
COHERENT SHEAVES ON THE PROJECTIVE LINE,
WORKING SEMINAR, BIELEFELD 18.10.2018

WILLIAM CRAWLEY-BOEVEY

1. (Quasi)coherent sheaves of OX-modules

We work over an algebraically closed field k. A variety X comes equipped with its
Zariski topology and for every open set U we have a k-algebra OX(U) of regular
functions on U . Basic references are Hartshorne [8], Kempf [9], Mumford [10].

A presheaf F of OX-modules consists of
- for each open set U of X, an OX(U)-module F(U),
- for each inclusion V ⊆ U , a restriction map rUV : F(U)→ F(V ) of OX(U)-modules,
where F(V ) is considered as an OX(U) module via the map OX(U)→ OX(V ),
- such that rVW r

U
V = rUW for W ⊆ V ⊆ U and rUU = id.

There is a natural category of presheaves.

F is a sheaf if for any open covering Ui of an open subset U
- f ∈ F(U) is uniquely determined by its restrictions fi ∈ F(Ui).
- Any collection of fi ∈ F(Ui), which agree on all pairwise intersections Ui ∩ Uj,
arise by restriction from some f ∈ F(U).

F is quasicoherent if for any inclusion of affine open subsets V ⊆ U of X, the
natural map OX(V )⊗OX(U) F(U) → F(V ) is an isomorphism. This means that F
is determined by the OX(Ui)-modules F(Ui) for an affine open cover Ui of X.

F is coherent if also F(U) is a finitely generated OX(U)-module for U affine open,
or equivalently for U running through an affine open cover of X.

2. The projective line

P1 = {[a : b] : a, b ∈ k, not both zero}/[a : b] ∼ [λa : λb] for λ 6= 0. It is identified
with k ∪ {∞} where λ ∈ k corresponds to [1 : λ] and ∞ = [1 : 0].

The sets D(f) = {[a : b] : f(a, b) 6= 0} (0 6= f ∈ k[x, y] a homogeneous polynomial),
are a base of open sets for the Zariski topology.

It turns out that the non-empty open sets are exactly the complements of finite sets.
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For a non-empty open set U , OP1(U) is the ring of rational functions f/g with
f, g ∈ k[x, y] homogeneous of the same degree and g non-vanishing on U .

The standard affine open covering is P1 = U0 ∪ U1 where
- U0 = {[a : b] : a 6= 0} = {[1 : b/a] : a 6= 0} ∼= A1,
- U1 = {[a : b] : b 6= 0} = {[a/b : 1] : b 6= 0} ∼= A1.

A coherent sheaf on P1 is given by a triple (M0,M1, θ)
- M0 is a f.g. module for O(U0) = k[s] where s = y/x,
- M1 is a f.g. module for O(U1) = k[s−1]
- θ is an isomorphism of modules for O(U0 ∩ U1) = k[s, s−1],

θ : k[s, s−1]⊗k[s−1] M1 → k[s, s−1]⊗k[s] M0

A morphism φ : (M0,M1, θ)→ (M ′
0,M

′
1, θ
′) is given by module maps φi : Mi → M ′

i

giving a commutative square

k[s, s−1]⊗k[s] M0
1⊗φ0−−−→ k[s, s−1]⊗k[s] M

′
0

θ

x xθ′
k[s, s−1]⊗k[s−1] M1 −−−→

1⊗φ1
k[s, s−1]⊗k[s−1] M

′
1

3. Basic properties

OX itself is a coherent sheaf of OX-modules.

Theorem. The quasicoherent sheaves form a Grothendieck category—an abelian
category with enough injectives, but in general no projectives.
The coherent sheaves form an abelian subcategory cohX. For a projective variety
the Hom spaces are finite dimensional.

The global sections of F are Γ(X,F) := F(X) ∼= Hom(OX ,F). Its derived functors
are cohomology H i(X,F) ∼= Exti(OX ,F).

There is a tensor product with (F ⊗OX
G)(U) = F(U)⊗OX(U) G(U) for affine open

U . Also symmetric and exterior powers.

There is a sheaf Hom with Hom(F ,G)(U) = HomOX(U)(F(U),G(U)) for affine open
U . Taking global sections gives the usual Hom space.

