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These lecture notes are about the variety Mod(A,r) of r-dimensional
modules for an associative algebra A, and to a lesser extent about the
variety Alg(n) of n-dimensional associative algebras. My aim was to
cover a number of different topics, showing how these varieties have
been used to study algebras and their modules. I place special
emphasis on representations of quivers, that is, modules for path
algebras.

I begin with the notion of a variety, quickly going through the
definitions, and illustrating them with examples from representations
of algebras. Among the results that I cover from algebraic geometry
are the fact that Grassmannians are projective varieties, and
Chevalley’s theorems about semicontinuous functions and constructible
sets.

My first topic concerns degenerations of modules. I prove some
necessary and sufficient conditions for the existence of a
degeneration between two modules, and then prove a beautiful result of
Bongartz describing the degenerations for directed algebras.

The second topic is Geiß’s theorem that degenerations of algebras of
wild representation type are wild. Actually, this theorem is trivial,
but it was not spotted for a long time, and the assertion was not
expected, so I still think it is an important contribution.

My third topic is Kac’s theorem on the dimension vectors of
indecomposable representations of quivers. This theorem is now quite
old (published in 1980), but I was keen to work through the proof. In
these notes I go through the geometry part quite carefully, but I only
sketch the part which involves reducing to finite fields.

I did not have time for the final topic, general representations of
quivers, but have included a section in these notes which mentions
some of the results, and also some of the open problems.

Throughout these notes the setting is as follows.
• K is an algebraically closed field of arbitrary characteristic.
• A is an associative K-algebra with 1, finitely generated as a

K-algebra (and often finite dimensional).
• All modules are finite dimensional left modules.

William Crawley-Boevey,
Mathematical Institute, Oxford University,
December 1993.
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§1. Varieties

In this section we recall the definition of a variety, and give two

examples arising from representations of algebras. The main example,

Mod(A,r), is deferred until the next section.

DEFINITIONS.
n n• �
=K with its Zariski topology, so closed sets are defined by the

vanishing of collections of polynomials in K[X ,..,X ].
1 n

n• X � � is locally closed if it is open in its closure, or

equivalently if it is the intersection of an open and a closed set.
n• The set of regular maps on a locally closed subset X � � is

� n ��
Each x � X has nhd U in

�
with ��� =f/gO(X) = 	
� :X � � � � � � � � � � � K � U  X ��� �

f,g � K[X ,..,X ], g nonvanishing on U �
1 n

n n+1 n+1 n• � = � (K ) = 1-d subspaces of K . The closed subsets of � are

defined by the vanishing of collections of homogeneous polynomials

in K[X ,..,X ].
0 n

n• The set of regular maps on a locally closed subset X ��� is

� n ��
Each x � X has nhd U in � with ��� =f/gO(X) = 	
� :X � � � � � � � � � � � K � U  X ��� �
f,g � K[X ,..,X ], f,g homog, same deg, g � 0 on U �

0 n

n• A (quasiprojective) variety is a locally closed subset X of
�

or
n� , with its topology and knowledge of O(U) for all U open in X.

• A morphism � :X � � � � � � � � � � � Y is a continuous map such that for all open U � Y
-1 � �

and all regular � :U � � � � � � � � � � � K the composition � (U) � � � � � � � � � � � U � � � � � � � � � � � K is regular.

n• An affine variety is one isomorphic to a closed subset of
�

(an

isomorphism is a morphism with an inverse, which is not the same as

a bijective morphism).
n• A projective variety is one isomorphic to a closed subset of � .

• A topological space X is irreducible if X ��� and X=Y � Z with Y and Z

closed � Y=X or Z=X. Equivalently any non-empty open subset is

dense. Any variety has a decomposition into irreducible components
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(maximal irreducible closed subsets). For some people

irreducibility is included in the definition of a variety, but that

is not convenient for us.

• X � Y has the structure of variety, but this is NOT with the product
n m n+m

topology. Instead
�
�
�����

. A product of irreducible varieties is

irreducible.

ALGEBRAS

3
n n n n• Bil(n) = {bilinear maps m:K � K � � � � � � � � � � � K }

� �
.

• Ass(n) = {associative bilinear m} is a closed subset of Bil(n), so

it is an affine variety.

• Alg(n) = {associative bilinear m which have a 1}.

THEOREM.

1. Alg(n) is an open subset of Ass(n).
n

2. The map Alg(n) � � � � � � � � � � � K , m � � � � � � � the 1 for m, is a regular map.

3. Alg(n) is an affine variety.

PROOF. Let A be a f.d. associative algebra, not necessarily with 1.

Let l ,r :A � � � � � � � � � � � A be left and right multiplication by a � A.
a a

Exercise: A has a 1 � there is some a � A with l and r invertible, and
a a

-1
in this case the 1 is l (a).

a

m m
(1) The set D ={m � Ass(n) � det(l )det(r ) � 0} is open in Ass(n), and

a a a
Alg(n)=

�
D by the exercise.

a a

m -1
(2) On D the map is equal to m � � � � � � � [l ] (a) which is a quotient of

a a
m

polynomial functions on Bil(n). The denominator is det(l ) which is
a

nonvanishing on D .
a

(3) Because of (2) there are maps both ways showing that

n
Alg(n)

�
{(m,a) � Ass(n) � K � a is 1 for m},
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n
and the RHS is a closed subset of Ass(n) � K , so is affine.

REMARKS.

1. GL(n) acts on Alg(n) by conjugation, and the orbits are the

isomorphism classes of algebras.

2. The structure of Alg(n) is known for small n. For example Alg(4)

has 5 irreducible components, of dimensions 15, 13, 12, 12, 9. See

Gabriel’s article in SLN 488.

SUBMODULES

If M is an A-module, then

M
Gr ( ) = {n-dimensional submodules of M}.
A n

M
In case A = K we write just Gr( ). This is the usual Grassmannian of

n
n-dimensional subspaces of a vector space M.

M n n
THEOREM. The Plücker map Gr( ) � � � � � � � � � � ��� ( � M) sending a subspace U to � U is

n
M

1-1, and has closed image, so that Gr( ) is a projective variety.
n

n �
LEMMA. If 0 � x ��� M then x := {y � M � x � y=0} has dimension � n, and if it

n �
has dimension n, then x ��� (x ).

�
PROOF. Let x have basis e ,..,e , and extend it to a basis e ,..,e

1 r 1 m
of M. Write

x = � x e � ... � e .
i <...<i i ...i i i
1 n 1 n 1 n

Now � n+1�
basis element of � M (all i � k)

e � ... � e � e = 	 j
i i k
1 n

�
0 (else)

n+1
and you get distinct basis elements of � M in this way, so the

condition x � e =0 for k � r implies that the nonzero coefficients x
k i1..in

must have some i =k. Thus the nonzero x involve all of 1,..,r,
j i1..in

n �
so r � n. Moreover, if r=n then x = x e � ... � e ��� (x ).

12..r 1 n
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PROOF OF THE THEOREM.
n

The Plücker map is 1-1 since if U � M has dimension n and 0 � x ��� U then
� � � n+1

U=x . Namely, dim x � n by the lemma, but U � x since � U=0.

By the lemma the image of the Plücker map is

n � n n+1
{<x> ��� ( � M) � dim x =n} = {<x> ��� ( � M) � rank(x � -:M � � � � � � � � � � ��� M) � m-n}.

This is closed, since the condition that a matrix has rank � r is

equivalent to the vanishing of all (r+1) � (r+1) minors, and each minor

is a homogeneous polynomial in the entries of the matrix).

M
COROLLARY. Gr ( ) is a projective variety.

A n

PROOF. If multiplication by a � A induces an isomorphism on M then it
M M

induces a morphism a � :Gr( ) � � � � � � � � � � � Gr( ). Now
n n

M M
Gr ( ) = {U � Gr( ) � a � (U)=U �

a induces an isomorphism on M},
A n n

so it is closed. (To show that a(U) � U it suffices to show that

(a- � 1)(U) � U for some ��� K, and for general � the element a- � 1 induces

an isomorphism on M.)

