
THE DELIGNE-SIMPSON PROBLEM
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Abstract. Given k similarity classes of invertible matrices, the
Deligne-Simpson problem asks to determine whether or not one
can find matrices in these classes whose product is the identity and
with no common invariant subspace. The first author conjectured
an answer in terms of an associated root system, and proved one
implication in joint work with Shaw. In this paper we prove the
other implication, thus confirming the conjecture.

1. Introduction

Given conjugacy classes C1, . . . , Ck in GLn(C), the Deligne-Simpson
problem asks to determine whether or not there is a solution to the
equation

A1A2 . . . Ak = 1 (Ai ∈ Ci)
which is irreducible in the sense that the Ai have no non-trivial common
invariant subspace. This is motivated by the problem of classifying
systems of linear ordinary differential equations in the complex domain
in terms of their local monodromies; see [12] for more background and
motivation. In [2] we have given a conjectural solution to this problem,
and in [7] we have proved one implication. Here we prove the other
implication, thus confirming the conjecture.

In order to fix the conjugacy classes, we choose a weight sequence
w = (w1, . . . , wk) with wi ≥ 1 and a collection of complex numbers
ξ = (ξij) (1 ≤ i ≤ k, 1 ≤ j ≤ wi) with

(Ai − ξi11)(Ai − ξi21) . . . (Ai − ξi,wi
1) = 0

for Ai ∈ Ci. For example wi can be the degree of the minimal poly-
nomial of Ai, and ξi1, . . . , ξi,wi

its roots, in some order. The conjugacy
classes are then determined by n, w, ξ and the numbers

nij = rank(Ai − ξi11)(Ai − ξi21) . . . (Ai − ξij1)

for Ai ∈ Ci, for 1 ≤ i ≤ k and 1 ≤ j < wi.
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The numbers nij can best be understood in terms of a suitable root
system. Associated to a quiver Q with vertex set I there is root system
(consisting of real and imaginary roots, positive or negative) contained
in the root lattice

ΓQ =
⊕
v∈I

Zαv,

where the αv may be regarded as symbols, see for example [11]. The
Euler form 〈−,−〉Q on ΓQ is given by

〈
∑
v

nvαv,
∑
v

n′vαv〉Q =
∑
v∈I

nvn
′
v −

∑
a∈Q

nt(a)n
′
h(a),

its symmetrization is (α, β)Q = 〈α, β〉Q + 〈β, α〉Q, and the correspond-
ing quadratic form is qQ(α) = 〈α, α〉Q. We define pQ(α) = 1− qQ(α).

Let Qw be the star-shaped quiver
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with vertex set Iw = {∗} ∪ {[i, j] : 1 ≤ i ≤ k, 1 ≤ j < wi}. To simplify
notation we write a subscript [i, j] as ij, we write Γw for the root lattice
ΓQw , and pw for the function pQw . Thus

pw(α) = 1− n2
∗ −

k∑
i=1

wi−1∑
j=1

n2
ij +

k∑
i=1

n∗ni1 +
k∑
i=1

wi−2∑
j=1

nijni,j+1

For α =
∑
nvαv ∈ Γw, we define

ξ[α] =
k∏
i=1

wi∏
j=1

ξ
ni,j−1−nij

ij and ξ ∗ [α] =
k∑
i=1

wi∑
j=1

ξij(ni,j−1 − nij),

with the convention that ni0 = n∗ and ni,wi
= 0.

The conjugacy classes Ci determine an element αC ∈ Γw, with n∗ =
n and nij as given above. Conversely w, ξ, and αC determine the Ci.
Our main result is as follows.

Theorem 1.1. For there to be an irreducible solution to A1 . . . Ak = 1
with matrices Ai ∈ Ci it is necessary and sufficient that α = αC be
a positive root, ξ[α] = 1, and pw(α) > pw(β) + pw(γ) + . . . for any
nontrivial decomposition of α as a sum of positive roots α = β+γ+ . . .
with ξ[β] = ξ[γ] = · · · = 1.
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The sufficiency is proved in [7]. In section 7 we prove necessity. This
result was already announced in [3], but the argument given here is
slightly different to the one envisaged at that time: instead of adapting
the argument in [1] for parabolic bundles equipped with connections,
we base our argument on [6].

2. Weighted projective lines and parabolic bundles

Let X be the weighted projective line over C consisting of the pro-
jective line X = P1, a collection D = (a1, a2, . . . , ak) of distinct marked
points in P1, and a weight sequence w = (w1, . . . , wk) with wi ≥ 1
(where wi = 1 is equivalent to the point ai being unmarked).

Let CohX be the category of coherent sheaves on X defined by Geigle
and Lenzing [8]. We call its objects parabolic sheaves. This is an
abelian category, and we use the name subsheaf for a sub-object in
this category. Every parabolic sheaf is the direct sum of a torsion
parabolic sheaf and a torsion-free parabolic sheaf. There is one simple
torsion parabolic sheaf Sa supported at each point point a /∈ D, and at
the point ai there are simple torsion parabolic sheaves Sij (0 ≤ j < wi)
with exact sequences

0→ O(j~xi)→ O((j + 1)~xi)→ Sij → 0

see [8, (2.5.2)]. As in [16, §5.1], we identify the Grothendieck group

K0(CohX) with Γ̂ = Γ⊕ Z∂, where Γ is the root lattice for the quiver
Qw, with

[O(k~c)] = α∗ + k∂, [Sa] = ∂, [Sij] =

{
αij (j 6= 0)

∂ −
∑wi−1

`=1 αi` (j = 0).

The dimension vector dim E ∈ Γ and degree degP1 E ∈ Z are defined
by

[E ] = dim E + (degP1 E)∂.

The Euler form 〈−,−〉X : Γ× Γ→ Z with

〈[E ], [F ]〉X = dim Hom(E ,F)− dim Ext1(E ,F)

is given as follows.

Lemma 2.1. For α =
∑

v∈I nvαv, α
′ =
∑

v∈I n
′
vαv ∈ Γ and k, k′ ∈ Z,

〈α + k∂, α′ + k′∂〉X = 〈α, α′〉Qw + k′n∗ − kn′∗.

Proof. Straightforward. �

Torsion-free parabolic sheaves on X are also called parabolic bundles
on P1, and following Lenzing [13], they may be identified with collec-
tions E = (E,Eij) consisting of an (algebraic or holomorphic) vector
bundle E on P1 and flags of vector subspaces

Eai = Ei0 ⊇ Ei1 ⊇ · · · ⊇ Ei,wi−1 ⊇ Ei,wi
= 0
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of the fibres Eai at each of the marked points ai. As in [4], we make
the identification in such a way that

dim E = n∗α∗ +
k∑
i=1

wi−1∑
j=1

nijαij ∈ Γ,

with n∗ = rankE and nij = dimEij, and degP1 E is the usual degree of
the vector bundle E. Observe that the dimension vector of a parabolic
bundle is necessarily strict, meaning that n∗ ≥ ni1 ≥ ni2 ≥ · · · ≥
ni,wi−1 ≥ 0. We denote by ParX the category of parabolic bundles on
X. Morphisms between parabolic bundles correspond to vector bundle
homomorphisms which respect the flags.