4. Locally free sheaves

F is locally free of rank n if X has an open covering Ui such that each F|Ui
∼= (OUi

)n.
If F is coherent and Ui is an affine open covering, F is locally free of rank n iff each
F(Ui) is a projective OX(Ui)-module of rank n.
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A vector bundle of rank n on X is a variety E with a morphism π : E → X and
the structure of an n-dimensional vector space on each fibre Ex = π−1(x), satisfying
the local triviality condition that X has an open cover Ui and isomorphisms φi :
π−1(Ui) → Ui × kn compatible with the projections to Ui and the vector space
structure on the fibres.

Theorem. There is an equivalence of categories between vector bundles and locally
free sheaves. To a vector bundle E corresponds its sheaf of sections

E(U) = {s : U → E : πs = id}.
which becomes an OX-module via (fs)(u) = f(u)s(u) and (s+ s′)(u) = s(u) + s′(u)
using the vector space structure.

There is a duality on locally free sheaves given by F∨ = Hom(F ,OX).

An invertible sheaf is a locally free sheaf of rank 1. Their isomorphism classes form
a group Pic(X) under tensor product.

5. Torsion sheaves

A coherent sheaf F is torsion if all F(U) for U affine open are torsion modules. For
a curve this means they are f.d. modules.

For P1, given a non-zero homogeneous polynomial f ∈ k[x, y], there is a torsion
sheaf Sf given by M0 = k[s]/(f(1, s)), M1 = k[s−1]/(f(s−1, 1)), θ = id.

The indecomposable torsion sheaves on a curve are classified by points x ∈ X and
a positive integer n. For [a : b] ∈ P1 it is Sf for f(x, y) = (bx− ay)n. e.g. for [1 : 0]
this is M0 = k[s]/(sn), M1 = 0.

Lemma. Every coherent sheaf on a non-singular curve is the direct sum of a torsion
sheaf and a locally free sheaf.

Proof. Every coherent F has maximal torsion subsheaf T . For a non-singular curve
F/T is locally free and the exact sequence 0→ T → F → F/T → 0 is split. For an
affine curve we know this, since its coordinate ring is a Dedekind domain. In general
we can cover X with two open affines, with F torsion-free on one of them, and then
a splitting of the sequence on the other affine easily gives a splitting globally.

6. The sheaves O(i) on P1

The sheaf O(i) for i ∈ Z is given by M0 = k[s], M1 = k[s−1], and θ : k[s, s−1] →
k[s, s−1] is multiplication by si.

Lemma. Hom(O(i),O(i+ d)) ∼= k[x, y]d the homogeneous polynomials of degree d.
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Proof. If f ∈ k[x, y] is homogeneous of degree d, then (f/xd = f(1, s), f/yd =
f(s−1, 1)) defines a map O(i) → O(i + d). (The cokernel is Sf .) It is easy to see
that this gives a bijection.

Lemma. - O(0) ∼= OP1 , O(i)⊗O(j) ∼= O(i+ j), O(i)∨ ∼= O(−i).
- Up to isomorphism these are the only invertible sheaves.
-O(−1) corresponds to the universal subbundle E = {([a, b], (c, d)) ∈ P1 × k2 : ad = bc}.

Proof. For the universal subbundle
E(U0) ∼= k[s]f where f : U0 → E, [a : b] 7→ ([a : b], (1, b/a)).
E(U1) ∼= k[s−1]g where g : U1 → E, [a : b] 7→ ([a : b], (a/b, 1)).
On U0 ∩ U1, (sg)([a : b]) = s([a : b])g([a : b]) = (b/a)([a : b], (a/b, 1)) = ([a :
b], (1, b/a)) = f([a : b]).

Birkhoff-Grothendieck Theorem [7]. Every locally free sheaf on P1 is isomorphic
to a direct sum of copies of the O(i).

Proof. Since projectives over k[s] and k[s−1] are free, a locally free sheaf of rank n
is given by M0 = k[s]n, M1 = k[s−1]n and an element of GLn(k[s, s−1]).

Birkhoff factorization [5]: any such matrix factorizes as ADB with A ∈ GLn(k[s]),
D diagonal and B ∈ GLn(k[s−1]).

The sheaf is then isomorphic to that given by D, a direct sum of invertible sheaves.

