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These lecture notes are about the variety Mdd(A, r) of r-dinensiona
nodul es for an associative algebra A, and to a | esser extent about the
variety Al g(n) of n-dinmensional associative algebras. My aimwas to
cover a nunber of different topics, show ng how these varieties have
been used to study al gebras and their nodules. | place special
enphasi s on representations of quivers, that is, nodules for path

al gebr as.

| begin with the notion of a variety, quickly going through the
definitions, and illustrating themw th exanples fromrepresentations
of al gebras. Anpbng the results that | cover from al gebraic geonetry
are the fact that Grassmanni ans are projective varieties, and
Cheval | ey’ s t heorens about sem continuous functions and constructible
sets.

My first topic concerns degenerations of nodules. | prove sone
necessary and sufficient conditions for the existence of a
degeneration between two nodul es, and then prove a beautiful result of
Bongartz describing the degenerations for directed al gebras.

The second topic is GeiRR’s theoremthat degenerations of al gebras of
wild representation type are wild. Actually, this theoremis trivial
but it was not spotted for a long tine, and the assertion was not
expected, so | still think it is an inportant contribution

My third topic is Kac’s theoremon the dinension vectors of

i ndeconposabl e representations of quivers. This theoremis now quite
old (published in 1980), but | was keen to work through the proof. In
these notes | go through the geonetry part quite carefully, but | only
sketch the part which involves reducing to finite fields.

I did not have tine for the final topic, general representations of
qui vers, but have included a section in these notes which nentions
some of the results, and al so sone of the open problens.

Thr oughout these notes the setting is as foll ows.

® Kis an algebraically closed field of arbitrary characteristic.

® Ais an associative K-algebra with 1, finitely generated as a
K-al gebra (and often finite dinensional).

® Al nodules are finite dinmensional |eft nodul es.

Wl liam Crawl ey- Boevey,
Mat hematical Institute, Oxford University,
Decenber 1993.



81. Varieties

In this section we recall the definition of a variety, and give two
exanpl es arising fromrepresentations of algebras. The mai n exanpl e,

Mod(A, r), is deferred until the next section

DEFI NI TI ONS
e a"=k" with its zariski t opol ogy, so closed sets are defined by the
vani shing of collections of polynomals in K[Xl""xn]'

n . Ce .
® X<A is locally closed if it is openinits closure, or

equivalently if it is the intersection of an open and a cl osed set.

® The set of regular nmaps on a locally closed subset xea" is

o ~
ox = {O:X——eK Each xeX has nhd Uin A with 9|Unx_f/g}

f,geK[Xl,..,Xn], g nonvani shing on U

n 1 1

e P = P(Kn+ ) = 1-d subspaces of Kn+ . The closed subsets of P" are

defined by the vani shing of collections of honbgeneous pol ynom al s

in K X ,..,Xn].
® The set of regular nmaps on a locally closed subset xeP" i's
. n . _
ox = {O:X——eK Each xeX has nhd Uin P" with el =f/g U}
f, geK[ X ,..,Xn], f, g honpg, sanme deg, g#0 on

® A (quasiprojective) variety is a locally closed subset X of A" or

Pn, with its topol ogy and know edge of O(U) for all U open in X

® A norphism¢: X—Y is a continuous map such that for all open UcY

and all regular 6:U—K the conposition ¢_1(LD—99U—9eK is regular

® An affine variety is one isonorphic to a closed subset of A" (an

i sonorphismis a norphismw th an inverse, which is not the sane as
a bijective norphism.

® A projective variety is one isonorphic to a closed subset of P".

® A topological space Xis irreducible if X# and X=YuZ with Y and Z
closed = Y=X or Z=X. Equivalently any non-enpty open subset is

dense. Any variety has a deconposition into irreducible conponents



(maxi mal irreducible closed subsets). For sone people
irreducibility is included in the definition of a variety, but that

i's not conveni ent for us.

® XxY has the structure of variety, but this is NOT with the product

topol ogy. | nstead mnxmmgmmm. A product of irreducible varieties is
i rreduci bl e.
ALGEBRAS
n n n n3
® Bil(n) ={bilinear maps mK xK —K'} = A" .
® Ass(n) = {associative bilinear n} is a closed subset of Bil(n), so

it is an affine variety.