SCHEMES

More general than a variety is a K-scheme. I don’t want to define what

a scheme is, but only make some observations. For an introduction to

schemes which explains the functor of points, see D. Eisenbud and J.

Harris, "Why schemes".

• A scheme can be described by its functor of points, a functor

(commutative K-algebras) � � � � � � � � � � � Sets.
• Affine schemes are those which are representable, so isomorphic to

a functor Hom (R,-).
K-alg

• There is the notion of an algebraic scheme. In the affine case we

want R to be a f.g. algebra over K.

• There is the notion of a reduced scheme. In the affine case we want

R to have no non-zero nilpotent elements.
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FACT. Any algebraic scheme X gives a variety X(K). This defines a 1-1

correspondence between reduced algebraic schemes and varieties.

EXAMPLES.

• GL(n)(R) = GL(n,R) is an affine algebraic reduced scheme.
n• alg(n)(R) = associative R-algebra structures on R with 1. This is

an affine, algebraic, scheme, in general non-reduced.
M• Gr( )(R) = R-module summands of M � R of rank n. This is a
n K

projective, algebraic reduced scheme.
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§2. Varieties of modules

In this section we define the variety of modules, and give some

examples.

DEFINITION. Let A be a f.g. associative K-algebra with 1. If r � � then
r

Mod(A,r) = {left A-module structures on K }

= {K-algebra maps A � � � � � � � � � � � M (K)}.
r

GENERALIZATION. Fix a complete set (e ,..,e ) of orthogonal
1 n

idempotents in A (not necessarily primitive).

• Thus e e = � e and � e =1.
i j ij i i

n• If M is any A-module then M= � e M.
i=1 i

n• The dimension vector of M is the vector ��� � with � =dim e M.
i i

n• For ��� � set
� 1 � n� left A-module structures on K � ... � K with �

Mod(A, � ) = 	 �
e acting as projection onto i-th factor�
i �

� K-algebra maps A � � � � � � � � � � � M (K) sending �
r

= 	 � (where r= ��� ).
e to the projection matrix i�
i �

• Note that Mod(A, � ) depends on the set of idempotents (e ,..,e ).
1 n

LEMMA. Mod(A, � ) is naturally an affine variety.

PROOF. Fix a surjective homomorphism � :K<X ,..,X > � � � � � � � � � � � A with kernel I.
1 N

Here K<X ,...,X > is the free associative algebra, so each
1 N

p � K<X ,..,X > is a non-commutative polynomial in X ,..,X . Thus we can
1 N 1 N

evaluate p on an N-tuple of square matrices to get square matrix.

Choose q with e = � (q ). Let r = ��� . Then
i i i i

� p(M ,..,M )=0
�
p � I and �

N
�

1 N
Mod(A, � ) = 	 (M ,..,M ) � M (K) �

1 N r
�
q (M ,..,M ) = proj. matrix�
i 1 N �

N
This is a closed subset of M (K) so an affine variety. We leave it as

r
an exercise to show that you get an isomorphic variety if you choose a
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different map � , so is natural.

REMARKS

1. If A is f.d. then the inclusion
r r r r

Mod(A,r) = { � :A � K � � � � � � � � � � � K � � is an action of A} � Hom (A � K ,K )
K K

endows Mod(A,r) with the same structure as an affine variety.
r

2. Mod(A,r)(R) = A � R-mod structures on R = K-algebra maps A � � � � � � � � � � � M (R).
K r

This is an affine scheme. In interesting cases Mod(A,r) will be

reduced, or we can ask questions which don’t depend on its being

reduced. Because of this we only use Mod(A,r).

DEFINITIONS.

• x � Mod(A, � ) gives an A-module with dim vector � which we denote K .
x

Each A-module M with dimension vector � is isomorphic to some K .
x

• If � , � are dimension vectors we define
� 1 � n � 1 � n� linear maps K � .. � K � � � � � � � � � � � K � .. � K � � i � i

Hom( � , � ) = 	 � i � i � ��� Hom(K ,K ).
sending each K into K i� �

If x � Mod(A, � ) and y � Mod(A, � ) then Hom(K ,K ) � Hom( � , � ).
x y

• We define End( � ) = Hom( � , � ) and GL( � ) = Aut( � ) =
�

GL( � ).
i i

• GL( � ) acts on Mod(A, � ) by conjugation. If g � GL( � ) then g can be

considered as a block-diagonal element of GL(r) (r= � � ), and the
i

-1 -1
action is g(M ,..,M )=(gM g ,..,gM g ) for (M ,..,M ) � Mod(A, � ).

1 N 1 N 1 N

• We have K
�
K � x and y are in the same orbit under GL( � ). We

x y
denote by O the orbit of modules isomorphic to M.

M

EXERCISE. Show that Stab (x)
�
Aut (K ).

GL( � ) A x

EXAMPLES

1. If A is commutative then Mod(A,1) is the affine scheme defined by

A, and Mod(A,1) is the affine variety with with regular functions
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A/(nilpotents).

2. Commuting matrices. Mod(K[X,Y],r) = {(M,N) � M,N � M (K) and MN=NM}.
r

This is irreducible by M. Gerstenhaber, On dominance and varieties

of commuting matrices, Ann. Math. 73 (1961), 324-348.

3. Matrices. Mod(M (K),n) = {K-algebra maps M (K) � � � � � � � � � � � M (K)}
n n n

= Aut(M (K)) since M (K) is a simple algebra
n n

= PGL (K)
n

since all automorphisms of M (K) are inner, for example by the
n

Skolem-Noether Theorem.

4. Quivers. A quiver Q is a finite directed graph (maybe with loops,

cycles and multiple arrows). It has vertex set Q ={1,..,n}, and
0

arrow set Q . Each arrow has head at the vertex h(a) and tail at
1

t(a). We draw
a

h(a) • ��� � � � � � � � � � • t(a).

• A non-trivial path is a sequence a ...a with h(a )=t(a ).
m 1 i i+1

Pictorially
am a1• ��� � � � � � � � � • ��� � � � � � � � � � ... ��� � � � � � � � � •.

• There is a trivial path e for each vertex i. • The path algebra
i

KQ has basis the paths, and multiplication given by the composition

of paths, or zero if they are incompatible. It is a f.g.

associative algebra.

• (e ,..,e ) are a complete set of orthogonal idempotents. We always
1 n

use this set of idempotents when we consider Mod(KQ, � ).

• KQ-modules correspond to representations of Q, which are specified

by giving a vector space X for each vertex i and a linear map
i

X :X � � � � � � � � � � � X for each arrow a:i � � � � � � � � � � � j.
a i j

• The dimension vector of a representation X is the vector � with

� = dim X .
i i

• Because of the correspondence above we have

� i � j
Mod(KQ, � ) =

�
Hom(K ,K ).

arrows i � � � � � � � � � � � j
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• If x � Mod(KQ, � ) and y � Mod(KQ, � ) then

Hom (K ,K ) = {( � ) � Hom( � , � ) � y � = � x for all a:i � � � � � � � � � � � j}.
KQ x y i a i j a

5. Determinental varieties and complexes.

• Let Q be the quiver
a

1 • � � � � � � � � � � � • 2

� 1 � 2
so that Mod(KQ, � ) = Hom(K ,K ). A representation X of Q is

determined up to isomorphism by dim X and rank X , so the orbits in
a� 1 � 2

Mod(KQ, � ) are O ={x � Hom(K ,K ) � rank x=r} with r � min{ � , � }. The
r 1 2

th � � � � � � � � � � � � 1 � 2
r determinental variety is O ={x � Hom(K ,K ) � rank x � r}.

r
• More generally let Q be the quiver

a a
1 1 m m m+1• � � � � � � � � � � � � � � � � ... � � � � � � � � � � � • � � � � � � � � � � � � � � � � • ,

and let I = <a a > � KQ. Then
i+1 i

m � i � i+1
Mod(KQ/I, � ) = {x � � Hom(K ,K ) � x x =0 for 1 � i<m}.

i=1 i+1 i

• The Buchsbaum-Eisenbud variety of complexes is

W(r ,..,r ) = {x � Mod(KQ/I, � ) � rank x � r }.
1 m i i

If r +r � � this variety is the closure of an orbit, and in this
i-1 i i

case it is a normal, Cohen-Macaulay variety. See papers of Kempf

and of De Concini and Strickland.

