ON THE EXCEPTIONAL FIBRES OF KLEINIAN
SINGULARITIES
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ABSTRACT. We give a new proof, avoiding case-by-case analysis, of a theorem
of Y. Ito and I. Nakamura which provides a module-theoretic interpretation of
the bijection between the irreducible components of the exceptional fibre for a
Kleinian singularity, and the non-trivial simple modules for the corresponding
finite subgroup of SL(2,C). Our proof uses a classification of certain cyclic
modules for preprojective algebras.

INTRODUCTION

Let T be a finite subgroup of SL(2,C), let X = C?/T be the corresponding
Kleinian singularity and let 7 : X — X be its minimal resolution of singularities.
The ezceptional fibre E, the fibre of m over the singular point of X, is known to
be a union of projective lines meeting transversally, and the graph whose vertices
correspond to the irreducible components of E, with two vertices joined if and only
if the components intersect, is a Dynkin diagram (of one of the types 4,, D,, Es,
E;, Es).

If Ng,Ny,..., N, are a complete set of simple CT-modules, with Ny the trivial
module, then the McKay graph of T has vertex set {0,1,...,n} and the number
of edges between ¢ and j is the multiplicity [V ® N; : N;] where V is the natural
2-dimensional CT'-module. According to the McKay correspondence [12], this is an
extended Dynkin diagram with extending vertex 0.

These two diagrams were related by Gonzalez-Sprinberg and Verdier [5], who
showed that there is a natural bijection between the irreducible components of the
exceptional fibre and the non-trivial irreducible representations of I'. Recently Ito
and Nakamura [6, 7] found a beautiful new interpretation of this bijection, and their
work has already been used by Kapranov and Vasserot [9] in their proof that the
derived category of X is equivalent to the derived category of I'-equivariant sheaves
on C?. Unfortunately, both the work of Gonzalez-Sprinberg and Verdier, and of
Ito and Nakamura, requires extensive case-by-case analysis for the different Dynkin
diagrams. In this article we give a new proof of the theorem of Ito and Nakamura,
which avoids such case-by-case analysis.

The theorem of Ito and Nakamura is as follows. Since T' acts on C?, it also acts
on the coordinate ring R = ([z, y], and on the Hilbert scheme Hilbd(C2) of ideals
of codimension d in R (as vector spaces). Ito and Nakamura observe that X is
1somorphic to

Hilb" (C?) = {J € Hilb/"(C?) | J is I-invariant and R/J = CT as a CT-module}.
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If mis the ideal in R generated by z and y, then the exceptional fibre E corresponds
to the m-primary ideals in Hile(C2). It follows that any J € E contains the ideal
n= R(mNRL), and that V(J) = J/(mJ +n) is a CT-module with [V (J) : Ng] = 0.

Theorem 1. If J € E then V(J) is a sum of one or two simple CT'-modules, and
if two, they are non-isomorphic. If i # 0 then

B@) ={J e E|[V(J): N:] # 0}

is a closed subset of E isomorphic to PL. Moreover E(i) meets E(j) if and only if
i and j are adjacent in the McKay graph, and in this case |E(:) N E(7)| = 1.

In fact, the Hilbert scheme construction of X is known to be equivalent to a
moduli space construction of X due to Kronheimer [11], reformulated using geo-
metric invariant theory by Cassens and Slodowy [2]. We describe the corresponding
reformulation of Theorem 1 in Section 4. We then prove this in Section b, using a
result about cyclic modules for preprojective algebras which is proved in Sections 2
and 3. This result, Lemma 2 should be of independent interest.

I should like to thank R.-O. Buchweitz for bringing this problem to my attention
when I visited him in April 1999, and both him and the University of Toronto for
their hospitality.

1. PREPROJECTIVE ALGEBRAS AND A HOMOLOGICAL FORMULA

Let @@ be a quiver with vertex set I and let K be a field. The preprojective
algebra 1s

(Q) = KQ/(D_la,a")),

aEQR

where @ is the double of ), obtained by adjoining an arrow a* : j — 4 for each
arrow a 1 i — j in @, and K@ is the path algebra of Q. See for example [4]. (For
the definition of the path algebra, see for example [1].) Let e; be the trivial path
at vertex i. Any finite dimensional module M for II(Q) or K@ has a dimension
vector dim M € N! whose ith component is dime; M. Let (—, —) be the symmetric
bilinear form on Z! defined by

(,8) = 20 — > aif;.

