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Abstract

Motivated by the introduction of the notion of amenable representation type by Elek
[Ele17], we study the conjecture that finite dimensional algebras are of tame representa-
tion type if and only if they are of amenable representation type. While string algebras
were shown to be amenable in [Ele17], in this thesis we prove that tame hereditary
algebras, in particular path algebras of extended Dynkin quivers, are of amenable type.

Further results concern the amenability of tame concealed algebras as well as par-
tial positive results for indecomposable modules of integral slope for tubular canonical
algebras and the preprojective and postinjective component for path algebras of gen-
eralised Kronecker quivers.
To prove the other direction of the conjecture for algebraically closed fields, one

may show that wild algebras are not of amenable type. Employing the notion of
dimension expanders, we give a tangible example of a family of modules for (generalised)
Kronecker quivers over arbitrary fields that preclude their amenability. This result is
then extended to hereditary wild and strictly wild algebras. Finally, a weak notion of
amenable representation type is used to show that no finitely controlled wild algebra
over an algebraically closed field is of amenable type.
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Introduction
As one of the main objects of representation theory of algebras, algebras of tame repres-
entation type are widely studied. Elek [Ele17] has suggested a new characterisation of
this tameness: Instead of checking if the indecomposable modules in every dimension
occur in a finite number of one-parameter families, one should check whether every
indecomposable module is “almost” the direct sum of modules of bounded dimension.

Conjecture (after [Ele17]). Let k be a field and R a finite dimensional algebra of
infinite representation type over k. Then R is of tame representation type if and only
if R is of amenable representation type.

This notion of amenable representation type for finite dimensional algebras and the
related notion of hyperfiniteness will be at the heart of the considerations in this
thesis, as we investigate well-known classes of algebras with respect to these prop-
erties. Roughly speaking, an algebra is of amenable type if for all ε > 0, every finite
dimensional module has a submodule which is a direct sum of modules which are small
with respect to ε such that the quotient is also small in that respect. Families of mod-
ules having this property are said to be hyperfinite. We will give the precise definition
and deduce some general results in Chapter 1.
String algebras are shown to be amenable in [Ele17, Proposition 10.1], using the

classification of their modules as string and band modules. While this result covers
extended Dynkin quivers of type Ãn, the corresponding result for the other tame path
algebras was not known. The first class of algebras we consider in this thesis therefore
are path algebras of extended Dynkin quivers. They are a staple of representation
theory of algebras and their module structure is well understood. The generalisation
to tame hereditary algebras is more technical.

Main Theorem A. Let Q be an acyclic quiver of extended Dynkin type Ãn, D̃n, Ẽ6, Ẽ7
or Ẽ8. Let k be any field. Then the path algebra kQ of Q is of amenable representation
type.

Main Theorem B. Let k be a field. If A is a tame hereditary, finite dimensional
k-algebra, then A is of amenable representation type. Moreover, any tame concealed
k-algebra is of amenable representation type.

To keep the result for path algebras of quivers straightforward and to serve as an
exposition, this situation is treated in its own Chapter 2. The proof employs the concept
of universal localisation from [GL91; Sch86]. En route we will give an elementary proof
for the 2-Kronecker quiver in Section 2.2. This result will then be used to prove the
first main result in Section 2.3, using a descent argument.
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Introduction

In Chapter 3, we generalise the result to tame hereditary algebras, which also in-
clude non-simply-laced extended Dynkin diagrams. Here, we show that the family of
indecomposable modules in the rank two-cases is hyperfinite. Again, a descent argu-
ment extends this to higher ranks. By an application of the Brenner–Butler tilting
theorem and a result from [HR81], the amenability of tame concealed algebras follows.
Next, we show in Chapter 4 that for tubular canonical algebras, an infinite collection

of tubes from the regular component is hyperfinite—precisely those of integral slope.
Here, we use a classification of Dowbor, Meltzer and Mróz [DMM14b]. As tubular
canonical algebras are tame, this is work towards the above conjecture, yet the question
if they are of amenable type remains open.

Theorem. Let A be a tubular canonical algebra. Then the families P0 of preprojective
modules, Q∞ of postinjective modules and the family

∨
µ∈Z∞K(0,p)Xµ of all indecompos-

able regular modules of integral slope are hyperfinite.

We further study the related notion of fragmentability from graph theory introduced
by Edwards and McDiarmid [EM94] in Chapter 5. We utilise it to show that the prepro-
jective and postinjective components of generalised Kronecker quivers form hyperfinite
families. In this context, knowledge about the class of the underlying graph and the
maximum degrees of coefficient quivers of indecomposable modules proves helpful.
To approach the other direction of the conjecture, we turn to study wild algebras in

Chapter 6. The case of path algebras of wild acyclic quivers can be reduced to wild
Kronecker quivers, thus proving that they are not of amenable representation type.
In the finite field case (and stated more generally), this is due to Elek showing the
non-amenability of wild generalised Kronecker path algebras. Yet, by employing the
notion of dimension expanders, we can give a different argument for the existence of
a family of non-hyperfinite modules for (generalised) Kronecker quivers over arbitrary
fields in Section 6.1. For fields of characteristic zero, we also give a tangible example
supplementing the family constructed by Elek. In this general setting, the amenability
of finite dimensional wild hereditary and strictly wild algebras can be reduced to that
of wild Kronecker algebras, too.
A thorough analysis then suggests to modify the original definition, yielding a weak

notion. Finally, combining this weaker notion with a result of Gregory and Prest
[GP16], we show that no finitely controlled wild algebra is of amenable representation
type.

Main Theorem C. Let k be any field. Then there exists some d ≥ 3 such that
the path algebra of the wild generalised Kronecker quiver kΘ(d) is not of amenable
representation type and thus no strictly wild k-algebra is of amenable type. Moreover,
if k is algebraically closed, finitely controlled wild (finite dimensional) k-algebras are
not of amenable representation type.

As it has been conjectured [Rin02] (and announced by Y. Drozd in 2007) that all wild
algebras are finitely controlled wild, Main Theorem C may settle one direction of the
motivating conjecture.
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1 Hyperfiniteness and Amenability

Elek [Ele17] has introduced the notion of hyperfiniteness for countable sets of modules
and that of amenable representation type for algebras. In doing so, he was ultimately
motivated by the classical notion of amenable groups and continuing work from [Ele06],
where the amenability of skew fields was defined, and keeping up the notion of hyper-
finite collections of graphs from [Ele07].

We deviate slightly from his notion and give the following definition.

Definition 1.1. Let k be a field, A a finite dimensional k-algebra andM ⊆ modA a
family of A-modules. We say that M is hyperfinite provided for every ε > 0 there
exists Lε > 0 such that for every M ∈M there exists a submodule N ⊆M such that

dimkN ≥ (1− ε) dimkM, (1.1)

and there are modules

N1, N2, . . . , Nt ∈ modA, with dimkNi ≤ Lε, (1.2)

such that

N ∼=
t⊕
i=1

Ni. (1.3)

A k-algebra A is said to be of amenable representation type provided modA
itself is a hyperfinite family.

We use modA to denote the class of all finite dimensional (left) A-modules. If A is
a finite dimensional k-algebra, these are precisely the finitely generated A-modules.
Remark. Since N is a submodule of M , the condition (1.1) is equivalent to

dimk(M/N) ≤ ε dimkM, (1.4)

for dimk(M/N) = dimkM − dimkN .
Remark. Finite sets are hyperfinite, for we can take Lε to be the maximum of the
dimensions and N = M .
For the same reason, families of modules of bounded dimension are hyperfinite. More-

over, ifM andM′ are hyperfinite families, so isM∪M′: We can choose Lε to be the
maximum of LMε and LM

′
ε , corresponding to M and to M′, respectively. Similarly,

any finite union of hyperfinite families is hyperfinite.

Proposition 1.2. Let M be a family of A-modules. If M is hyperfinite, so is the
family of all finite direct sums of modules inM.

3



1 Hyperfiniteness and Amenability

Proof. LetM be hyperfinite and let ε > 0. Then there exists Lε satisfying the condi-
tions in the definition. Now assume M = ⊕n

i=1Mi with Mi ∈ M. For each 1 ≤ i ≤ n,
choose

ti⊕
j=1

Ni,j = Ni ⊆Mi,

as for the hyperfiniteness ofM. Then

N :=
n⊕
i=1

Ni ⊆
n⊕
i=1

Mi = M,

as direct sums respect submodule inclusions. Also

dimkN =
n∑
i=1

dimkNi ≥
n∑
i=1

(1− ε) dimkMi = (1− ε)
n∑
i=1

dimkMi = (1− ε) dimkM.

Moreover, dimkNi,j ≤ Lε.

This shows that to check amenability, it is enough to check the criterion on all
indecomposable modules.
Example 1.3. Since for a representation finite algebra A, there are only finitely many iso-
morphism classes of (finitely generated) indecomposable modules, and the k-dimensions
of indecomposable modules are therefore bounded by

max
M∈indA

{dimkM},

such an algebra A is of amenable representation type.
A non-example is given in [Ele17] by the wild Kronecker algebras (see also The-
orem 6.12), while string algebras were shown to be of amenable representation type,
including the 2-Kronecker algebra (see also Theorem 2.9).

Proposition 1.4. Let A be a finite dimensional k-algebra and M,N ⊆ modA where
N is hyperfinite. If there is some H ≥ 0 such that for all M ∈ M, there exists a
submodule N ⊆ M with N ∈ N , of codimension less than or equal to H, then M is
also hyperfinite.

Proof. Let H ≥ 0 and ε > 0. If the dimension of the modules inM was bounded, say
by K, we can set Lε := K and choose N = M for all M ∈ M, and we are done. On
the other hand, if the dimension is not bounded, there is M ∈ M with dimkM > 2H

ε .
We choose a submodule N ∈ N of codimension bounded by H. Since N is hyperfinite,
there is some submodule Y ⊆ N such that dimY ≥ (1− ε

2) dimN , while Y decomposes
into direct summands of dimension less than or equal to LNε

2
.

4



1 Hyperfiniteness and Amenability

We thus have that

dimY ≥
(

1− ε

2

)
dimN = dimN − ε

2 dimN

≥ (dimM −H)− ε

2 dimM

≥ dimM − ε

2 dimM − ε

2 dimM

= (1− ε) dimM,

using that we have H ≤ ε
2 dimM . What is more, Y decomposes into direct summands

of dimension less than or equal to LNε
2
. If we therefore choose LMε to be the maximum

of LNε
2

and 2H
ε , we have shown thatM is hyperfinite.

Proposition 1.5. Let k be a field and let A,B be two finite dimensional k-algebras. Let
F : modA→ modB be an additive, left-exact functor such that there exists K1,K2 > 0
with

K1 dimX ≤ dimF (X) ≤ K2 dimX, (1.5)

for all X ∈ modA. If N ∈ modA is a hyperfinite family, then the family

M := {F (X) : X ∈ N} ⊆ modB

is also hyperfinite.

Proof. By the hypothesis, for any ε̃ we can find some LNε̃ > 0 to exhibit the hyper-
finiteness of the family N . Let M ∈ modB such that F (N) = M for some N ∈ N .
Then there is a submodule P ⊆ N such that P = ⊕t

i=1 Pi with dimPi ≤ LNε̃ and
dimP ≥ (1− ε̃) dimN . Since F is additive, we have that F (P ) = ⊕t

i=1 F (Pi), and by
the right-hand side of (1.5),

dimF (Pi) ≤ K2 dimPi ≤ K2L
N
ε̃ .

Moreover, the sequence
0→ F (P )→M → F (N/P )

is exact, so F (P ) is (isomorphic to) a submodule ofM , and by the rank-nullity theorem,

dimF (P ) ≥ dimM − dimF (N/P )
≥ dimM −K2 dimN/P = dimM −K2(dimN − dimP )
≥ dimM −K2 dimN +K2(1− ε̃) dimN = dimM −K2ε̃ dimN

≥ dimM − K2
K1

ε̃ dimM = (1− ε) dimM,

if we choose ε̃ = K1
K2
ε. We can therefore choose LMε to be K2L

N
ε̃ to prove the hyperfin-

iteness ofM.

5



1 Hyperfiniteness and Amenability

Remarks. A functor fulfilling the hypothesis of Proposition 1.5 may be called hyperfin-
iteness preserving or HF-preserving. Moreover, inspection of the proof shows that the
left inequality of (1.5) need only hold for X ∈ N .
Example 1.6. We give some examples of functors preserving hyperfiniteness and show
how they may be applied.

(1) Equivalences are HF-preserving functors: they are left exact and the fact that
simple modules are mapped to simple modules ensures the existence of suitable
constants K1 and K2.

(2) If A is the path algebra of a quiver Q of amenable representation type, and i ∈ Q0
is a sink, then we can take the reflection functor F = S+

i (see, e.g., [ASS10,
Section VII.5]) to show that kQ′, where Q′ = σi(Q) is the quiver obtained from
Q by reversing all arrows starting or ending in i, is also amenable. To see this, let
C = Ci be the full subcategory of mod kQ′ of objects having no direct summand
isomorphic to the simple module S(i). Then every indecomposable object of
mod kQ′ is either contained in C or is isomorphic to S(i). As C is in the essential
image of F , the family of indecomposable modules of mod kQ′ is hyperfinite,
proving the claim. We will study this situation explicitly in Proposition 2.2.

(3) Let L|k be a separable field extension of finite degree [L : k] = n. Let A be a
finite dimensional k-algebra. Then restriction of scalars

AL mod→ Amod, N 7→ HomAL(AL, N)

is a hyperfiniteness preserving functor, where AL = A⊗k L.

6



2 Extended Dynkin quivers

As a first step towards proving the conjecture, we will consider those finite dimensional
k-algebras which come from quivers of extended Dynkin type. As Elek succeeded in
proving a result for string algebras (see [Ele17, Proposition 10.1]) that include the affine
quivers Ãn, this approach lends itself as a suitable next step.

We keep this treatise separate and in its own chapter. On the one hand this is done
to account for the fact that quiver representations have been more widely studied than
the representation theory of tame hereditary algebras in their full generality. We will
turn to this more general situation in Chapter 3. On the other hand, this chapter bears
witness to the fact that the study of extended Dynkin quivers, especially the tame
Kronecker quiver Θ(2) and the four-subspace quiver §(4), were the starting point of
this thesis.

2.1 Setup
Recall that a quiver is a quadruple Q = (Q0, Q1, s, t) of a finite set of vertices Q0,
a finite set of arrows Q1 between these vertices and two mappings s and t associating
to every arrow ρ ∈ Q1 its starting vertex respectively its terminating vertex. We may
concatenate arrows α and β provided t(α) = s(β) and write β ◦ α for this path. A
quiver Q is said to be connected if there is such a sequence of arrows connecting every
pair of vertices. Vertices which are not the terminating vertex of an arrow are said to
be sources, while vertices at which no arrow starts are said to be sinks.

Recall further that a representation M of a quiver Q over a field k is given by a
family of vector spaces

(
M(i)

)
i∈Q0

and k-linear maps M(ρ) : Ms(ρ) → Mt(ρ) for each
arrow ρ ∈ Q1. We denote such a representation by

M =
(
(M(i))i∈Q0

, (M(ρ))ρ∈Q1

)
.

The class of k-representations of a quiver Q along with its morphisms gives rise to the
category of k-representations of Q that we denote by Repk(Q). The full subcategory
of all finite dimensional representations will be denoted by repk(Q).
This category of representations repk(Q) is equivalent to the module category of

finite dimensional left modules over the path algebra kQ that we denote by mod kQ.
By εi, for i ∈ Q0, we denote the idempotent elements of this algebra corresponding to
the vertices of Q. Note that 1 = ∑

i∈Q0 εi.
We also recall that the path algebra of a quiver without oriented cycles (vel acyclic

quiver) is hereditary, that is the submodules of projective modules are also projective.

7



2 Extended Dynkin quivers

An

Dn

E6

E7

E8

Figure 2.1: The (simply-laced) Dynkin diagrams of types A, D and E

Key results for path algebras of quivers concern their representation type. Recall
that given a finite dimensional k-algebra A, we say that it is of finite representation
type provided there are only finitely many isomorphism classes of finite dimensional,
indecomposable A-modules. Otherwise, we say that A is representation-infinite. More-
over, a representation-infinite algebra A is of tame representation type if the indecom-
posable modules in each dimension come in finitely many one-parameter families with
only finitely many exceptions.
Results due to work of Gabriel [Gab72] as well as Nazarova [Naz73] and Donovan

and Freislich [DF73] for the algebraically closed case and Dlab and Ringel [DR76] for
arbitrary fields and valued quivers, provide a classification of those path algebras that
are of finite respective tame representation type.

Theorem 2.1 (Gabriel, Donovan–Freislich, Nazarova). [DW05, Theorems 9+10]

a) The path algebra of a (connected) quiver Q is of finite representation type if and
only if the underlying graph is a Dynkin diagram (listed in Figure 2.1).

b) The path algebra of a (connected) quiver Q is of tame representation type if and
only if the underlying graph is an extended Dynkin diagram (listed in Figure 2.2).

As a first result about quivers and the amenability of their path algebras, we revisit
a previous example of hyperfiniteness-preserving functors.

Proposition 2.2. Let Q be a quiver such that the path algebra kQ is of amenable
representation type. Let i ∈ Q0 be a sink. Let Q′ = σi(Q) be the quiver obtained from
Q by reversing all arrows which start or end in i. Then kQ′ is also amenable.

8



2 Extended Dynkin quivers

1 1 1 1

Ãn 1 1

1 1 1 1

1 1

D̃n 2 2 2 2

1 1

1

2

Ẽ6 1 2 3 2 1

2

Ẽ7 1 2 3 4 3 2 1

3

Ẽ8 2 4 6 5 4 3 2 1

Figure 2.2: The extended (vel affine) Dynkin diagrams of types Ã, D̃ and Ẽ, also show-
ing the minimal radical vector hQ. They are also called Euclidean diagrams.
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2 Extended Dynkin quivers

Proof. Let ε > 0 and set K := |Q1| + 1. By hypothesis, for all ε̃ > 0, there exists Lε̃
exhibiting the hyperfiniteness of mod kQ. Let M ′ ∈ mod kQ′ be indecomposable. If
M ′ ∼= S(i) is the simple at vertex i, we choose N ′ = M ′. Then, dimN ′ ≥ (1−ε̃) dimM ′,
and dimN ′ = dimS(i) ≤ L′ε for L′ε := max{Lε̃, 1}.
Thus, we may assume that M ′ 6∼= S(i). Then M := S−i M

′ is indecomposable as
a representation of kQ, where S−i is the reflection functor mod kQ′ → mod kQ (see,
e.g., [ASS10, Section VII.5]). By the hypothesis, for every ε̃ there exists a submodule
N ⊆M such that dimN ≥ (1− ε̃) dimM and N = ⊕m

l=1N
(l) with dimN (l) ≤ Lε̃. We

choose ε̃ = ε
K2 > 0,

Now, S+
i S
−
i M

′ ∼= M ′, so the short exact sequence

0→ N →M →M/N → 0,

yields an exact sequence

0→ S+
i N →M ′ → S+

i (M/N)→ Z → 0.

Note that the definition of S+
i and the Snake Lemma imply that Z is a direct sum

of copies of S(i). We let N ′ := S+
i N = ⊕m

l=1 S
+
i N

(l). Now, by the definition of the
reflection functor,

dimS+
i N

(l) =
∑
j∈Q0

dim
(
S+
i N

(l)
)
j

=
∑
j∈Q0,
j 6=i

dimN
(l)
j +

 ∑
α∈Q1,
t(α)=i

dimN
(l)
s(α) − dimN

(l)
i


≤
∑
j∈Q0,
j 6=i

dimN
(l)
j + |Q1|

∑
j∈Q0

dimN
(l)
j︸ ︷︷ ︸

=dimN(l)

≤ (|Q1|+ 1) dimN (l) ≤ (|Q1|+ 1)Lε̃.

On the other hand, as we put K := |Q1|+ 1,

dimN ′ = dimS+
i N = dimM ′ − dimS+

i (M/N) + dimZ

≥ dimM ′ −K dim(M/N)
= dimM ′ −K(dimM − dimN)
≥ dimM ′ −K dimM +K(1− ε̃) dimM

≥ dimM ′ −K2ε̃ dimM ′.

Thus, letting L′ε := max{1, Lε̃}, we are done.

Remark. This result will be generalised in Theorem 3.19.

In the remainder of this chapter, let Q be an acyclic, extended Dynkin quiver, that is
a quiver of type Ãn, D̃n, Ẽ6, Ẽ7 or Ẽ8 (see Figure 2.2) which has no oriented cycles. It
is well known that the module categories of the associated path algebras kQ are tame
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2 Extended Dynkin quivers

and hereditary (see Theorem 2.1 above and, e.g., [ASS10, Theorem VII.1.7]). We shall
write dimM for the dimension vector of some representation M , where

(dimM)i = dimkM(i)

for each vertex i ∈ Q0.
Recall the Euler bilinear form, which can be defined on the dimension vectors of the

representations by

〈dimX,dimY 〉 :=
∑
t≥0

(−1)t dimk ExttkQ(X,Y ),

the Tits form q : Z|Q0| → Z, that is, the corresponding quadratic form, q(x) = 〈x, x〉,
and its radical

rad q = {x ∈ Q|Q0| : q(x) = 0}.

We shall denote the minimal (integer) generator of rad q, the minimal radical vector
by hQ. Furthermore, there is a uniquely determined, normalised q-invariant linear
form ∂, such that ∂(X) = ∂(dimX) = 〈hQ,dimX〉, called the defect of X. This form
allows us to distinguish between preprojective (∂ < 0), regular (∂ = 0) and postinjective
(∂ > 0) indecomposables of mod kQ. We say that a module M is exceptional provided
it is indecomposable and has no self-extensions, that is, Ext1

kQ(M,M) = 0.
Also recall that mod kQ has Auslander–Reiten (AR) sequences, giving rise to the

Auslander–Reiten translate τ and its inverse. The category mod kQ may thus be de-
scribed by its Auslander–Reiten quiver ΓkQ, a translation quiver having as vertices
the isomorphism classes of indecomposable modules and arrows for the so-called ir-
reducible morphisms. Moreover, there exists a transformation c, called the Coxeter
transformation, such that for any module X without projective direct summand, we
have

dim τ(X) = c(dimX).

In what follows, we may also frequently use some elementary properties of the Coxeter
transformation and the Euler bilinear form, see for instance [ASS10, Lemma III.3.16].
Recall that the defect number dQ is the smallest positive integer d such that

cd(x)− x ∈ rad q for each x ∈ Z|Q0|.

Next, recall that the regular component R of ΓkQ is an Abelian category comprising
pairwise orthogonal1 stable2 tubes, of which at most three are inhomogeneous (vel
exceptional), consisting of more than one regular simple module, that is, simple with
respect to the Abelian subcategory R. As the regular simple modules in each tube
form a cycle under τ , we may therefore use a triple (p, q, r) of positive integers to list
the cycle lengths of the inhomogeneous tubes and call it the tubular type of Q.

1i.e. there are no non-zero homomorphisms between objects in different tubes
2i.e. they do not contain projective or injective objects

11
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We will further use the notion of a perpendicular category, defined for some module
X ∈ mod kQ by

X⊥ := {Y ∈ mod kQ : HomkQ(X,Y ) = 0 = Ext1
kQ(X,Y )}.

To proceed with the proof of the first major theorem, we gather some technical
lemmas. The first will be a result on the sum of the dimension vectors of the simple
regular modules in inhomogeneous tubes of ΓkQ.

Lemma 2.3. Let k be any field. Let T be an inhomogeneous tube of rank m in ΓkQ.
Let us denote the isomorphism classes of regular simple modules on the mouth of T by
S1, . . . , Sm such that τSi = Si−1 for i = 2, . . . ,m and τS1 = Sm. Then we have

m∑
i=1

dimSi = hQ.

Proof. For the case of an algebraically closed field, we may argue as follows: By [Rin84,
Theorem 3.6.(5)] in connection with [Rin84, Section 3.4], the regular component of ΓkQ
is given by certain tubes T(ρ), which are each generated by orthogonal indecomposable
modules E(ρ)

1 , . . . , E
(ρ)
mρ with endomorphism ring k. As these lie on the mouth of a stable

tube of rank mρ, the isoclasses S1, . . . , Sm correspond to the E(ρ)
i for some ρ. Now it

follows from an argument in the proof of [Rin84, 3.4.(10)] that ∑m
i=1 dimSi = hQ.

For the general case, one may inspect the relevant tables of [DR76, Chapter 6], where
the dimension vectors of the regular simple modules are listed.

Lemma 2.4. Let T be a tube of rank m ≥ 2 in ΓkQ. Let X be an indecomposable
regular module in T. Then there exists a submodule Y ⊆ X of codimension bounded by
the sum of the entries of hQ and a regular simple module T ∈ T such that Y ∈ T⊥.

Proof. Let us denote the isoclasses of regular simples on the mouth of T by T1, . . . , Tm
such that τTi = Ti−1 for i = 2, . . . ,m and τT1 = Tm. Following [Rin84, Chapter 3],
we define the objects Ti[`]. First, let Ti[1] := Ti for each 1 ≤ i ≤ m. Now, for ` ≥ 2,
recursively define Ti[`] to be the indecomposable module in T with Ti[1] as a submodule
such that Ti[`]/Ti[1] ∼= Ti+1[` − 1]. Thus Ti[`] is the regular module of regular length
` with regular socle Ti. Now, any regular indecomposable in T will be given as some
Ti[`]. We may define Ti[`] for all i ∈ Z by letting Ti[`] ∼= Tj [`] iff i ≡ j mod m. Note
that

dimTi[`] =
i+`−1∑
j=i

dimTj . (2.1)

By [Rin84, 3.1.(3’)], we have that

〈dimTi,dimTj〉 =


1, i ≡ j mod m,

−1, i ≡ j + 1 mod m,

0, else.

12
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This implies that for any j ∈ Z, 〈dimTj ,dimTi[`]〉 = 0, provided ` ≡ 0 mod m. Since
Ti[`] is uniserial, we have that Hom(Tj , Ti[`]) = 0 if and only if j 6≡ i mod m. As
m ≥ 2, this implies that for all i ∈ Z and ` ≡ 0 mod m, Ti[`] is contained in the
perpendicular category of some regular simple, that is in T⊥i+1.
If ` 6≡ 0 mod m, then write ` = n ·m + r, where 0 < r < m. Then there is a short

exact sequence
0→ Ti[nm]→ Ti[`]→ Z → 0,

where dimZ ≤ hQ, using (2.1) and Lemma 2.3. Thus, we have found a suitable
submodule Ti[nm] ∈ T⊥i+1.

Lemma 2.5. Let X = τ−rP (i) be some indecomposable preprojective kQ-module of
defect ∂(X) = −d < 0. Let T be a tube of rank m > d. Then there is a simple regular
module S ∈ T such that X ∈ S⊥.

Proof. Clearly,

−d = 〈hQ, dimX〉 = −〈dimX,hQ〉 = −〈dimP (i), hQ〉 = −(hQ)i,

so hQ has a component equal to d. Let S1, . . . , Sm be the regular simple modules on
the mouth of T. By Lemma 2.3, ∑m

j=1 dimSj = hQ. Now, since m > d, only d out of
the m modules can have a vector space at vertex i which is non-zero. Let j0 be such
that (dimSj0)i = 0. Let 1 ≤ j ≤ m. Then

〈dimSj , dim τ−rP (i)〉 = −〈dim τ−rP (i), c(dimSj)〉 = −〈dimP (i), cr+1(dimSj)〉
= −〈dimP (i), dimSj−r−1〉 = −(dimSj−r−1)i.

Now, we can choose j such that j − r − 1 ≡ j0 mod m. Since HomkQ(Sj , X) = 0,
for Sj is regular and X is preprojective, we must have that Ext1

kQ(Sj , X) = 0. Thus,
X ∈ S⊥j .

Indeed, a slightly stronger result can be shown.

Lemma 2.6. Let X = τ−rP (i) be some indecomposable preprojective kQ-module of
defect ∂(X) = −d < 0 and r > dQ. Let T be an inhomogeneous tube of rank m > d/2.
Then one of the following holds:

(1) There exists a simple regular module S ∈ T such that X ∈ S⊥.

(2) There exists a submodule Y ⊆ X and regular simple modules S, T ∈ T such that
0→ Y → X → T → 0 is exact and Y ∈ S⊥.

Proof. Clearly,

−d = 〈hQ, dimX〉 = −〈dimX,hQ〉 = −〈dimP (i), hQ〉 = −(hQ)i,

so hQ has a component equal to d. Let S1, . . . , Sm be the regular simple modules on
the mouth of T. Then ∑m

j=1 dimSj = hQ by Lemma 2.3. We will write dj = (dimSj)i
and have ∑m

j=1 dj = d.

13
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Now, for 1 ≤ j ≤ m,

dim HomkQ(X,Sj)− dim Ext1
kQ(X,Sj) = 〈dimX,dimSj〉 = 〈dim τ−rP (i),dimSj〉

= 〈dimP (i),dimSj−r〉 = (dimSj−r)i = dj−r,

where dim Ext1
kQ(X,Sj) = dimDHomkQ(Sj+1, X) = 0 by [Rin84, 2.4.(6*)] and the fact

that there are no non-zero maps from the regular to the preprojective component.
Thus, if there is some j such that dj−r > 0, we can choose some non-zero map

θ : X → Sj .

The image im θ ⊆ Sj must be regular or has a preprojective summand. If there was a
preprojective summand Z, it must be to the right ofX in ΓkQ. But for any preprojective
module M in the r-th τ -translate of the projectives or further to the right in ΓkQ, we
know that dimM = dim τdQM − ∂(M)hQ > hQ by the definition of the defect. On
the other hand, dim im θ ≤ dimSj ≤ hQ, a contradiction. Thus, im θ must be regular.
Since Sj is a regular simple, this implies that θ is surjective. We therefore have an
exact sequence

0→ Y → X → Sj → 0,
by letting Y := ker θ. Applying HomkQ(−, Sj), we get an exact sequence

ξ : 0→ HomkQ(Sj , Sj)→ HomkQ(X,Sj)→ HomkQ(Y, Sj)
→ Ext1

kQ(Sj , Sj)→ Ext1
kQ(X,Sj).

Since Sj is an inhomogeneous regular simple, there are no self-extensions, and we have
Ext1

kQ(Sj , Sj) = 0. Hence, ξ becomes the short exact sequence

ξ′ : 0→ EndkQ(Sj)→ HomkQ(X,Sj)→ HomkQ(Y, Sj)→ 0.

Now, assume dj−r > 1 for all j. Using the hypothesis, we would have

2m ≤
m∑
j=1

dj = d < 2m,

a contradiction. Therefore, there is some j0 with dj0−r ≤ 1.
If dj0−r = 1, we have that dim HomkQ(X,Sj0) = 1, so the exact sequence ξ′ implies

that HomkQ(Y, Sj0) must be zero by dimension arguments, for dim EndkQ(Sj0) ≥ 1.
Hence, using the Auslander–Reiten formulae (see, e.g., [ASS10, Corollary IV.2.14]), we
have

Ext1
kQ(Sj0+1, Y ) = DHomkQ(Y, Sj0) = 0.

Along with the fact that HomkQ(Sj0+1, Y ) = 0, since there are no maps from regular
to preprojective modules, this implies that Y ∈ S⊥j0+1 and we are in case (2).
If dj0−r = 0, we have that dim HomkQ(X,Sj0) = 0. So, similarly,

Ext1
kQ(Sj0+1, X) = 0, HomkQ(Sj0+1, X) = 0,

and X ∈ S⊥j0+1, showing that we are in case (1).

14
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To prove hyperfiniteness results for postinjective indecomposables, we will employ a
descent argument based on the following lemma.

Lemma 2.7. Let X = τ rI(i) be some indecomposable postinjective module of defect
∂(X) = d. Then there is an injective module I(j) such that there exists a non-zero
homomorphism θ : X → I(j) and for any direct summand Z of ker θ, we have that
defect ∂(Z) < d.

Proof. Let E(X) be the injective envelope of X, and take I(j) to be some direct
summand of E(X). This yields a non-zero homomorphism θ : X → E(X) → I(j).
Consider the exact sequence

0→ ker θ → X → im θ → 0.

Since there is a non-zero map from a postinjective module to im θ, the latter must be
postinjective or zero. Yet, im θ 6= 0, since θ is non-zero. Thus, im θ has positive defect,
implying that ∂(ker θ) < ∂(X). If ker θ only had preprojective or regular summands Z,
we are done, for then ∂(Z) ≤ 0. Thus, we may assume that there is some postinjective
direct summand Z. Since Z embeds into ker θ and the kernel embeds into X, we get a
short exact sequence

0→ Z → X → X/Z → 0,

using the fact that mod kQ is Abelian. Since X is postinjective, again X/Z must be
postinjective or zero. If X/Z was zero, then Z ∼= ker θ ∼= X, a contradiction, since
∂(ker θ) 6= ∂(X). Thus, ∂(X/Z) > 0, and hence we may conclude that the defect
∂(Z) < ∂(X) = d.

2.2 The special case of the 2-Kronecker quiver
In this section, we will prove that the tame Kronecker quiver Θ(2), which has two
vertices connected by two equi-oriented arrows, is of amenable representation type.
This quiver is of type Ã1. The theorem in this section will be used as the base case in
the proof of Main Theorem A. It follows from the results on string algebras in [Ele17,
Proposition 10.1], but we give a direct and independent proof here for illustration
purposes and for the convenience of the reader.

Lemma 2.8. Let A be a tame hereditary algebra. Assume that the preprojective in-
decomposable modules indP and the regular indecomposable modules indR form hyper-
finite families. Then indQ is also hyperfinite.

Proof. By Lemma 2.7, for each indecomposable postinjective module X, we can find
a submodule Y := ker θ of strictly smaller defect. Moreover, if Y had a postinjective
summand Z, it must have defect ∂(Z) < ∂(X). We proceed by an induction on the
defect d. If d = 1, then we can choose the hyperfinite family N0 = P ∪ R of all
preprojective and regular modules. For all postinjective indecomposables of defect
d = 1, the submodule Y must be in addN0, since there are no non-zero postinjective
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modules Z with defect ∂(Z) < 1. The family N0 is hyperfinite by the hypothesis and
Proposition 1.2. Moreover, the codimension of Y is bounded by the dimension of the
indecomposable injectives, of which there are only finitely many. Hence, we can use
Proposition 1.4 to prove the hyperfiniteness of the indecomposable postinjectives of
defect one. We recursively define

Nd := Nd−1 ∪ {indecomposable postinjectives of defect d}.

Note that the base case implies that N1 is hyperfinite. For the induction, note that
Lemma 2.7 also yields a submodule in addNd for every indecomposable postinjective
of defect d+ 1 of bounded codimension. Assuming the hyperfiniteness of Nd, Proposi-
tion 1.4 yields that Nd+1 is hyperfinite. This concludes the induction, as the defect of
the indecomposable modules is bounded.

Theorem 2.9. Let k be any field. Then the path algebra of the 2-Kronecker quiver
Θ(2) is of amenable representation type.

Proof. We fix notation for the vertices and arrows as follows.

1 2.
a

b

It is well-known (see, e.g., [Ben98, Theorem 4.3.2] or [Bur86]) that the indecompos-
able preprojective and postinjective k-representations of Q can be parametrised by

Pn : kn kn+1, and Qn : kn+1 kn, respectively,

[ id
0
]

[ 0
id
]

[ id 0 ]

[ 0 id ]

both for n ≥ 0, while the indecomposable regular representations can be parametrised
by

Rn(φ, ψ) : kn kn,

φ

ψ

where either φ is the identity and ψ is given by the companion matrix of a power
of a monic irreducible polynomial over k, or ψ is the identity and φ is given by the
companion matrix of a monomial.
We will show that the preprojective component P, the regular component R and the

postinjective component Q are each hyperfinite families to conclude the amenability of
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e1

f1 f2

e2

f3

e3

f4

e4

f5

e5

f6

. . .

. . .

. . . en−2

fn−2

en−1

fn−1

en

fn fn+1

Figure 2.3: The coefficient quiver of Pn, showing a decomposition for n ≡ 1 mod 3 and
Kε = 3.

mod kQ. We will give an argument for the indecomposable objects in each component
and then apply Proposition 1.2 to extend the result.
We start with the preprojectives and let ε > 0. Set Kε := d 1

2εe+ 1 and Lε = 1
ε + 3.

Let X = Pn be some indecomposable preprojective. If dimX ≤ Lε, there is nothing to
show. We may thus assume that dimX > Lε, implying n ≥ Kε, and write n = j ·Kε+r,
where 0 ≤ r < Kε. Now consider the standard basis {e1, e2, . . . , en} of kn. Let U be
the submodule of X generated by the subset

{e1, . . . , eKε−1}∪{eKε+1, . . . , e2Kε−1}∪· · ·∪{e(j−1)Kε+1, . . . , ejKε−1}∪{ejKε+1, . . . , en},

dropping every Kε-th basis vector. Then U decomposes into j direct summands of type
PKε−1 and a smaller rest term in case r 6= 0. All summands will thus be of k-dimension
smaller than 2(Kε − 1) + 1 < Lε. Moreover,

dimU = dimX − j = dimX − n− r
Kε

= dimX − dimX − 1
2Kε

+ r

Kε

≥ dimX − ε(dimX − 1) > (1− ε) dimX.

This shows that the family of indecomposable preprojective modules P(kQ) is hyper-
finite. We exemplify this process in Figure 2.3.

e1

f1

e2

f2

e3

f3

e4

f4

e5

f5

. . .

. . .

en−5

fn−5

en−4

fn−4

en−3

fn−3

en−2

fn−2

en−1

fn−1

en

fn

Figure 2.4: The coefficient quiver of some Rn(id, ϕ), exhibiting a way to find a suitable
submodule for n ≡ 2 mod 3, Kε = 3.

If X = Rn(φ, ψ) is an indecomposable regular module, we may consider the sub-
module Y generated by the basis vectors {e1, . . . , en−1} of the vector space at vertex 1.
Note that we assume that ψ corresponds to the Frobenius companion matrix of a power
of a monic polynomial. Then Y ∼= Pn−1, so by the above it belongs to the hyperfinite
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family P(kQ). We have that dimY = dimX − 1. Thus, an application of Proposi-
tion 1.4 with H = 1 gives the hyperfiniteness of the indecomposable regular modules.
See Figure 2.4 for an example.

To deal with the postinjective modules, we apply Lemma 2.8. Now apply Proposi-
tion 1.2 to P(kQ) ∪R(kQ) ∪Q(kQ) to see that mod kQ is hyperfinite, and thus kQ is
amenable.

2.3 Proof of Main Theorem A
Having prepared some technical results and having established the base case for the Kro-
necker quiver, we now move to prove a proposition that will help in proving Main The-
orem A by induction.

Proposition 2.10. Let Q be an acyclic quiver.

(1) If T ∈ mod kQ is an exceptional module without preprojective summands, T⊥ is
equivalent to mod kQ′ for some quiver Q′.

(2) Assume Q is of tubular type (p, q, r), where p > 1, and all extended Dynkin quivers
of type (p−1, q, r) are amenable. If T is an inhomogeneous simple regular module
belonging to a tube of rank p in ΓkQ, then T⊥ is hyperfinite.

Proof. By [GL91, Proposition 1.1], in both cases, T⊥ is an exact Abelian subcategory of
mod kQ closed under the formation of kernels, cokernels and extensions. What is more,
[GL91, Theorem 4.16] yields that T⊥ = mod Λ for some finite dimensional hereditary
algebra Λ, along with a homological epimorphism ϕ : kQ→ Λ, which induces a functor
ϕ∗ : mod Λ→ mod kQ. By Morita equivalence, we may assume that Λ is basic.

