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I ntroducti on

In May 1999 there was a Gernman Mat hematical Society (DW) Sem nar on
Quanti zations of Kleinian singularities at the Mathenatical Research
Institute in Oberwol fach. The organi zers were Ragnar Buchweitz, who spoke
about deformation theory, Peter Slodowy, who spoke about Kl einian
singularities, and nyself. These are a slightly revised and expanded

version of the notes that | prepared for the neeting.

| assume throughout that Kis an algebraically closed field of
characteristic zero and work with al gebras and varieties over K The aimis
to study quotient singularities V/T, where Vis a snooth affine variety and
FCis afinite group acting on V. In particular the Kleinian singularities
K2/F with T c SLZ(K). For exanple one would like to construct and

under stand defornmations, quantizations and desingul ari zati ons of these

singularities.

The key idea is to try to realize VIT as a noduli space of nodules for the
skew group al gebra K[V]#I formed by the action of T on the coordinate ring
of V. This idea seens to be inplicit in some of the recent work on the

hi gher di mensi onal MKay correspondence, where it sonetines leads to a
desingul ari zation of V/T. To get deformations and quantizations of V/IT, we
| ook for deformations of the algebra K[V]#I. It is easy to wite sone down
in case Vis a vector space and ' preserves a synplectic formon V. To
determ ne the properties of our deformations, we restrict to the Kleinian
singularity case, when K[V]#I is Mrita equivalent to a "preprojective

al gebra", and one can use representations of quivers. The |ectures

therefore begin with an introduction to these topics.

Much of this material comes from W Crawl ey- Boevey and M P. Hol | and,
Noncommrut ati ve deformati ons of Kleinian singularities, Duke Math. J. 92
(1998), 605-635.

Wl liam Craw ey- Boevey
April 2000



Lecture 1. Representations of quivers

1.1. QUVERS. Let Qbe a quiver with vertex set |I. Thus Qis a directed
graph with a finite nunber of arrows and vertices. Each arrow a has its
tail at a vertex t(a) and its head at a vertex h(a). W also wite a:i—j

toindicate that i =t(a) and j = h(a).

A representation of Q consists of a vector space M for each vertex and a

I inear map M-——»M for each arrow a:i—j. A honmonor phi sm bet ween two
representati ons M—N consists of a |linear nmap M-——»Ni for each vertex,

such that for each arrow a:i——j the square

l

2

<X

—

commutes. Clearly in this way one obtains a category of representations,
and the isonorphisns turn out to be those hononorphisns in which all |inear

maps M-——eNi are invertible.

The di nension vector of a representation Mis the vector aeml whose

conponents are given by @ = dim M . The notation « = dimMis often used.
Choosi ng bases for the vector spaces, any representation of dinmension « is
gi ven by an el enent of

Rep(Q «) I\/Elt(ocj xoci,K).

- r[a:i——>j

W wite KX for the representation corresponding to a point xeRep(Q «).
.
Thus the vector space at a vertex i is K ' and the linear maps are given by

the matrices. Another comon notation is to use the correspondi ng capita

letter X for the representation

The group

G(o) = T o G(a , K

acts on Rep(Q «) by conjugation. The group elenents in which all natrices



are the same nonzero nmultiple of the identity matrix act trivially, so the
quotient group (o) = GL(oc)/K* acts. Cearly the orbits (for either group
action) correspond to the isonorphi smclasses of representations of Q of
di mension «. Moreover the stabilizer of x in G(«) is evidently the

aut onor phi sm group Aut(KX), so the stabilizer of x in Q&) is Aut(KX)/K*.

1. 2. PATH ALGEBRAS. The path al gebra KQ associated to a quiver Qis the

associative algebra with basis the paths in Q This includes a trivial path

e for each vertex i. For exanple the path al gebra of the quiver

has basi s €, €5 €4 €, A b, ¢, ca, ch. The nultiplication in KQis

gi ven by conposition of paths if they are conpatible, or zero if not. In

the exanple we have a.b = 0, ¢c.b = ch, e, C =¢C, e5cC = 0, etc. Note that
our convention for the order of arrows is to conpose themas if they were
functions. dearly the e, are orthogonal idenpotents, and the sum of them
is an identity element for KQ The path algebra is finite-dinensional if

and only if Q has no oriented cycles.

Studyi ng representations of Qis essentially the sane as studying
KQ nodul es. (By default this neans |left nodul es.) The connection is as

foll ows.

- If Mis a representation of Q so given by vector spaces I\/I for each
vertex i, and linear maps, then M= ®, I\/I can be turned into a KQ nodul e as
follows. If i is a vertex, then nultiplication by e acts as the projection
ont o I\/I If a:i—j is an arrow, then nultiplication by a acts as the
conposition

M—> M i)I\/JI s M

- Conversely, if Mis a KQnodule, there is a representation Mwith

I\/I = eil\/l and with the linear map I\/I—)I\/IJ corresponding to an arrow a:i —j

given by left nmultiplication by a.



This defines an equival ence of categories, but perhaps it is not an
i sonor phi sm Nevertheless, in future we shall blur the difference between

representati ons and nodul es.

1. 3. | NDECOVWPCSABLES. Recall that a npbdule Mis said to be i ndeconposabl e

if it cannot be witten as a direct sumof two proper subnodul es M= XaY.
For finite-dinensional nodules for an algebra, which is our interest in

these notes, there are two key results:

- Fitting’s Lemm says that a nodule is indeconposable if and only if every

endonorphismis of the formAl + 6 where AeK and 6 is nil potent.

- Any finite-dinmensional nodule can clearly be witten as a direct sum of
i ndeconposabl e subnodul es, but such a deconposition is not uni que. However,
the Krull-Schm dt Theorem says that any two deconpositions have the sane
nunber of indeconposabl e summands, and the sunmmands can be paired off so

that correspondi ng summands are i sonor phic.

1. 4. STANDARD RESOLUTION. If S is an algebra and V is an S-S-binodul e then

the tensor algebra of V over Sis

TSV =SeVe (V@SV) ® (V@SV®SV) ® ...

with the natural nultiplication. If A= TSV’ there is a canonical exact

sequence

f m
0 —A ®S \Y ®S A— A ®S A— A—20

where f(asvea’) = avea’ - asva’ and n(a®a’) = aa’.

The path algebra KQis a special cases of a tensor algebra, with S the

conmut ati ve sem sinple algebra S = T o Kand V = @ K, considered as

a:i—j

an S-S-binmodule via svs’ = (s.v_s/)_.. .. In fact any tensor algebra T_V
] al’ail—) S

with SV finite dinensional and S comutative senisinple arises this way.



LEMVA (Standard resolution). Any KQ nodule X has a projective resolution

0 — KQeJ.@Xi—)@i KQei®Xi—>XHO

® . .
a:i—j
In particular gl.dimKQ = 1.

PROOF. Here Xi = eiX is the vector space at vertex i in the corresponding
representation, and the tensor products are over K.  Thus KQEi ® Xi is

i sonorphic as a KQ nodule to a direct sum of copies of chi, i ndexed by a
basi s of Xi' Now si nce e i s idenpotent, KQEi is a projective KQ nodul e
and hence so is the direct sum Thus the terns are indeed projective

nodul es.

The sequence is obtained by applying —®Kc% to the canoni cal exact sequence
for KQ = A= TSV' The canoni cal exact sequence is a sequence of
A-A-binodules, and it is clearly split as a sequence of right A-nodules, so

it remains exact under the tensor product.

Since any left KQ nodule has a projective resolution with two terns, we
deduce that KQ has |eft global dinension at nost 1. But the opposite
al gebra of KQis also a path al gebra, of the opposite algebra, so the sane

applies for right global dinension.

1.5. BILINEAR FORMS. The Ringel formfor Qis the bilinear formon RI
defined by

o fB. .

a:i— 17

< B> =Y B -k

The Tits formis the quadratic formg(a) = <«, «>. The correspondi ng

symmetric bilinear formis

(a, B) = <a, B> + <B, a>.

If X, Y are (f.d.) representations of Qthen there is Ringel's fornmula:

dimHom(X,Y) - dimExt (X, V) = <dim X dimvs.



which follows from applying the functor Hon(-,Y) to the standard resol ution
for X and using the fact that an(KQEi,Y) = Yi to conpute di nensions.

1. 6. ROOTS. Let g € ZI denote the coordinate vector at vertex i. The
mat ri X Aij = (ei,ej) is a Generalized Cartan Matrix (at |east when Q has no
| oops), and so there is an associ ated Kac-Mody Lie algebra. This al gebra

has a root system associated to it. W need the sane conbi natorics.

If i is aloopfree vertex in Q (nmeaning that there is no arrow with head
and tail at i), then there is a reflection

S; ZI —>ZI, Si(oc) =« - (oc,ei)ei
The Weyl group is the subgroup W¢ Aut(ZI) generated by the S; - The

fundanmental region is

F = {aeml . o#20, o« has connected support, and (a,ei)so for all i}

By definition the real roots for Qare the orbits of coordinate vectors g

(for i loopfree) under W The inmaginary roots for Qare the orbits of z*«
(for « € F) under W

If wis aroot, then sois -« This is true by definition for inmaginary
roots. It holds for real roots since si(ei) =g if i is a loopfree
vertex. It can be shown that every root has all conponents = 0 or = 0. This
can be deduced from Lie Theory, but one could also prove it using the

met hods of Lecture 2. Thus one can speak of positive and negative roots.