• Remark: knowing that closures of orbits are normal is important.

For example, for Schubert varieties this leads to the Demazure

character formula.

6. Preprojective algebras.

• Let Q be a quiver without loops. Let Q � the quiver obtained by
*

adding a reverse arrow a :j � � � � � � � � � � � i for each arrow a:i � � � � � � � � � � � j, and let

*
A = KQ � / ( � [a,a ] ).

a � Q
• The relevant variety is

� Each non-trivial path in ��
� = 	 x � Mod(A, � ) ��

�
KQ � acts nilpotently on K�

x �
(The condition is automatic if Q is Dynkin)

• Each irreducible component of � has dimension 1/2 dim Mod(KQ � , � ).�
See Lusztig, J. Amer. Math. Soc. 4 (1991). This paper uses perverse
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sheaves on Mod(KQ, � ) to study canonical basis of quantized

enveloping algebras.

• If Q is Euclidean then there is a corresponding Dynkin diagram, and

a corresponding finite subgroup G of SU(2). In work of Kronheimer

the variety Mod(A, � ) is related to the Kleinian singularity
G�

[X,Y] . An algebraic explanation seems to be that the skew group

algebra
�
[X,Y]*G is Morita equivalent to A.
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§3. Chevalley’s Theorems and applications

In this section we derive Chevalley’s Theorems from the simplest

version, and give some consequences.

DEFINITION.

• The dimension dim X of a topological space X, is the largest n

such that there is a chain X � X � ... � X of distinct
0 1 n

non-empty irreducible closed subsets of X. (dim � = - � ).

• Observe that if X � Y then dim X � dim Y. This is strict if Y is

irreducible and X is closed.

• The local dimension at x � X is dim X = min{dim U � U nhd of x}.
x

FACTS from commutative algebra.
n n

1. dim
�

= dim � = n (so varieties have dimension).

2. If U ��� is open in an irreducible variety X then dim U = dim X.

3. If X,Y are irreducible varieties then dim X � Y = dim X + dim Y.

CONSEQUENCES.
n• If X are locally closed in Y then dim

�
X = max{dim X }.

i i=1 i i
• dim X = max{dim Z � Z is an irreducible cpt of X containing x}.

x

The next result also follows from commutative algebra. For a proof,

see Mumford’s Red book. We spend the rest of this section deriving

corollaries.

MAIN LEMMA. If � :X � � � � � � � � � � � Y is a dominant morphism of irreducible
� � � � � � � � � � � � � � � � � � � � -1

varieties, ie � (X)=Y, then any irreducible component of a fibre � (y)

has dimension at least dim X - dim Y. Moreover there is an open ��� U � Y
-1

with dim � (u) = dim X - dim Y for all u � U.

DEFINITION. A subset of a variety is constructible if it is a finite

union of locally closed subsets. Constructibility is closed under

finite unions and intersections, under complements, and under inverse

images. An example of a constructible set which is not locally closed
2

is
�
\{x-axis} � {origin} = {(x,y) � x=yz for some z}.
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THEOREM 1. If � :X � � � � � � � � � � � Y is a morphism of varieties then � (X) is

constructible. More generally � sends constructible sets to

constructible sets.

SKETCH.

• Work by induction on dim X.

• We may assume X is irreducible.
� � � � � � � � � � � � � � � � � � � �• We may assume that Y = � (X) so Y irreducible and � is dominant.

• By the main lemma, � (X) contains a non-empty open subset U of Y.
-1 -1• Now � (X) = U � � (X\ � U) and � (X\ � U) is constructible since

-1
dim (X\ � U) < dim X.

EXAMPLE. Ind(A, � ) = {x � Mod(A, � ) � K indecomposable} is constructible,
x

since its complement is
�

Im( � ) where� = � + � , � , � � 0 � , �

� :GL( � ) � Mod(A, � ) � Mod(A, � ) � � � � � � � � � � � Mod(A, � ), (g,x,y) � � � � � � � g(x � y).� , �

UPPER SEMICONTINUOUS FUNCTIONS

f:X � � � � � � � � � � ��� is upper semicontinuous if {x � X � f(x) � n} is closed for all n ��� .

THEOREM 2. If � :X � � � � � � � � � � � Y is a morphism of varieties then the function
-1

x � � � � � � � dim � ( � (x)) is upper semicontinuous.
x

-1
SKETCH. Let Z( � ,n) = {x � dim � � (x) � n}.

x
• We prove Z( � ,n) is closed by induction on dim X.

• We may assume X is irreducible, for if X=
�

X is the decomposition
i

into irreducible components, then Z( � ,n) =
�

Z( ��� ,n).
Xi� � � � � � � � � � � � � � � � � � � �• We may assume that Y = � (X) so Y is irreducible and � is dominant.

• If n � dim X-dim Y then Z( � ,n) = X by the main lemma, so it is

closed.

• If n > dim X-dim Y then Z( � ,n) = Z( ��� -1 ,n). Now
X\ � (U)

-1 -1
Z( ��� -1 ,n) is closed in X\ � (U) by induction and X\ � (U) is

X\ � (U)
closed in X.
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SPECIAL CASE. Suppose X is a variety, V vector space, and we are given

subsets V � V for all x � X. Suppose that
x

• each V is a cone in V, that is, it contains 0, and is closed
x

under scalar multiplication.

• {(x,v) � v � V } is locally closed in X � V.
x

Then the map x � � � � � � � dim V is upper semicontinuous.
x

PROOF. Use the morphism {(x,v) � v � V } � � � � � � � � � � � X. The fibre over x is V .
x x

Also, since V is a cone, every irreducible component of V contains
x x

0, so dim V = dim V .
0 x x

APPLICATIONS.

1. The map Mod(A, � ) � Mod(A, � ) � � � � � � � � � � � � , (x,y) � � � � � � � dim Hom (K ,K ) is upper
A x y

semicontinuous. It suffices to observe that

{(x,y, � ) � ��� Hom (K ,K )} � Mod(A, � ) � Mod(A, � ) � Hom( � , � )}
A x y

is closed.

2. Thus also Mod(A, � ) � � � � � � � � � � � � , x � � � � � � � dim End (K ) upper semicontinuous.
A x

3. Let us say that ��� End(W) is equipotent if all eigenvalues of � are

equal. This is a closed condition, for if

n n-1 n n-2
det(t1- � ) = t + nc t + ( )c t + ...,

1 2 2
r

then � is equipotent � c = c for all r.
r 1

• Equi(K ) = {equipotent endomorphisms of K } is a cone, so the
x x

function Mod(A, � ) � � � � � � � � � � � � , x � � � � � � � dim Equi(K ) is upper semicontinuous.
x

• This gives another proof that Ind(A, � ) is constructible, for

Ind(A, � ) = {x � End(K )=Equi(K )} =
�

{x � dim End(K ) � r, dim Equi(K ) � r}
x x r x x

and each term in the union is locally closed.
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GROUP ACTIONS

• Let G be an algebraic group acting on a variety X.

• For simplicity we suppose G is an irreducible variety (one usually

says that G is a "connected" algebraic group.)

LEMMA.

• Each orbit Gx is locally closed and irreducible.

• dim Gx = dim G - dim Stab (x).
G� � � � � � � � � �• Gx \ Gx is a union of orbits of dimension < dim Gx.

