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Abstract

We prove that indecomposable Σ-pure-injective modules for a string algebra
are string or band modules. The key step in our proof is a splitting result for
infinite-dimensional linear relations.
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1. Introduction

A string algebra is one of the form Λ = KQ/(ρ) where K is a field, Q is a
quiver, KQ is the path algebra, and (ρ) denotes the ideal generated by a set ρ
of paths of length at least 2, satisfying

(a) any vertex of Q is the head of at most two arrows and the tail of at most
two arrows, and

(b) given any arrow y in Q, there is at most one path xy of length 2 with xy /∈ ρ
and at most one path yz of length 2 with yz /∈ ρ.

For simplicity we suppose that Q has only finitely many vertices (so is finite),
so that the algebra Λ has a unit element.

It is well-known that the finite-dimensional indecomposable modules for a
string algebra are classified in terms of strings and bands, see for example [3,
4]. It is also interesting to study infinite-dimensional modules, especially pure-
injective modules, see [12, 9, 10]. In this paper we classify indecomposable
Σ-pure-injective modules for string algebras. Recall that a module is said to
be pure-injective or algebraically compact if it is injective with respect to pure-
exact sequences (where an exact sequence is pure-exact if it remains exact after
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tensoring with any module). A module is Σ-pure-injective if any direct sum of
copies of it is pure-injective. There are many equivalent formulations, see for
example [8, §4.4.2]. Note that any countable-dimensional pure-injective module
is Σ-pure-injective, see [8, Corollary 4.4.10].

Associated to a string algebra Λ there are certain words whose letters are
the arrows of Q and their inverses. The words may be finite or (as in [12, 4])
infinite. Associated to such a word C there is a module M(C). (We recall
the appropriate definitions in §3). By a string module one means a module
M(C) with C not a periodic word. If C is periodic, then M(C) becomes a Λ-
K[T, T−1]-bimodule, and given any indecomposable K[T, T−1]-module V there
is a corresponding band module M(C, V ) = M(C) ⊗K[T,T−1] V . It is known
that string modules are indecomposable, and Harland [7] has given a criterion
in terms of a word C, for when the string module M(C) is Σ-pure-injective; for
convenience we recall his criterion in §3. Our main result is as follows.

Theorem 1.1. Every indecomposable Σ-pure-injective module for a string al-
gebra Λ is either a string module M(C) or a band module M(C, V ) with V a
Σ-pure-injective K[T, T−1]-module.

The indecomposable Σ-pure-injective K[T, T−1]-modules are the indecom-
posable finite-dimensional modules, the Prüfer modules, which are the injective
envelopes of the simple modules, and the function field K(T ). It is easy to see
that the corresponding Λ-modules M(C, V ) are also Σ-pure-injective, for exam-
ple using [8, Theorem 4.4.20(iii)]. Since any Σ-pure-injective module is a direct
sum of indecomposables, the theorem, combined with [4, Theorem 9.1], implies
that M(C, V ) is indecomposable for V indecomposable Σ-pure-injective.

The proof of our theorem uses the functorial filtration method, which goes
back to the classification of Harish-Chandra modules for the Lorenz group
by Gelfand and Ponomarev [6], and was used for the classification of finite-
dimensional modules for string algebras by Butler and Ringel [3]. The method
depends on a certain splitting result for finite-dimensional linear relations, see
[6, Theorem 3.1], [11, §2] and [5, §7]. An extension of this splitting result to
some infinite-dimensional relations was obtained in [4, Lemma 4.6]. A key step
in the proof of our theorem is the generalization of this splitting result to the
Σ-pure-injective case, which we now explain.

