
ON THE EXCEPTIONAL FIBRES OF KLEINIANSINGULARITIESWILLIAM CRAWLEY-BOEVEYAbstract. We give a new proof, avoiding case-by-case analysis, of a theoremof Y. Ito and I. Nakamura which provides a module-theoretic interpretation ofthe bijection between the irreducible components of the exceptional �bre for aKleinian singularity, and the non-trivial simple modules for the corresponding�nite subgroup of SL(2;C). Our proof uses a classi�cation of certain cyclicmodules for preprojective algebras.IntroductionLet � be a �nite subgroup of SL(2; C ), let X = C 2=� be the correspondingKleinian singularity and let � : ~X ! X be its minimal resolution of singularities.The exceptional �bre E, the �bre of � over the singular point of X, is known tobe a union of projective lines meeting transversally, and the graph whose verticescorrespond to the irreducible components of E, with two vertices joined if and onlyif the components intersect, is a Dynkin diagram (of one of the types An, Dn, E6,E7, E8).If N0; N1; : : : ; Nn are a complete set of simple C�-modules, with N0 the trivialmodule, then the McKay graph of � has vertex set f0; 1; : : :; ng and the numberof edges between i and j is the multiplicity [V 
 Ni : Nj ] where V is the natural2-dimensional C�-module. According to the McKay correspondence [12], this is anextended Dynkin diagram with extending vertex 0.These two diagrams were related by Gonzalez-Sprinberg and Verdier [5], whoshowed that there is a natural bijection between the irreducible components of theexceptional �bre and the non-trivial irreducible representations of �. Recently Itoand Nakamura [6, 7] found a beautiful new interpretation of this bijection, and theirwork has already been used by Kapranov and Vasserot [9] in their proof that thederived category of ~X is equivalent to the derived category of �-equivariant sheaveson C 2 . Unfortunately, both the work of Gonzalez-Sprinberg and Verdier, and ofIto and Nakamura, requires extensive case-by-case analysis for the di�erent Dynkindiagrams. In this article we give a new proof of the theorem of Ito and Nakamura,which avoids such case-by-case analysis.The theorem of Ito and Nakamura is as follows. Since � acts on C 2 , it also actson the coordinate ring R = C [x; y], and on the Hilbert scheme Hilbd(C 2 ) of idealsof codimension d in R (as vector spaces). Ito and Nakamura observe that ~X isisomorphic toHilb�(C 2 ) = fJ 2 Hilbj�j(C 2 ) j J is �-invariant and R=J �= C� as a C�-moduleg:1991 Mathematics Subject Classi�cation. Primary 14E15; Secondary 14J17, 16G20.1



2 WILLIAM CRAWLEY-BOEVEYIf m is the ideal in R generated by x and y, then the exceptional �bre E correspondsto the m-primary ideals in Hilb�(C 2). It follows that any J 2 E contains the idealn = R(m\R�), and that V (J) = J=(mJ+n) is a C�-module with [V (J) : N0] = 0.Theorem 1. If J 2 E then V (J) is a sum of one or two simple C�-modules, andif two, they are non-isomorphic. If i 6= 0 thenE(i) = fJ 2 E j [V (J) : Ni] 6= 0gis a closed subset of E isomorphic to P1. Moreover E(i) meets E(j) if and only ifi and j are adjacent in the McKay graph, and in this case jE(i) \E(j)j = 1.In fact, the Hilbert scheme construction of ~X is known to be equivalent to amoduli space construction of ~X due to Kronheimer [11], reformulated using geo-metric invariant theory by Cassens and Slodowy [2]. We describe the correspondingreformulation of Theorem 1 in Section 4. We then prove this in Section 5, using aresult about cyclic modules for preprojective algebras which is proved in Sections 2and 3. This result, Lemma 2 should be of independent interest.I should like to thank R.