PROOF.
� � � � � � � � � �• Gx is the image of the map G � � � � � � � � � � � X, g � � � � � � � gx, so Gx is irreducible and

� � � � � � � � � �
Gx is constructible. It follows that there is ��� U � Gx, U open in Gx.

• Now GU =
�

gU is contained in Gx and G-stable, so equals Gx.
g � G � � � � � � � � � � � � � � � � � � � �

Each gU is open in Gx, so GU is open in Gx. Thus Gx is locally

closed.

• Now, since G is irreducible, so is Gx.

• The fibres of G � � � � � � � � � � � Gx are cosets of Stab(x), so all have the same

dimension. By the main lemma, dim Stab(x) = dim G - dim Gx.

• The last statement is clear.

LEMMA. The map x � � � � � � � dim Stab(x) is upper semicontinuous. Therefore,

• the set X = {x � X � dim Gx � s} is closed, and
( � s)

• the set X = {x � X � dim Gx = s} is locally closed.
(s)

PROOF. Let Z = {(g,x) � G � X � gx=x} and let � :Z � � � � � � � � � � � X be the projection. Now
-1

dim � � (1,x) = dim Stab(x) = dim Stab(x)
(1,x) 1

since for a group each point looks the same.
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§4. Degenerations of modules

We prove some general results about degenerations of modules. Then we

study K[X] and directing algebras.

Recall that O denotes the orbit in Mod(A, � ) of points x with K
�
M.

M x
We have dim GL( � ) - dim O = dim Stab(x) = dim Aut(M) = dim End(M)

M

� � � � � � � � � � �
DEFINITION. M degenerates to N if O � O . This is a partial order,

N M
for if M degenerates to N and M � N then dim O < dim O by the lemma

N M
about group actions.

LEMMA. If 0 � � � � � � � � � � � L � � � � � � � � � � � M � � � � � � � � � � � N � � � � � � � � � � � 0 is exact then M degenerates to L � N.

PROOF. For simplicity we do the case of Mod(A,r). An element

x � Mod(A,r) is defined by matrices x � M (K) where a runs through a set
a r

of generators of A. Now there is x � O in which each matrix x has the
M a�

ya wa � t
form with K

�
N, K

�
L. For t � K, define an element x via�

0 za � y z

t
�
ya twa �

x = .
a

�
0 za �

t
�
I 0 � t

For t � 0, x is the conjugation of x by � GL(r), so x � Mod(A,r),�
0 tI �

t 0 � � � � � � � � � � �
and moreover x � O . Thus x � O , and of course K 0

�
L � N.

M M x

� � � � � � � � � � �
THEOREM. O contains a unique orbit of semisimple modules. It follows

M
that O is closed � M is semisimple.

M

� � � � � � � � � � �
PROOF. O contains O by the lemma, so we need to prove uniqueness.

M gr M
• If M is an A-module and a � A, then the characteristic polynomial is

defined by char.pol (a) = det(tI-l ) where l :M � � � � � � � � � � � M is
M a a

multiplication by a.
� � � � � � � � � � �• If O � O then char.pol (a) = char.pol (a) for all a � A. This holds

N M N M
because the coefficients of char.pol(a) define a regular map

r
mod(A, � ) � � � � � � � � � � � � where r = ��� .

i
• If char.pol (a) = char.pol (a) for all a � A then the simples have

M N
the same multiplicities in M and N, for if S is simple, then
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1
[M:S] = � � � � � � � � � � � � � � � � � � � � � � � � � min ord char.pol (a).

dim S t=0 M
a � Ann(S)

where ord denotes the order of the zero at t=0. (For a proof, we
t=0

may assume that M is semisimple, next that M is faithful. Now A is

semisimple and the result is easy.)

REMARK. The opposite extreme is to determine the open orbits O . The
M

following implications hold.

1
Ext (M,M)=0 � O open subscheme of Mod(A, � ) � O open in Mod(A, � )

M M

The last implication has a converse if Mod(A, � ) is reduced, for

example for A=KQ.

PARTIAL ORDERINGS

DEFINITION. Write M � N for the reflexive and transitive relation
ext

generated by M � L � N if there is an exact seq. 0 � � � � � � � � � � � L � � � � � � � � � � � M � � � � � � � � � � � N � � � � � � � � � � � 0.
ext

• By the lemma M � N implies that M degenerates to N.
ext

• It follows that � is a partial order.
ext

DEFINITION. Write M � N if dim Hom(X,M) � dim Hom(X,N) for all
hom

modules X.

• The function dim Hom(-,M) determines M up to isomorphism. (For a

proof one can reduce to the case when A is finite dimensional, when

it is a theorem of Auslander. Alternatively, see K. Bongartz, A

generalization of a theorem of M. Auslander, Bull. London Math.

Soc., 21 (1989), 255-256.)

• It follows that � is a partial order.
hom

• If M degenerates to N then M � N by upper semicontinuity (the
hom

set {U � dim Hom(X,U) � dim Hom(X,M)} is closed, contains O , so O ).
M N

REMARK. The general problem is to describe degenerations. We have

M � N � M degenerates to N � M � N.
ext hom

Thus the best possible case is when M � N � M � N. This doesn’t
hom ext

hold for all algebras A, but for some algebras it does hold.
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THEOREM. M � N � M � N for r-dimensional K[T]-modules.
hom ext

PROOF. M and N decompose into generalized eigenspaces

M = � M , N = � N .
t � K t t � K t

The conditions M � N and dim M = dim N imply that dim M = dim N
hom t t

and M � N for all t. Thus we may suppose that M=M and N=N .
t hom t t t

Without loss of generality t=0, so T acts nilpotently on M and N.

Now M is described by a partition � =( � , � ,..) of r, and also by the
1 2

th
corresponding Young frame, a diagram whose i row has length � , for

i
example

�����������
�����������
�������
���

Explicitly the diagram has one column of length i for each summand of
i

the form K[T]/(T ), or equivalently � is the number of summands
i

j th
K[T]/(T ) with j � i (also the dimension of the i layer in the socle

series).

Let N be described by the partition � . Now M � N implies that
hom

i i
dim Hom(K[T]/T ,M) � dim Hom(K[T]/T ,N) for all i,

so � +..+ � ��� +..+ � for all i, that is ����� in the dominance
1 i 1 i

ordering. Now the dominance ordering is generated by the following

moves: ����� if the diagram for � is obtained from that of � by moving a

corner block from a column of length j to a column further to the

right of length i<j. For example

����������� �����������
� ����������� � ����������� �������� ���������
��� �

Now we have exact sequences

i+1 i j j-1
0 � � � � � � � � � � � K[T]/T � � � � � � � � � � � K[T]/T � K[T]/T � � � � � � � � � � � K[T]/T � � � � � � � � � � � 0.

for each such move, so ����� implies that M � N.
ext

Reformulating this, we obtain the
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COROLLARY (Gerstenhaber-Hesselink). For A,B � M (K) the following
n

statements are equivalent

• A degenerates to B under the conjugation action of GL (K)
n

r r• rank (A-tI) � rank (B-tI) for all t � K and r � � .

PROOF. Consider A and B as n-dimensional K[T]-modules. The numerical

condition is now A � B.
hom

PREPROJECTIVE MODULES

DEFINITION. A path of A-modules is a sequence X � � � � � � � � � � � X � � � � � � � � � � � ... � � � � � � � � � � � X of
0 1 n

non-zero non-isomorphisms between indecomposables. Write X ��� X .
0 n

• An indecomposable module X is preprojective if there are no

infinite paths ending at X. An arbitrary module is preprojective if

all indecomposable summands are preprojective.

THEOREM (Bongartz). If N is preprojective and M � N then M � N.
hom ext

SPECIAL CASE. If A is representation-directed, ie every module is

preprojective (eg KQ with Q Dynkin), then M degenerates to N � M � N.
hom

This is combinatorial since A has only finitely many indecomposable

modules.