It is easy to check that q(si(a)) = g(w), so that the Weyl group preserves
the Tits form It follows that the real roots have gq(«) =1, and the
i magi nary roots have g(«)=0. In general, however, not all vectors with

these properties are roots. (But see 81.9.)

A nonzero el enent « of ZI is said to be indivisible if gcd(ai) = 1. dearly
any real root is indivisible, and if « is a real root, only *« are roots.
On the other hand every inaginary root is a nultiple of an indivisible

root, and all other nonzero nultiples are also roots.



1.7. KACS THECREM (i) If there is an indeconposable representation of Q
of dinension «, then o is a root.

(ii) If ais a positive real root there is a unique indeconposabl e of

di mension « (up to isonorphism.

(iii) If «is a positive imaginary root then there are infinitely nmany

i ndeconposabl es of dimension « (up to isonorphism.

In Lecture 2 we shall prove (i) and (ii). In the rest of this lecture we
shal |l assune the truth of (i) and (ii), discuss Dynkin and extended Dynkin
qui vers, and prove a very special case of (iii). Thus, although we do not
prove all of Kac's Theorem we do prove everything we need for Kleinian

singularities.

1. 8. DYNKIN AND EXTENDED DYNKI N QUI VERS. The extended Dynki n quivers are

t hose whose undel yi ng graph is one of A Dn’ EG’ E7, (Mﬁth n+1

vertices). In each case we’'ve indicated a speci al vector S € NI by mar ki ng

each vertex i with the conponent Si

/1 (n=0)

6: E7: T 8’ 3

1—2—3—2—1 1—2—3—4-3—2—1 2—4—6—5—4—3—2—1

Thus KO consi sts of one vertex and one | oop. An extending vertex is one

with Si = 1. The Dynkin quivers A D E6’E7’E8 are obtained by deleting an
extendi ng vertex. W have the foIIOMAng observati ons.

(1) Let Qbe an arbitrary quiver. By definition the radical of the Tits
formqgis Rad(q) = {«a € RI : (a,ei):o for all i}. Witing nij for the

nunber of edges i—j (loops count twice), we have

a € Rad(g) & (2-n . )a =) . n..aj for all i



(2) If wis aradical vector with o >0 for all i, then by calculation

o ocj Bi Bj 2
a(B) :Zi<j nij 2 [ ) q]
for any B. It follows that q is positive senidefinite (nmeaning that
g(a) = 0 for all « € RI). Assum ng that Qis connected the only vectors on

whi ch g vani shes are the elenents of Re, so this is also the radical of q.

(3) One can easily check that 8§ € Rad(q) for Q extended Dynkin. Thus q is
positive senmdefinite and Rad(q) = Ré.

(4) It follows immediately that g is positive definite for Q Dynkin
(rmeaning that q(e) > 0 for all 0 # « € RI).

(5) A case-hby-case anal ysis shows that any connected quiver which is not
Dynki n or extended Dynkin nust properly contain an extended Dynkin quiver
and this inplies that q is indefinite for such quivers (so takes both

positive and negative val ues).

1.9. ROOTS FOR DYNKIN AND EXTENDED DYNKI N QUI VERS. Let Q be a Dynkin or

ext ended Dynkin quiver

(1) W showthat if «a € ZI and q(«) =1, then « is either positive or
negative. Wite o = o - o with o ,a e N havi ng di sjoi nt support. For a

contradiction suppose that a+ and « are both nonzero. Now
+ - + - + -
1=z9(a) =9q(a) + () - (¢, ,) =0q(a) + q(a)

+ - . . L
but q(e) and q(« ) are integers and q is positive senmdefinite, so one
. + . .
termmust vanish, say q(e ) = 0. This inplies that Qis extended Dynkin and
+ . .
o 1s anonzero multiple of 8. But all conponents of 8 are nonzero, so we

must have o« = 0. Contradiction.

(2) The roots for Qare exactly the 0 # « € ZI with q(«)=1. Certainly any
root has these properties. On the other hand, if « has these properties
then we apply a sequence of reflections to mnimze IZaiI. If ais now a

multiple of a coordinate vector at a | oopfree vertex, then since q(«) =1



we see that the nultiple is 1, so o« is areal root. Oherwise, if i is any
| oopfree vertex then the reflection at i cannot change the sign of @ for
otherwise it leads to a vector with both positive and negative conponents.
By minimality this inplies that (a,ei) = 0. Thus q(e) =0, sOo xis a

multiple of 8, so in the fundanental region, and hence an inmaginary root.

(3) dearly the imginary roots for an extended Dynkin quiver are exactly

the nmultiples of 4.

(4) Cdearly a Dynkin quiver has only real roots. In fact it has only
finitely many roots, for they forma discrete subset of the conpact set
{aeRI:q(a):l}. Thus Kac’'s Theoreminplies Gabriel’s Theorem that the

quivers with only finitely many i ndeconposabl es are the Dynkin quivers.

1.10. LEMVA (Ringel). An indeconposable f.d. KQ nodule which is not a brick

has a subnodul e which is a brick with self-extensions.

(By definition a brick is a nodule X with End(X) = K, and X has
sel f-extensions if Extl(X,X) = 0).

PROOF. By induction it suffices to prove that X has an indeconposabl e
proper subnodule with self-extensions. For a contradiction, suppose not.
Let 8 € End(X) be a nonzero endonorphismwith | = 1me) of mnin

di mensi on. By hypothesis | is indeconposable, so has no self-extensions.

Now 92 =0, for In(ez) €1, and if they are equal then the conposition

| ¢ X — |

is an isonmorphism so | is a direct summand of X. Thus | < Ker(8). Wite
Ker(8) as a direct sum of indeconposables, say Ker(8) = o Ki’ and | et
LA Ker(e)——»Ki be the projections. For sone j we nust have nj(l) # 0.

Suppose for a contradiction that Extl(Ki,Ki) = 0.

Mninmality inplies that njlI is injective (considering the conposition

X—>1 — Ki — X). Applying Hon(-,Ki) to the short exact sequence

0 I ﬁ Kill — 0

10



gives a long exact sequence
1 f 1 2
— Ext (KJ.,KJ.)—)Ext (I,KJ.)—)Ext (Kj/I,Kj)H...
and the Ext2 term vani shes, so f is onto.

Now consi der the pushout of the short exact sequence

0 — Ker(96) X I 0

al ong nj, say

0 — Ker(96) X I 0
g
| o
h

0 — ﬁ Y I 0
If it splits, then h has a retraction, and its conposition with g is a
retraction for the inclusion of Ki in X. But this inplies that Ki is a
direct summand of X, which is nonsense. Thus we nust have Extl(l,Ki) # 0.
It foll ows that Extl(Ki,Ki) # 0. Contradiction
1.11. LEMVA. For Q extended Dynkin, the general elenent of Rep(QJd) is a

brick, and there are only finitely many other orbits.

PROOF. There are only finitely many orbits of deconposabl e nodul es since
there are only finitely many roots which are less than 8, and they are al

real roots. Now using the fact that q(38)=0

. _ _ 2 . _ }

di m Rep(Q 9) _Za:iej aiéj —Zi ai, di m 4 8) _Zi 3. 1,

so there nust be infinitely many orbits. Thus the general elenent of
Rep(Q 8) nust be indeconposable. Now Ringel’s Lenma says that each

i ndeconposable is either a brick, or it has a proper subnodule Mwhich is a

brick with sel f-extensions. But then

11



a(dimM = dimEnd(M - dimExt (MM =< o,
so dimMis a nultiple of 8. This is inpossible

1.12. FURTHER READI NG. The best reference for Kac's Theoremis his |ast
paper on the topic, V.G Kac, Root systens, representations of quivers and
invariant theory, in: Invariant theory, Proc. Mntecatini 1982, ed. F.
Gherardelli, Lec. Notes in Math. 996, Springer, Berlin, 1983, 74-108.

Anot her useful reference is H Kraft and Ch. Ri edt nann, Geonetry of
representations of quivers, in: Representations of al gebras, Proc. Durham
1985, ed. P. Webb, London Math. Soc. Lec. Note Series 116, Canbridge Univ.
Press, 1986, 109-145.

The definitive reference for extended Dynkin quivers is Section 3.6 of

C. M Ringel, Tane al gebras and integral quadratic forns, Lec. Notes in Math.
1099, Springer, Berlin, 1984.

Lecture 2. Preprojective al gebras
Let Q be a quiver with vertex set |

2. 1. PREPRQIJECTI VE ALCGEBRAS. The double of Qis the quiver obtained by

*
adjoining an arrow a :j——i for each arrow a:i— in Q

The preprojective algebra is the associative al gebra

MQ = KA/ (Tolaal).

More generally, the deforned preprojective al gebra of wei ght AeKI is

TQ = K/ (Tolaal - T4 Ae)

iel i

2.2. REMARKS. (1) The preprojective algebra first appeared with the
relation Zaeq§aa*+a*a) = 0. It is easy to see that this gives an isonorphic
al gebra provided the quiver is bipartite, neaning that the vertices can be

divided into two sets and no arrow has both head and tail in the sane set.