Fix a base field K. A linear relation (V,C) consists of a vector space V and a
subspace C of V ⊕V . The category of linear relations has as morphisms (V,C)→
(U,D) the linear maps f : V → U with the property that (f(x), f(y)) ∈ D for
all (x, y) ∈ C. Any linear relation (V,C) defines a Kronecker module

X
p−→−→
q

Y

where X = C, Y = V and p and q are the first and second projections, and
in this way the category of linear relations is equivalent to the full subcategory
of the category of Kronecker modules, consisting of those modules such that
the map ( pq ) : X → Y 2 is injective. Linear relations can be considered as
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generalizations of linear maps, and one defines Cu = {v ∈ V : (u, v) ∈ C} for
u ∈ V and CU =

⋃
u∈U Cu for U ⊆ V . If U is a subspace of V and C is a

relation on V , then C|U denotes C ∩ (U ⊕ U).
Given a linear relation (V,C), we recall [4, Definition 4.3] that there are

subspaces of V defined by

C] = {v ∈ V : ∃vn ∈ V for all n ∈ Z with vn+1 ∈ Cvn and v = v0},
C[ = C+ + C−, C± = {v ∈ V : ∃vn ∈ V as above with vn = 0 for ±n� 0 }.

By [4, Lemma 4.5] the quotient C]/C[ is a K[T, T−1]-module with the action
of T given by T (C[ + v) = C[ +w if and only if w ∈ C] ∩ (C[ +Cv). Using [4,
Lemma 4.6] we prove the following.

Theorem 1.2. As Kronecker modules, (C[, C|C[) and (C], C|C]) are both pure
submodules of (V,C).

We say that a relation (V,C) is automorphic if both projection maps p, q :
C → V are isomorphisms. The theorem implies our splitting result for linear
relations.

Corollary 1.3. If (V,C) is Σ-pure-injective as a Kronecker module, then there
is a decomposition C] = C[ ⊕ U such that (U,C|U ) is an automorphic relation.
Moreover C]/C[ is a Σ-pure-injective K[T, T−1]-module.

In section 2 we prove Theorem 1.2 and Corollary 1.3, and then in section 3
we use this to prove Theorem 1.1.

2. Linear relations

Products CD and inverses C−1 of relations on V are defined by u ∈ CDv if
u ∈ Cw and w ∈ Dv for some w ∈ V , and u ∈ C−1v ⇔ v ∈ Cu. Recall [4] that

C ′ =

∞⋃
n=0

Cn0, and

C ′′ = {v0 ∈ V : ∃vn ∈ V for n > 0 with vn ∈ Cvn+1 for all n ≥ 0},

so that C] = C ′′ ∩ (C−1)′′, C+ = C ′′ ∩ (C−1)′, C− = (C−1)′′ ∩ C ′.

Lemma 2.1. If (V,C) is automorphic, then C[ = 0 and C] = V .

Proof. Clear.

Lemma 2.2. If C is a relation, then (C|C[)[ = C[ and (C|C])] = C].

Proof. Straightforward.

3



The category of linear relations inherits an exact structure from the category
of Kronecker modules, in which a sequence of relations

0→ (V1, C1)
f−→ (V2, C2)

g−→ (V3, C3)→ 0

is exact provided that 0 → V1 → V2 → V3 → 0 and 0 → C1 → C2 → C3 → 0
are exact.

Lemma 2.3. Given a relation (V,C), there is an exact sequence

0→ (C[, C|C[)→ (C], C|C])→ (C]/C[, (C|C])/(C|C[))→ 0

where the third term is automorphic.

Proof. We need to show that the third term is automorphic. Consider the
map C|C] → C]/C[ given by the first projection, say.

The map is onto since by definition any element v0 of C] belongs to an
infinite sequence of elements vn ∈ V with (vn+1, vn) ∈ C for all n, and then
(v0, v−1) ∈ C|C] .

The kernel of the map is the set of pairs (x, y) ∈ C with x, y ∈ C] and
x ∈ C[. But then y ∈ C] ∩ CC[, and by [4, Lemma 4.4] this is equal to C[, so
the kernel is C|C[ .

A relation (V,C) is said to be split provided that there is a subspace U of
V such that C] = C[ ⊕ U and (U,C|U ) is an automorphic relation [4, §4].

Lemma 2.4. A relation (V,C) is split if and only if the exact sequence in
Lemma 2.3 is split.

