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Introduction

In May 1999 there was a German Mathematical Society (DMV) Seminar on

Quantizations of Kleinian singularities at the Mathematical Research

Institute in Oberwolfach. The organizers were Ragnar Buchweitz, who spoke

about deformation theory, Peter Slodowy, who spoke about Kleinian

singularities, and myself. These are a slightly revised and expanded

version of the notes that I prepared for the meeting.

I assume throughout that K is an algebraically closed field of

characteristic zero and work with algebras and varieties over K. The aim is

to study quotient singularities V/
�
, where V is a smooth affine variety and

�
is a finite group acting on V. In particular the Kleinian singularities
2

K /
�
with

���
SL (K). For example one would like to construct and

2
understand deformations, quantizations and desingularizations of these

singularities.

The key idea is to try to realize V/
�
as a moduli space of modules for the

skew group algebra K[V]#
�
formed by the action of

�
on the coordinate ring

of V. This idea seems to be implicit in some of the recent work on the

higher dimensional McKay correspondence, where it sometimes leads to a

desingularization of V/
�
. To get deformations and quantizations of V/

�
, we

look for deformations of the algebra K[V]#
�
. It is easy to write some down

in case V is a vector space and
�
preserves a symplectic form on V. To

determine the properties of our deformations, we restrict to the Kleinian

singularity case, when K[V]#
�
is Morita equivalent to a "preprojective

algebra", and one can use representations of quivers. The lectures

therefore begin with an introduction to these topics.

Much of this material comes from W.Crawley-Boevey and M.P.Holland,

Noncommutative deformations of Kleinian singularities, Duke Math. J. 92

(1998), 605-635.

William Crawley-Boevey

April 2000
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Lecture 1. Representations of quivers

1.1. QUIVERS. Let Q be a quiver with vertex set I. Thus Q is a directed

graph with a finite number of arrows and vertices. Each arrow a has its

tail at a vertex t(a) and its head at a vertex h(a). We also write a:i � � � � � � � � � � � j

to indicate that i = t(a) and j = h(a).

A representation of Q consists of a vector space M for each vertex and a
i

linear map M � � � � � � � � � � � M for each arrow a:i � � � � � � � � � � � j. A homomorphism between two
i j

representations M � � � � � � � � � � � N consists of a linear map M � � � � � � � � � � � N for each vertex,
i i

such that for each arrow a:i � � � � � � � � � � � j the square

M � � � � � � � � � � � N
i i� ��� �

M � � � � � � � � � � � N
j j

commutes. Clearly in this way one obtains a category of representations,

and the isomorphisms turn out to be those homomorphisms in which all linear

maps M � � � � � � � � � � � N are invertible.
i i

I
The dimension vector of a representation M is the vector ����� whose

components are given by � = dim M . The notation � = dim M is often used.
i i

Choosing bases for the vector spaces, any representation of dimension � is

given by an element of

Rep(Q, � ) = 	 Mat( ��
�� ,K).
a:i � � � � � � j j i

We write K for the representation corresponding to a point x � Rep(Q, � ).
x �

i
Thus the vector space at a vertex i is K and the linear maps are given by

the matrices. Another common notation is to use the corresponding capital

letter X for the representation.

The group

GL( � ) = 	 GL( � ,K)
i � I i

acts on Rep(Q, � ) by conjugation. The group elements in which all matrices
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are the same nonzero multiple of the identity matrix act trivially, so the
*

quotient group G( � ) = GL( � )/K acts. Clearly the orbits (for either group

action) correspond to the isomorphism classes of representations of Q of

dimension � . Moreover the stabilizer of x in GL( � ) is evidently the
*

automorphism group Aut(K ), so the stabilizer of x in G( � ) is Aut(K )/K .
x x

1.2. PATH ALGEBRAS. The path algebra KQ associated to a quiver Q is the

associative algebra with basis the paths in Q. This includes a trivial path

e for each vertex i. For example the path algebra of the quiver
i

1• a���
c• � � � � � � � � � � � •

b � 3 4�
•

2

has basis e , e , e , e , a, b, c, ca, cb. The multiplication in KQ is
1 2 3 4

given by composition of paths if they are compatible, or zero if not. In

the example we have a.b = 0, c.b = cb, e .c = c, e .c = 0, etc. Note that
4 3

our convention for the order of arrows is to compose them as if they were

functions. Clearly the e are orthogonal idempotents, and the sum of them
i

is an identity element for KQ. The path algebra is finite-dimensional if

and only if Q has no oriented cycles.

Studying representations of Q is essentially the same as studying

KQ-modules. (By default this means left modules.) The connection is as

follows.

- If M is a representation of Q, so given by vector spaces M for each
i

vertex i, and linear maps, then M = � M can be turned into a KQ-module as
i i

follows. If i is a vertex, then multiplication by e acts as the projection
i

onto M . If a:i � � � � � � � � � � � j is an arrow, then multiplication by a acts as the
i

composition

a
M � � � � � � � � � � � M � � � � � � � � � � � M � � � � � � � M.

i j

- Conversely, if M is a KQ-module, there is a representation M with

M = e M, and with the linear map M � � � � � � � � � � � M corresponding to an arrow a:i � � � � � � � � � � � j
i i i j

given by left multiplication by a.
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This defines an equivalence of categories, but perhaps it is not an

isomorphism. Nevertheless, in future we shall blur the difference between

representations and modules.

1.3. INDECOMPOSABLES. Recall that a module M is said to be indecomposable

if it cannot be written as a direct sum of two proper submodules M = X � Y.
For finite-dimensional modules for an algebra, which is our interest in

these notes, there are two key results:

- Fitting’s Lemma says that a module is indecomposable if and only if every

endomorphism is of the form � 1 + � where ��� K and � is nilpotent.

- Any finite-dimensional module can clearly be written as a direct sum of

indecomposable submodules, but such a decomposition is not unique. However,

the Krull-Schmidt Theorem says that any two decompositions have the same

number of indecomposable summands, and the summands can be paired off so

that corresponding summands are isomorphic.

1.4. STANDARD RESOLUTION. If S is an algebra and V is an S-S-bimodule then

the tensor algebra of V over S is

T V = S � V � (V � V) � (V � V � V) � ...
S S S S

with the natural multiplication. If A = T V, there is a canonical exact
S

sequence

f m
0 � � � � � � � � � � � A � V � A � � � � � � � � � � � A � A � � � � � � � � � � � A � � � � � � � � � � � 0

S S S

where f(a � v � a � ) = av � a � - a � va � and m(a � a � ) = aa � .

The path algebra KQ is a special cases of a tensor algebra, with S the

commutative semisimple algebra S = 	 K and V = � K, considered as
i � I a:i � � � � � � j

an S-S-bimodule via svs � = (s v s � ) . In fact any tensor algebra T V
j a i a:i � � � � � � j S

with S,V finite dimensional and S commutative semisimple arises this way.
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LEMMA (Standard resolution). Any KQ-module X has a projective resolution

0 � � � � � � � � � � � � KQe � X � � � � � � � � � � � � KQe � X � � � � � � � � � � � X � � � � � � � � � � � 0
a:i � � � � � � j j i i i i

In particular gl.dim KQ � 1.

PROOF. Here X = e X is the vector space at vertex i in the corresponding
i i

representation, and the tensor products are over K. Thus KQe � X is
i i

isomorphic as a KQ-module to a direct sum of copies of KQe , indexed by a
i

basis of X . Now since e is idempotent, KQe is a projective KQ-module,
i i i

and hence so is the direct sum. Thus the terms are indeed projective

modules.

The sequence is obtained by applying - � X to the canonical exact sequence
KQ

for KQ = A = T V. The canonical exact sequence is a sequence of
S

A-A-bimodules, and it is clearly split as a sequence of right A-modules, so

it remains exact under the tensor product.

Since any left KQ-module has a projective resolution with two terms, we

deduce that KQ has left global dimension at most 1. But the opposite

algebra of KQ is also a path algebra, of the opposite algebra, so the same

applies for right global dimension.

I
1.5. BILINEAR FORMS. The Ringel form for Q is the bilinear form on

�

defined by

< � , � > = � ��� - � ��� .
i i i a:i � � � � � � j i j

The Tits form is the quadratic form q( � ) = < � , � >. The corresponding

symmetric bilinear form is

( � , � ) = < � , � > + < � , � >.

If X,Y are (f.d.) representations of Q then there is Ringel’s formula:

1
dim Hom(X,Y) - dim Ext (X,Y) = <dim X,dim Y>.
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which follows from applying the functor Hom(-,Y) to the standard resolution

for X and using the fact that Hom(KQe ,Y) � Y to compute dimensions.
i i

I
1.6. ROOTS. Let � � �

denote the coordinate vector at vertex i. The
i

matrix A = ( � , � ) is a Generalized Cartan Matrix (at least when Q has no
ij i j

loops), and so there is an associated Kac-Moody Lie algebra. This algebra

has a root system associated to it. We need the same combinatorics.

If i is a loopfree vertex in Q (meaning that there is no arrow with head

and tail at i), then there is a reflection

I I
s :

� � � � � � � � � � � � �
, s ( � ) = � - ( � , � ) �

i i i i

I
The Weyl group is the subgroup W � Aut(

�
) generated by the s . The

i
fundamental region is

I
F = { ����� : ��� 0, � has connected support, and ( � , � ) � 0 for all i}

i

By definition the real roots for Q are the orbits of coordinate vectors �
i

(for i loopfree) under W. The imaginary roots for Q are the orbits of ���

(for ��� F) under W.

If � is a root, then so is - � . This is true by definition for imaginary

roots. It holds for real roots since s ( � ) = - � if i is a loopfree
i i i

vertex. It can be shown that every root has all components � 0 or � 0. This

can be deduced from Lie Theory, but one could also prove it using the

methods of Lecture 2. Thus one can speak of positive and negative roots.

It is easy to check that q(s ( � )) = q( � ), so that the Weyl group preserves
i

the Tits form. It follows that the real roots have q( � )=1, and the

imaginary roots have q( � ) � 0. In general, however, not all vectors with

these properties are roots. (But see §1.9.)

