Canadian Mathematical Society
Conference Proceedings
Volume 14, 1993

Exceptional Sequences of Representations of Quivers

WILLIAM CRAWLEY-BOEVEY

ABSTRACT. We show that the braid group acts
transitively on the set of exceptional
sequences of representations of a quiver.

At the 1992 Canadian Mathematical Society Annual
Seminar, A. N. Rudakov lectured on exceptional sequences
of vector bundles for PZ, and more generally for Del Pezzo
surfaces. This led us to consider the corresponding theory
for representations of quivers. There is the notion of a
complete exceptional sequence of representations of a
quiver, and there is an action of the braid group on the
set of such sequences. We show that this action is
transitive. The proof uses a theorem of A. Schofield.

Exceptional sequences and the action of the braid group
were discovered in the Moscow school of vector bundles,
see [1,2,3]. The natural setting is in the context of

triangulated categories, and this is described in [1].
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Occasionally there is an action of the braid group on the
set of exceptional sequences for an abelian category. For
example the argument of [2, §3.3] shows that this holds if
the spaces Exti(X,Y) are naturally f.d. vector spaces for
iz0, Exti(X,Y)=O for iz3, and whenever Eth(X,Y)¢O and
Extl(X,X)=Ext1(Y,Y)=O we have dim Eth(X,Y)<dim Hom (Y, X).
Of course this applies to the category of representations
of a quiver, since in this case Exti(X,Y)=0 for iz2. We do
not need to quote this fact, however, since for quiver
representations, the existence of a braid group action
follows quite easily from properties of perpendicular

categories.

Let k be an algebraically closed field, let Q be a
quiver with no oriented cycles, and let kQ be the path

algebra. By an exceptional representation we mean a finite

dimensional left kQ-module X with End(X)=k and Ext (X, X)=0.

By an exceptional sequence E=(X "’Xr) of length r we

1)
mean a sequence of exceptional representations satisfying

Hom(Xj,Xi)=Ext(Xj,Xi)=0 for 1=i<j=r. We say that an

exceptional sequence is a complete sequence if it has

length equal to the number of vertices of Q.
If C is a collection of representations, recall that

the perpendicular categories are defined by

ic

C.L

{M € kQ-mod | Hom(M,X)=Ext(M,X)=0 for all XeC}
{M € kQ-mod | Hom(X,M)=Ext(X,M)=0 for all XeC}.

In particular we can use this notion for an exceptional
sequence E=(X1,..,Xr). Now El and lE may be calculated by
induction on the length of E, and hence one can show that
if Q has n vertices then El and ‘E are equivalent to the
categories of representations of quivers Q(El) and Q(lE)

with n-r vertices and no oriented cycles, see for example
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[4, Theorem 2.3]. Moreover the functors from kQ(El)—mod
and kQ(lE)—mod to kQ-mod are exact and induce isomorphisms
on both Hom and Ext. Thus we can talk about simple objects
of El, exceptional sequences for El, complete sequences

for EL, etc.

LeMMa 1. Any exceptional sequence (Xl""Xa’Zl""Zc)
can be enlarged to a complete sequence
(Xl""Xa’Yl""Yb’zl""zc)'

Proof. It suffices to find a complete sequence

1
(Yl""yb’zl""zc) for (Xl""xa)’ so we may assume that

a=0. Next it suffices to find a complete sequence
(Yl""Yb) for (21,..,ZC)l so we may assume that c=0. Now
the indecomposable projective, injective, or simple
representations all give complete sequences when suitably

ordered.

LEMMA 2. If E=(X1,..,Xn) and F=(Y1,..,Yn) are complete
sequences which differ in at most one place, say XJ.EYj for

j#i, then also X.=Y..
il

Proof. Passing to J“(Xl,..,Xi_l) we may suppose that

i=1. Now passing to (Xi ..,Xn)'L we may suppose that Q

+1’
has only one vertex. But then it has only one exceptional

representation.

If E is an exceptional sequence, let C(E) be the
smallest full subcategory of kQ-mod which contains E and
is closed under extensions, kernels of epis, and cokernels

of monos.
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Lemva 3. If E=(X1,..,Xn) is a complete sequence, then
C(E) = kQ-mod.

Proof. By induction on n, the number of vertices of Q.
If n=0 there is nothing to prove, so suppose that n>0. Let
X=Xn' Now Xl"”xn—l is a complete sequence for Xl, so by

the induction we have C(X,,..,X ) = Xl

1 n-1 , and hence C(E)

contains X and X .

Suppose that X is non-projective. The Bongartz
completion of X is a tilting module T=XeY with Yex'. For
each projective module P there is an exact sequence
0—P—T' —5T”——0 with T’ ,T”€add(T), so C(E) contains
the projectives. Since any representation has a projective
resolution it follows that C({E)=kQ-mod.

Suppose that X i1s projective, say corresponding to
vertex i, so that Xl consists of the representations which
are zero at i. Thus C(E) contains the simples S,
corresponding to vertices j#i. There is also an exact
sequence O—->rad X——»X—«eSi——eO with rad XeXl so that

SieC(E). Thus C(E)=kQ-mod.

LemMa 4. Let E=(X1,..,Xr) be an exceptional sequence.
(1) C(E) = “(EY) = *F where F is any complete sequence
for El.
(2) C(E) = (*E)* = G* where G is any complete sequence
L
for "E.