Proof. It suffices to show that if (V,C) is split, then C|C] = C|C[ ⊕ C|U , for
then (U,C|U ) is a complement for (C[, C|C[) as Kronecker modules. Suppose
(x, y) ∈ C|C] . Write x = z + u with z ∈ C[ and u ∈ U . By assumption
there is w ∈ U with (u,w) ∈ C. Since C is linear, (z, y − w) ∈ C. Thus
y − w ∈ Cz ⊆ CC[. But also y − w ∈ C]. Thus y − w ∈ C[ by [4, Lemma 4.4].
Then (x, y) = (u,w) + (z, y − w) ∈ C|U + C|C[ .

Lemma 2.5. Consider an exact sequence of relations

0→ (V1, C1)
f−→ (V2, C2)

g−→ (V3, C3)→ 0

where we identify V1 as a subspace of V2. Then

(i) if C]1 = V1 and C]3 = V3 then C]2 = V2;

(ii) if C[1 = V1 and C[3 = V3 then C[2 = V2; and

(iii) if C[1 = V1 and C[3 = 0 then C[2 = V1.
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Proof. (i) By symmetry, it suffices to show that if v ∈ V2 then v ∈ C2V2. By

assumption g(v) ∈ V3 = C]3, so g(v) ∈ C3V3. Thus (u, g(v)) ∈ C3 for some
u ∈ V3. Since the map C2 → C3 is onto, there is (x, y) ∈ C2 with g(x) = u
and g(y) = g(v). Then g(y − v) = 0, so we can identify y − v as an element of

V1 = C]1, so y − v ∈ C1V1, so there is w ∈ V1 with (w, y − v) ∈ C1. But then
(x− w, v) ∈ C2, so v ∈ C2V2, as required.

(ii) We show by induction on n that if v ∈ V2 and g(v) ∈ Cn3 0 then v ∈ C[2.
The result then follows by symmetry, using that g is onto. Namely, for v ∈ V2
we have g(v) = y+ + y− with y± ∈ (C3)±. Then y− = g(v−) for some v− ∈ V2,
and g(v−) ∈ (C3)− ⊆ (C3)′, so g(v−) ∈ Cn3 0 for some n, and hence v− ∈ C[2.
Also g(v − v−) = y+ ∈ (C3)+ ⊆ (C−13 )′, so by the same result for the inverse
relations, v − v− ∈ (C−12 )[ = C[2. Thus v ∈ C[2.

For the induction, if n = 0 then g(v) = 0, so v ∈ V1 = C[1 ⊆ C[2. If n > 1,
then g(v) ∈ C3w with w ∈ Cn−13 0. Now since the map C2 → C3 is onto,
there is (x, y) ∈ C2 with (g(x), g(y)) = (w, g(v)). By induction x ∈ C[2. Then

y ∈ C2x ⊆ C2C
[
2, and y ∈ C]2, so y ∈ C[2 by [4, Lemma 4.4]. Also g(v) = g(y),

so v − y ∈ V1 = C[1 ⊆ C[2, so v ∈ C[2.
(iii) Clearly V1 = C[1 ⊆ C[2. Conversely, if v ∈ C[2, then g(v) ∈ C[3, so

g(v) = 0, so v ∈ V1.

We recall the classification of Kronecker modules, see for example [2]. If M
is a finite-dimensional indecomposable Kronecker module, say of the form

X
p−→−→
q

Y,

then either it is automorphic regular, meaning that p and q are isomorphisms,
or M is of one of the following types, where X has basis (xi : i ∈ I), Y has basis
(yj : j ∈ J), p(xi) = yi (or 0 if i /∈ J) and q(xi) = yi+1 (or 0 if i+ 1 /∈ J).

(i) Preprojectives Pn (n ≥ 0): I = {1, . . . , n}, J = {1, . . . , n+ 1}.
(ii) Preinjectives In (n ≥ 0): I = {0, . . . , n}, J = {1, . . . , n}.
(iii) 0-Regulars Zn (n ≥ 1): I = {1, . . . , n}, J = {1, . . . , n}.
(iv) ∞-Regulars Rn (n ≥ 1): I = {0, . . . , n− 1}, J = {1, . . . , n}.

Linear relations correspond to Kronecker modules without I0 as a direct sum-
mand.