I
A nonzero element � of

�
is said to be indivisible if gcd( � ) = 1. Clearly

i
any real root is indivisible, and if � is a real root, only ��� are roots.

On the other hand every imaginary root is a multiple of an indivisible

root, and all other nonzero multiples are also roots.
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1.7. KAC’S THEOREM. (i) If there is an indecomposable representation of Q

of dimension � , then � is a root.

(ii) If � is a positive real root there is a unique indecomposable of

dimension � (up to isomorphism).

(iii) If � is a positive imaginary root then there are infinitely many

indecomposables of dimension � (up to isomorphism).

In Lecture 2 we shall prove (i) and (ii). In the rest of this lecture we

shall assume the truth of (i) and (ii), discuss Dynkin and extended Dynkin

quivers, and prove a very special case of (iii). Thus, although we do not

prove all of Kac’s Theorem, we do prove everything we need for Kleinian

singularities.

1.8. DYNKIN AND EXTENDED DYNKIN QUIVERS. The extended Dynkin quivers are
~ ~ ~ ~ ~

those whose undelying graph is one of A , D , E , E , E (with n+1
n n 6 7 8

I
vertices). In each case we’ve indicated a special vector ��� � by marking

each vertex i with the component � .
i

~ ~
A : D :
n 1 � � � � � � � � � � � � � � � � � � � �1 n 1 1� � � �

1 1 (n � 0) 2 � � � � � � � � � �2 ����� � � � � � � � � � �2 (n � 4)� � � �
1 � � � � � � � � � � � � � � � � � � � �1 1 1

1�
~

~ ~ E :
E : 2 E : 2 8 3
6 7� � �

1 � � � � � � � � � �2 � � � � � � � � � �3 � � � � � � � � � �2 � � � � � � � � � �1 1 � � � � � � � � � �2 � � � � � � � � � �3 � � � � � � � � � �4 � � � � � � � � � �3 � � � � � � � � � �2 � � � � � � � � � �1 2 � � � � � � � � � �4 � � � � � � � � � �6 � � � � � � � � � �5 � � � � � � � � � �4 � � � � � � � � � �3 � � � � � � � � � �2 � � � � � � � � � �1

~
Thus A consists of one vertex and one loop. An extending vertex is one

0
with � = 1. The Dynkin quivers A ,D ,E ,E ,E are obtained by deleting an

i n n 6 7 8
extending vertex. We have the following observations.

(1) Let Q be an arbitrary quiver. By definition the radical of the Tits
I

form q is Rad(q) = { ��� � : ( � , � )=0 for all i}. Writing n for the
i ij

number of edges i � � � � � � � � � �j (loops count twice), we have

��� Rad(q) � (2 - n ) � = � n � for all i.
ii i j � i ij j
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(2) If � is a radical vector with � > 0 for all i, then by calculation
i

��� � � 2
i j

�
i j �

q( � ) = � n � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � - � � � � � � � � � �
i<j ij 2 � � ���

i j

for any � . It follows that q is positive semidefinite (meaning that
I

q( � ) � 0 for all ��� � ). Assuming that Q is connected the only vectors on

which q vanishes are the elements of
� � , so this is also the radical of q.

(3) One can easily check that ��� Rad(q) for Q extended Dynkin. Thus q is

positive semidefinite and Rad(q) =
� � .

(4) It follows immediately that q is positive definite for Q Dynkin
I

(meaning that q( � ) > 0 for all 0 ����� � ).

(5) A case-by-case analysis shows that any connected quiver which is not

Dynkin or extended Dynkin must properly contain an extended Dynkin quiver,

and this implies that q is indefinite for such quivers (so takes both

positive and negative values).

1.9. ROOTS FOR DYNKIN AND EXTENDED DYNKIN QUIVERS. Let Q be a Dynkin or

extended Dynkin quiver.

I
(1) We show that if ��� �

and q( � ) � 1, then � is either positive or
+ - + - I

negative. Write � = � - � with � , � � � having disjoint support. For a
+ -

contradiction suppose that � and � are both nonzero. Now

+ - + - + -
1 � q( � ) = q( � ) + q( � ) - ( � , � ) � q( � ) + q( � )

+ -
but q( � ) and q( � ) are integers and q is positive semidefinite, so one

+
term must vanish, say q( � ) = 0. This implies that Q is extended Dynkin and
+� is a nonzero multiple of � . But all components of � are nonzero, so we

-
must have � = 0. Contradiction.

I
(2) The roots for Q are exactly the 0 ����� �

with q( � ) � 1. Certainly any

root has these properties. On the other hand, if � has these properties

then we apply a sequence of reflections to minimize � ����� . If � is now a
i

multiple of a coordinate vector at a loopfree vertex, then since q( � ) � 1
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we see that the multiple is � 1, so � is a real root. Otherwise, if i is any

loopfree vertex then the reflection at i cannot change the sign of � , for
i

otherwise it leads to a vector with both positive and negative components.

By minimality this implies that ( � , � ) � 0. Thus q( � ) � 0, so � is a
i

multiple of � , so in the fundamental region, and hence an imaginary root.

(3) Clearly the imaginary roots for an extended Dynkin quiver are exactly

the multiples of � .

(4) Clearly a Dynkin quiver has only real roots. In fact it has only

finitely many roots, for they form a discrete subset of the compact set
I

{ ��� � :q( � )=1}. Thus Kac’s Theorem implies Gabriel’s Theorem, that the

quivers with only finitely many indecomposables are the Dynkin quivers.

1.10. LEMMA (Ringel). An indecomposable f.d. KQ-module which is not a brick

has a submodule which is a brick with self-extensions.

(By definition a brick is a module X with End(X) = K, and X has
1

self-extensions if Ext (X,X) � 0).

PROOF. By induction it suffices to prove that X has an indecomposable

proper submodule with self-extensions. For a contradiction, suppose not.

Let ��� End(X) be a nonzero endomorphism with I = Im( � ) of minimal

dimension. By hypothesis I is indecomposable, so has no self-extensions.
2 2

Now � = 0, for Im( � ) � I, and if they are equal then the composition

�
I � � � � � � � X � � � � � � � � � � � I

is an isomorphism, so I is a direct summand of X. Thus I � Ker( � ). Write

Ker( � ) as a direct sum of indecomposables, say Ker( � ) = � K , and let
i

� : Ker( � ) � � � � � � � � � � � K be the projections. For some j we must have � (I) � 0.
i i j

1
Suppose for a contradiction that Ext (K ,K ) = 0.

j j

Minimality implies that � � is injective (considering the composition
j I

X � � � � � � � � � � � I � � � � � � � � � � � K � � � � � � � X). Applying Hom(-,K ) to the short exact sequence
j j

0 � � � � � � � � � � � I � � � � � � � � � � � K � � � � � � � � � � � K /I � � � � � � � � � � � 0
j j
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gives a long exact sequence

1 f 1 2
... � � � � � � � � � � � Ext (K ,K ) � � � � � � � � � � � Ext (I,K ) � � � � � � � � � � � Ext (K /I,K ) � � � � � � � � � � � ...

j j j j j

2
and the Ext term vanishes, so f is onto.

Now consider the pushout of the short exact sequence

0 � � � � � � � � � � � Ker( � ) � � � � � � � � � � � X � � � � � � � � � � � I � � � � � � � � � � � 0

along � , say
j

0 � � � � � � � � � � � Ker( � ) � � � � � � � � � � � X � � � � � � � � � � � I � � � � � � � � � � � 0
� �

g
�
�� �

h
0 � � � � � � � � � � � K � � � � � � � � � � � Y � � � � � � � � � � � I � � � � � � � � � � � 0

j

If it splits, then h has a retraction, and its composition with g is a

retraction for the inclusion of K in X. But this implies that K is a
j j

1
direct summand of X, which is nonsense. Thus we must have Ext (I,K ) � 0.

j

1
It follows that Ext (K ,K ) � 0. Contradiction.

j j

1.11. LEMMA. For Q extended Dynkin, the general element of Rep(Q, � ) is a

brick, and there are only finitely many other orbits.

PROOF. There are only finitely many orbits of decomposable modules since

there are only finitely many roots which are less than � , and they are all

real roots. Now using the fact that q( � )=0,

2 2
dim Rep(Q, � ) = � � � = � � , dim G( � ) = � � - 1,

a:i � � � � � � j i j i i i i

so there must be infinitely many orbits. Thus the general element of

Rep(Q, � ) must be indecomposable. Now Ringel’s Lemma says that each

indecomposable is either a brick, or it has a proper submodule M which is a

brick with self-extensions. But then
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1
q(dim M) = dim End(M) - dim Ext (M,M) � 0,

so dim M is a multiple of � . This is impossible.

1.12. FURTHER READING. The best reference for Kac’s Theorem is his last
paper on the topic, V.G.Kac, Root systems, representations of quivers and
invariant theory, in: Invariant theory, Proc. Montecatini 1982, ed. F.
Gherardelli, Lec. Notes in Math. 996, Springer, Berlin, 1983, 74-108.

Another useful reference is H.Kraft and Ch.Riedtmann, Geometry of
representations of quivers, in: Representations of algebras, Proc. Durham
1985, ed. P. Webb, London Math. Soc. Lec. Note Series 116, Cambridge Univ.
Press, 1986, 109-145.

The definitive reference for extended Dynkin quivers is Section 3.6 of
C.M.Ringel, Tame algebras and integral quadratic forms, Lec. Notes in Math.
1099, Springer, Berlin, 1984.

Lecture 2. Preprojective algebras

Let Q be a quiver with vertex set I.

2.1. PREPROJECTIVE ALGEBRAS. The double of Q is the quiver obtained by
*

adjoining an arrow a :j � � � � � � � � � � � i for each arrow a:i � � � � � � � � � � � j in Q.