-O. Buchweitz for bringing this problem to my attentionwhen I visited him in April 1999, and both him and the University of Toronto fortheir hospitality.1. Preprojective algebras and a homological formulaLet Q be a quiver with vertex set I and let K be a �eld. The preprojectivealgebra is �(Q) = KQ=(Xa2Q[a; a�]);where Q is the double of Q, obtained by adjoining an arrow a� : j ! i for eacharrow a : i ! j in Q, and KQ is the path algebra of Q. See for example [4]. (Forthe de�nition of the path algebra, see for example [1].) Let ei be the trivial pathat vertex i. Any �nite dimensional module M for �(Q) or KQ has a dimensionvector dimM 2 NI whose ith component is dimeiM . Let (�;�) be the symmetricbilinear form on ZI de�ned by(�; �) =Xi2I 2�i�i � Xa2Qa:i!j�i�j :Lemma 1. If M and N are �nite dimensional �(Q)-modules, thendimExt1(M;N ) = dimHom(M;N ) + dimHom(N;M )� (dimM; dimN ):Proof. For simplicity we write � for �(Q). It is easy to see that M has a projectiveresolution which starts� � � !Mi2I �ei 
 eiM f�! Ma2Qa:i!j�ej 
 eiM g�!Mi2I �ei 
 eiM h�!M ! 0;where f is de�ned byf(Xi pi 
mi) = Xa2Qa:i!j(pia� 
mi � pj 
 a�mj)a � (pja
mj � pi 
 ami)a�



ON THE EXCEPTIONAL FIBRES OF KLEINIAN SINGULARITIES 3for pi 2 �ei and mi 2 eiM ; g is de�ned on the summand corresponding to an arrowa : i ! j in Q by g(p 
m) = (pa 
m)i � (p 
 am)j for p in �ej and m in eiM ;and h is multiplication. Computing the homomorphisms to N , and identifyingHom(�ej 
 eiM;N ) with HomK(eiM; ejN ), gives a complex0!Mi2I HomK(eiM; eiN )! Ma2Qa:i!jHomK(eiM; ejN )!Mi2I HomK(eiM; eiN )in which the left hand cohomology is Hom(M;N ) and the middle cohomology isExt1(M;N ). Moreover, the alternating sum of the dimensions of the terms is(dimM; dimN ). It remains to prove that the cokernel of the right hand map has thesame dimension as Hom(N;M ). But using the trace map to identify HomK(U; V )�with HomK(V; U ), the dual of this complex isMi2I HomK(eiN; eiM )! Ma2Qa:i!jHomK(eiN; ejM )!Mi2I HomK(eiN; eiM )! 0;and, up to changing the sign of components in the second direct sum correspondingto arrows which are not in Q, this is the same as the complex arising with M andN interchanged. The result follows.2. Classification of v-generated modulesLet Q be a quiver with vertex set I and let K be a �eld. Recall that, accordingto Kac's Theorem, the dimension vectors of indecomposable representations of Qare exactly the positive roots for a suitable root system inZI.If i is a vertex, we denote by Si the simple �(Q)-module whose dimension vectoris the ith coordinate vector �i, and on which all arrows act as zero. A �(Q)-moduleis said to be nilpotent if its only composition factors are the Si.If v is a vertex, we say that a �(Q)-module M is v-generated if it is cyclic,generated by an element in evM . We have the following result, which should be ofindependent interest.Lemma 2. Let � 2 NI and let v be a vertex with �v = 1.(1) If there is a v-generated �(Q)-module of dimension �, then � is a root.(2) If � is a real root, then there is a unique v-generated module of dimension �.(20) The modules in (2) are nilpotent.(3) If � is an imaginary root, and K is algebraically closed of characteristic zero,then there are in�nitely many v-generated modules of dimension �.We give two entirely separate proofs. The �rst one proves (1), (2) and (20).The second one, valid only when K is algebraically closed of characteristic zero,deduces (1), (2) and (3) rather easily from the fact that a certain moduli space canbe described in two di�erent ways. In our application later we have K = C andonly need (1) and (2), so either proof would have su�ced.If M is a module and i a vertex, then elements �1; : : : ; �d 2 Ext1(M;Si) de�nean extension 0! Sdi ! E !M ! 0:The universal extension of M by Si is the module E obtained by taking �1; : : : ; �dto be a basis of Ext1(M;Si). It is unique up to isomorphism. Note that E is