Lemma 2.6. Let (V,C) be a linear relation, let U be one of the following sub-
spaces of V and let M be a finite-dimensional indecomposable Kronecker module
of the indicated type:

(i) U = C[ and M is preinjective, or

(ii) U = C] and M is preinjective, or

(iii) U = C] and M is automorphic regular.

Then there is no non-zero map of Kronecker modules ψ : M → (V/U,C/C|U ).
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Proof. (i), (ii) For M = In the map ψ consists of maps θ : X → C/C|U and
φ : Y → V/U , sending xi to the coset of, say, (v′i, v

′′
i+1) ∈ C for 0 ≤ i ≤ n and

yj to the coset of vj for 1 ≤ j ≤ n, and such that v′i − vi, vi+1 − v′′i+1 ∈ U for
0 ≤ i ≤ n, where v0 = vn+1 = 0. Note U ⊆ (C−1)′′.

We claim that all v′i, v
′′
i+1 ∈ (C−1)′′. This is true for v′′n+1; if true for v′′i+1

it follows for v′i since v′i ∈ C−1v′′i+1; and if true for v′i it follows for v′′i since
v′i − v′′i ∈ U ⊆ (C−1)′′. The claim follows.

Dually, starting with v′0, we see that all v′i, v
′′
i+1 ∈ C ′′. Thus all v′i, v

′′
i+1 ∈ C].

If U = C] then vj ∈ U for 1 ≤ j ≤ n in which case θ = φ = 0. So we may
assume U = C[.

Now we claim that all v′i, v
′′
i+1 ∈ C[. This is true for v′0; if true for v′i it follow

for v′′i+1 since v′′i+1 ∈ C] ∩ Cv′i ⊆ C] ∩ CC[ ⊆ C[ by [4, Lemma 4.4]; if true for

v′′i it follows for v′i since v′i − v′′i ∈ C[. Thus ψ = 0 as above.
(iii) Let x1, . . . , xn be a basis for X, and so y1, . . . , yn is a basis for Y

where yi = p(xi). There is an invertible matrix A = (aij) with aij ∈ K and
q(xi) =

∑n
j=1 aijyj . The map ψ consists of θ′ : X → C/C|C] and φ′ : Y →

V/C], sending xi to the coset of (wi, w
′
i) and yi to the coset of w′′i , such that

wi − w′′i , w′i −
∑n
j=1 aijw

′′
j ∈ C]. It suffices to show wi ∈ C].

Note w′i −
∑n
j=1 aijwj ∈ C] since this is the sum of

∑n
j=1 aij(w

′′
j − wj)

and w′i −
∑n
j=1 aijw

′′
j . By [4, Lemma 4.4] we have C] ⊆ C−1C] and so there

is some ui ∈ C] for which (ui, w
′
i −

∑n
j=1 aijwj) ∈ C. Thus we have (wi −

ui,
∑n
j=1 aijwj) ∈ C.

Since ui ∈ C] there exist ui,t ∈ C] for t ∈ Z such that ui,0 = ui and
ui,t ∈ Cui,t−1 for all t. For 1 ≤ i, j ≤ n let a+ij := aij and let a−ij be the (i, j)th

entry of the matrix A−1. We define elements wsi , u
s
i,t ∈ V iteratively as follows.

Let w0
i = wi and u0i,t = ui,t, and for d ≥ 1 let

w±di =
∑n
j=1 a

±
ijw
±(d−1)
j u±di,t =

∑n
j=1 a

±
iju
±(d−1)
j,t

By construction (wdi − udi,0, w
d+1
i ) ∈ C when d = 0. If this true for some d ≥ 0

then
(wd+1

i − ud+1
i,0 , wd+2

i ) =
∑n
j=1 aij(w

d
j − udj,0, w

d+1
j ) ∈ C,

hence for all d ≥ 0 we have (wdi − udi,0, w
d+1
i ) ∈ C. Note that (udi,t, u

d
i,t+1) ∈ C

for all t ∈ Z. We claim (zdi , z
d+1
i ) ∈ C for all d ≥ 0 where z0i = w0

i − u0i,0,

z1i = w1
i and zdi = wdi +

∑d−1
r=1 u

d−r
i,r for d ≥ 2. For d = 0 the claim holds by

construction. If (zd−1i , zdi ) ∈ C for some d ≥ 1 then

zd+1
i = wd+1

i +
∑d
r=1 u

d+1−r
i,r ∈ C(wdi − udi,0 +

∑d
r=1 u

d+1−r
i,r−1 )

