Exceptional Sequences of Representations of Quivers

WILLIAM CRAWLEY-BOEVEY

ABSTRACT. We show that the braid group acts transitively on the set of exceptional sequences of representations of a quiver.

At the 1992 Canadian Mathematical Society Annual Seminar, A. N. Rudakov lectured on exceptional sequences of vector bundles for \mathbb{P}^2, and more generally for Del Pezzo surfaces. This led us to consider the corresponding theory for representations of quivers. There is the notion of a complete exceptional sequence of representations of a quiver, and there is an action of the braid group on the set of such sequences. We show that this action is transitive. The proof uses a theorem of A. Schofield.

Exceptional sequences and the action of the braid group were discovered in the Moscow school of vector bundles, see [1,2,3]. The natural setting is in the context of triangulated categories, and this is described in [1].

1991 Mathematics Subject Classification. Primary 16G20.

The author is supported by the SERC of Great Britain. This paper is in final form and no version of it will be submitted for publication elsewhere.
Occasionally there is an action of the braid group on the set of exceptional sequences for an abelian category. For example the argument of [2, §3.3] shows that this holds if the spaces \(\text{Ext}^1(X,Y) \) are naturally f.d. vector spaces for \(i \geq 0 \), \(\text{Ext}^1(X,Y) = 0 \) for \(i \geq 3 \), and whenever \(\text{Ext}^2(X,Y) \neq 0 \) and \(\text{Ext}^1(X,X) = \text{Ext}^1(Y,Y) = 0 \) we have \(\dim \text{Ext}^2(X,Y) < \dim \text{Hom}(Y,X) \).

Of course this applies to the category of representations of a quiver, since in this case \(\text{Ext}^1(X,Y) = 0 \) for \(i \geq 2 \). We do not need to quote this fact, however, since for quiver representations, the existence of a braid group action follows quite easily from properties of perpendicular categories.

Let \(k \) be an algebraically closed field, let \(Q \) be a quiver with no oriented cycles, and let \(kQ \) be the path algebra. By an exceptional representation we mean a finite dimensional left \(kQ \)-module \(X \) with \(\text{End}(X) = k \) and \(\text{Ext}(X,X) = 0 \).

By an exceptional sequence \(E = (X_1, \ldots, X_r) \) of length \(r \) we mean a sequence of exceptional representations satisfying \(\text{Hom}(X_j, X_i) = \text{Ext}(X_j, X_i) = 0 \) for \(1 \leq i < j \leq r \). We say that an exceptional sequence is a complete sequence if it has length equal to the number of vertices of \(Q \).

If \(C \) is a collection of representations, recall that the perpendicular categories are defined by

\[
\L C = \{ M \in kQ\text{-mod} \mid \text{Hom}(M,X) = \text{Ext}(M,X) = 0 \text{ for all } X \in C \}
\]

\[
C^\perp = \{ M \in kQ\text{-mod} \mid \text{Hom}(X,M) = \text{Ext}(X,M) = 0 \text{ for all } X \in C \}.
\]

In particular we can use this notion for an exceptional sequence \(E = (X_1, \ldots, X_r) \). Now \(E^\perp \) and \(E^\perp \) may be calculated by induction on the length of \(E \), and hence one can show that if \(Q \) has \(n \) vertices then \(E^\perp \) and \(E^\perp \) are equivalent to the categories of representations of quivers \(Q(E^\perp) \) and \(Q(E^\perp) \) with \(n-r \) vertices and no oriented cycles, see for example
[4, Theorem 2.3]. Moreover the functors from \(kQ(E^\perp) \)-mod and \(kQ(\perp E) \)-mod to \(kQ \)-mod are exact and induce isomorphisms on both \(\text{Hom} \) and \(\text{Ext} \). Thus we can talk about simple objects of \(E^\perp \), exceptional sequences for \(E^\perp \), complete sequences for \(E^\perp \), etc.

Lemma 1. Any exceptional sequence \((X_1, \ldots, X_a, Z_1, \ldots, Z_c) \) can be enlarged to a complete sequence \((X_1, \ldots, X_a, Y_1, \ldots, Y_b, Z_1, \ldots, Z_c) \).

Proof. It suffices to find a complete sequence \((Y_1, \ldots, Y_b, Z_1, \ldots, Z_c) \) for \(\perp (X_1, \ldots, X_a) \), so we may assume that \(a=0 \). Next it suffices to find a complete sequence \((Y_1, \ldots, Y_b) \) for \((Z_1, \ldots, Z_c)^\perp \) so we may assume that \(c=0 \). Now the indecomposable projective, injective, or simple representations all give complete sequences when suitably ordered.

Lemma 2. If \(E=(X_1, \ldots, X_n) \) and \(F=(Y_1, \ldots, Y_n) \) are complete sequences which differ in at most one place, say \(X_j \cong Y_j \) for \(j \neq i \), then also \(X_i \cong Y_i \).