Some cases of KQ with Q Dynkin were solved before Bongartz, for

example the following orientation of D
n

• ���
• � � � � � � .. � � � � � � •�

• �
was solved by Abeasis and Del Fra, Adv. Math 52(1984), 81-172. I

suppose that their work takes 90 pages since they use the same brute

force method we used for K[T].

OPEN PROBLEM. Show that the equivalence M degenerates to N � M � N
hom

hold for path algebras of Euclidean quivers. The Kronecker quiver
� � � � � � � � � � �• • has been dealt with by Bongartz.� � � � � � � � � � �
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PROPERTIES OF PREPROJECTIVE MODULES.

• If X is indecomposable preprojective then End X = K, for otherwise
f f f

there is infinite path .. � � � � � � � � � � � X � � � � � � � � � � � X � � � � � � � � � � � X.
• If X is indecomposable, M is preprojective and Hom(X,M) � 0 then X is

preprojective.

• X ��� Y is a partial order on the indecomposable preprojectives.
1• Ext (Y,X) � 0 � X ��� Y (Otherwise there is a non-split extension

f g
0 � � � � � � � � � � � X � � � � � � � � � � � E � .. � E � � � � � � � � � � � Y � � � � � � � � � � � 0,

1 n

where the middle term has been decomposed into indecomposable

summands E . Now if any component of f or g is zero or an
i

isomorphism, the sequence splits. Thus there is path X � � � � � � � � � � � E � � � � � � � � � � � Y.)
1

1• Ext (X,X)=0 for X indecomposable preprojective.

PROOF OF THE THEOREM.

1. We fix N and prove it for all M by induction on dim O . If M
�
N then

M
nothing to do, so suppose M � N. Now M is preprojective, for if U is an

indecomposable summand of M then

0 � dim Hom(U,M) � dim Hom(U,N),

so U is preprojective.

2. There is a map � :M � � � � � � � � � � � N such that no indecomposable summand X of

Ker � is a summand of M.

r (ni)
PROOF. Write M = � U with the U indecomposable and

i=1 i i
non-isomorphic. Since ��� is a partial order on preprojectives, we may

(ni)
assume that Hom(U ,U )=0 for i<j. Let M = � U . We define ���

i j j i � j i Mj
by induction on j. Now ��� induces a map Hom(U ,M ) � � � � � � � � � � � Hom(U ,N),

Mj-1 j j-1 j
say with image I . Now

j

dim Hom(U ,N) � dim Hom(U ,M) = dim Hom(U ,M )+n � dim I +n .
j j j j-1 j j j

Thus there are maps � ,.., � � Hom(U ,N) which are linearly
j1 jnj j

independent modulo I . Use these to define ��� .
j Mj

Let X be an indecomposable summand of M contained in Ker � . Let

f :X � � � � � � � � � � � U be the composition of the inclusion X � � � � � � � M and the
ip i

th
projection of M onto the p copy of U . Since X is a summand, some

i
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f is invertible, say f . Thus X
�
U , so f =0 for i>j and

ip jq j ip
each of the maps

-1
f f : U � � � � � � � � � � � U
jp jq j j

is scalar multiplication. Now X � Ker � , so � � f = 0. Thus
ip ip

-1 -1� � f f = - � � f f � I ,
p jp jp jq i<j,p ip ip jq j

which contradicts the construction of � .

3. M and N have the same dimension, and M � N, so Ker � � 0. Let X be an

indecomposable summand of Ker( � ) which is maximal with respect to ��� .
Let Y=M/X, so 0 � � � � � � � � � � � X � � � � � � � � � � � M � � � � � � � � � � � Y � � � � � � � � � � � 0.

4. M � X � Y � N.
hom hom

PROOF. We need dim Hom(V,M) � dim Hom(V,X � Y) � dim Hom(V,N) for all

indecomposable modules V. Now we have a long exact sequence

1
0 � � � � � � � � � � � Hom(V,X) � � � � � � � � � � � Hom(V,M) � � � � � � � � � � � Hom(V,Y) � � � � � � � � � � � Ext (V,X).

1
If Ext (V,X)=0 then dim Hom(V,X � Y) = dim Hom(V,M) � dim Hom(V,N) as

1
required, so suppose Ext (V,X) � 0. By observations above X ��� V and V � X
so that Hom(V,X)=0. If Z is a complement to X in Ker( � ) then also

Hom(V,Z)=0 by the choice of X. Now there is an exact sequence

0 � � � � � � � � � � � Z � � � � � � � � � � � Y � � � � � � � � � � � N, so 0 � � � � � � � � � � � Hom(V,Z) � � � � � � � � � � � Hom(V,Y) � � � � � � � � � � � Hom(V,N) is exact, but the

first term is zero. Thus

dim Hom(V,M) � dim Hom(V,X � Y) = dim Hom(V,Y) � dim Hom(V,N),

as required.

5. We have an exact sequence 0 � � � � � � � � � � � X � � � � � � � � � � � M � � � � � � � � � � � Y � � � � � � � � � � � 0, so M degenerates to

X � Y. Also X � Y � M, for otherwise the sequence

0 � � � � � � � � � � � Hom(Y,X) � � � � � � � � � � � Hom(M,X) � � � � � � � � � � � Hom(X,X) � � � � � � � � � � � 0
is exact on the right by dimensions, so X is a summand of M, which is

impossible. Thus dim O < dim O . Now X � Y � N so by induction
X � Y M hom

X � Y � N. Also M � X � Y. Thus M � N.
ext ext ext
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§5. Representation type of algebras

We prove Geiß’s Theorem that degenerations of wild algebras are wild.

THE VARIETY ALGMOD

n• Let Algmod(n,r) = {(x,y) � Alg(n) � Hom (K ,M (K)) � y � Mod(K ,r)} where
K r x

for x � Alg(n) we write K for the corresponding algebra.
x

• This is closed subset, so an affine variety.

• Let � :Algmod(n,r) � � � � � � � � � � � Alg(n) be the projection.
-1• We have � (x) = Mod(K ,r).

x
• GL(r) acts on Algmod(n,r).

THEOREM. � :Algmod(n,r) � � � � � � � � � � � Alg(n) sends GL(r)-stable closed subsets to

closed subsets.

(A subset X being G-stable just means that gX � X for all g � G). The

theorem is a reformulation of Lemma 3.2 in Gabriel’s article in SLN

488. Our proof is simpler since it avoids using semisimple modules. We

first need some lemmas.

• Let M be a vector space of dimension m.
r• Let Surj(M,r) = { � :M � � � � � � � � � � � K surjective}.

• GL(r) acts on this.

M
LEMMA. Let � :Surj(M,r) � � � � � � � � � � � Gr( ) be the map sending � to Ker( � )

m-r
M

1. � identifies GL(r)-orbits in Surj(M,r) with points in Gr( ).
m-r

2. � is a morphism.

3. � is locally a projection U � GL(r) � � � � � � � � � � � U.
M

(Thus � is a fibre bundle, and Gr( ) = Surj(M,r) // GL(r)).
m-r

r
PROOF. (1) is clear. For � :K � � � � � � � M, define

• V = { ��� Surj(M,r) � � � is isomorphism}.�
M• U = {N � Gr( ) � M=N � Im( � )}.� m-r

The V are an open covering of Surj(M,r), the U are an open covering� �
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M
of Gr( ), and � sends V � � � � � � � � � � � U . Using these coverings one can prove

m-r � �
(2), but we skip this. Now we have inverse maps

� � � (Ker � , � � )
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

V U � GL(r)� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
-1

(U,g) � � g � p
U

where p is the projection M � � � � � � � � � � � Im( � ) complementary to U, and
U

-1 r� :Im( � ) � � � � � � � � � � � K . Thus � is locally a projection U � GL(r) � � � � � � � � � � � U .� �

LEMMA. If X is a variety then the projection X � Surj(M,r) � � � � � � � � � � � X sends

GL(r)-stable closed subsets to closed subsets.