We write Ω = Ω1
P1(logD) for the sheaf of differential 1-forms on

P1 with logarithmic poles on D. It is a line bundle on P1. If θ ∈
Hom(F,E ⊗ Ω), then there are residue maps Resai θ : Fai → Eai .

Geigle and Lenzing introduce a twist E(~ω), giving Serre duality on
CohX in the form

Ext1(E ,F) ∼= Hom(F , E(~ω))∗.

Lemma 2.2. Given parabolic bundles E = (E,Eij) and F = (F, Fij),
we can identify Hom(F , E(~ω)) with the set

HF ,E = {θ ∈ Hom(F,E ⊗ Ω) : (Resai θ)(Fi,j) ⊆ Ei,j+1

(1 ≤ i ≤ k, 0 ≤ j < wi)}.

Proof. In the notation of [8, §2.2], we have ~ω = (k − 2)~c−
∑k

i=1 ~xi, so

E(~ω) = (E ⊗ Ω)(−
∑k

i=1 ~xi).
If E is torsion-free, then so is E(~ω). Now the twist operation E(~xi) of

[8, §1.7] can be understood as in [13, §4.1] and [5, §2] as the operation
of rotating a cycle.

The fibre Ea at a point a ∈ X is E⊗OX,a
(OX,a/mX,a). We write ia(V )

for the skyscraper sheaf given by a finite-dimensional vector space V
at the point a. It is a coherent sheaf isomorphic to the direct sum of
dimV copies of the simple torsion sheaf at a. There is a natural map
E → ia(Ea). Given any subspace V of Ea we get an exact sequence

0→ Ea,V → E → ia(Ea/V )→ 0.

and Ea,0 ∼= E(−a).
The parabolic structure of F at ai is given by subspaces Fij, and it

corresponds to a cycle of vector bundles

F ai,0 → F ai,Fi,wi−1 → . . . F ai,Fi2 → F ai,Fi1 → F ∼= F ai,0(ai)

Now E(~ω) is given by tensoring E with Ω and rotating the cycle at
each marked point, so at ai it is given by a cycle of vector bundles

Eai,Ei1(−ai)⊗ Ω→ Eai,0 ⊗ Ω→ Eai,Ei,wi−1 ⊗ Ω→ · · · → Eai,Ei1 ⊗ Ω
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Now a morphism from F to E(~ω) is given by a morphism between
these cycles. Since the maps in the cycles are monomorphisms, such
a morphism is determined by a morphism F → E ⊗ Ω, subject to the
condition that it sends F ai,Fij into Eai,Ei,j+1 ⊗ Ω for all j. This is the
condition that (Resai θ)(Fi,j) ⊆ Ei,j+1. �

3. Connections on parabolic bundles

Let X be a weighted projective line of weight type w = (w1, . . . , wk).
Let ζ = (ζij) (1 ≤ i ≤ k, 1 ≤ j ≤ wi) be a collection of complex
numbers.

We say that ζ is non-resonant if the numbers ζij for fixed i never
differ by a non-zero integer, that is ζij − ζi,j′ /∈ Z \ {0} for 1 ≤ i ≤ k
and 1 ≤ j, j′ ≤ wi.

In [5] we have constructed functorial exact sequences

0→ E(~ω)→ Dζ(E)→ E → 0

for E a parabolic sheaf on X, and we define a ζ-connection on E to be
a section s : E → Dζ(E).

Recall that a parabolic bundle on X can be identified with a tuple
(E,Eij) consisting of a vector bundle E on P1 and flags of subspaces
Eij of the fibres Eai . In this setting we make a different definition.

Recall that Ω denotes the sheaf of differential 1-forms on P1 with
logarithmic poles on D. Given a vector bundle E on X, recall that a
logarithmic connection on E is a homomorphism of sheaves of abelian
groups

∇ : E → E ⊗ Ω

satisfying Leibnitz’s rule. It has residues Resai ∇ ∈ End(Eai). The
following is a special case of [15, Corollaire 3], where, as mentioned in
[2, §7], we use the opposite sign convention to Mihai for residues.

Lemma 3.1. If E is a vector bundle on P1 and ∇ : E → E ⊗ Ω is a
logarithmic connection, then

k∑
i=1

tr(Resai ∇) = − degE.

By a ζ-connection on (E,Eij), we mean a logarithmic connections
∇ on E satisfying

(Resai∇− ζij1)(Ei,j−1) ⊆ Eij

for all 1 ≤ i ≤ k and 1 ≤ j ≤ wi. In [5] we have proved the following
result.

Lemma 3.2. For a parabolic bundle E on X there is a 1-1 corre-
spondence between the ζ-connections on E in the sense of a section
s : E → Dζ(E) and in the sense of a logarithmic connection ∇ on E.
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We denote by CohConnζ X the category of pairs (E , s) where E is
a parabolic sheaf on X and s : E → Dζ(E) is a ζ-connection on E .
Given (E , s) in CohConnζ X, we say that a subsheaf F of E is invariant
provided that the composition

F → E s−→ Dζ(E)→ Dζ(E/F)

is zero, so that the restriction of s to F factors through the morphism
Dζ(F)→ Dζ(E), where F → E is the inclusion morphism. In this case
the induced morphism F → Dζ(F) is a ζ-connection on F , and there
is an induced morphism s : E/F → Dζ(E/F) which is a ζ-connection
on E/F .

We say that a pair (E , s) in CohConnζ X is irreducible if E is non-zero
and it has has no non-zero proper invariant subsheaves. We say that a
pair (E , s) with E non-zero a parabolic bundle is weakly irreducible if
it has no non-zero proper invariant subsheaves such that the quotient
is a parabolic bundle.

We denote by ParConnζ X the category of pairs (E ,∇) consisting of
a parabolic bundle E on X and a ζ-connection ∇. By the discussion
above, this can be identified with the full subcategory of CohConnζ X
consisting of the pairs (E , s) where E is torsion-free.

Lemma 3.3. If E is a parabolic bundle on X, then there exists (E ,∇) ∈
ParConnζ X if and only if degP1 E ′ + ζ ∗ [dim E ′] = 0 for all indecom-
posable direct summands E ′ of E. In particular, if there exists (E ,∇),
then degP1 E + ζ ∗ [dim E ] = 0.

Proof. This is [2, Theorem 7.1]. Alternatively, the last part follows
directly from Lemmas 3.1 and 3.2. �

Lemma 3.4. The invariant subsheaves F = (F, Fij) of an object (E ,∇) ∈
ParConnζ X are given by subsheaves F of E with ∇(F ) ⊆ F ⊗ Ω, and
subspaces Fij satisfying

(Resai∇− ζij)(Fi,j−1) ⊆ Fij

for all i, j. In particular, if F is a subsheaf of E with ∇(F ) ⊆ F ⊗ Ω,
one can take Fij = Fai ∩ Eij.

Proof. Clear. �

Lemma 3.5. If ζ is non-resonant, then (E ,∇) ∈ ParConnζ X is irre-
ducible if and only if it is weakly irreducible.

Proof. If it is irreducible, it is certainly weakly irreducible. Conversely,
suppose it is weakly irreducible, but not irreducible. Then there is a
non-zero proper invariant subsheaf E ′ of (E ,∇). Since E is torsion-free,
so is E ′. Let (E ′,∇′) be the corresponding element of ParConnζ X. Since
ζ is non-resonant, the morphism (E ′,∇′) → (E ,∇) has constant rank,
see [2, Theorem 6.1]. It follows that the quotient E/E ′ is torsion-free.
But this contradicts weak irreducibility. �
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Lemma 3.6. If (E ,∇) is in ParConnζ X, and there is a decomposition
E = E1 ⊕ E2 with Ext1(E2, E1) = 0, then E1 is an invariant subsheaf
for (E ,∇).