12



(2) If Qhas no oriented cycles then KQis a finite-dinensional al gebra.
For such al gebras there are Ausl ander-Reiten operators DIr and TrD, and it

can be shown t hat

MQ = o 7 (TrD)"(KQ.

This nmeans that TI(Q is the sumof all indeconposabl e preprojective
KQ nodul es.

(3) HA(Q) doesn’'t depend on the orientation of Q Just reverse the role of

a and a*, and change the sign of one of them

(4) If r is the defining relation for HA(Q), then r :Zeirei, and

*

6T = hhay=i®? T L= 2 27N

Thus HA(Q)—rroduI es correspond to representations of Qin which the |inear

maps satisfy the relations

*

In(ay=i @8 " L(a=i @ 27N

for all i. Wth this identification we can speak of the di nension vector of
a T(Q - nodul e.

(5) If there is a HA(Q)—rroduIe of dinension « then Aca = Zi Ai o nmust be
equal to zero. To see this, take the traces of all the relations, and sum
On the left hand side every termtr(aa*) is cancelled by a term-tr(a*a).

On the right hand side the traces add up to A-a.

2.3. MOMVENT MAP. The relations for the defornmed preprojective algebra arise

froma nonent nap.

Let V be a vector space with a synplectic formw, a skew symetric bilinear

form VxV——K whi ch i s non-degenerate in the sense that w(u,v)=0 for all v
implies u=0. Let an al gebraic group G act on V preserving w.
Differentiation gives an action of the Lie al gebra gxV—V. Since G

preserves w, it follows that

13



w(ev,v’') = -w(v,ev’)

for all 6eg and v,v’eV. By definition the noment map in this situation is

the map p: V—osq defined by p(v)(e) = % w(v, 6v) for veV and 6eg. It has the
required property of nonent nmaps in synplectic geonetry: its derivative

duv: VHQ* at veV satisfies

duv(v’)(e) = % (w(v’,8v)+w(v,6v’)) = w(v,ev’).

To apply this to quivers we equip Rep(Q «) With the synplectic form coning
fromits identification with the cotangent bundle T*Rep(Q,oc). Explicitly

WX Y) = Yaeq 1r(Xg" V) - trix, ")

for x,y € Rep(Q «). The group a) = GL(oc)/K* acts by conjugation and

preserves w.

(9%) =g x g
P ai—j T 9 %Y
Its Lie algebra is identified with End(«)/K where End(«) = Ti; Ivat(oci,K),

and the action is given by

(6x) .. . = ©6.X_ - X_0..
a:i—j i "a aj

Let End(oc)0 = {06 € End(a) : ) tr(ei):O}. The trace pairing gives an

i sonor phi sm
End(oc)o—>(End(oc)/K)*, 0 > (¢ |—>Zi tr(eiqbi)).
The nmonent map is thus M Rep(Q o) —> End(oc)0 gi ven by

X = (Lyay=i %a Xa” " Li(ay=i %a" *di

Now G(«) acts by conjugation on End(oc)o, and the invariant elenents are
those in which each conponent is a nultiple of the identity matrix. W
identify these with el enents of {AeK :2A+a=0}. Then u;xl(x) is identified

with the space of HA(Q)—rroduI es of dinension «.

14



2.4. LEMA. If x € Rep(Q «) and X is the correspondi ng KQ nodul e, then
there is an exact sequence

0 — Ext 3(X X —> Rep(P @) 1 End(@) -1 End(X%)  — 0

where t(6)(¢) = ).

| €l

tr((%)i ¢j) comes fromthe trace pairing, and
f(y) = ZaeQ[Xa’ ya*]. Thus the fibre of f over AeKI consists of the

di fferent ways of extending the action of KQ on X to an action of HA(Q).

PROOF. Apply HonkQ(-,X) to the standard resolution of X, dualize, and use

trace pairings to identify terns.

2.5. THEOREM If X is a K@ nodule then the action of KQ on X can be
extended to an action of HA(Q) if and only if A«dimY = 0 for any KQ nodul e

sunmand Y of X

PROOF. Suppose that the action extends. Let X be given by x € Rep(Q «).
Then in the lemma we have A € Im(f), so t(A) =0, so ) Aitr(ei) = 0 for any
0 € EndKQ(X). If Yis a KQ nodule sunmand of X, apply this with 8 the

projection onto Y to see that A«dimyY = 0.

For the converse, it suffices to prove that an indeconposable X with
AdimX =0 lifts. By Fitting's Lenma End(X) consists of nultiples of the

identity plus a nilpotent endonorphism so it is easy to see that t(A) = 0.

2.6. REMARK. Assuning Kac’'s Theorem it follows that the possible dinmension
vectors of HA(Q)—rroduI es are exactly the suns of roots a with A-a=0.

Not e that al though we don’'t prove all of Kac’'s Theorem we prove enough to
justify this claimfor Q Dynkin or extended Dynkin, for when witing a
vector as a sumof roots o with A+«a=0 you can take all these roots to be

either real roots or 8 and what we prove is sufficient.

In fact one can prove that « is the dinension vector of a sinple

HA(Q)—rroduIe if and only if «is a positive root, A+ = 0, and

1-9(«) > (1-q(B)) *+ (1-q(?)) + ...

15



whenever o=B+y+... a sumof positive roots with A+p=A+y=...=0. See 8§2.14.

2.7. PROPCSI TION. For an extended Dynkin quiver Q all fibres of pg are

i rreduci ble of dinension 1 + ) aiz. Thus s is flat.
PROOF. |f eeEnd(oc)o, |l et m be the conposition

-1 —

M (8) <= Rep(Q «) —>» Rep(Q «).

If xeRep(Q «) then n_l(x) = f_l(e) in the sequence of Lemma 2.4, so it is
either enpty, or a coset of Extl(X,X)*. Thus it is either enpty or
i rreduci ble of dinension dimEnd(X) + q(8) = dimEnd(X) by Ringel’s

f or nul a.

The bricks forma dense open set B € Rep(Q 8). They have nonenpty fi bres.

Thus = 3(B) is irreducible of dinension dimB + 1 =y aiz _

Besides the bricks, there are only finitely many other orbits of G(8) on

Rep(Q 8). The stabilizer of x is identified with Aut(X)/K*, so the orbit of

x has di mension
dimas) - dimAut(X)/K

and its inverse inage under m (if non-enpty) has di nension
dimgs) - dimAut(X)/K* + dimEnd(X) =Y 6i2.

Now any i rreduci bl e conponent of a fibre of Mg has di nension at | east

di m Rep(Q 8) - di mEnd(3,) = T aiz _

It follows that each fibre is irreducible of dinension ) 8i2 + 1. This

i nplies flatness since s is a map between snooth irreducible varieties.

2.8. REFLECTION FUNCTORS. If i is a |loopfree vertex, we have a reflection
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ro K K 0, = A - (e
dual to S; - The duality neans that riA = A e siocfor all A, a. W say
that the reflection is adm ssible for A if Ai # 0. In this case there is a

Morita equi val ence

r. A
T (Q-nodules —> T ' (Q-nodul es

whi ch acts as si on di nension vectors. We call this a reflection functor.

(Do not confuse this with a reflection functor in the sense of Bernstein,

CGel fand and Ponomarev - they are for KQ nodul es, and are not equival ences.)

EXAMPLE. If Qis the quiver

3 4 5
e __ 0 __ s 0

/

2

then a HA(Q)—rroduI e X is given by vector spaces and |inear naps

satisfying the deforned preprojective relations. For vertex i=3, the linear

maps conbine to give nmaps

6 ¢
X3 — X1®X2®X4 — X3

and (inserting mnus signs suitably) the relations ensure that ¢6 = A3 | d.

Now i f A3 # 0 this inplies that 6 is the inclusion of a direct sunmand and

X1®X2@X4 = 1me) o Ker(¢).

The functor sends X to the HA(Q)—rroduI e
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in which the linear maps to and from Ker(¢) cone fromthe two deconpostions
of X1®X2®X4.

2.9. CONSEQUENCE. Let the Weyl group Wact on KI via WAsa = A'(mfla) for
all A, «. W claimthat if A’eWA then HA(Q) and ITA (Q are Mirita
equivalent, that is, there is an equival ence

Q- nodul es — T (Q - nodul es

Nanely, wite

Doing this with n as snall as possible, the reflections at each stage are
adm ssible (for if Ai = 0 then riA = A). The reflection functors then give

t he equi val ence.

2.10. LEMVA. If there is a sinple nodule for HA(C» of dinmension «, and i is

a vertex, then a=e, or (a,ei)so or Aiio.

PROOF. Suppose ot herw se. Since (a,ei)>0 there is noloop at i. If Xis the
si mpl e nodul e, since Ai = 0, the linear maps conbine to give maps
x 256 x 25 x

with conposition zero. (The direct sumis over all arrows incident at i

and the corresponding termis the space Xi at the other end of the arrow)
Now @ is injective, for Ker(8) is a subnodule of X, and if X = Ker(8) then
Xlives at i, and sinplicity inplies that a=€, . Dually ¢ is surjective. But
t hen

dime. i Xi = 2 dimXi
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so («, ei) = 0, a contradiction.
2.11. LEMVA. The di nension vector of any sinple HA(Q)—rroduI e is a root.