Lemma. dim Ext1(O(i),O(j)) = dim k[x, y]i−j−2.
In particular dim Ext1(O,O(−2)) = 1, represented by the exact sequence 0 →
O(−2)→ O(−1)2 → O → 0 given by (x, y), (y,−x).

Proof. We consider an exact sequence 0→ O(j)→ F → O(i)→ 0, so

0 −−−→ k[s]
( 1

0 )
−−−→ k[s]2

( 01 )−−−→ k[s] −−−→ 0

0 −−−→ k[s, s−1] −−−→ k[s, s−1]2 −−−→ k[s, s−1] −−−→ 0

sj

x ( ab
cd

)

x si

x
0 −−−→ k[s, s−1] −−−→ k[s, s−1]2 −−−→ k[s, s−1] −−−→ 0

0 −−−→ k[s−1] −−−→
( 1

0 )
k[s−1]2 −−−→

( 01 )
k[s−1] −−−→ 0

The middle matrix must have the form

(
sj b
0 si

)
with b ∈ k[s, s−1].



COHERENT SHEAVES ON THE PROJECTIVE LINE 5

Equivalence of two such extensions (given by b, b′) is map of exact sequences

0 −−−→ O(j) −−−→ Fb −−−→ O(i) −−−→ 0∥∥∥ h

y ∥∥∥
0 −−−→ O(j) −−−→ Fb′ −−−→ O(i) −−−→ 0

The map h is given by matrices which must have the form(
1 f(s)
0 1

) (
1 g(s−1)
0 1

)
Thus we get a commutative square

k[s, s−1]2
( 1

0
f(s)

1
)

−−−−−→ k[s, s−1]2

( s
j

0
b
si

)

x x( s
j

0
b′

si
)

k[s, s−1]2 −−−−−−→
( 1

0
g(s−1)

1
)

k[s, s−1]2

Thus b′ = b+ sif(s)− sjg(s−1). The coefficients of sn with j < n < i are invariant.
The number of these is dim k[x, y]i−j−2.

Note the following Birkhoff factorization for λ 6= 0,(
s−2 λs−1

0 1

)
=

(
0 1
−λ−1 λ−1s

)(
s−1 0
0 s−1

)(
1 0
s−1 λ

)
.

7. The sheaf of differentials

If A is a commutative k-algebra, the module of Kähler differentials ΩA is the A-
module generated by symbols da (a ∈ A) subject to
- d(a+ b) = da+ db,
- d(ab) = adb+ bda,
- dλ = 0 for λ ∈ k.

Example. Ωk[x] = k[x]dx, for d(f(x)) = f ′(x)dx.

The sheaf of differentials ΩX is the coherent sheaf with ΩX(U) = ΩOX(U) for U affine
open.

Lemma. ΩP1
∼= O(−2).

Proof. Let F = ΩP1 . F(U0) = k[s]ds, F(U1) = k[s−1]d(s−1). Then θ sends the
generator d(s−1) of F(U1) to

d(s−1) = −s−2ds = −s−2.(the generator of F(U0)).
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If X is non-singular of dimension n then:
- ΩX is locally free of rank n, it corresponds to the cotangent bundle of X.
- Ω∨X corresponds to the tangent bundle of X. For P1 it is O(2).
- The canonical bundle is the top exterior power ωX = ∧nΩX . For P1 it is ΩP1

∼=
O(−2).

8. Serre duality

Theorem. For a non-singular projective curve and coherent F ,G,

Ext1(F ,G) ∼= DHom(G,F ⊗ ω). (D = Homk(−, k))

It is usually stated for F = OX and maybe G locally free. I don’t know a good proof
of the version here.

For P1 we computed dim Ext1(O(i),O(j)) = dim k[x, y]i−j−2 = dim Hom(O(j),O(i−
2)) = dim Hom(O(j),O(i)⊗ ω).

It follows that the category of coherent sheaves for a non-singular projective curve is
hereditary since Ext1(F ,−) is right exact. Also it has Auslander-Reiten sequences,
with the translate given by F ⊗ ω. Get AR quiver.

9. Grothendieck group

The Grothendieck group K0(cohX) is the Z-module generated by the isomorphism
classes [F ] (F coherent), subject to [F ] = [E ] + [G] for 0→ E → F → G → 0 exact.

