) ⊕ ker(π).

Proof. We first show im(µ) ∩ ker(π) = 0. If x ∈ im(µ) ∩ ker(π), then πx = 0. There exists

some y ∈ Vi such that µy = x, so πµy = 0 but πµ = 1Vi so y = 0, hence x = 0.
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Now we show V⊕ = im(µ) + ker(π). Suppose x ∈ V⊕, let y = µπx, which is clearly

in im(µ), and let z = (1V⊕ − µπ)x, by Lemma 5.2.4 we have z ∈ ker(π). We have x =

µπx + (1V⊕ − µπ)x = y + z, which shows x ∈ im(µ) + ker(π). �

Let m : ker(π) → V⊕ and p : V⊕ → ker(π) be the canonical inclusion and projection

maps. We have the following vector spaces and maps. As µ is injective we can identify

Vi with im(µ), under this identification µ is the canonical inclusion and π the canonical

projection.

Vt1

Va1rr

� z

µ1

&&

im(µ)
J jµ

��
Vi

Va∗1

22

Va∗k

%%

µ

��
V⊕

π1

ffff

πkrrrr

p

�� ��

π

[[

π

BB BB

⊕

Vtk

Vak

ee

+ �

µk
22

ker(π)
S3

m

[[

Lemma 5.2.6. Let j ∈ {1, . . . , k}. If u ∈ Vt j and w ∈ ker(π), then we have (µπµ ju,w)⊕ = 0.

Proof. By Lemma 5.2.2 µ∗ is given by λiπ so (µπµ ju,w)⊕ = λi(πµ ju, πw)⊕ = 0. �

Lemma 5.2.7. The symmetric bilinear form (·, ·)⊕ restricted to ker(π) is nondegenerate.

Proof. We have V⊕ = im(µ) ⊕ ker(π). Let u ∈ im(µ) so u = µx for some x ∈ Vi and

w ∈ ker(π) so πw = 0. So we have (u,w)⊕ = (µx,w)⊕ and by Lemma 5.2.2 this is equal to

(x, λiπw)i = 0. So V⊕ = im(µ)⊥ker(π), i.e. im(µ) and ker(π) are orthogonal complements

in V⊕ under (·, ·)⊕. So the symmetric bilinear form (·, ·)⊕ restricted to ker(π) inherits the

nondegeneracy of (·, ·)⊕. �

5.2.2 Construction of the Reflected Representation

We construct a new representation V′ of (Q, ι). This definition is adapted from the one for

reflection functors of representations in [CBH98, Sec. 5] and [CB01, Sec. 2].

Definition 5.2.8. The representation V′ is constructed as follows:

• To the i vertex we assign V′i = ker(π) and to each j , i we assign V′j = V j.

• For each arrow a j ∈ Hi:
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– to a j we assign V′a j
: Vt j → V′i defined by V′a j

= −λi(1V⊕ − µπ)µ j (this definition

is valid by Lemma 5.2.4),

– to a∗j we assign V′a∗j
: V′i → Vt j defined by π j.

• For a < Hi: to a we assign V′a = Va and to a∗ we assign V′a∗ = Va∗ .

• We equip V′i with the nondegenerate symmetric bilinear form (x, y)′i = (− 1
λi

)(x, y)⊕

and equip V′j for j , i with (x, y) j.

Theorem 5.2.9. If V is a symmetric representation of Πλ(Q) of dimension vector α, then

V′ is a representation of Πri(λ)(Q) of dimension vector si(α).

Proof. The reflected representation in Section 1.2.2 has the same definition as the reflected

symmetric representation here except for the nondegenerate symmetric bilinear form. So

the theorem follows from [CBH98, Thm. 5.1]. �

Theorem 5.2.10. If V is a symmetric representation, then so is V′.

Proof. We show for a ∈ Q1 that V′a and V′a∗ are adjoints with respect to the relevant bilinear

forms. This follows by definition for a < Hi so we consider a j ∈ Hi. Let x ∈ V′t j
= Vt j and

y ∈ V′i = ker(π), so V′a j
x ∈ V′i = ker(π). We show (V′a j

x, y)′i = (x,V′a∗j
y)t j holds

(V′a j
x, y)′i = (−λi(1V⊕ − µπ)µ jx, y)′i

= −λi(−
1
λi

)((1V⊕ − µπ)µ jx, y)⊕

= ((1V⊕ − µπ)µ jx, y)⊕

= (µ jx, y)⊕ − (µπµ jx, y)⊕ = (µ jx, y)⊕ (by Lemma 5.2.6)

=

k∑
r=1

(πrµ jx, πry)tr = (x, π jy)t j

= (x,V′a∗j
y)t j

The last step follows because y ∈ ker(π) so π j on this domain is the definition of V′a∗j
. �

5.2.3 Construction of the Reflected Morphisms

Let V,W be symmetric representations of (Q, ι), let V′,W′ be the respective representations

obtained as defined in the previous section. For U ∈ {V,W} let U⊕, µU
j : Ut j → U⊕,
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πU
j : U⊕ → Ut j for j = 1, . . . , k, µU : Ui → U⊕ and πU : U⊕ → Ui be defined as in the

previous section.

Let f : V →W be a morphism of symmetric representations. Recall that f = ( fi′ : Vi′ →

Wi′)i′∈Q0 must, for each a ∈ Q1, make the following two squares commute

Vt(a)
Va //

ft(a)

��

Vh(a)

fh(a)

��

Vt(a)

ft(a)

��

Vh(a)
Va∗oo

fh(a)

��
Wt(a)

Wa //Wh(a) Wt(a) Wh(a)
Wa∗oo

That is fh(a)Va = Wa ft(a) and ft(a)Va∗ = Wa∗ fh(a). When a j ∈ Hi we have h(a j) = i and t(a j) = t j

so the conditions become: fiVa j = Wa j ft j and ft jVa∗j
= Wa∗j

fi.

Lemma 5.2.11. The map
∑k

j=1 µ
W
j ft jπ

V
j : ker(πV) → W⊕ has image contained in W′i =

ker(πW).

Proof. Let x ∈ V′i = ker(πV). The defining relation for x ∈ ker(πV) is πV(x) = 0, that is

1
λi

∑k
j=1 Va jπ

V
j (x) = 0. Let y =

∑k
r=1 µ

W
r ftrπ

V
r x, we show this is in W′i = ker(πW).

πW(y) =
1
λi

k∑
j=1

Wa jπ
W
j y =

1
λi

k∑
j=1

Wa jπ
W
j

∑
r=1

µW
r ftrπ

V
r x

=
1
λi

k∑
j=1

Wa j ft jπ
V
j x =

1
λi

k∑
j=1

fiVa jπ
V
j x

= fi
1
λi

k∑
j=1

Va jπ
V
j x = fiπV(x) = 0,

as πV(x) = 0. �

We now define the target morphisms of the reflection functor. The reflection functor

takes the morphism f : V →W to a collection of maps ( f ′j : V′j →W′j) j∈Q0 given by f ′j = f j

for j , i and f ′i =
∑k

j=1 µ
W
j ft jπ

V
j (the definition of f ′i is well-defined because of Lemma

5.2.11).

Theorem 5.2.12. The collection of maps ( f ′j : V′j → W′j) j∈Q0 satisfies the intertwining

relations f ′h(a)V
′
a = W′a f ′t(a) and f ′t(a)V

′

a∗ = W′a∗ f ′h(a) for each a ∈ Q1.

Proof. For a < Hi the intertwining relations for f ′ follow trivially from the intertwining

relations for f , so let us consider a j for j = 1, . . . , k. In this case the relations are f ′i V′a j
=
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W′a j
f ′t j

and f ′t j
V′a∗j

= W′a∗j
f ′i . To show f ′i V′a j

= W′a j
f ′t j

we first expand f ′i V′a j
and W′a j

f ′t j
.

f ′i V′a j
=

k∑
r=1

µW
r ftrπ

V
r (−λi(1V⊕ − µ

VπV)µV
j )

= λi

k∑
r=1

µW
r ftrπ

V
r (µVπV)µV

j − λi

k∑
r=1

µW
r ftrπ

V
r µ

V
j

= λi

k∑
r=1

µW
r ftrπ

V
r

(( k∑
s=1

µV
s Va∗s

) 1
λi

( k∑
u=1

Vauπ
V
u

))
µV

j − λiµ
W
j ft j

=

k∑
r=1

µW
r ftrVa∗rVa j − λiµ

W
j ft j

We show this is equal to W′a j
f ′t j

.

W′a j
f ′t j

= (−λi(1W⊕ − µ
WπW)µW

j ) ft j

= λi(µWπW)µW
j ft j − λiµ

W
j ft j

= λi

(( k∑
r=1

µW
r Wa∗r

) 1
λi

( k∑
s=1

Wasπ
W
s

))
µW

j ft j − λiµ
W
j ft j

=

k∑
r=1

µW
r Wa∗rWa j ft j − λiµ

W
j ft j

The equality f ′i V′a j
= W′a j

f ′t j
follows because the intertwining relations of f and V at a j imply

Wa∗rWa j ft j = Wa∗r fiVa j = ftrVa∗rVa j . We now show f ′t j
V′a∗j

= W′a∗j
f ′i . We use ft j =

∑k
r=1 π

W
j µ

W
r ft j

to get

f ′t j
V′a∗j

= ft jπ
V
j =

k∑
r=1

(πW
j µ

W
r ) ftrπ

V
r = πW

j

k∑
r=1

µW
r ftrπ

V
r = W′a∗j

f ′i .

So f ′ is a morphism of representations from V to W. �

The next theorem shows that if f respects the symmetric bilinear forms of V then so

does f ′.

Theorem 5.2.13. If f : V → W is a morphism of symmetric representations, then so is

f ′ : V′ →W′.

Proof. For all j ∈ Q0 we have (x, y)V
j = ( f j(x), f j(y))W

j for all x, y ∈ V j, we want to show

(x, y)V′
j = ( f ′j (x), f ′j (y))W′

j for all x, y ∈ V′j. This follows trivially for j , i. Suppose j = i and
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let x, y ∈ V′i .