(1, � ) M p
PROOF. The map factors as X � Surj(M,r) � � � � � � � � � � � � � � � � � � � � � � � � � � X � Gr( ) � � � � � � � � � � � X.

m-r
• Using that � is locally a projection one can show that (1, � ) sends

closed GL(r)-stable subsets of X � Surj(M,r) to closed subsets.
M• Since Gr( ) is projective, it is "complete", which means that p

m-r
sends closed sets to closed sets.

PROOF OF THE THEOREM. Let

nr r
W = {(x, � ) � Alg(n) � Surj(K ,r) � Ker( � ) is K -submodule of (K ) }.

x x

This is closed subset by same proof that Gr is closed in Gr. Now we
A

have a commutative diagram
nr

W � � � � � � � Alg(n) � Surj(K ,r)� �
� proj.� �

�
Algmod(n,r) � � � � � � � � � � � Alg(n)

r
where � sends (x, � ) to (x, quotient module structure on K ). Now � is

r
onto, since any r-dimensional A-module is a quotient of A . Using the

covering V one can show that � is a morphism.�

-1
If Z � Algmod(n,r) is GL(r)-stable and closed, so is � (Z). Thus
-1 nr� (Z) is GL(r)-stable closed subset of Alg(n) � Surj(K ,r). Thus

-1
� (Z) = proj.( � (Z)) is closed by the lemma.
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NUMBER OF PARAMETERS

Let G be a connected algebraic group acting on a variety X.

EXERCISE. If Y � X is constructible and G-stable, then you can write

� �

Y = Z � .. � Z
1 n

with the Z being G-stable irreducible locally closed subsets of X.
i

This decomposition is not unique, but the number of top-dimensional Z
i� � � � �

is the number of top-dimensional irreducible components of Y, so is

unique. The key idea for the proof is that if Z � X is locally closed
� � � � � � � � � �

and irreducible then the fact that G � Z is irreducible implies that GZ

is irreducible.

DEFINITIONS. The number of parameters of G on Y is� � � �
� (Y) = max dim Y  X - s = max dim Y  X - s .
G s

�
(s) � s

�
( � s) �

The number of top-dimensional families of orbits is

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
t (Y) = � (no. of irred comps of Y  X of dimension s+ � (Y)).
G s (s) G

REMARKS.

1. We don’t talk much about t , but it is well-behaved.
G

2. If the set of orbits Y/G was a variety, then � would be its

dimension and t would be the number of top-dimensional irreducible

components.

PROPERTIES (left as exercises).

1. If Y � X are G-stable, then � (
�
Y )=max{ � Y }.

i i i
2. � Y=0 � Y contains only finitely many orbits, and if so, then tY is

the number of orbits.

3. If Y contains a constructible subset Z meeting each orbit then

� Y � dim Z.

4. If f:Z � � � � � � � � � � � X is a map, and the inverse image of each orbit has

dimension � d then � X � dim Z - d.
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LEMMA. If � :X � � � � � � � � � � � Y is constant on orbits, and sends G-stable closed
-1

subsets of X to closed subsets of Y, then the function y � � � � � � ��� ( � (y))
G

is upper semicontinuous.

-1
PROOF. First y � � � � � � � dim � (y) is upper semicontinuous, since

-1 -1
{y � Y � dim � (y) � r} = � ({x � X � dim � � (x) � r}).

x

Now ��� sends closed G-stable subsets to closed subsets, and
X
( � s)

-1
�

-1 �
� ( � (y)) = max dim ( ��� ) (y) - s

s
�

X �
( � s)

TAME AND WILD

THEOREM (Drozd). A finite dimensional algebra A is either

Tame: for any r there are A-K[T]-bimodules M ,..,M , f.g. free/K[T],
1 N

such that any indecomposable A-module of dimension � r is

isomorphic to some M � K[T]/(T- � ).
i

Wild: there is an A-K<X,Y>-bimodule M, f.g. free/K<X,Y> such that

the functor M � - sends non-isomorphic f.d. K<X,Y>-modules
K<X,Y>

to non-isomorphic A-modules.

The proof is hard.

LEMMA.
2

1. If A is wild there is s with � Mod(A,sr) � r for all r.

2. If A is tame then � Mod(A,r) � r.

PROOF. If M is an A-B-bimodule, free of rank s over B, then after

choosing a basis of M over B one obtains a homomorphism A � � � � � � � � � � � M (B), and
s

this induces a map Mod(B,r) � � � � � � � � � � � Mod(A,sr) corresponding to the functor

M � -.
B

(1) We have a map Mod(K<X,Y>,r) � � � � � � � � � � � Mod(A,sr). The inverse image of an

orbit is an orbit, so has dimension � dim GL(r). Thus
2 2 2

� Mod(A,sr) � dim Mod(K<X,Y>,r) - dim GL(r) = 2r - r = r .
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(2) If 1 � i ,..,i � N is a sequence with � rank (M ) = r, then
1 k K[T] ij

� M � K[T]/(T- � ) defines a constructible subset of Mod(A,r) of
j ij j

dimension � k � r. Let Z be the union of these sets over all possible

sequences. Then Z meets every orbit so � Mod(A,r) � dim Z � r.

THEOREM (Gei � ). A degeneration of a wild algebra is wild.

This is not the original version circulated by Geiß, in which only

special degenerations were allowed, but a private communication from

him (I had simultaneously proved the general case without the use of

Algmod by replacing modules with their projective presentations).

PROOF. By the lemma {x � Alg(n) � K is wild} =
�

M where
x r r

M = {x � Alg(n) � � Mod(K ,r) > r}.
r x

Now M is closed by the properties of Algmod and � , and it is
r � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

obviously GL(n)-stable. If x,y � Alg(n) and y � GL(n)x, then

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
K wild � x � M (some r) � y � GL(n)x � M � K wild,
x r r y

as required.

2 2 2 2
EXAMPLE. A = K<a,b>/(a -bab,b -aba,(ab) ,(ba) ) degenerates to

2 2 2 2
B = K<a,b>/(a ,b ,(ab) ,(ba) ). Now B is known to be tame, so A is

tame. This is the only known proof that A is tame. (The degeneration
t

is given as follows. Let x � Alg(7) have basis 1,a,b,ab,ba,aba,bab
2 2 2 2

and multiplication as indicated, and a =tbab,b =taba,(ab) =(ba) =0.

Then K t
�
A for t � 0, and K o

�
B.)

x x

REMARK. {x � Alg(n) � K finite rep. type} is open in Alg(n). See
x

Gabriel’s article in SLN 488. The proof uses the second Brauer-Thrall

conjecture, which is hard, and was not properly proved until much

later.
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§6. Kac’s Theorem

We give part of the proof of Kac’s Theorem, and sketch the rest.

• Let Q be a quiver with vertices {1,..,n}.

The Ringel form is defined by < � , � > = ��� � - � � �
i i a:i � � � � � � j i j
1

For KQ-modules have dim Hom(X,Y) - dim Ext (X,Y) = <dim X, dim Y>.

The Tits form is q( � ) = < � , � > = dim GL( � ) - dim Mod(KQ, � ).

The corresponding symmetric bilinear form is ( � , � ) = < � , � > + < � , � >.

n th• � ��� is the i coordinate vector.
i

� is a simple root if there is no loop at the vertex i.
i

n n
If � is simple, there is a reflection � : � � � � � � � � � � � ��� , � � � � � � � � � -( � , � ) � .

i i i i
The Weyl group W = < � � � simple> � GL ( � ).

i i n
W preserves (-,-) and q.