The preprojective algebra is the associative algebra

� � � � � *�
(Q) = KQ / ( � [a,a ]).

a � Q

I
More generally, the deformed preprojective algebra of weight ��� K is

� � � � � � *�
(Q) = KQ / ( � [a,a ] - � � e )

a � Q i � I i i

2.2. REMARKS. (1) The preprojective algebra first appeared with the
* *

relation � (aa +a a) = 0. It is easy to see that this gives an isomorphic
a � Q

algebra provided the quiver is bipartite, meaning that the vertices can be

divided into two sets and no arrow has both head and tail in the same set.

12



(2) If Q has no oriented cycles then KQ is a finite-dimensional algebra.

For such algebras there are Auslander-Reiten operators DTr and TrD, and it

can be shown that

� n�
(Q) � � (TrD) (KQ).

n=0

This means that
�
(Q) is the sum of all indecomposable preprojective

KQ-modules.

�
(3)

�
(Q) doesn’t depend on the orientation of Q. Just reverse the role of
*

a and a , and change the sign of one of them.

�
(4) If r is the defining relation for

�
(Q), then r = � e re , and

i i

* *
e re = � a a - � a a - � e .
i i h(a)=i t(a)=i i i

� � � � � �
Thus

�
(Q)-modules correspond to representations of Q in which the linear

maps satisfy the relations

* *� a a - � a a = � Id
h(a)=i t(a)=i i

for all i. With this identification we can speak of the dimension vector of
�

a
�
(Q)-module.

�
(5) If there is a

�
(Q)-module of dimension � then ��� � = � ��� must be

i i i
equal to zero. To see this, take the traces of all the relations, and sum.

* *
On the left hand side every term tr(aa ) is cancelled by a term -tr(a a).

On the right hand side the traces add up to ��� � .

2.3. MOMENT MAP. The relations for the deformed preprojective algebra arise

from a moment map.

Let V be a vector space with a symplectic form � , a skew symmetric bilinear

form V 
 V � � � � � � � � � � � K which is non-degenerate in the sense that � (u,v)=0 for all v

implies u=0. Let an algebraic group G act on V preserving � .

Differentiation gives an action of the Lie algebra � 
 V � � � � � � � � � � � V. Since G

preserves � , it follows that

13



� ( � v,v � ) = - � (v, � v � )

for all ��� � and v,v � � V. By definition the moment map in this situation is
* 1

the map � :V � � � � � � � � � � � � defined by � (v)( � ) = � � � � � (v, � v) for v � V and ��� � . It has the
2

required property of moment maps in symplectic geometry: its derivative
*

d � :V � � � � � � � � � � � � at v � V satisfies
v

1
d � (v � )( � ) = � � � � ( � (v � , � v)+ � (v, � v � )) = � (v, � v � ).

v 2

� � � � �
To apply this to quivers we equip Rep(Q, � ) with the symplectic form coming

*
from its identification with the cotangent bundle T Rep(Q, � ). Explicitly

� (x,y) = � tr(x * y ) - tr(x y *)
a � Q a a a a

� � � � � *
for x,y � Rep(Q, � ). The group G( � ) = GL( � )/K acts by conjugation and

preserves � .

-1
(gx) = g x g

a:i � � � � � � j i a j

Its Lie algebra is identified with End( � )/K where End( � ) = 	 Mat( � ,K),
i i

and the action is given by

� � � � �
( � x) = � x - x � .

a:i � � � � � � j i a a j

Let End( � ) = { ��� End( � ) : � tr( � )=0}. The trace pairing gives an
0 i

isomorphism

* � � � � �
End( � ) � � � � � � � � � � � (End( � )/K) , ��� � � � � � � ( ��� � � � � � � � tr( ��� )).

0 i i i

� � � � �
The moment map is thus � : Rep(Q, � ) � � � � � � � � � � � End( � ) given by� 0

x � � � � � � � ( � x x * - � x * x )
h(a)=i a a t(a)=i a a i

Now G( � ) acts by conjugation on End( � ) , and the invariant elements are
0

those in which each component is a multiple of the identity matrix. We
I -1

identify these with elements of { ��� K : ��� � =0}. Then � ( � ) is identified��
with the space of

�
(Q)-modules of dimension � .

14



2.4. LEMMA. If x � Rep(Q, � ) and X is the corresponding KQ-module, then

there is an exact sequence

1 * op f t *
0 � � � � � � � � � � � Ext (X,X) � � � � � � � � � � � Rep(Q , � ) � � � � � � � � � � � End( � ) � � � � � � � � � � � End(X) � � � � � � � � � � � 0

where t( � )( � ) = � tr( ��� ) comes from the trace pairing, and
i � I i j

I
f(y) = � [x ,y *]. Thus the fibre of f over ��� K consists of the

a � Q a a �
different ways of extending the action of KQ on X to an action of

�
(Q).

PROOF. Apply Hom (-,X) to the standard resolution of X, dualize, and use
KQ

trace pairings to identify terms.

2.5. THEOREM. If X is a KQ-module then the action of KQ on X can be
�

extended to an action of
�
(Q) if and only if ��� dim Y = 0 for any KQ-module

summand Y of X.

PROOF. Suppose that the action extends. Let X be given by x � Rep(Q, � ).

Then in the lemma we have ��� Im(f), so t( � ) = 0, so � � tr( � ) = 0 for any
i i

��� End (X). If Y is a KQ-module summand of X, apply this with � the
KQ

projection onto Y to see that ��� dim Y = 0.

For the converse, it suffices to prove that an indecomposable X with

��� dim X = 0 lifts. By Fitting’s Lemma End(X) consists of multiples of the

identity plus a nilpotent endomorphism, so it is easy to see that t( � ) = 0.

2.6. REMARK. Assuming Kac’s Theorem, it follows that the possible dimension
�

vectors of
�
(Q)-modules are exactly the sums of roots � with ��� � =0.

Note that although we don’t prove all of Kac’s Theorem, we prove enough to

justify this claim for Q Dynkin or extended Dynkin, for when writing a

vector as a sum of roots � with ��� � =0 you can take all these roots to be

either real roots or � , and what we prove is sufficient.

In fact one can prove that � is the dimension vector of a simple
��
(Q)-module if and only if � is a positive root, ��� � = 0, and

1-q( � ) > (1-q( � )) + (1-q( � )) + ...
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whenever � = � + � +... a sum of positive roots with ��� � = ��� � =...=0. See §2.14.

2.7. PROPOSITION. For an extended Dynkin quiver Q, all fibres of � are�
2

irreducible of dimension 1 + � � . Thus � is flat.
i �

PROOF. If ��� End( � ) , let � be the composition
0

-1 � � � � �� ( � ) � � � � � � � Rep(Q, � ) � � � � � � � � � � � Rep(Q, � ).�

-1 -1
If x � Rep(Q, � ) then � (x) � f ( � ) in the sequence of Lemma 2.4, so it is

1 *
either empty, or a coset of Ext (X,X) . Thus it is either empty or

irreducible of dimension dim End(X) + q( � ) = dim End(X) by Ringel’s

formula.

The bricks form a dense open set B � Rep(Q, � ). They have nonempty fibres.
-1 2

Thus � (B) is irreducible of dimension dim B + 1 = � � + 1.
i

Besides the bricks, there are only finitely many other orbits of G( � ) on
*

Rep(Q, � ). The stabilizer of x is identified with Aut(X)/K , so the orbit of

x has dimension

*
dim G( � ) - dim Aut(X)/K

and its inverse image under � (if non-empty) has dimension

* 2
dim G( � ) - dim Aut(X)/K + dim End(X) = � � .

i

Now any irreducible component of a fibre of � has dimension at least�

� � � � � 2
dim Rep(Q, � ) - dim End( � ) = � � + 1.

0 i

2
It follows that each fibre is irreducible of dimension � � + 1. This

i
implies flatness since � is a map between smooth irreducible varieties.�

2.8. REFLECTION FUNCTORS. If i is a loopfree vertex, we have a reflection
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I I
r : K � � � � � � � � � � � K , r ( � ) = � - ( � , � ) � .
i i j j i j i

dual to s . The duality means that r � � � = � � s � for all � , � . We say
i i i

that the reflection is admissible for � if � � 0. In this case there is a
i

Morita equivalence

r �� i�
(Q)-modules � � � � � � � � � � � �

(Q)-modules

which acts as s on dimension vectors. We call this a reflection functor.
i

(Do not confuse this with a reflection functor in the sense of Bernstein,

Gelfand and Ponomarev - they are for KQ-modules, and are not equivalences.)

EXAMPLE. If Q is the quiver

1
• �

3 4 5
�
• � � � � � � � � � � � • � � � � � � � � � � � •��

•
2

�
then a

�
(Q)-module X is given by vector spaces and linear maps

X
1

�
�� � � � � � � � � � � � � � � � � � � � � � � �

X � � � � � � � � � � � X � � � � � � � � � � � X� � 3 4 5� �
X
2

satisfying the deformed preprojective relations. For vertex i=3, the linear

maps combine to give maps

� �
X � � � � � � � � � � � X � X � X � � � � � � � � � � � X
3 1 2 4 3

and (inserting minus signs suitably) the relations ensure that � � = � Id.
3

Now if � � 0 this implies that � is the inclusion of a direct summand and
3

X � X � X = Im( � ) � Ker( � ).
1 2 4

�
The functor sends X to the

�
(Q)-module
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X
1

�
�� � � � � � � � � � � � � � � � � � � � � � � �

Ker( � ) � � � � � � � � � � � X � � � � � � � � � � � X� � 4 5� �
X
2

in which the linear maps to and from Ker( � ) come from the two decompostions

of X � X � X .
1 2 4

I -1
2.9. CONSEQUENCE. Let the Weyl group W act on K via w ��� � = ��� (w � ) for

� � �
all � , � . We claim that if � � � W � then

�
(Q) and

�
(Q) are Morita

equivalent, that is, there is an equivalence

� � ��
(Q)-modules � � � � � � � � � � � �

(Q)-modules

Namely, write

� � = r ... r � .
i i
n 1

Doing this with n as small as possible, the reflections at each stage are

admissible (for if � = 0 then r � = � ). The reflection functors then give
i i

the equivalence.