PROOF. Suppose that there is a sinple of dinension « Applying a sequence

of adnmissible reflections, we follows the effect on A and «:

A r.a r.r. A A’
o S. A S.S. « o

Because of the reflection functors there is a sinple HAI(Q)—rrodule of
dimension «’. Thus «’ is positive. W choose the sequence to nake o« as
smal | as possible. This inplies that (oc’,ei) = 0 for any vertex i wth
Ai #0.

The previous lemma now inplies that o' is either a coordinate vector at a
| oopfree vertex or has (oc’,ei) =0 for all vertices i. O course a’ has
connect ed support because of the existence of a sinple HAI(Q)-erduI e of
dimension «’. Thus in the latter case, «' is in the fundanental region. It

follows that « is a root.

2.12. PROPCSITION. If there is an indeconposable for KQ of dinension « then

o« is aroot.

PROOF. Wite o« = kB with B indivisible. Choose AeKI with A« = 0, but
Ay # 0 for any O=y=« which is not a nultiple of B. This is possible since

K has characteristic zero.

The i ndeconposabl e KQ nodul e extends to an i ndeconposabl e HA(Q)—rroduI e, and
any conposition factor of this nust have dinension ng for sone m Thus nB

is a root.

Now apply admi ssible reflections to A and ng as in the proof of Lenma 2.11.
W pass to A’ and a vector which is easily seen to be of the formng’ for
sone indivisible B’. The reflection functors can al so be applied to the

i ndeconposabl e HA(Q)—rroduI e of dinmension a« = kB to give an indeconposabl e
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™ (Q-nodul e of dimension kB’ .

Now either nB’ is a coordinate vector at a |l oopfree vertex, or in the

fundanment al region.

In the first case nmFl, but al so because there is an indeconposable

HA‘((D—nDdule of dinension kB’, we nust have k=1. Thus « is a root.

In the second case B’ and kB’ are also in the fundanental region, so that «

is again a root.

2.13. PROPCSITION. If «is a positive real root then (up to isonorphisn

there is a uni que i ndeconposabl e KQ nodul e of di nension «

PROOF. W use the fact that every root is positive or negative. Wite

o« =S s. (e)
'n "1}
with j a loopfree vertex and n as snall as possible. Then all internediate
terns “k =S .5 (e.) are positive roots. Define v € KI by
k 1
0 (i=j)
Yi ‘{1 (el se)’
k _ k _k _
and let v = Moo Ty (v). Now (v )i = voce, = p+B where
k 1 k+1 k+1

Now v+B = 0, for since Bis areal root it is positive or negative, so the

condition v = 0 inplies that g = # ej, but then

t e =S .5 (e.):ock
K 1!

contradicting the minimality of n. Thus the reflection at ik+1 is

adni ssi ble for vk. Thus there are reflection functors
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1 2
1Y(Q-nodul es — T° (Q-nodules — T° (Q-nodul es — ...

Clearly there is a unique HV(C»—nDduIe of di nensi on ej, and it is sinple.
Thus, letting A = vn, there is a unique HA(C»—nDdule M of di mension « and

it is sinple.

Now M i s indeconposable as a KQ nodule, for if it has an i ndeconposabl e

sumand of di nension B, then

But B is a root by Proposition 2.12, hence so is ¥, and the condition

vey = 0 inplies that y = # ej. Thus B = % S; -8 (ej) =+ «, soO in fact
n 1

Finally the indeconposabl e KQ nodul e of di nension « is unique since any
such nodul e can be extended to a HA(C»—nDdule, but there is a unique

HA(C»—lTodule of dinension «.

2.14. FURTHER READI NG. The deforned preprojective al gebra and the
reflection functors were introduced in WCraw ey-Boevey, and M P. Hol | and,
Noncomrut ati ve deformati ons of Kleinian singularities, Duke Math. J. 92
(1998), 605-635.

The construction of the preprojective algebra using TrDis in D. Baer,
W Cei gl e and H. Lenzing, The preprojective algebra of a tame hereditary
Artin al gebra, Commun. Al gebra 15 (1987), 425-457.

However, to see that these two descriptions of the preprojective al gebra
are the same, see C. M Ringel, The preprojective al gebra of a quiver, in:

Al gebras and nodul es, Il (Geiranger, 1996), 467-480, CMS Conf. Proc., 24,
Aner. Math. Soc., Providence, R, 1998, or WCraw ey- Boevey, Preprojective
al gebras, differential operators and a Conze enbeddi ng for defornmations of
Kl ei nian singularities, Conment. Math. Helv. 74 (1999), 548-574. This

| atter paper contains nmuch nore about deformed preprojective al gebras.

The paper W Craw ey-Boevey, Ceonetry of the nmonent nmap for representations
of quivers, to appear in Conposito Math., proves the characterization of

t he di nensi ons of sinple nodules for deforned preprojective algebras. In an
appendi x it also contains the el enentary deduction of nuch of Kac's Theorem
gi ven here.
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Lecture 3. Module varieties and skew group al gebras

We are interested in finite dinensional left nodules for a finitely

generated K-al gebra A (associative, with 1).

3.1. MODULE VARI ETIES. There is an affine variety

{A-nodul e structures on Kn}
{K-al gebra maps A—Mat (n, K)}

m . _
{(91,...,9n?elvat(n,K) : r(el""’en?_o for all reR}

Mbd( A, n)

on chosing generators of A and hence witing A = K<x ..,xm>/ R, where

1

K<x1,...,xm> is the free associative al gebra on generators Xpoooo X and R

is an ideal.

W need a variation on this, relative to a sem sinple subal gebra. Let A be
af.g. K-algebra and S € A a f.d. senisinple subalgebra (or nore generally
|l et S—A be a hononorphism. If Mis a f.d. S-nodule, Iet

I\/de(A, M = {A-nbdule structures on Mextending its S-nodul e structure}

It is an affine variety. (Choosing a basis of M it can be identified with
a fibre of the map Mod(A, n)—Md(S, n).)

The group (M = AutS(I\/p/K* acts on I\/de(A,M. It orbits are in 1-1
correspondence w th isonorphismclasses of A-nodules X with SX =M W
wite O(X) for the orbit corresponding to X. The stabilizer of a point

X € O(X) can be identified with AutA(X)/K*.
Speci al cases:

(1) Suppose A =TV is the tensor algebra on an S-S-binodule. Then by the

S
uni versal property of tensor al gebras, I\/de(TSV, M = Honk(V®Sl\/l M.

(2) Suppose that Ais a path algebra KQ of a quiver Qwith vertex set 1I.
Let S = Kx...xK spanned by the trivial paths € If a e INI define
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This is an S-nodule, with nultiplication by e acting as projection onto

the i-th sunmand. Then we can identify

Md(KQ K™ = Rep(Q @), QK" = G«

(3) If Ais a quotient of a path algebra, let S be the subal gebra
generated by the trivial paths as before. Then I\/de(A, K“) is a closed

subvariety of Rep(Q «). In particular,
A o _ -1
Md(T(Q, K = p ~(A).
3.2 TRACE FUNCTIONS. If aeA and X is a f.d. A-nodule then define

tr(a,X) =trace of the mp X — X, X > ax.

This defines a function tr(a,-) : Nde(A,M—>K. It is a M-invariant, so
tr(a,-) e K[I\/de(A,I\/p]G(M.

Gven a nodule X, we wite gr X for the sem sinple nodule which is the
direct sumof the conposition factors of X (with the same nultiplicities).

*.
L is

Ois

(1) tr(a,X) =tr(a,gr X). The trace of a matrix with block form

*
0
the sum of the traces of the diagonal blocks, so if O X1 X X2

an exact sequence of A-nodules, then tr(a,X) = tr(a, Xl) +tr(a, X2) =

tr(a, X1®X2). The assertion foll ows by induction.
(2) If tr(a,X) =tr(a,Y) for all a, then gr X 2 gr Y. This is character
theory! To prove it we nay assune that X Y are senisinple. Replacing A by

A/annA(X@Y) we nay assune that Ais semsinple. Now if

A = I\/B.t(nl,K) X .. X I\/B.t(nr,K),

a, is the i-th identity elenent, and Sj is the j-th sinple nodule, then

tr(ai,Sj) = Sijnj' The claimfollows.
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3.3. PROPCSITION. The closure of any orbit O(X) contains a unique closed
orbit, O(gr X). Thus the closed orbits in I\/de(A,M are exactly those of

sem si npl e A-nodul es.

PROOF. W show first that if Y € Xthen O(Y @ X'Y) € O(X). By definition
X = Mwith an A-nodul e structure. Let C be an S-nodul e conplenent to Y in
M The action of any aeA on X is an el enent of EndK(Y@CD, so can be witten

as a 2x2 matrix

211 212

0 ay
with a  eEnd(Y), a, € Hm(CY), a,, € End (C). For teK, let g eqM
correspond to the autonorphismof Mwhich is multipliction by t on Y and

the identity on C. The action of aeA on th is given by the matrix

Thus the closure of the orbit of X nust contain the el enent given by

matri ces
a11 0
0 a

That is, Y e XY.