Proof. Passing to \(\perp (X_1, \ldots, X_{i-1}) \) we may suppose that \(i=1 \). Now passing to \((X_1, \ldots, X_{i-1})^{\perp} \) we may suppose that \(Q \) has only one vertex. But then it has only one exceptional representation.

If \(E \) is an exceptional sequence, let \(C(E) \) be the smallest full subcategory of \(kQ-\text{mod} \) which contains \(E \) and is closed under extensions, kernels of epis, and cokernels of monos.
Lemma 3. If $E=(X_1, \ldots, X_n)$ is a complete sequence, then $C(E) = kQ\text{-mod}$.

Proof. By induction on n, the number of vertices of Q. If $n=0$ there is nothing to prove, so suppose that $n>0$. Let $X=X_n$. Now X_1, \ldots, X_{n-1} is a complete sequence for X^\perp, so by the induction we have $C(X_1, \ldots, X_{n-1}) = X^\perp$, and hence $C(E)$ contains X and X^\perp.

Suppose that X is non-projective. The Bongartz completion of X is a tilting module $T=X \otimes Y$ with $Y \in X^\perp$. For each projective module P there is an exact sequence $0 \to P \to T' \to T'' \to 0$ with $T', T'' \in \text{add}(T)$, so $C(E)$ contains the projectives. Since any representation has a projective resolution it follows that $C(E)=kQ\text{-mod}$.

Suppose that X is projective, say corresponding to vertex i, so that X^\perp consists of the representations which are zero at i. Thus $C(E)$ contains the simples S_j corresponding to vertices $j \neq i$. There is also an exact sequence $0 \to \text{rad} X \to X \to S_i \to 0$ with $\text{rad} X \in X^\perp$ so that $S_i \in C(E)$. Thus $C(E)=kQ\text{-mod}$.

Lemma 4. Let $E=(X_1, \ldots, X_r)$ be an exceptional sequence.

1. $C(E) = ^1(E^\perp) = ^1F$ where F is any complete sequence for E^\perp.

2. $C(E) = (^1E)^\perp = G^\perp$ where G is any complete sequence for 1E.

Proof. We have $C(E) \subseteq ^1(E^\perp) \subseteq ^1F$ since $^1(E^\perp)$ contains E and is closed under extensions, kernels of epis and cokernels of monos. Now E is a complete sequence for 1F, so we have $C(E)=^1F$ by Lemma 3. Part (2) is the same.
Lemma 5. If E is an exceptional sequence of length r then $C(E)$ is equivalent to the category of representations of a quiver $Q(E)$ with r vertices and no oriented cycles. Moreover the functor $kQ(E)\text{-mod} \rightarrow kQ\text{-mod}$ is exact and induces isomorphisms on both Hom and Ext.

Lemma 6. If (X,Y) is an exceptional sequence then there are unique representations $R_Y X$ and $L_X Y$ with the property that $(Y,R_Y X)$ and $(L_X Y,X)$ are exceptional sequences in $C(X,Y)$.

The next result is due to Schofield [5].

Lemma 7. If X is exceptional and not simple then there is an exceptional sequence (X,Y) such that X is not a simple object of $C(X,Y)$.

Proof. We may suppose that X is sincere – otherwise we can pass to the support of X. We work by induction on the number n of vertices of Q. Now $n \geq 2$ since X is not simple. If $n=2$ there is an exceptional sequence (X,Y), we have $C(X,Y) = kQ\text{-mod}$ and by assumption X is not simple. If $n > 2$, let Y be a simple object of \mathcal{X}. Now X is sincere as an object of \mathcal{X}^\perp by [4, Lemma 4.2], and since \mathcal{X}^\perp is equivalent to the representations of a quiver with $n-1$ vertices, the induction applies.

Lemma 8. Let $E = (X_1, \ldots, X_r)$ be an exceptional sequence and let $1 \leq i < r$.

1. $(X_1, X_2, \ldots, X_{i-1}, X_{i+1}, Y, X_{i+2}, \ldots, X_r)$ is an exceptional sequence in $C(E)$ if and only if $Y \cong R_{X_{i+1}} X_i$.

2. $(X_1, X_2, \ldots, X_{i-1}, Z, X_i, X_{i+2}, \ldots, X_r)$ is an exceptional...
sequence in C(E) if and only if \(Z \cong L_{X_{i+1}} X_i \).