4 WILLIAM CRAWLEY-BOEVEYv-generated with v 6= i if and only if M is v-generated and the �j are linearlyindependent.Proof of Lemma 2 (1), (2) and (20). (1) We prove this by induction onPi �i. Sup-pose that there is a v-generated module M of dimension �. If (�; �i) > 0 forsome vertex i 6= v then i must be loopfree. Since M is v-generated, we haveHom(M;Si) = 0, so d = dimHom(Si;M ) � (�; �i) > 0 by the homological formula.Thus M has a v-generated quotient of dimension � = �� d�i. By induction � is aroot, and so also is its re
ectionsi(�) = � � (�; �i)�iwhich is equal to �+ (d� (�; �i))�i. Thus � is a root by [8], x1 Condition (R2).Thus suppose that (�; �i) � 0 for all i 6= v. If (�; �v) � 0, then since the existenceof M clearly implies that � has connected support, it is in the fundamental region,hence a root. Now suppose that (�; �v) > 0. Leaving out the trivial case � = �v,this implies that v is connected in Q to only one vertex i with �i > 0, this vertexhas �i = 1, and (�; �i) = 1. But now there is a unique arrow in Q from v to i,say a, and a unique reverse arrow, a�. In any representation of dimension �, thesearrows are represented by 1 � 1-matrices with product zero, so one of them mustbe zero. Now since M is v-generated, it must be a� which is zero. Thus M has ani-generated submodule of dimension sv(�) = � � �v. By induction this is a root,hence so is �.(2) Again we prove this by induction on Pi �i. Suppose that (�; �i) > 0 forsome vertex i 6= v. Then i must be loopfree. Now si(�) = � � (�; �i)�i is a realroot, so by induction there is a unique v-generated module N of this dimension.Now si(�)� �i is not a root, since(si(�)� �i; si(�)� �i) = 4 + 2(�; �i);so by (1) we must have Hom(Si; N ) = 0. Also Hom(N;Si) = 0 since N is v-generated. Thus dimExt1(N;Si) = (�; �i), and the universal extension0! S(�;�i)i !M ! N ! 0is a v-generated module of dimension �. Moreover this module is unique, sinceany v-generated module M of dimension � has Ext1(M;Si) = 0 (as a non-splitextension gives a v-generated module of dimension � + �i, but this is not a root),so it has dimHom(Si;M ) = (�; �i), and by the uniqueness of N it �ts into an exactsequence as above.Thus suppose that (�; �i) � 0 for all i 6= v. Since � is a real root, it follows that(�; �v) > 0, and apart from the trivial case � = �v, we are in the situation as in (1)of arrows a : v ! i, a� : i ! v, with �i = 1 and (�; �i) = 1. Now � � �v = sv(�)is a real root, so there is a unique i-generated module of this dimension, and nowtaking a to be a non-zero 1� 1 matrix and a� to be zero, we clearly get a uniquev-generated module of dimension �.Finally (20) follows by inspection.3. Moduli spacesLet Q be a quiver with vertex set I and let K be an algebraically closed �eld ofcharacteristic zero. If � 2 NI, then KQ-modules of dimension vector � are given