( f ′i (x), f ′i (y))W′
i =

1
λi

( f ′i (x), f ′i (y))W
⊕

=
1
λi

k∑
j=1

(πW
j f ′i (x), πW

j f ′i (y))W
t j

=
1
λi

k∑
j=1

k∑
p=1

k∑
q=1

(πW
j µ

W
p ftpπ

V
p (x), πW

j µ
W
q ftqπ

V
q (y))W

t j

=
1
λi

k∑
j=1

( ft jπ
V
j (x), ft jπ

V
j (y))W

t j

=
1
λi

k∑
j=1

(πV
j (x), πV

j (y))V
t j

=
1
λi

(x, y)V
⊕ ,

which is equal to (x, y)V′
i so ( f ′i (x), f ′i (y))W′

i = (x, y)V′
i for all x, y ∈ Vi. �

5.2.4 Equivalence of Categories

Recall the definitions and results in Section 1.2.2. The nonsymmetric reflection functor

at i ∈ Q0 gives an equivalence from RepK(Πλ(Q)) and RepK(Πri(λ)(Q)) which acts as si

on dimension vectors. That the symmetric reflection functor at i acts as si on dimension

vectors is shown by Theorem 5.2.9. We show in this section that the symmetric reflection

functor at i establishes an equivalence between RepΣ
K(Πλ(Q)) and RepΣ

K(Πri(λ)(Q)).

Suppose C and D are categories, to establish an equivalence between them we need

to show there exist functors F : C → D and G : D→ C such that there is a pair of natural

isomorphismsηC : GF → idC andηD : FG → idDwhere idC : C → C and idD : D→D are

the identity functors. To say ηC : GF → idC is a natural isomorphism means that, for each

pair of objects X,Y in C, ηC assigns isomorphisms ηCX : GF (X) → X and ηCY : GF (Y) → Y

such that for each f ∈ homC(X,Y) we have ηCY ◦ GF ( f ) = f ◦ ηCX. The definition of

ηD is the same with the appropriate changes. To establish the equivalence between

RepΣ
K(Πλ(Q)) and RepΣ

K(Πri(λ)(Q)) we let F be the reflection functor at i from RepΣ
K(Πλ(Q))

to RepΣ
K(Πri(λ)(Q)) andG be the reflection functor at i from RepΣ

K(Πri(λ)(Q)) to RepΣ
K(Πλ(Q)).

The composition is equivalent to applying the reflection functor twice and as λ ∈ KQ0 is

arbitrary (subject to λi , 0) we need only show the composition is naturally isomorphic

to the identity in one direction.



5.2. Symmetric Reflection Functors 87

We define the representation V′′ then prove it is obtained by applying the reflection

functor twice. It then follows from Theorem 5.2.9 that V′′ is a representation of Πλ(Q) of

dimension vector α. Note that we do not need any new definition for µ j, π j when working

with V′ as V′t j
= Vt j for j = 1, . . . , k and V′

⊕
=

⊕k
j=1 V′t j

= V⊕.

In Section 5.2.3, as we were working with morphisms from one representation to

another, we found it necessary to specify the representation in the superscript of the

functions µV
j , πV

j , µV and πV. As we only work with morphisms of representations at the

end of this section it is convenient to suppress the superscripts, as in Section 5.2.2, until

they are needed.

Definition 5.2.14. We define V′′ as follows.

• To the i vertex we assign vector space V′′i = ker(π′) = im(µ) and to each j , i we

assign V′′j = V j.

• For each arrow a j ∈ Hi:

– to a j we assign V′′a j
: Vt j → V′′i defined by V′′a j

= µVa j ,

– to a∗j we assign V′′a∗j
: V′′i → Vt j defined by V′′a∗j

= πt j .

• For a < Hi: to a we assign V′′a = Va and to a∗ we assign V′′a∗ = Va∗ .

• We equip V′′i with the nondegenerate symmetric bilinear form (x, y)′′i = 1
λi

(x, y)⊕

and equip V′′j = V j for j , i with (x, y)′′j = (x, y) j.

Lemma 5.2.15. If λ′ = ri(λ), then λ′i = −λi.

Proof. From the definition in Section 1.2.2 we have λ′i = λi − (εi, εi)λi, where (·, ·) is the

symmetric bilinear form associated to the Ringel form defined Section 1.1.2. From the

definition (εi, εi) = 2. �

Let λ′ be defined as in Lemma 5.2.15. Recall the definitions of µ, π and µ j, π j for

j = 1, . . . , k for V. We define µ′, π′ for V′. Let µ′ : V′i → V⊕ be defined by

µ′ =

k∑
j=1

µ jV′a∗j
=

k∑
j=1

µ jπ j.
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Now as
∑k

j=1 µ jπ j = 1V⊕ it is clear that µ′ is the injection of V′i into V⊕ (previously denoted

by m). Let π′ : V⊕ → V′i be defined by

π′ =
1
λ′i

k∑
j=1

V′a j
π j = −

1
λi

k∑
j=1

[−λi(1V⊕ − µπ)µ j]π j = (1V⊕ − µπ)
k∑

j=1

µ jπ j = (1V⊕ − µπ).

Lemma 5.2.16. We have ker(π′) = im(µ).

Proof. If x ∈ ker(π′), then (1V⊕ − µπ)x = 0, so x = µπx, which implies x ∈ im(µ). If

x ∈ im(µ), then we have x = µy for some y ∈ Vi, so (1V⊕ − µπ)x = (1V⊕ − µπ)µy =

µy − µπµy = µy − µy = 0 (by Lemma 5.2.3), so x ∈ ker(π′). �

Lemma 5.2.17. We have µ′π′ = 1V⊕ − µπ.

Proof. We have µ′π′ = (
∑k

r=1 µrπr)(1V⊕ − µπ) =
∑k

r=1 µrπr −
∑k

r=1 µrπrµπ = 1V⊕ − µπ. �

Theorem 5.2.18. V′′ is obtained by applying the reflection functor twice at i to V.

Proof. The assignment of vector spaces is clear from the definition, Lemma 5.2.16 and the

identification of Vi and im(µ). To see that V′′a j
= µVa j we substitute λ′i , µ

′, π′ into the the

respective terms in the construction of V′ in Definition 5.2.8. We have, by Lemmas 5.2.17

and 5.2.15

V′′a j
= −λ′i (1 − µ

′π′)µ j = −(−λi)(µπ)µ j = λi(µ
1
λi

k∑
r=1

Varπr)µ j = µVa j ,

as required. The assignment V′′a∗j
= π j is obvious. To see that (x, y)′′i = 1

λi
(x, y)i we note

that λ′i = −λi by Lemma 5.2.15, so (x, y)′′i = − 1
λ′i

(x, y)′
⊕

= 1
λi

(x, y)⊕. �

Let φ : V → V′′ be given by φ j = 1V j for j , i (recall that V′′j = V j for j , i) and φi = µ.

Though µ goes from Vi to V⊕, φi goes from Vi to im(µ) so is surjective.

Theorem 5.2.19. We have that φ : V → V′′ is an isomorphism of symmetric representa-

tions.

Proof. As µ is injective φi : Vi → im(µ) is an isomorphism, so φ is a collection of isomor-

phisms of vector spaces. We show φ intertwines V and V′′. This is trivial for a < Hi

and for each j = 1, . . . , k we have to show µVa j = V′′a j
1Vt j

and V′′a∗j
µ = 1V jVa∗j

. Now

V′′a j
1Vt j

= V′′a j
= µVa j and V′′a∗j

µ = π j
∑k

r=1 µrVa∗r = Va∗j
= 1V jVa∗j

. So φ is an isomorphism of

representations.
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Finally we show φ respects the symmetric structure, this is trivial for j , i so we prove

it for i. Recall from Lemma 5.2.2 that the adjoint of µ is λiπ. For x, y ∈ Vi we have

(φix, φiy)′′i = (µx, µy)′′i =
1
λi

(µx, µy)⊕ =
λi

λi
(x, πµy)i = (x, y)i

So φ is an isomorphism of symmetric representations. �

We now consider morphisms between representations of Πλ(Q) so it is necessary to

switch back to specifying the representation in the superscript of the functionsπ j,µ j,π and

µ. We consider the collection of isomorphisms φV : V → V′′, where V is a representation

of Πλ(Q) and φV
i = µV and φV

j = 1V j for j , i.

Theorem 5.2.20. The collection of isomorphisms φ is a natural isomorphism from the

reflection functor, applied twice, to the identity functor.

Proof. Given symmetric representations V and W of RepΣ
K(Πλ(Q)), we need to show that,

for each f : V →W, the square

V j
f j //

φV

��

W j

φW

��
V′′j

f ′′j //W′′j

commutes for each j ∈ Q0, that is φW f j = f ′′j φ
V. Now f ′′j = f j for j , i and f ′′i =∑k

j=1 µ
W
j ft jπ

V
j . For j , i the square commutes trivially as φV

j = 1V j and φW
j = 1W j , so we

prove the relation holds for i.

f ′′i φ
V
i =

k∑
j=1

µW
j ft jπ

V
j µ

V =

k∑
j=1

µW
j ft jπ

V
j

k∑
r=1

µV
r Va∗r

=

k∑
j=1

µW
j ft j

k∑
r=1

πV
j µ

V
r Va∗r =

k∑
j=1

µW
j ft jVa∗j

=

k∑
j=1

µW
j Wa∗j

fi = φW
i fi.

So φ is a natural isomorphism. �

So the reflection functor at i from RepΣ
K(Πλ(Q)) to RepΣ

K(Πλ′(Q)) has an inverse, namely

the reflection functor at i from RepΣ
K(Πλ′(Q)) to RepΣ

K(Πλ(Q)). The composition of these

two functors is naturally isomorphic to the identity functor so the reflection functor

establishes an equivalence of categories.
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5.3 The Symmetric Additive Matrix Problem

We saw in Section 4.1.2 how solutions to the additive matrix problem correspond to

representations of certain deformed preprojective algebras of certain dimension vectors.

We see in this section how a similar correspondence exists for symmetric solutions and

symmetric representations.

Let K be an algebraically closed field of characteristic zero. As in Section 4.1.2 let

C1, . . . ,Ck ⊆ Mn(K) be a tuple of matrix similarity classes. Let Q, α and λ be the star-

shaped quiver, dimension vector and K-vector associated to the similarity classes (as

defined in Section 4.1.1).

Definition 5.3.1. Let V be a K-vector space. We say a tuple of linear maps (A1, . . . ,Ak) of

V is symmetrizable if there exists a nondegenerate symmetric bilinear form (·, ·) on V such

that A1, . . . ,Ak are self-adjoint with respect to this bilinear form, that is (Aix, y) = (x,Aiy)

for all x, y ∈ V and i = 1, . . . , k.

A symmetric tuple ((A1, . . . ,Ak), (·, ·)) is a pair consisting of a symmetrizable tuple and

a nondegenerate symmetric bilinear form on V such that A1, . . . ,Ak are self-adjoint.

5.3.1 Functors from Symmetric Representations to Tuples of Symmetric Ma-

trices

Recall the notation Ci(V) and Ci(V) in Section 4.1.2 where V is a vector space.