Now, if S is any simple Λ-module, then S ∼= P/ rad(P ), where P is a principal
indecomposable Λ-module. By [GL91, Theorem 4.4], the natural maps

EndΛ(P )→ EndkQ(ϕ∗P ) and Ext1
Λ(P, P )→ Ext1

kQ(ϕ∗P,ϕ∗P )

are isomorphisms, so ϕ∗ maps exceptional modules to exceptional modules. It follows
from [Rin94, Corollary 1] that

EndkQ(ϕ∗P ) ∼= EndkQ(E),

for some simple kQ-module E. But the simple kQ-modules all have trivial endomorph-
ism ring k. Next, note that by [AF92, Corollary 17.12],

EndΛ(S) ∼= EndΛ(P )/J (EndΛ(P )),

where J denotes the Jacobson radical. Recall that EndΛ(P ) ∼= EndkQ(ϕ∗P ) ∼= k, thus
J (EndΛ(P )) = 0. Hence it follows that EndΛ(S) ∼= k. At large,

End(Λ)/J (End(Λ)) ∼= k × · · · × k.
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Finally, [ARS95, Proposition III.1.13] shows that Λ is isomorphic to kQ′ for some
quiver Q′.
It remains to prove the additional statements of (2). The proof of [Sch86, Theorem 13]

implies that Λ is tame and hence the path algebra of an extended Dynkin quiver, and
has tubular type (p− 1, q, r). By the hypothesis, it is amenable.

Now, if F : mod kQ′ → mod Λ → T⊥ is an equivalence, the simples S(i) of kQ′ get
mapped to certain modules Bi in mod kQ. The k-dimension of any module M over a
path algebra is determined by the length of any composition series. Such a series for
M in kQ′ gets mapped to a composition series in the perpendicular category, and thus
a series in mod kQ, such that the factor modules are isomorphic to some Bi. Letting
K2 := max{dimBi}, we thus know that

dimk F (M)kQ ≤ K2 dimkMkQ′ .

On the other hand, if F (M) ∈ T⊥, any submodule of F (M) in T⊥ is also a submodule
in mod kQ, so a composition series of F (M) in mod kQ is at least as long as one in T⊥.
Thus,

dimkMkQ′ ≤ dimk F (M)kQ,

using the fact that the length of M in mod kQ′ equals the length of F (M) considered
as an object of T⊥. Hence by Proposition 1.5, we have that each T⊥ is a hyperfinite
family.

Remark. The above proposition shows a slight improvement of [GL91, Theorem 10.1(3)],
by removing the condition on k to be algebraically closed.
We have now gathered the necessary accessories to prove Main Theorem A.

Theorem 2.11. Let Q be an acyclic quiver of extended Dynkin type Ãn, D̃n, Ẽ6, Ẽ7
or Ẽ8. Let k be any field. Then the path algebra kQ of Q is of amenable representation
type.

Proof. Recall the tubular types and minimal radical vectors hQ of the extended Dynkin
diagrams, see Table 2.1. Note that Ãp,q is a quiver of type Ãn with p+q = n+1 vertices,
where there are p arrows in clockwise and q arrows in anti-clockwise orientation.

We will prove the claim by induction on n for the case of the acyclic Ãn and for D̃n,
and use the case of D̃5 to prove it for the Ẽ-family, stepping from 6 to 7 to 8.
Case Ãn. For Ã1, the only acyclic orientation is the 2-Kronecker quiver, for which

its path algebra has been shown to be of amenable type in Theorem 2.9.
Now assume all acyclic quivers Ãn, for some n ≥ 1, are of amenable representation

type. Let Ãp,q be of type Ãn+1. Then p + q = n + 2 ≥ 3. We may thus assume
that p ≥ 2, and choose a tube T of rank m := p, and denote the isoclasses of regular
simples in this tube by T1, . . . , Tm. From the minimal radical vector, we see that all
indecomposable preprojective kQ-modules X have defect ∂(X) = −1 like in the proof
of Lemma 2.5. Hence Lemma 2.5 implies that every indecomposable preprojective is
contained in the perpendicular category T⊥i for some 1 ≤ i ≤ m. By Proposition 2.10,
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Q (mi) hQ

Ãp,q (p, q) 1...1
1 1

1...1

D̃n (2, 2, n− 2) 1 1
2 ... 2

1 1

Ẽ6 (2, 3, 3) 1
2

1 2 3 2 1

Ẽ7 (2, 3, 4) 2
1 2 3 4 3 2 1

Ẽ8 (2, 3, 5) 3
2 4 6 5 4 3 2 1

Table 2.1: Tubular types and minimal radical vector of the acyclic, extended Dynkin
diagrams (see, e.g., [Rin79, p. 335]).

each T⊥i is hyperfinite. This shows that the preprojectives form a hyperfinite family,
using Proposition 1.2.
Next, we consider the regular modules. Indecomposable regular modules in a tube

other than T will be contained in T⊥1 by [Rin84, 3.1.(3’)]. By Lemma 2.4, any reg-
ular indecomposable in T either is contained in the perpendicular category of some
regular simple in T or has a submodule of globally bounded codimension that is in
the perpendicular category of some regular simple in T. But by the above argument,
the perpendicular categories are hyperfinite. In the latter case, we can apply Proposi-
tion 1.4 to show the hyperfiniteness of these indecomposable regular modules.
For the postinjective modules, we apply Lemma 2.8.

Case D̃n. For the case of D̃4, choose a tube T of rank 2, and denote the regular
simple modules in T by S and T . In this case, as an extended Dynkin quiver of tubular
type (1, 2, 2) is one of type Ã2,2, which is known by the above to have an amenable
path algebra, Proposition 2.10 implies that S⊥ and T⊥ are hyperfinite.
All preprojective modules X of defect ∂(X) = −1 are in S⊥ or T⊥ by Lemma 2.5.

Using Lemma 2.6, we can find a submodule Y for all but finitely many indecomposable
preprojectives X of defect ∂(X) = −2, which are not themselves in S⊥ or T⊥. Since the
dimension vector of a regular simple in T is bounded, the conditions of Proposition 1.4
are satisfied for all but finitely many indecomposable preprojectives of defect −2. This
shows that the preprojectives form a hyperfinite family.
Moreover, the regular modules are hyperfinite: If they are in a tube other than T,

they will be contained in S⊥ by [Rin84, 3.1.(3’)]. Choosing a second inhomogeneous
tube T′ and a regular simple U ∈ T′, we know that T ⊂ U⊥, which is also hyperfinite.

We are left to deal with the postinjective modules. Here, we again apply Lemma 2.8.
This proves the claim for D̃4, using Proposition 1.2.
Now assume the case of D̃n has been established for some n ≥ 4. To prove the

amenability of D̃n+1, choose T to be the unique tube of maximal rank n−1. Similarly to
the base case D̃4, S⊥ is amenable for S ∈ T, since the tubular type (2, 2, (n+ 1)− 2− 1)
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belongs to D̃n. By inspection of Table 2.1 (and using an argument from the proof
of Lemma 2.5), we see that the indecomposable preprojectives have negative defect
one or two. Hence, they are in a hyperfinite family by Lemma 2.5. The regular
indecomposables are hyperfinite by an argument similar to that of the base case. To
deal with the indecomposable postinjectives, we again apply Lemma 2.8.

Case Ẽn. We proceed with Ẽn for n = 6, 7, 8. Assume the path algebras of tubular
type (2, 3, n−4) have already been shown to be of amenable type. By choosing T to be
a tube of maximal rank m = n− 3, we find regular simple modules S such that S⊥ is
hyperfinite, for the argument of Proposition 2.10 shows that the perpendicular category
is of tubular type (2, 3,m−1). Inspection tells us that any indecomposable preprojective
module will have negative defect less than 2m. Thus we can use Lemma 2.6—if needed
in connection with Proposition 1.4—to show that all but finitely many, and hence
all preprojective indecomposables form a hyperfinite family. For the indecomposable
regular and postinjective modules, use the same arguments as for D̃n.
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3 Tame hereditary algebras

3.1 Setup
In dealing with tame hereditary algebras, we will follow the notation, conventions and
theory laid out for example in [BGL87, Section 1] and [Rin79, Section 1]. We start by
recalling the important notions used below.

In the following, let k be a (commutative) field and A a finite dimensional k-algebra.
Since the representation type is invariant under Morita equivalence, we may assume
that A is basic. Further assume that A is a hereditary algebra, that is, an algebra such
that all submodules of projective A-modules are projective again, or equivalently such
that gl. dimA ≤ 1.
For M ∈ modA, the dimension vector of M is given by

dim(M) =
(
dimEnd(Pi) HomA(Pi,M)

)
i=1,...,n

,

where (P1, . . . , Pn) is a complete system of pairwise non-isomorphic indecomposable
projective modules. We call n the rank of A. Recall that dim can serve as a natural
map from modA to its Grothendieck group K0(A). We denote the element of K0(A)
determined by the A-moduleM by [M ]. Recall further thatK0(A) is the Abelian group
generated by the isomorphism classes of indecomposable objects of modA subject to the
relation that [Y ] = [X] + [Z] whenever 0→ X → Y → Z → 0 is a short exact sequence
in modA. In the present situation, K0(A) hence coincides with the free Abelian group
with n generators, Zn.
By the formula

〈dimM,dimN〉A := dimk HomA(M,N)− dimk Ext1
A(M,N),

we define a bilinear form on K0(A) and call it the Euler form of A. We denote the
associated quadratic form by qA = 〈−,−〉A and call it the Tits-form of A. The homo-
logical bilinear form can also be expressed combinatorially: On the standard basis ei
given by the dimension vectors of the simple modules, put

〈ei, ej〉 = δij dimk EndA(Pi)− dimk εi J /J 2 εj ,

where δij is the Kronecker delta, J is the Jacobson radical of A and εi is the idempotent
associated to Pi such that Aεi = Pi. Note that the endomorphism rings are division
rings over k. Further note that this is the bilinear form from [Rin76] and leads to the
quadratic form as in [Rin79, Section 1].

22



3 Tame hereditary algebras

In addition to this bilinear form, we can also associate to a basic, finite dimen-
sional k-algebra a valued diagram in the following way: The vertices correspond to
the isomorphism classes of simple modules Si of A, while there is an edge i → j if
Ext1

A(Si, Sj) 6= 0. Note that this Ext-space is a left-End(Si)-right-End(Sj)-bimodule.
We label the edge by (dij , d′ij), where

dij = dim End(Si)Ext1
A(Si, Sj)

and
d′ij = dimDExt1

A(Si, Sj)End(Sj).

However, in case dij = d′ij = 1, we may omit the label. For more details, also see
[DR76, Section 1; Rin79, Section 1] or [Ben98, Section 4.1].
Note that a related combinatorial description is achieved by generalised Cartan matrices
or a Cartan datum (see, e.g., [Moo69] and [Kac90, §1.1; HK16, Sections 3-4]).

For the ensuing definition, we will follow [Cra91; Rin79, Section 1].

Definition 3.1. A connected, finite dimensional k-algebra A is called tame heredit-
ary provided A is hereditary and A is of tame representation type, that is its quadratic
form qA is semidefinite but not positive definite.

Given the first two terms of a minimal projective resolution P1
f−→ P2 → M of a

left A-module M , we denote by TrM the cokernel of Hom(f,AA), a right A-module.
By τ(M) := DTrM we denote the k-dual of this transpose and call it the Auslander–
Reiten translation. Similarly, we call τ−1 = TrD the inverse Auslander–Reiten trans-
lation. For hereditary A, τ is functorial, vanishes on the projective modules and
induces an equivalence with inverse τ−1 from the category of all finite dimensional
A-modules without non-trivial projective summands into the category of all finite
dimensional A-modules without non-trivial injective summands. Restriction to the
former subcategory gives an exact functor. We further define a group isomorph-
ism c : K0(A)→ K0(A) such that c ([M ]) = [τM ] for nonprojective indecomposable
A-modules M and call it the Coxeter transformation. Note that we have

〈x, y〉 = −〈y, c(x)〉 = 〈c(x), c(y)〉,

and hence the quadratic form qA is invariant under this transformation.
Using τ , we can distinguish between up to three kinds of indecomposable modules

in modA: The preprojective indecomposable modules are of the form τ−m(Pi) for
some non-negative integer m and some i ∈ {1, . . . , n}. The postinjective indecom-
posable modules are of the form τm(Ii) for some non-negative integer m and some
i ∈ {1, . . . , n}. Here, the Ii denote the indecomposable, injective modules. The re-
maining indecomposable modules and their finite direct sums are called regular.
Let us now assume that A is tame. The radical {x ∈ K0(A) : qA(x) = 0} of the

associated semidefinite quadratic form qA is then generated by a vector hA whose
entries are positive integers and at least one of them is one. We call this the minimal
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3 Tame hereditary algebras

P
. . .

. . .

R
. . .

. . .

Q

Figure 3.1: Structure of the module category modA of a tame hereditary algebra A.

positive radical element of A. Further recall that there exists an indecomposable regular
module S with dim(S) = hA. Any indecomposable A-moduleM with dimM a multiple
of hA will be called homogeneous. Related with S is the linear form 〈dimS,−〉 on
K0(A). We put ∂M := ∂(dimM) := 1

r 〈dimS, dimM〉 for the normalised form such
that ∂Pi = −1 for some i ∈ {1, . . . , n}. We will consider this form as a function
∂ : modA → Z and call it the defect of A. Note that it is also invariant under c.
One of the main properties of the defect is that we can use it to characterise the
preprojective, regular and postinjective indecomposables. Namely, ∂M < 0 [∂M = 0,
∂M > 0] if and only if M is preprojective [regular, postinjective, respectively]. The
closure of the preprojective, regular and postinjective indecomposable modules under
finite direct sums will be denoted by P(A), R(A) and Q(A), respectively.

Using these facts, we can establish that in the tame hereditary representation type
case, the module category can be depicted as in Figure 3.1. Within in the picture,
non-zero morphisms only exist from left to right.
In the tame case, the finite dimensional regular modules R = R(A) also form an

exact Abelian subcategory. As this category is Abelian, we consider its simple objects
and call them regular simple. If M is in R, the sum of the regular simple submodules
of M is called the regular socle of M , and the length n of a regular composition series

0 = M0 ⊂M1 ⊂ · · · ⊂Mn−1 ⊂Mn = M,

withMi/Mi−1 regular simple for all i, is called the regular length of M . Given a regular
simple module S and n ∈ N, there is a unique indecomposable regular module S[n] with
regular socle S and of regular length n, and every indecomposable regular module is of
this form.
It is therefore useful to consider the set of (isomorphism classes of) regular simple

modules. On this set, τ operates with finite orbits, and all but at most three orbits
are one element sets. Let X be the set of these orbits. If S and S′ are regular simple,
then Ext1

A(S, S′) 6= 0 if and only if S′ = τS. Thus, the category R decomposes as the
direct sum of categories Rt, where t runs through the set X, and an indecomposable
regular module with regular composition series given by {Mi} belongs to Rt if and only
if one—and therefore all—of the regular composition factors Mi/Mi−1 belongs to Rt.
We have thus decomposed R ∼=

∐
t∈XRt(A) into uniserial subcategories Rt(A), where

each Rt(A) has only finitely many simple objects. We call the set of (isomorphism
classes of) indecomposable objects in such a uniserial category Rt a tube and use T to
denote it for a fixed t ∈ X. If a tube T does not contain projective or injective objects,
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3 Tame hereditary algebras

we say that it is stable. The regular simple modules of Rt are said to form the mouth
of the corresponding tube T.

Recall further that the tubular X-family R is separating, as R is standard,

Hom(Q,P) = Hom(Q,R) = Hom(R,P) = 0,

and given t ∈ X, any map P → Q can be factored through Rt. In this situation, as the
indecomposable regular modules belong to tubes, we may write T instead of R and Tt
instead of Rt.

For S regular simple in Rt, let nt denote the smallest positive integer such that

τntS ∼= S.

We call nt the rank of the tube corresponding to R(t). Note that S[nt] is always homo-
geneous, whereas modules S[i], with 1 ≤ i < nt are not homogeneous. For S regular
simple in Rt, S itself is homogeneous if and only if nt = 1, if and only if all modules
in Rt are homogeneous. In this case, we say that Rt itself is homogeneous. Other-
wise, we call Rt inhomogeneous or exceptional. Recall that there are at most three
exceptional tubes. We collect the tuple of the nt for which Rt is inhomogeneous as a
triple (n1, n2, n3). It determines the tubular type of A. Describing X in general may be
difficult, but X is always an infinite set. In the case that k is algebraically closed, we
can identify X with P1(k), the points of the projective line over k.

A classification We now want to recall a classification of the tame hereditary algebras.
We start by introducing two classes of algebras.

Given a k-algebra A and an A-bimodule M , on which k acts centrally, in general, we
can form the tensor algebra

TA(M) :=
⊕
n≥0

M⊗n = A⊕M ⊕ (M ⊗AM)⊕ (M ⊗AM ⊗AM)⊕ . . . .

Note that if A is semisimple, TA(M) is hereditary. Those hereditary tensor algebras
that are tame have been studied closely for instance by [DR76]. The underlying graphs
that occur in this case (excluding the finite representation type cases) are the extended
Dynkin diagrams of Figure 3.2.
We also recall the following from [DR78, Section 1]: For a field k, a k-automorphism ε

and an (ε, 1)-derivation δ of k, we define the k-k-bimodule M(ε, δ) which as a left
k-vector space is kk ⊕ kk, while the right k-action is given by

(a, b) · λ = (aλ+ bδ(λ), bε(λ)) for a, b, λ ∈ k.

We then denote by Ãn(ε, δ) the (n+ 1)× (n+ 1)-matrix ring
k
k k 0
...

... . . .
k k . . . k

M(ε, δ) k . . . k k

 .
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Ẽ
7

Ẽ
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3 Tame hereditary algebras

We can now recall the desired classification:

Theorem 3.2. [DR78, Corollary 2] A hereditary finite dimensional k-algebra A is of
tame representation type if and only if it is Morita equivalent to the product of a tame
tensor algebra and a finite number of algebras of the form Ãn(ε, δ).

We further note that Ã1(ε, δ) is indeed a tensor algebra. Thus, all connected tame
hereditary algebras of rank two are tensor algebras.
A first lemma pertaining the existence of preprojective submodules of bounded codi-

mension of regular modules will be used in the next section but also later on.

Lemma 3.3. Let A be a finite dimensional tame hereditary algebra. Denote by q the
maximum of the dimensions of the indecomposable injective modules. Let R be an
indecomposable regular module. Then there exists a preprojective submodule U ⊆ R
such that

dimk R− dimk U ≤ q.

Proof. Let S be the regular socle of R. Then there exists a non-zero map f : S → I,
where I is an indecomposable injective module. Since I is injective and ι : S → R is
injective, this map lifts to a map f̄ : R→ I. Denote U := ker f̄ and K := ker f . Using
the Snake Lemma, we get an exact commutative diagram

0 0

0 K U R/S 0

0 S R R/S 0

0 I I 0

0 0

ι

f f̄

Clearly, K and U as subobjects of regular modules cannot have postinjective sum-
mands, as there are no non-zero homomorphisms Q → R. Assume that U had a
regular summand. Then this summand must contain S respectively ι(S), for this is
the smallest regular submodule of R, using the fact that the regular modules form a
uniserial category and no other tubes map to R. But then we have

0 = f̄(U) ⊃ f̄(ιS) = f(S) 6= 0,

a contradiction. Hence U can only have preprojective summands and is therefore
preprojective.
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3 Tame hereditary algebras

3.2 Finding large submodules for rank two algebras
As was the case for path algebras of affine quivers, we begin our study by considering
algebras of rank two, the non-algebraically closed analogue of the 2-Kronecker quiver
case. As the matrix ring Ã1(ε, δ) is a tensor algebra, the representation theory of all
tame hereditary algebras of rank two is covered by the methods of [DR76].

Lemma 3.4. Let A be a tame hereditary algebra of rank two. Then there is g ∈ N+

such that
c±(x) = x± ghA∂(x), for all x ∈ K0(A).

Proof. Recall that the defect is given by ∂(x) = 1
r 〈hA, x〉 for some r ∈ N+. We show the

claim by a case-by-case analysis. There are two types of algebras of rank two, namely
Ã12 with label (2, 2) and Ã11. For the latter, we also take into consideration the two
possible orientations with labels (1, 4) and (4, 1).

label (2, 2). Here, we have hA = (1, 1) and the Coxeter transformation (respectively
its inverse) on Z2 is given by

c =
(
−1 2
−2 3

)
.

Now

c(x1, x2) = (−x1 + 2x2,−2x1 + 3x2) = (x1, x2) + (−2x1 + 2x2,−2x1 + 2x2)
= (x1, x2) + (2, 2)(−x1 + x2).

On the other hand, we have

∂(x) = 〈hA, x〉 = 〈e1, x〉+ 〈e2, x〉

=
(
x1 dimk EndAP1 − x2 dimk ε1 J /J 2 ε2

)
+
(
x2 dimk EndAP2 − x1 dimk ε2 J /J 2 ε1

)
= x1 + x2 − 2x1 = −x1 + x2.

label (1, 4). Here, we have hA = (2, 1) and the Coxeter transformation (respectively
its inverse) on Z2 is given by

c =
(
−1 4
−1 3

)
.

Now

c(x1, x2) = (−x1 + 4x2,−x1 + 3x2) = (x1, x2) + (−2x1 + 4x2,−x1 + 2x2)
= (x1, x2) + (2, 1)(−x1 + 2x2).
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On the other hand, we have

∂(x) = 1
2〈hA, x〉 = 1

2 (2〈e1, x〉+ 〈e2, x〉)

= (x1) + 1
2 (4x2 − 4x1) = −x1 + 2x2.

label (4, 1). Here, we have hA = (1, 2) and the Coxeter transformation (respectively
its inverse) on Z2 is given by

c =
(
−1 1
−4 3

)
.

Now

c(x1, x2) = (−x1 + x2,−4x1 + 3x2) = (x1, x2) + (−2x1 + x2,−4x1 + 2x2)
= (x1, x2) + (1, 2)(−2x1 + x2).

On the other hand, similar to the other orientation, we have ∂(x) = −2x1 + x2.

Proposition 3.5. Let P be an indecomposable projective module of defect ∂(P ) = −1.
For i ≥ 0, in type Ã11, consider the modules P [i] := τ−iP and in type Ã12 consider
the indecomposable preprojective modules P [i] with dimP [i] = dimP + ihA. Choose
some non-zero homomorphism P → P [1]. Let R be the regular module given as the
cokernel of this map and denote by R[m] the unique indecomposable regular module with
regular socle R and of regular length m. Then for any n > 0 and m ≤ n, there exists
an epimorphism φn,m : P [n]�R[m] with kernel P [n−m].

Proof. Let P be an indecomposable projective module of defect ∂(P ) = −1. For
type Ã11, let P [1] := τ−1P be its inverse Auslander–Reiten-translate. For type Ã12, let
P [1] be the uniquely determined indecomposable preprojective module with dimension
vector dimP + hA. Then 〈P, P [1]〉 > 0, so there is a non-zero map ι : P → P [1]. Since
∂(P ) = −1, this map must be injective. Consider the short exact sequence

η : 0→ P
ι−→ P [1] π−→ R→ 0,

where R = coker ι. Since ∂(P ) = ∂(P [1]) = −1, we have ∂(R) = 0. If R had a
postinjective summand Q of defect ≥ 1, we would get the pullback

0 P T Q 0

0 P P [1] R 0,ι π

where ∂(T ) = ∂(P ) + ∂(Q) ≥ 0, but T is also a submodule of P [1], hence preproject-
ive. This implies that T = 0. Thus, R cannot have postinjective and hence neither
preprojective summands. It is therefore regular. By construction, as ∂(P ) = −1 and
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due to Lemma 3.4, we have that dimR = hA. As every (indecomposable) submodule
of R would have dimension vector belonging to an indecomposable preprojective or
postinjective module, we see that R must be simple regular.
Next, consider the regular module R[2] such that

ξ : 0→ R→ R[2] → R→ 0,

is an almost split sequence, that is 0 6= ξ ∈ Ext1
A(R,R). By applying HomA(R,−) to η,

we get a long exact sequence

0→ (R,P ) ι∗−→ (R,P [1]) π∗−→ (R,R) η∗−→ 1(R,P ) ι∗−→ 1(R,P [1]) π∗−→ 1(R,R)→ 0,

as A is hereditary. This shows that the map π∗ : Ext1
A(R,P [1]) → Ext1

A(R,R) is sur-
jective. Hence, there exists ζ ∈ Ext1

A(R,P [1]) s.t. π∗(ζ) = ξ, where π∗ is the push-out
map. Now,

0 P kerφ 0

ζ : 0 P [1] E R 0

ξ = π∗(ζ) : 0 R R[2] R 0

cokerπ cokerπ′ 0

ι

σ

π

θ

φ

α β

is an exact commutative diagram, using the Snake Lemma. Altogether, we get the
exact commutative diagram

0 0

η : 0 P P [1] R 0

0 kerφ E R[2] 0

R R

0 0

ι

∼=

π

σ α
γ φ

θ β

where kerφ ∼= P via the Snake Lemma, for ker(R ∼−→R) = 0.
Now assume that E has a regular summand, say E = R′ ⊕ E′ for regular R′. Since

the regular component is uniserial, we must have
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i) φ(R′) ⊆ α(R) or

ii) α(R) ⊂ φ(R′) ⊆ R[2].

Since α(R) is a maximal submodule of R[2], ii) implies φ(R′) = R[2].

i). Applying β yields θ(R′) = βφ(R′) ⊆ βα(R) = 0, so R′ ⊆ ker θ ∼= im σ ∼= P [1],
thus R′ is preprojective for A is hereditary. A contradiction.

ii). This implies that φ|R′ : R′ → R[2] is surjective. On the other hand,

ker(φ|R′) = ker(φ) ∩R′ ⊆ ker(φ) ∼= P,

so the kernel is preprojective. But φ|R′ is a map between regular modules, thus has a
regular kernel. Hence ker(φ|R′) = 0, and φ|R′ : R′ → R[2] is bijective. But then there
exists a section φ′ : R[2] → R′ ⊂ E such that φ ◦ φ′ = idR[2] . This is equivalent to the
existence of a retraction γ′ : E → P such that γ′ ◦ γ = idP . But then

γ′ ◦ σ ◦ ι = γ′ ◦ γ = idP ,

so η splits. A contradiction.
Altogether, E must be preprojective. Note that as an extension of a preprojective

and a regular module it cannot be postinjective. Moreover,

∂(E) = ∂(P [1]) + ∂(R) = ∂(P [1]) = −1,

so it is indecomposable. Besides,

dimE = dimP [1] + dimR = dimP [1] + (dimP [1]− dimP ) = dimP [2].

Hence E ∼= P [2], since both are rigid modules and thus determined by their dimension
vectors. We have therefore constructed a surjective map φ : P [2]→ R[2] with kernel P .

Now assume we have already constructed a surjective map πm : P [m] → R[m] for
some m ∈ N with kernel P . Consider the exact sequence

ηm : 0→ P
ιm−→ P [m] πm−−→ R[m] → 0.

As in the base case, the pushout map π∗ : Ext1
A(R,P [m])→ Ext1

A(R,R[m]) is surjective.
Thus, given the standard AR-sequence (as it appears for instance in [Rin84, 3.1.(2)(a)])

ξm : 0→ R[m] αm−−→ R[m+1] βm−−→ R→ 0,

there exists some ζm ∈ Ext1
A(R,P [m]),

ζm : 0→ P [m] σm−−→ Em
θm−−→ R→ 0,

such that we get the following exact commutative diagram.
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0 0

ηm : 0 P P [m] R[m] 0

0 kerφm Em R[m+1] 0

R R

0 0

ιm

∼=

πm

σm αm
γm φm

θm βm

As in the base case, kerφm ∼= P . Assume that Em has a regular summand R′, say
Em ∼= R′ ⊕ E′. Since the regular component is uniserial, we must have

i) φm(R′) ⊆ αm(R[m]) or

ii) αm(R[m]) ⊂ φm(R′) ⊆ R[m+1].

Since αm(R[m]) is a maximal submodule of R[m+1], ii) implies φm(R′) = R[m+1].
i). Applying βm yields θm(R′) = βmφm(R′) ⊆ βmαm(R[m]) = 0, so

R′ ⊆ ker θm ∼= im σm ∼= P [m],

thus R′ is preprojective as A is hereditary. A contradiction.
ii). This implies that φm|R′ : R′ → R[m+1] is surjective. On the other hand,

ker(φm|R′) = ker(φm) ∩R′ ⊆ ker(φm) ∼= P,

so the kernel is preprojective. But φm|R′ is a map between regular modules, thus has
a regular kernel. Hence ker(φm|R′) = 0, and φm|R′ : R′ → R[m+1] is bijective. But then
there exists a section φ′m : R[m+1] → R′ ⊂ Em such that φm ◦ φ′m = idR[m+1] . This is
equivalent to the existence of a retraction γ′m : Em → P such that γ′m ◦ γm = idP . But
then γ′m ◦ σm ◦ ιm = γ′m ◦ γm = idP , so ηm splits. A contradiction.
All in all, Em must be preprojective. Note that it cannot be postinjective as an

extension of preprojective and regular modules. Moreover,

∂(Em) = ∂(P [m]) + ∂(R) = ∂(P [m]) = −1,

so Em is indecomposable. Besides,

dimEm = dimP [m] + dimR = dimP [m] + (dimP [1]− dimP ) = dimP [m+ 1].

Hence E ∼= P [m+ 1]. We have therefore constructed a surjective map

φ : P [m+ 1]→ R[m+1]
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with kernel P .
Thus, we may assume that there exists a surjective map πn : P [n]→ R[n] for all n > 0

which has kernel P . Since there is also a surjective map R[n] → R[m] for all m ≤ n
by the uniseriality, we have established the existence of a surjective homomorphism
πn,m : P [n]→ R[m]. This morphism fits into a short exact sequence

0→ kerπn,m ↪→ P [n] � R[m] → 0.

Since P [n] is preprojective, so is kerπn,m. Since ∂(kerπn,m) = ∂(Pn)− ∂(R[m]) = −1,
it is indecomposable. Moreover,

dim kerπn,m = dimP [n]− dimR[m]

= dimP [m] + (m− n) (dimP [1]− dimP )− (dimP [m]− dimP )
= dimP [n−m],

using the recursion formula dimP [i + 1] = dimP [i] + (dimP [1] − dimP ) along with
dimR[m] = dimP [m]− dimP . Hence kerπn,m ∼= P [n−m].

Algorithm for preprojectives of defect −1 for rank 2 examples
Let A be a tame hereditary algebra of rank two, with minimal radical vector hA. Put
hA := ∑n

j=1 fj (hA)j to be the k-weighted sum of the entries, where fj = dimk End(Sj)
is the k-dimension of the endomorphism ring of the simple module Sj . Let Q be the
indecomposable injective module of maximal k-dimension and put q = dimQ and

q =
n∑
j=1

dimkQj .

Let 1 > ε > 0. Choose Lε := max
{

2q
ε , 2ghA

}
where g is from Lemma 3.4.

Now letX = P [i0] be any indecomposable preprojective module of defect ∂(X) = −1,
where P is an indecomposable projective of defect −1. Denote the corresponding
regular modules as in Proposition 3.5 by R[i] respectively. If dimkX ≤ Lε, choosing
Y = X we have found a suitable submodule to prove hyperfiniteness. Hence we may
assume that dimkX > Lε.
We will now give an iterative construction involving ij , Tj = P [ij ] and tj+1. We start

with j = 0.
For each j we proceed as follows: Choose tj+1 ≤ ij such that the regular indecom-

posable R[tj+1] fulfils
Lε − ghA ≤ dimk R

[tj+1] ≤ Lε.

This is possible, since by construction dimR[1] = ghA and P [ij ] surjects onto all R[m]

with m ≤ ij . Then by Proposition 3.5, we get a short exact sequence

0→ P [ij − tj+1]→ P [ij ]→ R[tj+1] → 0.

33



3 Tame hereditary algebras

By Lemma 3.3, there exists a preprojective submodule Uj+1 ⊂ R[tj+1] such that

dimR[tj+1] − dimUj+1 ≤ q.

Consider the commutative diagram given by the pullback Tj ×R[tj+1] Uj+1.

0 P [ij − tj+1] Ej+1 Uj+1 0

0 P [ij − tj+1] Tj R[tj+1] 0.

If the upper of the two sequences is non-split, we have

0 6= Ext1
A(S, P [ij − tj+1]) ∼= DHomA(P [ij − tj+1], τS),

for some indecomposable direct summand S | Uj+1 and a non-zero homomorphism

P [ij − tj+1]→ τS,

which must be a monomorphism, since ∂(P [ij − tj+1]) = −1. Hence,

dimP [ij − tj+1] ≤ dim τS ≤ dimS ≤ Lε. (3.1)

Here, we use Lemma 3.4 to ensure that the AR-translation decreases the dimension of an
indecomposable, preprojective module. But now the iteration terminates at N = j+ 1.
We choose Y := EN ⊕

⊕N−1
`=1 U` and have found a suitable submodule: Its summands’

dimensions are bounded by 2Lε due to (3.1) and the fact that all R[t`] have bounded
dimension. Also, dimY is large enough using

dimX = dimEN +
N−1∑
`=1

dimU` +
N∑
`=1

e`,

where e` is an error vector bounded by q.
Thus we may assume that the upper sequence splits and Ej+1 ∼= P [ij − tj+1]⊕Uj+1.

Now let ij+1 := ij − tj+1 and proceed with step j + 1. This process terminates since
the dimension of Tj compared to Tj−1 decreases in each “splitting” step by at least
Lε − ghA until it is smaller than Lε. Note that the number of steps N is bounded, as

N ≤ dimkX

Lε − ghA
≤ dimkX( q

ε + ghA
)
− ghA

= dimkXε

q
.

Moreover, in each step we have

dimTj = dimTj+1 + dimR[tj+1] and dimR[tj ] = dimUj + ej ,

where ej is an error vector bounded by q. Combining this in a telescope sum yields

dimX = dimT0 = · · · = dimTN +
N∑
`=1

(dimU` + e`) . (3.2)
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Define the submodule Y ⊂ X to be

Y := TN ⊕
N⊕
`=1

U`.

Here, each summand has k-dimension bounded by Lε by the construction of N respect-
ively of R[t`]. By (3.2), we have

dimY = dimT0 −
N∑
`=1

e` ≥ dimT0 −N · q ≥ dimX − dimkXε

q
q,

implying that dimk Y ≥ (1− ε) dimkX.
This construction thus shows the following

Lemma 3.6. Let A be a tame hereditary algebra of rank two. Let ε > 0. Then
there exists some Lε > 0 such that for all indecomposable preprojective modules X of
defect −1 there exists a submodule Y such that dimk Y ≥ (1 − ε) dimkX and each
indecomposable direct summand of Y has dimension bounded by Lε.

Before we continue, let us recall some more Auslander–Reiten theory. Given a morph-
ism g : B → C, we say that g is a split epimorphism provided it has a right inverse, that
is there exists some f : C → B such that g ◦ f = idB. Dually, we say that f : A → B
is a split monomorphism if f has a left inverse. A morphism g : B → C is then said
to be irreducible if g is neither a split monomorphism nor a split epimorphism and a
factorisation g = s◦t implies that s is a split epimorphism or t is a split monomorphism.
Moreover, g is said to be right almost split if it is not a split epimorphism and for

any morphism f : X → C which is not a split epimorphism there is f ′ : X → B such
that g ◦ f ′ = f . Dually, f : A→ B is left almost split if it is not a split monomorphism
and any A → Y not a split monomorphism factors through f . Finally, a morphism is
minimal right almost split if it is both right almost split and right minimal. Dually, we
define minimal left almost split morphisms.
Further, an exact sequence 0 → A

g−→ B
f−→ C → 0 is said to be an almost split

sequence (vel Auslander–Reiten sequence) provided g is left almost split and f is right
almost split.
Also recall that given a finite dimensional algebra Λ, the graph ΓΛ = Γ(mod Λ)

with vertices the isomorphism classes of indecomposable modules denoted by [M ] for
some indecomposable Λ-module M and arrows the irreducible morphisms between the
indecomposable modules is called the Auslander–Reiten quiver of Γ. ΓΛ along with the
Auslander–Reiten translation τ is a translation quiver , that is, at each vertex of ΓΛ,
only finitely many arrows start and end, there are no multiple arrows, the quiver has
no loops and the arrows ending at a vertex x are precisely those starting at τ(x) if τ(x)
is defined (see [ARS95, Section VII.4]).
To now deal with the remaining indecomposable preprojective modules, we use the

following well known theorem due to Auslander and Reiten.
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Theorem 3.7. [ARS95, Theorem V.5.3],[ASS10, Theorem IV.1.10] Let C be an in-
decomposable module and let h : B → C be a minimal right almost split morphism. If
E 6= 0 is some direct summand of B, the induced map g : E → C with g = h|E is
irreducible.

Proof. We fix notation denoting the decomposition B = E ⊕ E′ and we put g′ = h|E′ ,
that is h = ( g g′ ).
First we assume that g is a split monomorphism, thus there exists some f : C → E

such that f ◦ g = idE and C ∼= E ⊕ ker f . Now, C is indecomposable and E 6= 0, so
ker f = 0 and f must be a monomorphism. But f is also surjective. Thus, f is an
isomorphism, and so must be g. By considering ( g g′ ) ◦

(
g−1

0

)
= idC we see that h is

a split epimorphism, a contradiction.
Second, assume that g is a split epimorphism. Then ( g g′ ) ◦

(
f ′

0

)
= idC , which also

implies that h is a split epimorphism.
Now assume that g = s ◦ t, where t : E → X and s : X → C and assume that s is not

a split epimorphism. We want to show that t is a split monomorphism. Since h is right
almost split, there exists some η = ( uv ) : X → B = E⊕E′ with s = h◦η = ( g g′ )◦ ( uv ).
We obtain the following commutative diagram.

E ⊕ E′ X ⊕ E′ E ⊕ E′

C

(
t 0
0 idE′

)

( g g ′)

(
u 0
v idE′

)

( s g′ )
( g g
′ )

Since ( g g′ ) is right minimal, we have that(
u 0
v idE′

)
◦
(
t 0
0 idE′

)
=
(
u◦t 0
v◦t idE′

)
is an isomorphism. Hence u ◦ t : E → X → E is an isomorphism, thus we have shown
the existence of some u : X → E such that u ◦ t = idE , so t is a split monomorphism.
This finishes the proof.

Lemma 3.8. Let A be a tame hereditary algebra of rank two. Let M be an indecom-
posable preprojective module of defect −2 which is not projective. Then there exists a
monomorphism f : N → M such that N is a direct sum of preprojective modules of
defect −1 and we have that dimk coker f ≤ hA.

Proof. First, as M is an indecomposable non-projective module, it is well-known (see,
e.g., [ARS95, Theorem V.1.15]) that there exists a right minimal almost split morphism
h : E → M . As this map is the right-hand side of an almost split sequence, it is
surjective. For rank two algebras, such indecomposable preprojective modules only
exist in type Ã11 with label (1, 4).
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Case 1: (1, 4). We have hA = (2, 1). We may assume m = dimM = (4k, 2k − 1)
for some k > 1. Then E = P2k−1

⊕4, where P2k−1 is the unique indecomposable
preprojective module of dimension vector (2k − 1, k − 1). Now, we pick N to be the
direct sum of two indecomposable summands of E, so N = P2k−1 ⊕ P2k−1. Then the
induced morphism f = h|N is irreducible by Theorem 3.7. Thus, f is either surjective
or injective. But f cannot be surjective for dimension reasons, so f must be injective.
Moreover,

dim coker f = dimM − dimN = (4k, 2k − 1)− 2(2k − 1, k − 1) = (2, 1) = hA.

Also, ∂(coker f) = 0.