by the above, and as
∑d
r=2 u

d+1−r
i,r−1 =

∑d−1
r=1 u

d−r
i,r this gives (zdi , z

d+1
i ) ∈ C. Now

let zdi = wdi +
∑0
r=d u

r−d
i,r for d ≤ 1. As above we have (zdi , z

d+1
i ) ∈ C for d ≤ 0,

and so altogether we have z0i = wi − ui ∈ C], as required.

6



Lemma 2.7. Let (V,C) be a relation with V = C], and let M be a finite-
dimensional indecomposable Kronecker module which is preprojective, 0-regular
or ∞-regular. Then Ext1(M, (V,C)) = 0.

Proof. Using the explicit description of Kronecker modules before Lemma 2.6,
we see that there are exact sequences of Kronecker modules

0→ Pn → Pn+1 → R1 → 0,
0→ Zn → Zn+1 → Z1 → 0,
0→ Rn → Rn+1 → R1 → 0.

Thus any Pn, Zn or Rn is is an iterated extension of copies of the modules
R1, Z1 and P0. Thus it suffices to prove that Ext1(M, (V,C)) = 0 for these
three modules M . This is clear for P0 since it is projective, and by symmetry,
replacing C with its inverse, it suffices to show it for M = R1.

Consider an extension

0→ (V,C)→ (W,D)→M → 0

and identify V as a subspace of W , so C is a subspace of D. Let w ∈ W
and d = (w′, w′′) ∈ D be sent to the basis elements y1 and x1 in M . Then
w′′ − w,w′ ∈ V . Now w′ ∈ Cw′′′ for some w′′′ ∈ V , and W = V ⊕Ku where
u = w′′ − w′′′, and D = C ⊕K(u, 0), giving a splitting of the extension.

Proof of Theorem 1.2. Let U be C[ or C]. We need to show that any map
from a finitely presented, so finite dimensional, Kronecker module M to the
third term in the exact sequence

0→ (U,C|U )→ (V,C)→ (V/U,C/C|U )→ 0

lifts to a map to the middle term. It is enough to let M be indecomposable and
show the pullback sequence

0→ (U,C|U )→ (W,D)→M → 0

is split. By Lemma 2.2 we have (C|C])] = C], and also clearly (C|C[)] = C[, so
if M is preprojective, 0-regular or ∞-regular then the pullback sequence splits
by Lemma 2.7. Assume instead that M is preinjective or regular automorphic.
There is nothing to prove if there are no non-zero maps M → (V,C). By
Lemma 2.6 this means we can assume that U = C[ and that M is regular
automorphic. Hence D[ = C[ and D] = W by Lemma 2.5, and thus the
pullback sequence is the exact sequence of Lemma 2.3 for the relation (W,D).
This splits by [4, Lemma 4.6], since the quotient is finite dimensional.

Proof of Corollary 1.3. Assume that (V,C) is Σ-pure-injective as a Kro-
necker module. By [8, Corollary 4.4.13] any pure submodule of it is a direct
summand. In particular, by Theorem 1.2, this applies to (C[, C|C[). Thus also
(C[, C|C[) is pure-injective.
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Since (C[, C|C[) is a pure submodule in (V,C), it is also pure in (C], C|C]),
see for example [8, Lemma 2.1.12]. Thus the exact sequence of Lemma 2.3 splits.
By Lemma 2.4 we have

(C[, C|C[)⊕ (C]/C[, (C|C])/(C|C[)) ∼= (C], C|C])

Since (C], C|C]) is a pure submodule of the Σ-pure injective module (V,C),
(C], C|C]) is Σ-pure injective, hence so is (C]/C[, (C|C])/(C|C[)). This means
the inclusion of Kronecker modules

(C]/C[, (C|C])/(C|C[))(N) ⊆ (C]/C[, (C|C])/(C|C[))N

splits. Thus the inclusion (C]/C[)(N) ⊆ (C]/C[)N of K[T, T−1]-modules splits,
so C]/C[ is a Σ-pure-injective K[T, T−1]-module.