Proof. We have C(E) < l(El) c 'F since l(El) contains E
and is closed under extensions, kernels of epis and
cokernels of monos. Now E is a complete sequence for lF,

so we have C(E)=lF by Lemma 3. Part (2) is the same.
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LEMMA 5. If E is an exceptional sequence of length r
then C(E)} is equivalent to the category of representations
of a quiver Q(E) with r vertices and no oriented cycles.
Moreover the functor kQ(E)-mod——kQ-mod is exact and

induces isomorphisms on both Hom and Ext.

LemMa 6. If (X,Y) is an exceptional sequence then there
are unique representations RYX and LXY with the property
that (Y,RYX) and (LXY,X) are exceptional sequences in

C(X,Y).
The next result is due to Schofield [5].

LemMa 7. If X is exceptional and not simple then there
is an exceptional sequence (X,Y) such that X is not a

simple object of C(X,Y).

Proof. We may suppose that X is sincere - otherwise we
can pass to the support of X. We work by induction on the
number n of vertices of Q. Now nz2 since X is not simple.
If n=2 there is an exceptional sequence (X,Y), we have
C(X,Y)=kQ-mod and by assumption X is not simple. If n>2,
let Y be a simple object of J'X. Now X 1s sincere as an
object of Yl by [4, Lemma 4.2], and since Yl is equivalent
to the representations of a quiver with n-1 vertices, the

induction applies.

LEMMa 8. Let E=(X1,..,Xr) be an exceptional sequence
and let 1=i<r.

(1) (Xl’XZ""xi—1’xi+1’Y’Xi+2’
sequence in C(E) if and only if Y & RX X..
i+1

"’Xr) is an exceptional

"’Xr) is an exceptional

(2) (Xl,X X Z’Xi’xi+

20t - 2’



122 WILLIAM CRAWLEY-BOEVEY

sequence in C(E) if and only if Z = L, X

Proof. The stated sequences are exceptional since

L 1, 1 1
RX. Xi’LX.Xi+1EC(Xi’Xi+1)- [(Xi’Xi+1) 1= (Xi’xi+1)]
i+l i
1
and Xl""xi-l (X1 X1+1) Xi+2""Xr € (Xi’xi+1) . The
uniqueness follows from Lemmas 2 and 5.

Let Br be the braid group on r strings, so with

generators o , O where oi moves the i-th over the

17" r-1

(i+1)-th string, and with relations 00,500, for i#j*1

and o.0 =, .0.0 for 1=i=r-2. lLet € Dbe the set of
i 1+1 i "i+171 141 r

exceptional sequences of length r (up to isomorphism).

LeEMMA 9. The assignments

o, (Xl""xr) = (Xl’XZ""Xi-l’xi+1’RXi+1Xi’Xi+2""Xr)
_1 _
Gi (Xl""xr) = (Xl’XZ""Xi—l’LXlX +1,X ’Xi+2""xr)
define an action of Br on 8r.
Proof. We have
_1 _
oi 01 (Xl""Xr) = (Xl’XZ""Xi—l’Y’Xi+1’Xi+2""Xr)

for some YeC(Xl,..,Xr), so Y:%X.l by uniqueness. Thus the

stated actions are inverse. To verify the relation

c.0 =0 o0 note that o.c. 0. (X.,..,X ) and
i 1+1 i i+l i+l iTi+17i1 r
o, (X .,X ) both have the form
1+1 i 1+1 r
KooKy Riape By Xy VoRypge XD

i+2
with YeC(Xl,..,Xr), so they must be equal.
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THEOREM. If Q has n vertices then the action of Bn on

the set gn of complete sequences is transitive.

Proof. We prove this by induction on n. If n=1 there is
nothing to prove, while if n=2 it can be checked since
every exceptional representation is preprojective or
preinjective. Thus suppose n>2. Let O be an orbit for the
action of Bn'

Let d be the minimum dimension of any representation in
any complete sequence in O. We show that d=1, so for a
contradiction suppose otherwise. Let E be a complete
sequence in O containing a representation X of dimension

d. Applying o if necessary we may assume that

1727 %11
E=(X,X2,..,Xn). Let (X,Y) be the exceptional sequence

given by Lemma 7. It extends to a complete sequence

F=(X,Y,Y.,..,Y ). Now (X .,X ) and (VY,Y .,Y ) are
n n n

3’ 27 3
complete sequences for lX, so by the induction they are in

the same orbit under Bn and hence E and F are in the

_1’
same orbit under Bn. Now C(X,Y) contains a complete

sequence (5,T) with S and T the simple objects of C(X,Y),

and 0§F=(S,T,Y ..,Yn) for some keZ. By assumption X is

not simple as zn object of C(X,Y), so it involves both S
and T, and hence dim S < dim X = d. But UTF e O,
contradicting the minimality of d.

We have shown that O contains a sequence E which
involves a simple S, and indeed we may assume that

E=(S,Z2 .,Zn). Let P=(P1,..,Pn) be the complete sequence

27
of projectives, with P, being the projective cover of S.

As above, passing to 'S and using the induction, we see

1""Pj—1’Pj+1""Pn)'
Now oj_l..ozolF = P since the two sides differ in at most

one place. Thus PeO, and it follows that the action of Bn

that O contains the sequence F=(S,P
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on Sn is transitive.

CoroLLARY. Exceptional sequences E,Fe@r are in the same

orbit under Br if and only if C(E}=C(F).

Finally note that if (X,Y) is an exceptional sequence,

m R X = + (dim X - <dim X,
mL)Y =% (dim Y - <dim X,

Q..
E

Y>
m Y>

Y)
X),

I“ |
l“ g

Y
X

FE

so the theorem gives a convenient method for producing the

real Schur roots for Q.
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