�
2.10. LEMMA. If there is a simple module for

�
(Q) of dimension � , and i is

a vertex, then � = � or ( � , � ) � 0 or � � 0.
i i i

PROOF. Suppose otherwise. Since ( � , � )>0 there is no loop at i. If X is the
i

simple module, since � = 0, the linear maps combine to give maps
i

� �
X � � � � � � � � � � � � X � � � � � � � � � � � X
i j � � � � � � � � � �i j i

with composition zero. (The direct sum is over all arrows incident at i,

and the corresponding term is the space X at the other end of the arrow.)
j

Now � is injective, for Ker( � ) is a submodule of X, and if X = Ker( � ) then

X lives at i, and simplicity implies that � = � . Dually � is surjective. But
i

then

dim � X � 2 dim X ,
j � � � � � � � � � �i j i
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so ( � , � ) � 0, a contradiction.
i

�
2.11. LEMMA. The dimension vector of any simple

�
(Q)-module is a root.

PROOF. Suppose that there is a simple of dimension � . Applying a sequence

of admissible reflections, we follows the effect on � and � :

� r � r r � � �
i j i� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ... � � � � � � � � � � �

� s � s s � � �
i j i

� �
Because of the reflection functors there is a simple

�
(Q)-module of

dimension � � . Thus � � is positive. We choose the sequence to make � � as

small as possible. This implies that ( � � , � ) � 0 for any vertex i with
i

� � 0.
i

The previous lemma now implies that � � is either a coordinate vector at a

loopfree vertex or has ( � � , � ) � 0 for all vertices i. Of course � � has
i � �

connected support because of the existence of a simple
�

(Q)-module of

dimension � � . Thus in the latter case, � � is in the fundamental region. It

follows that � is a root.

2.12. PROPOSITION. If there is an indecomposable for KQ of dimension � then

� is a root.

I
PROOF. Write � = k � with � indivisible. Choose ��� K with ��� � = 0, but

��� � � 0 for any 0 � � ��� which is not a multiple of � . This is possible since

K has characteristic zero.

�
The indecomposable KQ-module extends to an indecomposable

�
(Q)-module, and

any composition factor of this must have dimension m � for some m. Thus m �
is a root.

Now apply admissible reflections to � and m � as in the proof of Lemma 2.11.

We pass to � � and a vector which is easily seen to be of the form m � � for

some indivisible � � . The reflection functors can also be applied to the
�

indecomposable
�
(Q)-module of dimension � = k � to give an indecomposable
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� ��
(Q)-module of dimension k � � .

Now either m � � is a coordinate vector at a loopfree vertex, or in the

fundamental region.

In the first case m=1, but also because there is an indecomposable
� ��
(Q)-module of dimension k � � , we must have k=1. Thus � is a root.

In the second case � � and k � � are also in the fundamental region, so that �

is again a root.

2.13. PROPOSITION. If � is a positive real root then (up to isomorphism)

there is a unique indecomposable KQ-module of dimension � .

PROOF. We use the fact that every root is positive or negative. Write

� = s .... s ( � )
i i j
n 1

with j a loopfree vertex and n as small as possible. Then all intermediate
k I

terms � = s ... s ( � ) are positive roots. Define ��� K by
i i j
k 1

� 0 (i=j)
� =

�
,

i 1 (else)�

k k k
and let � = r ... r ( � ). Now ( � ) = � � � = ��� � where

i i i i
k 1 k+1 k+1

� = s ...s ( � ).
i i i
1 k k+1

Now ��� � � 0, for since � is a real root it is positive or negative, so the

condition ��� � = 0 implies that � = � � , but then
j

k� � = s ... s ( � ) = �
i i i j
k+1 k 1

contradicting the minimality of n. Thus the reflection at i is
k+1

k
admissible for � . Thus there are reflection functors
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1 2
� � ��
(Q)-modules � � � � � � � � � � � �

(Q)-modules � � � � � � � � � � � �
(Q)-modules � � � � � � � � � � � ...

�
Clearly there is a unique

�
(Q)-module of dimension � , and it is simple.

j
n �

Thus, letting � = � , there is a unique
�
(Q)-module M of dimension � and

it is simple.

Now M is indecomposable as a KQ-module, for if it has an indecomposable

summand of dimension � , then

n
0 = ��� � = � � � = ��� � where � = s ...s � .

i i
1 n

But � is a root by Proposition 2.12, hence so is � , and the condition

��� � = 0 implies that � = � � . Thus � = � s ...s ( � ) = ��� , so in fact
j i i j

n 1
� = � .

Finally the indecomposable KQ-module of dimension � is unique since any
�

such module can be extended to a
�
(Q)-module, but there is a unique

��
(Q)-module of dimension � .

2.14. FURTHER READING. The deformed preprojective algebra and the
reflection functors were introduced in W.Crawley-Boevey, and M.P.Holland,
Noncommutative deformations of Kleinian singularities, Duke Math. J. 92
(1998), 605-635.

The construction of the preprojective algebra using TrD is in D.Baer,
W.Geigle and H.Lenzing, The preprojective algebra of a tame hereditary
Artin algebra, Commun. Algebra 15 (1987), 425-457.

However, to see that these two descriptions of the preprojective algebra
are the same, see C.M.Ringel, The preprojective algebra of a quiver, in:
Algebras and modules, II (Geiranger, 1996), 467-480, CMS Conf. Proc., 24,
Amer. Math. Soc., Providence, RI, 1998, or W.Crawley-Boevey, Preprojective
algebras, differential operators and a Conze embedding for deformations of
Kleinian singularities, Comment. Math. Helv. 74 (1999), 548-574. This
latter paper contains much more about deformed preprojective algebras.

The paper W.Crawley-Boevey, Geometry of the moment map for representations
of quivers, to appear in Composito Math., proves the characterization of
the dimensions of simple modules for deformed preprojective algebras. In an
appendix it also contains the elementary deduction of much of Kac’s Theorem
given here.
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Lecture 3. Module varieties and skew group algebras

We are interested in finite dimensional left modules for a finitely

generated K-algebra A (associative, with 1).

3.1. MODULE VARIETIES. There is an affine variety

n
Mod(A,n) = {A-module structures on K }

= {K-algebra maps A � � � � � � � � � � � Mat(n,K)}
m

= {( � ,..., � ) � Mat(n,K) : r( � ,..., � )=0 for all r � R}
1 m 1 m

on chosing generators of A, and hence writing A = K<x ,...,x >/R, where
1 m

K<x ,...,x > is the free associative algebra on generators x ,...,x and R
1 m 1 m

is an ideal.

We need a variation on this, relative to a semisimple subalgebra. Let A be

a f.g. K-algebra and S � A a f.d. semisimple subalgebra (or more generally

let S � � � � � � � � � � � A be a homomorphism). If M is a f.d. S-module, let

Mod (A,M) = {A-module structures on M extending its S-module structure}
S

It is an affine variety. (Choosing a basis of M, it can be identified with

a fibre of the map Mod(A,n) � � � � � � � � � � � Mod(S,n).)

*
The group G(M) = Aut (M)/K acts on Mod (A,M). It orbits are in 1-1

S S
correspondence with isomorphism classes of A-modules X with X � M. We

S
write O(X) for the orbit corresponding to X. The stabilizer of a point

*
x � O(X) can be identified with Aut (X)/K .

A

Special cases:

(1) Suppose A = T V is the tensor algebra on an S-S-bimodule. Then by the
S

universal property of tensor algebras, Mod (T V,M) � Hom (V � M,M).
S S S S

(2) Suppose that A is a path algebra KQ of a quiver Q with vertex set I.
I

Let S = K 
 ... 
 K spanned by the trivial paths e . If ��� � define
i
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�� i
K = � K .

i � I

This is an S-module, with multiplication by e acting as projection onto
i

the i-th summand. Then we can identify

� �
Mod (KQ,K ) = Rep(Q, � ), G(K ) = G( � )

S

(3) If A is a quotient of a path algebra, let S be the subalgebra
�

generated by the trivial paths as before. Then Mod (A,K ) is a closed
S

subvariety of Rep(Q, � ). In particular,

� � -1
Mod (

�
(Q),K ) = � ( � ).

S �

3.2 TRACE FUNCTIONS. If a � A and X is a f.d. A-module then define

tr(a,X) = trace of the map X � � � � � � � � � � � X, x � � � � � � � ax.

This defines a function tr(a,-) : Mod (A,M) � � � � � � � � � � � K. It is a G(M)-invariant, so
S

G(M)
tr(a,-) � K[Mod (A,M)] .

S

Given a module X, we write gr X for the semisimple module which is the

direct sum of the composition factors of X (with the same multiplicities).

�
* * �

(1) tr(a,X) = tr(a,gr X). The trace of a matrix with block form is� 0 * �
the sum of the traces of the diagonal blocks, so if 0 � � � � � � � � � � � X � � � � � � � � � � � X � � � � � � � � � � � X � � � � � � � � � � � 0 is

1 2
an exact sequence of A-modules, then tr(a,X) = tr(a,X )+tr(a,X ) =

1 2
tr(a,X � X ). The assertion follows by induction.

1 2

(2) If tr(a,X) = tr(a,Y) for all a, then gr X � gr Y. This is character

theory! To prove it we may assume that X,Y are semisimple. Replacing A by

A/ann (X � Y) we may assume that A is semisimple. Now if
A

A � Mat(n ,K) 
 ... 
 Mat(n ,K),
1 r

a is the i-th identity element, and S is the j-th simple module, then
i j

tr(a ,S ) = � n . The claim follows.
i j ij j
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3.3. PROPOSITION. The closure of any orbit O(X) contains a unique closed

orbit, O(gr X). Thus the closed orbits in Mod (A,M) are exactly those of
S

semisimple A-modules.