1€l ae@

at—yg
Lemma 1. If M and N are finite dimensional II(Q)-modules, then
dim Ext'(M, N) = dim Hom(M, N) + dim Hom(N, M) — (dim M, dim N).

Proof. For simplicity we write II for II(Q). It is easy to see that M has a projective
resolution which starts

o PraoaM L P ey o e L Plle; 0 esM 2 M — 0,
i€l a€Q i€l

at—yg

where f is defined by

FO pom) =Y (pa® @m; —p; ®a’m;)a — (pja @ my — p; @ am; ) g
7 aEQR

at—yg
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for p; € lle; and m; € e;M; g 1s defined on the summand corresponding to an arrow
a:i— jin @ by g(p ®m) = (pa @ m); — (p® am); for p in Me; and m in e;M;
and h 1s multiplication. Computing the homomorphisms to N, and identifying
Hom(Ile; © e; M, N) with Homg (e; M, e; N), gives a complex

0— @ Hompg (e;M,e;N) — @ Homg (e;M,e;N) — @ Hompg (e; M, e; N)
i€l a€Q i€l
ait—j
in which the left hand cohomology is Hom(M, N) and the middle cohomology is
Extl(M, N). Moreover, the alternating sum of the dimensions of the terms is
(dim M, dim N). It remains to prove that the cokernel of the right hand map has the
same dimension as Hom(N, M). But using the trace map to identify Homg (U, V)*
with Hompg (V, U), the dual of this complex is

@ Hompg (e;N,e; M) — @ Hompg (e;N,e; M) — @ Hompg (e; N, e; M) — 0,
i€l a€Q i€l
ait—j
and, up to changing the sign of components in the second direct sum corresponding
to arrows which are not in @, this i1s the same as the complex arising with M and
N interchanged. The result follows. O

2. CLASSIFICATION OF v-GENERATED MODULES

Let @ be a quiver with vertex set I and let K be a field. Recall that, according
to Kac’s Theorem, the dimension vectors of indecomposable representations of @)
are exactly the positive roots for a suitable root system in ZZ.

If ¢ is a vertex, we denote by .S; the simple II(Q)-module whose dimension vector
is the ¢th coordinate vector ¢;, and on which all arrows act as zero. A II(Q)-module
1s said to be nilpotent if its only composition factors are the 5;.

If v is a vertex, we say that a II(Q)-module M is v-generated if it is cyclic,
generated by an element in e, M. We have the following result, which should be of
independent interest.

Lemma 2. Let o € N and let v be a verter with o, = 1.

(1) If there 1s a v-generated II(Q)-module of dimension «, then « is a root.

(2) If a is a real root, then there is a unique v-generated module of dimension c.

(2') The modules in (2) are nilpotent.

(3) If « is an imaginary root, and K is algebraically closed of characteristic zero,
then there are infinitely many v-generated modules of dimension «.

We give two entirely separate proofs. The first one proves (1), (2) and (2).
The second one, valid only when K is algebraically closed of characteristic zero,
deduces (1), (2) and (3) rather easily from the fact that a certain moduli space can
be described in two different ways. In our application later we have K = C and
only need (1) and (2), so either proof would have sufficed.

If M is a module and 2 a vertex, then elements &;,...,&4 € Extl(M, S;) define
an extension

058 >E—M—0.

The universal extension of M by S; is the module E obtained by taking &1,...,&4
to be a basis of Extl(M, S:). It is unique up to isomorphism. Note that E is
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v-generated with v # ¢ if and only if M is v-generated and the &; are linearly
independent.

Proof of Lemma 2 (1), (2) and (2"). (1) We prove this by induction on ), ;. Sup-
pose that there is a v-generated module M of dimension «. If (a,¢) > 0 for
some vertex i # v then ¢ must be loopfree. Since M is v-generated, we have
Hom(M, S;) = 0, so d = dimHom(S;, M) > (a,¢;) > 0 by the homological formula.
Thus M has a v-generated quotient of dimension 7 = o — de;. By induction G 1s a
root, and so also is its reflection

5:(B) = B — (B, &)

which is equal to o + (d — (@, &))e;. Thus « is a root by [8], §1 Condition (R2).