Case 2: (4, 1). We have hA = (1, 2). We may assume m = dimM = (2k + 1, 4k) for
some k ≥ 1. Then E = P2k

⊕4, where P2k is the unique indecomposable preprojective
module of dimension vector (k, 2k − 1). Now, we pick N to be the direct sum of two
indecomposable summands of E, so N = P2k ⊕ P2k. Then the induced morphism
f = h|N is irreducible by Theorem 3.7. Thus, f is either surjective or injective. But f
cannot be surjective for dimension reasons, so f must be injective. Moreover,

dim coker f = dimM − dimN = (2k + 1, 4k)− 2(k, 2k − 1) = (1, 2) = hA.

Also, ∂(coker f) = 0.

Thus we have found a submodule N of M which is a direct sum of preprojective
modules of defect −1 and has codimension bounded by hA.

Proposition 3.9. Let A be a finite dimensional tame hereditary k-algebra of rank two.
Then the family of (isomorphism classes of) preprojective modules P(A) is hyperfinite.

Proof. By Proposition 1.2, it is enough to check this for the indecomposable preproject-
ive modules that have defect either −1 or −2. By Lemma 3.6, the family of indecompos-
able preprojective modules of defect −1 is hyperfinite. For a preprojective of defect −2,
Lemma 3.8 yields the existence of a submodule that lies in a hyperfinite family and
is of bounded codimension. By Proposition 1.4, the indecomposable preprojectives of
defect −2 thus form a hyperfinite family. This concludes the proof.

Lemma 3.10. Let R be a sincere, indecomposable regular module of regular length
`(R) = r. Let q be the maximal dimension of the simple injective modules. Then
there is a submodule S ⊆ R of codimension at most q such that S decomposes into
a preprojective summand P and a regular L summand with `(L) < `(R), with the
possibility that L = 0.

Proof. R is sincere (this is the case if R is homogeneous or has regular length r ≥ 2).
Then there exists a simple injective module I and a non-zero map θ : R → I. Since I
is simple, θ must be surjective. Consider the short exact sequence

0→ ker θ → R→ I → 0.

37



3 Tame hereditary algebras

Since ∂(I) ≥ 1, ker θ must have a preprojective summand P 6= 0. If L | ker θ is a
regular summand, those also embed into R, and must have smaller regular length, for
dimL < dimR implies that L 6∼= R, but both R and L have the same regular socle, and
regular socle and length determine indecomposable regular modules uniquely.

Lemma 3.11. Let A be a finite dimensional tame hereditary k-algebra of rank two.
Then the family of (isomorphism classes of) regular simple modules is hyperfinite.

Proof. Since for rank two tame hereditary algebras, all regular simple modules are
homogeneous, Lemma 3.10 yields the existence of some preprojective submodule N for
each regular simple module R of bounded codimension, as the submodule constructed
in that lemma cannot have a regular summand. Thus, Proposition 1.4 in connection
with Proposition 3.9 shows that they form a hyperfinite family.

Proposition 3.12. Let A be a finite dimensional tame hereditary k-algebra. Assume
that P(A) is hyperfinite. Then the family of (isomorphism classes of) regular modules
is also hyperfinite.

Proof. By Proposition 1.2, it is enough to show that the set of all indecomposable
regular modules is a hyperfinite family. So let T be a regular indecomposable module.
By Lemma 3.3, there exists a submodule P ⊂ T of codimension bounded by the max-
imum of the dimensions of the indecomposable injective modules with P preprojective.
Thus, an application of Proposition 1.4 along with the hypothesis shows that R(A) is
hyperfinite.

Remark. This approach will be generalised later, see Proposition 4.16.

Theorem 3.13. Let k be any field. Let A be a finite dimensional tame hereditary
k-algebra of rank two. Then A is of amenable representation type.

Proof. That the family of (isoclasses of) preprojective modules P(A) is hyperfinite has
been shown in Proposition 3.9. Moreover, the hyperfiniteness of the regular component
then follows from Proposition 3.12.
We are left to deal with the postinjective modules. Yet, Lemmas 2.7 and 2.8 generalise

to tame hereditary algebras mutatis mutandis. This finishes the proof.

3.3 Amenability and perpendicular categories of regular
simples

Having shown that tame hereditary algebras of small rank are of amenable represent-
ation type, we want to lift this result to algebras of larger rank. As in the quiver case,
we will do so by universal localisation and perpendicular calculus.

Recall that we have the perpendicular categories

X⊥ := {Y ∈ modA : HomA(X,Y ) = 0 = Ext1
A(X,Y )}
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and
⊥X := {Y ∈ modA : HomA(Y,X) = 0 = Ext1

A(Y,X)}.

Proposition 3.14. Let A be a connected finite dimensional tame hereditary k-algebra
of rank n > 2. Suppose all connected finite dimensional tame hereditary k-algebras
of rank n − 1 are of amenable representation type. If T is an inhomogeneous regular
simple A-module, then T⊥ is hyperfinite.

Proof. By [GL91, Proposition 1.1], T⊥ is an exact Abelian subcategory of modA closed
under the formation of kernels, cokernels and extensions. What is more, [GL91, The-
orem 4.16] yields that T⊥ = mod Λ for some finite dimensional hereditary algebra Λ of
rank n − 1, along with a homological epimorphism ϕ : A → Λ, which induces a func-
tor ϕ∗ : mod Λ → modA. Moreover, [GL91, Theorem 10.1] shows that Λ is tame and
connected.
Now, if F : mod Λ → T⊥ is an equivalence, the simple Λ-modules S(i) get mapped

to certain modules Bi in modA. The k-dimension of any module M over a finite
dimensional k-algebra is determined by the length of any composition series. Such a
series for M in Λ gets mapped to a composition series in the perpendicular category,
and thus a series in modA, such that the factor modules are isomorphic to some Bi.
Letting K2 := maxi=1,...,n−1{dimBi}, we thus know that

dimk AF (M) ≤ K2 dimk ΛM.

On the other hand, if F (M) ∈ T⊥, any submodule of F (M) in T⊥ is also a submodule
in modA, so a composition series of F (M) in modA is at least as long as one in T⊥.
Thus,

dimk ΛM ≤ dimk AF (M),

using the fact that the length of M in mod Λ equals the length of F (M) considered
as an object of T⊥. Hence by Proposition 1.5, we have that each T⊥ is a hyperfinite
family.

We will introduce notation for the indecomposable modules of a given inhomogeneous
tube T of a finite dimensional tame hereditary algebra A. We start by denoting the
isoclasses of regular simples on the mouth of T by T1, . . . , Tm such that τTi = Ti−1 for
i = 2, . . . ,m and τT1 = Tm. Here, m is the rank of T. Similar to [Rin84, Section 3.1],
we then define the objects Ti[`]. First, let Ti[1] := Ti for each 1 ≤ i ≤ m. Now,
for ` ≥ 2, recursively define Ti[`] to be the indecomposable module in T with Ti[1] as
a submodule such that Ti[`]/Ti[1] ∼= Ti+1[` − 1]. Thus Ti[`] is the regular module of
regular length ` with regular socle Ti. Any regular indecomposable in T will be given as
some Ti[`] since T is uniserial. We may define Ti[`] for all i ∈ Z by letting Ti[`] ∼= Tj [`]
iff i ≡ j mod m. Note that

dimTi[`] =
i+`−1∑
j=i

dimTj . (3.3)
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Lemma 3.15. Let T be an inhomogeneous tube of rank m. Then
∑m
i=1 dimTi = gThA,

and gT is globally bounded by some g across all tubes.

Proof. Given an inhomogeneous tube of rank m ≥ 2 with regular simples T1, . . . , Tm,
recall that all Ti[m] are homogeneous, that is dimTi[m] is a multiple of hA. By (3.3),
this implies that the sum of the dimension vectors of the regular simples in each tube
is a multiple of hA. As there are only finitely many inhomogeneous tubes, there is a
global bound on this multiple.

Lemma 3.16. Let T be a tube of rank m ≥ 2. Let X be an indecomposable regular
module in T. Then there exists a submodule Y ⊆ X of codimension bounded by the sum
of the k-valued entries of ghA, and a regular simple module T ∈ T such that Y ∈ T⊥.

Proof. By adapting the proof of [Rin84, 3.1.(3’)] to the fact that dimk HomA(Ti, Ti) = e
for all i, we have that

〈dimTi,dimTj〉 =


e, i ≡ j mod m,

−e, i ≡ j + 1 mod m,

0, else.

This implies that for any j ∈ Z, 〈dimTj ,dimTi[`]〉 = 0, provided ` ≡ 0 mod m. As
Ti[`] is uniserial, we also have that HomA(Tj , Ti[`]) = 0 if and only if j 6≡ i mod m.

We write ` = n ·m + r, where 0 ≤ r < m. By construction, there is a short exact
sequence

0→ Ti[nm]→ Ti[`]→ Z → 0,

where dimZ ≤ ghA using (3.3) and Lemma 3.15. Thus, we have found a suitable
submodule Ti[nm] ∈ T⊥i+1.

Lemma 3.17. Let A be a finite dimensional tame hereditary algebra. Let S be some
regular simple inhomogeneous module in a tube T, then there is a constant c > 0. If
X = τ−pP (i) is some indecomposable preprojective A-module, there exists a submodule
Y ⊆ X and a module Q with dimQ ≤ cdimS such that 0→ Y → X → Q→ 0 is exact
and Y ∈ τ−S⊥.

Proof. Let f : X → Sc be a minimal left add(S)-approximation of X, in particular, the
induced map

f∗ : HomA(Sc, S)→ HomA(X,S), φ 7→ φ ◦ f

is surjective. Now, let Y = ker f and Q = im f . Note that f = g ◦ h factors through
h : X → Q and g : Q→ Sc. We have a short exact sequence

ξ : 0→ Y
ι−→ X

h−→ Q→ 0,
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to which we apply HomA(−, S) and get the long exact sequence

0→ HomA(Q,S) h∗−→ HomA(X,S) ι∗−→ HomA(Y, S) ξ∗−→ Ext1
A(Q,S)

→ Ext1
A(X,S)→ Ext1

A(Y, S)→ 0,

for A is hereditary. First, by [Rin84, 2.4.(6*)],

Ext1
A(X,S) ∼= DHomA(τ−S,X) = 0, (3.4)

since there are no maps from the regular to the preprojective component. By exactness,
it follows that Ext1

A(Y, S) = 0. Second, h∗ is injective. But f∗ = (g ◦ h)∗ = h∗ ◦ g∗
is surjective, so h∗ is also surjective, hence bijective. Since Q can only have prepro-
jective summands or regular summands isomorphic to copies of S, we must have that
Ext1

A(Q,S) = 0, implying HomA(Y, S) = 0. This shows that Y ∈ ⊥S = (τ−S)⊥, using
the identity from (3.4) to move between the two categories.
By the construction of the (minimal) left add(S)-approximation of X, we see that

c = dimk HomA(X,S)
dimk End(S) .

Denoting the regular simples on the mouth of T by T1, . . . , Tm, we may assume that
S ∼= Tj for some 1 ≤ j ≤ m. Then, since Ext1

A(X,S) = 0,

dimk HomA(X,S) = 〈dimX,dimTj〉 = 〈dim τ−pP (i),dimTj〉
= 〈dimP (i), dimTj−p〉 = fi(dimTj−p)i,

where fi = dimk End(P (i)). Now, dimQ ≤ dimSc ≤ cdimS. Thus, the codimension
of Y as a submodule of X is bounded by the constant c solely depending on the finitely
many regular simple inhomogeneous modules and their finite k-dimensions.

Theorem 3.18. Let k be any field. Let A be a finite dimensional tame hereditary
k-algebra. Then A is of amenable representation type.

Proof. We prove the theorem by an induction on the rank of A. There are no (finite
dimensional, non-finite) tame hereditary k-algebras of rank one. The case n = 2 is the
subject of Theorem 3.13.
Let A be some finite dimensional tame hereditary algebra of rank n > 2. Now assume

that it has been shown that all finite dimensional tame hereditary connected k-algebras
of rank n− 1 are of amenable type.

We will show that the indecomposable preprojective modules form a hyperfinite
family first.
By an application of Lemma 3.17, all indecomposable preprojective modules P have a

submodule of (globally) bounded codimension which lies in the perpendicular category
of a fixed regular simple module T1 in an inhomogeneous tube T. Then Proposition 3.14
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shows that the indecomposable preprojectives lie in a hyperfinite family, additionally
applying Proposition 1.4. This uses the fact that there are only finitely many inhomo-
geneous tubes, each of finite rank.
Next, we consider the regular modules. Indecomposable regular modules in a tube

other than T will be contained in T⊥1 by an analogue of [Rin84, 3.1.(3’)]. By Lemma 3.16,
any regular indecomposable in T either is contained in the perpendicular category of
some regular simple in T or has a submodule of bounded codimension that is in the
perpendicular category of some regular simple in T. But by Proposition 3.14, the
perpendicular categories are hyperfinite. In the latter case, we can therefore apply
Proposition 1.4 to show the hyperfiniteness of the family of these indecomposable reg-
ular modules.
For the postinjective modules, we may apply the argument used for the postinjectives

in the proof of Theorem 3.13. This completes the induction and finishes the proof.
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3.4 Tilted Algebras
One way to obtain algebras which are not hereditary from tame hereditary algebras is
via tilting theory, introduced by Auslander, Platzeck and Reiten [APR79] and gener-
alised by Brenner and Butler [BB80]. We show that under certain conditions on the
tilting module, this preserves amenability.
Let A be a finite dimensional, hereditary algebra. Recall that a module T is a tilting

module for A provided

• T is rigid, that is, Ext1
A(T, T ) = 0, and

• the number of isoclasses of indecomposable direct summands of T is equal to the
number of isomorphism classes of simple A-modules.

Now, an algebra of the form B = EndA(T ) for some tilting module T is called a tilted
algebra (see, e.g., [HR82]).

Theorem 3.19. Let A be a finite dimensional tame hereditary algebra. Let T be a
tilting module without a postinjective summand. Then B = EndA(T ) is of amenable
representation type.

Proof. First note that T cannot be regular by [HR81, Lemma 3.1] since A is tame.
Thus, T must have a non-zero preprojective summand.

modA F(T )

. . .

. . .

. . .

T (T )

. . .

modB

. . .

Y(T )

. . .

X (T )

∼∼

Figure 3.3: Module classes in modA and modB as in the proof of Theorem 3.19.

Now, by [HR81, Proposition 3.2], the torsion class T (T ) is infinite. It is in bijection
with the torsion free class Y(T ) via G = Hom(T,−) of the Brenner–Butler Tilting
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Theorem [BB80, Theorem III]. The functor G is hyperfiniteness preserving, since we
can apply Proposition 1.5 as T is finite dimensional. As modA is of amenable type by
Theorem 3.18, it follows that Y(T ) is hyperfinite. Since T is a splitting tilting module
(see, e.g., [ASS10, Corollary VI.5.7]), any indecomposable module of modB either lies
in Y(T ) or X (T ), the torsion class in modB. But F(T ), which is in bijection with
X (T ) via the Tilting Theorem, is finite by [HR81, Proposition 3.2*]1.

3.4.1 Concealed algebras
For the following, let us restrict to algebras over algebraically closed fields. Recall that
a module M ∈ modA is preprojective if each indecomposable summand of M lies in
some preprojective component of ΓA, the AR-quiver of A. Now, let A be hereditary and
T ∈ modA be some preprojective tilting module. Then the tilted algebra B = EndA(T )
is called a concealed algebra.
Let us recall the following result on their module structure, which will be of import-

ance in the next chapter.

Theorem 3.20. [Rin84, Theorem 4.3.(3)] An algebra B as above is tame and satisfies
modB = P ∨ T ∨Q, where T =

(
Tρ
)
ρ∈P1(k) is a stable separating tubular P1(k)-family

of regular modules, P is a preprojective and Q is a postinjective component of ΓB.

Now we can conclude from Theorem 3.19 a result on the amenability of tame con-
cealed algebras.

Corollary 3.21. Let B = EndA(T ) be a tame concealed algebra, that is, let the algebra
A be of tame but not finite representation type. Then B is of amenable representation
type.

1Note that condition (vii) in the cited proposition should read “TA has no non-zero preprojective
direct summand”, as it is dual to Proposition 3.2 ibid.
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Having proven amenability for tame hereditary and tame concealed algebras, we turn
to another class of algebras for which similar results can be expected. While the
tame concealed algebras were obtained from the hereditary ones by tilting, the tubular
algebras of this chapter will be obtained by so-called tubular extensions to be recalled
below. They have been introduced and studied by Ringel [Rin84]. Moreover, there is
some connection to the category of coherent sheaves on the weighted projective line,
see Geigle and Lenzing [GL87] and Lenzing and Meltzer [LM93].

For simplicity, in this chapter, we will always work over algebraically closed fields k.

4.1 Setup
We will first sketch the construction of tubular algebras following [Rin84] and supple-
mented by [SS07].

4.1.1 Tubular extensions
By a branch L = (B, J), we mean a finite connected full bound subquiver B of the
following binary infinite tree

0

•

•

•

. . .

α

. . .

•

...

. . .

β

α

•

•

•

. . . . . .

•

...

β

β

α

containing the lowest vertex 0, denoted the germ of L , bound by all possible zero re-
lations J of the form βα = 0. L has length |L | = n provided B has n vertices. The
empty quiver is called a branch of length 0.

Recall that a path in a translation quiver (for example in the AR-quiver Γ(modA)
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of the module category of an algebra A),

X1 → X2 → · · · → Xn−1 → Xn → . . . ,

is called sectional provided τXi+1 6= Xi−1 for all possible i.
A vertex v in a translation quiver Γ is said to be a ray vertex provided there exists

an infinite sectional path

v = v[1]
ν1−→ v[2]

ν2−→ · · · → v[i]
νi−→ v[i+1]

νi+1−−−→ . . .

with pairwise different v[i], i ∈ N, such that for any i, the path (v[i]|ν1, . . . , νi|v[i+1]) is
the only sectional path of length i starting at v. An indecomposable A-module N in a
standard component C of modA is said to be a ray module provided the corresponding
vertex [N ] is a ray vertex in Γ(C).
Example. Given a tame hereditary algebra A, modules on the mouth of standard stable
tubes in Γ(modA) are ray modules.
Recall that for a k-algebra A and a module E, we denote by

A[E] =
[
A E
0 k

]

the one-point extension of A by E. Here, addition and multiplication are the usual
matrix operations. For A = kQ/I a quiver algebra with relations I, the quiver of A[E]
contains Q as a full subquiver along with the extension vertex ω, a source. Modules for
A[E] can be identified with triples (M,V, ϕ), where M is an A-module, V is a k-vector
space and ϕ : V → HomA(E,M) is a k-linear map.
Given a bound quiver algebra A = kQ/I and a branch L = (B, J), we may consider

the path algebra having as vertices those of Q and B, only identifying 0 ∈ B with some
ω ∈ Q, with relations generated by I and J . In this way we construct an algebra from
A by adding the branch L in ω.

Now, we inductively define, for E1, . . . , Et ∈ modA and L1, . . . ,Lt branches, the
algebra A[Ei,Li]ti=1, where A[Ei,Li] is obtained from the one-point extension A[Ei]
with extension vertex ωi by adding the branch Li in ωi, and put

A[Ei,Li]si=1 =
(
A[Ei,Li]s−1

i=1

)
[Es,Ls]

for all s ≤ t.

Definition 4.1. [Rin84, Section 4.7] Assume there is a standard stable tubular family
T in modA, separating P from Q. Let the modules E1, . . . , Et be pairwise orthogonal
ray modules from T . Then A[Ei,Li]ti=1 is called a tubular extension of A using
modules from T .

Example. Let A = k (1→→ 2) be the Kronecker algebra, E = k
1−→−→
1

k and branch

L = (B, I) with B = − α−→ 0 β−→ + and I = 〈βα〉. Then A[E,L ] is the path algebra of
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−

0 1 2

+

α

σ

β

ν

η

bound by the relations 〈ησ − νσ, βα〉.
Remarks. For a tame concealed algebra A0, there is a unique separating tubular family
(cf. Theorem 3.20). If T = (Tρ)ρ∈I is a stable I-family, and Ei ∈ T , the extension or
tubular type of A over A0 is given by the function

m : I → N, m(ρ) = rk(ρ) +
∑

Ei∈T(ρ)
|Li|,

where rk(ρ) is the rank of the tube T(ρ). We usually drop all values of m where
m(ρ) = 1 and write the tubular type as a finite tuple (m1, . . . ,mt). Note that

rkA = 2 +
(

t∑
i=1

mi

)
− t.

We will now recall some results on the module structure and the Auslander–Reiten
quiver of these tubular extensions.
Given a separating tubular family T in modA0, a branch L and a vertex v in the

AR-quiver Γ(T ), we construct a new translation quiver Γ(T )(v,L ) as follows: As a
first step, we cut along the ray starting at v, split it into “sinks” (v, i, 0) and “sources”
(v, i, |L |), and add |L | − 1 additional rays

(v, i, 1)→ (v, i, 2)→ . . . , with 0 < i < |L |,

connected by arrows (v, i, j) → (v, i, j + 1). Next, we glue to it the AR-quiver of
a specific, full subcategory of mod k ~A|L |, i.e. of the representations of the linearly
oriented quiver of typeAn with |L | vertices, by identifying the injective indecomposable
modules of the latter subcategory with (v, 1, 0), . . . , (v, 1, |L |) . Here, the subcategory
is constructed using the tilting module T corresponding to the branch L (see [Rin84,
Subsections 4.4.(2)-(3)]). Indeed, it has as objects just all indecomposable modules
Y ∈ mod k ~A|L | such that Hom(Y, τX) = 0 for all direct summands X | T .

Theorem 4.2. [Rin84, Sections 4.4–4.7] Let A0 be an algebra with separating tubular
family T (separating P from Q). Let A = A0[Ei,Li]ti=1 be a tubular extension using
modules from T . Define in modA,

• P0 = P, extending the representations by the zero vector space outside the support
of A0,
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• T0, a module class where the indecomposable modules M are either such that
M|A0 is non-zero and in T or suppM ⊂ Li and 〈`Li

,dimM〉 < 0, for some
i ∈ {1, . . . , t},

• Q0, a module class where the indecomposable modules M are either such that
M|A0 is non-zero and in Q or suppM ⊂ Li and 〈`Li

,dimM〉 > 0, for some
i ∈ {1, . . . , t},

where
`Li

= (|B(a)|)a∈Li
,

and B(a) is the restriction of Li to the vertices which are dependants of a.
Then modA = P0 ∨ T0 ∨ Q0, and T0 is a separating tubular family, separating P0

from Q0. Moreover, Γ(T0) = Γ(T )[ei,Li]ti=1, with ei = [Ei]. Here,

Γ(T )[ei,Li]si=1 =
(
Γ(T )[ei,Li]s−1

i=1

)
[es,Ls],

is inductively defined.

4.1.2 Tubular algebras
Following Ringel [Rin84], we can now give the necessary definition and recall further
notions ibid.

Definition 4.3. Let A0 be a tame concealed algebra and let A = A0[ei,Li]ti=1 be a tu-
bular extension ofA0 of extension type (m1, . . . ,mt) byA0-modules Ei and branches Li.
If the extension type of A is one of the types (2, 2, 2, 2), (3, 3, 3), (2, 4, 4) or (2, 3, 6),
then A is said to be a tubular algebra.

Remarks. The rank of K0(A) is 6, 8, 9 or 10 for a tubular algebra.
An algebra A is said to be cotubular provided Aop is tubular.
Example 4.4. Consider the algebra given by the quiver

a1 a2

c′ c b1 a3

b2 b3

γ′ γ
α1

β1

α2
α3

β2

β3

and bound by the relation

γ ◦ (α1 ◦ α2 ◦ α3 − β1 ◦ β2 ◦ β3) = 0.

This is a tubular extension of a path algebra of a quiver of type Ẽ6 and a cotubular
coextension (of length two) of a path algebra of a quiver of type Ã3,3. It has extension
type (3, 3, 3).
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M in ι0(dimM) ι∞(dimM) index(M)
P0 < 0 ≤ 0 negative or ∞
T0 = 0 < 0 0

Q0 ∩ P∞ > 0 < 0 positive
T∞ > 0 = 0 ∞
Q∞ ≥ 0 > 0 negative or 0

Table 4.1: Signs of the linear forms and the index depending on the module class.

Let A be both, a tubular and cotubular algebra, respectively assume that A is a
tubular extension of A0 and A is a tubular coextension of some A∞. Denote by h0
and h∞ the minimal positive radical elements of K0(A0) and K0(A∞), respectively.
Extend them to elements of K0(A) by adding zeros and call them the canonical radical
elements. We define two linear forms on K0(A),

ι0 = 〈h0,−〉, and ι∞ = 〈h∞,−〉,

where 〈−,−〉 is the Euler bilinear form on K0(A).
Now, given x ∈ K0(A) such that not both ι0(x) and ι∞(x) are zero, the index of x

is defined by
index(x) = − ι0(x)

ι∞(x) ∈ Q ∪ {∞}.

We write index(M) = index(dimM) when M ∈ modA.
Now, for any γ ∈ Q∞0 = Q+ ∪ {0,∞}, we want to define module classes Pγ , Tγ and
Qγ in modA. For γ = 0, these were defined in the previous subsection, and dually one
can define them for γ = ∞. We first recall a proposition that enables us to proceed
with this idea.

Proposition 4.5. [Rin84, 5.2.(1)] The module classes P0, T0,Q0 ∩ P∞, T∞ and Q∞
are pairwise disjoint and give all of modA. Indeed,

Q0 = (Q0 ∩ P∞) ∨ T∞ ∨Q∞ and P∞ = P0 ∨ T0 ∨ (Q0 ∩ P∞),

and for each indecomposable A-module M , one of ι0(M) or ι∞(M) is non-zero.

The situation is hence as in Table 4.1 and the index can be defined for all indecom-
posable modules. We decompose

Q0 ∩ P∞ =
∨

γ∈Q+

Tγ ,

where each Tγ denotes the module class of all indecomposable A-modules of index γ.
Further, given an index γ = γ∞

γ0
, with γ∞ ∈ Z, γ0 ∈ N0 coprime, we define

hγ := γ0h0 + γ∞h∞.

We recall two further results:
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P0

. . .

. . .

T0

...

. . .

. . .

...

. . .

. . .

T1

...

. . .

. . .

...

. . .

. . .

T∞

...

. . .

. . .

Q∞

Figure 4.1: Structure of the module category modA of a tubular algebra A.

Theorem 4.6. [Rin84, Theorem 5.2.(3)] Any tubular algebra is also cotubular.

Theorem 4.7. [Rin84, Theorem 5.2.(4); SS07, Theorem XIX.3.20] Let A be a tubular
algebra of type (p1, . . . , pt). Then modA has the following components:

• a preprojective component P0,

• a P1(k)-family T0 of pairwise orthogonal standard (ray) tubes of type (p1, . . . , pt),
containing at least one indecomposable projective A-module,

• for every γ ∈ Q+, a P1(k)-family Tγ, of pairwise orthogonal, standard stable tubes
of type (p1, . . . , pt),

• a P1(k)-family T∞ of pairwise orthogonal standard (coray) tubes of type (p1, . . . , pt),
containing at least one indecomposable injective A-module, and

• a postinjective component Q∞.

For each γ ∈ Q+ ∪ {0,∞}, the P1(k)-family Tγ separates

Pγ := P0 ∪
⋃

0≤β<γ
Tβ from Qγ :=

⋃
γ<β≤∞

Tβ ∪Q∞.

Moreover, gl.dimA = 2 and p. dimX ≤ 1 for any indecomposable module X ∈ P∞
and i. dimY ≤ 1 for any indecomposable module Y ∈ Q0.

4.1.3 Tubular canonical algebras
Next, we recall a different class of algebras, the canonical algebras C(p, λ).

Definition 4.8. For t ≥ 2 and (p1, p2, . . . , pt) with pi ≥ 2 for all i consider the quiver
Q = Q(p1, . . . , pt) of Figure 4.2.
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a
(1)
p1−1 a

(1)
p1−2 . . . a

(1)
2 a

(1)
1

a
(2)
p2−1 a

(2)
p2−2 . . . a

(2)
2 a

(2)
1

ω
...

... 0

a
(t)
pt−1 a

(t)
pt−2 . . . a

(t)
2 a

(t)
1

α
(1)
p1−1 α

(1)
2

α
(1)
1

α
(2)
p2−1 α

(2)
2

α
(2)
1

α
(1)
p1

α
(2)
p2

α
(t)
pt α

(t)
pt−1 α

(t)
2

α
(t)
1

Figure 4.2: Quiver Q(p1, . . . , pt) of a canonical algebra of type p = (p1, . . . , pt).

• If t ≥ 3, let λ = (λ3, . . . , λt) ∈ kt−2. Assume the λi are non-zero and pairwise
different. Without loss of generality, we assume that λ3 = 1.

• In case t = 2, we set λ = 0.

The algebra C(p, λ) = kQ/I, where the (generic) ideal I is generated by the relations

ρj := α
(1)
1 . . . α(1)

p1 + λjα
(2)
1 . . . α(2)

p2 − α
(j)
1 . . . α(j)

pj ,

for 3 ≤ j ≤ t, is a canonical algebra of type p = (p1, p2, . . . , pt).
We denote by p the least common multiple of the pi.

We will refer to the arrows α(j)
pj , . . . , α

(j)
1 as belonging to the j-th arm, and may

denote the arm by α(j). In case that t = 3, we might also speak of the top (j = 1),
central (j = 2) and lower (j = 3) arm.

Examples 4.9. • The path algebra given by the quiver

a
(1)
2 a

(1)
1

ω 0

a
(2)
2 a

(2)
1

α
(1)
3

α
(2)
3

α
(1)
2

α
(1)
1

α
(2)
2

α
(2)
1

(without any relations) is a canonical algebra of type (3, 3). It is the extended
Dynkin path algebra of type Ã3,3.
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• The path algebra of the quiver

a
(1)
1

ω a
(2)
2 a

(2)
1 0

a
(3)
3 a

(3)
2 a

(3)
1

α
(1)
2

α
(2)
3

α
(3)
4

α
(1)
1

α
(2)
2 α

(2)
1

α
(3)
3 α

(3)
2

α
(3)
1

bound by the relation

ρ3 := α
(1)
1 ◦ α

(1)
2 + α

(2)
1 ◦ α

(2)
2 ◦ α

(2)
3 − α

(3)
1 ◦ α

(3)
2 ◦ α

(3)
3 ◦ α

(3)
4

is a canonical algebra of type (2, 3, 4). Moreover, there exists a tilting module
T ∈ mod kẼ7 such that this canonical algebra is isomorphic to its endomorphism
ring EndkẼ7

(T ).

• The path algebra of the quiver

a
(1)
2 a

(1)
1

ω a
(2)
2 a

(2)
1 0

a
(3)
2 a

(3)
1

a
(4)
2 a

(4)
1

α
(1)
3

α
(2)
3

α
(3)
3

α
(4)
3

α
(1)
2

α
(1)
1

α
(2)
2 α

(2)
1

α
(3)
2

α
(3)
1

α
(4)
2

α
(4)
1

bound by the relations

ρ3 := α
(1)
1 ◦ α

(1)
2 ◦ α

(1)
3 + α

(2)
1 ◦ α

(2)
2 ◦ α

(2)
3 − α

(3)
1 ◦ α

(3)
2 ◦ α

(3)
3

ρ4 := α
(1)
1 ◦ α

(1)
2 ◦ α

(1)
3 + λ4α

(2)
1 ◦ α

(2)
2 ◦ α

(2)
3 − α

(4)
1 ◦ α

(4)
2 ◦ α

(4)
3 ,

for some λ4 ∈ k, is a canonical algebra of type (3, 3, 3, 3). It is of wild represent-
ation type.

Definition 4.10. A tubular canonical algebra is a canonical algebra of type (3, 3, 3),
(2, 4, 4), (2, 3, 6) or (2, 2, 2, 2).
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type h0 h∞ type of A0 resp. A∞

(2, 2, 2, 2)
1

0 1 21
1

1
2 1 01

1
D̃4

(3, 3, 3) 1 2
0 1 2 3

1 2
2 1

3 2 1 0
2 1

Ẽ6

(2, 4, 4) 2
0 1 2 3 4

1 2 3
2

4 3 2 1 0
3 2 1

Ẽ7

(2, 3, 6) 3
0 2 4 6

1 2 3 4 5
3

6 4 2 0
5 4 3 2 1

Ẽ8

Table 4.2: Tubular types of tubular canonical algebras, minimal positive radical ele-
ments and type of the corresponding tame concealed algebras.

Example 4.11. The path algebra of the following quiver

a
(1)
2 a

(1)
1

ω a
(2)
2 a

(2)
1 0

a
(3)
2 a

(3)
1

α
(1)
3

α
(2)
3

α
(3)
3

α
(1)
2

α
(1)
1

α
(2)
2 α

(2)
1

α
(3)
2

α
(3)
1

bound by the relation

ρ3 := α
(1)
1 ◦ α

(1)
2 ◦ α

(1)
3 + α

(2)
1 ◦ α

(2)
2 ◦ α

(2)
3 − α

(3)
1 ◦ α

(3)
2 ◦ α

(3)
3

is a tubular canonical algebra of type (3, 3, 3). It is the extension and coextension of
an algebra of type Ẽ6.
As the name suggests, tubular canonical algebras are just those canonical algebras

that are tubular.
For a tubular canonical algebra A, we define several linear forms. Given a module

M , we have the rank of M ,

rkM := rk dimM := dimM(0)− dimM(ω),

the degree of M ,

degM := deg dimM :=
t∑

j=1

p

pj

pj−1∑
i=1

dimM
(
a

(j)
i

)
− p dimM (ω) ,
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and the slope of M ,

slopeM := µ(M) :=
{degM

rkM , rkM 6= 0,
∞, else.

We also recall the index of M , introduced in the previous section,

indexM :=


−〈h0,dimM〉
〈h∞,dimM〉 , 〈h∞, dimM〉 6= 0,
∞, else,

where 〈−,−〉 is the Euler bilinear form of the algebra A. By Proposition 4.5, the index
is defined for all modules, as not both the denominator and numerator are zero at the
same time.
The module class of all indecomposable A-modules of index γ will be denoted by Tγ .

We will denote the full subcategory of modA formed by the additive closure of all
indecomposable modules isomorphic to those in Tγ by 〈Tγ〉.
We will also denote by Xq the full subcategory of modA formed by all indecomposable

A-modules with µ(M) = q.
Also note that we have the following correspondence between slope µ(M) and index

γ(M) of an indecomposable module M , if the slope is integral and does lie in the open
interval (0, p):

γ(M) =

1− p

p+i , µ(M) = p+ i ≥ p,

1 + p

i , µ(M) = −i < 0.

While 〈T1〉 corresponds to X∞, this implies that for p ≤ q <∞ respectively q ≤ 0, we
have that Xq coincides with 〈Tγ〉. We collect this information in Table 4.3. In what
follows, we will mostly be concerned with modules having slope in these two intervals.
Further note that an indecomposable moduleM with positive [negative] rank lies in P1
[Q1].
Remark. Given a canonical algebra A, we construct a contravariant functor

F : modA→ modA

in the following way: If M = ((Mi), (Mα)) is a representation of Q, we define F (M) as
a representation on the vertices by

F (M)(0) = M(ω)∗, F (M)(ω) = M(0)∗, F (M)
(
a

(j)
i

)
= M

(
a

(j)
pj−i

)∗
and on the arrows by

F (M)
(
α

(j)
i

)
= M

(
α

(j)
pj−i+1

)∗
,

where −∗ denotes the dual of a vector space respectively the transposed map. F is an
anti-equivalence and maps modules of slope m to those of slope p−m.
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component P0 T0 ≡ Xp Tγ ≡ Xµ T1 ≡ X∞ Tγ ≡ Xµ T∞ ≡ X0 Q∞
slope µ p p < µ <∞ ∞ −∞ < µ < 0 0

index γ −ve or ∞ 0 0 < γ < 1 1 1 < γ <∞ ∞ −ve or 0

Table 4.3: Slope and index for the different components of the module category of a
tubular canonical algebra

4.2 First hyperfiniteness results
4.2.1 Tubular canonical algebras as one-point extensions
We are now in the position to prove a first hyperfiniteness result for tubular canonical
algebras using their structure as a one-point extension of a tubular algebra.

Proposition 4.12. Let B = C(p, λ) be tubular canonical algebra. Then the family of
all preprojective B-modules is hyperfinite.

Proof. By [Rin84, Section 3.7], C(p, λ) is given as the one-point extension

A[M ] =
[
A M
0 k

]
,

where the quiver of A is obtained from that of C(p, λ) by the deletion of the unique
source ω and the so-called coordinate module M ∈ modA is given as

M =

U (1) U (1) . . . U (1) U (1)

U (2) U (2) . . . U (2) U (2)

... k2,

U (t) U (t) . . . U (t) U (t)

where the U (i) are pairwise different one-dimensional subspaces of k2. Clearly, A is a
tame hereditary algebra of type D̃4, Ẽ6, Ẽ7 or Ẽ8, with the quiver given in subspace
orientation. Moreover, it is easy to see that M is indecomposable, and thus it is easy
to check that M is a regular A-module.

Denote by e = eA =
[
1 0
0 0

]
the idempotent of B corresponding to A. B-modules can

then be described as a triple (V,W, f), where V is an A-module, W is a k-vector space
and f ∈ HomA(M ⊗k W,V ). Note that by [ARS95, III.2.5(b)], the module (P, 0, 0) is
projective for a projective A-module P .

Now, the right adjoint to the restriction functor reseA : modB → modA, Y 7→ eAY
is given by the left exact functor

L = LeA = HomA(eAB,−) : modA→ modB.
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For X ∈ modA, the module LeA(X) = (V,W, f) is given by the A-module
V = eAHomA(eAB,X) = HomA(eABeA, X) ∼= HomA(A,X) ∼= X,

the k-module
W = (1− eA)HomA(eAB,X) = HomA(eAB(1− eA), X) ∼= HomA(M,X),

and the A-linear map f induced by the multiplication map
m⊗ ϕ 7→ ϕ(m) for ϕ ∈ HomA(M,X) and m ∈M.

This implies that if X is a preprojective A-module, L(X) = (X, 0, 0), since M is
regular. Thus, the projective modules in the preprojective component P(B) lie in the
essential image of L. What is more, by considering [SS07, Corollary XV.1.7], we know
that all indecomposable preprojective modules are in the essential image of L.

Now, dimk L(X) ≤ dimk eAB · dimK X by the definition of L, as k acts centrally on
HomA(eAB,X). Moreover, since L is fully faithful,

dimkX = dimk(res ◦L)(X) = dimk eAL(X) ≤ dimk L(X).
As L is also left-exact, the conditions of Proposition 1.5 are fulfilled, so L(modA) is
hyperfinite, as modA is by Theorem 3.18. This implies the result.

Proposition 4.13. Let B = C(p, λ) be a tubular canonical algebra. Let n ∈ N. LetM
be a family of modules such that for all modules in indM, the vector space at vertex
ω has dimension at most n. Assume that for every ε > 0 there are only finitely many
indecomposable modules M ∈M such that dimM + n < 2n

ε . ThenM is hyperfinite.