Lemma 5.3.2. Given a vector space V and a symmetric tuple ((A1, . . . ,Ak), (·, ·)) of linear

maps of V such that Ai ∈ Ci(V) (resp. Ai ∈ Ci(V)) for i = 1, . . . , k and
∑k

i=1 Ai = 0 there

exists a symmetric representation (resp. strict symmetric representation) X of Πλ(Q) such

that Ai = Xai,1Xa∗i,1
+ ξi,11V.

Proof. For each arm i = 1, . . . , k the ith arm component of X is obtained from Ai using

Theorem 2.2.8 (resp. Theorem 2.2.9), this is well-defined as the central vector spaces and

symmetric nondegenerate bilinear form of each component are the same, i.e. V and (·, ·).

The theorem ensures that the deformed preprojective relations on the arms are satisfied,

that Xai, j and Xa∗i, j
are adjoint for j = 1, . . . , di − 1 and Ai = Xai,1Xa∗i,1

+ ξi,11V. The central

deformed preprojective relation is also satisfied as 0 =
∑k

i=1 Ai =
∑k

i=1(Xai,1Xa∗i,1
+ ξi,11V)

which implies
∑k

i=1 Xai,1Xa∗i,1
= −

∑k
i=1 ξi,11V = λ01V. �
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Representations and Closures of Similarity Classes

The category of symmetric representations of Πλ(Q) is denoted RepΣ
K(Πλ(Q)). Let RΣ(α)

be the full subcategory of RepΣ
K(Πλ(Q)) consisting of all symmetric representations of

dimension vector α. Let C
Σ

be a category with objects given by

ob(C
Σ

) =
{
(V,A1, . . . ,Ak, (·, ·)) : V is an n-dimensional K-vector space,

(A1, . . . ,Ak, (·, ·)) is a symmetric tuple, Ai ∈ Ci(V) for i = 1, . . . , k and
k∑

i=1

Ai = 0
}
,

and morphisms between objects A,A′ ∈ ob(C
Σ

), where A = (V,A1, . . . ,Ak, (·, ·)) and A′ =

(V′,A′1, . . . ,A
′

k, (·, ·)
′), given by

hom
C

Σ(A,A′) = {φ : V → V′ : (φx, φy)′ = (x, y) for all x, y ∈ V,A′iφ = φAi for i = 1, . . . , k}.

We define a functor F Σ from RΣ(α) to C
Σ

. The definition of F Σ in this section is simi-

lar to the definition of F in Section 4.1.1 though it operates on different objects and mor-

phisms. Given a representation X ∈ RΣ(α) we define a tupleF Σ(X) = (X0,A1, . . . ,Ak, (·, ·)0)

where Ai = Xai,1X∗ai,1
+ ξi,11X0 for i = 1, . . . , k. Given a morphism φ : X → Y of representa-

tions X,Y ∈ RΣ(α) we define a morphism F Σ(φ) : F Σ(X)→ F Σ(Y) given by F Σ(φ) = φ0.

Theorem 5.3.3. F Σ is a functor.

Proof. Let X be a representation in RΣ(α). We first show F Σ(X) = (X0,A1, . . . ,Ak, (·, ·)0)

is an object in C
Σ

. By Theorem 2.2.8 we have Ai ∈ Ci(X0), Ai is self-adjoint with respect

to (·, ·)0 for i = 1, . . . , k, and
∑k

i=1 Ai =
∑k

i=1 Xai,1Xa∗i,1
+

∑k
i=1 ξi,11X0 = 0 by the deformed

preprojective relation at the central vertex.

Let φ : X → Y be a morphism of symmetric representations where X,Y are ob-

jects of RΣ(α), we show F Σ(φ) is a morphism from F Σ(X) to F Σ(Y). Let F Σ(X) =

(X0,A1, . . . ,Ak, (·, ·)X
0 ) and F Σ(Y) = (Y0,A′1, . . . ,A

′

k, (·, ·)
Y
0 ). Now F Σ(φ) = φ0 and by the

proof of Theorem 4.1.9 we have that A′iφ0 = φ0Ai for each i = 1, . . . , k. By defini-

tion we have (φ0x, φ0x′)Y
0 = (x, x′)X

0 for all x, x′ ∈ X0. These properties show F Σ(φ) ∈

hom
C

Σ(F Σ(X),F Σ(Y)). The proof that that F Σ respects identity morphisms and respects

morphism composition is virtually the same as in Theorem 4.1.9. So F Σ is a functor from

R
Σ(α) to C

Σ
. �

Lemma 5.3.4. The functor F Σ is surjective.
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Proof. Let (V,A1, . . . ,Ak, (·, ·)) ∈ C
Σ

, and let X be the symmetric representation of Πλ(Q)

obtained from this given by Lemma 5.3.2, note that X0 = V and (·, ·)X
0 = (·, ·). Let

(X0,A′1, . . . ,A
′

k, (·, ·)
X
0 ) = F Σ(X) so for i = 1, . . . , k we have A′i = Xai,1Xa∗i,1

+ ξi,11X0 which, by

Lemma 5.3.2, is equal to Ai so F Σ(X) = (X0,A1, . . . ,Ak, (·, ·)X
0 ) = (V,A1, . . . ,Ak, (·, ·)). �

Strict Representations and Similarity Classes

Let R̃ep
Σ

K(Πλ(Q)) be the full sub-category of strict symmetric representations of Πλ(Q).

Recall from Definition 4.1.7 that a strict representation of RepK(Πλ(Q)), where Q is star-

shaped, is a representation V such that each map Va is injective and each map Va∗ is

surjective, for all a ∈ Q1. Let R̃Σ(α) be the full subcategory R̃ep
Σ

K(Πλ(Q)) consisting of

strict symmetric representations of dimension vector α. Let CΣ be the full sub-category

of C
Σ

consisting of objects (V,A1, . . . ,Ak, (·, ·)) such that Ai ∈ Ci(V) for i = 1, . . . , k. Let GΣ

be the functor F Σ restricted to R̃Σ(α).

Let X be an object of R̃Σ(α) and writeGΣ(X) = (X0,A1, . . . ,Ak, (·, ·)X
0 ). By Theorem 2.2.9

we have Ai ∈ Ci(V) and Ai is self-adjoint with respect to (·, ·)X
0 for each i = 1, . . . , k so GΣ is

a functor from R̃Σ(α) to CΣ.

Lemma 5.3.5. The functor GΣ is surjective.

Proof. The proof is essentially the same as in Lemma 5.3.4. �

Lemma 5.3.6. The functor GΣ is fully faithful.

Proof. The proof that GΣ is faithful is essentially the same as in Lemma 4.1.12. The

proof that GΣ is full is an extension of the argument in Lemma 4.1.12. Suppose ψ ∈

homCΣ(GΣ(X),GΣ(Y)). We construct a morphism of symmetric representations φ from X

to Y such that GΣ(φ) = ψ. The morphism φ is given by φ0 = ψ and φi, j(x) = Ya∗i, j
φi, j−1(y)

for all x ∈ Xi, j where y ∈ Xi, j−1 such that x = Xa∗i, j
(y) for j = 1, . . . , di − 1 and i = 1, . . . , k.

That this is well-defined and a morphism of representations is proven in Lemma 4.1.12.

What remains to show is that it is a morphism of symmetric representations. We want to

show (φi, jx, φi, jx′)Y
i, j = (x, x′)X

i, j for all x, x′ ∈ Xi, j, for i = 1, . . . , k and j = 1, . . . , di − 1. Let

i ∈ {1, . . . , k}. It is clear that this holds for j = 0. We prove for j ∈ {1, . . . , di−1} by induction.

Assume the hypothesis holds for j − 1 and let z, z′ ∈ Xi, j−1 be such that x = Xa∗i, j
(z) and
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x′ = Xa∗i, j
(z′) respectively. Then

(φi, jx, φi, jx′)Y
i, j = (φi, jXa∗i, j

z, φi, jXa∗i, j
z′)Y

i, j = (Ya∗i, j
φi, j−1z, φi, jXa∗i, j

z′)Y
i, j

= (φi, j−1z,Yai, jφi, jXa∗i, j
z′)Y

i, j−1 = (φi, j−1z, φi, j−1Xai, jXa∗i, j
z′)Y

i, j−1

= (z,Xai, jXa∗i, j
z′)X

i, j−1 = (Xa∗i, j
z,Xa∗i, j

z′)X
i, j

= (x, x′)X
i, j

So GΣ(φ) is a morphism of symmetric representations. �

The diagram below is the symmetric analog of (4.5). Both F Σ and GΣ are surjective,

and therefore dense, but only GΣ is necessarily fully-faithful.

R
Σ(α) oo

full subcategory
? _

F
Σ dense��

R̃
Σ(α)

G
Σ �
��

C
Σ oo

full subcategory
? _C

Σ

(5.1)

The functors show that symmetric tuples (and hence symmetrizable tuples) of solu-

tions correspond to symmetric representations of the associated deformed preprojective

algebra. This says that for a given vector space V, there exists Ai ∈ Ci(V) for each

i = 1, . . . , k such that
∑k

i=1 Ai = 0 and (A1, . . . ,Ak) is symmetrizable if and only if there

exists a symmetric representation of Πλ(Q) of dimension vector α. Similarly there exists

Ai ∈ Ci(V) for each i = 1, . . . , k such that
∑k

i=1 Ai = 0 and (A1, . . . ,Ak) is irreducible and

symmetrizable if and only if there exists a strict symmetric representation of Πλ(Q) of

dimension vector α.

5.3.2 An Application of the Reflection Functors

Let C1, . . . ,Ck ⊆ Mn(K) be similarity classes. Let Q, α and λ be the associated star-

shaped quiver, dimension vector and K-vector respectively. Recall the definition of a

rigid solution to the additive matrix problem from Section 4.1.3. By Theorem 4.1.14 an

irreducible solution is rigid if and only if α is a real root.

Theorem 5.3.7. Every rigid irreducible solution to the additive matrix problem is sym-

metrizable.

Proof. Let V be a vector space and (A1, . . . ,Ak) a rigid irreducible solution to the additive

matrix problem. By the surjectivity of the functor G in Section 4.1.2 there exists a strict

representation X of Πλ(Q) of dimension vector α such that G(X) = (V,A1, . . . ,Ak).
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By Theorem 4.1.14 α ∈ Σλ and α is a real root, so by Lemma 1.2.8 there is a sequence of

admissible reflections s j1 , . . . , s jl such that εi = s j1 . . . s jl(α) for some i ∈ Q0 (where εi is the

simple root at i). Let λ′ = r j1 . . . r jl(λ). As the reflections are admissible this implies there is

a categorical equivalence between Rep(Πλ(Q)) and Rep(Πλ′(Q)) which acts on dimension

vectors by s j1 . . . s jl . This means the isomorphism classes of representations of Πλ′(Q)

of dimension vector εi are in one-one correspondence with the isomorphism classes of

representations of Πλ(Q) of dimension vector α. It is easy to see that all representations

of dimension vector εi are trivially symmetrizable (as all maps are zero) so there is an

equivalence between the category of representations of Πλ′(Q) of dimension vector εi

and the category of symmetric representations of Πλ′(Q) of dimension vector εi. Using

reflection functors of the category of symmetric representations (at the reverse sequence of

admissible reflections s jl , . . . , s j1) we see there is an equivalence between R(α) and RΣ(α).