® Alg(n) = {associative bilinear mwhich have a 1}.

THEOREM
1. Alg(n) is an open subset of Ass(n).
2. The map AIg(n)—>Kn, m—the 1 for m is a regular nap.

3. Alg(n) is an affine variety.

PROOF. Let A be a f.d. associative algebra, not necessarily with 1.

Let Ia,ra:AHA be left and right multiplication by aeA

Exercise: A has a 1l ¢« there is sone acA with Ia and ra i nvertible, and

inthis case the 1 is I;ll(a).

(1) The set Da:{msAss(n) | det(l?det(r:ﬁiO} is open in Ass(n), and
Al g(n) :UaDa by the exerci se.

(2) On Da the map is equal to mr—>[|2]_1(a) which is a quotient of
pol ynom al functions on Bil(n). The denonminator is det(l? which is

nonvani shi ng on Da'

(3) Because of (2) there are maps both ways show ng that

Alg(n) = {(ma)eAss(n)xK'lais 1 for n},



and the RHS is a cl osed subset of Ass(n)xKn, so is affine.

REMARKS.

1. G (n) acts on Alg(n) by conjugation, and the orbits are the
i sonor phi sm cl asses of al gebras.

2. The structure of Alg(n) is known for small n. For exanple Al g(4)
has 5 irreduci bl e conponents, of dinensions 15, 13, 12, 12, 9. See
Gabriel’s article in SLN 488.

SUBMODULES

If Mis an A-nodul e, then
GA(r'\ﬁ = {n-di nensi onal subnodul es of M.

In case A= Kwe wite just Gr(r'\ﬁ. This is the usual G assnmanni an of

n-di nensi onal subspaces of a vector space M

THEOREM The Pl tGcker nap G(%—)P(Anl\/p sendi ng a subspace U to ANMuis

1-1, and has cl osed i mage, so that G(r'\ﬁ is a projective variety.

LEMVA. | O#xeA"Mthen x' := {yeM|xay=0} has dinension =n, and if it

has di nension n, then xeAn(xl).

PROOF. Let xl have basi s el, C er, and extend it to a basis el, C em
of M Wite
X = ZI < ..<i i S M
1 n 1" 'n 1 n
Now
_ * basis el enent of An+1M (all i.=k)
ei A. .. AE Aek— i
1 n 0 (el se)

and you get distinct basis el enents of An+1M in this way, so the

condition xae, =0 for k=r inplies that the nonzero coefficients x.

k i1..in
nust have sone i.=k. Thus the nonzero xi 1 in involve all of 1,..,r,
. R n,_1
< = =
so r=n. Moreover, if r=n then x X1p0 | €A - Ne € A(Xx7).



PROOF OF THE THECREM
The Pl Gcker map is 1-1 since if U<M has di nension n and 0#xeA"U t hen

U=xT. Nanel y, dim xt=n by the | emma, but Ucx® since An+1U:0.

By the lemma the image of the Pl icker map is
{<x>eP(A™) [di m x*=n} = {<x>eP(A"M Irank(xA-: M—sA" M <m n} .

This is closed, since the condition that a matrix has rank =r is
equi valent to the vanishing of all (r+1)x(r+1) minors, and each m nor

i s a honbgeneous polynomial in the entries of the matrix).
CORCLLARY. GrA(r'\ﬁ is a projective variety.

PROOF. |If nultiplication by ae€A induces an isonorphismon Mthen it
i nduces a nor phism a’:G(r'\]/&HG(r'\]/&. Now

GrA(r'\ﬁ = {UeG(r'\ﬁ [a’(U=U V a induces an isonorphismon M,

so it is closed. (To showthat a(U) <€ Uit suffices to show that
(a-A1)(U) < U for sone aeK, and for general A the elenent a-Al induces

an i sonorphismon M)

SCHEMES

More general than a variety is a K-schene. | don't want to define what
a schene is, but only nake sone observations. For an introduction to
schenes whi ch explains the functor of points, see D. Ei senbud and J.

Harris, "Wy schenes".