ON THE EXCEPTIONAL FIBRES OF KLEINIAN SINGULARITIES 5by elements of the varietyRep(Q;�) = Ya2Qa:i!jMat(�j � �i;K):We denote by Rep(�(Q); �) the closed subspace of Rep(Q;�) corresponding tomodules for �(Q). The groupGL(�) =Yi2IGL(�i;K)acts on both of these spaces, and the orbits correspond to isomorphism classes.Let � be a homomorphismZI !Z. A KQ-module M is said to be �-semistable(respectively �-stable) if �(dimM ) = 0, but �(dimM 0) � 0 for every submoduleM 0 �M (respectively �(dimM 0) > 0 for all non-zero proper submodulesM 0 ofM ).King [10] has constructed a moduli space of �-semistable KQ-modules of dimensionvector �. As a closed subset of this, there is a moduli space M�(�(Q); �) of �-semistable �(Q)-modules of dimension �. Recall that two modules determine thesame element in the moduli space if they have �ltrations by �-stable modules havingthe same associated graded modules. In particular, if�(�) 6= 0 for all � strictly between 0 and �(z)then all �-semistable modules of dimension � are �-stable, so the points of themoduli space correspond to isomorphism classes of �-semistable modules.If � 2 KI then the deformed preprojective algebra of weight � is de�ned by��(Q) = KQ=(Xa2Q[a; a�]�Xi2I �iei):We denote by Rep(��(Q); �) the closed subset of Rep(Q;�) corresponding to��(Q)-modules, and by Rep(��(Q); �) //GL(�) the a�ne quotient variety.Lemma 3. If K = C , � 2ZI and � is de�ned by �(�) =Pi �i�i, then there is aset-theoretic bijection between M�(�(Q); �) and Rep(��(Q); �) //GL(�).Proof. This arises because both spaces occur as hyper-K�ahler quotients. The proofis already familiar to specialists, see for example Section 8 of [14]. We makeRep(Q;�) into a left module for the quaternions H = R� Ri � Rj� Rk withthe action of i given by the existing complex structure, and the action of j given byj(xa; xa�)a2Q = (�xya� ; xya)a2Q;where y is the conjugate transpose. Now the product of unitary groupsU (�) =Yi2I U (�i)acts, and there are moment maps de�ned for x 2 Rep(Q;�) by�C(x) =Xa2Q[xa; xa�] 2Yi2IMat(�i; C ) and �R(x) = i2Xa2Q[xa; xya] 2Yi2I LieU (�i):Letting h = (i� k)=p2, direct calculation shows that�C(hx) = 12��C(x)y � �C(x)� � i�R(x) and �R(hx) = i2��C(x)y + �C(x)�:



6 WILLIAM CRAWLEY-BOEVEYSince � 2ZI, multiplication by h induces a bijection���1C (�) \ ��1R(0)�=U (�)! ���1C (0) \ ��1R(i�=2)�=U (�):Now [10], Proposition 6.5 (applied to the quiver Q) implies that the orbit space���1C (�) \ ��1R(0)�=U (�) is bijective to the quotient Rep(��(Q); �) //GL(�), andthat ���1C (0)\��1R(i�=2)�=U (�) is bijective to the moduli space M�(�(Q); �).Proof of Lemma 2 (1), (2) and (3). (K algebraically closed of characteristic zero.)Let � 2ZI be a vector with �i > 0 for i 6= v and Pi �i�i = 0, and let � be as inLemma 3. Clearly � satis�es the condition (z), and the moduli space M�(�(Q); �)classi�es the isomorphism classes of v-generated �(Q)-modules of dimension �.This moduli space is a variety which is de�ned over the algebraic closure ofQ, so to determine the number of points it contains, �nite or in�nite, we mayassume that K = C . By Lemma 3, there is a bijection between M�(�(Q); �) andRep(��(Q); �) //GL(�). Now Rep(��(Q); �) //GL(�) classi�es the isomorphismclasses of semisimple ��(Q)-modules of dimension �. By the choice of �, there isno dimension vector � strictly between 0 and � with Pi �i�i = 0, and hence any��(Q)-module of dimension � must be simple ([4], Lemma 4.1).Thus to prove (1), (2) and (3) it su�ces to show that ��(Q) has no simplemoduleof dimension �, a unique simple, or in�nitely many simples, according to whether �is a non-root, a real root, or an imaginary root. This follows from the main theoremof [3]. Actually, for such special � one doesn't need the full strength of that theorem.For