• The fundamental region is the set
n

F = { ��� � � ��� 0, support( � ) connected, ( � , � ) � 0 �
(simple) � }.

i i
Here support( � ) denotes the subquiver of Q, and the word simple is

in parentheses since ( � , � ) � 0 is automatic if there is a loop at i.
i

• Real roots = {w( � ) � w � W, � simple}. These have q( � )=1.
i i

Imaginary roots = W(F). These have q( � ) � 0.
(Strictly speaking these are only the positive imaginary roots).

n
THEOREM (Kac). If ��� � then there is an indecomposable representation

of dimension � ��� is a root. If so, then

• � (Ind(KQ, � )) = 1-q( � )

• t(Ind(KQ, � )) = 1.

(where we use the action of GL( � ) on Mod(KQ, � )). In particular, for �

a real root there is a unique indecomposable representation.

LEMMA A. For ��� F we have � (Ind(KQ, � )) = 1-q( � ) and t(Ind(KQ, � )) = 1.
n

LEMMA B. For � simple and ��� � , ��� � we have � (Ind(KQ, � )) =
i i

� (Ind(KQ, � ( � ))) and t(Ind(KQ, � )) = t(Ind(KQ, � ( � ))).
i i
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PROOF OF THE THEOREM. If � is an imaginary root, then � =w( � ), ��� F and

the lemmas give the assertion. If � is real root then � =w( � ) with �

j j
a simple root. Now Ind(KQ, � ) = {pt}, so � (Ind(KQ, � ))=0 and

j j
t(Ind(KQ, � ))=1, and Lemma B gives the assertion.

j

Suppose there is an indecomposable of dimension � and � is not a real

root. By Lemma B there is an indecomposable of dimension w( � ) for all

w, and in particular w( � ) � 0 for all w � W. Choose � = w( � ) minimal.

Since � is made smaller by any reflection, it follows that ( � , � ) � 0
i

for all simple roots � . Now there is an indecomposable of dimension
i

� , so support( � ) is connected. Thus ��� F.

LEMMA A

Suppose ��� F, so that � � 0, ��� 0, support( � ) connected and ( � , � ) � 0 �
i.

i
We have to prove that � (Ind( � )) = 1-q( � ) and t(Ind( � )) = 1.

LEMMA 1. Either

1. support( � ) is Euclidean and q( � )=0, or

2. if � = � +..+ � (r � 2) with � � 0 non-zero then q( � ) < � q( � ).
1 r i i

PROOF. We may assume Q=support( � ), and so Q is connected. If (2) fails

then � ( � - � , � ) = ( � , � ) - � ( � , � ) � 0, so there is 0 � ��� � , ��� 0, � ,
i i i i

with ( � - � , � ) � 0. Now
2

1
�
� i � j �

0 � ( � - � , � ) = � ( � , � ) � ( � - � )/ � + � � � � � � ( � , � ) ��� � � � � � - � � � � �
i i i i i i 2 i � j i j i j

�
� i � j �

� 0 � 0
� i � j

so � � � � � = � � � � � whenever ( � , � )<0, ie if an arrow connects i � � � � � � � � � �j. Thus � is� i � j i j
a multiple of � . Now the first sum implies that ( � , � )=0 for all i.

i
This implies that Q is Euclidean and that q( � )=0.

IN THE FIRST CASE of Lemma 1 there is a complete classification of the

representations of dimension � , and using this one can prove Lemma A.

Thus we now assume that the second case of Lemma 1 holds.
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LEMMA 2. The general rep of dimension � is indecomposable, ie

Ind(KQ, � ) contains a non-empty open subset of Mod(KQ, � ).

PROOF. If � = � + � ( � , � � 0) there is a map

� :GL( � ) � Mod(KQ, � ) � Mod(KQ, � ) � � � � � � � � � � � Mod(KQ, � ), (g,x,y) � � � � � � � g(x � y).
This map is constant on the orbits of a free action of H=GL( � ) � GL( � ),

� � � � � � � � � � � � � � � � � � � � � � � � �
so dim Im( � ) � dim LHS - dim H. Using the fact that q( � ) = dim GL( � ) -

dim Mod(KQ, � ), one deduces that

� � � � � � � � � � � � � � � � � � � � � � � � �
dim Mod(KQ, � ) - dim Im( � ) � q( � )+q( � )-q( � ) > 0,

� � � � � � � � � � � � � � � � � � � � � � � � �
so Im( � ) is a proper subset of Mod(KQ, � ). The assertion follows.

1 2
DEFINITION. Let � =( � ,.., � ) with � =( � , � ,...) a partition of � .

1 n i i i i� i• ��� End( � ) is of type � if the maps � � End(K ) are nilpotent of type
i

r� (so � is the number of Jordan blocks of size � r).
i i

• The zero map corresponds to the sequence z with z =( � ,0,...).
i i

• Let N = { ��� ��� End( � ) of type � }. It is locally closed.�
• If ��� End( � ) let Mod = {x � Mod(KQ, � ) � ��� End(K )}� x

LEMMA 3.
r r

1. If ��� N then dim Mod = � � � �� � a:i � � � � � � j r i j
r r

2. dim N = dim GL( � ) - � � � �� i r i i

PROOF. It is easy to check that if f � End(V) and g � End(W) are nilpotent
r r

endomorphisms of type � and � , then dim {h:V � � � � � � � � � � � W � gh=hf} = � ��� . (1)
r

follows immediately. For (2) note that N is an orbit for the�
conjugation action of GL( � ) on End( � ), so if ��� N then�

dim N = dim GL( � ) - dim {g � GL( � ) � g � = � g}�
= dim GL( � ) - dim {g � End( � ) � g � = � g}

r r
= dim GL( � ) - � � � � .

i r i i

DEFINITIONS.

• g = dim GL( � ). If x � Mod(KQ, � ) then its orbit has dimension

g - dim End(K ).
x

• I = Ind(KQ, � ) =
�

I . Note that I is locally closed in
s<g (s) (s)

Mod(KQ, � ) by the results about equipotent endomorphisms in §3.
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• B = {x � Mod(KQ, � ) � K is a brick, ie End(K )=K} = I .
x x (g-1)

• N = {non-zero nilpotent ��� End( � )} =
�

N .��� z �
• MN = {(x, � ) � Mod(KQ, � ) � N � ��� End(K )} =

�
MN .

x ��� z �
• I N = {(x, � ) � I � N � ��� End(K )} � MN.

(s) (s) x

LEMMA 4.

1. for ��� z we have dim MN < g-q( � ), so dim MN < g-q( � ).�
2. For s<g-1 we have dim I < s+1-q( � ), so � (I ) < 1-q( � ).

(s) (s)
3. B is non-empty and open in Mod(KQ, � ), so � (B) = 1-q( � ), t(B) = 1.

Now Lemma A follows from (2) and (3) since Ind(KQ, � ) = B � � I .
s<g-1 (s)

� -1
PROOF. (1) Let MN � � � � � � � � � � � N be the projection. Now � ( � )=Mod is of� � �
constant dimension, so

Lemma3 Lemma1
r

dim MN � dim N + dim Mod = g - � q( � ) < g - q( � ),� � � r
r r

since � = � � , and at least two � are non-zero since ��� z.
r

(2) If s<g-1 and x � I then K is indecomposable and not a brick, so
(s) x

has a non-zero nilpotent endomorphism. Thus the projection
�

I N � � � � � � � � � � � I is onto. Now
(s) (s)

-1
dim � (x) = dim End(K )  N = dim rad End(K ) = g-s-1.

x x

Thus dim I = dim I N-(g-s-1) � dim MN-(g-s-1) � s+1-q( � ) by (1).
(s) (s)

(3) For s<g-1 we have

dim I < s+1-g + dim Mod(KQ, � ) < dim Mod(KQ, � ),
(s)

� � � � � � � � � � � � � � � � � � � �
so I is a proper closed subset of Mod(KQ, � ). Also, by Lemma 2 the

(s)
set of decomposable representations is contained in a proper closed

subset of Mod(KQ, � ). Thus B ��� . Also B is open in Mod(KQ, � ) by upper

semicontinuity, so it is irreducible. Now � (B) = dim B-(g-1) = 1-q( � )

and t(B)=1.