This says there is a one-one correspondence between the isomorphism classes ofR(α) and

the isomorphism classes of RΣ(α).

Let Y be an object ofRΣ(α) in the isomorphism class which corresponds to the isomor-

phism class of X inR(α). The equivalence implies X is isomorphic to Y as (nonsymmetric)

representations of Πλ(Q). Letφ : X→ Y be such an isomorphism. Let (V′,A′1, . . . ,A
′

k, (·, ·)
′)

be such that GΣ(Y) = (V′,A′1, . . . ,A
′

k, (·, ·)
′) (where GΣ is the symmetric functor of Section

5.3.1). Let (x, y) = (G(φ)x,G(φ)y)′ for x, y ∈ V (where G is the functor of Section 4.1.2),

so (·, ·) is a nondegenerate symmetric bilinear form on V such that (Aix, y) = (x,Aiy) for

i = 1, . . . , k as

(Aix, y) = (G(φ)Aix,G(φ)y)′ = (A′iG(φ)x,G(φ)y)′

= (G(φ)x,A′iG(φ)y)′ = (G(φ)x,G(φ)Aiy)′ = (x,Aiy).

So (V,A1, . . . ,Ak) is symmetrizable. �



Chapter 6

Some Results on the Existence of

Symmetric Representations

We present two results about the existence of symmetric representations of certain quivers.

In Section 6.1 we show there exist irreducible solutions to the additive matrix problem

which are not symmetrizable. This implies, under certain circumstances, there exist strict

representations of Πλ(Q) of dimension vector α (where Q, λ and α are as in Section 4.1.1)

which are not symmetrizable. This contrasts with Theorem 5.3.7 which states that every

rigid irreducible solution to the additive matrix problem is symmetrizable. In Section 6.2

we prove there always exists a symmetric representation of Πλ(Q) of dimension vector α

where Q is a Dynkin or extended Dynkin quiver of type Ãn or D̃n, α is a positive root and

λ·α = 0, and we conjecture that the result holds in the Ẽn case also. Due to time restrictions

we have not been able prove the result in the Ẽn case but we describe a promising method.

Let K be an algebraically closed field of characteristic zero.

6.1 The Number of Parameters of Symmetrizable Representa-

tions

We prove in this section that there exist irreducible solutions to certain additive matrix

problems which are not symmetrizable, we show that in certain circumstances the number

of parameters of general irreducible solutions must be strictly greater than the number

of parameters of symmetrizable irreducible solutions. We work with square matrices in

Mn(K) in this section rather than endomorphisms of a K-vector space. If we have a vector

95
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space V endowed with a nondegenerate symmetric bilinear form (·, ·), then we can choose

an orthonormal basis for V. Under such a basis (·, ·) corresponds to the scalar product

and taking the adjoint of an endomorphism correponds to taking the transpose of the

corresponding matrix. So the results of this section can easily be framed in terms of the

endomorphisms of a vector space if desired.

In Section 6.1.1 we recall some important definitions and results from algebraic ge-

ometry. In Sections 6.1.2 and 6.1.3 we derive inequalities which relate the numbers of

parameters of the varieties of tuples and symmetric tuples of irreducible solutions to

the dimensions of the similarity classes and symmetric similarity classes respectively. In

Sections 6.1.4 and 6.1.5 we compute the dimensions of a similarity and symmetric sim-

ilarity class respectively. Finally in Section 6.1.6 we use the inequalities to show there

are circumstances in which solutions to the additive matrix problem exist which are not

symmetrizable. Throughout this section let C1, . . . ,Ck ⊆ Mn(K) be similarity classes such

that
∑k

i=1 trace(Ci) = 0.

6.1.1 Preliminary Material

We recall some definitions and results from algebraic geometry. We use these to prove

the set of symmetrizable irreducible solutions is, in some cases, a strict subset of the set of

irreducible solutions. Recall the definition of a variety, an algebraic group, an irreducible

component of a variety and the dimension of a variety. These definition and results can

be found in [Mum88] and [CB93].

Definition 6.1.1. Let V be an algebraic variety and G an algebraic group, the number of

parameters νG(V) of V over G is defined by νG(V) = maxt(dim(V(t)) − t) where V(t) is the

union of all G-orbits of V with dimension t, or equivalently V(t) = {v ∈ V : dim(Gv) = t}.

Definition 6.1.2. Let X,Y be varieties and f : X→ Y a morphism. We say f is dominant if

f (X) = Y, i.e. its image is dense in Y.

Lemma 6.1.3. Let f : X → Y be a dominant morphism of irreducible varieties. Any

irreducible component of the fibre f−1(y) for y ∈ Y has dimension at least dim(X)−dim(Y).

Proof. [Mum88, Chap. I, Sec. 8, Thm. 2]. �



6.1. The Number of Parameters of Symmetrizable Representations 97

6.1.2 Number of Parameters of General Tuples

Let C = C1 × · · · × Ck be the product of the similarity classes, that is the set of tuples of

matrices (A1, . . . ,Ak) with Ai ∈ Ci for i = 1, . . . , k. As C is the product of similarity classes

it is an irreducible variety, futhermore GLn(K) acts on C by simultaneous similarity. Let

CIrr ⊆ C be the subset of irreducible tuples of C (recall the definition of irreducible from

Section 4.1.3). The set CIrr is an open subset of C so, as C is an irreducible variety, CIrr is

dense in C.

The special linear Lie algebra sln(K) is the Lie algebra consisting of traceless square n by

n matrices (with entries in K), that is sln(K) = {A ∈ Mn(K) : trace(A) = 0}. We define the

morphisms:

σ′ : C→ sln, and σ̃′ : CIrr → sln,

by summation, i.e. (A1, . . . ,Ak) 7→
∑k

i=1 Ai. From these we define the dominant mor-

phisms:

σ : C→ im(σ′), and σ̃ : CIrr → im(σ̃′).

Lemma 6.1.4. If σ̃−1(0) is nonempty, then dim(σ̃−1(0)) ≥ dim(CIrr) − dim(im(σ̃′)).

Proof. Apply Lemma 6.1.3 to σ̃−1(0). �

If CIrr is nonempty, then dim(CIrr) = dim(C) as CIrr is dense in C. We have dim(im(σ̃′)) ≤

dim(sln(K)) = n2
− 1 as im(σ̃′) ⊆ im(σ̃′) ⊆ sln(K). We apply these results to the number of

parameters of σ̃−1(0) over GLn(K) in the following corollary.

Corollary 6.1.5. If σ̃−1(0) is nonempty, then νGLn(K)(σ̃−1(0)) ≥ dim(C) − 2(n2
− 1).

Proof. Each irreducible tuple (A1, . . . ,Ak) ∈ CIrr has stabilizer of dimension one (the stabi-

lizer is precisely the set of nonzero scalar matrices, this follows from the irreducibility of

(A1, . . . ,Ak)), so

dim(OrbGLn(K)((A1, . . . ,Ak))) = dim(GLn(K)) − dim(StabGLn(K)((A1, . . . ,Ak))) = n2
− 1.

So each GLn(K)-orbit of CIrr has the same dimension, and similarly for the GLn(K)-orbits

of σ̃−1(0). So we have νGLn(K)(σ̃−1(0)) = dim(σ̃−1(0)) − (n2
− 1). We have νGLn(K)(σ̃−1(0)) ≥

dim(CIrr) − dim(im(σ̃′)) − (n2
− 1), by Lemma 6.1.4, which gives us νGLn(K)(σ̃−1(0)) ≥

dim(C) − (n2
− 1) − (n2

− 1) by the remarks before the corollary. �
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6.1.3 Number of Parameters of Symmetrizable Tuples

For each i = 1, . . . , k let CΣ
i ⊆ Ci be the subset consisting of symmetric matrices in the

similarity class Ci. The set of symmetric tuples is given by CΣ = CΣ
1 × · · · × CΣ

k ⊆ C. Let

the set of symmetrizable tuples CT be defined by {(A1, . . . ,Ak) ∈ C : ∃P ∈ GLn(K) with

P−1(A1, . . . ,Ak)P ∈ CΣ
}, that is the subset consisting of tuples which are in the same

GLn(K)-orbit as a symmetric tuple. We define the morphisms:

σ′T : CT
→ sln, and σ̃′T : CT

Irr → sln

by summation. From these we define the dominant morphisms:

σT : CT
→ im(σ′T), and σ̃T : CT

Irr → im(σ̃′T).

Lemma 6.1.6. Given a nonsingular matrix Y ∈Mn(K) there exists a nonsingular matrix H

such that H2 = Y and H is a polynomial in Y.

Proof. [Kap03, Thm. 68]. �

Recall the definition of the orthogonal group of matrices On(K) = {A ∈Mn(K) : AAT =

In}. The next theorem is a generalization of [Kap03, Thm. 70] for symmetric matrices.

Theorem 6.1.7. Let (A1, . . . ,Ak) and (B1, . . . ,Bk) be k-tuples of symmetric matrices in Mn(K).

If there exists some X ∈ GLn(K) such that for each i = 1, . . . , k we have X−1AiX = Bi, then

there exists some U ∈ On(K) such that UTAiU = Bi for all i = 1, . . . , k.

Proof. Let i = 1, . . . , k. By the symmetry of Ai and Bi, X−1AiX = Bi implies X−1AT
i X = BT

i .

So we apply the transpose to X−1AT
i X = BT

i to get XTAiX−T = Bi, and we substitute this

into X−1AiX = Bi to get X−1AiX = XTAiX−T, so AiXXT = XXTAi, that is XXT commutes

with each Ai for i = 1, . . . , k.

By Lemma 6.1.6 there exists a matrix H such that H2 = XXT and H is a polynomial in

XXT, therefore H is symmetric, nonsingular and commutes with each Ai for i = 1, . . . , k.

Now let U = H−1X. Now UUT = H−1XXTH−T = H−1H2H−1 = In so U is orthogonal. For

each i = 1, . . . , k we have U−1AiU = (H−1X)−1AiH−1X = X−1HAiH−1X = X−1AiX = Bi. �

Corollary 6.1.8. The number of parameters of the set of symmetrizable tuples over the

general linear group is equal to the number of parameters of the set of symmetric tuples

over the orthogonal group. That is νGLn(K)(CT) = νOn(K)(CΣ), and similarly we have

νGLn(K)(CT
Irr) = νOn(K)(CΣ

Irr).
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Proof. Use Theorem 6.1.7. �

Lemma 6.1.9. We have νGLn(K)(σ̃−1
T (0)) ≤ νGLn(K)(CT

Irr).