example [3], Theorem 2.3 immediately implies that there is a simple modulefor ��(Q) of dimension � if and only if there is an indecomposable representationof Q of dimension �, so if and only if � is a root, by Kac's Theorem.4. Reformulation of the theoremLet � be a �nite subgroup of SL(2; C ). We keep the notation of the introduction.Let Q be the quiver with vertex set I = f0; 1; : : :; ng obtained by choosing anyorientation of the McKay graph. It is an extended Dynkin quiver with minimalpositive imaginary root � 2 NI given by �i = dimNi. We consider the preprojectivealgebra �(Q) with base �eld K = C . (Note that a di�erent orientation of Q wouldlead to an isomorphic preprojective algebra, see [4, Lemma 2.2]. However, somechoice does have to be made in order to de�ne the preprojective algebra.) Choose� : ZI ! Zwith �(�) = 0 and �(�i) > 0 for all i 6= 0. Since �0 = 1, a moduleM of dimension � is �-semistable if and only if it is 0-generated. Moreover, sincethe condition (z) of Section 3 holds, the points in the moduli space M�(�(Q); �)correspond to isomorphism classes of such modules. Now there is a projectivemorphism M�(�(Q); �)!M0(�(Q); �);and by Cassens and Slodowy [2] this is the minimal resolution of the Kleiniansingularity.Let us explain why this is essentially the same as the Hilbert scheme constructionof ~X (see also [13]). Using the action of � on R, one can form the skew group algebraR � �, and letting e = 1j�jX
2� 
;



ON THE EXCEPTIONAL FIBRES OF KLEINIAN SINGULARITIES 7one can identify R together with the given action of � with the left R � �-module(R � �)e. Now any element J 2 Hilb�(C 2) de�nes an R � �-module N = R=J withthe two properties(1) N �= C� as a C�-module(2) N is generated by an element in eN .Moreover, (1) implies that eN is 1-dimensional, so that the generator in (2) isunique, up to a scalar, and one recovers J as the annihilator of the generatingelement. Now according to a calculation of Reiten and van den Bergh (see [4,Theorem 0.1]), the algebra R � � is Morita equivalent to �(Q), with the module(R��)e corresponding to �(Q)e0, and R��-modules whose underlying C�-moduleis isomorphic to C� corresponding to �(Q)-modules of dimension vector �. (For thenotion of Morita equivalence see [1].) It follows thatM�(�(Q); �) can be consideredas a moduli space of R � �-modules N satisfying (1) and (2), up to isomorphism.Thus M�(�(Q); �) �= Hilb�(C 2 ).Under this isomorphism, the exceptional �bre in M�(�(Q); �) is given by thenilpotent modules. In fact an arbitrary �(Q)-module of dimension � is eithernilpotent or simple, so its socle, socM , is either the whole of M and simple, orit is a sum of simples Si. Clearly also, ifM is 0-generated and of dimension �, since�0 = 1 we must have [socM : S0] = 0.Lemma 4. Let J 2 Hilb�(C 2 ) be in the exceptional �bre, and let M be the corre-sponding �(Q)-module of dimension �. If i 6= 0, then[V (J) : Ni] = dimExt1(M;Si) = dimHom(Si;M ) = [socM : Si]:Proof. The right hand equality is obvious, and sinceM is generated by an element ine0M , we have Hom(M;Si) = 0, so the middle equality follows from the homologicalformula. Let N 0i be the simple R � �-module whose underlying C�-module is equalto Ni, and on which x and y act as zero. Since n = Ren and eN 0i = 0, we haveHomR��(n; N 0i) = 0, and hence by dimension shifting, since R is projective as aR � �-module, Ext1R��(n; N 0i) = 0. Now since the �rst and last terms in the exactsequenceHomR��(R=n; N 0i)! HomR��(J=n; N 0i)! Ext1R��(R=J;N 0i)! Ext1R��(R=n; N 0i)are zero, the