Proof. It is rather easy to see this for (E , s) ∈ CohConnζ X. The com-
position

E1 → E s−→ Dζ(E)→ Dζ(E2)→ E2

is the same as the inclusion of E1 in E followed by the projection onto
E2, so it is zero. Thus the map E1 → Dζ(E2) factors through E2(~ω).
But then it is zero, as Hom(E1, E2(~ω)) ∼= DExt1(E2, E1) = 0 by Serre
duality.

For later comparison, however, we write it out in terms of parabolic
bundles. The underlying bundle of E is E1 ⊕ E2 and the parabolic
structure is Eij = E1

ij ⊕ E2
ij. The connection takes block form(
∇11 ∇12

∇21 ∇22

)
where ∇pp : Ep → Ep ⊗ Ω is a logarithmic connection on Ep and
∇pq : Eq → Ep⊗Ω is a homomorphism of bundles for p 6= q. Moreover
the residues Resai∇ : E1

ai
⊕ E2

ai
→ E1

ai
⊕ E2

ai
take block form

R =

(
R11 R12

R21 R22

)
where Rpq = Resai∇pq : Eq

ai
→ Ep

ai
. By assumption (R−ζij1)(Ei,j−1) ⊆

Eij which implies that

(Rpp − ζij1)(Ep
i,j−1) ⊆ Ep

ij

and

Rpq(E
q
i,j−1) ⊆ Ep

ij

for p 6= q. Thus by Lemma 2.2, ∇21 defines a homomorphism of par-
abolic bundles from E1 to E2(~ω), so it must be zero. Thus E1 is an
invariant subsheaf for (E ,∇). �

4. The tubular case

We begin with some standard definitions which are valid for all X, but
particularly useful in the tubular case. Let X be a weighted projective
line of weight type w = (w1, . . . , wk). Let w be the least common
multiple of the components of w. We write degX E for the degree of a
parabolic sheaf in the sense of Geigle and Lenzing [8, Proposition 2.8],

degX E = w degP1 E +
k∑
i=1

wi−1∑
j=1

nijw/wi ∈ Z
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where the nij are given by

dim E = n∗α∗ +
k∑
i=1

wi−1∑
j=1

nijαij.

The slope of a parabolic sheaf E is µ(E) = degX E/ rank E , see [14, §2.5],
so parabolic bundles have slope in Q, and the torsion parabolic sheaves
have slope ∞. A parabolic sheaf E is semistable (respectively stable)
if for every non-zero proper subsheaf F of E we have µ(F) ≤ µ(E)
(respectively µ(F) < µ(E)).

In the rest of this section we assume that X is of tubular type, or
virtual genus 1, meaning that

∑k
i=1 1/wi = k − 2. Assuming that the

wi are non-increasing, the possible weight types are (2, 2, 2, 2), (3, 3, 3),
(4, 4, 2) and (6, 3, 2). Observe that the quiver Qw is extended Dynkin,
and let 0 be an extending vertex. With the wi non-increasing, we
have w = w1 and can take 0 = [1, w1 − 1]. Let δ be the minimal
positive imaginary root for Qw. Thus the coefficient of α∗ in δ is w.
The representation theory of tubular weighted projective lines has been
worked out by Geigle and Lenzing [8] and Lenzing and Meltzer [14].

Lemma 4.1. (i) For a parabolic sheaf E we have

degX E = 〈δ − w∂, [E ]〉X = w degP1 E + w rank E + 〈δ, dim E〉Qw .

In particular, if dim E ∈ Zδ, then degX E ∈ Zw.
(ii) For parabolic bundles E and E ′ of ranks r and r′ we have

w2〈[E ], [E ′]〉X = wrr′(µ(E ′)− µ(E)) + 〈w dim E − rδ, w dim E ′ − r′δ〉Qw .

Proof. Straightforward. �

The indecomposables of a given slope q ∈ Q are semistable, and
form a uniserial abelian category whose Auslander-Reiten components
are tubes [8, Theorem 5.6]. It follows that Hom(E ,F) = 0 if E and
F are indecomposable with µ(E) > µ(F). The simple objects in this
category are the stable parabolic sheaves of slope q. Moreover this
category is equivalent to the category of torsion parabolic sheaves [14,
Theorem 4.4], so the ranks of the inhomogeneous tubes are equal to
the components of w.

Lemma 4.2. Suppose T is an inhomogeneous tube of slope q ∈ Q and
E is the direct sum of one copy of each stable parabolic bundle in T .

(i) dim E = kδ, where k is a positive integer.
(ii) The dimension vectors of the stable parabolic bundles in T are

linearly independent.
(iii) If q ∈ wZ then k = 1.
(iv) Any indecomposable parabolic sheaf of slope < q has a non-zero

map to E and any indecomposable parabolic sheaf of slope > q has a
non-zero map from E.
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Proof. (i) We have E ∼= E(~ω). Then

〈[F ], [E ]〉X = 〈[F ], [E(~ω)]〉X = −〈[E ], [F ]〉X.
Thus ([F ], [E ]) = 0 for all F . If [E ] = α + s∂ and [F ] = α′ + s′∂ this
says that (α′, α) = 0 for all α′. Thus α = kδ, some k. Of course k is a
positive integer since kδ∗ = α∗ = rank E > 0.

(ii) Suppose some linear combination is zero, say
∑

imi dimSi = 0,
with i running through Z/rZ, where r is the rank of the tube, and
Si+1 = Si(~ω). Since the rank of a parabolic sheaf is the ∗-component
of its dimension vector, we have∑

i

mi (w dimSi − (rankSi)δ) = 0.

Thus by the lemma, we have
∑

imi〈[Si], [Sj]〉X = 0 for all j. Now

〈[Si], [Sj]〉X =


1 (i = j)

−1 (i = j + 1)

0 (otherwise).

so mj −mj+1 = 0, so the mi are all equal. But now the mi are zero
by (i).

(iii) Let F be a stable parabolic bundle in T and let α = dimF . Then
〈[F ], [F ]〉X = 1 so α is a positive real root in Γ. We have q rankF =
〈δ, α〉QW

+ w rankF + w degP1 F .
Now α−δ is not zero, since α is a real root, so it a root, hence positive

or negative. If it is positive, then by loc. cit. there is an indecomposable
parabolic sheaf G with [G] = α− δ+s∂ where s = degF +w− q. Then
G has slope

µ(G) = (〈δ, α− δ〉X + w(rankF − w) + ws)/(rankF − w) = q.

Moreover 〈G,F〉X = 〈α, α〉X = 1, so there is a non-zero map G → F .
This is impossible.

Thus α− δ is a negative root. Thus by loc. cit. there is an indecom-
posable parabolic sheaf G with [G] = δ−α+t∂ where t = degF+q−w.
This G has slope

µ(G) = (〈δ, δ − α〉X + w(w − rankF) + wt)/(w − rankF) = q.