Thus suppose that («, ¢;) < 0for all i # v. If («, €y) < 0, then since the existence
of M clearly implies that « has connected support, 1t 1s in the fundamental region,
hence a root. Now suppose that (a,€,) > 0. Leaving out the trivial case o = ¢,,
this implies that v is connected in @ to only one vertex ¢ with o; > 0, this vertex
has a; = 1, and (a,¢;) = 1. But now there is a unique arrow in @ from v to 4,
say a, and a unique reverse arrow, a*. In any representation of dimension «, these
arrows are represented by 1 x l-matrices with product zero, so one of them must
be zero. Now since M is v-generated, it must be a* which is zero. Thus M has an
i-generated submodule of dimension s,(a) = o — ¢,. By induction this is a root,
hence so is a.

(2) Again we prove this by induction on ), «;. Suppose that («,€) > 0 for
some vertex ¢ # v. Then ¢ must be loopfree. Now s;(a) = o — (a, €;)¢; is a real
root, so by induction there is a unique v-generated module N of this dimension.
Now s;() — ¢; is not a root, since

(si() — €, 8(a) — &) =4+ 2(c, &),

so by (1) we must have Hom(S;, N) = 0. Also Hom(N,S;) = 0 since N is v-
generated. Thus dim Extl(N, S:) = (e, &), and the universal extension

0—>S§O"E‘)—>M—>N—>O

1s a v-generated module of dimension «. Moreover this module is unique, since
any v-generated module M of dimension « has Ext'(M,S;) = 0 (as a non-split
extension gives a v-generated module of dimension « + ¢;, but this is not a root),
so it has dimHom(S;, M) = («, ¢;), and by the uniqueness of N it fits into an exact
sequence as above.

Thus suppose that («,¢;) < 0 for all ¢ # v. Since « is a real root, it follows that
(o, €4) > 0, and apart from the trivial case a = ¢,, we are in the situation as in (1)
of arrows @ : v — ¢, a* 14 — v, with oy = 1 and (e, ¢;) = 1. Now a — €, = sy(c)
1s a real root, so there is a unique ¢-generated module of this dimension, and now
taking a to be a non-zero 1 x 1 matrix and a* to be zero, we clearly get a unique
v-generated module of dimension a.

Finally (2') follows by inspection. O

3. MODULI SPACES

Let @ be a quiver with vertex set I and let K be an algebraically closed field of
characteristic zero. If & € N, then K@Q-modules of dimension vector a are given



ON THE EXCEPTIONAL FIBRES OF KLEINIAN SINGULARITIES 5

by elements of the variety

Rep(Q, @) = H Mat(a; X o, K).
aeﬁ'

at—g

We denote by Rep(TI(Q), @) the closed subspace of Rep(@,«) corresponding to
modules for II(Q). The group
GL(a) = [ GL(a, K)
i€l

acts on both of these spaces, and the orbits correspond to isomorphism classes.

Let 8 be a homomorphism Z! — Z. A K@Q-module M is said to be f-semistable
(respectively 6-stable) if (dim M) = 0, but §(dim M’) > 0 for every submodule
M’ C M (respectively 6(dim M’) > 0 for all non-zero proper submodules M’ of M).
King [10] has constructed a moduli space of 6-semistable K @-modules of dimension
vector . As a closed subset of this, there is a moduli space M(II(Q), &) of 6-
semistable II(Q)-modules of dimension «. Recall that two modules determine the
same element in the moduli space if they have filtrations by 8-stable modules having
the same associated graded modules. In particular, if

&3] 8(5) # 0 for all G strictly between 0 and «

then all f-semistable modules of dimension « are f-stable, so the points of the
moduli space correspond to isomorphism classes of §-semistable modules.
If A € K7 then the deformed preprojective algebra of weight X is defined by

Q) = K0/(Ylaa] - 3 hiew).
aeQ iel

We denote by Rep(II*(@),a) the closed subset of Rep(Q,«) corresponding to
I*(Q)-modules, and by Rep(II1*(Q), «) / GL(«) the affine quotient variety.