3. String algebras

Let Λ = KQ/(ρ) be a string algebra, as in the introduction. We already
mentioned words C and the associated modules M(C) in the introduction. We
begin by recalling the appropriate definitions.

Words ([4, §1]). A letter is either an arrow x or its formal inverse x−1. Let
I be one of the sets {0, . . . , n} (for some n ∈ N), N, −N or Z. For I 6= {0}, an
I-word is a sequence of letters

C =


C1 . . . Cn (if I = {0, . . . , n})
C1C2 . . . (if I = N)

. . . C−1C0 (if I = −N)

. . . C−1C0 | C1C2 . . . (if I = Z)

(a bar | shows the position of C0 and C1 when I = Z) satisfying:

(a) if Ci and Ci+1 are consecutive letters, then the tail of Ci is equal to the
head of Ci+1.

(b) if Ci and Ci+1 are consecutive letters, then C−1i 6= Ci+1

(c) no zero relation x1 . . . xm ∈ ρ, nor its inverse x−1m . . . x−11 occurs as a se-
quence of consecutive letters in C.

For I = {0} there are trivial words 1v,ε for each vertex v and each ε = ±1. By
a word we mean an I-word for some I.

The inverse C−1 of C is defined by inverting its letters (where (x−1)−1 = x)
and reversing their order. By convention (1v,ε)

−1 = 1v,−ε, and the inverse of a
Z-word is indexed so that (. . . C0 | C1 . . . )

−1 = . . . C−11 | C−10 . . .
If C is a Z-word and n ∈ Z, the shift C[n] is the word . . . Cn | Cn+1 . . . We

say that a word C is periodic if it is a Z-word and C = C[n] for some n > 0.
The minimal such n is called the period. We extend the shift to I-words C with
I 6= Z by defining C[n] = C.
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Modules given by words. For any I-word C and any i ∈ I there is an
associated vertex vi(C), the tail of Ci or the head of Ci+1, or v for C = 1v,ε.
Given an I-word C let M(C) be the Λ-module generated by the elements bi
subject to the relations

evbi =

{
bi (if vi(C) = v)

0 (otherwise)

for any vertex v in Q and

xbi =


bi−1 (if i− 1 ∈ I and Ci = x)

bi+1 (if i+ 1 ∈ I and Ci+1 = x−1)

0 (otherwise)

for any arrow x in Q. Given a periodic Z-word C of period p, and a K[T, T−1]-
module V , there is an automorphism of the underlying vector space of M(C)
given by bi 7→ bi−p. Hence M(C) is a Λ-K[T, T−1]-bimodule and we define
M(C, V ) = M(C)⊗K[T,T−1] V .

By a string module we mean a module of the form M(C) where C is not a
periodic Z-word. By a band module we mean a module of the form M(C, V )
where C is a periodic Z-word and V is an indecomposable K[T, T−1]-module.

Sign, heads and tails ([4, §2]). We choose a sign ε = ±1 for each letter l,
such that if distinct letters l and l′ have the same head and sign, then {l, l′} =
{x−1, y} for some zero relation xy ∈ ρ.

The head of a finite word or N-word C is defined to be v0(C), so it is the
head of C1, or v for C = 1v,ε. The sign of a finite word or N-word C is defined
to be that of C1, or ε for C = 1v,ε.

For v a vertex and ε = ±1, we define Wv,ε to be the set of all I-words with
head v, sign ε, and where I ⊆ N.

Composing words. The composition CD of a word C and a word D is
obtained by concatenating the sequences of letters, provided that the tail of C
is equal to the head of D, the words C−1 and D have opposite signs, and the
result is a word.