Proof. This is because σ̃−1
T (0) ⊆ CT

Irr. �

Lemma 6.1.10. νGLn(K)(CT
Irr) =

∑k
i=1 dim(CΣ

i ) − n(n − 1)/2

Proof. By Corollary 6.1.8 we know νGLn(K)(CT
Irr) = νOn(K)(CΣ

Irr). So νGLn(K)(CT
Irr) = dim(CΣ

Irr)−

(dim(On(K)) − dim(StabOn(K)((A1, . . . ,Ak)))) for some (A1, . . . ,Ak) ∈ CΣ
Irr (this is true and

well-defined as every On(K)-orbit in CΣ
Irr has the same dimension). As CΣ

Irr is dense

in CΣ we have that dim(CΣ
Irr) = dim(CΣ) and that dim(StabOn(K)((A1, . . . ,Ak))) = 0 for

(A1, . . . ,Ak) ∈ CΣ
Irr (as there are only finitely many diagonal orthogonal matrices), so

νGLn(K)(CT
Irr) =

∑k
i=1 dim(CΣ

i ) − n(n − 1)/2 (as dim(On(K)) = n(n − 1)/2). �

The results of Sections 6.1.2 and 6.1.3 give us the following inequalities:

νGLn(K)(σ̃−1(0)) ≥
k∑

i=1

dim(Ci) − 2(n2
− 1), (6.1)

νGLn(K)(σ̃−1
T (0)) ≤

k∑
i=1

dim(CΣ
i ) − n(n − 1)/2. (6.2)

The next two sections compute dim(Ci) and dim(CΣ
i ).

6.1.4 The Dimension of a Similarity Class

A similarity class is an orbit of Mn(K) under the action of GLn(K), therefore the dimension

of a similarity class C is dim(GLn(K))−dim(StabGLn(K)(A)) (for some A ∈ C). The dimension

of GLn(K) is n2
− 1 so we spend most of this section computing the dimension of the

stabilizer.

Recall from Section 2.1.2 the function µC : Ψ(C)→ P describes the Jordan normal form

of the similarity class C (or of a matrix). If ξ ∈ Ψ(C), then µC(ξ) is the integer partition

giving the sizes of the Jordan blocks of C associated to ξ (in decreasing order of size).

Lemma 6.1.11. Given A ∈Mn(K), B ∈Mm(K) and X ∈ Km×n (X has m rows and n columns)

such that A and B have no eigenvalues in common, if XA − BX = 0, then X = 0.

Proof. [Gan59, Vol. I, Chap. VIII, Sec. 1]. �



100 Chapter 6. Some Results on the Existence of Symmetric Representations

Lemma 6.1.12. Let B be a block-diagonal matrix such that each block has a single eigen-

value and all blocks have pairwise distinct eigenvalues. Any matrix commuting with B

must have the same block structure.

Proof. To see this let B =

 B1 0

0 B2

 ∈ Mn(K) where B1 and B2 are blocks with no eigen-

value in common. Let X =

 X1 X2

X3 X4

 ∈ Mn(K) be partitioned such that the blocks are

conformal with the blocks of B, we have

XB − BX =

 X1 X2

X3 X4


 B1 0

0 B2

 −
 B1 0

0 B2


 X1 X2

X3 X4


=

 X1B1 X2B2

X3B1 X4B2

 −
 B1X1 B1X2

B2X3 B2X4


= 0.

We get relations X1B1 − B1X1 = 0, X4B2 − B2X4 = 0, X2B2 − B1X2 = 0 and X3B1 − B2X3 = 0.

By Lemma 6.1.11 X2 = X3 = 0. �

Definition 6.1.13. We say a matrix A ∈ Km×n consists of diagonal bands a1, . . . , am+n−1 ∈ K if

Ai, j = Ai+1, j+1 for all i = 1, . . . ,n − 1 and j = 1, . . . ,m − 1, and if A1, j = an− j+1 for j = 1, . . . ,n

and Ai,1 = an+i−1 for i = 1, . . . ,m. We call a1, . . . , am+n−1 the diagonals of A.

To illustrate the above definition we consider the example where m = 5 and n = 7.

The following matrix consists of diagonal bands a1, . . . , a11 ∈ K.

a7 a6 a5 a4 a3 a2 a1

a8 a7 a6 a5 a4 a3 a2

a9 a8 a7 a6 a5 a4 a3

a10 a9 a8 a7 a6 a5 a4

a11 a10 a9 a8 a7 a6 a5


Let A ∈ Mn(K),B ∈ Mm(K) be square matrices. Let V(A,B) be the vector space of rectan-

gular matrices X ∈ Km×n such that XA = BX.

Lemma 6.1.14. All matrices in V(Jn(0), Jm(0)) have entries consisting of diagonal bands

a1, . . . , am+n−1 ∈ K such that the diagonals amin(m,n)+1 = · · · = am+n = 0. We illustrate this
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with the m = 5 and n = 7 example:

0 0 a5 a4 a3 a2 a1

0 0 0 a5 a4 a3 a2

0 0 0 0 a5 a4 a3

0 0 0 0 0 a5 a4

0 0 0 0 0 0 a5


∈ V(J7(0), J5(0)).

Proof. The matrix XJn(0) is the same as X but with all entries shifted one place right (with

zeros in the left-most column) and Jm(0)X is the matrix X with all entries shifted one place

up (with zeros in the bottom row).

0 X1,1 · · · X1,n−1

...
...

. . .
...

0 Xm−1,1 · · · Xm−1,n−1

0 Xm,1 · · · Xm,n−1


=



X2,1 X2,2 · · · X2,n

...
...

. . .
...

Xm,1 Xm,2 · · · Xm,n

0 0 · · · 0


So the entries Xi, j must satisfy Xi, j = Xi+1, j+1 for all i = 1, . . . ,m − 1, j = 1, . . . ,n − 1. This

implies X consists of diagonal bands. Comparing the two sides it is clear that some of

the bands are zero, in particular the bands containing X2,1, . . . ,Xm,1, . . .Xm,n−1 are zero. If

m = n then every band under the main diagonal is zero. If m > n then the m−1 lower-most

bands are zero. If m < n then the n − 1 left-most bands are zero. �

Remark 6.1.15. In light of Lemma 6.1.14 it is clear that dim(V(Jn(0), Jm(0))) = min(n,m).

We calculate, in the following theorem, the number of parameters necessary to describe

the stabilizer of a matrix. Recall that given an integer partition µ the length L(µ) is the

number of nonzero parts of µ if µ , (0) and one if µ = (0).

Theorem 6.1.16. Let A ∈Mn(K). We have

dim(StabGLn(A)) =
∑

ξ∈Ψ(A)

L(µA(ξ))∑
j1=1

L(µA(ξ))∑
j2=1

min(µA(ξ) j1 , µA(ξ) j2).

Proof. Without loss of generality suppose A is a Jordan matrix. As the set of nonsingular

matrices is dense the proof reduces to finding the dimension of the variety of matrices

which commute with A.

By Lemma 6.1.12 we can concentrate on the case where A has only one eigenvalue.

Let ξ ∈ K be the eigenvalue of A. We can write A = ξIn + N where N is nilpotent. Let
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X be an arbitrary matrix commuting with A, so XA = AX = Xξ + XN = ξX + NX so we

have XN = NX, in other words we need to think about matrices which commute with the

nilpotent part of A.

Say N = N1 ⊕ · · · ⊕ Np where Ni is a nilpotent Jordan block of size µN(0)i. Let X be

partitioned into blocks Xi, j, for i, j = 1, . . . , p such that the blocks are conformal with the

blocks of N, that is Xi, j has size µN(0)i × µN(0) j. Then XN = NX gives p2 matrix relations

of the form Xi, jN j = NiXi, j. In each case we have Xi, j ∈ V(N j,Ni). By Lemma 6.1.14

Xi, j consists precisely of min(µN(0) j, µN(0)i) arbitrary bands. So the number of parameters

needed to describe V(N j,Ni) is min(µN(0)i, µN(0) j). Each Xi, j is independent of every other

block so the total number of parameters for X is

L(µN(0))∑
j1=1

L(µN(0))∑
j2=1

min(µN(0) j1 , µN(0) j2).

Clearly we have min(µN(0) j1 , µN(0) j2) = min(µA(ξ) j1 , µA(ξ) j2). When we generalize back

to the case of multiple different eigenvalues we simply sum over each distinct eigenvalue

to get the required formula. �

So we have, by Theorem 6.1.16, for A ∈Mn(K)

dim(OrbGLn(K)(A)) = n2
−

∑
ξ∈Ψ(A)

L(µA(ξ))∑
j1=1

L(µA(ξ))∑
j2=1

min(µA(ξ) j1 , µA(ξ) j2). (6.3)

Theorem 6.1.17. If σ̃−1(0) is nonempty then

νGLn(K)(σ̃−1(0)) ≥ (k − 2)n2 + 2 −
k∑

i=1

∑
ξ∈Ψ(Ci)

L(µCi (ξ))∑
r1=1

L(µCi (ξ))∑
r2=1

min(µCi(ξ)r1 , µCi(ξ)r2).

Proof. Substitute (6.3) into (6.1). �

6.1.5 The Dimension of a Symmetric Similarity Class

The symmetric similarity class CΣ consisting of all symmetric matrices from a particular

similarity class C is an On(K)-orbit of MΣ
n (K) (the vector space of all n by n symmetric

matrices), therefore dim(CΣ) = dim(On(K)) − dim(StabOn(A)) (for some A ∈ CΣ). The

dimension of On(K) is n(n − 1)/2, so we compute the dimension of the stabilizer.

Recall the Lie algebra on(K) of the orthogonal group On(K) is the set of skew-symmetric

matrices, (i.e. on(K) = {A ∈ Mn(K) : AT = −A}). The following lemma simplifies the

calculation of dim(StabOn(K)(A)).
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Lemma 6.1.18. Let A ∈ Mn(K). The dimension of the stabilizer of A in On(K) is the same

as the dimension of the stabilizer of A in on(K), that is dim(StabOn(K)(A)) = dim{X ∈

On(K) : XTAX = A} = dim{X ∈ on(K) : AX = XA} = dim(Stabon(K)(A)).