31



LEMMA B. SKETCH

DEFINITION. A representation of Q over an arbitrary field F is

absolutely indecomposable if it remains indecomposable as a
� � � � �

representation over the algebraic closure F.
r• Let n(Q, � ,p ) be the number of isomorphism classes of absolutely

indecomposable representations of Q over
�

r of dimension � .
p

LEMMA 1. Let � = � (Ind(KQ, � )) and t=t(Ind(KQ, � )). For p=char K, or for
r r �

p >> 0 if char K=0, we have n(Q, � ,p )/p � � � � � � � � � � � t as r � � � � � � � � � � � � .

IDEA. We use schemes to change characteristic. A (quasi-affine

algebraic) � -scheme is a functor (commutative rings) � � � � � � � � � � � sets, of form

n
X(R) = {x � R � all p (x)=0, some q (x) � 0}� �

for some families p ,q ��� [X ,..,X ]. Clearly X(K) is a variety for any� � 1 n
algebraically closed field K.

� � � � � � � � � �
Theorem. If X is a � -scheme and char K=0, then dim X(K) = dim X(

�
)

p
for p>>0.

n
Theorem of Lang-Weil. If char K=p, q is a power of p, and X � � is an

irreducible closed subset of dimension d defined by polynomials with

coefficients in a finite field
�
, then the number of points of X

q
n

which can be realized in � by an (n+1)-tuple of elements of
�

r is
q

rd r(d-1/2)
q + O(q ) as r � � � � � � � � � � � � .

Combining these two facts we obtain the following. Let X be a

� -scheme. Suppose X(K) has dimension d and t top-dimensional

irreducible components. For p=char K, or for p>>0 if char K=0, we have
rd� X( �

r) � /p � � � � � � � � � � � t as r � � � � � � � � � � � � .
p

Now there are Chevalley-type results for � -schemes, so one can study

constructible subfunctors, actions of � -group-schemes on � -schemes,

etc. Now there is a � -scheme Mod(Q, � ) with F-points Mod(FQ, � ), there

is a constructible subfunctor Ind(Q, � ) with F-points the absolutely

indecomposable representations, and there is � -group-scheme GL( � )
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acting on Mod(Q, � ). The assertion of the lemma follows in a standard

way.

LEMMA 2. Let i be a sink in Q, a vertex at which no arrows start. Let

Q � be the quiver obtained from Q by reversing all the arrows
r r

terminating at i. Then n(Q, � ,p ) = n(Q � , � ( � ),p ) for ��� � , � � 0.
i i

SKETCH. There are inverse equivalences

Reps X of Q of dim � F Reps X � of Q � of dim � ( � )� � � � � � � � � � � � � � � � � � � � � i
��� � � � � � � � � � � � � � � � � � � �

with � X � � � � � � � � � � � X G with X � � � � � � � ��� X �
a:j � � � � � � i j i i a:i � � � � � � j j

given by reflection functors F and G. Here F sends a representation X

in which the map f: � X � � � � � � � � � � � X is onto, to the representation X � of
a:j � � � � � � i j i

Q � with X � = Ker(f) and X � = X for k � i, and with maps as in the
i k k

representation X, except that the map X � � � � � � � � � � � � X � corresponding to an
i j

arrow a:j � � � � � � � � � � � i in Q is the composite of f with the projection onto X � .
j

Now if ��� � and � � 0 then indecomposable representations of Q and Q � of
i

dimensions � and � ( � ) belong to the indicated subcategories, so there
i

is a 1-1 correspondence between absolutely indecomposable

representations of Q and Q � .

r
LEMMA 3. n(Q, � ,p ) doesn’t depend on the orientation of Q.

IDEA. There is a result of Brauer which implies that if G acts on a
*

vector space V over a finite field
�
then � V/G � = � V /G � . This can be

used to show that Q and a reorientation Q � of Q have the same number

of representations over
�
of dimension � . Varying � it follows that Q

and Q � have the same number of indecomposables over
�
of dim � . Now

varying
�
and using a Galois Theory argument, one can show that Q and

Q � have the same number of absolutely indecomposable representations

over
�
of dimension � .
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§7. General representations: results and open problems

In this section K =
�
.

SUBREPRESENTATIONS

• Write � � � � � � � � � if the general representation of dimension � has a

sub-representation of dimension � .
• Write hom( � , � ) and ext( � , � ) for the general value of dim Hom(K ,K )

x y
and dim Ext(K ,K ) with (x,y) � Mod(KQ, � ) � Mod(KQ, � ). By upper

x y
semicontinuity these are also the minimum values.

THEOREM (Schofield). � � � � � � � � � � ext( � , � - � ) = 0.

QUESTION 1. Schofield claims this for all K, but his proof only works

in characteristic zero. Is the result true in general?

THEOREM (Schofield). ext( � , � ) = max{ - < � � , � > � � � � � � � � � � � }.

Combined, these two theorems allow inductive calculations.

If ��� � are dimension vectors and M has dimension � , there is a variety

n � i
M

�

Gr ( ) � X :=
�

Gr( ).�
Q � � i

i=1

of subrepresentations of M of dimension � . This subvariety has a
*

fundamental class in H (X, � ). For the general representation of
*

dimension � this class is constant, say c(Q, � , � ) � H (X, � ). We describe

below the computation of this element (because of the complexity I

have not done any examples). On X there are universal bundles as

follows.
� j th• S � �
� X is the j universal sub-bundle, whose fibre over (U ) � X

j i� j
is the subspace U � �

.
j

th• Q is the j universal quotient bundle, whose fibre over (U ) � X is
j i� j

the quotient
�

/U .
j
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If E and F are vector bundles, there is a vector bundle Hom(E,F) whose

fibres are the linear maps between the fibres of E and F. For a vector

bundle E � � � � � � � � � � � X the set of global sections s:X � � � � � � � � � � � E is denoted by � (X,E).

Now there is a map

� j � k
f : Hom(

�
,

�
) � � � � � � � � � � ��� (X,Hom(S ,Q ))

jk j k
� � � � � � � � the section which on the fibre over (U )

i� j � � k � k
is the composition U � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

/U .
j k

The map f is onto (and is usually 1-1 if j � k). Thus we obtain a map
jk

f:Mod(KQ, � ) � � � � � � � � � � ��� (X, E) where E is the vector bundle

E = � Hom(S ,Q ).
j k

a:j � � � � � � � � � � � k
K
x

Now the zero set of the section f(x) is Gr ( ), and by the theory of�
Q �

chern classes it follows that c(Q, � , � ) is the top chern class of E.

Now the cohomology ring of X and the chern classes of the S and Q
j j

are known by Schubert calculus. It is therefore possible to compute

the chern classes of E.

SCHUR ROOTS

� is a Schur root if there is brick of dimension � . If so, the general

representation of dimension � is brick.

THEOREM (Schofield). � is Schur root � < � , � >-< � , � > > 0
� � � � � � � � � � , ��� 0, � .

If � is a root, since t(Ind(KQ, � ))=1, there is unique e=e( � ) with

� ({x � Ind(KQ, � ) � dim End( � )=e}) = 1-q( � ).

Moreover e( � )=1 ��� is Schur root.

QUESTION 2. How can you compute e( � )?
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RATIONAL INVARIANTS

The field of rational invariants is

GL( � )�
( � ) = [function field of Mod(

�
Q, � )] .

By a result of Kac, you can compute
�
( � ) if you know it for Schur

roots.

QUESTION 3 (standard).

• Is
�
( � ) rational, ie is

�
( � ) � �

(X ,..,X ) for some n?
1 n

• Weaker, is it stably rational, ie is
�
( � )(Y ,..,Y ) rational for

1 m
some m?

By Schofield and Le Bruyn, to prove stable rationality it suffices to

understand the quiver with one vertex and two loops. Question 3 is
2

connected with questions about moduli spaces of vector bundles on � ,

and the ring of generic matrices. See the survey by Le Bruyn.
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