two middle terms are isomorphic. But HomR��(J=n; N 0i) has dimension[V (J) : Ni], and Ext1R��(R=J;N 0i) �= Ext1(M;Si) by the Morita equivalence.Theorem 1 can thus be reformulated as follows.Theorem 2. The socle of any module in M�(�(Q); �) has at most two simplesummands, and if two, they are non-isomorphic. If i 6= 0, thenE(i) = fM j [socM : Si] 6= 0gis a closed subset of M�(�(Q); �) isomorphic to P1. Moreover E(i) meets E(j) ifand only if i and j are adjacent in Q, and in this case jE(i) \E(j)j = 1.Remark. The quotient m=n considered by Ito and Nakamura corresponds, underthe Morita equivalence between R � � and �(Q), to the �(Q)-moduleP = Ma2Qa:0!i�(Q)ei=�(Q)e0�(Q)ei �= Ma2Qa:0!i�(Q0)ei;



8 WILLIAM CRAWLEY-BOEVEYwhere Q0 is the Dynkin quiver obtained by deleting the vertex 0 from Q. Nowpreprojective algebras of Dynkin quivers are known to be �nite-dimensional self-injective algebras, and it is easy to see that P is a projective-injective module whosetop is isomorphic to its socle. Moreover, the decomposition of �(Q0) as the directsum of one copy of each indecomposable right CQ0 -module gives, on tensoring withP , a vector space decomposition of P whose summands correspond to the spacesSm(m=n)[�] of Ito and Nakamura. Auslander-Reiten theory for Q0 can be used tocompute the dimensions of these summands. This gives another approach to the\duality theorems" of Ito and Nakamura [7].5. Proof of Theorem 2We keep the notation of Section 4. Recall that for an extended Dynkin quiverQ, the set of real roots is invariant under translation by �.Lemma 5. There is no module in M�(�(Q); �) whose socle involves two copies ofa simple Si or simples Si and Sj where i and j are not adjacent in Q.Proof. If there is such a module, then the quotient by the relevant length-twosubmodule is a 0-generated module of dimension � � 2�i or � � �i � �j, but neitherof these are roots.Lemma 6. If i 6= 0 and j 6= 0 are adjacent in Q, then there is a unique module inM�(�(Q); �) with socle Si � Sj .Proof. First existence. Since �� �i� �j is a real root, there is a unique 0-generatedmodule N of this dimension. NowdimExt1(N;Si) = dimHom(Si; N ) + 1and Hom(Si; N ) = 0, for otherwise N has a quotient of dimension � � 2�i � �j, butthis is not a root. Thus dimExt1(N;Si) = 1, and similarly dimExt1(N;Sj) = 1.Now there is a \simultaneous universal extension"0! Si � Sj !M ! N ! 0:Clearly M has dimension �, and its socle contains Si � Sj . By Lemma 5 its soclecan be no larger than this.For uniqueness, note that any module M in M�(�(Q); �) with socle Si � Sj �tsin an exact sequence of the same form, and since N is unique up to isomorphism,and dimExt1(N;Si) = dimExt1(N;Sj) = 1, the uniqueness of M follows.Lemma 7. If i 6= 0 then E(i) is closed in M�(�(Q); �) and E(i) �= P1.Proof. Since � + �i is a real root, there is a unique 0-generated module L of thisdimension. By the homological formula dimHom(Si; L) � 2, and we have equality,for otherwise L has a quotient of dimension � � 2�i, but this is not a root.Any module M in E(i) has dimExt1(M;Si) = 1, and the middle term of thenon-split exact sequence must be isomorphic to L. Thus M is isomorphic to aquotient of L by a submodule isomorphic to Si. Thus, taking cokernels de�nes amap c : P(Hom(Si; L)) ! E(i), which is onto, and clearly also 1-1 since L hastrivial endomorphism ring. Since P(Hom(Si; L)) �= P1, this gives the result, exceptthat we need to prove that c and its inverse are morphisms of varieties, and for thiswe need to go into the details of moduli spaces.