� � � � � � � � � � � � � � � �
PROOF. We show first that if Y � X then O(Y � X/Y) � O(X). By definition

X = M with an A-module structure. Let C be an S-module complement to Y in

M. The action of any a � A on X is an element of End (Y � C), so can be written
K

as a 2 
 2 matrix

�
a a �
11 12� �

� 0 a �
22

*
with a � End (Y), a � Hom (C,Y), a � End (C). For t � K , let g � G(M)

11 K 12 K 22 K t
correspond to the automorphism of M which is multipliction by t on Y and

the identity on C. The action of a � A on g X is given by the matrix
t

�
a ta �
11 12� �

� 0 a �
22

Thus the closure of the orbit of X must contain the element given by

matrices

�
a 0 �
11� �

� 0 a �
22

That is, Y � X/Y.

� � � � � � � � � � � � � � � � � � � � �
Now by induction O(gr X) � O(X). In particular, if O(X) is closed then X

must be semisimple. On the other hand, the closure of any orbit is a union

of orbits, so always contains a closed orbit, eg one of minimal dimension.
� � � � � � � � � � � � � � � � � � � � �

Finally note that if O(Y) is a closed orbit in O(X) then by continuity X,Y

have the same trace functions, so gr Y � gr X.

3.4. QUOTIENTS. If a reductive group G acts on an affine variety V then the

quotient V / G (the set of orbits) is not usually well-behaved

topologically. However the set V // G of closed orbits is. It is natually
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G
an affine variety with coordinate ring K[V] .

�
i

This applies to G(M) acting on Mod (A,M). Since M is semisimple, M � � S
S i i

with the S non-isomorphic simples, and Aut (M) � 	 GL (K). Thus G(M) is
i S i �

i
reductive. Now by Proposition 3.3,

� �
Isomorphism classes of semisimple

Mod (A,M) // G(M) =
� �

S �
A-modules X with X � M �

S

and there is a natural map

Mod (A,M) � � � � � � � � � � � Mod (A,M) // G(M), X � � � � � � � gr X.
S S

More general quotients can be constructed as part of "Geometric Invariant

Theory". Let � be an additive function {semisimple S-modules} � � � � � � � � � � ��� . One

says that X is

� -semistable if � (X) = 0 and � (Y) � 0 for all A-submodules Y � X.

� -stable if � (X) = 0 and � (Y) > 0 for all A-submodules 0 � Y
�
X.

A � -semistable module X naturally has associated to it a module gr X which�
is a direct sum of � -stables, and one says X,X � are S-equivalent if

gr X � gr X � .� �

There is a GIT quotient Mod (A,M) // (G(M), � ) whose points correspond to
S

{ � -semistables X with X � M} / S-equivalence, and there is a proper map
S

Mod (A,M) // (G(M), � ) � � � � � � � � � � � Mod (A,M) // G(M).
S S

3.5. MORITA EQUIVALENCE. If e � A is an idempotent then eAe is an algebra

with identity e, and there is a functor

A-modules � � � � � � � � � � � eAe-modules, X � � � � � � � eX.

To apply this to module varieties we assume that e � S. Then the functor

induces a morphism

�
: Mod (A,M) // G(M) � � � � � � � � � � � Mod (eAe,eM) // G(eM).

S eSe
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In case AeA = A the the functor is an equivalence, so that A and eAe are

Morita equivalent. It follows that the morphism is a bijection. In fact we

have:

THEOREM. If AeA = A then
�
is an isomorphism of varieties.

We prove this in the next subsection. Here we verify it the special case

when S = Mat(n ,K) 
 ... 
 Mat(n ,K), and e = � e , where e is the
1 r i i i

elementary matrix

�
1 0 0 ��
0 0 0

�
.� . �

0 0 0

in the i-th factor. Then SeS = S and eSe � K 
 ... 
 K. It is easy to see that

A is isomorphic to the algebra of r 
 r matrices (C ) where each C is an
ij ij

n 
 n matrix of elements of e Ae , and that eAe is isomorphic to the
i j i j

algebra of r 
 r matrices (D ) with each D � e Ae . Thus
�
has an inverse

ij ij i j
r

coming from the map which sends an eAe-module structure on eM � � e M to
i=1 i

n
r i

the A-module structure on � (e M) given by the action of the block
i=1 i

matrices.

G(M)
3.6. THEOREM. The ring of invariants K[Mod (A,M)] is generated by the

S
trace functions tr(a,-).

PROOF. Presumably there is a direct proof of this. Definitely it needs

characteristic zero in this generality. It is proved by Le Bruyn and

Procesi for path algebras. If G acts on X and Y � X is G-stable closed
G G

subset, then the restriction map K[X] � � � � � � � � � � � K[Y] is surjective by the

Reynolds operator. Thus it follows for quotients of path algebras, or

equivalently for algebras A in which the semisimple subalgebra S is

isomorphic to K 
 ... 
 K. Now the general case can be reduced to this by the

special case of Morita equivalence proved above.

We now prove that
�
is an isomorphism in the general case when AeA=A. Since

�
is a bijection, it is sufficient to prove that it is a closed embedding,

or equivalently that the natural map
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G(eM) G(M)
K[Mod (eAe,eM)] � � � � � � � � � � � K[Mod (A,M)]

eSe S

is surjective. Now the space on the right hand size is generated by trace

functions tr(a,-) with a � A. Since AeA = A we can write a = � a ea � . Then
k k

tr(a,M) = � tr(a ea � ,M) = � tr(ea � a e,M) = tr(b,eM),
k k k k

where b = � ea � a e � eAe, so tr(a,-) is in the image of the map.
k k

3.7. SKEW GROUP ALGEBRAS. If A is an algebra and
�
is a finite group acting

as automorphisms of A, then the skew group algebra A#
�
consists of the

formal sums � a g with the multiplication satisfying
g � � g

g
(a g)(a � g � ) = a( a � ) gg � .

Let K
�
be the group algebra of

�
. Observe that an A#

�
-module consists of an

g
A-module X which is also a K

�
-module, and such that g(ax) = ( a)(gx).

g
If X is an A-module then (A#

�
) � X is isomorphic as an A-module to � X,
A g � �

g
where X denotes the module X with the action of A twisted by g, and the

action of
�
permutes the factors.

Henceforth we write e for the idempotent

1
e = � � � � � � � � � � � � � � � � g � K

�
.� � � g � �

� �

It has the property that eK
�
= K
�
e = Ke and e(A#

�
)e = A e � A .

3.8. LEMMA. gl.dim A#
�
= gl.dim A.

PROOF. Using a projective resolution of X it is easy to see that

i i
Ext (A#

� � X,Y) � Ext (X, Y)
A#
�

A A A

when X is an A-module and Y is an A#
�
-module.
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Now if Z is an A-module, then it is a direct summand of Y where
A

Y = (A#
�
) � Z. It follows that gl.dim A � gl.dim A#

�
.

A

On the other hand, if X is an A#
�
-module then it is isomorphic to a summand

of A#
� � X, since the multiplication map A#

� � X � � � � � � � � � � � X has a section
A A

1 -1
x � � � � � � � � � � � � � � � � � � � � � � � g � g x� � � g � �

This implies that gl.dim A#
� � gl.dim A.

3.9. SIMPLE MODULES. Let
�
be a finite group acting on an affine variety V,

so also on its coordinate ring K[V] via

-1
(gf)(v) = f(g v)

for g � � , v � V and f � K[V]. The quotient V/
�
is an affine variety with

�

coordinate ring K[V] (since all orbits are closed).

�

We are interested in simple modules for K[V]#
�
. Now K[V] is contained in

the centre of K[V]#
�
, with equality if the action of

�
on V is faithful.

Thus any simple module for K[V]#
�
is annihilated by a unique maximal ideal

�
� for K[V] , so it is a module for (K[V]/K[V] � )#

�
. Thus it is a module for

� � � � � � � � � � � � � � � � �� � O
K[V] /

�
K[V] � #

�
� (K )#

�

� �
O

where O is the orbit in V corresponding to � , K is the space of functions

from O to K, and
�
acts by permuting the factors. This is a semisimple

algebra. Special cases are:

(1)
�
acts freely on O. That is � O � = � � � = N, say. In this case

O
(K )#

�
� Mat(N,K). Thus there is a unique simple module S for K[V]#

�
which

is annihilated by � . Note that S � K
�
and that eS � 0.

K
�

O
(2) O consists of one fixed point. Then (K )#

�
� K
�
, so each simple

K
�
-module induces a simple module for K[V]#

�
annihilated by � .
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3.10. MORITA EQUIVALENCE. There is a functor

�

K[V]#
�
-modules � � � � � � � � � � � K[V] -modules, X � � � � � � � eX

and hence (since eK
�
� K), a morphism

��
: Mod (K[V]#

�
,K
�
) // G(K

�
) � � � � � � � � � � � Mod (K[V] ,K) // G(K) � V/

�
.

K
�

K

LEMMA. If
�
acts freely on V then (K[V]#

�
)e(K[V]#

�
) = K[V]#

�
. Thus the

functor is a Morita equivalence, and
�
is an isomorphism.

PROOF. If K[V]#
�
/ (K[V]#

�
)e(K[V]#

�
) � 0 then there is a non-zero

K[V]#
�
-module M with eM=0. It follows that there is a simple module with

this property. But this is not the case.

3.11. ISOLATED SINGULARITIES. Let
�
act on a smooth irreducible variety V.

Let 0 � V be a fixed point, and assume that
�
acts freely on V\{0}. Then

V/
�
is an isolated singularity.

THEOREM. In this case
�
is also an isomorphism.

PROOF. For each orbit of
�
on V\{0} there is a simple K[V]#

�
-module

structure on K
�
. In addition, each simple K

�
-module gives a simple

K[V]#
�
-module corresponding to the point 0 � V. It follows that for each

point of V/
�
there is a unique semisimple K[V]#

�
-module structure on K

�
.

Thus
�
is a bijection.