By convention 1v,ε1v,ε = 1v,ε and the composition of a −N-word C and an
N-word D is indexed so that CD = . . . C0 | D1 . . . If C = C1 . . . Cn is a non-
trivial finite word and all powers Cm are words, we write C∞ and ∞C∞ for the
N-word and periodic word C1 . . . CnC1 . . . Cn . . . and . . . Cn | C1 . . . If C is an
I-word and i ∈ I, there are words C>i = Ci+1Ci+2 . . . and C≤i = . . . Ci−1Ci
with appropriate conventions if i is maximal or minimal in I, such that C =
(C≤iC>i)[i].

Relations given by words ([4, §4]). If M is a Λ-module and x is an arrow
with head v and tail u, then multiplication by x defines a linear map euM →
evM , and hence a linear relation from euM to evM .
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By composing such relations and their inverses, any finite word C defines a
linear relation from euM to evM , where v is the head of C and u is the tail of
C. We denote this relation also by C.

Thus, for any subspace U of euM , one obtains a subspace CU of evM . We
write C0 for the case U = {0} and CM for the case U = euM .

Filtrations given by words ([4, §6]). For C ∈ Wv,ε and any Λ-module M
define subspaces C−(M) ⊆ C+(M) ⊆ evM as follows.

Suppose C is finite. Let C+(M) = Cx−10 if there is an arrow x such that
Cx−1 is a word, and otherwise C+(M) = CM . Similarly let C−(M) = CyM if
there is an arrow y such that Cy is a word, and otherwise C−(M) = C0.

If instead C is an N-word let C+(M) be the set of m ∈ M such that there
is a sequence mn (n ≥ 0) with m0 = m and mn−1 ∈ Cnmn for all n ≥ 1, and
define C−(M) to be the set of m ∈M such that there is a sequence mn as above
which is eventually zero. Clearly C−(M) ⊆ C+(M).

Subgroups of finite definition ([8, §1.1.1]). A pp-definable subgroup of M
is an additive subgroup of M of the form

{m ∈M | Am = 0 for some m =

 m0

...
mc−1

 ∈M c with m = m0}

where r, c ≥ 1 and A = (aij) is a r × c matrix with entries in Λ. If r = c = 1
and A = a this gives {m ∈ M | am = 0}. If r = 1, c = 2, and A = ( −1 a )
this gives {m ∈ M | ∃m′ ∈ M such that m = am′}. If C is a finite word then
CM is a pp-definable subgroup of M (see [7, §5.3.2], [8, Example 1.1.2] or [10,
§4]).

Lemma 3.1. If M is a pure-injective Λ-module and C is an N-word then
C+(M) =

⋂
n≥0 C≤nM .

Proof. Clearly C+(M) ⊆
⋂
n≥0 C≤nM . Conversely, given m0 in the right

hand side, we iteratively find elements

mi ∈ C−1i mi−1 ∩
⋂
n≥0

(C>i)≤nM

for all i > 0. For any n ≥ 0 we consider the set

∆n = C−1i mi−1 ∩ (C>i)≤nM.

This is non-empty since mi−1 ∈ (C>i−1)≤n+1M = Ci(C>i)≤nM , and it is a
coset of a pp-definable subgroup. Moreover ∆0 ⊇ ∆1 ⊇ ∆2 ⊇ . . . , so any
intersection of finitely many of the ∆n is non-empty. As M is algebraically
compact, the intersection of all the ∆n is non-empty (see [8, §4.2.1]), so there is
some mi as indicated. Now the sequence of elements m0,m1,m2 . . . shows that
m0 ∈ C+(M).
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Refined functors ([4, §7]). If (B,D) ∈ Wv,1 ×Wv,−1 and M is a Λ-module,
let FB,D(M) = F+

B,D(M)/F−B,D(M) where

F+
B,D(M) = B+(M) ∩D+(M) and

F−B,D(M) = (B+(M) ∩D−(M)) + (B−(M) ∩D+(M)).

If (B,D) ∈ Wv,1 ×Wv,−1 and C = B−1D is a periodic word, say D = E∞ and
B = (E−1)∞ for some finite word E, then F+

B,D(M) = E], F−B,D(M) = E[ and
the linear relation E on evM induces an automorphism of FB,D(M) (see §1).
Hence FB,D defines a functor from Λ-modules to K[T, T−1]-modules. Otherwise
C is a non-periodic word and we consider FB,D as a functor from the category
of Λ-modules to K-vector spaces.