Now by induction O(gr X) € O(X). In particular, if O(X) is closed then X
nmust be senisinple. On the other hand, the closure of any orbit is a union
of orbits, so always contains a closed orbit, eg one of mninmal dinension
Finally note that if O(Y) is a closed orbit in O(X) then by continuity X Y

have the sane trace functions, so gr Y & gr X
3.4. QUOTIENTS. If a reductive group G acts on an affine variety V then the

quotient V/ G (the set of orbits) is not usually well-behaved

topol ogically. However the set V// Gof closed orbits is. It is natually
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an affine variety with coordinate ring K[\/]G.

.
This applies to G M acting on I\/de(A,M. Since Mis senmsinple, M« ®, SiI

with the Si non-i sonor phic sinples, and AutS(M Eﬂi GLOC(K). Thus (M is
i

reductive. Now by Proposition 3.3,

Md(AM /1AM

_ { | sonor phi sm cl asses of semisinple }
M

IR

A-nodules X with SX
and there is a natural map
Ivde(A,M — Ivde(A,M Il M, X gr X
More general quotients can be constructed as part of "Geonetric |nvariant
Theory". Let 6 be an additive function {senisinple S-nodules} — Q. One

says that X is

6-semistable if 6(X) = 0 and 6(Y) = 0 for all A-subnodules Y < X
6-stable if 6(X) = 0 and 6(Y) > 0 for all A-subnobdules 0 # Y < X

A 6-senistable nodule X naturally has associated to it a nodul e grOX whi ch
is a direct sumof eo-stables, and one says X X’ are S-equivalent if

grOXEgrOX.

There is a G T quotient I\/de(A,M /'l (G M, 8) whose points correspond to

{6-semi stables X with SX =~ M / S-equivalence, and there is a proper nap

3.5. MORITA EQU VALENCE. If eeA is an idenpotent then eAe is an al gebra

with identity e, and there is a functor
A- nodul es —— eAe- nodul es, X — eX

To apply this to nodule varieties we assune that eeS. Then the functor

i nduces a norphism
o : Ivde(A,M I M — IvbdeSe(eAe,eM Il qeM.
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In case AeA = A the the functor is an equivalence, so that A and eAe are
Morita equivalent. It follows that the norphismis a bijection. In fact we

have:
THEOREM |f AeA = A then & is an isonorphismof varieties.
We prove this in the next subsection. Here we verify it the special case

V\/nenS:Mat(nl,K) X ou xl\/at(nr,K), ande:Zi € wher e e is the

el ementary matri x

S or
o oo
o oo

inthe i-th factor. Then SeS = S and eSe = Kx...xK. It is easy to see that
A is isonorphic to the algebra of rxr matrices (Clj) wher e each Clj is an
n. ><nj matri x of elenents of eiAej, and that eAe is isonorphic to the

i
al gebra of rxr matrices (Dij) wi th each Dij < e Aej. Thus & has an inverse

comng fromthe map which sends an eAe-nodul e structure on eM & @ir_ e Mto
n,

the A-nodule structure on ®, r:1 (eil\/p ! given by the action of the block

1

matri ces.

3.6. THEOREM The ring of invariants K| I\/de(A, M]G(M is generated by the

trace functions tr(a,-).

PROOF. Presumably there is a direct proof of this. Definitely it needs
characteristic zero in this generality. It is proved by Le Bruyn and
Procesi for path algebras. If Gacts on Xand Y € Xis G stable closed
subset, then the restriction map K[X]G—>K[Y]Gis surjective by the
Reynol ds operator. Thus it follows for quotients of path al gebras, or
equivalently for algebras A in which the senisinple subalgebra Sis

i sonorphic to Kx...xK. Now the general case can be reduced to this by the

speci al case of Mrita equival ence proved above.
We now prove that & is an isonorphismin the general case when AeA=A. Since

® is a bijection, it is sufficient to prove that it is a closed enbeddi ng,

or equivalently that the natural map
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K Mod o (ehe, eM ] AeM Mod (A M] M

is surjective. Now the space on the right hand size is generated by trace
functions tr(a,-) with acA Since AeA = A we can wite a = ) akeal’(. Then
tr(a,M :Ztr(akeal’(,l\/p :Ztr(eal’(ake,l\/p =tr(b,eM,

where b = ) eal’(ake € eAe, so tr(a,-) is in the inmage of the nap.

3.7. SKEW GROUP ALGEBRAS. If Ais an algebra and " is a finite group acting
as aut onorphisns of A then the skew group al gebra A#I' consists of the
formal suns del“ ag g wth the multiplication satisfying

(ag)(a’ g’) =a(a’) gg’.

Let KI' be the group algebra of T. Cbserve that an A#I'-nodul e consists of an

A-nodul e X which is also a Kr-nodul e, and such that g(ax) = (ga)(gx).

g
gel’ X

where 9X denotes the module X with the action of A twisted by g, and the

If Xis an A-nodul e then (A#F)@AX is isonorphic as an A-nodule to @
action of T pernutes the factors.

Henceforth we wite e for the idenpotent

_ 1
e—ﬁzgergeKF.

It has the property that eKl = Kl'e = Ke and e(A#N)e = Are =z A

3.8. LEMVA. gl .dimA#I = gl.dimA.

PROOF. Using a projective resolution of X it is easy to see that
ExtiA#r(A#r ey X V) = ExtiA(x, Y)

when X is an A-nodul e and Y is an A#I- nodul e.
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Now if Zis an A-nodule, then it is a direct summmand of AY wher e
Y = (A#I“)@AZ. It follows that gl.dimA = gl.dimA#T.

On the other hand, if X is an A#T-nodule then it is isonorphic to a sunmand

of A#T ®p X, since the multiplication map A#T ®AX—) X has a section

X |—>LZ g@g_lx
IT| ~gel

This inplies that gl.dimA#I = gl.dimA

3.9. SIMPLE MODULES. Let T be a finite group acting on an affine variety V,

so also on its coordinate ring K[V] via

(gf)(v) = f(g v)

for gel, veV and feK[V]. The quotient V/IT is an affine variety with

coordi nate ring K[\/]F (since all orbits are closed).

We are interested in sinple nodules for K[ V]#I. Now K[\/]F is contained in
the centre of K[V]#I', with equality if the action of T on Vis faithful.
Thus any sinple nodule for K[V]#I is anni hilated by a uni que nmaxi nal i deal
m for K[\/]F, so it is a nmdule for (K[V]/K[Vfm)#. Thus it is a nodule for

-

[K[V]/ K[v]m]#r = (K9 #r

where O is the orbit in V corresponding to m, KO is the space of functions
fromOto K and ' acts by pernuting the factors. This is a sem sinple

al gebra. Special cases are:

(1) T acts freely on O. That is |O| = |IT| = N, say. In this case

(KO)#F = Mat (N, K). Thus there is a unique sinple nodule S for K[V]#I which
is anni hilated by m. Note that KFS = KI' and that eS # 0.

(2) O consists of one fixed point. Then (KO)#F = KI, so each sinple

Kr- modul e i nduces a sinple nmodule for K[ V]#T annihilated by m.
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3.10. MORITA EQUI VALENCE. There is a functor
K[ V] #T- nmodul es —— K[V] "-modules, X > eX
and hence (since eKl' 2 K), a norphism
® : I\/bdKI,(K[\/]#I“,KI“) Il QK — IvbdK(K[\/]F,K) /I K = VIT.

LEMVA. If T acts freely on V then (K[ V]#D)e(K[V]#I) = K[ V]#I. Thus the

functor is a Mirita equivalence, and & is an isonorphism

PROOF. |If K[V]#T / (K[V]#)e(KV]#I) = 0 then there is a non-zero
K[V]#T-module Mwith eM=0. It follows that there is a sinple nodule wth
this property. But this is not the case.

3.11. I SCLATED SI NGULARITIES. Let T act on a snooth irreducible variety V.
Let 0 € V be a fixed point, and assune that T acts freely on W{0}. Then
VIT is an isolated singularity.

THEOREM 1In this case & is also an isonorphism

PROOF. For each orbit of T on W{0} there is a sinple K[V]#I-nodul e
structure on KI. In addition, each sinple Kr-nodule gives a sinple

K[ V] #T- nodul e corresponding to the point OeV. It follows that for each
point of V/IT there is a unique sem sinple K V]#I-nodul e structure on K.

Thus & is a bijection.

For each veV we consider KI as a K[V]#I-nodule, with fg = f(gv)g for
feK[V], gel. This induces a nmap

V — NbdKF( K[ V] #T, KT) // QKI)
which is constant on T'-orbits so factors through V/T. The resulting map
VIT — NbdKF( K[ V] #T, KT) // Q(KI)

is an inverse for &.
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3.12. REMARK. Provided T acts faithfully on V, so that the general orbit of
I on Vis free, The sanme argunent shows that even if V/T is not an isol ated
singularity, the quotient NbdKF(K[V]#F,KF) /1 G(KI) has an irreducible

conponent isonorphic to VIT
Now usi ng other Geonetric Invariant Theory quotients
NbdKF( K[V]#T,KT) // (QKD), 0)

one can hope to obtain a desingularization of V/T. This was used by Cassens
and Sl odowy to construct the mninmal desingularization for Kleinian
singularities, and it is essentially the "I'-H | bert schene" HiIbF(V)

considered by Ito and Nakanura, Nakajima, and others.