For each v � V we consider K
�
as a K[V]#

�
-module, with fg = f(gv)g for

f � K[V], g � � . This induces a map

V � � � � � � � � � � � Mod (K[V]#
�
,K
�
) // G(K

�
)

K
�

which is constant on
�
-orbits so factors through V/

�
. The resulting map

V/
� � � � � � � � � � � � Mod (K[V]#

�
,K
�
) // G(K

�
)

K
�

is an inverse for
�
.
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3.12. REMARK. Provided
�
acts faithfully on V, so that the general orbit of

�
on V is free, The same argument shows that even if V/

�
is not an isolated

singularity, the quotient Mod (K[V]#
�
,K
�
) // G(K

�
) has an irreducible

K
�

component isomorphic to V/
�
.

Now using other Geometric Invariant Theory quotients

Mod (K[V]#
�
,K
�
) // (G(K

�
), � )

K
�

one can hope to obtain a desingularization of V/
�
. This was used by Cassens

and Slodowy to construct the minimal desingularization for Kleinian
�

singularities, and it is essentially the "
�
-Hilbert scheme" Hilb (V)

considered by Ito and Nakamura, Nakajima, and others.

3.13. LEMMA. In the isolated singularities case, K[V]#
�
/(K[V]#

�
)e(K[V]#

�
)

is finite-dimensional.

� �

PROOF. It is a f.g. K[V] -module, whose only composition factor is K[V] / � ,

where � is the maximal ideal corresponding to the singular point.

3.14. FURTHER READING. Module varieties have been extensively studied for
finite dimensional algebras. See for example P.Gabriel, Finite
representation type is open, in: Representations of algebras, Proc Ottawa
1974, eds V. Dlab and P. Gabriel, SLN 488; C.Geiß, Geometric methods in
representation theory of finite dimensional algebras, in: Canadian Math.
Soc. Conf. Proc., 19, 1996; K.Bongartz, Some geometric aspects of
representation theory, in: Canadian Math. Soc. Conf. Proc., 23, 1998.

Geometric Invariant Theory quotients are discussed in A.D.King, Moduli of
representations of finite dimensional algebras, Quart. J. Math. Oxford 45
(1994), 515-530. The special case � =0 also covers the affine quotients.
Note that King assumes that A is finite-dimensional in his Section 4, but
this is only necessary for Proposition 4.3.

The fact that the invariants for representations of quivers are generated
by traces of oriented cycles is in L.Le Bruyn, and C.Procesi, Semisimple
representations of quivers, Trans. Amer. Math. Soc. 317 (1990), 585-598.

Skew group algebras are a classical topic. See for example J.C.McConnell
and J.C.Robson, Noncommutative noetherian rings.

For the construction of desingularizations of Kleinian singularities in
this way see H.Cassens and P.Slodowy, On Kleinian singularities and
quivers, Singularities (Oberwolfach, 1996), Birkhauser, Basel, 1998,
263-288.
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The higher dimensional McKay correspondence comes from M.Reid, McKay
correspondence, math.AG/9702016. The

�
-Hilbert scheme is in Y.Ito and

I.Nakamura, Hilbert schemes and simple singularities, in: Algebraic
Geometry (Proc. Warwick, 1996), eds K. Hulek et al. (Cambridge Univ. Press
1999), 151-233. Also significant is Y.Ito and H.Nakajima, McKay
correspondence and Hilbert schemes in dimension three, math.AG/9803120.

Lecture 4. Deforming skew group algebras

4.1. SYMPLECTIC FORMS. Recall that a symplectic form on a vector space V is

a bilinear form � :V 
 V � � � � � � � � � � � K which is skew symmetric and non-degenerate in the

sense that � (u,v)=0 for all v implies u=0.

* *
One can think of � as a skew symmetric element of V � V .

One can choose symplectic coordinates p ,q :V � � � � � � � � � � � K such that
i i

� = � p � q -q � p . In particular dim V must be even.
i i i i

* *
Observe that � induces an isomorphism V � � � � � � � � � � � V , v � � � � � � � � (v,-) so V also gets a

*
symplectic form � .

4.2. GROUPS PRESERVING A SYMPLECTIC FORM. We give some examples of group

actions which preserve a symplectic form.

2
(1) (Kleinian case) Let V = K with � (x,y) = x y - x y . Then a subgroup

1 2 2 1
�
� GL (K) preserves � if and only if

�
� SL (K).

2 2

* *
(2) If

�
acts on U, then it also acts on the cotangent bundle T U = U � U

preserving the symplectic form � defined by � (f � u,f � � u � ) = f � (u)-f(u � ).

(3) An irreducible representation V of a finite group
�
with

Frobenius-Schur indicator -1 preserves a skew symmetric bilinear form on V.

It must be a symplectic form since V is irreducible.

4.3. DEFORMING SKEW GROUP ALGEBRAS. Suppose that a finite group
�
acts

linearly on a vector space V preserving a symplectic form � . Observe that
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* * * *
K[V]#

�
= (T(V ) / ( � � - � � : � , ��� V ))#

�
� (T(V )#

�
)/( � � - � � : � , ��� V ),

�

K[V] = e K[V]#
�
e.

* * 1
Here T(V ) is the tensor algebra of V (over K) and e = � � � � � � � � � � � � � � � � g.� � � g � �

For ��� Z(K
�
), define

� * * *
S = T(V )#

�
/ ( � � - � � - � � ( � , � ) : � , ��� V ),

� �O = eS e.

* � c � � c �
Observe that if c � K then S � S and O � O , using the automorphism of

* *
T(V )#

�
which multiplies each element of V by

�
c.

4.4. ASSOCIATED GRADED ALGEBRAS. Suppose that an algebra A is generated

over a subalgebra A by finitely many elements x . There is a "standard"
0 i

filtration

0 = A � A � A � ...
-1 0 1

where A = span of elements a x a ...x a with a � A and k � n.
n 0 i 1 i k i 0

1 k

Whenever A is a filtered ring there is an associated graded algebra

�
gr A = � A /A .

i=0 i i-1

� � � � �
For the standard filtration, gr A is generated over A by elements x .

0 i

It is well known that if gr A has one of the following properties, then so

does A:

domain

prime

noetherian

finite global dimension

�
4.5. LEMMA. S is filtered, with associated graded ring K[V]#

�
. Thus it is

�
prime, noetherian of finite global dimension. O is filtered, with

�

associated graded ring K[V] . Thus it is a noetherian domain.
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� *
PROOF. S is generated over K

�
by a basis � of V . This gives the

i� � � � � �
filtration. Now gr S is generated over K

�
by � . These elements satisfy

i� � � � � � � � � � � � � � � � � � � � �� � = � � . Thus there is a surjection K[V]#
� � � � � � � � � � � � gr S .

i j j i

�
Is it an isomorphism? You can use the relation in S to reorder monomials,

n n� 1 m
modulo lower degree. Thus S has basis the elements � ... � g. The rest

1 m
follows.

�
(When is O commutative, and how does its global dimension depend on � ? I

can only answer these questions in the Kleinian case, when these properties

are related to preprojective algebras.)

�
4.6. FINITE GENERATION. The following lemma shows that eS is a f.g.

� �O -module and O is a f.g. K-algebra.

LEMMA (Montgomery and Small). If A is an algebra, e � A is idempotent and AeA

is a f.g. left ideal in A (eg A is noetherian), then eA is a f.g.

eAe-module. If in addition A is a f.g. K-algebra then eAe is a f.g.

K-algebra.

PROOF. Let AeA = � Ax and x = � v ew with v ,w � A. Then
i i ij ij ij ij

� Aew = AeA, so � eAew = eAeA = eA, so the elements ew generate
ij ij ij ij ij

eA as an eAe-module.

Now suppose that t ,...,t generate A and let eA = � eAex .
1 n i

Write et = � ey ex and ex t = � ez ex with y ,z � A.
j i ij i k j i ijk i ij ijk

We claim that eAe is generated by the elements ex e, ey e and ez e.
i ij ijk

For, every element of eAe is a linear combination of terms et t ...t e,
j j j
1 2 l

and, for example, et t e = � ey ex t e = � ey e ez ex e.
1 2 i i1 i 2 il i1 l2i l

4.7. LEMMA. There is a surjective homomorphism

* �
T(V )#

�
/ ( � - � ) � � � � � � � � � � � S .

� * *
PROOF. Recall that S = T(V )#

�
/ ( � � - � � - � � ( � , � )).
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If V has symplectic coordinates p ,q , then � = � p � q - q � p .
i i i i i i

*
Now � (p ,q ) = 1, so

i i

� - � = � (p � q - q � p - � � � (p ,q )).
i i i i i i

2 * � �
where � � = � � � � � � � � � � � � � � � � � � � � � � � � � � . Thus there is a natural map T(V )#

�
/( � - � ) � � � � � � � � � � � S . But

dim V� � �
S � S .

4.8. McKAY QUIVERS. Let
�
be a finite group acting linearly on a vector

space V. Let N (i � I) be the simple K
�
-modules, with N the trivial module.

i 0
The McKay quiver � for

�
and V has vertex set I, and by definition the

number of arrows i � � � � � � � � � � � j is the multiplicity of N in V � N .
i j

HENCEFORTH SUPPOSE that
�
preserves a symplectic form � . Identify ��� Z(K � )

I
with an element of K via � = trace of � on N . The rest of this lecture

i i
* �

is devoted to proving that T(V )#
�
/ ( � - � ) is Morita equivalent to

�
(Q)

� � � � �
for some quiver Q with vertex set I and Q = � .

Some more notation. Let dim N = � , so that K
�
� 	 Mat( � ,K). Let the

i i i i
i

elements E � K
�
(i � I, 1 � p,q ��� ) correspond to the elementary matrices.

pq i

i 1
Let f = E and let f = � f . Clearly f = e = � � � � � � � � � � � � � � � � g. Also

i 11 i 0 � � � g � �

f K
�
f = � K f � K 
 ... 
 K.

i

i i
Observe that N � K

�
f , which has basis E . Dually, f K

�
has basis E .

i i p1 i 1q

i i i i
1 = � E E = � E f E � K

�
f K
�
.

i,p p1 1p i,p p1 1p

Thus fK
�
f is Morita equivalent to K

�
.