Proof. The stated sequences are exceptional since

\[
R_{X_{i+1}} X_i, L_{X_i} X_{i+1} \in C(X_i, X_{i+1}) \cong \langle (X_i, X_{i+1}) \rangle = \langle (X_i, X_{i+1}) \rangle ^\perp, \quad \text{and} \quad X_1, \ldots, X_{i-1} \in C(X_i, X_{i+1}), X_{i+2}, \ldots, X_r \in C(X_i, X_{i+1}) ^\perp. \quad \text{The uniqueness follows from Lemmas 2 and 5.}
\]

Let \(B_r \) be the braid group on \(r \) strings, so with generators \(\sigma_1, \ldots, \sigma_{r-1} \) where \(\sigma_i \) moves the \(i \)-th over the \((i+1) \)-th string, and with relations \(\sigma_i \sigma_j = \sigma_j \sigma_i \) for \(i \neq j \pm 1 \) and \(\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \) for \(1 \leq i \leq r-2 \). Let \(E_r \) be the set of exceptional sequences of length \(r \) (up to isomorphism).

Lemma 9. The assignments

\[
\sigma_i (X_1, \ldots, X_r) = (X_1, X_2, \ldots, X_{i-1}, X_i, X_{i+1}, X_{i+2}, \ldots, X_r)
\]

\[
\sigma_i^{-1} (X_1, \ldots, X_r) = (X_1, X_2, \ldots, X_{i-1}, L_{X_i} X_{i+1}, X_i, X_{i+2}, \ldots, X_r)
\]

define an action of \(B_r \) on \(E_r \).

Proof. We have

\[
\sigma_i^{-1} \sigma_i (X_1, \ldots, X_r) = (X_1, X_2, \ldots, X_{i-1}, Y, X_{i+1}, X_{i+2}, \ldots, X_r)
\]

for some \(Y \in C(X_1, \ldots, X_r) \), so \(Y \cong X_i \) by uniqueness. Thus the stated actions are inverse. To verify the relation

\(\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} \)

note that \(\sigma_i \sigma_{i+1} \sigma_i (X_1, \ldots, X_r) \) and \(\sigma_{i+1} \sigma_i \sigma_{i+1} (X_1, \ldots, X_r) \) both have the form

\[
(X_1, \ldots, X_{i-1}, X_{i+2}, R_{X_{i+1}} X_i, Y, X_{i+3}, \ldots, X_r)
\]

with \(Y \in C(X_1, \ldots, X_r) \), so they must be equal.
Theorem. If Q has n vertices then the action of B_n on the set E_n of complete sequences is transitive.

Proof. We prove this by induction on n. If $n=1$ there is nothing to prove, while if $n=2$ it can be checked since every exceptional representation is preprojective or preinjective. Thus suppose $n>2$. Let O be an orbit for the action of B_n.

Let d be the minimum dimension of any representation in any complete sequence in O. We show that $d=1$, so for a contradiction suppose otherwise. Let E be a complete sequence in O containing a representation X of dimension d. Applying $s_1 s_2 \ldots s_{n-1}$ if necessary we may assume that $E=(X, X_2, \ldots, X_n)$. Let (X, Y) be the exceptional sequence given by Lemma 7. It extends to a complete sequence $F=(X, Y, Y_3, \ldots, Y_n)$. Now (X_2, \ldots, X_n) and (Y, Y_3, \ldots, Y_n) are complete sequences for $\underline{1}X$, so by the induction they are in the same orbit under B_{n-1}, and hence E and F are in the same orbit under B_n. Now $C(X, Y)$ contains a complete sequence (S, T) with S and T the simple objects of $C(X, Y)$, and $s_1^k F=(S, T, Y_3, \ldots, Y_n)$ for some $k \in \mathbb{Z}$. By assumption X is not simple as an object of $C(X, Y)$, so it involves both S and T, and hence $\dim S < \dim X = d$. But $s_1^k F \in O$, contradicting the minimality of d.

We have shown that O contains a sequence E which involves a simple S, and indeed we may assume that $E=(S, Z_2, \ldots, Z_n)$. Let $P=(P_1, \ldots, P_n)$ be the complete sequence of projectives, with P_j being the projective cover of S. As above, passing to $\underline{1}S$ and using the induction, we see that O contains the sequence $F=(S, P_1, \ldots, P_{j-1}, P_{j+1}, \ldots, P_n)$. Now $s_{j-1} \ldots s_2 s_1 F = P$ since the two sides differ in at most one place. Thus $P \in O$, and it follows that the action of B_n
on E_n is transitive.

Corollary. Exceptional sequences $E,F \in E_r$ are in the same orbit under B_r if and only if $C(E) = C(F)$.

Finally note that if (X,Y) is an exceptional sequence,

$$\dim R_Y X = \pm (\dim X - \langle \dim X, \dim Y \rangle \dim Y)$$

$$\dim L_X Y = \pm (\dim Y - \langle \dim X, \dim Y \rangle \dim X),$$

so the theorem gives a convenient method for producing the real Schur roots for Q.

References

Mathematical Institute, Oxford University, 24-29 St. Giles, Oxford OX1 3LB, England.