Lemma 3. If K = C, A € Z% and 8 is defined by 8(8) = >_, \iB:, then there is a
set-theoretic bijection between My(II(Q), «) and Rep(TTN(Q), @) J/ GL(«).

Proof. This arises because both spaces occur as hyper-Kahler quotients. The proof
is already familiar to specialists, see for example Section 8 of [14]. We make
Rep(Q, @) into a left module for the quaternions H = R ¢ Ri® Rj ¢ Rk with
the action of i given by the existing complex structure, and the action of j given by
i(za,zar)acq = (—ale, 2l)ace,
where 1 1s the conjugate transpose. Now the product of unitary groups
U(e) =[] U(es)
i€l

acts, and there are moment maps defined for z € Rep(Q, o) by
pe(z) = Z[:ca, Tar] € HMat(ai, C) and pg(z) = % E[ma, zl] e HLie U(ey).

aEQR 1=y a€qQ 1=y

Letting h = (i — k)/+/2, direct calculation shows that

pe(he) = 5 (uele)! — po(z)) — in(e) and pis(he) = & (uele)! + pc(a)).
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Since A € Z!, multiplication by A induces a bijection
(kg (X) Mg (0)) /U () — (6™ (0) N g (1/2)) /U (a).

Now [10], Proposition 6.5 (applied to the quiver @) implies that the orbit space
(,LL(El()\) N ,uﬂgl(O))/U(a) is bijective to the quotient Rep(I1*(Q), «) / GL(«), and
that (,LL(El(O) ﬁ,uﬂgl(i)\/2))/U(a) is bijective to the moduli space My(II(Q), ). O

Proof of Lemma 2 (1), (2) and (3). (K algebraically closed of characteristic zero.)
Let A € Z! be a vector with X; > 0 for 4 #+ v and EZ Xia; = 0, and let 6 be as in
Lemma 3. Clearly 6 satisfies the condition (}), and the moduli space My (II(Q), )
classifies the isomorphism classes of v-generated II(@)-modules of dimension «.

This moduli space is a variety which is defined over the algebraic closure of
@, so to determine the number of points it contains, finite or infinite, we may
assume that X = C. By Lemma 3, there is a bijection between M(II(@), &) and
Rep(I1*(@), @) / GL(a). Now Rep(II*(@), @) / GL(a) classifies the isomorphism
classes of semisimple I1*(@)-modules of dimension a. By the choice of A, there is
no dimension vector F strictly between 0 and « with >, A;5; = 0, and hence any
T*(Q)-module of dimension & must be simple ([4], Lemma 4.1).

Thus to prove (1), (2) and (3) it suffices to show that II1*(Q) has no simple module
of dimension a, a unique simple, or infinitely many simples, according to whether «
1s a non-root, a real root, or an imaginary root. This follows from the main theorem
of [3]. Actually, for such special A one doesn’t need the full strength of that theorem.
For example [3], Theorem 2.3 immediately implies that there is a simple module
for TI*(Q) of dimension « if and only if there is an indecomposable representation
of ) of dimension «, so if and only if « is a root, by Kac’s Theorem. O

4. REFORMULATION OF THE THEOREM

Let T be a finite subgroup of SL(2, C). We keep the notation of the introduction.
Let @ be the quiver with vertex set I = {0,1,...,n} obtained by choosing any
orientation of the McKay graph. It is an extended Dynkin quiver with minimal
positive imaginary root § € NY given by §; = dim N;. We consider the preprojective
algebra II(Q) with base field K = C. (Note that a different orientation of @ would
lead to an isomorphic preprojective algebra, see [4, Lemma 2.2]. However, some
choice does have to be made in order to define the preprojective algebra.) Choose
g : Z1 — Z with 6(§) = 0 and 6(e;) > 0 for all 4 # 0. Since §, = 1, a module
M of dimension § is f-semistable if and only if it is O-generated. Moreover, since
the condition (}) of Section 3 holds, the points in the moduli space My(II(Q), 6)
correspond to isomorphism classes of such modules. Now there is a projective
morphism

Mo(I(Q), 6) — Mo(1(@), 6),

and by Cassens and Slodowy [2] this is the minimal resolution of the Kleinian
singularity.