® A schene can be described by its functor of points, a functor
(commutative K-al gebras)—Sets.

e Affine schenes are those which are representable, so isonorphic to
a functor Hon](_al g(R,—).

® There is the notion of an al gebraic schene. In the affine case we
want Rto be a f.g. algebra over K

® There is the notion of a reduced schenme. In the affine case we want

R to have no non-zero nil potent el enents.



FACT. Any al gebraic schene X gives a variety X(K). This defines a 1-1

correspondence between reduced al gebraic schenes and vari eti es.

EXAMPLES.

¢ G(n)(R = G(n,R is an affine al gebraic reduced schene.

e alg(n)(R = associative R-algebra structures on R with 1. This is
an affine, algebraic, schene, in general non-reduced.

o g(r'\ﬁ(R) = R-nodul e sunmands of Mg R of rank n. This is a

K
proj ective, algebraic reduced schene.



8§2. Varieties of nodul es

In this section we define the variety of nodul es, and give sone

exanpl es.

DEFINITION. Let A be a f.g. associative K-algebra with 1. If reN then
Mod(A r) = {left A-nodule structures on Kr}
= {K-al gebra maps A—>Mr(K)}.

GENERALI ZATION. Fix a conplete set (el, C en) of orthogonal
i denpotents in A (not necessarily primtive).

¥ e, and Zei =1.

® |[f Mis any A-nodul e then Mo

® Thus e.e.=§
i n
i=18 M

® The di nension vector of Mis the vector ocean with o, =di m ei M

® [or ocean set

{I eft A-nodul e structures on K“lca. .. oK*"

Mbd( A, o)

with
e acting as projection onto i-th factor }

K- al gebra maps A—)Mr(K) sendi ng
{ } (where r=y oci).

e to the projection matrix

® Note that Mdd(A, @) depends on the set of idenpotents (el, ..,e ).

n

LEMVA. Mbd(A «) is naturally an affine variety.

PROCF. Fix a surjective honmonorphi sme: K<X,, .., XN>—>A with kernel |I.

1
Here K<X1, ce, XN> is the free associative al gebra, so each
peK<X1, C XN> is a non-commutative polynomal in Xl’ C XN. Thus we can

evaluate p on an N-tuple of square matrices to get square matrix.

Choose q, with e :e(qi). Let r :Zoci. Then

p(IVH,..,IV'\I):OVpeI and
qi(Nﬁ""N'\l) = proj. rratrix}

This is a closed subset of Mr(K)'\I so an affine variety. W leave it as

Mod( A «) = {(IV!L,..,IV'\I)GMr(K)N

an exercise to show that you get an isonorphic variety if you choose a



different map 6, so is natural

REMARKS

1. If Ais f.d. then the inclusion
Mod(A 1) = {6:AeK —3K' | @ is an action of A} < Horrk(A®KKr,Kr)
endows Mod( A, r) with the sane structure as an affine variety.

2. Md(AT)(R = A@KR-erd structures on R = K-al gebra maps A—>Mr(R).
This is an affine schene. In interesting cases Md(A r) wll be
reduced, or we can ask questions which don't depend on its being

reduced. Because of this we only use Md(A ).

DEFI NI TI ONS
® xeMd(A «) gives an A-nodule with dimvector « which we denote KX.

Each A-nmodule M with dinension vector « is isonorphic to sone KX.

e |f « B are dinension vectors we define

i near maps K“l@..®K“n——eKBl@..®KBn

Hom( «, B) :{ gnl HO[T(KOCi,KBi).

sendi ng each Koci into KBi

I xeMbd(A o) and yeMbd(A B) then HOM(K K ) € Hom(a, ).

We define End(a) = Hom(a, ) and G(a) = Aut(oa) = niGl(ai).

® G (a) acts on Mdd(A «) by conjugation. If geG@.(«) then g can be

consi dered as a bl ock-di agonal el enent of G.(r) (r:Zai), and the

action is g(IVH,..,N'\I):(glvhg_l,..,glv'\lg_l) for (M....M) € Md(A a).