3.13. LEMVA. In the isolated singularities case, K[V]#I/(K[V]#I)e(K[V]#I)

is finite-di nensional

PROOF. It is a f.g. K[V]F-nDduIe, whose only conposition factor is K[V]r/nL

where m is the maxi mal ideal corresponding to the singular point.

3.14. FURTHER READI NG. Modul e varieties have been extensively studied for
finite dimensional algebras. See for exanple P.Gbriel, Finite
representation type is open, in: Representations of algebras, Proc Qtawa
1974, eds V. Diab and P. Gabriel, SLN 488; C Geif3, Geonetric nmethods in
representation theory of finite dinensional algebras, in: Canadi an Math.
Soc. Conf. Proc., 19, 1996; K Bongartz, Sone geonetric aspects of
representation theory, in: Canadian Math. Soc. Conf. Proc., 23, 1998.

CGeonetric Invariant Theory quotients are discussed in A D. King, Mduli of
representations of finite dinensional algebras, Quart. J. Math. Oxford 45
(1994), 515-530. The special case 6=0 also covers the affine quotients.
Note that King assunmes that Ais finite-dinensional in his Section 4, but
this is only necessary for Proposition 4.3.

The fact that the invariants for representations of quivers are generated
by traces of oriented cycles is in L.Le Bruyn, and C. Procesi, Sem sinple
representations of quivers, Trans. Aner. Math. Soc. 317 (1990), 585-598.

Skew group al gebras are a classical topic. See for exanple J.C MConnel
and J. C. Robson, Noncommutative noetherian rings.

For the construction of desingularizations of Kleinian singularities in
this way see H. Cassens and P. Sl odowy, On Kleinian singularities and
quivers, Singularities (Cbherwolfach, 1996), Birkhauser, Basel, 1998,
263-288.
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The hi gher dinmensional MKay correspondence conmes from M Reid, MKay
correspondence, math. AG 9702016. The T'-Hil bert schene is in Y.lIto and

| . Nakamura, Hilbert schenmes and sinple singularities, in: Algebraic
CGeonetry (Proc. Warwick, 1996), eds K Hulek et al. (Canbridge Univ. Press
1999), 151-233. Also significant is Y.Ito and H Nakajim, MKay
correspondence and Hil bert schenes in dinension three, nmath. AG 9803120.

Lecture 4. Deforning skew group al gebras

4.1. SYMPLECTIC FORMB. Recall that a synplectic formon a vector space Vis
a bilinear form w: VxV—K which is skew symetric and non-degenerate in the

sense that w(u,v)=0 for all v inplies u=0.
One can think of w as a skew symmetric el enment of VeV .

One can choose synpl ectic coordi nates P, 9 : V—K such t hat

w =Y P, ©4, - q; ®p; - In particular dimV nust be even.

Observe that w induces an isonorphismV—V, vi—uw(Vv,-) so V also gets a

synmplectic formuw .

4. 2. GROUPS PRESERVI NG A SYMPLECTIC FORM W gi ve sone exanpl es of group
actions which preserve a synplectic form

2

(1) (Kleinian case) Let V= K" with w(x,y) = X X Then a subgroup

Y2~ XYy

r ¢ GLZ(K) preserves w if and only if T ¢ SLZ(K).

(2) If T acts on U, then it also acts on the cotangent bundl e TU=UasU

preserving the synplectic formuw defined by w(feu,f’eu’) = f’(u)-f(u’).
(3) An irreducible representation V of a finite group I' with
Fr obeni us- Schur indicator -1 preserves a skew symmetric bilinear formon V.

It nust be a synplectic formsince Vis irreducible.

4. 3. DEFORM NG SKEW GROUP ALGEBRAS. Suppose that a finite group T acts

linearly on a vector space V preserving a synplectic formw. Cbserve that

31



KIVI#T = (T(V) | (0¢-¢0: 0, peV ))#T = (T(V )#T)/ (6¢- ¢0: 0, eV ),
KVIT = e K[V 4T e.
Here T(\;) is the tensor al gebra of v (over K) and e = TET deF g.
For A € Z(KI), define

SM = T(V)#T | (0¢-¢0-20 (6, ¢) : 6, peV),

OA = eSAe.

Cbserve that if ceK then SAESCA and cﬁchhy usi ng the autonor phi sm of
T(\;)#F which nmultiplies each el enment of v by vc.

4.4, ASSOCI ATED GRADED ALGEBRAS. Suppose that an al gebra A is generated
over a subal gebra A0 by finitely many el enents X; - There is a "standard"

filtration

0=A,SA SA S...

wher e Ah = span of elenents agX; @, %A

with aieA and k=n.
1 k

0
Whenever Ais a filtered ring there is an associ ated graded al gebra

_ [o0]
ar A= oo ATA L

For the standard filtration, gr Ais generated over A0 by el ements ;i'

It is well known that if gr A has one of the follow ng properties, then so
does A

domai n

prime

noet heri an

finite global dinension
4.5, LEMVA SA is filtered, with associated graded ring K[V]#I. Thus it is

prinme, noetherian of finite global dinension. Cﬁ‘is filtered, with

associ ated graded ring K[V]F. Thus it is a noetherian donmain.
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PROCF. SA is generated over KI by a basis 9. of V. This gi ves the
filtration. Now gr SA i s generated over KI by 9 These eI enents satisfy

6i6. = E.Ei. Thus there is a surjection K[V]#I —» gr sh

—
—

. . . . . A .
Is it an isonorphisn? You can use the relation in S to reorder nonom al s,
n n

nodul o | ower degree. Thus SA has basis the el enents 91 ...emmg. The rest

foll ows.

(When is OA commut ati ve, and how does its gl obal dinension depend on A? |
can only answer these questions in the Kl einian case, when these properties

are related to preprojective al gebras.)

4.6. FIN TE GENERATION. The follow ng | enma shows that eSA isaf.g.
OA— nodul e and OA is af.g. K-algebra.

LEMVA (Montgonery and Small). If Ais an algebra, eeA is idenpotent and AeA
is af.g. left ideal in A(eg Ais noetherian), then eAis a f.g.
eAe-nodule. If in addition Ais a f.g. K-algebra then eAe is a f.g.

K- al gebr a.

PROCF. Let AeA:ZAxi and X; :Zvijevvij with vij,vvijeA. Then
Zij Aevvij = AeA, so Zij eAevvij = eAeA = eA, so the elenents evvij generate
eA as an eAe- nodul e.

Now suppose that t tn generate A and let eA =) eAexi.

IEREE

Wite etj Z eyIJ xi and exktj :Zi ezijkexi with yij’zijkEA

W claimthat eAe is generated by the elenents ex, e, eyije and ezij K&

For, every elenent of eAe is a linear conbination of terns etj tj ...tj e,
1°2 [

and, for exanple, et t 2€ :Z ey, ext 2€ —Zi[eyile Z ), eX £,
4.7. LEMVA. There is a surjective honmonor phi sm
* A
T(V)#T' | (w-2) —> S

PROOE. Recal |l that S = T(V)#T /| (0¢- ¢6- 2w (6, ¢)).
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If V has synpl ectic coordi nates P, then w =) p,®q, - q;ep, .
Noww*(pi,qi) =1, so

w - A:Z(pl(’bql - q|®p| - A w(pl’ql))

where A’ = ﬁ/ A. Thus there is a natural nap T(V*)#I“/(w- K)—)SA . But
SA’ o SA

4.8. McKAY QU VERS. Let T be a finite group acting linearly on a vector
space V. Let Ni (iel) be the sinple Kr-nodules, with N, the trivial nodule.

0
The McKay quiver A for T and V has vertex set |, and by definition the

number of arrows i——j is the multiplicity of Ni in V®Nj.

HENCEFORTH SUPPOSE that T preserves a synplectic formw. ldentify AeZ(KID)
with an el ement of KI via Ai = trace of A on Ni' The rest of this lecture
is devoted to proving that T(V*)#I“/ (w-2A) is Morita equivalent to HA(Q)

for some quiver Qwith vertex set | and Q = A.

Sonme nore notation. Let dimNi = ai, so t hat Kani Ivat(éi,K). Let the

el ement s E'pq e KO (iel, 1=p, q58i) correspond to the elenentary natrices.

Let t. =E, andlet f =7 f . Qearlyf =e= .7

11 T I,g.AIso

ge

fKFfZ@Kfi

IR

Kx. .. xK

i
1q°

IR

KTF ., which has basis E

bserve that Ni ol Dual |y, 1‘i KT has basis E

- [ i [ i
1_Zi,pEp1 Elp_zi,pEplf ElpeKFf KT.

Thus fKIf is Morita equivalent to K.

4.9. LEMVA. |If B is a KIr-KI-binodule, then there is an i sonorphism

f TKF(B) f = TfKF

[ [
bec € fB@KFBf to the el ement Zi 0 bEp1®E1pc e fBf of Bf .

f(fo) which is the identity on fKIf, and sends an el enent

PROOF. Follows fromthe Mrita equival ence.
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4.10. LEMVA. |If T acts linearly on a vector space Wpreserving a synplectic
formT, then the restriction ¢ of T to VF is a synplectic formoeo, and if

T = Y w eV, € WeWthen o = Y ew oev, € V\rca\/\y.