Let us explain why this 1s essentially the same as the Hilbert scheme construction
of X (see also [13]). Using the action of ' on R, one can form the skew group algebra
R * T, and letting

1
e:mz%

Yyer
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one can identify R together with the given action of I' with the left R x I'-module
(R#T)e. Now any element J € Hile(C2) defines an R * I'-module N = R/J with
the two properties

(1) N =ZCT as a CI'-module
(2) N is generated by an element in eN.

Moreover, (1) implies that eN is 1-dimensional, so that the generator in (2) is
unique, up to a scalar, and one recovers J as the annihilator of the generating
element. Now according to a calculation of Reiten and van den Bergh (see [4,
Theorem 0.1]), the algebra R * T’ is Morita equivalent to II(Q), with the module
(R*T')e corresponding to II(Q)eg, and R*I'-modules whose underlying CT-module
is isomorphic to CT corresponding to II(@))-modules of dimension vector 8. (For the
notion of Morita equivalence see [1].) It follows that My(II(Q), §) can be considered
as a moduli space of R % I'-modules N satisfying (1) and (2), up to isomorphism.
Thus M, (I1(Q), §) = Hilb™ (C?).

Under this isomorphism, the exceptional fibre in M(II(@), §) is given by the
nilpotent modules. In fact an arbitrary II(Q)-module of dimension § is either
nilpotent or simple, so its socle, soc M, is either the whole of M and simple, or
1t 1s a sum of simples §;. Clearly also, if M is 0-generated and of dimension §, since
8 = 1 we must have [soc M : Sg] = 0.

Lemma 4. Let J € Hile(C2) be wn the ezceptional fibre, and let M be the corre-
sponding II(Q)-module of dimension §. If i # 0, then

[V(J): N;] = dimExt*(M, S;) = dim Hom(S;, M) = [soc M : S;].

Proof. The right hand equality is obvious, and since M is generated by an element in
eo M, we have Hom(M, S;) = 0, so the middle equality follows from the homological
formula. Let N/ be the simple R * I'-module whose underlying CT'-module is equal
to N;, and on which @ and y act as zero. Since n = Ren and eN/ = 0, we have
Homp.r(n, N/) = 0, and hence by dimension shifting, since R is projective as a
R * T-module, Extx,p(n, N/) = 0. Now since the first and last terms in the exact
sequence

Homp.r(R/n, NY) — Homp.r(J/n, NY) — Bxthap(R/J, N!) — Bxthap(R/n, )
are zero, the two middle terms are isomorphic. But Hompg,r(J/n, N/) has dimension
[V(J) : N;], and Extk,(R/J, N}) = Ext'(M, S;) by the Morita equivalence. O

Theorem 1 can thus be reformulated as follows.

Theorem 2. The socle of any module in My(II(Q),8) has at most two simple
summands, and if two, they are non-isomorphic. Ifi # 0, then

E@) ={M |[soc M :S;] # 0}

is a closed subset of Mg(I1(Q), 8) 1somorphic to P1. Moreover E(i) meets E(j) if
and only if i and j are adjacent in Q, and in this case |E(Z) N E(j)| = 1.

Remark. The quotient m/n considered by Ito and Nakamura corresponds, under
the Morita equivalence between R x T’ and II(Q), to the II(Q)-module

P= @ (Q)e:/T(Q)eoI(Q)e; = @ (Q")e;,
aEQR a€Q

a:0—1 a:0—1
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where )’ is the Dynkin quiver obtained by deleting the vertex 0 from @. Now
preprojective algebras of Dynkin quivers are known to be finite-dimensional self-
injective algebras, and it is easy to see that P is a projective-injective module whose
top is isomorphic to its socle. Moreover, the decomposition of II(Q’) as the direct
sum of one copy of each indecomposable right C@Q’-module gives, on tensoring with
P, a vector space decomposition of P whose summands correspond to the spaces
Sm(m/n)[p] of Ito and Nakamura. Auslander-Reiten theory for @’ can be used to
compute the dimensions of these summands. This gives another approach to the
“duality theorems” of Ito and Nakamura [7].

5. PROOF oF THEOREM 2

We keep the notation of Section 4. Recall that for an extended Dynkin quiver
@, the set of real roots is invariant under translation by 6.