® \W have KX = Ky e x and y are in the sane orbit under G(«). WV

denot e by ONIthe orbit of nodules isonorphic to M

EXERCI SE. Show that Stab = At \(K ).

a(a) X

EXAMPLES

1. If Alis comutative then Md(A, 1) is the affine schene defined by

A, and Mod(A 1) is the affine variety with with regular functions



Al (ni |l potents).

Commuting matrices. Md(K[ X, Y], r) = {(MN |M NeMr(K) and MN=NM .

This is irreducible by M Gerstenhaber, On dom nance and varieties
of commuting nmatrices, Ann. Math. 73 (1961), 324-348.

Matri ces. I\/bd(Mn(K),n) = {K-al gebra maps Mn(K)—>Mn(K)}

Aut(Mn(K)) si nce Mn(K) is a sinple al gebra

PGLn(K)
since all autonorphisnms of Mn(K) are inner, for exanple by the

Skol em Noet her Theorem

Quivers. Aquiver Qis a finite directed graph (maybe w th | oops,
cycles and multiple arrows). It has vertex set QO:{l,..,n}, and

arrow set Ql' Each arrow has head at the vertex h(a) and tail at
t(a). W& draw

h(a) ® <& o t(a).

A non-trivial path is a sequence Ay with h(ai):t(ai +1).
Pictorially

e Mo . A
There is a trivial path e, for each vertex i. ® The path al gebra

KQ has basis the paths, and nmultiplication given by the conposition
of paths, or zero if they are inconpatible. It is a f.g.

associ ative al gebra.

(el, . .,en) are a conplete set of orthogonal idenpotents. W al ways
use this set of idenpotents when we consider Md(KQ «).

KQ nodul es correspond to representations of Q which are specified
by giving a vector space Xi for each vertex i and a linear map

Xa: Xi —>Xj for each arrow a:i—j .

The di nension vector of a representation Xis the vector « with

@ = dim Xi .
Because of the correspondence above we have

Md(KQ «) = m Hom( K, K4 ) |
arrows i —j

10



I f xeMbd(KQ «) and yeMbd(KQ B) then

Hom (K K)) = () eronta B) |y ¢ = ¢x, for all aii—j}.

al

Determ nental varieties and conpl exes.

Let Q be the quiver

10 2,62

so that Mod(KQ «) = Hon{ K“l, K“Z). A representation X of Qis
determined up to isonorphismby dimX and rank Xa’ so the orbits in
Mbd(KQ @) are O ={xeHon( K, K*) |rank x=r} with r=ni n{e,, o). The

r'" determinental vari ety is O_r:{eron( K™, K‘xz) rank x=r}.

More generally let Q be the quiver

! o %mogwt
and let | = <ai +18 > <KQ Then
_ m o0+l _ <
Mod(KQ' |, «) —{xer[i::L Hom( K™, K ) |xi+1xi—0for 1=i <n}.

The Buchsbaum Ei senbud variety of conplexes is

V\(rl,..,rn? = {xeMod(KQ I, «) |rank X; sri}.

| f ri_1+ri50ci this variety is the closure of an orbit, and in this
case it is a normal, Cohen-Macaul ay variety. See papers of Kenpf
and of De Concini and Strickl and.

Remar k: knowi ng that closures of orbits are nornal is inportant.
For exanple, for Schubert varieties this leads to the Denmazure

character formula.

Pr eproj ective al gebras.

Let Q be a quiver without |oops. Let Q the quiver obtained by

*
adding a reverse arrow a :j——i for each arrow a:i——j, and let

[a,a] ).

A=KQ 1 (T

The relevant variety is
Each non-trivial path in }

Aoc = {X € Mod(A, o) KQ acts nilpotently on Kx

(The condition is automatic if Qis Dynkin)
Each irreduci bl e conponent of Aoc has dinension 1/2 di m Mod( KQ', «) .
See Lusztig, J. Aner. Math. Soc. 4 (1991). This paper uses perverse

11



sheaves on Mbd(KQ «) to study canonical basis of quantized

envel opi ng al gebras.

If Qis Euclidean then there is a correspondi ng Dynkin di agram and
a corresponding finite subgroup G of SU(2). In work of Kronheiner
the variety Mod(A «) is related to the Kleinian singularity

C[ X, Y]G. An al gebrai c explanation seens to be that the skew group

algebra C[X,Y]*Gis Mrita equivalent to A

12



83. Chevall ey’ s Theorenms and applications

In this section we derive Chevalley's Theorens fromthe sinplest

version, and give sone consequences.