Proof. By [Rin84, Section 3.7], B is given as a one-point extension A[X], where the
quiver of A is obtained from that of B by the deletion of the unique source ω. Clearly,
A is a tame hereditary algebra of type D̃4, Ẽ6, Ẽ7 or Ẽ8, with the quiver given in
subspace orientation. By Proposition 1.2, it suffices to check the hyperfiniteness con-
dition on the indecomposable modules in M. Let ε > 0. Let LAε

2
be the bound for

the associated tame hereditary algebra A established for ε
2 . Let M ∈ indM. Denote

by M the restriction of M to the (sub-)quiver of A. As such, by Theorem 2.11, there
exists an A-submodule N ⊆ M such that dimN ≥ (1 − ε

2) dimM and N ∼=
⊕s

i=1Ni

with dimkNi ≤ LAε
2
. Now, extend N to a B-module N by choosing the zero vector

space at vertex ω and the linear map for each arrow α
(j)
pj : ω → a

(j)
pj−1 as 1 ≤ j ≤ t to

be the zero map. Then N is a B-submodule of M . The decomposition lifts as well, so
N = ⊕s

i=1Ni and dimkNi ≤ LAε
2
. Moreover, we have that

dimkN = dimkN ≥
(

1− ε

2

)
dimkM

≥
(

1− ε

2

)
(dimkM − n) =

(
1− ε

2

)
dimkM + εn

2 − n

= (1− ε) dimkM + ε

2 dimM + εn

2 − n

≥ (1− ε) dimkM,
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since
ε dimM + εn− 2n ≥ 2n− 2n = 0

for all but finitely many indecomposable M by the hypothesis. Thus, by choosing

Lε := max
{
LAε

2
,max

{
dimM

∣∣∣M ∈M : dimM + n <
2n
ε

}}
,

we can show the hyperfiniteness ofM.

4.2.2 Stable and right stable tubular families
Next, we discuss consequences for the right stable family T0 of semiregular modules,
that is a component containing a projective but no injective module, and individual,
stable tubular families.

Corollary 4.14. For a tubular canonical algebra B, the right stable family T0 of
semiregular modules, containing the unique indecomposable projective module P (ω)
which is not preprojective, is hyperfinite.

Proof. The indecomposable projective module P (ω) at the extending vertex is one-
dimensional at ω, while its radical radP (ω) is zero-dimensional at the extending vertex.
As this ray tube T0(ρ) just has one ray, all indecomposable modules in it are inverse
Auslander–Reiten translates of P (ω). Now, a combinatorial argument shows that the
dimension of the vector space at vertex ω is at most one for all modules in ind T0(ρ).
Moreover, for each ε > 0, the number of modules such that dimM + 1 < 2

ε is finite, as
there are only finitely many indecomposable modules for each dimension in ind T0(ρ).
Now apply the previous Proposition. For the remaining indecomposables in T0, nothing
needs to be shown as they are just A0-modules.

We can also prove this last result more directly.

Lemma 4.15. Let B be a tubular canonical algebra. Then the right stable family T0
of semiregular modules containing the unique indecomposable projective module which
is not preprojective is hyperfinite.

Proof. We know that B is a tubular extension of A of branch length one using a single
ray module E from the tubular family T of the tame hereditary algebra A. By [Rin84,
Theorem 4.7.(1)] and its proof, T0 ⊂ modB consists of all the tubes of T except for
the one containing E. As the indecomposable modules in these tubes of B are just
the ones for A extended by a zero vector space at ω, we know how to find submodules
exhibiting their hyperfiniteness. The remaining component T0(ρ) is a standard ray
tube. It consists of all the indecomposable modules of T (ρ) not belonging to the ray
starting at E, the modules in the ray E[i] (complemented by the zero vector space)
and modules E[i] = (E[i],Hom(E,E[i]), εM ) with εM : E ⊗ Hom(E,E[i]) → E[i], the
evaluation map, as spelled out in the proof of [Rin84, Proposition 4.5.(1)]. Even more
is known, as there are irreducible maps ιi : E[i]→ E[i] (also see Figure 4.3). It follows

57



4 Tubular canonical algebras

. . . S[3] E[3] E[4]

. . . S[2] E[2] E[3] T [3]

S[1] E[1] E[2] T [2]

E[1] T [1] . . .

ι3

ι2

ν2 ν2

ι1

ν1 ν2

ν1

Figure 4.3: Schematics of the translation quiver of the ray tube of T0 in modB, where
S[1], E[1] and T [1] denote regular simples on the mouth of the corresponding
tube in modA. The dashed arrows indicate the action of τ .

that all indecomposables modules in T0(ρ) are either just A-modules or have such a
module as a submodule of codimension one, as we note that dim Hom(E,E[i]) = 1.
This concludes the proof.

Let us now consider a way of obtaining hyperfiniteness for a single stable tubular
family based on such a result for its P-class.

Proposition 4.16. Let A be a finite dimensional k-algebra such that the k-dimension
of the indecomposable injective modules is bounded. Let T be a stable tubular family
separating P from Q. If P is hyperfinite, so is T .

Proof. By Proposition 1.2, it is enough to check this for indecomposable regular mod-
ules R in T . Let S be the T -socle of R. Then there exists a non-zero map f : S → I,
where I is an indecomposable injective module not in T . Since I is injective and
ι : S → T is injective, this map lifts to a map f : T → I. Denote L := ker f and
K := ker f . Using the Snake Lemma, we get the following exact commutative diagram.

0 0

0 K L T/S

0 S T T/S 0

0 I I 0

0 0

ι

f f

58



4 Tubular canonical algebras

Clearly, K and L as subobjects of modules in T cannot have a summand from Q by
the separation property. Assume that L had a summand in T . Then this summand
must contain S respectively ι(S), for this is the smallest T -submodule of T , using the
fact that every indecomposable object in T has a unique composition series by [Rin84,
3.1.(3)]. But then we have

0 = f(L) ⊃ f(ιS) = f(S) 6= 0,

a contradiction. Hence L can only have summands from P, a hyperfinite family. Now
the fact that I is of globally bounded dimension can be used in Proposition 1.4 to show
that T is hyperfinite.

We would like to use this result to achieve hyperfiniteness for tubular families Tγ .
While we know that both P0 and T0 are hyperfinite, there is no “next largest” rational
number γ with a hyperfiniteness result for Pγ . We will therefore use the following result
to obtain hyperfiniteness for a single, arbitrary stable tubular family.

Proposition 4.17. Let A be a tubular canonical algebra. Let T be a stable tubular
family in modA. Then T is hyperfinite.

Proof. Assume that A has tubular type (p1, . . . , pt). By the definition of tubular algeb-
ras, we know that p1 ≥ 2. Consider the corresponding tube T of rank p1 in T . Let T ∈ T
be a T -simple module on the mouth of T. By [GL91, Theorem 10.3], the module class
T⊥ is given by the module category of a canonical algebra Λ of type (p1−1, p2, . . . , pt).
For all canonical tubular types, this algebra Λ is tame concealed by the proof of [Rin84,
4.3.(5)], as one can check from the (reduced) tubular type. Thus T⊥, being equival-
ent to an algebra of amenable representation type (see Corollary 3.21), is hyperfinite.
Similarly, we can show that S⊥ is hyperfinite, for some T -simple module S on the
mouth of a second tube of rank p2 ≥ 2. Thus, we can cover all of T by two hyperfinite
families, as two distinct tubes in the same tubular family are orthogonal, showing the
hyperfiniteness of T .

While this proposition enables us to show hyperfiniteness for a single tubular family,
unless we can control the change of the Lεs involved in the definition of hyperfiniteness
and the HF-preserving functors, we can only achieve results for finitely many tubular
families: Each equivalence T⊥ ∼= mod Λ for a tame concealed algebra Λ has its own
pair of (possibly) different constants K1,K2 (see Proposition 1.5 and the proof of Pro-
position 2.10). Given an HF-preserving functor F and fixed ε > 0, we have for the
“new” bound that

Lε = K2L
N
K1
K2

ε
.

Hence, this constant might be different and even unbounded for K2 → ∞. Indeed, if
F : mod Λ→ T⊥ is such an equivalence, the associated K2 grows like the dimension of
the T -simple modules in T, as made precise by the following lemma.
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Lemma 4.18. Let A be a tubular canonical algebra. For stable tubular families T of
index γ, let T be a T -simple module in an inhomogeneous tube T. Then the dimensions
of the simple objects of T⊥ grow like hγ.

Proof. By [GL91, Theorem 10.3], the module class T⊥ is given by the module category
of a canonical algebra Λ and Λ is tame concealed by the proof of [Rin84, 4.3.(5)]. If S is
a second T -simple module in the same tube as T , we have S ∈ T⊥. If F : mod Λ→ T⊥

is an equivalence, there is a regular simple Λ-module R such that F (R) ∼= S. The
length of R is bounded (and only depends on the type of Λ, which is one of finitely
many). Now, the length of S as an object of the perpendicular category equals that of
R over Λ. This implies that there is a simple object in T⊥ with k-dimension at least

dimS

length of ΛR
.

The sum of the dimension vectors of the indecomposable modules on the mouth of
T adds up to a multiple of hγ . Now, hγ grows with γ (c.f. Subsection 4.1.2). As the
dimension vector determines index, this growth must happen across all indecomposable
modules on the mouth. The claim then follows.

4.3 Explicit construction of modules for tubular canonical
algebras

As we have seen, to exhibit hyperfiniteness for infinitely many stable tubular families,
we need to further understand indecomposable modules and their submodules and use
information on their ranks and slopes. One way to achieve this is to provide an explicit
description in terms of linear algebra.

We begin by studying the linear maps involved in these representations.

Lemma 4.19. Let A be a tubular canonical algebra. Let M be an indecomposable
module of positive rank. Then the maps M(α) are injective for all α ∈ Q1.

Proof. First, let α = α
(j)
i for 1 ≤ i ≤ p

j
− 1. Then s(α) 6= ω. Assume that kerM(α) is

non-zero, that is there exists some 0 6= x ∈M(s(α)) such that M(α)(x) = 0. Consider
the submodule of M generated by x. Since the only arrow starting in s(α) maps x to
zero, this submodule is the simple module Ss(α). Yet, Ss(α) ∈ X∞, so it cannot map
to M , since Hom(T1,P1) = 0 (see Table 4.3 and Theorem 4.7). A contradiction. Hence
M(α) must be injective.
Now, assume α = α

(j)
pj , thus s(α) = ω. Assume again that kerM(α) 6= 0, that is,

there exists some 0 6= x ∈ M(ω) such that M(α)(x) = 0 and consider the submodule
N ⊂ M generated by x. It will be one-dimensional in ω and have dimension at most
one at vertex 0, as the map along arm (j) is zero and the relations J imply that the
homomorphism space generated by the concatenation of maps along the arms is at
most one-dimensional. This shows that N has rank rkN ∈ {0,−1}. So N cannot have
a non-zero map to M . A contradiction. Thus M(α) must be injective.
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Lemma 4.20. Let A be a tubular canonical algebra. Let M be an indecomposable
module of negative rank. Then the maps Mα are surjective for all α ∈ Q1.

Proof. Let M be an indecomposable module of negative rank, say of slope p − m.
Let F be as in Subsection 4.1.3. Then F (M) is an indecomposable module of slope
p−(p−m) = m and thus has positive rank. GivenM(α) : M(s(α))→M(t(α)), the map
M∗(α) : M∗(t(α)) → M∗(s(α)) is injective, since by the construction of F , this is an
arrow map for F (M), to which Lemma 4.19 applies. We writeM(t(α)) ∼= imM(α)⊕V ,
and define ϕ ∈ M∗(t(α)) to be the linear extension of ϕ(ei) = 0 and ϕ(fj) = 1, where
{ei : 1 ≤ i ≤ dim imM(α)} forms a basis of imM(α) and {fj : 1 ≤ i ≤ dimV } is a basis
of V . Then ϕ| imM(α) = 0, so M∗(α)(ϕ) = ϕ ◦M(α) = 0, and by the above injectivity,
ϕ = 0, a contradiction, unless V = 0. Thus M(α) is surjective.

4.3.1 Rank one modules parametrised by Meltzer
We continue by discussing exceptional indecomposable modules of rank one, relying on
a result by Meltzer [Mel07].

Proposition 4.21. [Mel07, Proposition 4.3] Let C be a canonical algebra of arbitrary
representation type andM an exceptional C-module of rank one. ThenM is isomorphic
to one of the following modules.

. . . M
(
a

(1)
r1+1

)
M
(
a

(1)
r1

)
. . .

. . . M
(
a

(2)
r2+1

)
M
(
a

(2)
r2

)
. . .

km = M(ω)
...

... M(0) = km+1,

. . . M
(
a

(t)
rt+1

)
M
(
a

(t)
rt

)
. . .

where the rj are integers such that 0 ≤ rj < pj, for each j = 1, . . . , t, (we stipulate that
a

(j)
0 = 0), and

M
(
a(j)
s

)
= km+1 for 0 ≤ s ≤ rj ,

whereas
M
(
a(j)
s

)
= km for rj + 1 ≤ s < pj .
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Further, the matrices of M are given as follows:

M
(
α

(1)
r1+1

)
= Xm :=


1

. . .
1

0 . . . 0

 ∈ Matm+1×m(k),

M
(
α

(2)
r2+1

)
= Ym :=


0 . . . 0
1

. . .
1

 ∈ Matm+1×m(k),

M
(
α

(j)
s

)
= Im+1, for 1 ≤ s ≤ rj, and M

(
α

(j)
s

)
= Im for rj + 1 < s ≤ pj, for both

j = 1, 2.
For j = 3, . . . , t, we distinguish two cases:

a) If rj = 0, we put

M
(
α

(j)
1

)
= Xm + λiYm and M

(
α(j)
s

)
= Im for 1 < s ≤ pj .

b) If rj > 0, we put

M
(
α

(j)
1

)
=


1
λi 1

. . . . . .
λi 1

 ∈ Matm+1×m+1(k), M
(
α

(j)
rj+1

)
= Xm,

M
(
α

(j)
s

)
= Im+1 for 1 < s ≤ rj and M

(
α

(j)
s

)
= Im for rj + 1 < s ≤ pj.

This insight is then sufficient to prove a result independent of index respectively slope
but dependent on rank.

Proposition 4.22. Let A be a tubular canonical algebra. Then the family of all ex-
ceptional modules of rank one is hyperfinite.

Proof. Let A be of tubular type (p1, . . . , pt). Let ε > 0 and set Lε := |A|2(|A|−1)
ε . Let

M be an exceptional indecomposable A-module of rank one. By Proposition 4.21, we
know that dimM = (m, . . . ,m + 1) and that the path maps Mα(j) along the arms
correspond to linear maps km → km+1 given by Xm for the first arm and Ym for the
second arm, while for 3 ≤ j ≤ t, the path map is given as Xm + λjYm. Assume that
dimM > Lε, as otherwise we can choose the submodule to be M itself. This situation
just corresponds to the regular modules over a generalised t-Kronecker quiver Θ(t)
having arrows {α(j)}tj=1 bound by the relations

α(j) = α(1) + λjα
(2) for 3 ≤ j ≤ t.
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Thus similar to the proof of Theorem 2.9, setting Kε :=
⌈

2(|A|−1)
ε

⌉
, we know how to

remove every Kεth basis element from the vector space Mω at vertex ω to make this
subspace decompose. As the maps along the arms are injective by Lemma 4.19, this
decomposition can be pushed along the arms to yield a decomposition of a submodule
N ⊂M into summands of dimension at most |A|(Kε − 1) + 1 ≤ Lε, while

dimN = (|A| − 1)(m− s) +m+ 1 ≥ (dimM − |A|+ 2)− (|A| − 1)s

= dimM − (|A| − 1)dimM − r
Kε

− |A|+ 2 ≥ dimM − ε

2 dimM − |A|

= (1− ε) dimM + ε

2 dimM − |A| > (1− ε) dimM,

for dimM = s ·Kε + r, where 0 ≤ r < Kε, as dimM > Lε.

4.3.2 Explicit description of integral slope modules based on
Dowbor–Meltzer–Mróz

For modules of higher rank, we turn to the work of Dowbor, Meltzer and Mróz
[DMM14b]. They give a complete description of the homogeneous indecomposable
modules of integral slope over tubular canonical algebras. This is done by constructing
matrix bimodules over a localisation of a polynomial algebra. Using tensor products, a
parametrisation of all indecomposable modules in homogeneous tubes of integral slope
is then attained.
In particular, [DMM14b, Theorem 4.1, Remark 4.1a], gives a detailed description

(in terms of matrices) of a representation isomorphic to each indecomposable module
M(µ, l, ξ) in homogeneous tubes of integral slope µ and parameter ξ, of regular length l.
In what follows, we will only use this description for integral slopes µ 6= 0, p,∞. We
will mostly rely on this explicit matrix description and not use the bimodule construc-
tion. Given an indecomposable module E = M(µ, 1, ξ), we may write E�l for the
corresponding indecomposable M(µ, l, ξ).

It is this explicit description—slightly extended—that we will exploit to give further
hyperfiniteness results for tubular canonical algebras.
Example 4.23. Consider the canonical tubular algebra of type (3, 3, 3). We describe
an indecomposable homogeneous module M of slope 3m+ 4 for m ∈ N and of regular
length one. The module M has dimension vector

dim(M) =

 1 + 3m+ 1 2 + 3m+ 1
3m+ 1 3m+ 2 1 + 3m+ 2 3m+ 4

3m+ 2 3m+ 3

 .
The matrices of the first arm, for example, are given by the block matrices

M(α(1)
3 ) =


01,m 01,m 01,m+1
Im

Im
Im+1

 , M(α(1)
2 ) =


1 01,m 01,m 01,m+1
0 01,m 01,m 01,m+1

0m,1 Im
0m,1 Im

0m+1,1 Im+1

 ,
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and M(α(1)
1 ) =



0 0
...

... Xm

0 0
1 ξ

0 0
...

... Xm

0 0
1 1
0 0
...

...
0 0 Xm+1
1 0
1 0


respectively. We denote this module by M(3m+ 4, 1, ξ).
Note that forM�l, the entry ξ will be replaced by a Jordan-block Jl(ξ) of eigenvalue ξ,
while the ones will be replaced by the identity matrix Il.
The full list of the matrices can be found in [DMM14b, pp. 345–354].

We will further group the basis elements of the vector spaces at vertices 0 and ω
to ease referring to the blocks appearing. Let us consider some M(µ, l, ξ) of slope
µ = mp+ r with 0 ≤ r < p for positive rank. The vector space at vertex ω is given as

kl(m)⊕p−r ⊕ kl(m+1)⊕r,

while the vector space at vertex 0 is given as

kl(m+1)⊕p−r ⊕ kl(m+2)⊕r.

The basis vectors of each vector space kl(m) respectively kl(m+1) respectively kl(m+2)

will be said to form a block. These p blocks will be ordered from left to right and then
be grouped according to Table 4.4.

type # in first group # in middle group # in last group
(2, 2, 2, 2) 0 2 0
(3, 3, 3) 1 1 1
(2, 4, 4) 1 2 1
(2, 3, 6) 1 3 2

Table 4.4: Number of so-called blocks in each group when describing the block matrices
for M(µ, l, ξ).

64



4 Tubular canonical algebras

In denoting the (block) matrices, we will use the matrices

Xm :=


1

. . .
1

0 . . . 0

 , Ym :=


0 . . . 0
1

. . .
1

 ∈ Matm+1×m(k),

and Zκm = Xm + κYm. Here, we may omit κ if it is equal to one. ote that they
already appeared in Proposition 4.21. We will also write X�lm and Y �lm to denote the
matrix obtained from Xm respectively Ym by replacing 1 and 0 by the identity matrix Il
respectively the zero matrix 0l,l.

4.3.3 Special values of ξ and exceptional tubes
The construction of Dowbor, Meltzer and Mróz [DMM14b] also works for the special
values zero, one and λ of ξ. Moreover, an analogous construction can give a sensible
meaning to M(µ, l,∞): morally speaking, one just makes the manifest changes in the
relevant columns as one would in the 2-Kronecker case. In more detail, we start with
M(µ, l, 1) and make changes in the block matrices describing the linear maps along
the arms. We replace the Jordan block of eigenvalue ξ = 1 by the identity matrix Il.
Further, in the same block matrix, we replace the identity matrices in the block column
corresponding to the last block of the middle group by the Jordan block of eigenvalue
zero, Jl(0).
Example 4.24. For the tubular algebra of type (3, 3, 3), the indecomposable module
M(6, 1,∞) has dimension vector

dim(M) =
( 4 5

3 4 5 6
4 4

)
,

and the linear maps for the first arm are given by the matrices

M(α(1)
3 ) =


0 0 0
1

1
1

 ,M(α(1)
2 ) =


1 0 0 0
0 0 0 0
0 1
0 1
0 1

 ,

and M(α(1)
1 ) =



0 0 1
1 1 0
0 0 1
1 0 0
0 0 1
1 0 0


respectively. All other matrices remain unchanged from M(6, 1, 1). This module is
then—in the sense of [DMM10]—isomorphic to the module in the second inhomogen-
eous tube of regular length 3, having as regular socle the first regular simple in that
tube, that is, having tubular coordinates [6, 2, 1, 3].
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Remark. Note that for these special values of ξ, l does not equal the regular length of
M(µ, l, ξ). These modules are indeed indecomposable representations of the tubular
canonical algebra, as we will see from the following lemma.

Lemma 4.25. Let A be a canonical tubular algebra. Let M(µ, l, ξ) be the A-module of
slope µ, positive rank and (regular) length l constructed for parameter ξ as above. Then

HomA

(
M(µ, l, ξ),M(µ, l′, ξ′)

) ∼= {
k[x]/(xmin(l,l′)), ξ = ξ′,

0, ξ 6= ξ′.

Proof. Fix a canonical tubular algebra A and let Q be the underlying quiver. Let
M = M(p(m + 1) + r, l, ξ) and N = M(p(m + 1) + r, l′, ξ′) be two A-modules of the
given form with the same slope p(m + 1) + r, where 0 ≤ r < p. Let f ∈ Hom(M,N).
Then f is given as a |Q0|-tuple of linear maps Hom (M(i), N(i)) for i ∈ Q0. We
have M(ω) = klm

⊕p−r ⊕ kl(m+1)⊕r and M(0) = kl(m+1)⊕p−r ⊕ kl(m+2)⊕r. A similar
description holds for N . We consider the induced representation of the 2-Kronecker
quiver Θ(2) given as

M̃ = M(ω)
M(α(1))−−−−−−→−−−−−−→
M(α(2))

M(0), where M
(
α(j)

)
= M

(
α

(j)
1

)
◦ · · · ◦M

(
α

(j)
pj−1

)
,

and Ñ , constructed in the same manner. Using the given structure of the M(α(j)
i ), we

see that
M̃ ∼= Pm

⊕l(p−r) ⊕ Pm+1
⊕lr,

while
Ñ ∼= Pm

⊕l′(p−r) ⊕ Pm+1
⊕l′r.

We may conclude that HomkΘ(2)(M̃, Ñ) is a p2ll′-dimensional algebra. Indeed, we fully
understand the induced homomorphism (fω, f0): The k-linear map f0 = (B(ij)) for
vertex 0 is a p × p-block matrix, where each block is itself an (almost) diagonal block
matrix,

B(ij) =



(
λ(ij)

. . .
λ(ij)

)
∈ Matm+1×m+1 (Matl′×l(k)) , 1 ≤ i, j ≤ p− r,( 0

. . .
0

)
∈ Matm+1×m+2 (Matl′×l(k)) , 1 ≤ i ≤ p− r < j ≤ p,

µ(ij)

ν(ij)

. . .
µ(ij)

ν(ij)

 ∈ Matm+2×m+1 (Matl′×l(k)) , 1 ≤ j ≤ p− r < i ≤ p,

(
λ(ij)

. . .
λ(ij)

)
∈ Matm+2×m+2 (Matl′×l(k)) , p− r < i, j ≤ p,
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and

λ(ij) =


λ

(ij)
11 . . . λ

(ij)
1l

... . . . ...
λ

(ij)
l′1 . . . λ

(ij)
l′l

 .
Similarly, fω = (A(ij)) is a p×p-block matrix of blocks themselves being block matrices.
We will stick to this convention of writing block matrices of block matrices for the linear
maps at other vertices, that is, for all other f

a
(j)
i

.
We shall now collect some consequences of matrix identities which we will use in the

ensuing case analysis quite frequently and may refer to them as basic considerations.

Note that for some m×w block matrix E =
(
e(u,v)

)
where e(u,v) =

(
e

(u,v)
ij

)
∈

Matl′×l(k), we have

Zκm ◦ E =



(
e

(1,1)
ij

)
. . .

(
e

(1,w)
ij

)
κ(e(1,1)

ij ) + (e(2,1)
ij ) . . . κ(e(1,w)

ij ) + (e(2,w)
ij )

... . . . ...
κ(e(m−1,1)

ij ) + (e(m,1)
ij ) . . . κ(e(m−1,w)

ij ) + (e(m,w)
ij )

κe(m,1) . . . κe(m,w)


,

thus Zκm ◦ E = B(ij) for non-zero B(ij) (as above) either implies λ(ij) = 0 or
κµ(ij) = ν(ij). A similar result holds for Zκm+1 and suitable E′.

(4.1)

From X�l
′

m ◦ D = B respectively Y �l
′

m ◦ D = B it follows that the first row
respectively the last row of B must consist of zero matrices.

(4.2)

Clearly, from ( 1
0 )�l

′
F = C( 1

0 )�l, it follows that C21 must be the zero matrix,
where C = (Cij) and suitable F .

(4.3)

Moreover, for C ∈ Matl′×l(k), we have that Jl′(ξ′)◦C = C ◦Jl(ξ) implies that

C = 0 whenever ξ 6= ξ′, and otherwise C =


c11 0 0 ... 0
c21 c11 0 ... 0
c31 c21 c11 ... 0
... . . . . . .

cl′,1 cl′−1,1 ... c21 c11

. (4.4)

Finally, for C, λ ∈ Matl′×l(k), it follows from C = λ ◦ Jl(ξ) and Jl′(0) ◦ C = λ
(respectively from Jl′(0) ◦C = λ and C = λ ◦Jl(0)) that both C and λ are the
zero matrix.

(4.5)

We introduce notation for some of the occurring matrices, such as

f
a

(1)
1

=
(
C(ij)

)
i,j=0,...,p

.
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Next, start by considering the situation for ξ, ξ′ 6=∞ for slope µ = p(m+ 1) + r, where
0 ≤ r < p.
Type (2, 2, 2, 2), r = 0. Using relation (4.1) for κ = 1 and κ = λ on arms (3) and

(4) shows that λ(21), λ(12) = 0. Along the second arm, the relation for α(2)
1 implies that

λ(11) = λ(22). Now we turn to the first arm. Here, the relation for α(1)
1 shows that

Jl′(ξ′) ◦ λ(22) = λ(11) ◦ Jl(ξ).

Type (2, 2, 2, 2), r = 1. We invoke type (4.1) occurring in the relations for α(3)
1 and

α
(4)
1 to see that µ(21) = ν(21) = λµ(21). Since the parameter λ 6= 1, it follows that
µ(21) = ν(21) = 0. Recall that B(12) is zero by the above considerations from the
Kronecker module. As in the even case r = 0, the relation for α(2)

1 then shows that
λ(11) = λ(22), while relations along the first arm imply that Jl′(ξ′)◦λ(22) = Jl(ξ)◦λ(11),
as the parameter λ 6= 0.
Type (3, 3, 3), r = 0. Relations along the third arm of type (4.1) show that λ(12), λ(13)

and λ(23) are zero matrices. We employ the relations along the second arm next: First,
we use the one for α(2)

2 to conclude that D(21) must be zero, where f
a

(2)
1

=
(
D(ij)

)
.

Now, from the relation for α(2)
1 , three type (4.2) relations follow, from which we may

conclude that λ(31), λ(32) and λ(21) are zero. Turning to relations of the first arm, we see
that the relation for α(1)

2 via type (4.3) shows that C(00)
21 = 0. Eventually, the relation

for α(1)
1 implies that λ(11) = λ(22) = λ(33), while Jl′(ξ′) ◦ λ(22) = λ(11) ◦ Jl(ξ).

Type (3, 3, 3), r = 1. Relations along the lower arm of type (4.1) show that λ(12) = 0,
µ(31) = ν(31) and µ(32) = ν(32). The central arm further shows via type (4.2) that
µ(31) = 0 and µ(32) = 0. Similarly to the previous case we also see that λ(21) = 0.
Acknowledging the Kronecker considerations, we also have B(13), B(23) = 0. Thus, we
have the same results from the top arm as in the previous case.
Type (3, 3, 3), r = 2. Here, basic considerations for the lower arm yield λ(23) = 0,

µ(21) = ν(21) and µ(31) = ν(31), while the central arm gives λ(32) = 0, µ(21) = 0 and
µ(31) = 0. Together with the considerations from the Kronecker module situation, we
may draw the same conclusions from the relations along the top arm as in the previous
two cases.
Type (2, 4, 4), r = 0. Relations along the lower arm show via type (4.1) identities

that λ(12), λ(13), λ(14), λ(23), λ(24) and λ(34) must be zero matrices. The commutativity
relation for α(2)

3 shows that F (21) must be zero where f
a

(2)
2

=
(
F (ij)

)
. The relation

for α(2)
2 further implies that D(21) must be zero and ( 1

0 )�l
′
F22 = D(22)( 1

0 )�l, where
f
a

(2)
1

= (D(ij)). Now, from the relation for α(2)
1 , four type (4.2) relations follow, which

lead us to conclude that λ(41), λ(42), λ(43), λ(31) and λ(21) are zero. It follows as well that
λ(32) = 0, by a modified type (4.2) equality invoking d(22)

21 = 0, where D(22) =
(
d

(22)
ij

)
.

Eventually, the relation for α(1)
1 implies that λ(11) = λ(22) = λ(33) = λ(44), while

Jl′(ξ′) ◦ λ(22) = λ(11)Jl(ξ).
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Type (2, 4, 4), r 6= 0. As for type (3, 3, 3), relations for the lower and central arms
and the basic considerations combine to show that B(ij) = 0 for i 6= j. Thus we have
the same results from the top arm as in the previous case.

Type (2, 3, 6), r = 0. Commutativity relations for arrows of the lower arm will show
via type (4.1) identities that λ(12), . . . , λ(16);λ(23), . . . , λ(26);λ(34), λ(35), λ(36);λ(45), λ(46)

and λ(56) are zero. From relations of the central arm, as in the above cases, (modified)
type (4.2) relations and preliminary results giving zero entries of D(21) and D(22),
where f

a
(2)
1

=
(
D(ij)

)
, show that λ(61), . . . , λ(64);λ(51), . . . , λ(54);λ(41), λ(42);λ(31), λ(32)

are zero. Using this information, we turn to the relation for α(1)
1 and deduce that

λ(56), λ(43) and λ(21) are zero. It then follows from the same commutativity relation
that λ(11) = λ(22) = λ(33) = λ(44) = λ(55) = λ(66). We also conclude Jl′(ξ′) ◦ λ(22) =
λ(66) ◦ Jl(ξ).

Type (2, 3, 6), r 6= 0. We proceed as in the case for (2, 4, 4): Using relations for the
lower and central arms and the Kronecker considerations to show that most B(ij) are
zero. The remaining off-diagonal blocks are forced to be zero by relations of the first
arm. Finally, we have the same results from the top arm as in the previous case.

We note that the above considerations also work for if we put ξ and ξ′ to be infinity,
that is when M = M(µ, l,∞) and N = M(µ, l′,∞), since the affected equalities can
still be inferred, as the Jordan block and the identity matrix block switch their places in
M
a

(1)
1

respectively N
a

(1)
1
, while setting ξ = 0 (c.f. the above remark on the construction

of the infinity case). If ξ = ∞ 6= ξ′ or vice versa, we make some modifications to the
above arguments:

Type (2, 2, 2, 2). We deduce that the off-diagonal entries of f0 are zero as above.
From α

(2)
1 it still follows that λ(11) = λ(22), while the first arm now gives an identity of

type (4.5) for matrices C(00)
11 respectively λ(11) = λ(22).

Type (3, 3, 3). We deduce that the off-diagonal entries of f0 are zero as above. Note
that the description of the module for parameter ∞ does not affect the commutativity
relation for α(1)

1 , which still shows that λ(11) = λ(22) = λ(33). Yet, by the modifica-
tion for the infinity case, we also deduce an identity of type (4.5) for matrices C(00)

22
respectively λ(11) = λ(22).

Type (2, 4, 4). We deduce that the off-diagonal entries of f0 are zero as above. Avoid-
ing effects of describing the infinity case, the commutativity relation for α(1)

1 still shows
that λ(11) = λ(33) = λ(44). Yet, by the modification for the infinity case, we also deduce
an identity of type (4.5) for matrices C(00)

11 respectively λ(11) = λ(33).

Type (2, 3, 6). We deduce that most off-diagonal entries of f0 are zero as above. From
the relation for α(1)

1 then follows an identity of type (4.5) for matrices C(00)
11 respectively

λ(44) = λ(66).
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In each case, we now apply matrix identity consequence (4.4) or (4.5) to see that
f = 0 if ξ 6= ξ′ or that f is determined by a matrix of the same shape as C above. This
concludes the proof.

Remark. The previous lemma shows that for each positive slope µ there is a fully
faithful functor reg kΘ(2)→ Xµ.

Corollary 4.26. The modules M(µ, l, ξ) are pairwise non-isomorphic and indecom-
posable. For fixed integral slope µ and fixed l, there is one in each tube T, the tube
determined by the parameter ξ. They have regular length pl, where p = rkT is the tube
rank.

Proof. We will discuss the positive rank case first. Here, by the previous Lemma 4.25,
the endomorphism ring of a givenM(µ, l, ξ) is a local algebra of dimension l. Moreover,
the homomorphism space is zero for modules of the same slope if they do not have the
same parameter ξ. As modules with distinct l′ have different dimension vectors, they
cannot be isomorphic.
By [DMM14b], for all but finitely many values of ξ, theM(µ, 1, ξ) give regular simple

indecomposables in (different) homogeneous tubes. We fix µ (and the respective γ) and
consider one of these homogeneous tubes, denoting it by Tγ(ρ). Using the notation of
[Rin84, Chapter 5], Tγ(ρ) contains a module having dimension vector h(Tγ(ρ)). Simil-
arly, by [Rin84, 5.3.(5)], every inhomogeneous tube Tγ(ζ) contains an indecomposable
module with dimension vector

h(Tγ(ζ)) :=
rk Tγ(ζ)∑
i=1

dimEi.

Here, we use a notation similar to Section 3.3 to denote the indecomposable objects in
a fixed tube. Yet, h(Tγ(ξ)) is a multiple of hγ for all values of ξ (c.f. [Rin84, Proof of
5.5.(1)]). Since all h(Tγ(ξ)) are primitive by [Rin84, 5.3.(3)], it follows that

h(Tγ(ζ)) = hγ = h(Tγ(ρ)).

This shows that

dimM(µ, 1, ξ) =
rk Tγ(ξ)∑
i=1

dimEi,

establishing that M(µ, l, ξ) has regular length l rk Tγ(ξ).
Now assume that M(µ, l, ξ) and M(µ, l′, ξ′) lie in the same tube T. Then the corres-

ponding modules E1[r] = M(µ, 1, ξ) and Ej [r] = M(µ, 1, ξ′) must also lie in the same
tube. E1[r] and Ej [r] have the same regular length r = rkT. If r = 1, they must
both be regular simple, and hence isomorphic, as there is just one regular simple in a
homogeneous tube. If r 6= 1, the coray of E1[r] consists of irreducible epimorphisms
and it will pass through Ej [s] for some 1 ≤ s < r. On the other hand, the ray of Ej [r]
consists of irreducible monomorphisms and contains all Ej [s]. Now, the composition
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E1[r]�Ej [s] ↪→Ej [r] is a non-zero homomorphism, hence Hom(E1[r], Ej [r]) 6= 0. But
Hom(E1[r], Ej [r]) = 0 unless ξ = ξ′ by Lemma 4.25, thus these modules can only lie in
the same tube if they have the same parameter ξ.
Finally, to get the negative rank case, we make use of the duality F from Subsec-

tion 4.1.3. This will map the indecomposables from a tube of slope m to one of slope
p − m while preserving the tubular structure (see also [DMM14b, Section 4.2]). It
follows that F (M(µ, l, ξ)) ∼= M(p− µ, l, ξ).

Remark. Since [DMM14b] have shown that M(µ, l, ξ) for ξ 6= 0, 1, λ,∞ give all the
indecomposable modules in the homogeneous tubes, we know that the special values
for ξ give indecomposable modules of regular length each multiple of the tube rank for
all the exceptional tubes of a given tubular family associated to slope µ.

4.4 Hyperfiniteness for integral slope modules
We now turn to apply the explicit descriptions to achieve hyperfiniteness results.

4.4.1 Homogeneous modules
The first class of modules to be discussed will be the homogeneous modules of integral
slope.

Proposition 4.27. Let A be a tubular canonical algebra. Then the family of all homo-
geneous modules of integral slope and positive rank is hyperfinite. Moreover, the family
of (isoclasses of) indecomposable modules isomorphic to some M(µ, l, ξ) is hyperfinite.

Proof. We prove the more general statement. Let c depend on the tubular type with
c = 2 if p = 2 and c = p + 1 otherwise. Let ε > 0. Choose Lε as the maximum of
those bounds appearing in Proposition 4.22—appearing for ε

2—and those coming from
Proposition 4.17 for the finite number of tubular families of integral slope containing
all the regular simple (homogeneous) modules of dimension less than 2c

ε .
Let M = M(µ, l, ξ) be some indecomposable module of integral slope µ, of regular

length l and parameter ξ. If M is homogeneous, denote its regular socle by S. More
generally, put S = M(µ, 1, ξ). Note that all homogeneous modules are isomorphic to
such a representation by [DMM14b, Theorem 4.1, Remark 4.1a].
In case dimS < 2c

ε , M lies in one of the finitely many tubular families mentioned
above, having tubular index 1 − p

µ . Indeed, we make the argument that dimS = hµ.
Thus, Proposition 4.17 yields a suitable submodule with its summands’ dimensions
bounded by Lε.

In case dimS ≥ 2c
ε , remove the cl basis elements corresponding to the non-block

entries of all the M
α

(j)
i

, i.e. all basis elements not belonging to a block with some Im,
Xm, Ym or Zm appearing already for l = 1. Thus, we arrive at a submodule N ⊂ M .
Note that this is indeed a submodule, as all paths passing through the basis elements
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removed also start in basis elements which are removed. Moreover, dimM−dimN = cl.
Thus, we have

dimN = dimM − cl = l(dimS − c)

≥ l
(

dimS − dimSε

2

)
=
(

1− ε

2

)
l dimS

=
(

1− ε

2

)
dimM

Moreover, by the block structure of the matrices Nα, N decomposes into pl sum-
mands, which are of rank one: for each vertex space of dimension lm, use the l distinct
embeddings

ιj : km ↪→ klm, ei 7→ eli−j+1 for j ∈ {1, . . . , l}.

Inspection of the corresponding matrices of the summands and a comparison with Pro-
position 4.21 further shows that these are exceptional modules. Now, Proposition 4.22
yields the existence of a submodule N ′ ⊆ N with dimN ′ ≥ (1 − ε

2) dimN , while N ′
decomposes into summands of dimension less than or equal to Lε. A calculation as in
the proof of Proposition 1.4 then shows that dimN ′ ≥ (1 − ε) dimM. In this way, we
have found a submodule N ′ ⊂ M which is nearly as big as M and decomposes into
summands of dimension at most Lε.

Example 4.28. Consider the canonical tubular algebra (3, 3, 3) and an indecomposable
homogeneous module M of slope 3m + 4 for m ∈ N and of regular length l. Then M
has dimension vector

dim(M) = l

(
1+3m+1 2+3m+1

3m+1 3m+2 1+3m+2 3m+4
3m+2 3m+3

)
.

We will examine the first arm. The corresponding linear maps are given by the block
matrices

M
α

(1)
3

=


0l,lm 0l,lm 0l,l(m+1)
Ilm

Ilm
Il(m+1)

 , Mα
(1)
2

=


Il 0l,lm 0l,lm 0l,l(m+1)
0l,l 0l,lm 0l,lm 0l,l(m+1)

0lm,l Ilm
0lm,l Ilm

0l(m+1),l Il(m+1)

 ,
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andM
α

(1)
1

=



0l,l 0l,l
...