Proof. We show Stabon(K)(A) is the Lie algebra of StabOn(K)(A) by computing the tangent

space at the identity. The tangent space of StabOn(K)(A) at In is the space of X ∈Mn(K) such

that A(In + εX) = (In + εX)A and (In + εX)T(In + εX) = In, where ε is small. Expanding the

first one gives AX = XA, and expanding the second gives ε(X + XT) + ε2XTX = 0. As ε

is small, this implies X + XT = 0 so X ∈ on(K). Therefore Stabon(K)(A) is the Lie algebra of

StabOn(K)(A), which implies their dimensions are equal. �

The next lemma shows that every Jordan block is similar to a particular symmetric

matrix which we describe below. We use the fact that every Jordan block is similar to a

symmetric matrix in Theorem 6.1.22.

The skew-diagonal of a square matrix is the bottom-left to top-right diagonal. Let En

be the n by n exchange matrix, that is the matrix in Mn(K) with ones along the bottom-left

to top-right diagonal, and zeroes everywhere else, that is:

En =



0 0 · · · 0 1

0 0 · · · 1 0
...

...
. . .

...
...

0 1 · · · 0 0

1 0 · · · 0 0


. (6.4)

Simple computation shows that EnJn(0) is Jn(0) reflected vertically and Jn(0)En is Jn(0)

reflected horizontally.

Lemma 6.1.19. Let ı ∈ K such that ı2 = −1. The Jordan block Jn(ξ), where ξ ∈ K, is similar

to the symmetric matrix

Sn(ξ) = ξIn +
1
2

(
Jn(0) + Jn(0)T + ı(Jn(0)En − EnJn(0))

)
.

Proof. [Gan59, Vol. II, Chap. XI, Sec. 3].1 �

We can think of Sn(ξ) as being a symmetric analogue to a Jordan block. Any matrix is

similar to a direct sum of such matrices.
1Gantmacher considers complex symmetric matrices but the results generalize to the

case of algebraically closed fields of characteristic zero by fixing a value for ı ∈ K where
ı2 = −1
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Lemma 6.1.20. Let A be a symmetric nonderogatory matrix. The only skew-symmetric

matrix which commutes with A is the zero matrix.

Proof. By [Gan59, Vol. I, Chap. VIII, Sec. 2, Cor. 1] all matrices commuting with A can

be expressed as polynomials in A. This is due to the fact charA(x) = minA(x) as A is

nonderogatory. Any polynomial in a symmetric matrix must also be symmetric and the

only skew-symmetric matrix which is also symmetric is the zero matrix. �

Lemma 6.1.21. Let A ∈Mn(K) and B ∈Mm(K). We have

dim(V(A,B)) = dim(V(P−1AP,Q−1BQ))

for all P ∈ GLn(K),Q ∈ GLm(K).

Proof. We show there is a bijective map from V(A,B) to V(P−1AP,Q−1BQ) given by X 7→

Q−1XP. If X,Y ∈ V(A,B), then Q−1XP = Q−1YP clearly implies X = Y, so the map

is injective. If Z ∈ V(P−1AP,Q−1BQ), then QZP−1
∈ V(A,B) as QZP−1A = BQZP−1 is

equivalent to Z(P−1AP) = (Q−1BQ)Z. As Q−1(QZP−1)P = Z, we see the map is surjective.

�

We calculate the number of parameters necessary to describe the stabilizer (over the

orthogonal group) of a symmetric matrix.

Theorem 6.1.22. Let A ∈MΣ
n . We have

dim(StabOn(K)(A)) =
∑

ξ∈Ψ(A)

L(µA(ξ))∑
j1=1

L(µA(ξ))∑
j2= j1+1

min(µA(ξ) j1 , µA(ξ) j2).

Proof. Without loss of generality we assume A is a block diagonal symmetric matrix with

blocks of the form given in Lemma 6.1.19. As in Theorem 6.1.16 we can reduce to the

case where A has a single eigenvalue, by Lemma 6.1.12. So let A = ξIn + N where N

is nilpotent symmetric (i.e. a block diagonal nilpotent matrix with blocks of the form

given by Lemma 6.1.19). As in the general case the problem reduces to parameterizing

matrices which commute with N. By Lemma 6.1.18 we can consider skew-symmetric

matrices commuting with A rather than orthogonal ones. Let N = N1 ⊕ · · · ⊕Np where Ni

is nilpotent of size µN(0)i, and of the form given in Lemma 6.1.19. Note that, by Lemma

6.1.19, Ni is similar to a nilpotent Jordan block of size µN(0)i.

Let X be an arbitrary skew-symmetric matrix, let us partition X into blocks Xi, j confor-

mal with N, that is Xi, j is of size µN(0)i×µN(0) j. As X is skew-symmetric we also have that
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Xi, j = −X j,i, and in particular Xi,i is skew-symmetric. To say X commutes with N gives p2

matrix relations of the form Xi, jN j = NiXi, j. If i , j, then transposing the relation for ( j, i),

gives NT
i XT

j,i = XT
j,iN

T
j which is −NiXi, j = −Xi, jN j, i.e. the same relation as for (i, j). So in

fact only p(p + 1)/2 of these matrix relations are independent. If i = j, then Xi,iNi = NiXi,i

states that the skew-symmetric matrix Xi,i commutes with the symmetric matrix Ni by

Lemma 6.1.20 this only happens when Xi,i is zero. So, as all diagonal relations are trivial,

we get p(p − 1)/2 independent matrix relations.

If i , j then the dimension of the set of possible matrices Xi, j satisfying Xi, jN j = NiXi, j

is dim(V(N j,Ni)). By Lemma 6.1.21 we have dim(V(N j,Ni)) = dim(V(JµN(0) j(0), JµN(0)i(0))).

Using Lemma 6.1.14 the number of parameters needed to describe V(JµN(0) j(0), JµN(0)i(0))

is min(µN(0) j, µN(0)i). This is equal to min(µA(ξ)i, µA(ξ) j). So the number of degrees of

freedom are given by

L(µA(ξ))∑
j1=1

L(µA(ξ))∑
j2= j1+1

min(µA(ξ) j1 , µA(ξ) j2).

To generalize to the multiple eigenvalue case we sum over all eigenvalues. �

So we have, by Theorem 6.1.22, for A ∈MΣ
n

dim(OrbOn(K)(A)) = n(n − 1)/2 −
∑

ξ∈Ψ(A)

L(µA(ξ))∑
j1=1

L(µA(ξ))∑
j2= j1+1

min(µA(ξ) j1 , µA(ξ) j2). (6.5)

Theorem 6.1.23. If σ̃−1
T (0) is nonempty then

νOn(K)(σ̃−1
T (0)) ≤ (k − 1)n(n − 1)/2 −

k∑
i=1

∑
ξ∈Ψ(Ci)

L(µCi (ξ))∑
r1=1

L(µCi (ξ))∑
r2=r1+1

min(µCi(ξ)r1 , µCi(ξ)r2).

Proof. Substitute (6.5) into (6.2). �

6.1.6 Comparing the Inequalities

In Theorems 6.1.17 and 6.1.23 we substituted the formulas for the dimensions of the

similarity and symmetric similarity classes respectively into the inequalities at the end of

Section 6.1.1. The inequalities now give us a condition upon which if there are irreducible

solutions to the additive matrix problem, then there are irreducible solutions which are

not symmetrizable. We consider the inequalities in full generality first then consider them

in more specific cases.
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General Case

Suppose C1, . . . ,Ck are such that there exists an irreducible solution to the additive

matrix problem. There exists irreducible solutions which are not symmetrizable if

νGLn(K)(σ̃−1(0)) > νGLn(K)(σ̃−1
T (0)). This inequality is satisfied if

(k − 2)n2 + 2 −
k∑

i=1

∑
ξ∈Ψ(Ci)

L(µCi (ξ))∑
r1=1

L(µCi (ξ))∑
r2=1

min(µCi(ξ)r1 , µCi(ξ)r2)

> (k − 1)n(n − 1)/2 −
k∑

i=1

∑
ξ∈Ψ(Ci)

L(µCi (ξ))∑
r1=1

L(µCi (ξ))∑
r2=r1+1

min(µCi(ξ)r1 , µCi(ξ)r2).

We simplify this to get:

(k − 3)n2 + (k − 1)n + 4 > 2
k∑

i=1

∑
ξ∈Ψ(Ci)

L(µCi (ξ))∑
r1=1

r1∑
r2=1

min(µCi(ξ)r1 , µCi(ξ)r2). (6.6)

Diagonalizable Matrices

As a special case suppose the similarity classes are closed. In this case min(µCi(ξ)r1 , µCi(ξ)r2) =

1 and L(µCi(ξ)) = algrCi
(ξ). (6.6) reduces to:

(k − 3)n2 + (k − 1)n + 4 >
k∑

i=1

∑
ξ∈Ψ(Ci)

algrCi
(ξ)(algrCi

(ξ) + 1).

Nonderogatory Matrices

Suppose the similarity classes are nonderogatory. In this case µCi(ξ)1 = algrCi
(ξ) and

µCi(ξ)i = 0 for i > 1, so L(µCi(ξ)) = 1. So min(µCi(ξ)1, µCi(ξ)1) = µCi(ξ)1 = algrCi
(ξ). (6.6)

reduces to:

(k − 3)n2 + (k − 1)n + 4 > 2
k∑

i=1

∑
ξ∈Ψ(Ci)

algrCi
(ξ).

Matrices with Distinct Eigenvalues

Suppose the similarity classes have n distinct eigenvalues, so they are both diagonalizable

and nonderogatory. In this case L(µCi(ξ)) = 1 and µCi(ξ)1 = 1. So (6.6) reduces to

(k − 3)n2
− (k + 1)n + 4 > 0.

Theorem 6.1.24. The inequality (k − 3)n2
− (k + 1)n + 4 > 0 is satisfied if and only if n > 1

and k > 4/n + 3.
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Proof. We have

(k − 3)n2
− (k + 1)n + 4 = (k − 3)n2

− (k − 3)n − 4n + 4

= (k − 3)(n2
− n) − 4(n − 1)

= ((k − 3)n − 4)(n − 1).

So the inequality (k − 3)n2
− (k + 1)n + 4 > 0 is satisfied if and only if (k − 3)n − 4 > 0 and

n−1 > 0, that is k > 4/n+3 and n > 1 as required (the case where both factors are negative

does not arrise since n ≥ 1). �

Conclusion

The result of this section assumes that an irreducible solution to the additive matrix

problem exists. When such an assumption can be made the results of this section give a

condition which, when satisfied, implies there are solutions which are not symmetrizable.

More precisely if (6.6) is satisfied and there exists an irreducible solution to the additive

matrix problem, then νGLn(K)(σ̃−1(0)) > νGLn(K)(σ̃−1
T (0)), that is the number of parameters of

the kernel of σ̃ is strictly greater than the number of parameters of the kernel of σ̃T, that

is there are strictly more irreducible solutions to the additive matrix problem than there

are symmetrizable irreducible solutions.