DEFI NI T1 ON

® The dinension dim X of a topological space X, is the largest n
such that there is a chain X0 c X1 c... cC Xn of distinct
non-enpty irreduci ble closed subsets of X. (dimg = -n).

® (bserve that if X< YthendimX =dimY. This is strict if Yis

irreducible and X is cl osed.

® The local dinension at xeX is din&X = m n{di mU|U nhd of x}.

FACTS from conmut ati ve al gebra
1. dima” =dimpP" = n (so varieties have di nension).
2. If U2z is open in an irreducible variety X then dimU = dimX

3. If XY are irreducible varieties then dimXxyY =dimX + dimyY

CONSEQUENCES.
o |f Xi are locally closed in Y then dimUiglxi = nax{din1Xi}.

o din&X = max{dimZ|Z is an irreduci ble cpt of X containing x}.

The next result also follows fromcomutative al gebra. For a proof,
see Munford’s Red book. W spend the rest of this section deriving

coroll ari es.

MAIN LEMVA. | f m X—>Y is a domi nant norphi smof irreducible
varieties, ie m(X)=Y, then any irreducible conponent of a fibre n_l(y)
has dinension at least dimX - dimY. Mreover there is an open gzUcY
with dimn_l(u) =dimX- dimyY for all ueU.

DEFI NI TION. A subset of a variety is constructible if it is a finite

union of locally closed subsets. Constructibility is closed under
finite unions and intersections, under conplenents, and under inverse
i mages. An exanple of a constructible set which is not locally closed

is mz\{x—axis} v {origin} = {(x,y) Ix=yz for sone z}.

13



THEOREM 1. |If m X—=Y is a norphismof varieties then n(X) is
constructible. More generally m sends constructible sets to

constructi bl e sets.

SKETCH.

® Wrk by induction on dim X

® W nay assune X is irreducible.

e W nmay assune that Y = n(X) so Y irreducible and m i s doni nant.

® By the main lemma, m(X) contains a non-enpty open subset U of Y.

e Nowm(X) = Uu n(X\n_lu) and n(X\n_lLJ) is constructible since
dim(Xm Yy < dimx

EXAMPLE. I nd(A «) = {xeMd(A «) IKX i ndeconposabl e} is constructi bl e,

since its conplenent is Uoc:B+y, B, 7%0 I n(qu, 7) wher e

¢ 7: GL( ) xMod( A, B) xMod( A, ) —Md( A «), (9g,X,Y) +—> g(xey).

B

UPPER SEM CONTI NUQUS FUNCTI ONS

f: X—>Z is upper semicontinuous if {xeX|f(x)zn} is closed for all neZ

THEOREM 2. |f m X—Y is a norphismof varieties then the function

X > di m T 1(n(x)) i s upper senicontinuous.

SKETCH Let Z(m n) = {x|dimn La(x) =n}.

® W prove Z(mn) is closed by induction on dim X

e W may assune X is irreducible, for if X=U Xi is the deconposition
into irreducible conmponents, then Z(m,n) = U Z(nlxi,n).

® W nay assune that Y = n(X) so Y is irreducible and w i s dom nant.

® |[f n=dimX-dimY then Z(m, n)

X by the main lemma, so it is
cl osed.

® |[f n>dimX-dimYthen Z(m,n) = Z(m|

; X\n'l(U)’n)' Now

is closed in X\m “(U by induction and X\n_l(U) is

Z(”l)(\n'l(u)!n)
closed in X

14



SPECI AL CASE. Suppose X is a variety, V vector space, and we are given

subset s VXQV for all xeX. Suppose that

® each VX is aconeinV, that is, it contains 0, and is cl osed
under scalar nultiplication.

o [(x,V) |V€VX} is locally closed in XxV.

Then the map X+—dim Vx i s upper senicontinuous.

PROCF. Use the morphism {(x,V) |veVX}—>X. The fibre over x is Vx'
Al so, since Vx is a cone, every irreducible conponent of Vx contains

0, so di r‘rbVX = di mVX.