In general there is a natural isomorphism between FB,D and the functor
GB,D defined by GB,D(M) = G+

B,D(M)/G−B,D(M) for any Λ-module M where

G±B,D(M) = B−(M) +D±(M) ∩B+(M).

Corollary 3.2. Let θ : N →M be a homomorphism of Λ-modules where M is
pure-injective over Λ. If FB,D(θ) is surjective for all (B,D) ∈

⋃
vWv,1×Wv,−1

then θ is surjective.

Proof. For the contrapositive we suppose im(θ) 6= M , and so we can choose
a vertex v and some element m ∈ evM \ evim(θ). The set S = evim(θ) + m
contains m but not 0, so by combining Lemma 3.1 and [4, Lemma 10.3], there
is a word B ∈ Wv,ε such that S meets B+(M) but not B−(M). Following the
proof of [4, Lemma 10.5] we have that S meets G+

B,D(M) but not G−B,D(M)
for some (B,D) ∈ Wv,1 ×Wv,−1. Following the second half of the proof of [4,
Lemma 10.6], this shows GB,D(θ) is not surjective.

Proof of Theorem 1.1. We show that every Σ-pure-injective Λ-module M
is a direct sum of string modules M(C) and band modules M(C, V ) with V
Σ-pure-injective.

Suppose that (B,D) ∈ Wv,1 ×Wv,−1 and C = B−1D is periodic, say D =
E∞ and B = (E−1)∞ for some finite word E. We consider the pair (evM,E)
consisting of the vector space evM and the relation on it induced by the word
E. Since M is Σ-pure-injective, there is an infinite cardinal κ such that any
product of copies of M is isomorphic to a direct sum of modules of cardinality
≤ κ. This property is inherited by the pair (evM,E) as a Kronecker module,
and hence it is Σ-pure-injective by [8, Theorem 4.4.20].

Thus by Corollary 1.3, there is a decomposition E] = E[ ⊕ U such that
(U,E|U ) is an automorphic relation, or in other words, M is E-split in the sense
of [4, §7].

Following the proof of [4, Theorem 9.2], this means there is a homomorphism
θ : N → M where N is a direct sum of string and band modules, and FB,D(θ)
is an isomorphism for all pairs of words (B,D) ∈ Wv,1 × Wv,−1 such that
C = B−1D is a word. By [4, Lemma 9.4] this means θ is injective, and θ is
surjective by Corollary 3.2.
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Note that any Σ-pure-injective module is a direct sum of indecomposables,
but conversely not every direct sum of indecomposable Σ-pure-injective modules
is Σ-pure-injective, see for example [8, Example 4.4.18].

Ringel has shown that M(C) is Σ-pure-injective provided C is a so-called
contracting word [12, §5]. A more general result is due to Harland [7].

Harland’s criterion. For each vertex v and each ε ∈ {±1} there is a total
ordering < on Wv,ε given by C < C ′ if

(a) C = ByD and C ′ = Bx−1D′ for arrows x and y and words B, D, and D′

(with B finite),

(b) C ′ is finite and C = C ′yD for an arrow y and a word D, or

(c) C is finite and C ′ = Cx−1D for an arrow x and a word D.

For any I-word C and any i ∈ I the words C>i and (C≤i)
−1 have the same

head but opposite signs. Let C(i,±1) be the one with sign ±1. The following
result is [7, Proposition 14 and Theorem 42]. (Note that Harland uses the
opposite ordering on Wv,ε so has the ascending chain condition.)

Proposition 3.3. Let Λ be finite dimensional and C be an I-word. Then M(C)
is Σ-pure-injective if and only if for each vertex v and each ε ∈ {±1} every
descending chain in {C(i, ε) : i ∈ I, vi(C) = v} stabilizes.

On page 243 of [7, §6.9] there is an example of an aperiodic word C where
M(C) is pure-injective.
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