Moreover 〈[G], [F ]〉X = −1 = 〈[F ], [G]〉X. Thus there are non-split
extensions of F on top of the top of G, and of the socle of G on top
of F . It follows from the uniserial structure of the parabolic sheaves
of slope q that F ⊕ G must involve all of the stable parabolic sheaves
in the tube T . By construction dimF ⊕ G = δ. Thus the dimension
vector of E is at most δ, and hence equal to δ.

(iv) We use that if dim E = kδ and µ(E) = q then

〈[E ], [F ]〉X = 〈kδ + (degP1 E)∂, dimF + (degP1 F)∂〉X
= k(µ(F)− q) rankF
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and similarly for 〈[F ], [E ]〉X. �

Lemma 4.3. If F is an exceptional parabolic bundle on the mouth of
a tube in the Auslander-Reiten quiver of CohX, then F⊥ is equivalent
to the category of finite dimensional representations of an extended
Dynkin quiver.

Proof. By a theorem of Hübner and Lenzing the perpendicular category
is equivalent to the category of finite dimensional A-modules for finite
dimensional hereditary algebra A; we just need to see that A is tame
hereditary. Let F have slope q. The coherent sheaves of slope q form
a tubular family, the tubes not containing F all belong to F⊥, and the
intersection of the tube T containing F with F⊥ is a tube of rank 1
less than T . Thus the Auslander-Reiten quiver of A contains tubes, so
A must have a tame hereditary factor. Now since any indecomposable
A-module is either in a tube, or has a non-zero map to or from a fixed
tube, it follows that A is connected. �

Lemma 4.4. Suppose (E ,∇) ∈ ParConnζ X and dim E = hmδ with
m ≥ 1 and h ≥ 2. Suppose that s = ζ ∗ [mδ] ∈ Z. Then (E ,∇) is not
irreducible.

Proof. First suppose that E has indecomposable summands of different
slopes, or, all indecomposable summands of E have the same slope, but
they belong to at least two different tubes. In this case there is a non-
trivial decomposition E = E1⊕E2 with Ext1(E2, E1) = 0, so Lemma 3.6
applies.

Thus we may suppose that all indecomposable summands of E have
the same slope q and belong the same tube T . Choose a different in-
homogeneous tube of slope q, and an exceptional parabolic bundle F
on the mouth of the tube. Then F⊥ is equivalent to the category of
representations of an extended Dynkin quiver Q′. By [5], the category
of objects (G, s) ∈ CohConnζ X with G ∈ F⊥ is equivalent to the cat-
egory of representations of the deformed preprojective algebra Πλ(Q′)
for some λ. In particular (E ,∇) corresponds to such a representation,
call it M .

Consider an indecomposable uniserial object E ′ in T having as com-
position factors one copy of each of the simples on the mouth of T . We
must have dim E ′ = aδ for some a. Since it has slope q, it has degree
a(q − w), so aq ∈ Z.

By Lemma 3.3, we have degP1 E = −hs ∈ hZ. Thus there is a class
φ = mδ − s∂ ∈ K0(CohX) with hφ = [E ]. By [14, Theorem 4.6(iv)]
there is an indecomposable object E ′′ in T with [E ′′] = φ. Now clearly
we must have mδ a multiple of aδ. Thus a divides m.

Since the dimension vector of E is a multiple of δ, it must involve
each simple in T with the same multiplicity, so dim E = b dim E ′ = baδ
for some b ≥ 1. Thus ba = hm. It follows that b ≥ 2.
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Now E ′ corresponds to a representation M ′ of Q′ of dimension vector
δ′, the minimal imaginary root δ′ for Q′. Then M corresponds to a
representation of dimension vector bδ′. Since M exists as a Πλ(Q)-
module, we must have λ · bδ′ = 0. Thus also λ · δ′ = 0.

Then by [1, Theorem 1.2] there can be no simple module M . (All
that is needed is the argument of Case (I) in [1, §10].) Also could use
Crawley-Boevey and Hubery [6]. �

For later use we need the following.

Lemma 4.5. If E ⊕ E ′ has dimension vector a multiple of δ, where E
and E ′ are direct sums of indecomposables in disjoint sets of tubes of the
same slope, then the dimension vectors of E and E ′ are also multiples
of δ.

Proof. By Lemma 4.1 we have 〈[E ], [E ⊕ E ′]〉X = 0. Since E and E ′ are
in different tubes, 〈[E ], [E ′]〉X = 0. Thus 〈[E ], [E ]〉X = 0, so w dim E −
(rank E)δ is a multiple of δ, hence so is dim E . �

5. The extended tubular case

Let X be a weighted projective line of weight type w = (w1, . . . , wk).
In this section we assume that X is of extended tubular type, meaning
that w is one of (3, 2, 2, 2), (4, 3, 3), (5, 4, 2) and (7, 3, 2). Thus w′ =
(w1−1, w2, . . . , wk) is of tubular type. Let X′ be the weighted projective
line of weight type w′ with the same marked points as X. We denote
by δ the minimal positive imaginary root for Qw′ , considered as a
dimension vector for Qw. We write w′ for the least common multiple
of the components of w′. We write µ for the slope function for X′.

To shorten notation, we write∞ and 0 for the vertices [1, w1−1] and
[1, w1 − 2] of Qw. Note that 0 is an extending vertex for the extended
Dynkin quiver Qw′ . Thus we write S∞ and S0 for the simple torsion
parabolic sheaves S1,w1−1 and S1,w1−2 in CohX. Thus by [8, (2.5.4)] we
have S∞(~ω) ∼= S0 and S1,0(~ω) ∼= S∞.

There is a notion of reduction of weight considered by Geigle and
Lenzing [9, §9]. It gives the following.

Lemma 5.1. There are functors

CohX
f−→←−
i

CohX′

satisfying
(i) i is left adjoint to f and fi ∼= 1 and f is exact.
(ii) i is fully faithful and exact and gives an equivalence between

CohX′ and C = S⊥1,0 = ⊥S∞.
(iii) S0 ∈ C so it is isomorphic to i(S ′0) for some simple torsion

parabolic sheaf S ′0 fo X′.
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(iv) i preserves rank, sends torsion parabolic sheaves to torsion par-
abolic sheaves and parabolic bundles to parabolic bundles.

(v) Considering parabolic bundles as vector bundles on P1 equipped
with flags of subspaces of the fibres, i extends the parabolic structure by
zero at the vector space E∞ and f forgets the vector space E∞.

(vi) If E is a parabolic sheaf on X, then f(E) = 0 if and only if E
is isomorphic to a direct sum of copies of S∞. Thus, for any parabolic
sheaf E on X, the cokernel of the natural map if(E)→ E is isomorphic
to a direct sum of copies of S∞.

Proof. The functor f is ϕ∗ of [9, Theorem 9.5]. As remarked there, it
has a left adjoint, which we denote by i. �

Lemma 5.2. We have Ext1(i(F ′), E) ∼= Ext1(F ′, f(E)) for E ∈ CohX
and F ′ ∈ CohX′. In particular, i induces an isomorphism on Ext1.

Proof. For parabolic bundles we can interpret this as follows. Given an
exact sequence 0→ E → G → i(F ′)→ 0, the sequence of vector spaces
for the vector space ∞ is 0→ E∞ → G∞ → 0→ 0, so E∞ ∼= G∞, and
the rest of the data determines an exact sequence 0→ f(E)→ f(G)→
F ′ → 0.