APPLI CATI ONS.
1. The map Mud(A «) xMod(A, B) —N, (X,Yy) —=dim HomA( KX, Ky) i s upper

seni conti nuous. It suffices to observe that
{(x,y, 0) |0eHom (K, K )} € Mod(A, o) xNod( A, B) xHom( ., B)}

i s closed.
2. Thus al so Mod(A, o) —N, X+—dim EndA( KX) upper seniconti nuous.

3. Let us say that eeeEnd(W is equipotent if all eigenvalues of 6 are
equal. This is a closed condition, for if

1 2

n n n-
+(2)c2t + ...,

det(t1-0) =t" + nclt”'

then 6 i s equipotent ec :crlfor all r.
® Equi (KX) = {equi pot ent endonor phi sns of KX} is a cone, so the
function Md(A «) —N, x+—di m Equi (KX) i S upper senicontinuous.

® This gives another proof that Ind(A «) is constructible, for
Ind(A «) = {xIEnd(KX):Equi (KX)} = Ur {x|dim End(KX) =r, di m Equi (KX) =r }

and each termin the union is locally closed.

15



GROUP ACTI ONS

® |et G be an algebraic group acting on a variety X
® For sinplicity we suppose Gis an irreduci ble variety (one usually

says that Gis a "connected" al gebraic group.)

LEMVA,
® FEach orbit Gk is locally closed and irreducible.
o dimG<:dimG—dimStabG(x).

® X\ & is aunion of orbits of dinmension < di mGx.

PROCF.

e Gx is the image of the map G—X, g+—gx, so & is irreducible and
Gx is constructible. It follows that there is @#UcGx, U open in &X.

* Now QU = UgeG gU is contained in & and G stable, so equals G&x.
Each gU is open in &, so GQUis open in &. Thus Gx is locally
cl osed.

® Now, since Gis irreducible, sois Gx.

® The fibres of G—Gx are cosets of Stab(x), so all have the sane
di mension. By the main lenma, dim Stab(x) = dimG - di m &.

® The last statenent is clear.

LEMVA. The map x+——dim Stab(x) is upper senicontinuous. Therefore,

® the set X(<s) = {xeX | dim&x = s} is closed, and

® the set X(s) = {xeX | dim& = s} is locally closed.

PROCF. Let Z = {(g, x)eGxX|gx=x} and | et m: Z——X be the projection. Now
. -1 o L
dln’kl’ X) m n(l,X) = dln’h Stab(x) = dim Stab(x)

since for a group each point |ooks the sane.

16



84. Degenerations of nodul es

We prove sone general results about degenerations of nodules. Then we

study K[ X] and directing al gebras.

Recal | that OM denotes the orbit in Md(A «) of points x with KXEM
W have dim G («) - dim OM: dimStab(x) = dimAut(M = dimEnd(M

DEFI NI TION. M degenerates to Nif O\ € O_Ivl

for if Mdegenerates to N and M2N then dim ON < dimONI by the | emma

This is a partial order,

about group actions.

LEMA. |f O L M—N—0 is exact then M degenerates to LeN.

PROOF. For sinplicity we do the case of Mdd(A r). An el enent
xeMod( A, r) is defined by matrices xaeMr(K) where a runs through a set

of generators of A Now there is xeO,,in which each matri x Xq has the

M

form [ya Wa] with K = N K = L. For teK, define an el enent xt vi a
0 za y z
t _ (ya twa
Xa - [0 Za]'
t . . . | 0 t
For t#0, x 1is the conjugation of x by 0t € G (r), so x eMd(A ),
and noreover x' e OM Thus x0 € O_Ivl and of course Kxo ~ LeN.