PROOF. ¢ is non-degenerate since if 0¢we\/\y then there is veWw th T(w, v) =0,

but then T(w ev)=t(w, v)=20 and eve\/\y.
Say 6, e’e(\/\y)*, so 6 = o(x,-), 8 =oco(x’,-) for sone x,x’e\/\y. Then

o (6,0") = o(x,x’) by definition of o

(X, X")

7 (T(x,-),T(x",-)) by definition of T

1
™
=~

T(x,w ) T(x’,v, ) since T = Y W ev
k k k. k

= Zk r(x,ewk)r(x’,evk) since x,x’ € V\y

= Zk o(x,ewk)o(x , ev

= Zk e(ewk) 9’(evk).

K

4.11. PROPOSITION. Let B = V oK' considered as a KI-KT-bi modul e via
g(veg’)g” = gvegg’g”. Then fBf has a synplectic formo with

. i ' ' i
o =% pak E1p' 9k®EJq1) ® E‘lq(qsk@Epl) e f Bf of Bf

where w = ) 9k®¢k e VeV. Mreover o respects the deconposition
fBf = ®ij fiij in the sense that o(b,b’)=0if b € fiij and b’ € 1‘i ,ij ,

with i#"’ or j=".

PROOF. Let W= fKF@V*caKFf, as a Kr-nodul e via g(ae0deb) = ag 1®ge®gb.
Consi der the map m W—f Bf, aeveb r— a(veb).

bserve that m(e(a®6eb)) = nm(a®oeb).

By dinensions it follows that minduces a vector space isonorphism
(fKreV eKrf) ' —f Bf .

Now f KF'eV eKTf has a synplectic formT given by

7(a®0eb, a’®0’®b’) = «f w (6, 6’)

for aefi KT, beKI“fj, a’efi , KT, b’eKFfj ,» Where «, BeK are given by ab’:oa‘i
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and a’b = Bfi ,. The action of T preserves . Thus T gives a synplectic
formon fixed points, so on fBf. Call it . Cearly this respects the

deconposi ti on.

Now T as an el ement of the tensor square of fKICeVeKrf is

. i . .
= Zij ok (E1p®9k®EJq1) ® (E11q®¢k®E

i
p1)

Thus, using that nm(e(a®6eb)) = a(esb), we get

. i ' ' i
o = % pak Elp(9k®EJq1) ® E‘lq(¢k®Ep1)

IR

4.12. THECREM f T(V)#T / (w-2) f = T . (fBf) / (o - AT

IR

PROOF. First observe that T(V )#T T B
- As vector spaces the LHS is K[ @ V ekl @ VoV oKl @ ...

_ The RHS is KT ® V oK @ (V oK) ®KI,(V*®KI“) ® ...

IR

Thus T(V)#T [ (w-2) = T, (B) / (&-2) where, if v =71 604 e VeV, then
=Y (9k®1) ®( ¢k®1) € B®KFB'

Now f T(V)#[ / (w-A) f = f TKF(B) f / 1 where | is the ideal
f TKF( B) (Z-2) TKF( B) f =f TKF( B) KIf KT (Z-A) KIfKC TKF( B) f
This is generated as an ideal in f TKF(B) f by fKC (& A) KIf.
Now i f gel then
9¢ = ¥ (96, 00) e(¢ @1) =} (g6 el)e(g¢ @) =} (g6, 0l)e(gg el)g = &g

since w =) gek®g¢k because w is T-invariant. Thus

Eilp (C-2) E{ql - () E B =

(¢-A)f,  (i= and p=q)
1p ql {

0 (el se)

Now Afi = Ailai 1‘i since A acts on Ni as nultiplication by Ailai.
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Now we consi der the isonorphismf TKF(B) f — T (fBf).

f KTf

. [
since one can carry the E, _ across.

_ i i
W have in = 1/ Si Zp E1p C Epl 1p

The i sonor phi smthus sends in to

/s Y.

i ' ' i .
. % pak E1p (9k®EJ )®E‘1q(¢k®1) E, = U8 of.

ql pl

Thus the relation (Q—A)fi is sent to 1/8i(o~*fi-hifi).

4.13. COROLLARY. The McKay quiver is the double of a quiver Q and there is
an isonorphismf T(V)#I' / (w-2) f = HA(Q) sendi ng 1‘i to € Thus
T(VY#T / (w-2) is Morita equivalent to TY(Q.

PROOF. fBf has a synplectic formo which respects the deconposition

fBf = @ . f.Bf..
v

It follows that you can choose a basis {a,a} with each a belonging to sone

fiij and a to ijfi in such a way that o = Za aea - a ea.
Let Q be the quiver with arrows the a. Since

dlmfiij = dlml—lonkI,(KI“fi,VcaKI“fj) = dlml-lonkI,(VcaNi,Nj),
it follows that the double of Qis the MKay quiver.

4.14. NOTES. For a discussion about associated graded rings see
J. C. McConnel | and J. C. Robson, Nonconmut ative noetherian rings, 81.6.
Theorem 4.12 and Corollary 4.13 are new.
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Lecture 5. The Kl einian case
5.1. SETUP. Let T be a finite subgroup of SLZ(K) acting on V = K2. It
preserves the synplectic formuw(x,y) = X - X

W\ {0}.

It acts freely on

1Y2 Y1

An elenent A € Z(KI) gives rise to rings SA and OA.

The Gelfand-Kirillov dinension of a f.g. K-algebra is denoted GK A Mbre
generally &K dinmension is defined for f.g. A-nodules. The &K di nensi on of
gr Ais equal to the &K dinension of A Mreover, for commutative rings,
the &K dinension is equal to the usual Krull dinmension. It follows easily
t hat SA and OA have CK di nmension 2.

m™Q (so

t hat SA and HA(Q) are Mrita equivalent) since when considering the

IR

The McKay quiver A is equal to Q for some Q Moreover f SA f
generators
06 - $0 - Aw (0, ¢)

of the ideal defining SA, because V is 2-dinensional there is only one

el ement here, and it is essentially w - A

Thus al so OA = eSAe

IR

A
eOH (Q €y

5.2. LEMVA (McKay!). Qis an extended Dynkin quiver. The elenent & € INI

defined by Si = dimNi is the radical generator for Q

PROOF. Since dimV = 2, it follows that (8,ei) =0 for all i. Now80:1

si nce N0 is the trivial nodule.

5.3. LEMVA SA/ SAeSA is Murita equivalent to ITA (Qo) wher e Q<> is the Dynkin
part of Q and A° is the restriction of A. These al gebras are f.d., and are

zero if and only if A< # O for all Dynkin roots « (ie roots with «.=0).

0

PROOE. SV stes™ is Morita equivalent to HA(Q)/HA(Q)eOHA(Q) = 1 (Q).
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Now SA/SAeSA is finite dinensional, for it is filtered, and the associ at ed

graded al gebra is a quotient of Sol SOeSO, which is f.d. by Lenma 3.13.

Finally a f.d. algebrais zero if and only if it has no f.d. nodules, so

82.6 applies.

5.4. ORDERS AND REFLEXI VE MODULES. A prine Goldie ring A has a sinple
artinian quotient ring Q and then Ais an order in Q neaning that every

qeQ can be witten as as" T and as t b with a,b,s,teA s,t units in Q

An order is said to be nmaxinal if A<B and xBy<A for sonme units x,yeQ inply
that A=B. A conmutative integral donmain is a nmaxinal order if and only if

it is integrally closed.

If Ais an order in Q sinple artinian, and e € Ais a non-zero idenpotent,

then you can identify EndeAe(eA) = {gqeQ : eAq < eA}, for
End . (eA) —> End_, (eQ 2 End_ . (eQ <— Q
eAe eAe - ee
1is 1-1. It cones fromthe fact that eA®AQE eQ
2 is equality since by general theory eAe is an order in eQe.
3 the honothety is an isonorphismsince Qis sinple artinian.
If in addition Ais a naxinmal order then A = EndeAe(eA):
W have A € {gqeQ : eAq <€ eA} € Q
Now QeQ = Q so AeA contains a unit s of Q Then eAq € eA = sq <€ A

Thus maximality inplies A = {qeQ : eAq < eA}

Also eAis a reflexive eAe-nodule. (Recall that Mis a reflexive R nodul e

if Mi) I-Ionh(l—lorrh(l\/l R),R . Nanely, there are isonorphisnms

Ae — Hom , (eA eA)e = Hom , (eA eAe)
eAe eAe
eA — e HomeAe(Ae, Ae) = HomeAe(Ae, eAe) .

IR

If Ais a maxinmal order then so is A#I. Thus SO KIVI#T is a naxi nal

order. Also O0 = K[\/]F is integrally closed, so it too is a nmaxi mal order.
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Finally we need to use a theorem of Van den Bergh & Van Oystaeyen, that the
property of being a maxinal order in a sinple artinian ring passes from

gr Ato A Thus SA and OA are naxi nmal orders.

Thus End A( eSA) = SA and eSA is af.g reflexive OA— nodul e.
@)

5.5. HOMOLOQ CAL PROPERTIES. If Ais an algebra which is noetherian and has
finite injective dinension, then the grade of a non-zero f.g. nodule Mis
defined by

(M =inf {i : ExtiA(MA);cO}.