[In general, for any sheaf E on X we have an exact sequence 0 →
if(E)→ E → τSn → 0 where n = dim Hom(E , τS) = dim Ext1(S, E).]

Given an exact sequence 0 → E → G → i(F ′) → 0, applying f
gives an exact sequence 0 → f(E) → f(G) → F ′ → 0. This gives a
map Ext1(i(F ′), E) → Ext1(F ′, f(E)). Given an exact sequence 0 →
f(E) → G ′ → F ′ → 0, applying i and taking the pushout along the
morphism if(E) → E gives an exact sequence 0 → E → G → i(F ′) →
0. This gives a map Ext1(F ′, f(E))→ Ext1(i(F ′), E). It is easy to see
that these are inverses.

Last part is actually obvious, since the functor i identifies CohX′
with a full extension-closed subcategory of CohX, so i induces an iso-
morphism on Ext1. �

Lemma 5.3. Say (E ,∇) ∈ ParConnζ X and dim E = α∞ + hδ with
h ≥ 2. We suppose that s = ζ ∗ [δ] ∈ Z and ζ ∗ [α∞] = 0. Then
q = µ(f(E)) is in Z. We decompose

f(E) = E<q ⊕ E=q ⊕ E>q

where each term is a direct sum of indecomposables with slopes in the
indicated ranges. If

0→ F → E>q → S ′0 → 0

is an exact sequence in CohX′, then µ(F ′) ≥ q for any non-zero direct
summand F ′ of F .

Proof. Because of the existence of ∇, we have

degP1 E = −ζ ∗ [dim E ] = −hs.
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Now this is just the usual degree of the vector bundle E. so it is also
degP1 E ′. Thus by Lemma 4.1 we have

q = µ(f(E)) = [w′(degP1 E) + w′ rank E ]/(rank E) = w′ − s.

Thus q ∈ Z. Suppose µ(F ′) < q. Take the pushout of the exact
sequence defining F along the projection F → F ′ to get

0→ F ′ → G → S ′0 → 0.

There is an epimorphism from E>q → G, so by the Hom properties of
slopes in the tubular case, we must have µ(G) > q. Let m = rankF ′ =
rankG. Then degX′ F ′ < mq, degX′ G > mq and degX′ G − degX′ F ′ =
degX′ S

′
0 = 1. This is impossible since mq, degX′ F ′ and degX′ G are

integers. �

Lemma 5.4. Suppose that (E ,∇) ∈ ParConnζ X and dim E = α∞+hδ
with h ≥ 2, ζ ∗ [α∞] = 0 and ζ ∗ [δ] ∈ Z. If f(E) has indecomposable
summands of different slopes, then (E ,∇) is not irreducible.

Proof. Let E ′ = f(E) ∈ CohX′. Let q = µ(E ′). This gives E ′ =
E1 ⊕ E2 ⊕ E3 where E1 = (E ′)>q, E2 = (E ′)=q and E3 = (E ′)<q. By
assumption E1 and E3 are non-zero. This gives a decomposition of
the vector bundle E = E1 ⊕ E2 ⊕ E3. Let Er

ij = Er
ai
∩ Eij. Then

Eij = E1
ij ⊕ E2

ij ⊕ E3
ij except at the ∞ vertex.

Now (Resa1 ∇− ζ∞)(E0) ⊆ E∞, so φ = (Resa1 ∇− ζ∞)|E0 considered
as a map E0 → E0 has rank ≤ 1. Using the decomposition of E0 it
becomes a 3 by 3 block matrix.φ11 φ12 φ13

φ21 φ22 φ23

φ31 φ32 φ33

 .

Thus φ31 has rank ≤ 1. Let F be the parabolic bundle obtained
from E1 by replacing the subspace E1

0 by Kerφ31. By Lemma 5.3, for
any summand F ′ of F we have µ(F ′) ≥ q. Thus Hom(F , E3(~ω)) = 0.

But now ∇31 defines a map of parabolic bundles from F to E3(~ω),
so ∇31 = 0. In particular φ31 = 0. Now since the matrix above has
rank ≤ 1, we get φ21 = 0 or φ32 = 0.

If φ21 = 0, then ∇21 defines a map of parabolic bundles from E1 to
E2(~ω). But Hom(E1, E2(~ω)) = 0. Thus ∇21 = 0. Since φ21 = 0 and
φ31 = 0 we have φ(E1

0) ⊆ E1
0 , either zero, or a 1-dimensional subspace.

Let G be the parabolic bundle on X obtained from E1 by taking this
as the subspace for the vertex ∞. Then G is an invariant subsheaf for
(E ,∇).

If φ32 = 0, then ∇32 defines a map of parabolic bundles from E2 to
E3(~ω). But Hom(E2, E3(~ω)) = 0. Thus ∇32 = 0. Since ∇31 = 0 and
∇32 = 0 it follows that E1⊕E2, extended to a parabolic bundle G on X
by the subspace φ(E1

0⊕E2
0) defines an invariant subsheaf of (E ,∇). �
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Lemma 5.5. Suppose that (E ,∇) ∈ ParConnζ X and dim E = α∞+hδ
with h ≥ 2, ζ∗[α∞] = 0 and ζ∗[δ] ∈ Z. If all indecomposable summands
of f(E) have the same slope q, then (E ,∇) is not irreducible; it has
a proper non-zero invariant subsheaf F such that all indecomposable
summands of f(F) and f(E/F) have slope q.

Proof. We prove this by induction on h. Let E ′ = f(E) ∈ CohX′. Let
s = ζ ∗ [δ].

Case (i). The summands of E ′ belong to at least two different tubes.
Decompose as E ′ = E1⊕E2 with the summands of E1 and E2 in disjoint
sets of tubes. By Lemma 4.5, the dimension vectors of E1 and E2 are
also multiples of δ, say h1δ and h2δ. Since E has slope q, we have

q rank E = degX E = w degP1 E + w rank E + 〈δ, dim E〉Qw′
,

so degP1 E = (q−w)/w. rank E , and similarly degP1 E i = (q−w)/w. rank E i.
Since there is a ζ-connection on E we have degP1 E + ζ ∗ [dim E ] = 0.
Then rank E i/ rank E = w′hi/w

′h = hi/h, so

ζ ∗ [dim E i] =
hi
h
ζ ∗ [dim E ] = −hi

h
degP1 E = −hi

h

q − w
w

rank E

= −q − w
w

rank E i = − degP1 E i.

Considering parabolic bundles in terms of a vector bundle on P1

with flags of subspaces, we get E = E1⊕E2 and decompositions Eij =
E1
ij⊕E2

ij for all vertices [i, j] except∞ = [1, w1−1]. This decomposition
gives a block decomposition

∇ =

(
∇11 ∇12

∇21 ∇22

)
where ∇pp is a logarithmic connection Ep → Ep ⊗ Ω and ∇pq is a
homomorphism Eq → Ep ⊗ Ω for p 6= q. The residues of ∇ then take
block form

Resai ∇ =

(
Resai∇11 Resai∇12

Resai∇21 Resai∇22

)
Since ∇ is a ζ-connection on E we have

(Resai∇− ζij1)(Ei,j−1) ⊆ Eij

for all 1 ≤ i ≤ k and 1 ≤ j ≤ wi. In particular, for j < w′i we have

(Resai∇pp − ζij1)(Ep
i,j−1) ⊆ Ep

ij.