... Xlm

0l,l 0l,l
Il Jl(ξ) 0l−1,lm
0l,l 0l,l
...

... Xlm

0l,l 0l,l
Il Il 0l−1,lm
0l,l 0l,l
...

...
0l,l 0l,l Xl(m+1)
Il 0l,l
Il 0l,l 0l−1,l(m+1)


respectively. We will remove the basis elements corresponding to the highlighted rows
and columns, that is, we remove the first l basis elements at vertex a(1)

2 and the first 2l
basis elements at vertex a(1)

1 . We proceed similarly for the other arms, hence removing
the first l basis elements at vertex a(2)

1 . Thus we remove 4l basis elements in total.
Now it is easy to see that the submoduleN generated by the remaining basis elements

decomposes into (at least) three summands, corresponding to each of the three large
non-zero blocks. Moreover, at each vertex, the vector space embeddings

ιj : km ↪→ klm, ei 7→ eli−j+1 for j ∈ {1, . . . , l},

are compatible with this decomposition and further exhibit the decomposition into
3l indecomposable summands of rank one.

Now, the maps (Ni)(α(J)) for each summand corresponding to the full path α(J)

along each of the arms are given by Xm, Ym and Zκm = Xm +κYm respectively, so they
are exceptional by Proposition 4.21.
There is a dual result for negative rank. Yet, it will not be used in proving the final

result. Let us introduce the appropriate notation before we state it, though. By the
duality, the vector space at vertex ω of some M(µ, l, ξ) of slope µ = −mp − r with
0 ≤ r < p for negative rank is given as

M(ω) = kl(m+1)⊕p−r ⊕ kl(m+2)⊕r.

We have the same blocks as for positive rank.

Proposition 4.29. Let A be a tubular canonical algebra. Then the family of (isomorph-
ism classes of) indecomposable modules isomorphic to some M(µ, l, ξ) for negative µ is
hyperfinite.

Proof. Let c be a constant depending on the tubular type, determined later. Choose
Lε to be the maximum of those bounds appearing in Proposition 4.22—appearing
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for ε
2—and those coming from Proposition 4.17 for the finite number of tubular fam-

ilies containing all the regular modules M(µ, l, ξ) of dimension less than 2c
ε . We now

let M = M(µ, l, ξ) be some indecomposable module of integral slope µ = −pm − r,
where 0 ≤ r < p, of regular length l and parameter ξ. Put S = M(µ, 1, ξ). In case
dimS < 2c

ε , M lies in one of finitely many tubular families mentioned above, having
tubular index 1− p

µ . Indeed, we know that dimS = hµ. Thus, Proposition 4.17 yields a
suitable submodule with its summands’ dimensions bounded by Lε. In case dimS ≥ 2c

ε ,
consider the submodule N ⊂M generated in vertex ω by the following basis elements:

• All but the last l basis elements in the first block (note that there is no such block
for for case (2, 2, 2, 2)). This block always has l(m+ 1) basis elements.

• The central basis elements (all but the first/last l respectively 2l) in each middle
block (of which there are two respectively one respectively two respectively three).

• All but the last l respectively 2l basis elements in the last blocks (of which there
are none respectively one respectively one respectively two).

Clearly, dimM − dimN = cl, for c a constant depending only on the tubular type
and the modulus of the slope µ mod p. Now, N is the direct sum of pl indecompos-
able summands of rank zero or one, as can be seen using the block structure of the
matrices Nα. Note that the rank one modules are exceptional as in the proof of Propos-
ition 4.27, thus combining Proposition 4.22 (for rank one) respectively Proposition 4.17
(for rank zero) via Proposition 1.2 yields the existence of a submodule N ′ ⊆ N with

N ′ ≥ (1− ε

2) dimN,

while N ′ decomposes into summands of dimension less than or equal to Lε. A calcula-
tion as in the proof of Proposition 1.4 then shows that dimN ′ ≥ (1− ε) dimM . In this
way, we have found a submodule N ′ ⊂M which has nearly the same dimension as M
and decomposes into summands of dimension at most Lε.

Example 4.30. Consider the canonical tubular algebra of type (2, 4, 4). We will con-
struct a submodule exhibiting hyperfiniteness for M(−4m− 1, l, ξ), ξ 6=∞. Here,

M(ω) = kl(m+1) ⊕ kl(m+1) ⊕ kl(m+1) ⊕ kl(m+2),

has basis

{a1
1, . . . , a

l
1, a

1
2, . . . , a

l
2, . . . , a

1
m+1, . . . , a

l
m+1; b11, . . . , bl1, . . . , b1m+1, . . . , b

l
m+1;

c1
1, . . . , c

l
1, . . . , c

1
m+1, . . . , c

l
m+1; d1

1, . . . , d
l
1, . . . , d

1
m+2, . . . , d

l
m+2},

and we construct the submodule N generated by the vector space

〈a1
1, . . . , a

l
1, . . . , a

1
m, . . . , a

l
m; b12, . . . , bl2, . . . , b1m, . . . , blm;

c1
2, . . . , c

l
2, . . . , c

1
m, . . . , c

l
m; d1

1, . . . , d
l
1, . . . , d

1
m, . . . , d

l
m〉
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at the source vertex ω.
In particular, consider M(−9, 1, 1). We have

dim(M) = l
( 11

13 12 11 10 9
12 11 10

)
.

In case l = 1, the matrices of N are obtained from those of M by removing the high-
lighted rows and columns, as the vector space at each subsequent vertex is generated
by the image with the said basis elements removed from the source vertex.

M(α(1)
2 ) =



0 0 ξ 0 0 1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0 1 1
1 0 0
0 1 0

1 0 0
0 1 0

1 0 0
0 1 0

1 0 0 0
0 1 0 0
0 0 1 0



, M(α(1)
1 ) = . . . ,

M(α(2)
4 ) =



1 0 0
0 1 0
0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0

0 1 0
0 0 1

0 1 0
0 0 1

0 1 0 0
0 0 1 0
0 0 0 1



, M(α(2)
3 ) = . . . ,
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M(α(3)
4 ) =



1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

1 0 0
0 1 0
0 0 1

1 1 0 0
0 1 1 0
0 0 1 1



, M(α(3)
3 ) = . . . .

Then
dim(N) = l

( 6
6 5 5 5 8

6 6 6

)
.

Here, we have constant c = 46. Hence note that dim(M(−5, 1, 1)) = 63 < 2c would
not be an interesting example.

4.4.2 Further indecomposable regular modules
Having studied homogeneous modules in homogeneous and exceptional tubes, we will
now approach the remaining indecomposable regular modules.

Lemma 4.31. Let A be a tubular canonical algebra. Let T be a tube in a standard stable
tubular family T of integral slope. Then the T -simple modules in T have rank p

rkT .

Proof. Let us denote the T -simple modules in T by E1, . . . , ErkT. By Corollary 4.26,
some indecomposable module H in T of T -length rkT is given by M(µ, 1, ξ) and
thus has rank ±p by construction. We also know that dimM = ∑rkT

i=1 dimEi, as
M ∼= E1[rkT] (c.f. [Rin84, Chapter 3]). On the other hand, for regular modules, the
rank is stable under the translate τ , as

rk τM = dim(τM)0 − dim(τM)ω = 〈dimP (0)− dimP (ω), dim τM〉
= 〈dimP (0)− dimP (ω),ΦA(dimM)〉 = 〈dimM, dim I(0)− dim I(ω)〉
= dimM0 − dimMω = rkM,

applying [Rin84, 2.4.(4)], as p. dimM ≤ 1 andM does not map to a projective module,
and using dimP (ω)− dimP (0) = dim I(0)− dim I(ω). Since the rank is a linear form
on K0(A), it follows that rkEi = p

rkT for 1 ≤ i ≤ rkT.

Corollary 4.32. Let A be a canonical tubular algebra. Let T be a tube of maximal
rank in a tubular family T of positive integral slope. Then the T -simple modules in T
have rank one.
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Proposition 4.33. Let A be a canonical tubular algebra. Then there is a hyperfinite
family of indecomposable modules containing a module of each regular length in each
inhomogeneous tube of integral slope ν � p and positive rank.

Proof. Because of Corollary 4.26 and the trailing remark, in a given exceptional tube T
of rank ps of a given standard stable tubular family Tγ ≡ Xµ of slope µ, some indecom-
posable of Tγ-length lps is given by M(µ, l, ξ) for ξ ∈ {0, 1,∞, λ}. We denote this
module by E[lps]. For a given Tγ-length (l − 1)ps < h ≤ lps, consider the sequence of
injective irreducible maps in the tube T

E[h]
ι
(l)
ps−h−−−→ E[h+ 1]

ι
(l)
ps−h−1−−−−−→ . . .

ι
(l)
1−−→ E[lps],

between indecomposable modules with the same Tγ-socle E. We consider the submod-
ule M of E[h] generated by all basis elements of the vector space E[h]ω in the source
vertex. As E[h] has positive rank, the maps E[h]α are injective by Lemma 4.19, so
denoting a = dimE[h]ω, we have

dimM =
a ... a

a
... a+b

a ... a

, for some b ∈ N0.

Note that we may also consider M as the submodule of E[lps] generated by fω(E[h]ω),
where f = ι

(l)
1 ◦ · · · ◦ ι

(l)
ps−h.

Next, recall that E[lps] has slope µ = (m + 1)p + r, with 0 ≤ r < p, and induces a
kΘ(2)-module

Ẽ[lps] =

klm⊕p−r ⊕ kl(m+1)⊕r
(X�lm )⊕p−r⊕(X�lm+1)

⊕r

−−−−−−−−−−−−−−−−→−−−−−−−−−−−−−−−−→
(Y �lm )⊕p−r⊕(Y �lm+1)

⊕r
kl(m+1)⊕p−r ⊕ kl(m+2)⊕r

 ,
given the composition of the maps along two generic arms respectively. We see that this
module decomposes into pl summands of type Pm respectively Pm+1 (where Pm as in
Theorem 2.9). Thus, any kΘ(2)-submodule of this module must also be a direct sum of
preprojective indecomposables, that is, of modules of type Pi. As the submodule M is
generated solely in E[lps]ω, this data is sufficient to understand M as an A-submodule
of E[ps], thus showing that M is a direct sum of rank one modules.
We continue by showing that the codimension of M is suitable. To this end, recall

that dimE[h] = ∑h−1
j=0 dimEi+j , where the Ej := Ej [1] denote the Tγ-simple modules

on the mouth of T and we put Ei := E[1]. By Lemma 4.31, the Tγ-simples all have
rank c = p

ps
. Denote p = ∑t

i=1 pi = |A| − 2. Thus, the dimension of E[h] is at most
a+ p(a+ hc) + (a+ hc), as the dimension vector is the sum of h dimension vectors of
regular simple modules, adding up to a in vertex ω. The dimension of M on the other
hand is at least (2 + p)a, as the linear maps along the arms in M are restrictions from
injective maps. The codimension of M in E[h] then is at most (1 + p)ch.
Now let ε > 0 and assume that

min{dimS : S regular simple in Xµ} ≥
p(1 + p)

ε
, (4.6)
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noting that the minimum exists since there are only finitely many inhomogeneous tubes
and the dimension vectors in the homogeneous tubes of fixed slope µ are constant. This
yields

dimM ≥ dimE[h]− (1 + p)ch ≥ dimE[h]− εmin
j
{dimEj}h

≥ dimE[h]− ε
h−1∑
j=0

dimEi+j = (1− ε) dimE[h].

Finally, we note that the imposed condition (4.6) is one on the tubular family Tγ and
will only be false for finitely many tubular families of small slope: For indecomposable
modules, the dimension vector determines the slope of the module. For a given dimen-
sion (and fixed number of vertices), there are only finitely many dimension vectors of
smaller dimension. Thus, the condition requires the smallest regular simple to have one
of only finitely many dimension vectors and hence one of finitely many integral slopes.
This implies that there is some ν ≥ p such that the condition holds for all µ ≥ ν.

Lemma 4.34. Let A be a finite dimensional k-algebra. On the modules of projective
dimension at most one, the translate τ is given by the functor DExt1

A(−, A), and if
0→ X → Y → Z → 0 is an exact sequence of modules of projective dimension at most
one, and Hom(X,A) = 0, then the induced sequence 0 → τX → τY → τZ → 0 is
exact.

Proof. Let M be indecomposable and such that p. dimM ≤ 1. Let

η : 0→ P1 → P0 →M → 0

be a minimal projective resolution. Then there exists an exact sequence

ε : 0→ τM → νP1 → νP0 → νM → 0.

On the other hand, applying HomA(−, A) to the first sequence η yields

0→ HomA(M,A)→ HomA(P0, A)→ HomA(P1, A)→ Ext1
A(M,A)→ 0,

showing that τM ∼= DExt1
A(M,A) for ν = DHomA(−, A) (see [ASS10][Chapter IV.2]).

Now, consider the exact sequence

ξ : 0→ X → Y → Z → 0.

By applying the above fact, we get an exact sequence

0 = DExt2
A(Z,A)→ τX → τY → τZ → νX → νY → νZ → 0.

Now the result follows, since νX = DHomA(X,A) = 0 by assumption.

Corollary 4.35. Let A be a canonical tubular algebra. Then the family of all indecom-
posable modules in exceptional tubes of integral slope and positive rank is hyperfinite.
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Proof. By Proposition 4.33, there is a hyperfinite family of indecomposable modules,
containing a module of each regular length in each exceptional tube of integral slope
and positive rank. Let M be such a module. We can assume that M is not in one of
the finitely many exceptional families, for otherwise there would be nothing to show.
Let N be the submodule constructed in the first step of the proof of Proposition 4.27
respectively in the proof of Proposition 4.33. Clearly,M and N are of projective dimen-
sion at most one (see Theorem 4.7). Moreover, N is the direct sum of indecomposable
modules of rank one. If one of these summands was projective, we would either have
m = 0 or m = 1 (in the notation of the proof and subsequent example). But then
dimS, the dimension of the regular simple underlying M would be bounded, so we
could just add this tubular family to the list of finite exceptions (note that there is
just a finite number of such families). Thus assume no summand is projective. By the
construction of N , a removal of basis elements only happens in certain vertices. Thus,
by inspection of the coefficient quivers in the inclusion sequence N ↪→M�C, we see
that the cokernel C is a direct sum of indecomposable summands, either a simple in
a vertex of one arm or containing a k id−→ k stretch in two vertices of one arm. These
belong to T1, as they are indecomposable, regular and of rank 0, so the cokernel C
has projective dimension at most one and has no projective direct summands. Thus,
applying Lemma 4.34 along with Proposition 1.5 shows the result. Note that neither
M,N nor C are in the τ -orbit of projective or injective modules, so one can derive
the required constants K1 and K2 from the Coxeter matrix of A as it describes the
effect of τ on the dimension vectors (c.f. [Rin84, 2.4.(4), 2.4.(4*)]). Indeed, considering
the dimension vector of the summands of τN , we see that these are again rank one
modules, so we apply Proposition 4.22 as in the proof of Proposition 4.27.

Proposition 4.36. Let A be a tubular canonical algebra. Then the family of (iso-
morphism classes) of all indecomposable regular modules of integral slope and negative
rank is hyperfinite.

Proof. Let ε > 0. Assume that the slope µ is such that

min{dimS : S regular simple in Xµ} ≥
2(|A| − 2)p

ε
.

There are only finitely many inhomogeneous tubes for each slope—and they have finite
rank. Moreover, the dimension vector of the regular simples in the homogeneous tubes
is constant. This yields that the minimum above exists for each µ. Now, the duality F
discussed in Section 4.1.3 further implies that the condition on the minimum (similar
to the argument in the proof of Proposition 4.33) holds for all but finitely many integral
slopes, for which we use Proposition 4.17.
LetM be an indecomposable regular module of slope µ, regular length l and rank −r

in some stable tube T. Since we know that the regular simples in T have rank − p

ps
, we

must have r = l
p

ps
. Let α(1) = α

(1)
1 ◦ · · · ◦ α

(1)
p1 and f = M(α(1)) : M(ω)→M(0) be the

composition of the corresponding linear maps. We have dimM(ω) = dimM(0)+ r. As
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M has negative rank, all the M(α(j)
i ) are surjective by Lemma 4.20, and so is f . We

decompose M(ω) = ker f ⊕M ′(ω). As

0→ ker f →M(ω) f−→M(0)→ 0

is exact, we have dimM ′(ω) = dimM(0) and f|M ′(ω) is bijective. It follows that the
submodule N ⊂M generated by M ′(ω) has rank zero.

Assume N had a submodule N ′ of negative rank. Then the induced submodule Ñ ′ of
the kΘ(2)-module Ñ = N(ω)→→ N(0) (as in the proof of Proposition 4.33) must have an
indecomposable postinjective summand Qm ↪→ Ñ , for otherwise dimN(0) ≥ dimN(ω).
Yet, this postinjective summand has dimension vector (m+ 1,m). But the map asso-
ciated to the arrow α(1) in Qm is a restriction of f , so must be injective, implying that
m+ 1 ≤ m, a contradiction.
Similarly, assume that N had a summand N ′′ of positive rank. Then(

dimN ′′(ω), dimN ′′(0)
)

= (m,m′), where m < m′.

As we have established that N cannot have submodules of negative rank, all other
summands of N must have (ω, 0)-dimension vector (u, v) where u ≤ v. This would
imply that rkN = (m′ + v) − (m + u) > 0, a contradiction. Thus, we have shown
that N can only have summands of rank zero, i.e. N ∈ X∞ = 〈T1〉 lies in a hyperfinite
family.
Next, we want to determine dimN . To this end, assume that

dimM =
m+r(1)

p1−1 ... m+r(1)
1

m+r
... m

m+r(t)
pt−1 ... m+r(t)

1

, where 0 ≤ r(j)
i ≤ r.

Note that this holds as all the maps M(α) are surjective. We further put r(j)
pj := r

and r
(j)
0 := 0 for all j and note that 0 ≤ r

(j)
1 ≤ · · · ≤ r

(j)
pj−1 ≤ r. We have that

dim kerM(α(j)
i ) = r

(j)
i − r

(j)
i−1 for 2 ≤ j ≤ t and 1 ≤ i ≤ pj . Similarly, we may write

dimN =

m ... m

n
(2)
p2−1 ... n

(2)
1

m
... m

n
(t)
pt−1 ... n

(t)
1

, where 0 ≤ n(j)
i ≤ m.

We also set n(j)
pj := m =: n(j)

0 for all j. As N is generated in the source ω, we have
that N(α(j)

i ) is surjective for 2 ≤ j ≤ t and 1 ≤ i ≤ pj . Since the maps N(α) are
restrictions of Mα, we have that kerN(α) ⊆ kerM(α). It follows that for 2 ≤ j ≤ t
and 1 ≤ i ≤ pj − 1

n
(j)
i = dim imN

(
α

(j)
i+1

)
= dimN(a(j)

i+1)− dim kerN(α(j)
i+1)

≥ dimN(a(j)
i+1)− dim kerM(α(j)

i+1) = n
(j)
i+1 − (r(j)

i+1 − r
(j)
i ).
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Claim: n(j)
i ≥ m − r + r

(j)
i for 2 ≤ j ≤ t and 1 ≤ i ≤ pj − 1. We proof this by an

inverse induction on i. By the above, the base case for i = pj − 1 holds. Assume the
claim holds for some 2 ≤ i ≤ pj − 1. Then by the above

n
(j)
i−1 ≥ n

(j)
i − r

(j)
i + r

(j)
i−1

hyp.
≥ (m− r + r

(j)
i )− r(j)

i + r
(j)
i−1 = m− r + r

(j)
i−1.

We now conclude that

dimN = m+ (p1 − 1)m+
t∑

j=2

pj−1∑
i=1

nji +m ≥ |A|m− r
t∑

j=2
(pj − 1).

On the other hand,

dimM = |A|m+ r +
t∑

j=1

pj−1∑
i=1

r
(j)
i .

This implies that the codimension of N in M is at most 2r(|A| − 2). Recalling that
r = l

p

ps
and that dimM = ∑l−1

j=0 dimEi+j , where Ei = socM and the Ej are the
regular simples of T, we have

dimN ≥ dimM − 2l
p

ps
(|A| − 2) ≥ dimM − εmin

j
{dimEj} l

≥ dimM − ε
l−1∑
j=0

dimEi+j = (1− ε) dimM.

as in the proof of Proposition 4.33. The hyperfiniteness of X∞ can thus be lifted to
Xµ.

4.4.3 Regular modules of integral slope, P0 and Q∞
Before we turn to the final result of this chapter, we are left to consider some semiregular
families and the postinjective component.

Lemma 4.37. Let A be a canonical tubular algebra. Then the family of postinjective
modules Q∞ is hyperfinite.

Proof. By the dual of [Rin84, Theorem 4.7.(1)], it is known that the postinjective
modules of A are just the postinjective modules of kQ∞, where Q∞ is the full subquiver
of Q given on Q0K{0}: We have the obvious embedding mod kQ∞ → mod kQ,M 7→ M̄ ,
where M̄(0) = 0 and M̄(α) = 0 for α = α

(1)
1 , . . . , α

(t)
1 . By Theorem 2.11, the modules

over kQ∞ form a hyperfinite family. But a submodule N ⊆M of M ∈ mod kQ∞ such
that dimN ≥ (1 − ε) dimM and N = ⊕s

i=1Ni such that dimNi ≤ Lε, will yield a
submodule N̄ ⊆ M̄ , exhibiting the same hyperfiniteness properties.

Lemma 4.38. Let A be a canonical tubular algebra. Then the left stable family T∞ of
semiregular modules, containing the unique indecomposable injective module which is
not postinjective, is hyperfinite.
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Proof. By construction, A is a tubular extension and coextension of the tame hereditary
algebras A0 respectively A∞ (see Table 4.2 for the list of underlying affine types). For
each tubular type, the branch length is one, leading to just a single coray insertion. It
follows from the dual of the proof of [Rin84, Theorem 4.7.(1)] that all but one tube
in T∞—the coray tube T—consist of the corresponding indecomposable modules of A∞
complemented by a zero vector space at the coextension vertex 0. It further follows
that the coray tube T has one more coray than the corresponding tube of A∞, denoting
these additional modules by [i]E, where E is the coray module from T ⊂ modA∞, and
the maps by iν. Indeed, [1]E = I(0), the indecomposable injective. What is more, by
the proof of the dual of [Rin84, Proposition 4.5.(1)], the indecomposable modules M in
this coray tube that do not coincide with M|A∞ lie in this very coray. They also have
(dimM)0 = 1. If M = [i]E is one of them, we can thus find a surjective map to I(0),
namely iν ◦ 1ν, exhibiting as kernel a submodule of M which is just an A∞-module.
But for these, we have shown how to find a submodule exhibiting hyperfiniteness, as
A∞ is tame hereditary. Hence, the claim follows by an application of Proposition 1.4
with the codimension being dim I(0).

Theorem 4.39. Let A be a tubular canonical algebra. Then the families P0 of prepro-
jective modules, Q∞ of postinjective modules and the family

∨
µ∈(−∞,0]∪[p,∞]Xµ of all

indecomposable regular modules of integral slope are hyperfinite.

Proof. The family of preprojective modules P0 is hyperfinite by Proposition 4.12, while
the family of postinjective modules Q∞ is hyperfinite due to Lemma 4.37.
For the family of indecomposable (semi)regular modules of integral slope, the res-

ult follows from the results of four subfamilies. The right stable family T0 = Xp is
hyperfinite due to Corollary 4.14 and Lemma 4.15; the family of all indecomposable
regular modules of positive integral slopes Xµ is hyperfinite by combining the results
for the homogeneous tubes from Proposition 4.27 with those for exceptional tubes from
Corollary 4.35; the family of all indecomposable regular modules of negative integral
slopes Xµ is hyperfinite by Proposition 4.36, while the left stable family T∞ = X0 is
hyperfinite due to Lemma 4.38.

82



5 Hyperfiniteness from fragmentability and
exceptional modules over path algebras
of generalised Kronecker quivers

We will continue by considering the path algebra kΘ(m) of wild generalised Kronecker
quivers and show that the indecomposable preprojective and postinjective modules for
these algebras form hyperfinite families. We start with a result connecting to the notion
of fragmentability from graph theory and make use of the tree structure of coefficient
quivers of certain modules.

5.1 Graph-theoretic background
Recall that a graph G is given by its set of vertices V and a set of edges E containing
ordered pairs (u, v) ∈ V 2, describing an edge starting at u and ending at v.
Now, Edwards and McDiarmid [EM94] have introduced a notion for classes of graphs

which is similar to hyperfiniteness for families of modules.

Definition 5.1 ([EF01; EM94]). Let ε be a non-negative real number, and C an
integer. We say that a graph G = (V,E) is (C, ε)-fragmentable provided there is a
set X ⊆ V , called the fragmenting set, such that

(1) |X| ≤ ε|V |, and

(2) every component of G KX has at most C vertices.

Now consider a class Γ of graphs. We will say that Γ is ε-fragmentable provided there
is an integer C such that for all G ∈ Γ, G is (C, ε)-fragmentable. Moreover, a class Γ
of graphs is called fragmentable if

cf (Γ) := inf{ε : Γ is ε-fragmentable} = 0.

Remark. We may relax the definition to say that a class Γ of graphs is fragmentable
iff for any ε > 0, there are positive integers n0, c(ε) such that if G ∈ Γ is a graph with
n ≥ n0 non-isolated vertices, then there is a set X of vertices, with |X| ≤ εn, such that
each component of G KX has ≤ c(ε) vertices.
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5.2 Coefficient quivers as fragmentable graphs
In the following, we will consider the path algebra of a given quiver Q. Recall from
[Rin98, Section 1] that given a certain basis B of a representation M of Q (that is, a
collection of basis elements from bases for vector spaces at all vertices), we say that
the coefficient quiver Γ(M,B) of M with respect to B is the quiver with vertex set B
and having an arrow b

α−→ b′ provided the entry corresponding to b and b′ in the matrix
corresponding to M(α) with respect to the chosen basis B is non-zero.
We can now obtain hyperfiniteness results for a family of modules M provided a

corresponding class of coefficient quivers is fragmentable.

Proposition 5.2. Let d, ` ∈ N. Let A be the path algebra of a quiver Q. Let M
be a class of indecomposable tree modules for A, that is, of modules M such that there
exists bases B of (Mi)i∈Q0 such that the corresponding coefficient quiver Γ is a tree, and
additionally assume that the maximal indegree of Γ is d and the maximal path length
of Q is `. ThenM is hyperfinite.

Proof. Let M ∈ M. By [EM94, Lemma 3.6], it is enough to show that the removal
of at most d` basis elements decomposes the coefficient quiver into components of size
at most half that of M which are a member of M. Since M is a tree module, there
is a vertex v (one of the central points of the underlying tree graph) in the coefficient
quiver whose removal will result in splitting the quiver into (non-connected) subtrees
of size at most half that of M . If this vertex v is a source in the coefficient quiver, it
can be removed, and the induced subtrees are submodules of M , which are themselves
tree modules inM (pick the bases given by restriction). If v is not source, at most d
arrows map to it. Each of their starting vertices will be removed as well, to each of
which again at most d arrows map. Since the path length is bounded by `, we have
to remove at most ∑`

i=1 d
i vertices to produce submodules of M of dimension at most

half that of M . These are again tree modules inM.

Proposition 5.3. Let d, ` ∈ N. Let A be the path algebra of a quiver Q. Let M be
a class of indecomposable modules, such that the class of underlying graphs of their
coefficient quivers Γ is fragmentable, their indegree is bounded by d and the path length
is bounded by `. ThenM is hyperfinite.

Proof. Let ε > 0. Let ε̃ = ε
(∑`

i=0 d
i
)−1

and pick Lε := c(ε̃), the constant from
the definition of fragmentability. Let M ∈ M. By the definition of fragmentability,
there exists a set S of vertices of the coefficient quiver of M of cardinality at most
ε̃ dimM , such that the underlying graph G splits into components of size at most Lε
if we remove the |S| vertices. Now, if all the vertices in S are sources, this subgraph
describes a submodule. As this might not hold, for each s ∈ S, we also remove all
the vertices that map to s, of which there are at most ∑`

i=1 d
i. In this way, we arrive

at a submodule N of dimension at least dimM − ε̃
∑`
i=0 d

i dimM . This finishes the
proof.
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5.3 The preprojective and postinjective components of
generalised Kronecker quivers

Let us now turn to the Kronecker algebra kΘ(m) of the generalised Kronecker quiver
Θ(m) with m equi-oriented arrows between two vertices.

Proposition 5.4. The family of preprojective kΘ(m)-modules is hyperfinite.

Proof. By Proposition 1.2 it is enough to consider the indecomposable preprojective
modules. Now, [Rin98, Proposition 3] gives a detailed description of these modules,
showing that they are tree modules and for each arrow, each basis element at the sink
vertex is mapped to from at most one basis element at the source vertex. This shows
that the indegree is bounded by m. Note that submodules of preprojective modules are
preprojective. Now apply Proposition 5.2 with d = m and ` = 1 to finish the proof.

In the following, we will use the sequence at from [Rin98, Section 8] to describe the di-
mension vectors of the indecomposable preprojective and postinjective kΘ(m)-modules.
The sequence is defined recursively by a0 = 0, a1 = 1 and at+1 = mat − at−1 for t ≥ 1.

Lemma 5.5. Fix m ≥ 3. Then the closed-form solution of the recurrence relation for
at is given by

at = ϕt − ψt√
m2 − 4

where ϕ = m+
√
m2 − 4
2 and ψ = m−

√
m2 − 4
2 .

Moreover, the quotient at/at+1 of consecutive terms converges to ϕ−1.

Proof. We check that the closed form satisfies the recurrence relation. It follows at
once that a0 = 0. Also note that

2(ϕ− ψ) =
(
(m+

√
m2 − 4)− (m−

√
m2 − 4)

)
= 2

√
m2 − 4,

so a1 = 1. We also have that both mϕ− 1 = ϕ2 and mψ − 1 = ψ2. Finally,

mat − at−1 = (mϕ− 1)ϕt−1 − (mψ − 1)ψt−1
√
m2 − 4

= ϕt+1 − ψt+1
√
m2 − 4

= at+1.

Next, we note that ϕψ = 1. We then see that

at
at+1

= ϕt − ψt√
m2 − 4

√
m2 − 4

ϕt+1 − ψt+1 = ϕt − ψt

ϕt+1 − ψt+1

= ϕ2t+1 − ϕt+1ψt

ϕ2t+2 − ψt+1ϕt+1 = ϕ
ϕ2t − 1
ϕ2t+2 − 1

= ϕ
1− ϕ−2t

ϕ2 − ψϕ−2t
t→∞−−−→ 1

ϕ
,

as 1
ϕ2 < 1.
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Lemma 5.6. Fix m ≥ 2. Let Q[t] be an indecomposable postinjective module as de-
scribed in [Rin98, Section 8], with coefficient quiver Γ given there. Then the outdegree
of the vertices of Γ is bounded by two, and the indegree is bounded by (t−1)(m−2)+m.

Proof. By the description of the arrow maps for the postinjective indecomposable mod-
ule Q[t] in the dual of [Rin98, Proposition 3], the matrices of the arrows 1, . . . ,m − 1
have no common non-zero columns, so the outdegree of each source with respect to
the arrows αi, 1 ≤ i ≤ m − 1 is at most one. On the other hand, each row of one of
these arrow matrices contains exactly a single one. Moreover, as the matrix for the
last arrow αm is constructed by concatenating zero matrices or column block matrices
containing a single identity matrix block, at most one arrow αm starts at each source.
Indeed, the concatenation involves t− 1 matrices—the C(aj−1, aj)—containing m− 2
identity matrices, the E(aj−1), of varying size aj−1 each, and one additional identity
matrix E(at). Combining this information yields the desired result.

Lemma 5.7. Fix m ≥ 3. Let M be a module of dimension vector (at+1, at). Then we
can express

t = logϕ

(
dimM +

√
dimM2 + 4

m− 2

)
− logϕ

(
2 1 + ϕ√

m2 − 4

)
.

Moreover, for dimM ≥ 3, it holds that t ≤ cm
√

dimM for some constant cm.

Proof. Clearly, dimM = at+1 + at. Now using the closed form of Lemma 5.5, we have
that

dimM = ϕt+1 − ψt+1
√
m2 − 4

+ ϕt − ψt√
m2 − 4

= ϕ2t+1 − (ϕψ)tψ
ϕt
√
m2 − 4

+ ϕ2t − (ϕψ)t

ϕt
√
m2 − 4

= ϕ2t+1 − ψ + ϕ2t − 1
ϕt
√
m2 − 4

= ϕt
1 + ϕ√
m2 − 4

− ϕ−t 1 + ψ√
m2 − 4

.

By substitution, noting that real powers of positive numbers are positive and using
(1 + ϕ)(1 + ψ) = m+ 2, we get

t = logϕ

(
dimM +

√
dimM2 + 4

m− 2

)
− logϕ

(
2 1 + ϕ√

m2 − 4

)
.

Now it remains to show the estimate. We first note that for ϕ > 1 and

2 + 2ϕ√
m2 − 4

>
m+

√
m2 − 4√

m2 − 4
> 1,

the subtrahend is always positive, resulting in its omittance leaving an upper bound.
Now, when dimM ≥ 3, we have

t ≤ logϕ(1 +
√

2) + logϕ(dimM) < logϕ(3) + logϕ(dimM) ≤ 2 logϕ(dimM).
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Now, as ϕ > 1, it is enough to further consider ln(dimM). Clearly,

exp
(
2
√

dimM
)
>

(
2
√

dimM
)2

2! = 2 dimM > dimM,

so 2
√

dimM > ln dimM . All in all, this combines to the desired inequality

t ≤ 2 logϕ dimM = 2 1
lnϕ ln dimM <

4
lnϕ
√

dimM.

Proposition 5.8. The family of indecomposable postinjective kΘ(m)-modules is hy-
perfinite.

Proof. We want to give a proof similar to that of [EM94, Lemma 3.6], but adapt it
to coefficient quivers of modules instead of graphs. In a first step towards proving
hyperfiniteness, we hence want to find A > 0, 0 ≤ λ < 1 and 0 < α < 1 such that for
any indecomposable postinjective module of dimension n, there are at most Anλ basis
elements that can be removed from the coefficient quiver to leave a submodule for which
every indecomposable summand has dimension at most αn, and to each summand, a
similar construction can be applied, and so forth.
Let ε > 0. We put α = 1

2 + δ for some 0 < δ < 1
4 . Let Q[t] be the indecomposable

postinjective module of dimension vector (at+1, at). Let n = dimQ[t] and assume n > 5.
We show how to split this module into small components by a sequence of stages.
Before each stage i, all components are isomorphic to indecomposable postinjective
modules, having at most αi−1n vertices in their coefficient quivers, while the number
of components with more than αin vertices is at most α−1. Since the coefficient quiver
Γ of Q[s] is a tree, there is a vertex whose removal creates subtrees of size at most
α dimQ[s]. Note that we can assume that this vertex to remove is a sink: if the vertex
to remove was a source—since all sources have outdegree at most two by Lemma 5.6
and all their neighbours are sinks—we can just remove a neighbouring sink. Note that
the size of α allows for this modification, as we do not require that the subtrees are
at most half the size of Q[s]. But a removal of a sink corresponds to passing to the
cokernel of an inclusion of S1 ↪→Q[s]. Yet, this cokernel must have smaller dimension
than Q[s], and since Q[s] is postinjective, must also be postinjective. This implies that
the cokernel is the direct sum of indecomposable postinjective modules for smaller s,
as the dimension of the indecomposable postinjectives strictly increases for growing s.
This proves that after stage i, all components are indecomposable postinjective modules
with no more than αin vertices in their coefficient quivers. The number of stages is the
least k such that αkn ≤ L, for an L to be determined later. Hence αk−1n > L, so that
α1−k < n

L .
Unfortunately, this process does not create a submodule of Q[t], but a factor module

given by the direct sum of many smaller indecomposable postinjective modules. To
attain a submodule, we must delete further vertices. Parallel to the above sequence
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of stages, we conduct a downstream stage to construct a submodule. In each of these
stages, we only deal with the components M with

αin < dimM ≤ αi−1n.

Since at/2 > at−1, not in every stage a reduction takes place. But when a reduction
takes place, we create submodules from Q[s] by additionally removing all the vertices
adjacent to the deleted sink. By the structure of the canonical coefficient quiver of Q[s],
there are at most s(m− 2) + 2 such vertices, and s ≤ c

√
dimQ[s] by Lemma 5.7. Note

that while the dimensions of the submodules left before downstream stage i are smaller
than dimQ[s], as we have removed at least one more source, the operand in this stage i
is still αi−1n ≥ dimQ[s], as we base our considerations on the original indecomposable
postinjective module. This implies that in downstream stage i, we remove at most
A
√
αi−1n vertices, letting A = 2 + c(m − 2). Thus, choose λ = 1

2 . Note that in order
to apply Lemma 5.7 throughout, we require dimQ[s] ≥ 3 in all downstream stages,
leading to αk−1n > 2
Now, the total number ri of vertices removed in downstream stage i is at most

α−iA(αi−1n)λ = Anλαλi−i−λ = Anλ

α
α(1−i)(1−λ)

and since α1−k < n/L, we have α1−i < (n/L)αk−i. Hence,

ri <
Anλ

α
(n/L)1−λα(k−i)(1−λ) = An

αL1−λβ
k−i,

where β = α1−λ, with 0 < β < 1. Then the total number R of vertices removed from
the coefficient quiver of Q[t] is

R =
k∑
i=1

ri <
An

αL1−λ

k∑
i=1

βk−i

<
An

αL1−λ

∑
i≥0

βi

= An

αL1−λ
1

1− β .

Since we have 1 − λ > 0, it follows that we can choose L = Lε independently of n
such that R ≤ εn. This then shows the hyperfiniteness of {Q[t] : t > 0} and thus of the
postinjective component.

Example 5.9. We will illustrate this procedure for a module over kΘ(3). Here, we can
put α = 5

8 , A = 2 + c with c = 4
ln 3+

√
5−ln 2 > 4 and λ = 1

2 . We will consider the
indecomposable postinjective module Q[4] with dimension vector (55, 21). Note that
this module would not be subject to the algorithm described in the proof, as Lε > 2211
for any suitable 0 < ε < 1.
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We draw a coefficient quiver Γ of Q[4] which is a tree, but do not distinguish between
the arrows in Γ corresponding to the same arrow of Θ(3) (see Figure 5.9). The basis
elements at the sink vertex are denoted (1), . . . , (21), while the basis elements at the
source vertex are denoted 1, . . . , 55. We show the modifications in the first three stages.
In stage i, we remove the sink vertices coloured in red and denoted (j)i, while removing
the vertices coloured in orange connected to them in the corresponding downstream
stage. That is, in the first step we remove basis element (1), while the second stage sees
the removal of vertices (8) and (12) before removing vertices (3), (9), (10), (16) and (20)
in stage three. In these upstream stages, we remove at most one vertex per connected
component. In the ensuing downstream stages, we remove at most 6 respectively 5
respectively 4 more vertices from the (preceding) connected component. We see that
7 < c

√
76, 6 < c

√
29 and 5 < c

√
11.

Remark. Recall that the logarithm can be bounded above by any radical power: We
have ln x ≤ n n

√
x. Now the proof of the previous proposition suggests that we have an

adaptation of Proposition 5.2 in the case of coefficient quivers that are graphs of genus
at most γ for fixed γ ≥ 0 or for rectangular lattices of dimension d for a fixed integer d,
provided the indegree has a logarithmic bound with respect to the dimension, as these
classes of graphs were shown to be fragmentable using suitable A, λ and α (see [EM94,
Corollary 3.7]).
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Figure 5.1: The coefficient quiver of Q[4] ∈ mod kΘ(3), with highlighted vertices indic-
ating how to produce a submodule exhibiting hyperfiniteness.
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6 Wild phenomena

6.1 A family of non-hyperfinite modules
While Elek [Ele17, Section 8] has given an argument to show that any wild Kronecker
algebra is not of amenable representation type by showing that there are non-hyperfinite
families of modules over the free algebras k〈x1, . . . , xr〉 with r ≥ 2 generators, we are
interested in understanding and providing concrete counterexamples of non-hyperfinite
families of modules for algebras of non-amenable representation type.