Lemma 5. There is no module in My(II(Q), §) whose socle involves two copies of
a ssmple S; or simples S; and S; where 1 and j are not adjacent in Q).

Proof. If there is such a module, then the quotient by the relevant length-two
submodule is a 0-generated module of dimension § — 2¢; or § — €; — ¢;, but neither
of these are roots. O

Lemma 6. Ifi# 0 and j £ 0 are adjacent in @, then there is a unique module in

M(II(Q), §) with socle S; & S;.

Proof. First existence. Since § —¢; —¢; is a real root, there is a unique 0-generated
module N of this dimension. Now

dimExt'(N, ;) = dim Hom(S;, N) + 1

and Hom(S;, N) = 0, for otherwise N has a quotient of dimension § — 2¢; — ¢;, but
this is not a root. Thus dim Ext'(N,S;) = 1, and similarly dim Ext! (N, S;) =1L
Now there is a “simultaneous universal extension”

0—>S¢@S}’—>M—>N—>O.

Clearly M has dimension é, and its socle contains S; & S;. By Lemma b its socle
can be no larger than this.

For uniqueness, note that any module M in M, (II(Q), §) with socle S; & S; fits
in an exact sequence of the same form, and since N is unique up to isomorphism,
and dim Ext'(N, S;) = dim Ext! (N, S;) = 1, the uniqueness of M follows. O

Lemma 7. Ifi # 0 then E(3) is closed in Mqo(I(Q), §) and E(:) = PL.

Proof. Since § + ¢; 1s a real root, there is a unique 0-generated module L of this
dimension. By the homological formula dim Hom(S;, L) > 2, and we have equality,
for otherwise L has a quotient of dimension § — 2¢;, but this is not a root.

Any module M in E(i) has dimExt'(M,S;) = 1, and the middle term of the
non-split exact sequence must be isomorphic to L. Thus M is isomorphic to a
quotient of L by a submodule isomorphic to S;. Thus, taking cokernels defines a
map ¢ : P(Hom(S;, L)) — E(i), which is onto, and clearly also 1-1 since L has
trivial endomorphism ring. Since P(Hom(S;, L)) =2 P!, this gives the result, except
that we need to prove that ¢ and its inverse are morphisms of varieties, and for this
we need to go into the details of moduli spaces.
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Let Rep(II(@),6)s be the open set of -semistable elements of Rep(II(Q), §).
Since #-semistable modules for II(Q) of dimension § are automatically 6-stable,
Mo(II(Q), §) is the geometric quotient of Rep(II(Q), 8)s by GL(8).

If a,b is a basis for Hom(S;, L), then its coordinate ring is Clz,y] where z,y
1s the dual basis to a,b. We consider the map S; ® R — L ® R sending s ® r
to a(s) ® @r + b(s) ® yr. The cokernel of this map is a II(Q)-C[z, y]-bimodule B.
Tensoring B with any simple C[z, y]-module, except for the one on which z and y
act as zero, gives a f-semistable II(Q)-module of dimension §. Thus B defines a
morphism from Hom(S;, L) \ {0} to Rep(II(Q), 6)s. This descends to a morphism
from P(Hom(S;, L)) to M (II(Q), §), which is clearly equal to ¢, so ¢ is a morphism.
Note that this implies that E(¢) is a closed subset.

Now E(%) is the image in My (II(Q), §) of

F(i) = {M € Rep(I1(Q), §)s | Hom(S;, M) # 0}.

If M € F(i) then dimHom(L, M) = 1, so if U is the variety consisiting of pairs
(M, f) where M € F(i) and 0 # f € Hom(L, M), then the map U — F(i) is a
geometric quotient for the action of C* which rescales f. Also, if V' is the variety of
triples (M, f, g) where (M, f) € U and 0 # g € Hom(S;, L) is a map with fg = 0,
then V' — U is a geometric quotient for the action of C* which rescales g. Now the
natural map V — P(Hom(S;, L)) is invariant under all of the group actions, so it
descends to a morphism from U, then to a morphism from F(7), and finally to a
morphism F(i) — P(Hom(S;, L)). Thus ¢~! is a morphism. O

Theorem 2 now follows from Lemmas 5, 6 and 7. Note that the theorem holds,
with this proof, for an arbitrary algebraically closed base field of characteristic zero.
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