Thus, thus considering the case i = 1 and j = w′1 = wi − 1, so the
vertices ∞ = [1, w1 − 1] and 0 = [1, w1 − 2], the map

φ = Resa1 ∇− ζ∞1 : E0 → E0



THE DELIGNE-SIMPSON PROBLEM 15

has image contained in E∞, so rankφ ≤ 1. Using the decomposition
E0 = E1

0 ⊕ E2
0 we get a block decomposition

φ =

(
φ11 φ12

φ21 φ22

)
.

where φpp is the restriction of Res∇pp − ζ∞1 to Ep
0 and for p 6= q, φpq

is the restriction of Res∇pq to Eq
0 .

Now since ∇pp is a logarithmic connection on Ep, we have

k∑
i=1

tr(Resai∇pp) = − degEp.

Now dimEp
ij = hpδij for 1 ≤ i ≤ k and 1 ≤ j < w′i, so with the

convention that ζi0 = ζ∗ and ζi,wi
= 0, for i 6= 1 we have

tr(Resai∇pp) =

w′i∑
j=1

ζij(hpδi,j−1 − hpδi,j)

and

tr(Resa1∇pp) =

w′i∑
j=1

ζ1j(hpδi,j−1 − hpδi,j) + trφpp.

Thus by the calculations above, trφpp = 0. We have two possible cases.

Case (i)(a) h2 = 1, so dim E2 = δ. Then dimE2
0 = 1, so φ22 = 0 since

it is an endomorphism of trace zero of a 1-dimensional vector space.
Thus since rankφ ≤ 1 we get φpq = 0 for (p, q) = (1, 2) or (2, 1). But
then ∇pq defines a homomorphism Eq → Ep(~ω). But Hom(Eq, Ep(~ω)) =
0, since the summands of Ep and Eq belong to disjoint sets of tubes.
Thus ∇pq = 0. This implies that Eq, considered as a parabolic bundle
on X with the vector space Eq∞ = Imφqq at vertex∞, gives an invariant
subsheaf of (E ,∇).

Case (i)(b) h2 > 1. We define E2
∞ = Imφ22 ⊆ E2

0 . This turns E2 into
a parabolic bundle on X, and (E2,∇22) ∈ ParConnζ X. By induction,
this pair has an invariant subsheaf F such that the indecomposable
summands of F and of E2/F have slope q.

Considering F as a tuple (F, Fij) of a vector bundle F on P1 and flags
of subspaces of its fibres, we have ∇22(F ) ⊆ F ⊗ Ω and (Resai ∇22 −
ζij1)(Fi,j−1) ⊆ Fij.

Choose a complement Z to F0 in E2
0 . Then E0 has direct sum de-

composition E1
0 ⊕ F0 ⊕ Z. With respect to this decomposition φ takes

block form φ11 φ12 φ13

φ21 φ22 φ23

φ31 0 φ33


with 0 in the (3, 2) position since F is invariant in E2. Now rankφ ≤ 1,
so either φ12 = 0 or φ31 = 0.
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If φ12 = 0, then the restriction of ∇12 to F induces a morphism
F → E1(~ω). But the indecomposable summands of F have the same
slope as E2, and so they are in the same tube as the summands of E2,
so there is no such morphism. It follows that F is an invariant subsheaf
for (E ,∇).

If φ31 = 0, then ∇21 induces a morphism E1 → (E2/F)(~ω). But the
indecomposable summands of E2/F have the same slope as E2, and so
they are in the same tube as the summands of E2, so there is no such
morphism. It follows that E1 ⊕F is an invariant subsheaf for (E ,∇).

Case (ii). All indecomposable summands of E ′ belong to the same
tube. Choose an inhomogeneous tube T of the same slope which is
different from this one. Consider the non-split extension of torsion
parabolic sheaves for X,

0→ S∞ → R→ S1,0 → 0.

The parabolic sheaf R is in ⊥S∞, but the parabolic sheaves S∞ and S1,0

are not in ⊥S∞. Thus R ∼= i(L) for some simple torsion parabolic sheaf
L for X′. Choose an indecomposable F ′ on the mouth of the tube T
with Hom(F ′, L) 6= 0. We know that this is possible. Thus E ′ ∈ (F ′)⊥
and Ext1(F ′,F ′) = 0. Let F = i(F ′). By Lemmas 5.1 and 5.2 we have
Ext1(F ,F) = 0 and F⊥ is the category of parabolic sheaves G such
that f(G) ∈ (F ′)⊥. In particular E ∈ F⊥. Since f(S∞) = 0 we have
S∞ ∈ F⊥.

Now consider the category F⊥. By Hübner and Lenzing [10], [5,
Theorem 4.2] this is equivalent to the category of representations of
some quiverQF . Also consider (F ′)⊥. This is equivalent to the category
of representations of an extended Dynkin quiver QF ′ .

Let Ui be the objects in (F ′)⊥ corresponding to simple representa-
tions of QF ′ . Then Hom(F ′, Ui) = 0, so Hom(L,Ui) = 0 since there
is an epimorphism from F ′ to L. Thus Hom(R, i(Ui)) = 0. Now
Hom(S∞, i(Ui)) = 0, for otherwise, since i(Ui)) is indecomposable, it
must be a torsion parabolic sheaf, so uniserial, and then its socle must
be S∞, and so either it is isomorphic to S∞ isn’t in the image of i, or
it has R as a subseaf, which isn’t possible since Hom(R, i(Ui)) = 0.

Thus the parabolic sheaves S∞ and i(Ui) are orthogonal bricks. In
addition, for any parabolic sheaf G on X, since i is exact the sheaf
if(G)) has a filtration by copies of the i(Uj), and the cokernel of the
map if(G)→ G is a direct sum of copies of S∞. It follows that S∞ and
the i(Uj) correspond to the simple representations of QF .

What does the quiver QF look like? The vertices are labelled by ∞
and the same i as occur indexing the Ui. Now Ext1(i(Uj), S∞) = 0 so
∞ is a sink. Now S0 ∈ ⊥S∞ since w1 > 2, so S0 is one of the simples
Uj, say U0.

Ext1(S∞, i(Uj)) ∼= DHom(i(Uj), S∞(~ω)) = DHom(Uj, S0)
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which is 1-dimensional if j = 0 and otherwise 0. Thus there is one
arrow starting from ∞ and going to the vertex 0. On the other hand,
Ext1(i(Uj), i(Uk)) ∼= Ext1(Uj, Uk) so quiver obtained by deleting the
vertex ∞ is isomorphic to the quiver QF ′ .

Now QF ′ has representations corresponding to the parabolic sheaves
in all the tubes of slope q other than T . Moreover any other indecom-
posable representation has a non-zero morphism to or from one of these
tubes. Thus QF ′ must be an extended Dynkin quiver.

The vertices of QF ′ are the same i as occur indexing the Ui. In
particular vertex 0 corresponds to U0

∼= S ′0, with i(S ′0)
∼= S0.