The implication does not work the other way however, if the inequality is not satisfied

this does not imply the number of parameters of irreducible solutions is equal to the

number of parameters of symmetrizable irreducible solutions, nor does it imply every

irreducible solution is symmetrizable.

Using the language of Section 5.3, this result shows that in general there are fewer iso-

morphism classes in the category of strict symmetric representations, denoted R̃ep
Σ

K(Πλ(Q)),

than in the category of strict representations, denoted R̃epK(Πλ(Q)), where Q is a star-

shaped quiver and λ ∈ KQ0 .

6.2 Existence of Symmetric Representations of a Given Dimen-

sion Vector

Given a positive dimension vector α ∈ ZQ0 of a given quiver Q and a K-vector λ ∈ KQ0

such that λ ·α = 0, does there always exist a symmetric (or symmetrizable) representation
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of Πλ(Q) of dimension vector α? We prove in this section that where Q is of Dynkin type

or extended Dynkin type Ãn or D̃n and α is a root there does in fact exist such a symmetric

representation of Πλ(Q). We conjecture that the result holds for extended Dynkin type Ẽn

and discuss how this might be proved.

We say a quiver is a Dynkin quiver if its underlying graph is a simply laced Dynkin

diagram, that is from one of the families An (for n ≥ 1), Dn (for n ≥ 4) or En (for n = 6, 7, 8).

We say a quiver is an extended Dynkin quiver is its underlying graph is a simply laced

extended Dynkin diagram, that is one of the families Ãn (for n ≥ 1), D̃n (for n ≥ 4) or Ẽn

(for n = 6, 7, 8). The facts assumed in this section are well-known and found in references

such as [ASS06] and [DR76]. See [ASS06, Chap. VII, Sec. 2] for a description of the simply

laced Dynkin and extended Dynkin diagrams.

Lemma 6.2.1. Let Q be a quiver, α ∈ ZQ0 a positive root of Q and λ ∈ KQ0 such that

λ · α = 0. There exist simple representations X1, . . . ,Xr of Πλ(Q) such that dim(Xi) ∈ Σλ

and dim(X1) + · · · + dim(Xr) = α.

Proof. By Kac’s theroem, as α is a root, there exists an indecomposable representation Y

of Q of dimension vector α. By [CB01, Thm. 3.3] this lifts to a representation of Πλ(Q),

as λ · α = 0. This representation may or may not be simple but in either case it has a

composition series

0 = Y0 ⊂ Y1 ⊂ Y2 ⊂ · · · ⊂ Yr−1 ⊂ Yr = Y

where Y0, . . . ,Yr are subrepresentations such that Xi = Yi/Yi−1 is simple for i = 1, . . . , r.

It is clear that dim(X1) + · · · + dim(Xr) = α. As the Xi are simple Theorem 1.2.9 gives

dim(Xi) ∈ Σλ. �

6.2.1 Dynkin Quivers

Let Q be a Dynkin quiver and α ∈ ZQ0 a positive root. It is well known that the only roots

of Dynkin quivers are real. Let λ ∈ KQ0 such that λ · α = 0. Theorem 6.2.2 shows there

exists a symmetric representation of Πλ(Q) of dimension vector α.

Theorem 6.2.2. There exists a symmetric representation of Πλ(Q) of dimension vector α.

Proof. By Lemma 6.2.1 there are positive roots β1, . . . , βr ∈ Σλ such that β1 + · · ·+βr = α. By

Theorem 4.1.14, for each i = 1, . . . , r, there is an irreducible solution to the additive matrix
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problem (with each collection of conjugacy classes chosen to be compatible with λ and

each βi, see Remark 4.1.5). As Q is Dynkin each of the βi is a real root, so each irreducible

solution is rigid. By Theorem 5.3.7 each of the rigid irreducible solutions is symmetrizable.

By using the functorGΣ in Section 5.3.1 we see there is a symmetric representation of Πλ(Q)

of dimension vector βi. We take the direct sum of these representations to get a symmetric

representation of Πλ(Q) of dimension vector α. �

6.2.2 Extended Dynkin Quivers

Let Q be an extended Dynkin quiver, let α ∈ ZQ0 be a positive root and let λ ∈ KQ0

such that λ · α = 0. In this case the simple representations X1, . . . ,Xr of Πλ(Q), such that

α = dim(X1) + · · · + dim(Xr), given by Lemma 6.2.1 might be of imaginary dimension

vector. When using the lemma we wish to show that for each of the X1, . . . ,Xr there exists

at least one symmetrizable representation of the same dimension vector. We do this on a

case by case basis (i.e. we look at each of the finite number of families of extended Dynkin

quivers). By [ASS06, Chap. VII, Lem 4.2] all imaginary roots of extended Dynkin quivers

are integer multiples of the minimal imaginary root (each extended Dynkin diagram has

its own minimal imaginary root), so we need only find symmetric representations of

dimension vector equal to the minimal imaginary root.

Due to time limitations it has not been possible to complete the proof in all cases,

the following theorem applies when Q is of underlying type Ãn or D̃n. The remaining

unproven cases are when Q is of underlying type Ẽ6, Ẽ7 or Ẽ8, however it is conjectured

that the proof holds in these cases also, we describe one possible method of proving

this at the end of the section. A further question is whether the result holds in the case

where Q is neither Dynkin nor extended Dynkin. The methods used in this section do

not extend to fully to general quivers. Given that there exists a representation of Πλ(Q)

of dimension vector α whenever α is a root and λ · α = 0 (by [CB06, Thm. 2]), one might

be tempted to conjecture that this holds for symmetric representations also, however the

results of Section 6.1 show that the behaviour of strict symmetric representations is not

always analogous to the behavious of strict representations. For this reason it would be

unsafe to conjecture the result holds for general quivers.

Theorem 6.2.3. Suppose Q is extended Dynkin of underlying type Ãn or D̃n. There exists

a symmetric representation of Πλ(Q) of dimension vector α.
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Proof. By Lemma 6.2.1 there are positive roots β1, . . . , βr ∈ Σλ such that β1 + · · · + βr = α,

and simple representations X1, . . . ,Xr of Πλ(Q) such that dim(Xi) = βi. If βi is a real root,

then by the proof of Theorem 6.2.2 Xi is symmetrizable. If βi is imaginary, then βi = miδ for

some mi ≥ 1. By the results in the subsections below we see there exists a symmetrizable

representation Z of Πλ(Q) of dimension vector δ so the direct sum of m copies of Z, i.e.

Z ⊕ · · · ⊕ Z, is a symmetric representation of dimension vector βi.

So there exists symmetric representations of Πλ(Q) of dimension vector β1, . . . , βr. We

take the direct sum to get a symmetric representation of dimension vector α. �

We complete the proof of the above theorem in the following subsections in which we

go through the Ãn and D̃n families of extended Dynkin quivers and show there exists a

symmetric representation of Πλ(Q) of dimension vector δ, where Q is of the appropriate

underlying type and δ is the minimal imaginary root of Q. The orientation we choose for

Q does not matter as Πλ(Q) is constructed from Q. We assume λ · δ = 0, this follows as

mδ ∈ Σλ implies λ · (mδ) = 0. We end with a few remarks about the Ẽn case.

Ãn type quivers

We consider quivers of underlying type Ãn. This is the easiest case to deal with and the

minimal imaginary root δ has ones at every vertex. Let Q have underlying graph Ãn with

each arrow oriented in the same direction.

Q =

077
a0

1 oo a1
2 oo a2

· · · oo an−2
n − 1 ooan−1

n((

an

Theorem 6.2.4. There exists a symmetric representation of Πλ(Q) of dimension vector δ.

Proof. Let V be a representation of Q defined as follows: Vi = K for each i ∈ Q0, the map

Va0 ∈ K is arbitrary and Va∗0 = Va0 , for each i = 1, . . . , k the map Vai ∈ K is arbitrary such

that V2
ai

= (
∑i

j=1 λ j + V2
a0

) (as K is algebraically closed it is always possible to define Vai)

and Va∗i
= Vai . This representation is clearly symmetric with the standard inner product

at each vertex, we show it satisfies the deformed preprojective relations. For the vertex

i ∈ Q0 such that i , 0 we have:

VaiVa∗i
− Va∗i−1

Vai−1 = V2
ai
− V2

ai−1
=

( i∑
j=1

λ j + V2
a0

)
−

( i−1∑
j=1

λ j + V2
a0

)
=

i∑
j=1

λ j −

i−1∑
j=1

λ j = λi.
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For the vertex i = 0 we have:

Va0Va∗0 − Va∗nVan = V2
a0
− V2

an
= V2

a0
−

( n∑
j=1

λ j + V2
a0

)
= −

n∑
j=1

λ j = λ0.

The last equation follows because λ · δ = 0 implies λ0 + λ1 + · · ·+ λn = 0. So all deformed

preprojective relations are satisfied, therefore V is a symmetric representation of Πλ(Q).

�

D̃n-type quivers

We consider the case where Q has underlying type D̃n. Let Qm be the quiver

u1
a1

!!

w1

c1}}
v1

b1 // · · ·
bm−1 // vm

u2

a2
==

w2

c2

aa

The parameter m ≥ 1 is the number of vertices on the “middle bar”. Note that Qm is of type

D̃m+3. The minimal imaginary root of Qm is δm =
1 1

2 · · · 2
1 1

. Given a representation

X of Πλ(Qm) for some λ ∈ KQm
0 , let M(X) = Xbm−1Xb∗m−1

if m > 1 and M(X) = Xa1Xa∗1 + Xa2Xa∗2

if m = 1. So M(X) returns the endomorphism of Xvm obtained by “traversing” whichever

arrows are to the immediate left of vm (in the diagram).

We prove the existence of a symmetric representation by induction on m. Let m ≥ 2

and suppose we are given a K-vector λ ∈ KQm
0 of Qm such that λ · δm = 0. Let λ′ ∈ KQm−1

0 be

defined by λ′i = λi, for i ∈ {u1,u2, v1, . . . , vm−2,w1,w2} and λ′vm−1
= λvm−1 +λvm , so λ′ inherits

all of its entries from the corresponding entries of λ with the exception of λ′vm−1
which is

equal to the sum of λm−1 and λm. That is

λ′ =

λu1 λw1

λv1 · · · λvm−2 (λvm−1 + λvm)

λu2 λw2

Note that λ′ · δm−1 = 0 follows from λ · δm = 0. Theorem 6.2.5 is an induction argument

which allows us to reduce the problem to the case where m = 1. Theorem 6.2.6 establishes

the existence of symmetric representations in the m = 1 case. We work with matrix

representations from hereon, we say a matrix representation X of Qm is a symmetric matrix
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representation of Qm if Xa∗ = XT
a . This is a symmetric representation with the standard

inner product at each vertex.