4.9. LEMMA. If B is a K
�
-K
�
-bimodule, then there is an isomorphism

f T (B) f � T (fBf) which is the identity on fK
�
f, and sends an element

K
�

fK
�
f

i i
b � c � fB � Bf to the element � bE � E c � fBf � fBf.

K
�

ip p1 1p

PROOF. Follows from the Morita equivalence.
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4.10. LEMMA. If
�
acts linearly on a vector space W preserving a symplectic

�

form � , then the restriction � of � to V is a symplectic form � , and if
* *

� �

� = � w � v � W � W then � = � ew � ev � W � W .
k k k k

�

PROOF. � is non-degenerate since if 0 � w � W then there is v � W with � (w,v) � 0,
�

but then � (w,ev)= � (w,v) � 0 and ev � W .

�
*

�

Say � , � � � (W ) , so � = � (x,-), � � = � (x � ,-) for some x,x � � W . Then

* *
� ( � , � � ) = � (x,x � ) by definition of �

= � (x,x � )
* *

= � ( � (x,-), � (x � ,-)) by definition of �
*

= ��� (x,w ) � (x � ,v ) since � = � w � v
k k k k k�

= ��� (x,ew ) � (x � ,ev ) since x,x � � W
k k k

= ��� (x,ew ) � (x � ,ev )
k k k

= � � (ew ) � � (ev ).
k k k

*
4.11. PROPOSITION. Let B = V � K � considered as a K

�
-K
�
-bimodule via

g(v � g � )g
�
= gv � gg � g

�
. Then fBf has a symplectic form � with

* i j j i
� = � E ( � � E ) � E ( � � E ) � fBf � fBf

ijpqk 1p k q1 1q k p1

* *
where � = � � � � � V � V . Moreover � respects the decomposition

k k
fBf = � f Bf in the sense that � (b,b � )=0 if b � f Bf and b � � f Bf

ij i j i j i � j �
with i � j � or j � i � .

* -1
PROOF. Let W = fK

�
� V � K

�
f, as a K

�
-module via g(a � � � b) = ag � g � � gb.

Consider the map m:W � � � � � � � � � � � fBf, a � v � b � � � � � � � a(v � b).

Observe that m(e(a � � � b)) = m(a � � � b).

By dimensions it follows that m induces a vector space isomorphism
*

�

(fK
�

� V � K � f) � � � � � � � � � � � fBf.

*
Now fK

� � V � K � f has a symplectic form � given by

*
� (a � � � b,a � � � � � b � ) = � � � ( � , � � )

for a � f K
�
, b � K � f , a � � f K

�
, b � � K � f , where � , ��� K are given by ab � = � f

i j i � j � i
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and a � b = � f . The action of
�
preserves � . Thus � gives a symplectic

i �
form on fixed points, so on fBf. Call it � . Clearly this respects the

decomposition.

*
Now � as an element of the tensor square of fK

� � V � K � f is

* i j j i
� = � (E � � � E ) � (E � � � E )

ijpqk 1p k q1 1q k p1

Thus, using that m(e(a � � � b)) = a( � � b), we get

* i j j i
� = � E ( � � E ) � E ( � � E )

ijpqk 1p k q1 1q k p1

*
4.12. THEOREM. f T(V)#

�
/ ( � - � ) f � T (fBf) / ( � - � f )

fK
�
f i i

*
PROOF. First observe that T(V )#

�
� T B

K
�

* * *
- As vector spaces the LHS is K

� � V � K � � V � V � K � � ...
* * *

- The RHS is K
� � V � K � � (V � K � ) � (V � K � ) � ...

K
�

* *
Thus T(V)#

�
/ ( � - � ) � T (B) / (

�
- � ) where, if � = � � � � � V � V , then

K
�

k k
�
= � ( � � 1) � ( � � 1) � B � B.

k k K
�

Now f T(V)#
�
/ ( � - � ) f � f T (B) f / I where I is the ideal

K
�

f T (B) (
�
- � ) T (B) f = f T (B) K

�
fK
�
(

�
- � ) K

�
fK
�
T (B) f

K
�

K
�

K
�

K
�

This is generated as an ideal in f T (B) f by fK
�
(

�
- � ) K

�
f.

K
�

Now if g � � then

g
�
= � (g � � g) � ( � � 1) = � (g � � 1) � (g � � g) = � (g � � 1) � (g � � 1)g =

�
g

k k k k k k

since � = � g � � g � because � is
�
-invariant. Thus

k k

� (
�
- � )f (i=j and p=q)

i j i j i
E (

�
- � ) E = (

�
- � ) E E =

�
1p q1 1p q1 �

0 (else)

Now � f = � / � f since � acts on N as multiplication by � / � .
i i i i i i i
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Now we consider the isomorphism f T (B) f � � � � � � � � � � � T (fBf).
K
�

fK
�
f

i i i
We have

�
f = 1/ � � E

�
E since one can carry the E across.

i i p 1p p1 1p
The isomorphism thus sends

�
f to
i

i j j i *
1/ � � E ( � � E ) � E ( � � 1) E = 1/ ��� f .

i jpqk 1p k q1 1q k p1 i i

*
Thus the relation (

�
- � )f is sent to 1/ � ( � f - � f ).

i i i i i

4.13. COROLLARY. The McKay quiver is the double of a quiver Q, and there is
�

an isomorphism f T(V)#
�
/ ( � - � ) f �

�
(Q) sending f to e . Thus

i i
* �

T(V )#
�
/ ( � - � ) is Morita equivalent to

�
(Q).

PROOF. fBf has a symplectic form � which respects the decomposition

fBf = � f Bf .
ij i j

*
It follows that you can choose a basis {a,a } with each a belonging to some

* * * *
f Bf and a to f Bf in such a way that � = � a � a - a � a.
i j j i a

Let Q be the quiver with arrows the a. Since

*
dim f Bf = dim Hom (K

�
f ,V � K � f ) = dim Hom (V � N ,N ),

i j K
�

i j K
�

i j

it follows that the double of Q is the McKay quiver.

4.14. NOTES. For a discussion about associated graded rings see
J.C.McConnell and J.C.Robson, Noncommutative noetherian rings, §1.6.
Theorem 4.12 and Corollary 4.13 are new.
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Lecture 5. The Kleinian case

2
5.1. SETUP. Let

�
be a finite subgroup of SL (K) acting on V = K . It

2
preserves the symplectic form � (x,y) = x y - x y . It acts freely on

1 2 2 1
V\{0}.

� �
An element ��� Z(K

�
) gives rise to rings S and O .

The Gelfand-Kirillov dimension of a f.g. K-algebra is denoted GK A. More

generally GK dimension is defined for f.g. A-modules. The GK dimension of

gr A is equal to the GK dimension of A. Moreover, for commutative rings,

the GK dimension is equal to the usual Krull dimension. It follows easily
� �

that S and O have GK dimension 2.

� � � � � � �
The McKay quiver � is equal to Q for some Q. Moreover f S f �

�
(Q) (so

� �
that S and

�
(Q) are Morita equivalent) since when considering the

generators

*� � - � � - � � ( � , � )

�
of the ideal defining S , because V is 2-dimensional there is only one

element here, and it is essentially � - � .

� � �
Thus also O = eS e � e

�
(Q)e .

0 0

I
5.2. LEMMA (McKay!). Q is an extended Dynkin quiver. The element ��� �

defined by � = dim N is the radical generator for Q.
i i

PROOF. Since dim V = 2, it follows that ( � , � ) = 0 for all i. Now � = 1
i 0

since N is the trivial module.
0

�

� � � � � �

5.3. LEMMA. S /S eS is Morita equivalent to
�

(Q ) where Q is the Dynkin
�

part of Q and � is the restriction of � . These algebras are f.d., and are

zero if and only if ��� � � 0 for all Dynkin roots � (ie roots with � =0).
0

�

� � � � � � � �

PROOF. S /S eS is Morita equivalent to
�
(Q)/

�
(Q)e

�
(Q) �

�
(Q ).

0
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� � �
Now S /S eS is finite dimensional, for it is filtered, and the associated

0 0 0
graded algebra is a quotient of S /S eS , which is f.d. by Lemma 3.13.

Finally a f.d. algebra is zero if and only if it has no f.d. modules, so

§2.6 applies.

5.4. ORDERS AND REFLEXIVE MODULES. A prime Goldie ring A has a simple

artinian quotient ring Q, and then A is an order in Q, meaning that every
-1 -1

q � Q can be written as as and as t b with a,b,s,t � A, s,t units in Q.

An order is said to be maximal if A � B and xBy � A for some units x,y � Q, imply

that A=B. A commutative integral domain is a maximal order if and only if

it is integrally closed.

If A is an order in Q, simple artinian, and e � A is a non-zero idempotent,

then you can identify End (eA) = {q � Q : eAq � eA}, for
eAe

1 2 3
End (eA) � � � � � � � � � � End (eQ)

�
End (eQ) � � � � � � � � � � Q

eAe eAe eQe

1 is 1-1. It comes from the fact that eA � Q � eQ.
A

2 is equality since by general theory eAe is an order in eQe.

3 the homothety is an isomorphism since Q is simple artinian.

If in addition A is a maximal order then A � End (eA):
eAe

We have A � {q � Q : eAq � eA} � Q.

Now QeQ = Q, so AeA contains a unit s of Q. Then eAq � eA � sq � A.

Thus maximality implies A = {q � Q : eAq � eA}

Also eA is a reflexive eAe-module. (Recall that M is a reflexive R-module
�

if M � � � � � � � � � � � Hom (Hom (M,R),R). Namely, there are isomorphisms
R R

Ae � � � � � � � � � � � Hom (eA,eA)e � Hom (eA,eAe)
eAe eAe

eA � � � � � � � � � � � e Hom (Ae,Ae) � Hom (Ae,eAe).
eAe eAe

0
If A is a maximal order then so is A#

�
. Thus S � K[V]#

�
is a maximal

0
�

order. Also O � K[V] is integrally closed, so it too is a maximal order.
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Finally we need to use a theorem of Van den Bergh & Van Oystaeyen, that the

property of being a maximal order in a simple artinian ring passes from
� �

gr A to A. Thus S and O are maximal orders.