We show that 0 is a source in QF ′ . If not, there is a vertex i with
Ext1(Ui, S

′
0) 6= 0. Since S ′0 is a simple torsion parabolic sheaf, and Ui is

indecomposable, we must have that Ui is torsion, and that its socle is
the simple torsion parabolic sheaf which has an extension with S ′0. But
this is L. But then Hom(L,Ui) 6= 0, so Hom(F ′, Ui) 6= 0, contradicting
that U ′i ∈ (F ′)⊥.

We show that 0 is an extending vertex for QF ′ . Let δ′ be the minimal
positive imaginary root for QF ′ . Let T ′ be the direct sum of the stable
parabolic sheaves in an inhomogeneous tube of slope q for X′ which is
different from T . The summands of T ′ correspond to regular simple
modules in an inhomogeneous tube for QF ′ , so T ′ corresponds to a
representation of QF ′ is δ′. Now q = µ(E ′), and as in Lemma 5.3 this
is an integer. Thus dimT ′ = δ by Lemma 4.2. Then since S ′0 = U0

corresponds to a simple injective representation of QF ′ ,

δ′0 = 〈[T ′], [U0]〉X′ = 〈dimT ′, α0〉Qw′
= 〈δ, α0〉Qw′

= 1,

so 0 is an extending vertex.
Now by [5, Theorem 5.1] the category of parabolic sheaves in F⊥

equipped with a ζ-connection is equivalent to the category of Πλ(QF)-
modules, for some λ. In particular, since E ∈ F⊥, (E ,∇) corresponds
to a module M for Πλ(QF).

Now the restriction of M to QF corresponds to E , whose dimension
vector is α∞ + hδ. In F⊥ we have parabolic sheaves S∞ and T ′. Their
dimension vectors are α∞ and δ. Now T ′ corresponds to a representa-
tion of QF of dimension vector δ′, and S∞ corresponds to the simple
representation of at vertex ∞ of QF , so its dimension vector is the
simple root α′∞ corresponding to vertex ∞. Thus E corresponds to a
representation of QF of dimension vector β′ = α′∞ + hδ′.

Moreover λ ·β′ = 0 since (E ,∇) exists. Also λ ·δ′ = 0. Namely, if one
takes not T ′, but the extension T ′′ of the stables in the tube, one gets
an indecomposable parabolic bundle of slope q and dimension vector
δ. Now as in the calculation in case (i), degP1 T ′′ + ζ ∗ [dimT ′′] = 0.
Thus there is a ζ-connection ∇′′ on T ′′. Then (T ′′,∇′′) corresponds
to a Πλ(QF)-module. Its underlying QF -representation corresponds
to T ′′, so it has dimension vector δ′. Thus λ · δ′ = 0. Thus by [1,
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Theorem 9.1], M cannot be a simple representation of Πλ(QF). In fact
by [6, Theorem 8.1] it has a proper non-trivial submodule M ′ which
is regular as a representation of QF . But then as a representation of
QF , the summands of M ′ are in the same tube as the summands of
M . Thus they correspond to parabolic bundles in the same tube as the
summands of E . The same holds for the summands of the quotient. �

6. Special case of DSP

We fix a transversal T to Z in C, such as T = {z ∈ C | 0 ≤ <z < 1}.
We will use the following standard result.

Lemma 6.1. The assignment A 7→ exp(−2π
√
−1A) induces a bijec-

tion between conjugacy classes of matrices with eigenvalues in T and
conjugacy classes of invertible matrices.

As in the introduction, let C1, . . . , Ck be conjugacy classes in GLn(C)
corresponding to a weight sequence w = (w1, . . . , wk), complex num-
bers ξ = (ξij) (1 ≤ i ≤ k, 1 ≤ j ≤ wi) and α ∈ Γ = ΓQw .

Theorem 6.2. There is no irreducible solution to the DSP in the fol-
lowing cases:

(a) The quiver Qw is extended Dynkin with minimal positive imagi-
nary root δ, the dimension vector is α = hmδ with m ≥ 1 and h ≥ 2
and ξ[δ] a primitive mth root of unity.

(b) The quiver is obtained from an extended Dynkin quiver by ad-
joining another vertex ∞ to an extending vertex, the dimension vector
is α = α∞ + hδ with h ≥ 2 and ξ[α∞] = 1 and ξ[δ] = 1.

Proof. Suppose we have an irreducible solution (g1, . . . , gk) to the DSP.
Let Ci be the conjugacy classes of the gi. They are determined by

w, ξ and α.
Define ζ non-resonant by ξij = exp(−2π

√
−1ζij) and ζij ∈ T . Let Di

be the conjugacy classes with eigenvalues in T with exp(−2π
√
−1Ai)

in Ci for Ai ∈ Di. The Di are the conjugacy classes determined by w,
ζ and α.

Fix distinct points D = (a1, a2, . . . , ak) in X = P1 and let X be the
corresponding weighted projective line.

The irreducible solution to the DSP corresponds to a representation
of π1(X \D). That is, gi is the image of a loop around ai.

Under the equivalence of [2, Theorem 6.1] this corresponds to a vec-
tor bundle E and logarithmic connection ∇ whose eigenvalues are in
T , meaning that the eigenvalues of the residues Resai ∇ are in T . In
fact we have Resai ∇ ∈ Di.

We define

Eij = Im rank(Resai ∇− ζi11)(Resai∇− ζi21) . . . (Resai ∇− ζij1).

Then E = (E,Eij) becomes a parabolic bundle on X and ∇ becomes a
ζ-connection.
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We say that a ζ-connection ∇ on a parabolic bundle E = (E,Eij) is
normal provided that

(Resai∇− ζij1)(Ei,j−1) = Eij

for all 1 ≤ i ≤ k and 1 ≤ j ≤ wi. By construction, our (E ,∇) is
normal.

By [2, §6] and the discussion at the start of [2, §7], monodromy
gives an equivalence from the category of pairs (E ,∇) consisting of a
parabolic bundle on X equipped with a normal ζ-connection ∇ and the
category of representations of π1(X \D) of type ξ.

Now (E ,∇) ∈ ParConnζ X corresponds to a pair (E , s) ∈ CohConnζ X.
Moreover (E,∇) is irreducible.
Suppose otherwise. Suppose that this has an invariant subsheaf E ′

such that the quotient E/E ′ is torsion. Then the sub-object (E ′, s′)
corresponds to a pair (E ′,∇′)

This gives a nonzero map (E ′,∇′)→ (E ,∇).
Forgetting the parabolic structure it gives a nonzero map of vector

bundles equipped with logarithmic connections of type ζ.
Since ζ is non-resonant, by Riemann-Hilbert correspondence we ob-

tain a nonzero map of representations of the fundamental group. But
the two representations have the same dimension, and the target repreen-
tation is irreducible, so the map is an isomorphism. Thus the map of
vector bundles equipped with logarithmic connections is an isomor-
phism, see [2, Theorem 6.1].

Thus (E ,∇) and (E ′,∇′) are equal, except that the parabolic struc-
tures may differ. We know, however, that that there is an inclusion
morphism E ′ → E which is the identity map on the underlying vector
bundle. Thus the spaces E ′ij are subspaces of the Eij. But then the
fact that ∇ is normal for E ensures that

Eij = (Resai∇− ζij1) . . . (Resai∇− ζi11)(Eai),

while
E ′ij ⊇ (Resai ∇− ζij1) . . . (Resai∇− ζi11)(Eai)

and hence E ′ij = Eij for all i, j. Thus E ′ = E .
—-
Now in case (a) or (b) we are in cases already considered, where we

showed that there is no irreducible pair (E , s) in CohConnζ X.
In particular, in case (b) we have ξ[α∞] = 1. Thus ξ1,w1 = ξ1,w1−1.