THEOREM O,, contains a unique orbit of sem sinple nodules. It follows

M
t hat OMis closed « Mis semni sinple.
PROCF. O_IVI contai ns Ogr M by the | emma, so we need to prove uni queness.

e |[f Mis an A-nodul e and aeA, then the characteristic polynomal is
defined by char.pollv‘a) = det(tl—[a) wher e [a: M—Mis
nmul tiplication by a.

o |f ONQO_Mthen char.poIN(a) = char.poIMa) for all aeA This holds
because the coefficients of char.pol(a) define a regular nmap
nod( A, oc)—)ll\r where r = ) o -

o |f char.poIMa) = char.poIN(a) for all aeA then the sinples have

the sane nultiplicities in Mand N, for if Sis sinple, then
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[MS] = = mn ord, . char.pol f(a).
dmsS acAnn( S) t=0 IV‘

wher e ordt -0 denotes the order of the zero at t=0. (For a proof, we
may assunme that Mis senisinple, next that Mis faithful. Now Ais

sem sinple and the result is easy.)

REMARK. The opposite extrene is to determ ne the open orbits OM The

followi ng inplications hold.
Ext 1(I\/l M=0 & OM open subschene of Md(A «) = OM open in Md(A «)

The last inplication has a converse if Md(A «) is reduced, for

exanpl e for A=KQ

PARTI AL ORDERI NGS5

DEFINITION. Wite Msext N for the reflexive and transitive relation

gener at ed by I\/Isext LeN if there is an exact seq. O L M—N—>0.

® By the lemm I\/IsextN implies that M degenerates to N
® |t follows that Sext is a partial order.

DEFINITION. Wite MshomN if dimHom(X,M= dimHon(X, N) for all
nodul es X

® The function dimHon(-,M determines Mup to isonorphism (For a
proof one can reduce to the case when A is finite dinensional, when
it is a theoremof Auslander. Alternatively, see K Bongartz, A
generalization of a theoremof M Auslander, Bull. London WMath.
Soc., 21 (1989), 255-256.)

® |t follows that shomis a partial order.

e |f Mdegenerates to Nthen M Shom N by upper sem continuity (the

set {U|dimHom( X, Uy=dimHom(X,M} is closed, contains OM o) ON).

REMARK. The general problemis to describe degenerations. W have

N = M degenerates to N= M = N.

M 5e hom

xt

Thus the best possible case is when M = N= M= N. This doesn’'t
hom ext

hold for all algebras A but for sone algebras it does hold.

18



THEOREM M = N= M= N for r-dinensional K[T]-nodules.
hom ext

PROOF. M and N deconpose into generalized ei genspaces

M=o ek M N=0oe N
The conditions M ShonlN and dimM=dimNinply that d|n1Nl = d|mlw

and IV[ Shom Nt for all t. Thus we nay suppose that M:IV[ and N:Nt'

Wthout |oss of generality t=0, so T acts nilpotently on Mand N

Now M is described by a partition u:(ul,uz,..) of r, and also by the
correspondi ng Young frane, a diagram whose ith row has | ength T for
exanpl e

oooooo

oooooo

oooo

oo
Explicitly the diagram has one colum of length i for each sunmand of
t he forn1K[T]/(T'), or equivalently M is the nunber of summuands

.th

K[T]/(TJ) with j =i (also the dinension of the i | ayer in the socle

series).

Let N be described by the partition v. Now NEhon“ i mplies that

dim HoM(K[T]/T ,M = dimHom(K[T]/T.N for all i,

o) u1+..+ui = v1+..+vi for all i, that is up = v in the dom nance
ordering. Now the doninance ordering is generated by the foll ow ng
noves: u=<v if the diagramfor v is obtained fromthat of u by noving a
corner block froma colum of length j to a colum further to the
right of length i<j. For exanple

oooo

oooooo oooooo

M Oooooo = QOooooo 1%

oooom
Oom m]

Now we have exact sequences

1

0 KT/T™T ST og/? — KT/TP o

for each such nove, so u=v inplies that NEextN.

Reformul ating this, we obtain the
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CORCOLLARY ( Gerstenhaber-Hesselink). For A B € Nh(K) the foll ow ng
statenents are equival ent

® A degenerates to B under the conjugation action of GLn(K)

® rank (A—tl)r = rank (B—tl)r for all teK and reN.

PROOF. Consider A and B as n-di nensional K[T]-nodules. The nunerica

condition is now A = B.
hom

PREPRQIECTI VE MODULES

DEFI NI TION. A path of A-nbdules is a sequence X0 X1 - Xn of

non-zero non-i sonor phi sns bet ween i ndeconposabl es. Wite Xoeexn

® An indeconposable nodule X is preprojective if there are no

infinite paths ending at X. An arbitrary nodule is preprojective if

al | indeconposabl e sunmands are preprojective.