ON THE EXCEPTIONAL FIBRES OF KLEINIAN SINGULARITIES 9Let Rep(�(Q); �)� be the open set of �-semistable elements of Rep(�(Q); �).Since �-semistable modules for �(Q) of dimension � are automatically �-stable,M�(�(Q); �) is the geometric quotient of Rep(�(Q); �)� by GL(�).If a; b is a basis for Hom(Si; L), then its coordinate ring is C [x; y] where x; yis the dual basis to a; b. We consider the map Si 
 R ! L 
 R sending s 
 rto a(s) 
 xr + b(s) 
 yr. The cokernel of this map is a �(Q)-C [x; y]-bimodule B.Tensoring B with any simple C [x; y]-module, except for the one on which x and yact as zero, gives a �-semistable �(Q)-module of dimension �. Thus B de�nes amorphism from Hom(Si; L) n f0g to Rep(�(Q); �)�. This descends to a morphismfromP(Hom(Si; L)) toM�(�(Q); �), which is clearly equal to c, so c is a morphism.Note that this implies that E(i) is a closed subset.Now E(i) is the image in M�(�(Q); �) ofF (i) = fM 2 Rep(�(Q); �)� j Hom(Si;M ) 6= 0g:If M 2 F (i) then dimHom(L;M ) = 1, so if U is the variety consisiting of pairs(M; f) where M 2 F (i) and 0 6= f 2 Hom(L;M ), then the map U ! F (i) is ageometric quotient for the action of C � which rescales f . Also, if V is the variety oftriples (M; f; g) where (M; f) 2 U and 0 6= g 2 Hom(Si; L) is a map with fg = 0,then V ! U is a geometric quotient for the action of C � which rescales g. Now thenatural map V ! P(Hom(Si; L)) is invariant under all of the group actions, so itdescends to a morphism from U , then to a morphism from F (i), and �nally to amorphism E(i)! P(Hom(Si; L)). Thus c�1 is a morphism.Theorem 2 now follows from Lemmas 5, 6 and 7. Note that the theorem holds,with this proof, for an arbitrary algebraically closed base �eld of characteristic zero.References[1] D. J. Benson,Representations and cohomology I: Basic representation theory of �nite groupsand associative algebras, Cambridge Univ. Press, 1991.[2] H. Cassens and P. Slodowy, On Kleinian singularities and quivers, Singularities (Oberwol-fach, 1996), Progress in Math. 162, Birkh�auser, Basel, 1998, pp. 263{288.[3] W. Crawley-Boevey, Geometry of the momentmap for representations of quivers, to appearin Compositio Math.[4] W. Crawley-Boevey and M. P. Holland, Noncommutative deformations of Kleinian singu-larities, Duke Math. J. 92 (1998), 605{635.[5] G. Gonzalez-Sprinberg and J. L. Verdier, Construction g�eom�etrique de la correspondancede McKay, Ann. scient. �Ec. Norm. Sup. 16 (1983), 409{449.[6] Y. Ito and I. Nakamura, McKay correspondence and Hilbert schemes, Proc. Japan Acad.72A (1996), 135{138.[7] Y. Ito and I. Nakamura, Hilbert schemes and simple singularities, Algebraic Geometry,(Proc. Warwick, 1996, K. Hulek et al., eds.), Cambridge Univ. Press, 1999, pp. 151{233.[8] V. G. Kac, Some remarks on representations of quivers and in�nite root systems, Represen-tation theory II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979, V. Dlaband P. Gabriel, eds.), Lecture Notes in Math. 832, Springer, Berlin, 1980, pp. 311{327.[9] M. Kapranov and E. Vasserot, Kleinian singularities, derived categories and Hall algebras,preprint math.AG/9812016.[10] A. D. King, Moduli of representations of �nite dimensional algebras,Quart. J. Math. Oxford45 (1994), 515{530.[11] P. B. Kronheimer, The construction of ALE spaces as hyper-K�ahler quotients, J. Di�.Geometry 29 (1989), 665{683.[12] J. McKay, Graphs, singularities, and �nite groups, The Santa Cruz Conference on FiniteGroups (Univ. California, Santa Cruz, Calif., 1979, B. Cooperstein and G. Mason, eds.),Proc. Sympos. Pure Math. 37 (1980), pp. 183{186,
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