For X a non-singular curve, K0(cohX) ∼= Pic(X)⊕ Z.

For P1 the rank and degree of a coherent sheaf are defined by rankO(i) = 1,
degO(i) = i, rankSf = 0, degSf = deg f , and additively on direct sums. They
define an isomorphism K0(cohP1)→ Z2, [F ] 7→ (rankF , degF).

For a non-singular variety of dimension n, the Euler form is the bilinear form

〈−,−〉 : K0(cohX)×K0(cohX)→ Z, ([F ], [G]) 7→
n∑
i=0

(−1)i dim Exti(F ,G)

The genus of a non-singular curve is g = dim Ext1(OX ,OX) = dim Hom(OX , ω).

Theorem. For a non-singular curve

〈[F ], [G]〉 = (rankF)(deg G)− (degF)(rankG) + (1− g)(rankF )(rankG).

With F = OX and Serre duality, this gives the Riemann-Roch Theorem.
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10. Serre’s Theorem

I don’t know a good reference, but see the introduction to [1].

LetX be the projective variety given by a commutative graded k-algebraR satisfying
R = R0 ⊕R1 ⊕R2 ⊕ . . . with R0 = k and R is generated by R1.

Serre’s Theorem. cohX is equivalent to grmodR/ torsR. In particular cohP1 is
equivalent to grmod k[x, y]/ tors k[x, y].

Here grmodR is the category of f.g. Z-graded R-modules and torsR is the subcat-
egory of f.d. Z-graded R-modules.

Now A = grmodR is an abelian category and S = torsR is a Serre subcategory,
meaning that if 0 → L → M → N → 0 is exact, then M ∈ S ⇔ L,N ∈ S. By
definition the quotient category A/S has the same objects as A, with

HomA/S(M,N) = lim−→HomA(M ′, N/N ′),

the direct limit taken over all subobjects M ′ of M and N ′ of N with M/M ′, N ′ ∈ S.

Andrew has notes containing a proof for P1.

This comes from a functor grmodR → cohX. The functor sends a graded k[x, y]-
module M to (M0,M1, θ) where
- M0 is the degree 0 part of the graded module k[x, x−1, y] ⊗k[x,y] M . Naturally a
k[s]-module, s = y/x.
- M1 is the degree 0 part of the graded module k[x, y, y−1] ⊗k[x,y] M . Naturally a
k[s−1]-module.
- the map θ comes from identifying both k[s, s−1]⊗Mi with the degree 0 part of the
graded module k[x, x−1, y, y−1]⊗k[x,y] M .

The grading shift M(i)n = Mi+n on grmodR corresponds to the tensor product
with O(i).

11. Beilinson’s Theorem

Beilinson’s result [3, 4] as interpreted by Geigle and Lenzing [6] and Baer [2].

A tilting sheaf for a non-singular projective variety X is a coherent sheaf T with
- Exti(T , T ) = 0 for i > 0.
- T generates Db(cohX) as a triangulated category.
- Λ := End(T )op has finite global dimension.

Theorem. T = O ⊕O(1) is a tilting sheaf for P1 and Λ is the Kronecker algebra.
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Proof. We have shown that Ext1(T , T ) = 0 and the higher Exts are all zero. The
exact sequence 0→ O(i)→ O(i+1)2 →→ O(i+2)→ 0 shows that the subcategory
generated by T contains O(2), and then in the same way that it contains all O(i).
Thus it contains Sf , so it is all of Db(cohP1).

One gets a functor Hom(T ,−) : cohX → Λ-mod. It has a left adjoint, denoted
T ⊗Λ −.

Theorem. They give inverse equivalences

RHom(T ,−) : Db(cohX) −→←− Db(Λ-mod) : T ⊗L −

Since cohP1 and the Kronecker algebra are hereditary, any indecomposable object
of the derived category is represented by a complex which lives in only one degree.
Get familiar picture
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[3] A. A. Bĕılinson, Coherent sheaves on Pn and problems in linear algebra, Funktsional. Anal.
i Prilozhen. 12 (1978), 68-69. English translation: Functional Anal. Appl. 12 (1978), 214–216
(1979).
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