One says that A is Auslander-Corenstein if it is noetherian, finite

i njective dinension, and for every f.g. A-nodule M and every subnodul e
i . .
NAQExtA(I\/lA) one haSj(NA) = .

One says that A is Cohen-Macaulay if j(M + &K M= &K A for all nonzero

f.g. A-nodules M

Bj 6r k shows that the Ausl ander-Gorenstein and Cohen- Macaul ay properties

pass fromgr Ato A
Now Kl ei ni an singularities are Ausl ander-Gorenstein and Cohen- Macaul ay.
Thus OA i s Ausl ander - Gorenstei n and Cohen- Macaul ay.

O course GKOA:GKSA:Z.

5.6. LEMMA. If Ais a f.g. noetherian Ausl ander-Gorenstein and
Cohen- Macaul ay al gebra of finite gl obal dinension (eg OA), t hen

gl.dimA=mx { &K(A) - &K(M : Ma f.g. nonzero nodul e }

PROOF. Since Ais noetherian, gl.dim Ais its injective dinmension as a

right (or left) nodule. Say pu.

This is the maxi mal value of j(M for a non-zero f.g. nodule M
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- 1f j(M=j then Ext)(MA)#0 so inj.dimR=j, sopuzj.

- There is sone right mMMePﬂWthEm”U¢N¢Q
W may assune that Nis f.g.
Now i f M= Ext”(N,A) then by the Auslander condition j(M = u

Thus p = maxi mal value of GK(A) - GK(M where Mis f.g. nonzero nodul e.

5.7. THEOREM
1 (if Aea # 0 for all roots «)
gl.dimo* =1 2 (else)

o (if A+a = 0 for sone Dynkin root «)
A . . A . A
and S" is Mourita equivalent to O e gl.dim O < o.

PROOF. If A«a # O for all Dynkin roots « then Cﬁ‘is Morita equivalent to SA
by Lenma 5. 3.

| f Cﬁ‘is Morita equivalent to SA t hen gl.din1cﬁ‘: gI.dimSA < o

Conversely, if gl.din1cﬁ‘< o, then it clearly can’t be 0, so it is 1 or 2
according to whether or not there are any f.d. nodules. In any case, since
it is =2, any f.g. reflexive nodule is projective. Thus eSA is a
projective left Cﬁlnodule. Since it has Cﬁ‘as a sunmand, it is a
progenerator. Thus SAeSA = SA. This inplies that A<az0 for all Dynkin roots
o by Lemma 5.3. It also inplies that Cﬁ‘and SA are Mrita equival ent. Thus
0" has a f.d. nodule if and only if S" has a f.d. module, and this is if

and only if A+ = O for sone root «.

5.8. LEMVA. If Qis extended Dynkin and A«8 = 0 then usl(h)//CXS) has

di nensi on 2.

PROOF. Let B = {AeKI . A*8 = 0}. Since s is flat, so is the pullback

usl(b) —— b. Thus by the Reynol ds operator, the nmap

o (0)/1E8) — b
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is also flat. (This is a lift through the Weyl group of the sem -universal

deformation of the Kleinian singularity).
Also f is surjective, and the fibre over A € his usl(x)//cxa), which is
irreducible. Since f is flat, has irreducible fibres, and § is irreducible,
it follows that uél(b)llcxa) is irreducible. Flatness now inplies that all
fibres of f have the sane di nensi on. But

-1 A 3 3

Mg (0)/1GF38) = Ivde(H (Q,K)/IEK) = I\/bdKF(K[\/]#I“, KI)/ /G KI) = VIT,
has di nensi on 2.

5.9. THEOREM If A8 = 0 then OA = K[uél(h)//CXS)], o) Cﬁ‘is commut ati ve

PROOF. Let S = KI and identify
1 A S
Klng (A /1 8)] = KIMd(T(Q, K7)]
The map ar—tr(a,-) defines a map
_ A A Pl
KQ— T'(Q —aIQMM§H(Q,K)] .

Recal|l that the invariants are generated by the trace functions.

For generators one can take oriented cycles in Q

- The invariant given by any cycle that doesn’t pass through 0 factors
Md (M9, K -2 mdy(m (¢, k%) 25 K

wher e Qo is the Dynkin quiver obtained by deleting the vertex 0, and A° and
8° are the restrictions of A and 8. But this Dynki n def or ned

preprojective algebra is finite-dinensional, so
Md (1 (Q7), K> )11 &K%

is finite. Thus any polynom al invariant is constant on the connected
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conponents of I\/de(HA (Qo),K8 ). Now a nust nmap into one connected

conponent, so the invariant is constant.

- The invariant given by any cycle that passes through 0 is in the imge of

the map

3
b1 e (e, —> K[I\/de(HA(Q),KS)]G(K)

Now ¢ i s an al gebra hononorphismsince trace is nmultiplicative for 1x1
matrices. It follows that ¢ is surjective. Now the left hand side is OA, a
domai n of GK dinension 2. The right hand side is of dinension 2. Thus ¢

nmust be an i sonor phi sm

5.10. PROPCSITION. If A«8 # 0 then HA(C» has only finitely many f.d. sinple

nodul es. The sane hol ds for Cﬁg so it is nonconmutative.

PROOF. If there is a sinple nodul e of dinension « then by a sequence of
reflection functors one can pass from (A, «) to (A’,«’) Wth «' a coordinate

vector or in the fundanental region.

Since 8 is invariant under reflections, A’+8 = A8 # 0, so the latter

possibility is ruled out.

For the former, note that there is a unique sinple nodule. Thus we just
need there to be only finitely nmany roots a« with A«a=0. Now if « is any
root then so is a+tnd for all n since g(a) = q(atnd). It follows that any
root is of the formpB+nsd where B is a Dynkin root. Now there are only
finitely many possible B, and for any B, at nobst one of the roots B+nd has
A+(B+n3) =0.

Now any f.d. Cﬁlnndule Mis isonorphic to eL for sone f.d. HA(C»—nDdule L

(for exanple take L = HA(C»eO ® 5 M, and if Mis sinple one can take L
0,

si npl e.

5.11. PROPCSITION. The follow ng are equival ent.

(1) every non-Dynkin root « has A+a % 0.
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(2) There is non nonzero f.d. OA— nodul e.
(3) 0" is sinple.

PROOF. (1)e(2) As above, every f.d. OA— nodule Mis isonorphic to eoL for
sonme f.d. HA(Q)—rroduI e L. Now the dinensions of HA(Q)—rroduI es are suns of

roots a« with Ae«a = 0.

(2)e(3) If I is a nonzero ideal in OA t hen OA/I has &K dinension =1, so it
is aPl ring by (Stafford, Small and Warfield, Math Proc Cam Phil Soc
97(1985),407-414. A f.g K-algebra with GK(R)=1 is PI, N(R) is nilpotent,
and RRN(R) is nodule-finite over noetherian centre). Thus it has f.d.

nodul es.

5.12. SOVE BIJECTIONS. M P. Holland pointed out to ne sone work of
G W son. Consider the set

{Right ideals of the first Wyl algebra} / isonorphism

By work of Cannings and Holland the elenents of this set are in 1-1

correspondence with the a certain set
{Primary deconposabl e subspaces of C[x]} / a certain equival ence

W son observed that this set in naturally identified with a certain

"adel i ¢ Grassmanni an",

aad

By work of Segal and Wlson its points are in 1-1 correspondence with

rati onal solutions of the KP heierarchy

3 1
et = - +
2" (ut 4( Uxx 6uux) ) X

yy

W son al so proved that the points of Gad are in 1-1 correspondence wth

n=0 Cn
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wher e Ch is a certain conpleted phase space for the rational Cal ogero-Mser

systemof n particles noving on the conplex line with the Hamiltonian

1 n 2 2
2Lz P Lig VOGox0)

Now by i nspection Ch is identified with the space

w11 Ao

for the quiver with two vertices and two arrows
1 2
Q:. ®

—

J

and « = (1,n), A =(-n,1).

In ny work on sinple nodules for deforned preprojective algebras | had
dealt with generalizations of this quiver, in which one starts with an
ext ended Dynkin quiver, and adds a new vertex connected by an edge to an

extendi ng vertex. For exanple

| N ) °
Ne. o
o e

M P. Holland and |I conjecture that for generic A there is a bijection
bet ween i sonor phi sm cl asses of stably free right ideals in Cﬁ‘and el ement s
of the sets u;l(h’) Il a) where o=(1,n8), A’=(-nAa+s,A). Variations are

al so possible, in which one varies the extending vertex or allows other A

5.13. FURTHER READI NG Most of the argunents cone from W Craw ey- Boevey and
M P. Hol | and, Noncomut ative defornations of Kleinian singularities, Duke
Math. J. 92 (1998), 605-635.

For Gelfand-Kirillov di nension see J.C MConnell and J.C. Robson
Noncommut ati ve noetherian rings.

The right ideals in the first Wyl algebra are classified in R C Cannings
and M P. Hol l and, Right ideals of rings of differential operators,
J. Algebra 167 (1994), 116-141.

The connection wth Cal ogero- Mbser phase spaces is G WIlson, Collisions of

Cal ogero- Mbser particles and an adelic Grassnmanni an, Invent. Math. 133
(1998), 1-41.
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