� � � �
Thus End (eS ) � S and eS is a f.g. reflexive O -module.�O

5.5. HOMOLOGICAL PROPERTIES. If A is an algebra which is noetherian and has

finite injective dimension, then the grade of a non-zero f.g. module M is

defined by

i
j( M) = inf {i : Ext (M,A) � 0}.
A A

One says that A is Auslander-Gorenstein if it is noetherian, finite

injective dimension, and for every f.g. A-module M and every submodule
i

N � Ext (M,A) one has j(N ) � i.
A A A

One says that A is Cohen-Macaulay if j(M) + GK M = GK A for all nonzero

f.g. A-modules M.

Björk shows that the Auslander-Gorenstein and Cohen-Macaulay properties

pass from gr A to A.

Now Kleinian singularities are Auslander-Gorenstein and Cohen-Macaulay.
�

Thus O is Auslander-Gorenstein and Cohen-Macaulay.
� �

Of course GK O = GK S = 2.

5.6. LEMMA. If A is a f.g. noetherian Auslander-Gorenstein and
�

Cohen-Macaulay algebra of finite global dimension (eg O ), then

gl.dim A = max { GK(A) - GK(M) : M a f.g. nonzero module }

PROOF. Since A is noetherian, gl.dim. A is its injective dimension as a

right (or left) module. Say � .

This is the maximal value of j(M) for a non-zero f.g. module M.
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j
- If j(M)=j then Ext (M,A) � 0 so inj.dim R � j, so � � j.

�
- There is some right module N with Ext (N,A) � 0.

We may assume that N is f.g.�
Now if M = Ext (N,A) then by the Auslander condition j(M) � � .

Thus � = maximal value of GK(A) - GK(M) where M is f.g. nonzero module.

5.7. THEOREM.
�

1 (if ��� � � 0 for all roots � )�
�

gl.dim O =
�

2 (else)�
� (if ��� � = 0 for some Dynkin root � )�

� � �
and S is Morita equivalent to O � gl.dim O < � .

� �
PROOF. If ��� � � 0 for all Dynkin roots � then O is Morita equivalent to S

by Lemma 5.3.

� � � �
If O is Morita equivalent to S then gl.dim O = gl.dim S < � .

�
Conversely, if gl.dim O < � , then it clearly can’t be 0, so it is 1 or 2

according to whether or not there are any f.d. modules. In any case, since
�

it is � 2, any f.g. reflexive module is projective. Thus eS is a
� �

projective left O -module. Since it has O as a summand, it is a
� � �

progenerator. Thus S eS = S . This implies that ��� ��� 0 for all Dynkin roots
� �� by Lemma 5.3. It also implies that O and S are Morita equivalent. Thus

� �O has a f.d. module if and only if S has a f.d. module, and this is if

and only if ��� � = 0 for some root � .

-1
5.8. LEMMA. If Q is extended Dynkin and ��� � = 0 then � ( � )//G( � ) has�
dimension 2.

I
PROOF. Let

�
= { ��� K : ��� � = 0}. Since � is flat, so is the pullback�

-1� (
�
) � � � � � � � � � � �

�
. Thus by the Reynolds operator, the map�

-1
f : � (

�
)//G( � ) � � � � � � � � � � �

�

�
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is also flat. (This is a lift through the Weyl group of the semi-universal

deformation of the Kleinian singularity).

-1
Also f is surjective, and the fibre over ���

�
is � ( � )//G( � ), which is�

irreducible. Since f is flat, has irreducible fibres, and
�
is irreducible,

-1
it follows that � (

�
)//G( � ) is irreducible. Flatness now implies that all�

fibres of f have the same dimension. But

-1 � � �� (0)//G( � ) � Mod (
�
(Q),K )//G(K ) � Mod (K[V]#

�
,K
�
)//G(K

�
) � V/

�
,� S K

�

has dimension 2.

� -1 �
5.9. THEOREM. If ��� � = 0 then O � K[ � ( � )//G( � )], so O is commutative.�

I
PROOF. Let S = K and identify

�
-1 � � G(K )

K[ � ( � )//G( � )] � K[Mod (
�
(Q),K )]� S

The map a � � � � � � � tr(a,-) defines a map

�� � � � � � � � G(K )
KQ � � � � � � � � � � � �

(Q) � � � � � � � � � � � K[Mod (
�
(Q),K )] .

S

Recall that the invariants are generated by the trace functions.
� � � � �

For generators one can take oriented cycles in Q.

- The invariant given by any cycle that doesn’t pass through 0 factors

� �

� � a � � � b
Mod (

�
(Q),K ) � � � � � � � � � � � Mod (

�
(Q ),K ) � � � � � � � � � � � K

S S

� �

where Q is the Dynkin quiver obtained by deleting the vertex 0, and � and
�

� are the restrictions of � and � . But this Dynkin deformed

preprojective algebra is finite-dimensional, so

� �

� � � �
Mod (

�
(Q ),K )//G(K )

S

is finite. Thus any polynomial invariant is constant on the connected
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� �

� � �
components of Mod (

�
(Q ),K ). Now a must map into one connected

S
component, so the invariant is constant.

- The invariant given by any cycle that passes through 0 is in the image of

the map

�� � � G(K )� : e
�
(Q)e � � � � � � � � � � � K[Mod (

�
(Q),K )]

0 0 S

Now � is an algebra homomorphism since trace is multiplicative for 1 
 1
�

matrices. It follows that � is surjective. Now the left hand side is O , a

domain of GK dimension 2. The right hand side is of dimension 2. Thus �
must be an isomorphism.

�
5.10. PROPOSITION. If ��� � � 0 then

�
(Q) has only finitely many f.d. simple

�
modules. The same holds for O , so it is noncommutative.

PROOF. If there is a simple module of dimension � then by a sequence of

reflection functors one can pass from ( � , � ) to ( � � , � � ) with � � a coordinate

vector or in the fundamental region.

Since � is invariant under reflections, � � � � = ��� � � 0, so the latter

possibility is ruled out.

For the former, note that there is a unique simple module. Thus we just

need there to be only finitely many roots � with ��� � =0. Now if � is any

root then so is � +n � for all n since q( � ) = q( � +n � ). It follows that any

root is of the form � +n � where � is a Dynkin root. Now there are only

finitely many possible � , and for any � , at most one of the roots � +n � has

��� ( � +n � )=0.

� �
Now any f.d. O -module M is isomorphic to eL for some f.d.

�
(Q)-module L

�
(for example take L =

�
(Q)e � M), and if M is simple one can take L

0 �O
simple.

5.11. PROPOSITION. The following are equivalent.

(1) every non-Dynkin root � has ��� � � 0.
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�
(2) There is non nonzero f.d. O -module.

�
(3) O is simple.

�
PROOF. (1) � (2) As above, every f.d. O -module M is isomorphic to e L for

0� �
some f.d.

�
(Q)-module L. Now the dimensions of

�
(Q)-modules are sums of

roots � with ��� � = 0.

� �
(2) � (3) If I is a nonzero ideal in O then O /I has GK dimension � 1, so it

is a PI ring by (Stafford, Small and Warfield, Math Proc Cam Phil Soc

97(1985),407-414. A f.g K-algebra with GK(R)=1 is PI, N(R) is nilpotent,

and R/N(R) is module-finite over noetherian centre). Thus it has f.d.

modules.

5.12. SOME BIJECTIONS. M. P. Holland pointed out to me some work of

G.Wilson. Consider the set

{Right ideals of the first Weyl algebra} / isomorphism

By work of Cannings and Holland the elements of this set are in 1-1

correspondence with the a certain set

{Primary decomposable subspaces of � [x]} / a certain equivalence

Wilson observed that this set in naturally identified with a certain

"adelic Grassmannian",

ad
Gr .

By work of Segal and Wilson its points are in 1-1 correspondence with

rational solutions of the KP heierarchy

3 1� � � �u = (u - � � � �(u +6uu )) .
4 yy t 4 xxx x x

ad
Wilson also proved that the points of Gr are in 1-1 correspondence with

�
C

n � 0 n

44



where C is a certain completed phase space for the rational Calogero-Moser
n

system of n particles moving on the complex line with the Hamiltonian

1 n 2 2� � � � � p - � 1/(x -x ) .
2 i=1 i i<j i j

Now by inspection C is identified with the space
n

-1� ( � ) // G( � )�

for the quiver with two vertices and two arrows

1 2 � � � � � �
Q = • � � � � � � � � � � � • ���

and � = (1,n), � = (-n,1).

In my work on simple modules for deformed preprojective algebras I had

dealt with generalizations of this quiver, in which one starts with an

extended Dynkin quiver, and adds a new vertex connected by an edge to an

extending vertex. For example

• � � � � � � � � � � � • •� �
• � � � � � � � � � �•� �

• •

M. P. Holland and I conjecture that for generic � there is a bijection
�

between isomorphism classes of stably free right ideals in O and elements
-1

of the sets � ( � � ) // G( � ) where � =(1,n � ), � � =(-n ��� � , � ). Variations are�
also possible, in which one varies the extending vertex or allows other � .

5.13. FURTHER READING. Most of the arguments come from W.Crawley-Boevey and
M.P.Holland, Noncommutative deformations of Kleinian singularities, Duke
Math. J. 92 (1998), 605-635.

For Gelfand-Kirillov dimension see J.C.McConnell and J.C.Robson,
Noncommutative noetherian rings.

The right ideals in the first Weyl algebra are classified in R.C.Cannings
and M.P.Holland, Right ideals of rings of differential operators,
J. Algebra 167 (1994), 116-141.

The connection with Calogero-Moser phase spaces is G.Wilson, Collisions of
Calogero-Moser particles and an adelic Grassmannian, Invent. Math. 133
(1998), 1-41.
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