Motivated by a similar notion of graph expanders, Barak, Impagliazzo, Shpilka and
Wigderson have introduced the notion of dimension expanders (see [LZ08; DS11; Bou09;
DW10]).

Definition 6.1. Let k be a field, d ∈ N and α > 0. For a vector space V and a set
{T1, . . . , Td} of endomorphisms of V , the pair (V, {Ti}di=1) is called an α-dimension
expander of degree d provided for every subspace W ⊂ V of dimension less than or
equal to dimk V/2, we have that

dimk

(
W +

d∑
i=1

Ti(W )
)
≥ (1 + α) dimkW.

Indeed, we shall utilise a slightly generalised notion embracing the different versions
present in the literature.

Definition 6.2. Let k be a field, d ∈ N, 0 < η ≤ 1 and α > 0. Given a vector
space V and a set {T1, . . . Td} of endomorphisms of V , the pair (V, {Ti}di=1) is called an
(η, α)-dimension quasi-expander of degree d provided every subspace W ⊂ V of
dimension at most η dimk V , we have that

dimk

d∑
i=1

Ti(W ) ≥ (1 + α) dimkW.

Remark. Every α-dimension expander of degree d along with the identity map idV is
a (1

2 , α)-dimension quasi-expander of degree d+ 1.
Now, a family of dimension quasi-expanders of degree d of unbounded dimensions

gives rise to a non-hyperfinite family for the d-Kronecker algebra kΘ(d):
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Proposition 6.3. Let k be a field, d ∈ N and η, α > 0. If {(Vi, {T (i)
l }dl=1)}i∈I is a

family of (η, α)-dimension quasi-expanders of degree d such that dimVi is unbounded,

then the induced family of kΘ(d)-modules Vi
... Vi

T
(i)
1

T
(i)
d

is not hyperfinite.

Proof. Let α > 0 and {(Vi, (T (i)
1 , . . . , T

(i)
d )} be a family of α-dimension expanders degree

d and of unbounded dimension dimVi. Consider the family{
Mi =

(
(Vi, Vi), (T (i)

1 , . . . , T
(i)
d )
)}

i∈I
∈ mod kΘ(d).

If this family was hyperfinite, for each ε > 0, there exists an Lε > 0 and we can find
some M ∈ {Mi : i ∈ I}—given by an (η, α)-dimension quasi-expander space V—such
that dimM = 2 dimV > 2Lεη with a suitable submodule P exhibiting hyperfiniteness.
We will denote the vector space of Pj at vertex v ∈ Q0 by Pj(v). We have that

dimPj(1) + dimPj(2) = dimPj ≤ Lε < η dimV,

also noting that each Pj(v) is a subspace of the vector space V of an (η, α)-dimension
quasi-expander. As each Pj is a kΘ(d)-module, thus T1(Pj(1))+· · ·+Td(Pj(2)) ⊆ Pj(2),
this implies that

dimPj(2) ≥ (1 + α) dimPj(1). (6.1)

Moreover,

2(1− ε) dimV ≤
t∑

j=1
(dimPj(1) + dimPj(2)) ≤

t∑
j=1

dimPj(1) + dimV

⇔(1− 2ε) dimV ≤
t∑

j=1
dimPj(1),

which in light of inequality (6.1) yields that

(1− 2ε) dimV ≤
t∑

j=1

dimPj(2)
1 + α

≤ dimV

1 + α

⇔ ε ≥ α

2(1 + α) ,

contradicting the hyperfiniteness of the family {Mi : i ∈ I}.

Remark. If all Ti are such that Ti ◦ Tj = 0 for any combination, then in general(
V, {Ti}di=1

)
is neither a dimension expander nor a dimension quasi-expander: In this

situation, we have imTj ⊂
⋂d
i=1 kerTi for all 1 ≤ j ≤ d. Without loss of generality, we
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consider 0 6= v ∈ imT1 (if all Tis were zero, the claim is obviously true). Let W = 〈v〉.
Then ∑d

i=1 Ti(W ) = 0, so the dimension property cannot hold for some non-trivial
subspace of dimension one. Thus—unless η dimV < 1—the pair

(
V, {Ti}di=1

)
cannot

be a dimension (quasi-)expander.

Proposition 6.3 reduces the problem of exhibiting a non-hyperfinite family for the
d-Kronecker quiver to finding families of dimension expanders for fixed d and α such
that the dimension of the vector spaces is unbounded. This latter question has already
been asked by A. Wigderson in 2004. We will make use of results by Lubotzky and
Zelmanov in a proposition and theorem in [LZ08] to answer it. They provide several
ways of constructing α-dimension expanders of degree two over the complex numbers
and generalise to every field of characteristic zero.
We first need another

Definition 6.4. Consider a group Γ generated by a finite set S. Given a Hilbert
space H and a unitary representation ρ : Γ→ U(H), where U(H) denotes the unitary
endomorphisms of H, the Kazhdan constant is defined as

KS
Γ (H, ρ) := inf

06=v∈H
max
s∈S

{ ||ρ(s)v − v||
||v||

}
.

Further, the group Γ has property (T ) if

KS
Γ = inf

(H,ρ)∈R0(Γ)
{KS

Γ (H, ρ)} > 0,

where R0(Γ) is the family of all unitary representations of Γ which have no non-trivial
Γ-fixed vector. In this case, KS

Γ is called the Kazhdan constant of Γ with respect
to S.

This Kazhdan constant is now relevant in the following Proposition determining the
expansion rate α. In the following, by Un(C), we denote the group of n × n unitary
matrices over C.

Proposition 6.5. [LZ08, Proposition 2.1] Let ρ : Γ → Un(C) be an irreducible unit-
ary representation of a group Γ with finite generating set S, then (Cn, ρ(S)) is an α-
dimension expander of degree |S| where α = κ2

12 , κ = KS
Γ (S`n(C), adj ρ), where S`n(C)

denotes the subspace of all linear transformations of zero trace, and adj ρ is the adjoint
representation on End(Cn) induced by conjugation.

Remarks. (1) The endomorphism space End(Cn) ∼= Mn(C) and its subspace S`n(C)
become Hilbert spaces via 〈S, T 〉 = tr(ST ∗).

(2) The induced representation adj ρ on Mn(C), given as

γ 7→
(
T 7→ ρ(γ)Tρ(γ)−1

)
,

is unitary, as adj(ρ)(γ) is surjective and preserves the inner product for each
γ ∈ Γ.
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(3) The subspace S`n(C) of trace zero matrices is invariant under adj ρ, since conjug-
ation by invertible matrices preserves the trace. Thus, (S`n(C), adj ρ) is a unitary
representation.

(4) Note that if ρ is irreducible, then by Schur’s Lemma, S`n(C) does not have any
non-trivial adj ρ(Γ)-fixed vector: If T ∈ S`n(C) is fixed by adj(ρ), then kerT is
an invariant subspace of ρ, as T (v) = 0 along with ρ(γ)T = Tρ(γ) implies that
T (ρ(γ)(v)) = 0. By the irreducibility of ρ, kerT must be a trivial subspace. If
kerT = 0, we have that T is invertible, even T = λid for some eigenvalue λ of T .
But 0 = trT = nλ, a contradiction. Thus, kerT = Cn, so T is trivial.

Remark. A quick way to now see that CΘ(3) is not of amenable representation type
is the following: The groups Γ = SL(n,Z) for n ≥ 3 have generating sets S of size
two (see, e.g., [Tro62; GT93]) such that they have property (T ) [Kaž67; Sha99]. To
this end, note that Γ having property (T ) with respect to some compact subset implies
the property with respect to any generating set with a modified constant (see [HV89,
Proposition 1.15], [BHV08, Proposition 1.3.2]). It then follows that the vector spaces
constructed in Proposition 6.5 are α-dimension expanders of degree two for 12α ≥ KS

Γ .
Moreover, there are unitary irreducible representations of SL(3,Z) of unbounded di-
mension, coming from the Steinberg representations ψp of SL(3,Fp) of dimension p3

for each prime p (see, e.g., [SF73]).
In the following, we will make explicit an example using representations of SL(2,Z).

This allows us to describe the Kronecker representations more easily. To this end, we
first consider representations of the special linear group SL(2, p) of 2× 2-matrices over
the finite field of characteristic p, Fp. We recall the following two classical results, fixing
some notation.

Lemma 6.6. For each prime p ∈ P, there is an irreducible, complex p-dimensional
representation of SL(2, p).

Proof. Let p be a prime number. Then Γ = SL(2, p) acts on P1(Fp) = {0, 1, . . . , p−1,∞}
by

π :
(
a b
c d

)
7→
(
z 7→ az + b

cz + d

)
,

with the usual conventions that x
0 = ∞ for x 6= 0 and a∞+b

c∞+d = a
c . This permutation

action extends to a permutation representation ρ : Γ→ GLp+1(C),

g 7→

 ∑
z∈P1(Fp)

λzez 7→
∑

z∈P1(Fp)
λzeπ(z)

 ,
identifying Cp+1 with the free complex vector space on P1(Fp) via

e1 ↔ f0, . . . , ep ↔ fp−1 and ep+1 ↔ f∞,
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where {e1, . . . , ep+1} is the standard basis of Cp+1 and by f0, . . . , fp−1, f∞ we denote a
standard basis of the free vector space. The character values of χρ can be calculated via
the number of fixed points of π on representatives of the conjugacy classes of SL(2, p).
Consider the subspace W = {v ∈ Cp+1 : ∑p+1

i=1 vi = 0} of dimension p. It is ρ-invariant
and the restriction of ρ to W is the complement of the trivial representation in ρ.
Using character theory, this is sufficient information to show that ρ|W is an irreducible
complex representation of SL(2, p) (see also [FH91, Section 5.2]).

Corollary 6.7. The group SL2(Z) has irreducible, unitary representations of unboun-
ded dimension.

Proof. Consider the natural maps πp : SL2(Z)→ SL(2, p) mapping each matrix to the
matrix of the residue classes of its entries modulo p. Let ρ : SL(2, p) → GL(V ) be an
irreducible p-dimensional representation. As SL(2, p) is a discrete group, we can endow
V with an inner product in such a way to assume that ρ is unitary. Now consider
ρ ◦ πp. This is certainly a group homomorphism. Moreover, a subspace W ⊆ V is
SL(2, p)-invariant if and only ifW is SL2(Z)-invariant, showing that ρ◦πp is irreducible
since ρ is.

Remark. We may refer to the subgroups Γ(p) := ker (SL2(Z)→ SL(2, p)) as the prin-
cipal congruence subgroups and have

Γ(p) =
{(

a b
c d

)
∈ SL2(Z) :

a ≡ d ≡ 1 mod p

b ≡ c ≡ 0 mod p

}
.

Since the projections are surjective, the subgroups have finite index p3 − p in SL2(Z).

Definition 6.8. [Lub94, Definition 4.3.1] Let Γ be a finitely generated group generated
by a finite symmetric set of generators S. Given a family {Ni}i∈I of finite index normal
subgroups, Γ is said to have property (τ) with respect to the family {Ni}i∈I
provided there exists a κ > 0 such that if (H, ρ) is a non-trivial unitary irreducible
representation of Γ whose kernel contains Ni for some i ∈ I, then KS

Γ (H, ρ) > κ.

Remark. This definition is equivalent to requiring that the trivial representation is
isolated in the set of all unitary representations of Γ whose kernel contains some Ni

or to requiring that the non-trivial irreducible representations of Γ factoring through
Γ/Ni for some i ∈ I are bounded away from the trivial representation. Further note
that a finitely generated group having property (T ) has property (τ) with respect to
all finite index normal subgroups.

Theorem 6.9. [LZ89, Section 1] The group SL2(Z) has property (τ) with respect to
{Γ(p)}p∈P.

Proof. By Selberg’s 3
16 Theorem, given a congruence subgroup Γ(p) of SL2(Z), the

smallest positive eigenvalue λ1(Γ(p)\H) of the Laplacian on the principal modular
curve Γ(p)\H is at least 3

16 . Here, H denotes the hyperbolic plane endowed with
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the structure of a Riemannian manifold as in the Poincaré half-plane model. Yet,
by [Lub94, Theorem 4.3.2], having λ1 bound away from zero is equivalent to SL2(Z)
having property (τ) with respect to {Γ(p)}p∈P.

Theorem 6.10. Let k be a field of characteristic zero. Then the wild Kronecker algebra
kΘ(3) is not of amenable representation type.

Proof. By Proposition 6.3, it is sufficient to find a sequence of α-dimension expanders
of degree two and of unbounded dimension for some α > 0. Now, by an application
of Proposition 6.5, it suffices to exhibit a sequence of irreducible, unitary representa-
tions ρ : Γ → Un(C) of unbounded dimension for some group Γ with generating set S
of cardinality two, such that the Kazhdan constants KS

Γ (S`n(C), adj ρ) are uniformly
bounded from below by a constant κ > 0.
We let Γ = SL2(Z) with generating set S = {( 1 1

0 1 ),
( 0 1
−1 0

)
}. For now, we specialise to

k = C. By Corollary 6.7, there is a sequence ρp : Γ→ Up(C) of non-trivial irreducible,
unitary representations of unbounded dimension. Moreover, by Theorem 6.9, SL2(Z)
has property (τ) with respect to {Γ(p)}, that is, there is a constant κ > 0 such that if
(H,σ) is a non-trivial unitary irreducible representation of SL2(Z) whose kernel contains
Γ(p) for some p ∈ P, then the Kazhdan constant KS

Γ (H,σ) > κ. Yet, by the remarks
following Proposition 6.5, the (S`p(C), adj ρp) are unitary representations factoring
through SL(2, p), that is, their kernels contain Γ(p), and they do not contain non-
trivial fixed vectors, so are irreducible. Thus, for their Kazhdan constants we have that
KS

Γ (S`p(C), adj ρp) > κ.
The case for general k follows as in [LZ08, comments after Example 3.4]: Since

char k = 0, k contains Q, and the representations of Corollary 6.7 are all defined
over Q, say ρp : Γ→ GLp(Q). If |k| ≤ ℵ, then k can be embedded into C and so
can GLp(k) ⊂ GLp(C). As the ρp factor through a finite group, they can be unitarised
over C. We have Cp = C ⊗k kp, thus every k-subspace W ⊆ kp spans a C-subspace
W ⊂ Cp of the same dimension. If ρ(s) ∈ GLp(k), then

dimk(W + ρ(s)W ) = dimC(W + ρ(s)W ).

Since (Cp, ρp(S)) is a dimension expander by the above, so is (kp, ρp(S)). Now, if k has
large cardinality and W ⊂ kn does not have the dimension expansion property, then
the entries of a basis of W generate a finitely generated field k1 of characteristic zero,
and we get a counterexample W ⊂ kn1 . But kn1 is a dimension expander by the previous
argument.

Remark. This proof does not use the fact that the group SL2(Z) has property (τ) with
respect to all principal congruence subgroups, let alone all congruence subgroups. Our
result follows from property (τ) with respect to infinitely many Γ(p) such that p is
unbounded. Thus, weaker versions of Selberg’s Theorem should suffice in proving this.
For these, see e.g., [Tao15, Section 3.3]. Also compare [DSV03, Theorem 4.4.4], where
by the use of only elementary methods it is shown that the corresponding construction
for graphs gives expander graphs.
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Example 6.11. Put s = ( 1 1
0 1 ) and t =

( 0 1
−1 0

)
. Then the desired (counter)example for

kΘ(3) is given by the family
{(

(kp, kp), (id, ρp(s), ρp(t))
)}
p∈P.

Considering the basis {e2 − e1, . . . , ep − ep−1, ep+1 − ep} of W ∼= kp, we do have

ρp(s) =


0 . . . 0 −1 1
1 −1 1

. . . ...
...

1 −1 1
0 . . . 0 0 1

 ∈ GLp(Q), ρ3(t) =

 0 0 −1
0 −1 0
−1 0 0

 ,

ρ5(t) =


0 0 0 0 −1
0 0 0 −1 0
0 −1 1 −1 0
0 −1 0 0 0
−1 0 0 0 0

 , ρ7(t) =



0 0 0 0 0 0 −1
0 0 0 0 0 −1 0
0 0 −1 1 0 −1 0
0 −1 0 1 0 −1 0
0 −1 0 1 −1 0 0
0 −1 0 0 0 0 0
−1 0 0 0 0 0 0


,

ρ11(t) =



0 0 0 0 0 0 0 0 0 0 −1
0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 −1 1 0 0 0 −1 0
0 0 0 0 −1 1 −1 1 0 −1 0
0 0 0 0 −1 1 −1 0 1 −1 0
0 −1 1 0 −1 1 −1 0 1 −1 0
0 −1 1 0 −1 1 −1 0 0 0 0
0 −1 0 1 −1 1 −1 0 0 0 0
0 −1 0 0 0 1 −1 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0



.

While the latter matrices ρp(t) share a pattern, the strict rule to construct them ad-hoc
is unclear. Note that we do have a certain symmetry ai,j = ap+1−i,p+1−j .

For fields of prime characteristic, this construction of dimension expanders cannot be
used. Thus, for general k, we rely on of work of Dvir and Shpilka [DS11] and Bourgain
[Bou09] to generalise our result.

Theorem 6.12. Let k be any field. Then there exists some d ≥ 3 such that kΘ(d) is
not of amenable representation type.

Proof. By a reduction of [DS11], the result of [Bou09] can be used to construct degree-d
dimension expanders over any field k, thus showing that the wild (d + 1)-Kronecker
algebras kΘ(d + 1) are not of amenable representation type (also see [DW10] for an
overview of the construction of these dimension expanders).
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6.2 Propagating non-amenability
In this section we will discuss implications of the non-hyperfiniteness of wild generalised
Kronecker algebras. In particular, we will show results for other well-behaved wild
algebras.

6.2.1 Passing on non-amenability from subquivers
Lemma 6.13. Let Q be a quiver. If Q has a subquiver Q′ such that mod kQ′ is not of
amenable representation type, then neither is mod kQ of amenable representation type.

Proof. Let F : mod kQ′ → mod kQ be the embedding mapping any representation

M ′ =
(
(M ′(i))i∈Q0 , (M ′(α))α∈Q1

)
of Q′ to the representation M =

(
(M(i))i∈Q0 , (M(α))α∈Q1

)
of Q given by

M(i) =
{
M ′(i), i ∈ Q′0,
0, else,

M(α) =
{
M ′(α), α ∈ Q′1,
0, else.

Since mod kQ′ is not of amenable representation type, there exists a non-hyperfinite
family of modules {M ′j : j ∈ J}. Put Mj = FM ′j and assume that {Mj : j ∈ J} is
hyperfinite, for otherwise we have found a non-hyperfinite family exhibiting the non-
amenability of mod kQ. Note that any submodule N of some Mj is given by subspaces
N(i) ⊆ Mj(i) for each i ∈ Q0 and linear maps N(α) for each α ∈ Q1 such that
imN(α) ⊆ N(t(α)). Hence,

N ′ :=
(
(N(i))i∈Q′0 , (N(α))α∈Q′1

)
,

is a subrepresentation of M ′j . Moreover, dimkMj = dimkM
′
j and dimkN = dimkN

′.
Let S be a direct summand of N , then each S(i) is a direct summand of N(i). This
along with S(i) = 0 for all i ∈ Q0 K Q′0 implies that S also yields a direct summand
S′ of N ′ of dimension dimk S

′ = dimk S. Altogether, this implies that {M ′j : j ∈ J} is
hyperfinite, a contradiction.

Corollary 6.14. The wild Kronecker algebras CΘ(d) for d ≥ 3 are not of amenable
representation type.

We will now impose conditions on a pair of functors that allow us to preserve non-
hyperfinite families of modules.

Proposition 6.15. Let k be a field and L|k a finite field extension. Let A be a finite
dimensional L-algebra and let B be a finite dimensional k-algebra. Let {Mi : i ∈ I} be
a non-hyperfinite family of finite dimensional A-modules. Let K1,K2 > 0. If for each
i ∈ I there exist additive functors Fi : modA→ modB and Gi : modB → modA such
that
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• GiFi(Mi) ∼= Mi for all i ∈ I,

• all Gi are left exact,

• K1 dimk Fi(Mi) ≤ dimLGiFi(Mi) for all i ∈ I,

• dimLGi(X) ≤ K2 dimkX for all X ∈ modB and i ∈ I,

then N = {Fi(Mi) : i ∈ I} ⊆ modB is a non-hyperfinite family.

Proof. Assume that N is hyperfinite. Towards a contradiction we want to show that
{GiFi(Mi) : i ∈ I} is also hyperfinite. For any ε̃, we can find some LNε̃ > 0 to exhibit
the hyperfiniteness of the family N . Let M = Mi for some i ∈ I. Denote N = Fi(Mi).
We can find a submodule P ⊆ N such that P = ⊕t

j=1 Pj with dimk Pj ≤ LNε̃ and
dimk P ≥ (1− ε̃) dimkN . Since all Gi are additive, we have that Gi(P ) = ⊕t

j=1Gi(Pj),
and

dimLGi(Pj) ≤ K2 dimk Pj ≤ K2L
N
ε̃ .

Moreover, the sequence

0→ Gi(P )→ Gi(N)→ Gi(N/P )

is exact in modA, so Gi(P ) is a submodule of Gi(N) = GiFi(Mi) ∼= Mi = M , and by
the rank-nullity theorem,

dimLGi(P ) ≥ dimLM − dimLGi(N/P )
≥ dimLM −K2 dimkN/P

≥ dimLM −K2ε̃ dimkN

≥ dimLM −
K2
K1

ε̃ dimLGi(N) = (1− ε) dimLM,

if we put ε̃ = K1
K2
ε. We can therefore choose Lε to be K2L

N
ε̃ to show the hyperfiniteness

of {GiFi(Mi) : i ∈ I} = {Mi : i ∈ I}.
But this is a contradiction, since we assumed that this set was not hyperfinite. Thus
{Fi(Mi) : i ∈ I} cannot be hyperfinite.

Remark. This proof uses a slight modification of the proof of Proposition 1.5, adapting
to the fact that the functor G might be different for each i ∈ I.

We are now able to directly prove that the path algebra of a wild quiver, that is, of
a quiver with some connected component that is neither Dynkin nor extended Dynkin,
is not amenable.

Theorem 6.16. Let k be a field of characteristic zero and Q a wild quiver. Then
mod kQ is not of amenable representation type.
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Proof. If Q contains the wild 3-Kronecker quiver Θ(3) as a subquiver, Corollary 6.14
implies that mod kQ is not of amenable type.

If Q is a wild quiver but does not contain a wild Kronecker quiver, it must have n ≥ 3
vertices, hence mod kQ has at least three isoclasses of simple modules. By [Bae89, The-
orem 2.1], which also holds for arbitrary fields, there exists a regular indecomposable
module T without self-extensions. Thus we can apply Proposition 2.10 to see that T⊥ is
isomorphic to mod kQ′ for some quiver Q′. Note that there is a corresponding homolo-
gical epimorphism ϕ : kQ→ kQ′ and the induced functor F = ϕ∗ : mod kQ′ → mod kQ
is fully faithful and exact. Indeed, Q′ has n−1 vertices and [Bae89, Theorem 4.1] shows
that kQ′ is a wild quiver algebra.

Now, if we have some equivalence mod kQ′ ∼−→T⊥, the simple modules S(i) of kQ′
are mapped to certain objects Bi, considered as modules in mod kQ. The k-dimension
of any module M over a path algebra is determined by the length of any composition
series. Such a series for some M ′ in kQ′ is mapped to a composition series in the
perpendicular category, and thus a series in mod kQ, such that the factor modules are
isomorphic to some Bi. This shows that

dimk F (M ′)kQ ≤ max
i=1,...,n−1

{dimk Bi} dimkM
′
kQ′ .

Moreover, by [Ker96, Lemma 11.1], T⊥ is closed under kernels, cokernels and ex-
tensions. Assuming that Z is a relative projective generator of mod kQ′, [HK16, Pro-
position A.1] shows that there exists a right adjoint to the inclusion F , which we
denote by G : mod kQ → mod kQ′. Indeed, for M ∈ mod kQ, G(M) is given as a
factor module of a right add(Z)-approximation ZM of M . Since we may assume that
ZM ∼= Z ⊗End(Z) Hom(Z,M), this implies that

dimkG(M) ≤ dimk ZM ≤ (dimk Z)2 dimkM.

Moreover, G is left exact. Since F is fully faithful, we have that X ∼−→GF (X) for all
X ∈ mod kQ′.
To conclude the proof, just note that we have prepared a descent argument leading to

a wild quiver with two vertices, which has to include a wild Kronecker quiver Θ(m) as
a subquiver. Given any non-hyperfinite family {Mj : j ∈ J} in mod kΘ(m), we choose
Z as above and let K1 = max{dimk Bi}−1 and K2 = (dimk Z)2. We can now choose all
Fn as F and all Gn as G and have fulfilled the conditions of Proposition 6.15, which
we apply to show the non-hyperfiniteness in each step, until we reach mod kQ.

Remark. The above theorem can also be proved more directly, by supplying a concrete
embedding for each minimal wild quiver Q (see [Ker88, Section 4] for a list). In each
case, we need to exhibit exceptional objects X,Y ∈ mod kQ such that (X,Y ) is an
orthogonal exceptional pair, that is,

HomkQ(Y,X) = HomkQ(X,Y ) = 0 = Ext1
kQ(Y,X),

and such that m := dimk Ext1
kQ(X,Y ) ≥ 3.
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Then, by [Rin76, 1.5 Lemma], there is a full exact embedding

F : mod kΘ(m)→ mod kQ,

such that the simple representations of Θ(m) are mapped to X and Y respectively.
Now, if M is a module for kΘ(m), any composition series will get mapped to a series
in mod kQ, such that the factor modules are isomorphic to either X or Y . This shows
that

dimk F (M) ≤ max{dimkX,dimk Y } dimkM.

Denoting the closure of the full subcategory of mod kQ containing X and Y un-
der kernels, images, cokernels and extensions by C(X,Y ), F induces an equivalence
mod kΘ(m) ∼−→C(X,Y ), see for instance [Rin76, Section 1] in connection with [Rin94,
Corollary 1]. Assuming that Z is a relative projective generator of C(X,Y ), [HK16,
Proposition A.1] shows that there exists a right adjoint to the inclusion, which we
denote by G : mod kQ → C(X,Y ). Moreover, if M ∈ mod kQ, G(M) is given as a
factor module of a right add(Z)-approximation ZM of M . Since we may assume that
ZM ∼= Z ⊗End(Z) Hom(Z,M), this implies that

dimkG(M) ≤ dimk ZM ≤ (dimk Z)2 dimkM.

Moreover, G is left exact, and we have GF (M) ∼= M for all M ∈ mod kΘ(m).
To conclude the proof in this case, we may chose a non-hyperfinite family {Mj : j ∈ J}

in mod kΘ(m), guaranteed to exist by Theorem 6.10 and Lemma 6.13. Choose X,Y, Z
as above and let K1 = max{dimkX,dimk Y }−1 and K2 = (dimk Z)2. We can now
choose all Fj as F and all Gj as G and have fulfilled the conditions of Proposition 6.15,
which we apply to show the non-hyperfiniteness of mod kQ.
Examples 6.17.

0

1 2 3 4 5

(1) 6

5

1 2 3 4 0 ∞

(2)

(1) Let Q be the five-subspace quiver §(5). Choose the modules X = S5, the simple
for vertex 5 and Y = τ−1P5. Then

Hom(X,Y ) = 0 = Hom(Y,X),

since X and Y have disjoint support. Also, Ext1(Y,X) = 0 since X is injective.
On the other hand, Ext1(X,Y ) ∼= k3 for dimension reasons.

(2) Let Q be the one-point extension by a source ∞ at an extending vertex 0 of the
subspace-oriented Ẽ6. Choose X = S∞ and Y to be the representation induced
by τ−6P1 of the underlying Ẽ6.
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4 0 ∞

3 2

5 1

(3)

4 0 ∞

3 2

5 1

(4)

(3) Let Q be the one-point extension at an extending vertex 0 of a linearly oriented
D̃5 by a source ∞. Choose X = S∞ and Y as the representation induced by
τ−3P3 of the underlying D̃5.

(4) Let Q be the one-point extension at an extending vertex 0 of a linearly oriented
D̃5 by a sink ∞. Choose Y = S∞ and X to be the representation induced by
τ−3P3 of the underlying D̃5.

6.2.2 Strict wildness and related notions
Next, we recall several notions of wildness.

Definition 6.18. [Cra92, Section 8.3] Let A be a finite dimensional hereditary algebra.
We call A hereditary wild provided the associated quadratic form qA (see Section 3.1)
is indefinite.

Definition 6.19. [Cra92, Section 8.2] Let A be a finite dimensional k-algebra. A is
called strictly wild provided there exists an orthogonal pair (X,Y ) of finite dimen-
sional modules, that is, HomA(X,Y ) = HomA(Y,X) = 0, which are finitely presented
such that their endomorphism rings End(X) and End(Y ) are division rings and such
that

p = dimEndA(Y ) Ext1
A(X,Y ) · dimEndA(X) Ext1

A(X,Y ) ≥ 5.

Definition 6.20. [Sim05, Section 2] Let A be finite dimensional k-algebra. A is called
fully wild provided there exists a finite field extension L|k and a fully faithful exact
additive functor G : modL〈x, y〉 → modA

A first relation between these notions may follow from the next lemma.

Lemma 6.21. [Cra92, Lemma 8.2] Let A be a finite dimensional algebra. A is strictly
wild if and only if there exists a finite field extension L|k and an A-L〈x, y〉-bimodule T ,
finitely generated and projective over L〈x, y〉 such that

T ⊗L〈x,y〉 − : ModL〈x, y〉 → ModA

is fully faithful.

Remark. Note that the statement of the previous lemma is not about fully wild algebras:
While a strictly wild algebra is fully wild since the tensor product functor restricts to
a fully faithful exact functor between the finitely generated modules, a functor from
the definition of fully wild need not be given as a tensor product. Also compare the
necessary conditions in [Sim93, Lemma 2.2] and [Wat60].
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However, we do have a different implication.
Theorem 6.22. [Cra92, Theorem 8.4] Let A be a finite dimensional algebra. If A is
hereditary wild, then A is strictly wild.

Definition 6.23. [Sim03, Definition 2.4] Let A be a finite dimensional k-algebra. A is
called fully k-wild provided there exists a k-linear functor G : mod k〈x, y〉 → modA
which is full, respects isomorphism classes and preserves indecomposability.
By [Sim03, Lemma 2.5], A is fully k-wild if and only if there exists a fully faithful exact

k-linear functor H : mod k〈x, y〉 → modA. This implies that in case k is algebraically
closed, the notions of fully wildness and fully k-wildness coincide.

As we have dealt with Kronecker algebras so far, we discuss how to make use of their
module category in place of mod k〈x, y〉.
Lemma 6.24. Let A be a finite dimensional k-algebra. Assume that A is strictly wild.
Then there exists a finite field extension L|k such that for d ≥ 3, there is an A-LΘ(d)-
bimodule M such that M is of finite L-dimension, projective as an LΘ(d)-module and
the functor F = M ⊗LΘ(d) − : modLΘ(d)→ modA is full and faithful.

Proof. By [Cra92, Lemma 8.2], there exists a finite field extension L|k and a fully
faithful exact additive functor

G = T ⊗L〈x,y〉 − : ModL〈x, y〉 → ModA,

where T is a left A-right L〈x, y〉-bimodule which is finitely generated projective over
L〈x, y〉.
By [SS07, Thm. XIX.1.7], since LΘ(d) is finitely generated as an algebra over L,

there is a full, faithful and exact functor

H = N ⊗LΘ(d) − : ModLΘ(d)→ ModL〈x, y〉,

where N is a left L〈x, y〉-right LΘ(d)-bimodule which is finitely generated and free
over LΘ(d). Note that H restricts to a fully faithful exact functor between the modules
of finite L-dimension.
The composition of these functors is then a fully faithful and exact functor

G ◦H : ModLΘ(d)→ ModA,

given by tensoring with T ⊗L〈x,y〉 N . It remains to show that this is a projective
LΘ(d)-module of finite L-dimension.
As T is a finitely generated projective module over L〈x, y〉, we know that it is a direct

summand of a finite number—say ofm—copies of L〈x, y〉. This implies that T⊗L〈x,y〉N
is a direct summand of L〈x, y〉m⊗L〈x,y〉N , when viewed as a LΘ(d)-module. As these,
we have L〈x, y〉m ⊗L〈x,y〉 N ∼= Nm. But N is a finitely generated projective module
when viewed over LΘ(d), hence so is Nm. But this already implies that T ⊗ N is a
finitely generated projective module over LΘ(d). Since the Kronecker algebra LΘ(d)
is of finite dimension over L, T ⊗N also has finite L-dimension.

103



6 Wild phenomena

6.2.3 Hereditary wild implies non-amenability
We will now turn to study hereditary wild algebras with respect to amenability. To
apply Proposition 6.15, we prove two technical lemmas first.

Lemma 6.25. Let L|k be a finite field extension. Let A be a finite dimensional k-
algebra and let B be a finite dimensional L-algebra. Assume that F : modB → modA
is an additive, fully faithful functor given as F = C ⊗B − for some A-B-bimodule C
which is finitely generated projective over B. Then there exists a left exact functor
G : modA → modB such that GF (M) ∼= M for all M ∈ modB and such that there
are K1,K2 > 0 with dimk F (M) ≤ K1 dimLM and dimLG(N) ≤ K2 dimkN .

Proof. We do have

HomA(C ⊗X,Y ) ∼= HomB(X,HomA(C, Y )).

We therefore choose G = HomA(C,−). Thus, G is left exact. Moreover, GF (M) ∼= M
as F is fully faithful (see, e.g., [Par69, Korollar in 2.12]). It remains to show the
existence of the inequality constants K1 and K2.

First, letM be a B-module. Then C⊗LM surjects onto C⊗BM as L-vector spaces,
so dimLC ⊗B M ≤ dimLC ⊗LM , implying

dimk F (M) = dimk (C ⊗B M) ≤ [L : k] · dimLC · dimLM.

This shows that we can choose K1 = ([L : k] dimLC)−1.
Second, let N be an A-module. Then HomA(C,N) as a set of A-homomorphisms is

a k-vector space of dimension bounded by dimk AC ·dimkN . But it is also a B-module,
and the action of k (via these module structures) is central (cf. [Iva11, Remark 2.5]).
Thus we have

dimLG(N) = dimL HomA(C,N) = dimk HomA(C,N)
[L : k] ≤ dimk C

[L : k] dimkN.

This shows that we can choose K2 = dimk C
[L:k] .

Lemma 6.26. Let A be a finite dimensional hereditary wild k-algebra of rank two.
Then there is d ≥ 3 such that there exist additive functors F : modLΘ(d) → modA
and G : modA→ modLΘ(d) for some finite field extension L|k such that

(1) GF (M) ∼= M for all M ∈ modLΘ(d),

(2) G is left exact,

(3) there exists K1 > 0 such that

K1 dimk F (M) ≤ dimLGF (M)

for all M ∈ modLΘ(d),
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(4) there exists K2 > 0 such that

dimLG(N) ≤ K2 dimkN

for all N ∈ modA,

Proof. We have that B is a bimodule algebra given by two division rings D and E
over k and a bimodule DME (notation as in [Rin76]). Inspection of the proof of [Rin76,
Theorem 2] in Section 5.2 ibid. in connection with [Cra92, Lemma 8.1] shows that there
is a full exact embedding F : modLΘ(d)→ modA for some d ≥ 3 and k ⊆ L ⊆ D,E.
Thus, by the Eilenberg–Watts Theorem [Wat60, Theorem 1], F is naturally equivalent
to the functor C⊗LΘ(d)−, where C is the A-LΘ(d)-bimodule F (LΘ(d)), which is finite
dimensional over k and projective over LΘ(d). Now we apply Lemma 6.25 to get

G = HomA(C,−)

and finish the proof.

In addition to this base case of rank two, we will now see how to prove stepping from
rank n to rank n+ 1.

Proposition 6.27. Let k be any field and n ≥ 2. If no finite dimensional connected wild
hereditary algebra of rank n is of amenable representation type, then no wild hereditary
algebra of rank n+ 1 is of amenable type, either.

Proof. Let A be a finite dimensional connected wild hereditary algebra of rank n+ 1.
By [Rin88, Theorem in §1], A has a regular tilting module and thus there exists an
indecomposable regular module T with no self-extensions. By [HR82, Lemma 4.1],
End(T ) is a division ring. Now [GL91, Theorem 4.16] yields that T⊥ ∼= mod Λ for
some finite dimensional hereditary algebra Λ, along with a homological epimorphism
ϕ : A→ Λ. Note that the induced functor F = ϕ∗ : mod Λ→ modA is fully faithful and
exact. We may assume that Λ is basic. Moreover, Λ has n simple modules. Without
loss of generality, we may assume that T is regular simple. For if T is not regular
simple, we can consider the regular top of T , which also does not have self-extensions
by [Hos84, Lemma 2.3, Proposition 2.4]. Thus, [Str91, Proposition 6.2] shows that Λ is
connected and by [Str91, Theorem 6.5], Λ is wild as the induced quadratic form on Λ
is indefinite, so it is of non-amenable type by hypothesis.
Now, if we have some equivalence mod Λ ∼−→T⊥, the simples Si of Λ get mapped to

certain objects Bi, considered as modules in modA. The k-dimension of any moduleM
over a finite dimensional k-algebra is determined by the length of any composition series.
Such a series for M in mod Λ gets mapped to a composition series in the perpendicular
category, and thus a series in modA, such that the factor modules are isomorphic to
some Bi. This shows that

dimk F (M)A ≤ max{dimBi} dimkMΛ.
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Moreover, by [Str91, Lemma 1.2], T⊥ is closed under extensions, kernels and coker-
nels. Assuming that Z is a relative projective generator of mod Λ (we may use the
middle term in the universal short exact sequence of Bongartz), [HK16, Proposi-
tion A.1] shows that there exists a right adjoint to the inclusion F , which we denote by
G : modA → mod Λ. Indeed, for M ∈ modA, G(M) is given as a factor module of a
right add(Z)-approximation ZM of M . We may assume ZM ∼= Z ⊗End(Z) Hom(Z,M),
implying that

dimkG(M) ≤ dimk ZM ≤ (dimk Z)2 dimkM.

Moreover, G is left exact. Since F is fully faithful, we have that X ∼−→GF (X) for all
X ∈ mod Λ.
By hypothesis, there is a non-hyperfinite family {Mj : j ∈ J} in mod Λ. Choose Z

as above and let K1 = max{dimk Bi}−1 and K2 = (dimk Z)2. We can now choose all
Fj as F and all Gj as G and have fulfilled the conditions of Proposition 6.15, which we
apply to show the non-hyperfiniteness of modA.

Theorem 6.28. Let A be a finite dimensional k-algebra. If A is wild hereditary of
rank n ≥ 2, then A is not of amenable representation type.

Proof. We prove this by induction on the rank. If A is a finite dimensional connected
wild hereditary algebra of rank two, Lemma 6.26 implies the existence of functors F,G
as in Proposition 6.15, allowing us to infer that A is not of amenable representation type,
since the wild Kronecker algebra LΘ(d) was shown to be not of amenable representation
type in Theorem 6.12. The induction step then is Proposition 6.27.

6.2.4 Strict and full wildness imply non-amenability
Theorem 6.29. Let A be a finite dimensional k-algebra and let A be fully wild. If
we assume that k is algebraically closed or that the functor from the definition of fully
wildness is k-linear, then A is not of amenable representation type.