Theorem 6.2.5. Let m ≥ 2. A symmetric matrix representation Y of Πλ(Qm) exists of

dimension vector δm with M(Y) diagonal whenever a symmetric matrix representation X

of Πλ′(Qm−1) exists of dimension vector δm−1 with M(X) diagonal.

Proof. Let us assume such a symmetric matrix representation X of Πλ′(Qm−1) exists. We

exhibit a symmetric matrix representation Y of Πλ(Qm) with the required properties.

Let Y inherit the linear maps of X for a1, a2, b1, . . . , bm−2, c1, c2 (and for the adjoined

arrows), that is let Ya = Xa and Ya∗ = Xa∗ for a ∈ {a1, a2, b1, . . . , bm−2, c1, c2}. What remains

is to define Ybm−1 and Yb∗m−1
. We need Ybm−1 and Yb∗m−1

to satisfy:

M(X) − Yb∗m−1
Ybm−1 = λvm−1I2, (6.7)

Ybm−1Yb∗m−1
+ Yc1Yc∗1 + Yc2Yc∗2 = λvmI2. (6.8)

Whilst we have that X satisfies:

M(X) + Xc1Xc∗1 + Xc2Xc∗2 = λ′vm−1
I2 = (λvm−1 + λvm)I2. (6.9)

Let

 a b

b c

 = M(X) − λvm−1I2 and

 p q

q r

 = Ybm−1 , note that a, b, c are fixed and p, q, r are

to be determined, also note that we are defining Ybm−1 to be symmetric. Let Yb∗m−1
= YT

bm−1
=

Ybm−1 . By the induction hypothesis M(X) is diagonal so b = 0. We need to satisfy a 0

0 c

 =

 p q

q r


 p q

q r

 =

 p2 + q2 q(p + r)

q(p + r) q2 + r2

 .
Let q = 0 and choose p, r such that p2 = a and r2 = c. So M(Y) = Yb∗m−1

Ybm−1 = YT
bm−1

Ybm−1 = p2 0

0 q2

. By definition Ybm−1 and Yb∗m−1
satisfy (6.7), we now show they satisfy (6.8).

λvmI2 = λ′vm−1
I2 − λvm−1I2

= M(X) − λvm−1I2 + Xc1Xc∗1 + Xc2Xc∗2 (by substituting (6.9))

= M(X) − λvm−1I2 + Yc1Yc∗1 + Yc2Yc∗2 ,

= Yb∗m−1
Ybm−1 + Yc1Yc∗1 + Yc2Yc∗2

= Ybm−1Yb∗m−1
+ Yc1Yc∗1 + Yc2Yc∗2 (as Ybm−1 is symmetric).

So (6.8) is satisfied. Clearly M(Y) is diagonal so the theorem is proved. �
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So if we can show there exists a symmetric matrix representation X when m = 1 with

M(X) diagonal, then the same follows for any m.

Theorem 6.2.6. Let λ ∈ KQ1
0 such that λ · δ1 = 0. There exists a symmetric representation

X of Πλ(Q1) of dimension vector δ1 such that M(X) is diagonal.

Proof. We exhibit a symmetric matrix representation X of Πλ(Q1). Let

Xa1 =

 p

0

 , Xa2 =

 q

0

 , Xc1 =

 x

y

 , Xc2 =

 z

w

 ,
where p, q, x, y, z,w ∈ K are to be determined. By the deformed preprojective relations at

the extremities (i.e. at vertices u1, u2, w1 and w2), we require that the unknowns satisfy:

λu1 = −p2, λu2 = −q2, λw1 = −x2
− y2, λw2 = −z2

− w2. So we choose p, q, x, z ∈ K such that

p2 = −λu1 , q2 = −λu2 , x2 = −(y2 + λw1), z2 = −(w2 + λw2).

Note that we obtain an equally valid choice of p, q, x, z by flipping the signs. The central

relation is:  λv1 0

0 λv1

 =

 p2 0

0 0

 +

 q2 0

0 0

 +

 x2 xy

xy y2

 +

 z2 zw

zw w2


=

 p2 + q2 + x2 + z2 xy + zw

xy + zw y2 + w2


So the remaining unknowns (y and w) need to satisfy

λv1 = −λu1 − λu2 − λw1 − λw2 − (y2 + w2), (6.10)

λv1 = y2 + w2, (6.11)

0 = xy + zw. (6.12)

We now fix y ∈ K such that (y2 + λw1)y2 = (λv1 + λw2 − y2)(λv1 − y2) and w ∈ K such that

w2 = λv1 − y2 (satisfing (6.11)). These choices imply (y2 + λw1)y2 = (w2 + λw2)w2 which

imply x2y2 = z2w2 which implies either xy = zw or xy = −zw. As we have a choice of

sign when choosing z we can flip the sign if necessary to ensure xy = −zw, which satisfies

(6.12). As λ · δ = 0 implies λu1 + λu2 + 2λv1 + λw1 + λw2 = 0, we have that w2 = λv1 − y2

implies (6.10).

We have shown the existence of a symmetric representation of Q of dimension vector δ

which satisfies the deformed preprojective relations. Lastly, we see that M(X) is diagonal,
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as

M(X) =

 p

0


(

p 0
)

+

 q

0


(

q 0
)

=

 p2 + q2 0

0 0

 .
�

Ẽn-type quivers

Time restrictions prevent us from demonstrating the validity of the theorem in the case

where Q has underlying type Ẽ6, Ẽ7 or Ẽ8. However we conjecture that the theorem

holds in these cases. We describe one possible method for showing this and report that

it has succeeded in the Ẽ6 case, although we do not prove this due to time restrictions.

Our method for exhibiting symmetric representations is to exhibit a triple of symmetric

matrices which sum to zero and have similarity types which (by Section 5.3) imply the

existence of a symmetric representation of Πλ(Q) of dimension vector δ. In this setting we

have three similarity classes C1,C2,C3 ⊆Mn(K) where n = 3, 4, 6 for Ẽ6, Ẽ7, Ẽ8 respectively.

We are able to reduce to the case where the roots of the minimal polynomials are distinct

by the following argument.

If δ has a root decomposition (β1, . . . , βr), then as δ is the minimal imaginary root it

follows that the β1, . . . , βr are real roots. If (β1, . . . , βr) is compatible with λ, then it follows

from the proof of Theorem 6.2.3 that there exist symmetric representations of dimension

vectors β1, . . . , βr, so the direct sum yields a symmetric representation of dimension vector

δ. We now assume there is no root decomposition of δ compatible with λ. Suppose for Ci

where i ∈ {1, 2, 3} the minimal polynomial minCi has a repeating zero, this would imply

there was a root decomposition of δ compatible withλ. Let ξi,1, . . . , ξi,di be a list of the zeros

of the minimal polynomial (with multiplicities), for some j , j′ we have ξi, j − ξi, j′ = 0.

Without loss of generality we can assume j = 1 and j′ = 2. The equality can be expressed

as λ · εi,1 = 0 where εi,1 is the simple root at the [i, 1] vertex (recall simple roots defined in

Section 1.1.2). We ensure δ − εi,1 is a positive root by checking through each of the finite

number of possible cases (there are 6 cases to check). So (εi,1, δ − εi,1) is a positive root

decomposition of δ compatible with λ, contradicting our assumption that no such root

decomposition of δ exists. Therefore all minimal polynomials have only nonrepeating

zeros, that is C1,C2,C3 are diagonalizable.
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In the Ẽ6 case all three classes have three distinct eigenvalues as δ =
2 1

3 2 1

2 1

. In the Ẽ7

case two classes have four distinct eigenvalues and the third has two distinct eigenvalues

of algebraic multiplicity two as δ =
3 2 1

4 3 2 1
2

. In the Ẽ8 case one class has six distinct

eigenvalues, one class has three distinct eigenvalues of algebraic multiplicity two and the

third has two distinct eigenvalues of algebraic multiplicity three as δ =
5 4 3 2 1

6 4 2

3

.

To exhibit three symmetric matrices A1,A2,A3, in prescribed similarity classes, which

sum to zero, it is enough to exhibit two matrices A1,A2 and prove A3 = −(A1 + A2) is in

the third similarity class. As similarity does not change under orthogonal transformation

we can assume one of the symmetric matrices, say A1, is diagonal. By Theorem 6.1.7 as

A2 is symmetric it must be orthogonally similar to a diagonal matrix. So we have A1 =

diag(a1, . . . , an) ∈ C1 and A2 = QTdiag(b1, . . . , bn)Q ∈ C2, where a1, . . . , an, b1, . . . , bn ∈ K

are fixed by the similarity classes and where Q ∈ On(K) is to be determined. We need to

exhibit some Q ∈ On(K) such that A3 = −(A1 + A2) ∈ C3.

In each case we have one similarity class with distinct eigenvalues, suppose this class

is C3 so we can determine the similarity type of A3 = −(A1 + A2) from the characteristic

polynomial charC3 . So we have to show there exists an orthogonal matrix Q such that the

coefficients of

charC3(x) = det

xIn +


a1 . . . 0
...

. . .
...

0 . . . an

 + QT


b1 . . . 0
...

. . .
...

0 . . . bn

 Q

 , (6.13)

can take any value (except for those coefficients which are fixed by a1, . . . , an, b1, . . . , bn and

do not depend on Q). Obviously the coefficent of xn is always one in the characteristic

polynomial and the coefficent of xn−1 is always −trace(C3) (in fact we have trace(C3) =

−a1−· · ·−an−b1−· · ·−bn). All other coefficients in (6.13) depend on Q, so we need to show

the coefficients of 1, x, . . . , xn−2 can take any arbitrary value. As a further simplification, if

necessary we can assume the matrices each have trace zero without loss of generality.

Unfortunately time restrictions prevent us from using this method to completion,
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however we have had success in the Ẽ6 case using orthogonal matrices of the form

Q =


p1 q1 0

−q1 p1 0

0 0 1




1 0 0

0 p2 q2

0 −q2 p2

 .
where p1, p2, q1, q2 ∈ K are to be determined such that p2

1 + q2
1 = p2

2 + q2
2 = 1. Though there

are four coefficients of charA3(x), only two are arbitrary: the coefficients of 1 and x. When

we expand charA3(x) = det(xI3 + diag(a1, a2, a3) + QTdiag(b1, b2, b3)Q), we see it is possible

to choose p1, p2 ∈ K such that the coefficients of 1 and x take on any value (q1 and q2 are

easily removed from the calculation using p2
1 + q2

1 = p2
2 + q2

2 = 1). Given more time we

would show the calculation does in fact yield the result and show whether it works for

Ẽ7 and Ẽ8.
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