Thus ζ1,w1 = ζ1,w1−1. Thus ζ ∗ [α∞] = 0.
�

7. Multiplicative preprojective algebras

Let Q be a quiver with vertex set I and let q ∈ (C∗)I . Let Λq(Q)
be the corresponding multiplicative preprojective algebra, see [7]. For
α ∈ ΓQ, say α =

∑
i∈I niαi, we define qβ =

∏
i∈I q

ni
i .
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Given conjugacy classes C1, . . . , Ck in GLn(C) as in the introduction,
we choose k,w, ξ as there, and obtain a quiver Qw, root lattice Γw and
an element αC ∈ Γw. We define qC ∈ (C∗)Iw by q∗ = 1/

∏k
i=1 ξi1 and

qij = ξij/ξi,j+1, so that ξ[α] = 1/qα for all α ∈ Γw. By [7, Lemma 8.3]
we have the following.

Lemma 7.1. There is an irreducible solution to A1 . . . Ak = 1 with
matrices Ai ∈ Ci if and only if there is a simple ΛqC (Qw)-module of
dimension vector αC.

There are reflections uv(q) as in [7] and reflection functors.
Consider pairs [q, α] with q ∈ (K∗)I and α ∈ ZI .
The reflection at i is admissible for the pair [q, α] if qi 6= 1.
Equivalence relation ∼ is generated by admissible reflections.
R̄+
q is the set of positive roots with qα = 1.

NR̄+
q is the set of sums of elements of R̄+

q .

Σ̄q is the elements α ∈ R̄+
q such that there is no decomposition

α = β + γ + . . . with p(α) > p(β) + p(γ) + . . . and β, γ, · · · ∈ R̄+
q .

Theorem 7.2. If α ∈ NI the α ∈ Σ̄q if and only if 0 6= α ∈ NR̄+
q and

(β, α− β) ≤ −2 whenever β, α− β are nonzero and in NR̄+
q .

Proof. This is analogue to [1, Theorem 5.6]. One needs to modify [1,
Lemmas 5.1–5.5]. �

Don’t know if we need or want analogue of [1, Theorem 5.8].
F̄q is the set of α ∈ R̄+

q with (α′, εi) ≤ 0 for any (q′, α′) ∼ (q, α) and
any vertex i with q′i = 1.

Lemma 7.3. If there is a simple Λq-module of dimension α then either
[q, α] is equivalent to a pair [q′, α′] with α′ the coordinatevector of a
loopfree vertex, or α ∈ F̄q.

Proof. This is obtained by modifying [1, Lemma 7.4]. Also modify [1,
Lemma 7.1, 7.3]. Replace [1, Lemma 7.2] by [7, Lemma 5.1]. �

Theorem 7.4. If [q, α] is a pair with α ∈ F̄q \ Σ̄q, then after first
passing to an equivalent pair, and then passing to the support quiver of
α and the corresponding restrictions of q and α, one of the following
cases holds:

(I) Q is extended Dynkin with minimal positive imaginary root δ, the
dimension vector is α = hmδ with m ≥ 1 and h ≥ 2 and qδ a primitive
mth root of unity.

(II). Q is a disjoint union of two parts connected by one arrow be-
tween vertices i, j, with αi = αj = 1, and if α = β + γ where β and
γ are the restriction of α to each side of the edge joining i and j, then
qβ = qγ = 1.

(III) Q is a disjoint union of two parts connected by one arrow be-
tween vertices j, k with αj = 1, the part containing k is extended
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Dynkin with k as an extending vertex and minimal imaginary root δ,
the restriction of α to this part is hδ with h ≥ 2 and qα∞ = 1 and
qδ = 1.

Proof. First modify [1, Lemmas 8.2-8.15] (8.8 and 8.13 need no change).
For the proof we assume that α ∈ F̄q.
Say that β is a (−1)-vector for the pair (q, α) if β, α− β ∈ NR̄+

q and
(β, α− β) = −1.

Say that β is a divisor for (q, α) if it is a (−1)-vector, (β, εi) ≤ 0 for
all i, and (α− β, εi) ≤ 0 whenever (β, εi) = 0.

Critical vertex.
This is obtained by modifying [1, Theorem 8.1]. This involves addi-

tivity arguments with the characteristic of the field, so would need to
be modified.

Suppose that α ∈ F̄q \ Σ̄q. Since α is an imaginary root, q(α) ≤ 0.
Suppose first that q(α) = 0. By passing to an equivalent pair we

may assume that α is in the fundamental region. Since q(α) = 0 this
implies that the support of α is extended Dynkin and α is a multiple of
the minimal imaginary root δ. Let m be the smallest positive integer
with (qδ)m = 1. Since qα = 1, it follows that α = hmδ for some
h ≥ 1. If h = 1 then in any proper decomposition of α as a sum
of roots α = β + γ + . . . in R̄+

q , the terms must be real roots, so

p(α) > p(β) + p(γ) + . . . . Thus α ∈ Σ̄q, a contradiction. Thus we have
case (I).

Thus we may suppose that q(α) < 0. We replace [q, α] by an equiv-
alent pair to ensure that α has support as small as possible. Then we
pass to the support quiver Q′ of α and the restrictions [q′, α′] of q and
α. Clearly α′ ∈ F̄q′ \ Σ̄q′ . Observe that by minimality, if [q′′, α′′] is a
pair equivalent to [q′, α′], then α′′ has support Q′, and the pair [q′′, α′′]
could be obtained from [q, α] by first applying admissible reflections,
and then passing to the support quiver of α′′.

By the analogue of [1, Lemma 8.3] there is a (−1)-vector β for [q′, α′],
and hence a divisor β′ for some equivalent pair [q′′, α′′] by the analogue
of [1, Lemma 8.4]. Now β′ and α′′ − β′ cannot both be sincere by the
analogue of [1, Lemma 8.11]. Thus either β′ is a non-sincere divisor, or
we obtain a non-sincere divisor for some pair equivalent to [q′′, α′′] on
applying the analogue of [1, Lemma 8.4] to the (−1)-vector α′′− β′ for
[q′′, α′′]. Thus case (II) or (III) holds by the analogues of [1, Lemmas
8.14 and 8.15]. �

Theorem 7.5. If there is a simple Λq(Q)-module of dimension α, then
α ∈ Σ̄q.

Proof. In three special cases we know there is no simple module.
(I) Q is extended Dynkin star-shaped with minimal positive imagi-

nary root δ, the dimension vector is α = hmδ with m ≥ 1 and h ≥ 2
and qδ a (primitive?) mth root of unity.
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(II). There are adjacent vertices i, j on an arm with coefficient 1 in
α, and if α = β+γ where β and γ are thes restriction of α to each side
of the edge joining i and j, then qβ = qγ = 1.

(III) Q is obtained from an extended Dynkin quiver star-shaped
quiver by adjoining another vertex ∞ to an extending vertex, the di-
mension vector is α = α∞ + hδ with h ≥ 2 and qα∞ = 1 and qδ = 1.

Or case (III) for cycle quiver. Convert to problem about deformed
preprojective algebra. �
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