Proof. We want to apply Proposition 6.15. By the definition, there is a finite field
extension L|k and a fully faithful exact functor F ′ : modL〈x, y〉 → modA. Note that
F ′ is k-linear, either because this is assumed or because this follows as k is algebraically
closed and we have L = k. Now, let d ≥ 3 be such that LΘ(d) is not of amenable type
(see Theorem 6.12). By [Sim92, Proposition 14.10], there exists an L-linear fully faithful
exact functor F ′′ : modLΘ(d)→ modL〈x, y〉. Clearly, their composition,

F = F ′ ◦ F ′′ : modLΘ(d)→ modA,

is also fully faithful and exact as well as k-linear. Thus F ∼= F (LΘ(d))⊗− by [Iva11,
Theorem 2.4]. We will write C = F (LΘ(d)).

We may now apply Lemma 6.25 to yield G = HomA(C,−) fulfilling the conditions
of Proposition 6.15.
Now, choosing all Fj as F and all Gj as G and picking some non-hyperfinite family

of modules in modLΘ(d), we can show the existence of some non-hyperfinite family of
modules in modA. This proves that A cannot be of amenable representation type.
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If we instead assume that A is strictly wild, no additional assumption is necessary.

Theorem 6.30. Let A be a finite dimensional k-algebra. If A is strictly wild, then A
is not of amenable representation type.

Proof. We want to apply Proposition 6.15. By Lemma 6.24, there is a finite field
extension L|k. We use Theorem 6.12 to find d ≥ 3 such that LΘ(d) is not of amenable
representation type. Resorting to Lemma 6.24, there is a fully faithful exact functor
F : modLΘ(d)→ modA given by C⊗LΘ(d)−, where C is an A-LΘ(d)-bimodule finitely
generated projective over LΘ(d) and thus of finite k-dimension. We may now apply
Lemma 6.25 to produce the functor G = HomA(C,−).

Now, choosing all Fj as F and all Gj as G and picking some non-hyperfinite family
of modules in modLΘ(d), we can show the existence of some non-hyperfinite family of
modules in modA. This proves that A cannot be of amenable representation type.

As a corollary, we get a new proof of Theorem 6.28.

Corollary 6.31. A hereditary wild algebra A is not of amenable representation type.

Proof. Apply Theorems 6.22 and 6.30.

6.3 Radical square zero and wild local algebras
As not all wild algebras are strictly wild or fully wild, we want to broaden our approach.
In doing so, we now turn to wild local algebras, that is, to algebras that are local and
wild (see, e.g., [Rin74, Section 3]). We will especially focus on the local wild algebra
A = k〈x1, x2, x3〉/M2, where M2 is the ideal generated by all monomials of degree two.
This algebra has radical square zero, that is, r2 = 0, where r = J is the Jacobson ring
radical of A. We will use this latter property to discuss its amenability.

Lemma 6.32. Let A be a finite dimensional k-algebra with radical square zero. Then
M ∈ modA has no simple direct summand if and only if radM = socM .

Proof. We first note that in this situation, for M ∈ modA, we have

radM = rM =
{

n∑
i=1

rimi : n ∈ N, ri ∈ r,mi ∈M
}
,

and
socM = {m ∈M : rm = 0} = {m ∈M : ∀r ∈ r : rm = 0}.

Let M ∈ modA. If m ∈ radM , then m = ∑
rimi with ri ∈ r,mi ∈ M . But then

rm = r
∑
rimi = 0, since r2 = 0. Thus m ∈ socM , proving radM ⊆ socM .

Now, since M/ radM is semisimple, and socM/ radM ⊆ M/ radM , there exists
C ⊃ radM such that

M/ radM = socM/ radM ⊕ C/ radM.
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Moreover, as socM is semisimple and radM ⊆ socM , there exists S′ ∈ modA (pos-
sibly zero) such that socM = radM ⊕ S′. First, we have that socM + C = M , as
radM ⊆ socM . Second, radM ⊆ socM ∩ C ⊆ radM , as

(socM/ radM) ∩ (C/ radM) = 0 ∈M/ radM,

thus socM ∩C = 0. Third, C + S ⊇ radM + S′ = socM . It follows that C + S′ = M .
We also have C∩S′ ⊆ C∩socM = radM , yet S′∩radM = 0, showing that C∩S′ = 0.
After all, we have established that M = C⊕S′, where S′ is semisimple as a submodule
of socM , but is also a direct summand of M .
In conclusion, ifM has no simple summand, we must have S′ = 0, so socM = radM .

Conversely, if M has a simple summand S, M = M ′ ⊕ S, then

radM = radM ′ ⊆ socM ′ ⊂ socM,

where the last inclusion is strict, as socS = S. It follows that M has no simple
summand if and only if S′ 6= 0 if and only if socM 6= radM .

Lemma 6.33. For a finite dimensional k-algebra A with radical square zero, the sub-
category C ⊂ modA of all finite dimensional modules M such that socM = radM , is
closed under extensions.

Proof. Let 0 → X
f−→ Y

g−→ Z → 0 be an exact sequence with X,Z ∈ C. Since
r2 = 0, it is enough to show that socY ⊆ radY . Let y ∈ socY , thus ry = 0.
Then 0 = g(ry) = rg(y) for all r ∈ r, so g(y) ∈ socZ = radZ. We can then write
g(y) = ∑

rizi with ri ∈ r, zi ∈ Z. As g is surjective, there are wi ∈ Y such that
g(wi) = zi. It follows that g (y −∑ riwi) = 0, so y −∑ riwi ∈ ker g = im f . Now, there
exists x ∈ X such that f(x) = y −

∑
riwi. Thus, f(rx) = rf(x) = ry − r

∑
riwi = 0

for all r ∈ r. As f is injective, this shows that rx = 0 for all r ∈ r, that is,
x ∈ socX = radX. We may then write x = ∑

sivi with si ∈ r, vi ∈ X. We now
have that

y =
∑

riwi + f
(∑

sivi
)

=
∑

riwi +
∑

sif(vi) ∈ rY = radY,

showing that socY ⊆ radY .

Given a finite dimensional k-algebra A with radical square zero, we associate to it
the hereditary, triangular matrix algebra

B =
(
A/r 0
r A/r

)
.

Let F : modA → modB be the functor defined in [ARS95, Section X.2] given on
objects as F (X) = (X/rX, rX, f), where f : r ⊗A/r X/rX → rX is induced by the
natural multiplication r⊗A X → rX, using r2 = 0.
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Proposition 6.34. Let A be a finite dimensional k-algebra with radical square zero
and let B and F be as above. If C ⊂ modA is the subcategory of all modules without
simple direct summands, then the functor F is exact when restricted to C. Moreover, if
f : N → M is a monomorphism in modA and N,M ∈ C, then F (f) : F (N) → F (M)
is a monomorphism in modB.

Proof. Let η : 0 → X
f−→ Y

g−→ Z → 0 be a short exact sequence with X,Y, Z ∈ C.
Clearly, for A-modules U and V , if h : U → V , then h(socU) ⊆ socV . We will write
soch or even h instead of h| socU . We will also write h for toph, where

toph(u+ radU) = h(u) + radV.

soc is left exact. First, let x ∈ socX ⊆ X such that f(x) = 0 ∈ socY ⊆ Y . Since f
is injective, we must then have x = 0. Second, let y ∈ socY ⊆ Y such that

g(y) = 0 ∈ socZ ⊆ Z.

Then y ∈ ker g = im f , and there is x ∈ X such that f(x) = y. Since ry = 0 for all
r ∈ r, we also have that f(rx) = rf(x) = ry = 0 for all r ∈ r. By the injectivity of f ,
this implies that rx = 0 for all r ∈ r, showing that x ∈ socX, so y ∈ im f| socX . Third,
let y ∈ im f| socX , that is, y = f(x) for some x ∈ socX. Then (g| socY ◦ f| socX)(x) = 0
since g ◦ f = 0. This shows that

0→ socX
f| socX−−−−→ socY

g| socY−−−−→ socZ

is exact.
exactness at socZ. Let z ∈ socZ = radZ, and write z = ∑

riwi with ri ∈ r, wi ∈ Z.
As g is surjective, there exist vi ∈ Y such that g(vi) = wi. Now,

g
(∑

rivi
)

=
∑

rig(vi) =
∑

riwi = z,

and ∑ rivi ∈ radY = socY . Thus g| socY is surjective.
exactness of top in this situation. That top is right exact follows from the duality

D(topM) = socDM or can be proven directly: First, let z + radZ ∈ topZ. Since g is
surjective, there is y ∈ Y such that g(y) = z. But then ḡ(y + radY ) = z + radZ, so ḡ
is surjective. Second, let ȳ = y + radY ∈ topY be such that ḡ(ȳ) = 0 ∈ topZ, hence
g(y) ∈ radZ. Then g(y) = ∑

riwi with ri ∈ r, wi ∈ Z. As g is surjective, there exist
vi such that g(vi) = wi. Now g (y −∑ rivi) ∈ ker g = im f , and there is x ∈ X such
that f(x) = y −

∑
rivi. Now f̄(x + radX) = f(x) + radY = y −

∑
rivi + radY = ȳ,

showing that ȳ ∈ im f̄ .
The exactness at topX follows from duality, too, once we realise that we also have

D(cosocM) = radDM , or can be seen directly: Let x + radX ∈ topX be such that
f̄(x+radX) = 0 ∈ topY , hence f(x) ∈ radY = socY . Then 0 = rf(x) = f(rx) for all
r ∈ r. As f is injective, this shows that rx = 0 for all r ∈ r, thus x ∈ socX = radX.
We now have that x+ radX = 0 ∈ topX, showing that f̄ is injective.
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F is exact on C. Given h : U → V in modA, we have F (h) : F (U)→ F (V ) in modB.
As F (M) = (topM, radM, sM ), where the structure map sM : r ⊗ topM → radM ,
and F (h) = (radh, toph) is a morphism of B-modules and thus commutes with the
structure maps s−, we have a commutative diagram for each r ∈ r

0 topX topY topZ 0

0 radX radY radZ 0

top f

r⊗−

top g

r⊗− r⊗−
rad f rad g

of exact rows, establishing the exactness of 0→ F (X) F (f)−−−→ F (Y ) F (g)−−−→ F (Z)→ 0.
An inspection of the proof shows that F (f) : F (N) → F (M) is a monomorphism

provided f : N →M is and N,M ∈ C, since only the injectivity of f and the properties
of N,M are used.

Remark. Note that it was shown in [Che09, Lemma 3.3] that given f : N ↪→M , an
inclusion of indecomposable A-modules, F (f) is a monomorphism provided N is not
simple and N 6⊆ rM .

Theorem 6.35. Let k be a field of characteristic zero. Then the local wild algebra
k 〈x1, x2, x3〉/M2 is not of amenable representation type.

Proof. Consider the functor F as in Proposition 6.34. Then the algebra B is the wild
Kronecker algebra kΘ(3). We denote its arrows by α, β and γ. Here, F on the objects
is given by

F (M) = topM radM.

x1·−

x2·−

x3·−

Let {M̃i : i ∈ I} be a non-hyperfinite family in indB with all M̃i non-simple and
non-projective. We may assume the latter since there are only finitely many projective
indecomposables. As F is essentially surjective on the non-projective indecomposables
by [ARS95, Theorem X.2.4], there are Mi such that F (Mi) = M̃i for all i ∈ I. By
[ARS95, Lemma X.2.1], the Mi are indecomposable and not simple since F preserves
length.
Towards a contradiction, assume that modA is hyperfinite. Then for all ε > 0,

there is Lε > 0 such that for all i ∈ I, there are submodules Ni ⊆ Mi such that
dimNi ≥ (1 − ε) dimMi and Ni = ⊕sij=1N

(i)
j with dimN

(i)
j ≤ Lε. For each i ∈ I,

decompose Ni = N ′i⊕N ′′i such that N ′i has no simple summands and N ′′i is semisimple.
By Proposition 6.34, F (N ′i) is a submodule of F (Mi) = M̃i. Moreover, let {b1, . . . , bn′′}
be a k-basis of N ′′i , each 〈b`〉 a simple summand of Ni and a simple submodule of Mi.
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Now, as 〈b`〉 is simple, b` ∈ kerMi(α)∩kerMi(β)∩kerMi(γ), thus b` ∈ socMi = radMi,
since Mi is indecomposable and not simple. Since N ′i ∩N ′′i = 0,

b` 6∈ radNi = radN ′i ⊕ radN ′′i = radN ′i ⊆ N ′i ,

as N ′′i is semisimple. This shows that dim radM − dim radN ′i ≥ dimN ′′i . Now put
Ñi = F (N ′i)⊕ S(2)|N ′′i |, where |N ′′i | is the composition length of N ′′i . Then

dim Ñi = dimF (N ′i) + |N ′′i | = dimNi ≥ (1− ε) dimMi = (1− ε) dim M̃i.

What is more, F (N ′i) has a decomposition into summands of dimension at most Lε (by
Krull-Remak-Schmidt), while S(2)|N ′′i | is semisimple. This would thus give submodules
exhibiting the hyperfiniteness of {M̃i : i ∈ I}, a contradiction.

Unfortunately, this method does not work for other locally wild algebras, as it relies
on having radical square zero. We use that the functor F is left-exact on a suitable
subcategory, but this cannot be expected for instance for k〈x, y〉/(x2, yx, xy2, y3) or
k〈x, y〉/(xy, x2 − y2).

6.4 Weak notions and finitely controlled wild algebras
In order to approach the problem of disproving hyperfiniteness for further classes of
wild algebras, we introduce the notion of weak hyperfiniteness and use it in connection
with interpretation functors for (finitely) controlled wild algebras.

Definition 6.36. Let k be a field, let A be a finite dimensional k-algebra and let
M⊆ modA be a family of finite dimensional A-modules. M is called weakly hyper-
finite provided for every ε > 0 there exists some Lε > 0 such that for every M ∈M
there is a homomorphism θ : N →M for some N ∈ modA such that

dimk ker θ ≤ ε dimM,

dimk coker θ ≤ ε dimM,
(6.2)

and there are modules N1, . . . , Nt ∈ modA with dimkNi ≤ Lε such that N ∼=
⊕t

i=1Ni.
A k-algebra A is said to be of weakly amenable representation type provided

modA itself is a weakly hyperfinite family.

We see that the term “weakly hyperfinite” is suitably chosen:

Proposition 6.37. Let A be a finite dimensional k-algebra. If M ⊆ modA is hyper-
finite, thenM is weakly hyperfinite.

Proof. Let ε > 0. By the hyperfiniteness, there is some Lε > 0. Let M ∈ M. Then
there is N ⊆ M with dimN ≥ (1 − ε) dimM and N = ⊕t

i=1Ni with dimNi ≤ Lε.
Let θ be the inclusion of the submodule N ↪→M . Then ker θ = 0, and coker θ ∼= M/N ,
thus dim coker θ = dimM − dimN ≤ ε dimM . We have shown weak hyperfiniteness
with the same ε and Lε.
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We next recover previous results respectively state the appropriate analogues for
weak hyperfiniteness.

Proposition 6.38. Let k be a field and A,B be finite dimensional k-algebras. Let
G : modA → modB be an additive, left exact functor such that there exist constants
K1,K2,K4 > 0 with

K1 dimX ≤ dimG(X), for all X ∈ N , (6.3)

dimG(X) ≤ dimK2 dimX, for all X ∈ modA, (6.4)

dimR1G(X) ≤ K4 dimX, for all X ∈ modA, (6.5)

where R1G is the first right derived functor of G. If N ⊆ modA is a weakly hyperfinite
family, then the familyM = {G(X) : X ∈ N} ⊆ modB is also weakly hyperfinite.

Proof. By the hypothesis, for every ε̃ > 0 we can find some LNε̃ > 0 to exhibit the weak
hyperfiniteness of the family N . Let N ∈ N , we want to construct a homomorphism
showing the weak hyperfiniteness of G(N). To this end let θ : P → N be such that
P = ⊕t

i=1 Pi with dimPi ≤ LNε̃ , dim ker θ ≤ ε̃ dimN and dim coker θ ≤ ε̃ dimN . We
consider the short exact sequences

ε : 0→ ker θ α−→ P
β−→ im θ → 0,

η : 0→ im θ
γ−→ N

δ−→ coker θ → 0.

We have θ = γ ◦ β, so G(θ) = G(γ) ◦G(β). Applying G, we obtain the exact sequences

ε′ : 0→ G(ker θ) G(α)−−−→ G(P ) G(β)−−−→ G(im θ) ε∗−→ R1G(ker θ),

η′ : 0→ G(im θ) G(γ)−−−→ G(N) G(δ)−−−→ G(coker θ) η∗−→ R1G(im θ).

Now, G(ker θ) is a kernel of G(β). Moreover,

kerG(θ) = ker
(
G(γ) ◦G(β)

)
= G(β)−1(kerG(γ)) = kerG(β),

as G(γ) is a monomorphism. Thus

dim kerG(θ) = dimG(ker θ) ≤ K2 dim ker θ ≤ K2ε̃ dimN ≤ K2
K1

ε̃ dimG(N).

On the other hand,

dim cokerG(θ) = dimG(N)− dim imG(θ)
= dimG(N)− dim imG(γ) + dim imG(γ)− dim

(
G(γ) ◦G(β)

)
(G(P ))

= dim cokerG(γ) + dimG(im θ)− dim imG(β),
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as G(γ) is a monomorphism. Now, by the exactness of η′ at G(N) respectively ε′ at
G(im θ), we have

dim cokerG(θ) = dimG(N)− dim kerG(δ) + dimG(im θ)− dim ker ε∗

= dim imG(δ) + dim im ε∗ ≤ dimG(coker θ) + dimR1G(ker θ)

≤ K2ε̃ dimN +K4ε̃ dimN ≤ K2 +K4
K1

ε̃ dimG(N).

Finally, if ε > 0, then by letting ε̃ = ε K1
K2+K4

and putting Lε = LNε̃ , we have constructed
a map G(θ) : G(P ) → G(N), such that we have G(P ) ∼=

⊕t
i=1G(Pi) by the additivity

of G, with dimG(Pi) ≤ Lε, and we have that dim kerG(θ) ≤ ε dimG(N) as well as
dim cokerG(θ) ≤ ε dimG(N).

The following generalisation of Proposition 6.15 on preserving non-hyperfiniteness
using certain functors is then imminent.

Proposition 6.39. Let k be a field and L|k a finite field extension. Let A be a finite di-
mensional L-algebra and let B be a finite dimensional k-algebra. LetM = {Mi : i ∈ I}
be family of finite dimensional A-modules which is not weakly hyperfinite.
Let K1,K2,K4 > 0. If for each i ∈ I there exist additive functors Fi : modA→ modB
and Gi : modB → modA such that

• GiFi(Mi) ∼= Mi for all i ∈ I,

• all Gi are left exact, with right derived functor R1Gi,

• K1 dimk Fi(Mi) ≤ dimLGiFi(Mi) for all i ∈ I,

• dimLGi(X) ≤ K2 dimkX for all X ∈ modB and i ∈ I,

• dimLR
1Gi(X) ≤ K4 dimkX for all X ∈ modB and i ∈ I,

then {Fi(Mi) : i ∈ I} is not weakly hyperfinite.

Proof. Consider the family N = {Fi(Mi) : i ∈ I} in modB. Assume that it is weakly
hyperfinite. Towards a contradiction we want to show that {GiFi(Mi) : i ∈ I} is also
weakly hyperfinite. For any ε̃, we can find some LNε̃ > 0 to exhibit the hyperfinite-
ness of the family N . Let M = Mi for some i ∈ I. Denote N = Fi(Mi). We can
find a homomorphism θ : P → N such that P = ⊕t

j=1 Pj with dimk Pj ≤ LNε̃ and
dimk ker θ ≤ ε̃ dimkN as well as dimk coker θ ≤ ε̃ dimkN . Since all Gi are additive, we
have that Gi(P ) = ⊕t

j=1Gi(Pj), and

dimLGi(Pj) ≤ K2 dimk Pj ≤ K2L
N
ε̃ .

Moreover, the sequences

ε′ : 0→ Gi(ker θ) G(α)−−−→ Gi(P ) G(β)−−−→ Gi(im θ) ε∗−→ R1Gi(ker θ),

η′ : 0→ Gi(im θ) G(γ)−−−→ Gi(N) G(δ)−−−→ Gi(coker θ) η∗−→ R1Gi(im θ),

113



6 Wild phenomena

are exact. We see that Gi(ker θ) = kerGi(θ), since Gi(im θ)→ Gi(N) is a monomorph-
ism, showing that

dimL kerG(θ) = dimLG(ker θ) ≤ K2 dimk ker θ ≤ K2ε̃ dimkN

= K2ε̃ dimk Fi(Mi) ≤
K2
K1

ε̃ dimLGi(N) = K2
K1

ε̃ dimLM.

Also,

dimL cokerGi(θ) = dimLGi(N)− dimL imGi(θ)
= dimLGi(N)− dimL imGi(γ) + dimL imGi(γ)

− dimL

(
Gi(γ) ◦Gi(β)

)
(Gi(P ))

= dimL cokerGi(γ) + dimLGi(im θ)− dimL imGi(β),

as Gi(im θ) → Gi(N) is a monomorphism. Now, by the exactness of of the sequences
ε′ and η′ above, we have

dimL cokerGi(θ) = dimLGi(N)− dimL kerGi(δ) + dimLGi(im θ)− dimL ker ε∗

= dimL imGi(δ) + dimL im ε∗ ≤ dimLGi(coker θ) + dimLR
1Gi(ker θ)

≤ K2 dimk coker θ +K4 dimk ker θ ≤ (K2 +K4)ε̃ dimkN

≤ K2 +K4
K1

ε̃ dimLGi(N) = K2 +K4
K1

ε̃ dimLM.

This shows that Gi(θ) : Gi(P )→ Gi(N) ∼= Gi
(
Fi(M)

) ∼= M fulfils

dimL kerGi(θ) ≤ ε dimLM, dimL cokerGi(θ) ≤ ε dimLM,

if we chose ε̃ = ε K1
K2+K4

, while Gi(P ) = ⊕t
j=1Gi(Pj) and dimLGi(Pj) ≤ K2L

N
ε̃ =: Lε.

But this is a contradiction, since by the hypothesis,M is not weakly hyperfinite. Thus
{Fi(Mi) : i ∈ I} cannot be weakly hyperfinite.

We next turn to the relation between dimension expanders and examples of non-
hyperfinite families and generalise this result to families which are not weakly hyper-
finite.

Proposition 6.40. Let k be a field, d ∈ N and η, α > 0. If {(Vi, {T (i)
l }dl=1)}i∈I is a

family of (η, α)-dimension quasi-expanders of degree d such that dimVi is unbounded,
then the induced family of kΘ(d)-modules

Mi = Vi
... Vi

T
(i)
1

T
(i)
d

is not weakly hyperfinite.
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Proof. Assume to the contrary that the induced familyM = {Mi : i ∈ I} was weakly
hyperfinite. Let ε > 0. Then there exists Lε > 0 such that for all M ∈ M there exists
θ : P → M such that dim ker θ ≤ ε dimM , dim coker θ ≤ ε dimM and P = ⊕s

j=1 Pj
where dimPj ≤ Lε. For some (α, η)-quasi dimension expander (V, {T`}) of degree d,
such that dimV ≥ 1

ηLε, consider

M = V
{T`}−−−→−−−→
...

V.

We have θj : Pj
ιj−→
⊕
Pj

θ−→M . Then

dim (θj(Pj)) (1) ≤ dim θj(Pj) ≤ dimPj ≤ Lε < η dimV,

and (θj(Pj)) (1) is a subspace of V . Moreover, θj(Pj) is a kΘ(d)-module. It follows
that

d∑
`=1

T`
((
θj(Pj)

)
(1)
)
⊆ (θj(Pj)) (2).

By the expander property, we hence have

dim (θj(Pj)) (2) ≥ dim
d∑
`=1

T` ((θj(Pj))(1)) ≥ (1 + α) dim (θj(Pj)) (1). (6.6)

As 0→ im θ →M → coker θ → 0 is exact, we have that

dim im θ = dimM − dim coker θ ≥ (1− ε) dimM = 2(1− ε) dimV.

Also,

dim im θ ≤
s∑
j=1

[
dim (θj(Pj)) (1) + dim (θj(Pj)) (2)

]
(6.6)
≤

s∑
j=1

[(
1 + 1

1 + α

)
dim (θj(Pj)) (2)

]
=
(

1 + 1
1 + α

) s∑
j=1

dim (θj(Pj)) (2).

Next, note that

0→ ker θ(2) ↪→

 s⊕
j=1

Pj

 (2) ( θ1(2) ... θs(2) )−−−−−−−−−−→ V

is exact, showing that

dim
s⊕
j=1

Pj(2) ≤ dim ker θ(2) + dimV.

We have that 0→ ker θj → Pj → θj(Pj)→ 0 is exact, so

dim θj(Pj) = dimPj − dim ker θj ≤ dimPj ,
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with the analogue statement holding for each vertex. Henceforth,

2(1− ε) dimV ≤ dim im θ ≤
(

1 + 1
1 + α

) s∑
j=1

dim θj(Pj)(2)

≤
(

1 + 1
1 + α

) s∑
j=1

dimPj(2) ≤
(

1 + 1
1 + α

)
(dimV + dim ker θ(2))

≤
(2 + α

1 + α

)
(1 + 2ε) dimV

⇔ 2− 2ε ≤
(2 + α

1 + α

)
(1 + 2ε)⇔ 2−

(2 + α

1 + α

)
(1 + 2ε) ≤ 2ε

⇔ ε ≥ 2 + 2α− (2 + α)(1 + 2ε)
2(1 + α) = α− 4ε− 2εα

2(1 + α)

⇔ α

2(1 + α) ≤ ε+ 2ε+ εα

1 + α
= ε

(
1 + 2 + α

1 + α

)
= ε

(1 + α+ 2 + α

1 + α

)
⇔ ε ≥ α

2(1 + α)
1 + α

3 + 2α = α

6 + 4α > 0,

contradicting the weak hyperfiniteness ofM.

Corollary 6.41. Let k be any field. Then there exists some d ≥ 3 such that kΘ(d) is
not of weak amenable representation type.

Remark. It follows from the last two results that all strictly wild finite dimensional
k-algebras are not even weakly amenable: We modify the proof of Theorem 6.30 by
using Propositions 6.39 and 6.40 instead of Propositions 6.15 and 6.3.
Now we recall yet a different notion of wildness, extending strict wildness, originally

due to Ringel [Rin02].

Definition 6.42. [Han01, Definition 2.1; GP16, Section 4] An algebra A is controlled
wild and controlled by C provided there exist a faithful exact functor

F : mod k〈x, y〉 → modA,

and a full subcategory C of modA which is closed under direct sums and direct sum-
mands such that for any X and Y in mod k〈x, y〉,

HomA

(
F (X), F (Y )

)
= F

(
Homk〈x,y〉(X,Y )

)
⊕HomA(F (X), F (Y ))C ,

and
HomA(F (X), F (Y ))C ⊆ rad HomA(F (X), F (Y )).

What is more, we say that A is finitely controlled wild if it is controlled by add(C)
for some C ∈ modA.

Here, HomA(X,Y )C denotes the set of those A-homomorphisms X → Y factoring
through C.
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6 Wild phenomena

Remark. Strictly wild algebras are controlled wild and controlled by add(0). Further,
all wild algebras with radical square zero (see [Han01, Theorem 4.2]) and all wild local
algebras (see [Han01, Theorem 4.4]) are finitely controlled wild.
It has been asked in [Rin02, Problem 10] whether all wild algebras are controlled

wild. This result was announced by Y. Drozd in 2007 (even for finitely controlled), but
has not yet been published.
We now conclude this chapter by showing that finitely controlled wild algebras are

not weakly amenable.

Theorem 6.43. Let k = k̄ be an algebraically closed field and let A be a finite di-
mensional k-algebra. If A is finitely controlled wild, then A is not of weakly amenable
representation type.

Proof. Let d be as in Corollary 6.41. Since A is finitely controlled wild, by [Han01,
Lemma 2.4] there is a faithful and exact functor F : mod kΘ(d) → modA, which
is a finitely controlled representation embedding in the sense of [GP16, Section 4]
controlled by a full subcategory C = add(C) for some C ∈ modA. Then by [GP16,
Theorem 4.2], there is a functor G : modA → mod kΘ(d) such that (G ◦ F )(M) ∼= M
for all M ∈ mod kΘ(d). Let us denote by K = kΘ(d)kΘ(d) the Kronecker algebra as a
left module over itself. Now, the functor G is given on the objects by

G(X) = HomA(F (K), X)�HomA(F (K), X)C .

We can find a C-preenvelope of F (K),

∆: F (K)→ CF (K) ∼= Cn,

where n = dimk HomA (F (K), C), and we have

Hom(∆,−) : HomA(Cn,−)→ HomA(F (K),−), f 7→ f ◦∆.

We note that HomA(∆, C ′) is surjective for each C ′ ∈ C and that every morphism in
the image factors through C. It follows that G is the cokernel functor of HomA(∆,−),
and for all X ∈ modA we have that

0→ HomA(F (K), X)C = im HomA(∆, X) ↪→HomA(F (K), X)�G(X)→ 0. (6.7)

Assume that modA was weakly hyperfinite. Then, for every ε̃ > 0, there exists
LmodA
ε̃ > 0 fulfilling the usual conditions. Hence, given M ∈ mod kΘ(d), we can

find ϑ : N → F (M) in modA such that N ∼=
⊕s
i=1Ni, with dimNi ≤ LmodA

ε̃ and
kerϑ, cokerϑ ≤ ε̃ dimF (M). We shall also consider the exact sequences

ε : 0→ kerϑ α−→ N
β−→ imϑ→ 0,

η : 0→ imϑ
γ−→M

δ−→ cokerϑ→ 0.

Connecting two sequences of type (6.7) by b = Hom(F (K), ϑ), via an application of
the Snake Lemma, we get the following commutative diagram.
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6 Wild phenomena

0 ker a ker b kerG(ϑ)

0 im(∆, N) (F (K), N) G(N) 0

0 im(∆, F (M)) (F (K), F (M)) G(F (M)) 0

coker a coker b cokerG(ϑ) 0.

f

a

g

b G(ϑ)
f ′ g′

d

We want to find bounds on dim kerG(ϑ) and dim cokerG(ϑ). We do have that

dim kerG(ϑ) = dim ker d+ dim im d ≤ dim ker b+ dim coker a, and
dim cokerG(ϑ) ≤ dim coker b.

If ϕ ∈ ker b, then ϕ : F (K)→ N is such that ϑ◦ϕ = 0 as a map F (K)→ F (M), and
by the universal property of the kernel, we have that there is a unique ϕ′ : F (K)→ kerϕ
such that Kerϕ ◦ ϕ′ = ϕ, showing that Hom(F (K), kerϕ)� ker b, hence

dim ker b ≤ dim Hom (F (K), kerϕ) .

Since im b ⊆ im Hom(F (K), γ), coker b has as submodule im Hom(F (K), γ)/ im b. As
a vector space, the quotient by this submodule is

Hom(F (K), F (M))/im b�im Hom(F (K), γ)/im b
∼= Hom(F (K), F (M))/im Hom(F (K), γ)

= coker HomA(F (K), γ).

It now follows that

dim quotient = dim(F (K), F (M))− dim im(F (K), γ)
= dim(F (K), F (M))− dim ker(F (K), δ)
= dim im(F (K), δ) ≤ dim HomA(F (K), cokerϑ),

using the left exactness of HomA(F (K),−). On the other hand, as we recall that
ε∗ : (F (K), imϑ)→ 1(F (K), kerϑ),

dim submodule = dim im(F (K), γ)− dim im b

= dim im(F (K), γ)− dim im
(
(F (K), γ) ◦ (F (K), β)

)
= dim(F (K), imϑ)− dim im(F (K), β) = dim(F (K), imϑ)− dim ker ε∗

= dim im ε∗ ≤ dim Ext1
A(F (K), kerϑ),

as Hom(F (K), γ) is a monomorphism. Combining these two inequalities shows that

dim coker b ≤ dim HomA(F (K), cokerϑ) + dim Ext1
A(F (K), kerϑ).
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6 Wild phenomena

We are left to deal with coker a. Here, we consider yet another diagram with exact
rows which we complete again by an application of the Snake Lemma.

0 kerσ ker τ ker a

0 ker(∆, N) (Cn, N) im(∆, N) 0

0 ker(∆, F (M)) (Cn, F (M)) im(∆, F (M)) 0

cokerσ coker τ coker a 0.

σ τ = (Cn, ϑ) a

As above, dim coker a ≤ dim coker τ . As τ = HomA(Cn, ϑ), we follow the same line of
argument as before to show that

dim coker τ ≤ dim HomA(Cn, cokerϑ) + dim Ext1
A(Cn, kerϑ).

Now consider that given X ∈ modA, there are m ∈ N and YX = ker(Am�X) such
that 0→ YX → Am → X → 0 is exact. Applying HomA(−, kerϑ) then gives the exact
sequence

0→ (X, kerϑ)→ (Am, kerϑ)→ (YX , kerϑ)→ 1(X, kerϑ)→ 0,

from which we deduce that

dim Ext1
A(X, kerϑ) = dim HomA(X, kerϑ) + dim HomA(YX , kerϑ)

−mdim HomA(A, kerϑ)
≤ (dimX + dim YX) dim kerϑ.

All in all, it follows that

dim cokerG(ϑ) ≤ dim coker b ≤ dim HomA(F (K), cokerϑ) + dim Ext1
A(F (K), kerϑ)

≤ dimF (K)ε̃ dimF (M) +
(
dimYF (K) + dimF (K)

)
ε̃ dimF (M)

≤ dimF (K)
(
2 dimF (K) + dim YF (K)

)
ε̃ dimM.

On the other hand,

dim kerG(ϑ) ≤ ker b+ dim coker a
≤ dim HomA(F (K), kerϑ) + dim HomA(Cn, cokerϑ)

+ dim Ext1
A(Cn, kerϑ)

≤ (dimF (K) + 2n dimC + dim YCn) ε̃ dimF (M)

≤ dimF (K)
(
dimF (K) + 2 dimF (K)(dimC)2 + dim YCn

)
ε̃ dimM.
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6 Wild phenomena

To conclude the proof, we now choose

ε̃ = ε
(
dimF (K) ·

(
dimF (K) + 2 dimF (K)(dimC)2 + dim YF (K) + dim YCn

))−1

and put Lε = dimF (K)LmodA
ε̃ . Note that ε̃ depends only on properties of A and its

controlled wildness. Then we have

G(ϑ) : G(N)→ G(F (M)) ∼= M,

such that G(N) ∼=
⊕s

i=1G(Ni) by the addivity of G, with

dimkG(Ni) ≤ dimk HomA(F (K), Ni)− dimk HomA(F (K), Ni)C
≤ dimk F (K) dimkNi ≤ Lε,

and
dimk kerG(ϑ), dimk cokerG(ϑ) ≤ ε dimkM.

This shows that mod kΘ(d) is weakly hyperfinite, a contradiction to Corollary 6.41.
Hence, modA cannot be weakly hyperfinite, so A is not of weakly amenable represent-
ation type.

Corollary 6.44. Let k = k̄ be an algebraically closed field and let A be a finite dimen-
sional k-algebra. If A is finitely controlled wild, then A is not of amenable representa-
tion type.

Proof. Apply Proposition 6.37 and Theorem 6.43.
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Further research suggestions and outlook
Self-duality. Elek [Ele17] introduced the notion of hyperfiniteness and amenability
for finite dimensional algebras and we worked with a conjecture based on these notions
in this thesis. Yet, the notions itself elicit further studies. It is a natural question to
ask whether the notion is self-dual, that is, if we can we check that a family M of
modules is hyperfinite by providing quotient modules nearly the same size instead of
submodules. To formalise this, we have the following.
Question. Given a family M of A-modules such that for every ε > 0, there exists Lε
such that for every M ∈M there exists a quotient module M�P such that

dimk P ≥ (1− ε) dimkM,

and modules P1, . . . , Pt ∈ modA, with dimk Pi ≤ Lε, such that P ∼=
⊕t

i=1 Pi, is M
hyperfinite?
We did not succeed in proving this. What is more, preserving such a notion in the

spirit of Proposition 1.5 would require right-exact functors instead of left-exact func-
tors. Even our weak notion need not be self-dual: It asks for a morphism θ : N →M
but no morphism with domain M . Moreover, preserving weak hyperfiniteness by Pro-
position 6.38 is not symmetric in this matter: We only require a condition on the right
derived functor but not on the left derived functor.

Generalisations A further direction of study would be to generalise the notion of hy-
perfiniteness. Elek ibid. gives a version for countable dimensional algebras by requiring
that the “subobjects” are only nearly submodules, that is, are closed under the action
of s generators, where s =

⌈
1
ε

⌉
is the integral part of the reciprocal of ε.

Instead of module categories of finite dimensional algebras, it also seems plausible
to also apply the notion to Abelian length categories. Here, the manifest adaptation
is to replace the k-dimension of a module by the length of an object. In this way, for
module categories of finite dimensional algebras, we would recover the original notion.

A more interesting problem is to adapt the notions to triangulated categories. Yet,
it is unclear what should replace the dimension and what notion of length could be
used.
Question. How should the notion of hyperfinite families of modules be generalised to
objects of a triangulated category?
Such a generalisation would enable us to ask whether the (bounded) derived category
of a tame (hereditary) algebra is of amenable type—in a suitable sense. This further
allows to discuss the question if amenability is preserved under derived equivalences.
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Outlook

Amenability and classification results As Elek has formulated his conjecture of equi-
valence of amenable and tame representation type in full generality, a search for
strategies to prove the positive part without the need of working along known classific-
ations of tame algebras is desirable. Possibly methods from the proof of the tame–wild
dichotomy for algebraically closed fields can be used here. Given a non-hyperfinite
familyM, a different approach is the construction of a functor with essential image in
M that exhibits wildness.

On the other hand, if one is willing to continue with classes of algebras where a
classification of modules is known or within reach, we would like to further understand
the (sub)module structure of tubular (canonical) algebras and prove that they are of
amenable representation type. Existing strategies from [DMM14a] might be adapted
to see how to lift hyperfiniteness from integral slope to arbitrary slope.
Similarly, following [Rin90; Len96; LP99; Kus00], one can define canonical and tu-

bular canonical algebras for non-algebraically closed fields. It would be interesting to
see whether hyperfiniteness results hold there as well.

We also recall that the amenability of special biserial algebra can be proved by
adapting Elek’s proof for string algebras mutatis mutandis.

Theorem. Let A be a special biserial algebra. Then A is of amenable representation
type.

It is therefore natural to ask if positive results for amenability extend for instance to
clannish algebras.

Understanding submodule lattices Related to checking for amenability is under-
standing the submodule lattices of indecomposable modules. Unfortunately, this readily
becomes a wild problem. Yet, as was the case for the motivating question of this thesis,
partial results can also be of interest.
Related notions include the Gabriel–Roiter measure and Gabriel–Roiter inclusions.

In particular, we would like to study connection to the following results from Ringel
[Rin10]. Here, let p and q be the maximal lengths of an indecomposable projective
respectively indecomposable injective module.

Corollary. Let X → Y be a Gabriel–Roiter inclusion. Then |Y | ≤ pq|X|.

Corollary. Let M be an indecomposable module and 1 ≤ a < |M | a natural number.
Then there exists an indecomposable submodule M ′ of M with length in the interval
[a+ 1, pqa].

Corollary. Let M be an indecomposable module and assume that all indecomposable
proper submodules of M are of length at most b. Then |M | ≤ pqb.

Question. Is there a connection between a hyperfinite familyN andN -critical modules?
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Outlook

Limits of hyperfinite families Infinite dimensional modules may appear as limits of
unbounded hyperfinite families. Given a hyperfinite familyM such that the dimension
of the modules M ∈ M is not bounded (otherwise hyperfiniteness would be trivial),
we can ask about the limit of this family in the sense of Elek [Ele16, Section 2; Ele17,
Section 1]. We expect that this limit is an infinite dimensional module.
Question. What are the limits of the families of preprojective, postinjective or regular
(indecomposable) modules for a tame hereditary algebra? Is it plausible to assume that
Prüfer, adic or generic modules appear here?
We would also like to study a possible connection to [Ele17, Theorem 2].

Dimension expanders and stability Appearing in the latter half of this thesis, dimen-
sion expanders play an important role. Their role in connecting expander results for
graphs and representation theory of finite dimensional algebras is an interesting topic
to study.
Question. How can dimension expanders be used to define a notion of stability for
modules? Can such a notion be used to study modules over algebras of wild type?

Consider the Kronecker algebra

kΘ(3) = k
(
1→→→ 2

)
.

Let us define a character θ : Z2 → R, x 7→ x2 − x1, a slope µ : Z2 → R, x 7→ θ(x)/x1 + x2,
and say that a moduleM is (µ, β)-stable provided µ(dim M) = 0 and for all submodules
0 6= N ⊆ M with dimN ≤ 1

2 dimM , we have µ(dim N) > β. Note that dimension
expanders give modules with this property. Now, a family of (µ, β)-stable modules with
β < 1 is an example of a family of non-hyperfinite modules.
Question. How can this notion of (µ, β)-stability be modified to also apply to further
wild algebras?
Changing perspective, this might suggest that expander graphs give certain families

of modules for wild Kronecker quivers. It should be investigated whether there are other
combinatorial structures that give similar families for more complicated wild algebras.

Further notions Elek’s paper [Ele17] has served as a starting point of this thesis. Yet
it contains further, interesting notions. For instance, two modules M and N are said
to be ε-close provided there are submodules P ⊆M and Q ⊆ N with P ∼= Q such that
dimP ≥ (1− ε) dimM and dimQ ≥ (1− ε) dimN . This can be understood as a way
to “approximate” modules.
Question. Which properties of modules are be preserved by being ε-close?
Additionally, one may want to apply this notion to the study of persistence modules

in topological data analysis and persistence homology.
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Index

Ãn(ε, δ), 25
A[E], see one-point extension
A[Ei,Li]si=1, see tubular extension
E�l, 63
J , 18
K0(A), see Grothendieck group
M(µ, l, ξ), 63
Pγ , 50
Qγ , 50
R1G, 113
Tγ , 50
Θ(2), see Kronecker quiver
Θ(m), see Kronecker quiver
Xm, 65
Ym, 65
〈−,−〉, see Euler form
c, see Coxeter transformation
∂, see defect
dQ, see defect number
degM , see degree
hA, see minimal positive radical element
hQ, see minimal radical vector
q, see Tits form
qA, see Tits form
r, 107
τ , see Auslander–Reiten translation

algebra
canonical, 51
concealed, 44
cotubular, 48
hereditary, 22
tame concealed, 44
tame hereditary, 23
classification of, 27

tensor, 25
tilted, 43
tubular, 48
structure of module category, 50

tubular canonical, 52
Auslander–Reiten translation, 23

branch, 45

category
perpendicular, 12, 38

Coxeter transformation, 11, 23

defect
for A, 24
for a quiver, 11

defect number, 11
degree of M , 53
diagram

Dynkin
types A, D, E, 8

extended Dynkin
types Ã, D̃, Ẽ, 9
types Ã–G̃, 26

valued, 23

Euler form
of A, 22
of a quiver, 11

expander
dimension, 91
dimension quasi-, 91

fragmentability, 83

Grothendieck group, 22
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hyperfiniteness preserving functor, 6

index
of M , 54
of x, 49

Kazhdan constant, 93
Kronecker quiver, 15

representations of, 16
wild, 85

length
of a branch, 45
regular, 24

minimal positive radical element, 24
minimal radical vector, 11
module

homogeneous, 24
postinjective, 11
preprojective, 11
ray, 46
regular, 11
regular simple, 24, 39
tilting, 43

mouth of a tube, 25

one-point extension, 46

path
in a quiver, 7
sectional, 46

property (τ), 95
property (T ), 93

quiver, 7
Auslander–Reiten, 35
coefficient, 84
representation of a, 7
translation, 35

rank
of A, 22
of M , 53

of a tube, 25
regular socle, 24
representation type

amenable, 3
weakly, 111

finite, 8
tame, 8

sequence
almost split, 35
Auslander–Reiten, 35

slope of M , 54

Tits form
of A, 22
of a quiver, 11

tube, 24
exceptional, 11, 25
inhomogeneous, 11, 25
stable, 25

tubular extension, 46
tubular family

separating, 25
type

extension, 47
of a canonical algebra, 51
tubular, 11, 47
tubular - of A, 25

wild
finitely controlled, 116
fully, 102
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hereditary, 102
strictly, 102
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gap code

Let us record here some gap code used to better understand examples for tubular
canonical algebras and ways to construct submodules showing hyperfiniteness. We will
reproduce the code only for the algebra of type (3, 3, 3), but the other types are similar.

We start by constructing the tubular canonical algebra B of type p = (3, 3, 3) with
λ = 1 as well as the underlying tame hereditary algebra A of type Ẽ6. Also, we
construct functions useful to work with these algebras.

LoadPackage("qpa");;
k := Rationals;;

Q := Quiver(7, [ [1,2,"a2"], [2,7,"a1"], [3,4,"b2"], [4,7,"b1"],
[5,6,"c2"], [6,7,"c1"] ]);↪→

A := PathAlgebra(k,Q);

pp := [3,3,3];
t := 3;
lambda := [];
lambda[3] := One(k);
p := Lcm(pp);

B := CanonicalAlgebra(k,pp,One(k)*[1]);
QB := QuiverOfPathAlgebra(B);

vertices := VerticesOfQuiver(QB);
vertices0 := ShallowCopy(vertices);;
Remove(vertices0,1);;

verticesoo := ShallowCopy(vertices);;
Remove(verticesoo,Size(vertices));;

Q0 := FullSubquiver(QB,vertices0);
h0 := [0,1,2,1,2,1,2,3];

Qoo := FullSubquiver(QB,verticesoo);
hoo := [3,2,1,2,1,2,1,0];
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gap code

verticesKronecker := vertices{[1,Size(vertices)]};
QKronecker := Quiver(List(verticesKronecker,String),[

["v","w","arm1"], ["v","w","arm2"] ]);↪→

C := PathAlgebra(k,QKronecker);

projA := IndecProjectiveModules(A);
AModule := DirectSumOfQPAModules(projA{[1..7]});
injA := IndecInjectiveModules(A);
simplesA := SimpleModules(A);

projB := IndecProjectiveModules(B);
BModule := DirectSumOfQPAModules(projB{[1..8]});
injB := IndecInjectiveModules(B);
simplesB := SimpleModules(B);

# functions for lists and lists of modules
PositionMaximum := function(list)

return Position(list,MaximumList(list));
end;

ModuleOfMaximalDimension := function(list)
return list[PositionMaximum(List(list,x->Dimension(x)))];

end;

maximalDimension := function(list)
return MaximumList(List(list,x->Dimension(x)));

end;

# general functions for Artinian algebras resp. hereditary path
algebras of quivers↪→

tau := function(M)
return DTr(M);

end;

tauinverse := function(M)
return TrD(M);

end;

middleTerm := function(M)
return Range(AlmostSplitSequence(M,"l")[1]);

end;
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EulerForm := function(x,y,algebra)
return x*TransposedMat(CartanMatrix(algebra)^-1)*y;

end;

defectOf := function(x,algebra,minRadicalVector)
return EulerBilinearFormOfAlgebra(algebra)(minRadicalVector,x);

end;

ModuleExtensions := function(M,N)
local i,ext,list;
ext := ExtOverAlgebra(M,N);
list := [];;
for i in [1..Size(ext[2])] do

Add(list,Range(PushOut(ext[1], ext[2][i])[1]));
od;
return list;

end;

getAuslanderReitenMiddleTerms := function(M)
return BlockDecompositionOfModule( Range( AlmostSplitSequence(

M )[1] ) );↪→

end;

DualOfTransposeOfModuleHomomorphism := function(h)
return

DualOfModuleHomomorphism(TransposeOfModuleHomomorphism(h));↪→

end;

TransposeOfDualOfModuleHomomorphism := function(h)
return

TransposeOfModuleHomomorphism(DualOfModuleHomomorphism(h));↪→

end;

# functions for nicely constructed tubular canonical algebra B

index := function(x)
local bf;
bf := EulerBilinearFormOfAlgebra(B);
if (bf(h0,x) <> 0 and bf(hoo,x) = 0) then

return "oo";
elif (bf(h0,x) = 0 and bf(hoo,x) = 0) then

return false;
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gap code

else
return -bf(h0,x)/bf(hoo,x);

fi;
end;

rank := function(x)
return x[8]-x[1];

end;

degree := function(x)
local sum;
sum := 0;
sum := sum + p/3 * (x[2]+x[3]);
sum := sum + p/3 * (x[4]+x[5]);
sum := sum + p/3 * (x[6]+x[7]);
sum := sum - p*x[1];
return sum;

end;

slope := function(x)
if (rank(x) <> 0) then

return degree(x)/rank(x);
else

return "oo";
fi;

end;

slopeOfModule := function(M)
return slope(DimensionVector(M));

end;

i0LinearForm := function(x)
return EulerBilinearFormOfAlgebra(B)(h0,x);

end;

iooLinearForm := function(x)
return EulerBilinearFormOfAlgebra(B)(hoo,x);

end;

indexOfModule := function(M)
return index(DimensionVector(M));

end;
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keyArmElementToVertex := function(i,j)
if (j = 0) then

return Sum(pp-1)+2;
elif (j = pp[i]) then

return 1;
else

return 1+Sum(pp{[1..i]}-1)-(j-1);
fi;

end;

keyArmElementToMatrix := function(i,j)
return Sum(pp{[1..i]})-(j-1);

end;

# restrictions and inductions

restriction := function(M)
local N,mats,newmats,dim,arrow;
mats := MatricesOfPathAlgebraModule(M);
newmats := [];
arrow:=1;
if IsZero(mats[2]) = false then

newmats[arrow] := ["a2",mats[2]];
arrow:=arrow+1;

fi;
if IsZero(mats[3]) = false then

newmats[arrow] := ["a1",mats[3]];
arrow:=arrow+1;

fi;
if IsZero(mats[5]) = false then

newmats[arrow] := ["b2",mats[5]];
arrow:=arrow+1;

fi;
if IsZero(mats[6]) = false then

newmats[arrow] := ["b1",mats[6]];
arrow:=arrow+1;

fi;
if IsZero(mats[8]) = false then

newmats[arrow] := ["c2",mats[8]];
arrow:=arrow+1;

fi;
if IsZero(mats[9]) = false then

newmats[arrow] := ["c1",mats[9]];

137



gap code

arrow:=arrow+1;
fi;
dim := ShallowCopy(DimensionVector(M));
Remove(dim,1);;
N:= RightModuleOverPathAlgebra(A,dim,newmats);
return N;

end;

restrictionToKronecker := function(M)
local mats,newmats,dim,arrow;

mats := MatricesOfPathAlgebraModule(M);
newmats := [];
arrow:=1;
if IsZero(Product(mats{[1..3]})) = false then

newmats[arrow] := ["arm1",Product(mats{[1..3]})];
arrow:=arrow+1;

fi;
if IsZero(Product(mats{[7..9]})) = false then

newmats[arrow] := ["arm2",Product(mats{[7..9]})];
arrow:=arrow+1;

fi;
dim := DimensionVector(M){[1,Size(vertices)]};
return RightModuleOverPathAlgebra(C,dim,newmats);

end;

# now finally create preprojective and postinjective modules for A and
B as well as the semi-regular tubes for B↪→

PPA := [];;
PPB := [];;
PIA := [];;
PIB := [];;
PPA[1] := projA;;
PPB[1] := projB;;
PIA[1] := injA;;
PIB[1] := injB;;
for m in [2..8] do

PPA[m] := [];;
PPB[m] := [];;
PIA[m] := [];;
PIB[m] := [];;
for i in [1..Size(VerticesOfPathAlgebra(B))] do

PPB[m][i] := tauinverse(PPB[m-1][i]);
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PIB[m][i] := tau(PIB[m-1][i]);
od;
for i in [1..Size(VerticesOfPathAlgebra(A))] do

PPA[m][i] := tauinverse(PPA[m-1][i]);
PIA[m][i] := tau(PIA[m-1][i]);

od;
od;

PAlpha := [];
PAlpha[1] := projB[1];
for m in [2..15] do

PAlpha[m] := tauinverse(PAlpha[m-1]);
od;

IOmega := [];
IOmega[1] := injB[8];
for m in [2..10] do

IOmega[m] := tau(IOmega[m-1]);
od;

coordinateModule := restriction(PAlpha[1]);

We now need some functions to load the adjacency matrix of basis vectors as output
from Maple and construct the module over the algebra B from it. We use the Maple
package containing the procedures for generating bimodules parametrising all homo-
geneous modules (of integral slopes) over tubular canonical algebras, constructed in
[DMM14b], as well as a package containing the procedures for construction of modules
from exceptional tubes over tubular canonical algebras, implementing the algorithms
from [DMM10]. Both are available on A. Mróz’ homepage. The import process relies
on two template files to format and output the dimension vectors and matrices from
Maple.

outputIntSlopeModule.tpl
read "Homogen.src":
with(Homogen):
initialize(3, 3, 3):
B := BimodIntSlope(n):
M := specBimod(B, xi, h):
bD := [ColumnDimension(M[1, 3]), ColumnDimension(M[1, 2]),

ColumnDimension(M[2, 2]), ColumnDimension(M[3, 2]),
ColumnDimension(M[1, 1]), ColumnDimension(M[2, 1]),
ColumnDimension(M[3, 1]), RowDimension(M[1, 1])]:

↪→

↪→

↪→

basisToVertex := convert([seq(Vector(bD[i],i),i=1..8)],Vector):
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adjacencyMatrix := Matrix([[Matrix(bD[1], bD[1], 0), Matrix(bD[1],
bD[2], 0), Matrix(bD[1], bD[3], 0), Matrix(bD[1], bD[4], 0),
Matrix(bD[1], bD[5], 0), Matrix(bD[1], bD[6], 0), Matrix(bD[1],
bD[7], 0), Matrix(bD[1], bD[8], 0)], [M[1, 3], Matrix(bD[2],
bD[2], 0), Matrix(bD[2], bD[3], 0), Matrix(bD[2], bD[4], 0),
Matrix(bD[2], bD[5], 0), Matrix(bD[2], bD[6], 0), Matrix(bD[2],
bD[7], 0), Matrix(bD[2], bD[8], 0)], [M[2, 3], Matrix(bD[3],
bD[2], 0), Matrix(bD[3], bD[3], 0), Matrix(bD[3], bD[4], 0),
Matrix(bD[3], bD[5], 0), Matrix(bD[3], bD[6], 0), Matrix(bD[3],
bD[7], 0), Matrix(bD[3], bD[8], 0)], [M[3, 3], Matrix(bD[4],
bD[2], 0), Matrix(bD[4], bD[3], 0), Matrix(bD[4], bD[4], 0),
Matrix(bD[4], bD[5], 0), Matrix(bD[4], bD[6], 0), Matrix(bD[4],
bD[7], 0), Matrix(bD[4], bD[8], 0)], [Matrix(bD[5], bD[1], 0),
M[1, 2], Matrix(bD[5], bD[3], 0), Matrix(bD[5], bD[4], 0),
Matrix(bD[5], bD[5], 0), Matrix(bD[5], bD[6], 0), Matrix(bD[5],
bD[7], 0), Matrix(bD[5], bD[8], 0)], [Matrix(bD[6], bD[1], 0),
Matrix(bD[6], bD[2], 0), M[2, 2], Matrix(bD[6], bD[4], 0),
Matrix(bD[6], bD[5], 0), Matrix(bD[6], bD[6], 0), Matrix(bD[6],
bD[7], 0), Matrix(bD[6], bD[8], 0)], [Matrix(bD[7], bD[1], 0),
Matrix(bD[7], bD[2], 0), Matrix(bD[7], bD[3], 0), M[3, 2],
Matrix(bD[7], bD[5], 0), Matrix(bD[7], bD[6], 0), Matrix(bD[7],
bD[7], 0), Matrix(bD[7], bD[8], 0)], [Matrix(bD[8], bD[1], 0),
Matrix(bD[8], bD[2], 0), Matrix(bD[8], bD[3], 0), Matrix(bD[8],
bD[4], 0), M[1, 1], M[2, 1], M[3, 1], Matrix(bD[8], bD[8], 0)]]):

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

ExportMatrix("homAdjMat.tsv",adjacencyMatrix):
bD;

outputExcRegModule.tpl
read "exceptional.src":
with(exceptional):
initialize(3, 3, 3):
M := getMod([n,t,s,h]):
bD := [ColumnDimension(M[1, 3]), ColumnDimension(M[1, 2]),

ColumnDimension(M[2, 2]), ColumnDimension(M[3, 2]),
ColumnDimension(M[1, 1]), ColumnDimension(M[2, 1]),
ColumnDimension(M[3, 1]), RowDimension(M[1, 1])]:

↪→

↪→

↪→
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adjacencyMatrix := Matrix([[Matrix(bD[1], bD[1], 0), Matrix(bD[1],
bD[2], 0), Matrix(bD[1], bD[3], 0), Matrix(bD[1], bD[4], 0),
Matrix(bD[1], bD[5], 0), Matrix(bD[1], bD[6], 0), Matrix(bD[1],
bD[7], 0), Matrix(bD[1], bD[8], 0)], [M[1, 3], Matrix(bD[2],
bD[2], 0), Matrix(bD[2], bD[3], 0), Matrix(bD[2], bD[4], 0),
Matrix(bD[2], bD[5], 0), Matrix(bD[2], bD[6], 0), Matrix(bD[2],
bD[7], 0), Matrix(bD[2], bD[8], 0)], [M[2, 3], Matrix(bD[3],
bD[2], 0), Matrix(bD[3], bD[3], 0), Matrix(bD[3], bD[4], 0),
Matrix(bD[3], bD[5], 0), Matrix(bD[3], bD[6], 0), Matrix(bD[3],
bD[7], 0), Matrix(bD[3], bD[8], 0)], [M[3, 3], Matrix(bD[4],
bD[2], 0), Matrix(bD[4], bD[3], 0), Matrix(bD[4], bD[4], 0),
Matrix(bD[4], bD[5], 0), Matrix(bD[4], bD[6], 0), Matrix(bD[4],
bD[7], 0), Matrix(bD[4], bD[8], 0)], [Matrix(bD[5], bD[1], 0),
M[1, 2], Matrix(bD[5], bD[3], 0), Matrix(bD[5], bD[4], 0),
Matrix(bD[5], bD[5], 0), Matrix(bD[5], bD[6], 0), Matrix(bD[5],
bD[7], 0), Matrix(bD[5], bD[8], 0)], [Matrix(bD[6], bD[1], 0),
Matrix(bD[6], bD[2], 0), M[2, 2], Matrix(bD[6], bD[4], 0),
Matrix(bD[6], bD[5], 0), Matrix(bD[6], bD[6], 0), Matrix(bD[6],
bD[7], 0), Matrix(bD[6], bD[8], 0)], [Matrix(bD[7], bD[1], 0),
Matrix(bD[7], bD[2], 0), Matrix(bD[7], bD[3], 0), M[3, 2],
Matrix(bD[7], bD[5], 0), Matrix(bD[7], bD[6], 0), Matrix(bD[7],
bD[7], 0), Matrix(bD[7], bD[8], 0)], [Matrix(bD[8], bD[1], 0),
Matrix(bD[8], bD[2], 0), Matrix(bD[8], bD[3], 0), Matrix(bD[8],
bD[4], 0), M[1, 1], M[2, 1], M[3, 1], Matrix(bD[8], bD[8], 0)]]):

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

ExportMatrix("excAdjMat.tsv",adjacencyMatrix):
bD;

These two files are then used to generate the Maple files to be run by Maple, producing
a file containing the arrow matrices and returning a dimension vector.

mapleDir := GAPInfo.SystemEnvironment.PWD;;
path := Directory(mapleDir);;

importAdjMatFromMapleFile := function(mplFile, matFile)
## function requires the maple mpl file to give as output a dimension

vector and write the matrix into the file matFile↪→

local maple, dimVector, i, adjMatrix, j, record, name, str,
out;↪→

maple := Filename(DirectoriesSystemPrograms(),"maple");;
str := "";
out := OutputTextString(str, false);;
Process( path, maple, InputTextNone(), out, ["-q",mplFile] );;
CloseStream(out);
NormalizeWhitespace(str);;
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gap code

dimVector := EvalString(str);
adjMatrix := [];;
i:=1;;
for record in ReadCSV(matFile, true, "\t") do

adjMatrix[i] := [];;
j := 1;;
for name in RecNames(record) do

adjMatrix[i][j] := Int(record.(name));
j := j+1;;

od;
i := i+1;;

od;
return [adjMatrix, dimVector];

end;

constructModuleFromAdjMatrix := function(adjMat, dimVect)
local M, mats, startBasisOfVertex, totalDimension,

sortedDimVect;↪→

startBasisOfVertex := [];;
startBasisOfVertex[1] := 1;;
for i in [2..8] do

startBasisOfVertex[i] := startBasisOfVertex[i-1] +
dimVect[i-1];↪→

od;
totalDimension := Sum(dimVect);
mats := [];
mats[1] := ["a1", TransposedMat(adjMat{[startBasisOfVertex[2]. c

.startBasisOfVertex[3]-1]}{[startBasisOfVertex[1]..startBa c
sisOfVertex[2]-1]})];

↪→

↪→

mats[2] := ["a3", TransposedMat(adjMat{[startBasisOfVertex[3]. c
.startBasisOfVertex[4]-1]}{[startBasisOfVertex[1]..startBa c
sisOfVertex[2]-1]})];

↪→

↪→

mats[3] := ["a2", TransposedMat(adjMat{[startBasisOfVertex[4]. c
.startBasisOfVertex[5]-1]}{[startBasisOfVertex[1]..startBa c
sisOfVertex[2]-1]})];

↪→

↪→

mats[4] := ["a12", TransposedMat(adjMat{[startBasisOfVertex[5] c
..startBasisOfVertex[6]-1]}{[startBasisOfVertex[2]..startB c
asisOfVertex[3]-1]})];

↪→

↪→

mats[5] := ["a32", TransposedMat(adjMat{[startBasisOfVertex[6] c
..startBasisOfVertex[7]-1]}{[startBasisOfVertex[3]..startB c
asisOfVertex[4]-1]})];

↪→

↪→
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mats[6] := ["a22", TransposedMat(adjMat{[startBasisOfVertex[7] c
..startBasisOfVertex[8]-1]}{[startBasisOfVertex[4]..startB c
asisOfVertex[5]-1]})];

↪→

↪→

mats[7] := ["b1",
TransposedMat(adjMat{[startBasisOfVertex[8]..totalDimensio c
n]}{[startBasisOfVertex[5]..startBasisOfVertex[6]-1]})];

↪→

↪→

mats[8] := ["b3",
TransposedMat(adjMat{[startBasisOfVertex[8]..totalDimensio c
n]}{[startBasisOfVertex[6]..startBasisOfVertex[7]-1]})];

↪→

↪→

mats[9] := ["b2",
TransposedMat(adjMat{[startBasisOfVertex[8]..totalDimensio c
n]}{[startBasisOfVertex[7]..startBasisOfVertex[8]-1]})];

↪→

↪→

for i in [ 1 .. 9 ] do
if IsZero( mats[i][2] ) then

Unbind( mats[i] );
fi;

od;

sortedDimVect := [];
sortedDimVect[1] := dimVect[1];
sortedDimVect[2] := dimVect[2];
sortedDimVect[3] := dimVect[5];
sortedDimVect[4] := dimVect[4];
sortedDimVect[5] := dimVect[7];
sortedDimVect[6] := dimVect[3];
sortedDimVect[7] := dimVect[6];
sortedDimVect[8] := dimVect[8];
M := RightModuleOverPathAlgebra(B, sortedDimVect,

Compacted(mats));↪→

return M;
end;

constructTransModuleFromAdjMatrix := function(adjMat, dimVect)
local M, mats, startBasisOfVertex, totalDimension,

sortedDimVect;↪→

startBasisOfVertex := [];;
startBasisOfVertex[1] := 1;;
for i in [2..8] do

startBasisOfVertex[i] := startBasisOfVertex[i-1] +
dimVect[i-1];↪→

od;
totalDimension := Sum(dimVect);
mats := [];
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mats[1] := ["b1",
adjMat{[startBasisOfVertex[2]..startBasisOfVertex[3]-1]}{[ c
startBasisOfVertex[1]..startBasisOfVertex[2]-1]}];

↪→

↪→

mats[2] := ["b3",
adjMat{[startBasisOfVertex[3]..startBasisOfVertex[4]-1]}{[ c
startBasisOfVertex[1]..startBasisOfVertex[2]-1]}];

↪→

↪→

mats[3] := ["b2",
adjMat{[startBasisOfVertex[4]..startBasisOfVertex[5]-1]}{[ c
startBasisOfVertex[1]..startBasisOfVertex[2]-1]}];

↪→

↪→

mats[4] := ["a12",
adjMat{[startBasisOfVertex[5]..startBasisOfVertex[6]-1]}{[ c
startBasisOfVertex[2]..startBasisOfVertex[3]-1]}];

↪→

↪→

mats[5] := ["a32",
adjMat{[startBasisOfVertex[6]..startBasisOfVertex[7]-1]}{[ c
startBasisOfVertex[3]..startBasisOfVertex[4]-1]}];

↪→

↪→

mats[6] := ["a22",
adjMat{[startBasisOfVertex[7]..startBasisOfVertex[8]-1]}{[ c
startBasisOfVertex[4]..startBasisOfVertex[5]-1]}];

↪→

↪→

mats[7] := ["a1", adjMat{[startBasisOfVertex[8]..totalDimensio c
n]}{[startBasisOfVertex[5]..startBasisOfVertex[6]-1]}];↪→

mats[8] := ["a3", adjMat{[startBasisOfVertex[8]..totalDimensio c
n]}{[startBasisOfVertex[6]..startBasisOfVertex[7]-1]}];↪→

mats[9] := ["a2", adjMat{[startBasisOfVertex[8]..totalDimensio c
n]}{[startBasisOfVertex[7]..startBasisOfVertex[8]-1]}];↪→

for i in [ 1 .. 9 ] do
if IsZero( mats[i][2] ) then

Unbind( mats[i] );
fi;

od;
sortedDimVect := [];
sortedDimVect[8] := dimVect[1];
sortedDimVect[3] := dimVect[2];
sortedDimVect[2] := dimVect[5];
sortedDimVect[5] := dimVect[4];
sortedDimVect[4] := dimVect[7];
sortedDimVect[7] := dimVect[3];
sortedDimVect[6] := dimVect[6];
sortedDimVect[1] := dimVect[8];
M := RightModuleOverPathAlgebra(B, sortedDimVect,

Compacted(mats));↪→

return M;
end;
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gap code

constructIntSlopeModuleViaMaple := function(n, h, xi)
local mapleFile, matrixData, foo;
foo := false;

mapleFile := Filename(path,"outputIntSlopeModule.mpl");;
if (n <= 0) then

n := p-n;;
foo := true;;

fi;
PrintTo(mapleFile, "n:=", n, ":h:=", h, ":xi:=", xi, ":\n");;
Exec("cat 'outputIntSlopeModule.tpl' >>

'outputIntSlopeModule.mpl'");;↪→

matrixData :=
importAdjMatFromMapleFile("outputIntSlopeModule.mpl",
"homAdjMat.tsv");

↪→

↪→

if foo then
return constructTransModuleFromAdjMatrix(matrixData[1],

matrixData[2]);↪→

else
return constructModuleFromAdjMatrix(matrixData[1], matrixData[2]);

fi;
end;

constructExcRegModuleViaMaple := function(n, t, s, h)
local mapleFile, matrixData, foo;
foo := false;;

mapleFile := Filename(path,"outputExcRegModule.mpl");;
if (n <= 0) then

n := p-n;;

Note that the homogeneous modules for ξ = ∞ are constructed from those for ξ = 1
by replacing suitable arrow matrices.

fi;
PrintTo(mapleFile, "n:=", n ,":t:=", t, ":s:=", s, ":h:=", h,

":\n");;↪→

Exec("cat 'outputExcRegModule.tpl' >>
'outputExcRegModule.mpl'");;↪→

matrixData :=
importAdjMatFromMapleFile("outputExcRegModule.mpl",
"excAdjMat.tsv");

↪→

↪→

if foo then
return constructTransModuleFromAdjMatrix(matrixData[1],

matrixData[2]);↪→

else
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gap code

return constructModuleFromAdjMatrix(matrixData[1], matrixData[2]);
fi;

end;

replaceArrowMatrix := function(arrow, matrix, module)
local B, mats, newmats, i;
B := ActingAlgebra(module);
mats := MatricesOfPathAlgebraModule(module);
newmats := mats;
for i in [1..Size(mats)] do

if i = arrow then
newmats[i] := matrix;

else
newmats[i] := mats[i];

fi;
od;
return RightModuleOverPathAlgebra(B, newmats);

end;

constructIntSlopeModuleAtInfinity := function(n, h)
local tempModule, m, newMat;
tempModule := constructIntSlopeModuleViaMaple(n, h, 1);
if (n>=3) then

m := QuoInt(n, p)-1;
newMat :=

MutableCopyMat(MatricesOfPathAlgebraModule(tempModule)[3]);↪→

newMat{[h+1..2*h]}{[h*m+1..h*(m+1)]} := IdentityMat(h, k);
newMat{[h+1..2*h]}{[h*(2*m+1)+1..h*(2*m+2)]} := NullMat(h, h, k);
for i in [2..h] do

newMat[h+i][h*(2*m+1)+i-1] := 1;
od;

if RemInt(n, p) = 2 then
newMat{[h+1..2*h]}{[h*(2*m+2)+1..h*(2*m+3)]} := NullMat(h, h, k);
for i in [2..h] do

newMat[h+i][h*(2*m+2)+i-1] := 1;
od;

fi;
return replaceArrowMatrix(3, newMat, tempModule);

elif (n < 0) then
m := QuoInt(-n, p);

newMat := MutableCopyMat(MatricesOfPathAlgebraModule(tempMod c
ule)[1]);↪→
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gap code

newMat{[h*m+1..h*(m+1)]}{[h+1..2*h]} := IdentityMat(h, k);
newMat{[h*(2*m+1)+1..h*(2*m+2)]}{[h+1..2*h]} := NullMat(h,

h, k);↪→

for i in [2..h] do
newMat[h*(2*m+1)+i-1][h+i] := 1;

od;

if RemInt(-n, p) = 2 then
newMat{[h*(2*m+2)+1..h*(2*m+3)]}{[h+1..2*h]} := NullMat(h, h, k);
for i in [2..h] do

newMat[h*(2*m+2)+i-1][h+i] := 1;
od;

fi;
return replaceArrowMatrix(1, newMat, tempModule);

else
return false;

fi;
end;

Finally, we construct the submodules exhibiting hyperfiniteness by the removal of cer-
tain basis elements and applications of τ .

offset := function(i, module)
return Sum(DimensionVector(module){[1..i-1]});

end;

removeBasisElementsEmbedding := function(list, module)
local M,j,basis;
basis := ShallowCopy(BasisVectors(Basis(module)));
for j in list do

Unbind\[\](basis,j);
od;
M := SubRepresentationInclusion(module, basis);
return M;

end;

keepBasisElementsEmbedding := function(list, module)
local M,j,basis;
basis := ShallowCopy(BasisVectors(Basis(module)));
for j in DifferenceLists([1..Size(basis)],list) do

Unbind\[\](basis,j);
od;
M := SubRepresentationInclusion(module,basis);
return M;
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gap code

end;

niceRankOneEmbeddingForHomModule := function(n, h, xi)
local M,nbar,offset,list;
if xi = "oo" then

M := constructIntSlopeModuleAtInfinity(n, h);
else

M := constructIntSlopeModuleViaMaple(n, h, xi);
fi;
offset := function(i)

return Sum(DimensionVector(M){[1..i-1]});
end;
if (n >= 3) then

nbar := QuoInt(n, p);
list := Flat([[offset(2)+1..offset(2)+h],

[offset(3)+1..offset(3)+2*h],[offset(7)+h*nbar+1.. c
offset(7)+h*nbar+h]]);

↪→

↪→

return removeBasisElementsEmbedding(list, M);
elif (n < 0) then

nbar := QuoInt(-n, p);
if (RemInt(-n,p) = 0) then

list := Flat([[1..nbar*h],
[(nbar+1)*h+h+1..(2*nbar+1)*h],
[(2*nbar+2)*h+1..(3*nbar+2)*h]]);

↪→

↪→

else
list := Flat([[1..nbar*h],

[(nbar+1)*h+h+1..(2*nbar+1)*h],
[offset(2)-(nbar+2)*h..offset(2)-2*h]]);

↪→

↪→

fi;
return keepBasisElementsEmbedding(list, M);

else
return false;

fi;
end;

niceRankOneEmbeddingForExcModule := function(n, t, s, h)
local hbar, baseEmbedding, embedding, homs, irreducible;
if (n < p) then

return false;
fi;
hbar := QuoInt(h, p);
if h mod p = 0 then

if t = 1 then
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gap code

baseEmbedding :=
niceRankOneEmbeddingForHomModule(n, hbar,
1);

↪→

↪→

if (n > 0 and s = 1) or (n < 0 and s = 2) then
embedding := TransposeOfDualOfModuleHo c

momorphism(baseEmbedding);↪→

elif (n > 0 and s = 2) or (n < 0 and s = 1)
then↪→

embedding := DualOfTransposeOfModuleHo c
momorphism(baseEmbedding);↪→

elif s = 3 then
embedding := baseEmbedding;

fi;
elif t = 2 then

baseEmbedding :=
niceRankOneEmbeddingForHomModule(n, hbar,
"oo");

↪→

↪→

if s = 1 then
embedding := baseEmbedding;

elif s = 2 then
embedding := TransposeOfDualOfModuleHo c

momorphism(baseEmbedding);↪→

elif s = 3 then
embedding := DualOfTransposeOfModuleHo c

momorphism(baseEmbedding);↪→

fi;
elif t = 3 then

baseEmbedding :=
niceRankOneEmbeddingForHomModule(n, hbar,
0);

↪→

↪→

if s = 1 then
embedding := baseEmbedding;

elif s = 2 then
embedding := TransposeOfDualOfModuleHo c

momorphism(baseEmbedding);↪→

elif s = 3 then
embedding := DualOfTransposeOfModuleHo c

momorphism(baseEmbedding);↪→

fi;
fi;

else
baseEmbedding := niceRankOneEmbeddingForExcModule(n,

t, s, (hbar+1)*p);↪→
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if IsomorphicModules(Range(baseEmbedding),constructExc c
RegModuleViaMaple(n, t, s, (hbar+1)*p)) = false
then

↪→

↪→

return "Error: the constructed codomain of the
base embedding is not the desired module
in the exceptional tube!";

↪→

↪→

fi;
homs :=

HomOverAlgebra(constructExcRegModuleViaMaple(n, t,
s, h), Range(baseEmbedding));

↪→

↪→

for irreducible in homs do
if IsInjective(irreducible) then

break;
fi;

od;
if IsInjective(baseEmbedding) and

IsInjective(irreducible) then↪→

embedding :=
IntersectionOfSubmodules(irreducible,
baseEmbedding)[2];

↪→

↪→

elif IsInjective(baseEmbedding) = false then
return "Error: the embedding of the nice

submodule in the multiple-of-p case is not
injective!";

↪→

↪→

elif IsInjective(irreducible) = false then
return "Error: the embedding of the smaller

quasi-length module into the base case
module is not injective!";

↪→

↪→

fi;
fi;
return embedding;

end;

niceRankZeroOrOneEmbeddingForExcModule := function(n, t, s, h)
local hbar, hprime, baseEmbedding, embedding, homs,

irreducible;↪→

if (n > 0) then
return false;

fi;
hbar := QuoInt(h, p);
if h mod p = 0 then

if t = 1 then
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baseEmbedding :=
niceRankOneEmbeddingForHomModule(n, hbar,
1);

↪→

↪→

if s mod pp[t] = 1 then
embedding := DualOfTransposeOfModuleHo c

momorphism(baseEmbedding);↪→

elif s mod pp[t] = 2 then
embedding := TransposeOfDualOfModuleHo c

momorphism(baseEmbedding);↪→

elif s mod pp[t] = 0 then
embedding := baseEmbedding;

fi;
elif t = 2 then

baseEmbedding :=
niceRankOneEmbeddingForHomModule(n, hbar,
"oo");

↪→

↪→

if s mod pp[t] = 1 then
embedding := baseEmbedding;

elif s mod pp[t] = 2 then
embedding := DualOfTransposeOfModuleHo c

momorphism(baseEmbedding);↪→

elif s mod pp[t] = 0 then
embedding := TransposeOfDualOfModuleHo c

momorphism(baseEmbedding);↪→

fi;
elif t = 3 then

baseEmbedding :=
niceRankOneEmbeddingForHomModule(n, hbar,
0);

↪→

↪→

if s mod pp[t] = 1 then
embedding := baseEmbedding;

elif s mod pp[t] = 2 then
embedding := DualOfTransposeOfModuleHo c

momorphism(baseEmbedding);↪→

elif s mod pp[t] = 0 then
embedding := TransposeOfDualOfModuleHo c

momorphism(baseEmbedding);↪→

fi;
fi;

else
hprime := RemInt(h,p);
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baseEmbedding :=
niceRankZeroOrOneEmbeddingForExcModule(n, t,
s+hprime, (hbar+1)*p);

↪→

↪→

if IsomorphicModules(Range(baseEmbedding),
constructExcRegModuleViaMaple(n, t, s+hprime,
(hbar+1)*p)) = false then

↪→

↪→

return "Error: the constructed codomain of the
base embedding is not the desired module
in the exceptional tube!";

↪→

↪→

fi;
homs :=

HomOverAlgebra(constructExcRegModuleViaMaple(n, t,
s, h),Range(baseEmbedding));

↪→

↪→

for irreducible in homs do
if IsInjective(irreducible) then

break;
fi;

od;
if IsInjective(baseEmbedding) and

IsInjective(irreducible) then↪→

embedding :=
IntersectionOfSubmodules(irreducible,
baseEmbedding)[2];

↪→

↪→

elif IsInjective(baseEmbedding) = false then
return "Error: the embedding of the nice

submodule in the multiple-of-p case is not
injective!";

↪→

↪→

elif IsInjective(irreducible) = false then
return "Error: the embedding of the smaller

quasi-length module into the base case
module is not injective!";

↪→

↪→

fi;
fi;
return embedding;

end;

niceSubmoduleEmbeddingForExcModule := function(n, t, s, h)
if n >= p then

return niceRankOneEmbeddingForExcModule(n, t, s, h);
elif n < 0 then

return niceRankZeroOrOneEmbeddingForExcModule(n, t, s,
h);↪→

else
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return false;
fi;

end;

We can now check the codimensions of the modules constructed in such a way.

for n in [5..10] do
Print(n, ":\n");
for h in [1..8] do
Print("h=", h, "\n");

for t in [1..3] do
Print("t=", t);

for s in [1..p] do
Print(" ", s, ": ");
emb := niceRankOneEmbeddingForExcModul c

e(n, t, s,
h);

↪→

↪→

Print(DimensionVector(CoKernel(emb)));
od;

Print("\n");
od;

od;
od;
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