THEOREM (Bongartz). If N is preprojective and Ms n“ t hen NEeX N

ho t

SPECI AL CASE. If Ais representation-directed, ie every nodule is
preprojective (eg KQwith Q Dynkin), then M degenerates to N & NEhoﬂ“
This is conbinatorial since A has only finitely nany indeconposable

nodul es.

Sonme cases of KQwith Q Dynkin were solved before Bongartz, for
exanple the followi ng orientation of Eh

*~

N
- .
A

o/
was sol ved by Abeasis and Del Fra, Adv. Math 52(1984), 81-172. |
suppose that their work takes 90 pages since they use the sane brute

force nethod we used for K[ T].

OPEN PROBLEM Show that the equival ence M degenerates to N & NEhon“

hold for path al gebras of Euclidean quivers. The Kronecker quiver

e " e has been dealt with by Bongartz.
—
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PROPERTI ES OF PREPRQIECTI VE MODULES.

e |f X is indeconposable preprojective then End X = K, for otherw se
there is infinite path ..f—>Xf—>XfHX.

e |f X is indeconposable, Mis preprojective and Hom(X,M=#0 then X is
preprojective.

® X>>Y is a partial order on the indeconposabl e preprojectives.

® Ext 1(Y,X)¢0 > X>>Y (G herwise there is a non-split extension

0—>Xf—>E1®. . @En$Y—>o,

where the middle term has been deconposed into indeconposabl e
sunmands Ei' Now i f any conponent of f or g is zero or an

i sonor phism the sequence splits. Thus there is path X—sE,—>Y.)

1
® Ext 1( X, X)=0 for X indeconposabl e preprojective.

PROOF OF THE THECREM
1. W fix Nand prove it for all Mby induction on dimOM If MeN then
not hing to do, so suppose MtN. Now Mis preprojective, for if Uis an

i ndeconposabl e summand of Mt hen
0 #dimHom(U M = dimHom U N),

so Uis preprojective.

2. There is a map 8: M—N such that no indeconposabl e sumrand X of

Ker 6 is a summand of M

PROOF. Wite M= @irzl

non-i sonorphic. Since »»> is a partial order on preprojectives, we nmay
assune t hat Hon(Ui,Uj):O for i<j. Let I\/IJ = ®i<j Ui(n'). We define GIM
i nduces a nap I-Ion(Uj,I\/JI_l)—>I-|on(Uj,I\I),

Ui (ni) with the Ui i ndeconposabl e and

by induction on j. Now OlM-l
say with i mage Ij. Now

dimHon(Uj,N) ZdimHon(Uj,l\/p :dimHon(Uj,I\/JI_l
Thus there are naps ej 1""9j njeHon(Uj,N) which are linearly

i ndependent nodul o Ij. Use these to define o],,.

M

)+n. = diml. +n..
I I

Let X be an indeconposable sunmand of M contained in Ker 6. Let
1‘i p: X—)Ui be the conposition of the inclusion XM and the
proj ection of Monto the pth copy of Ui' Since X is a sunmand, sone
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f. is invertible, say f. . Thus X =2 U, so f. =0 for i> and
Ip 19 J Ip

each of the naps
-1

f.o f.": U—U
Ip1q J J
is scalar nultiplication. Now X € Ker 6, Sozeipfip = 0. Thus
-1 -1
o. f. f.~ =- Y . e. f. f. l.,
2 plip'ia T Zig.p %iplipjg €

whi ch contradicts the constructi on of 6.

3. Mand N have the sane dinension, and M¢N, so Ker 8 # 0. Let X be an
i ndeconposabl e sunmand of Ker(8) which is maximal with respect to .
Let Y=M X, so0 0—X—sM—Y—0.

4. M Shom XoY Shom N.

PROOF. W need dim Hom(V,M = dimHom(V, XeY) = dimHom V,N) for all

i ndeconposabl e nodul es V. Now we have a | ong exact sequence
0——>HOM{ V, X) —sHom( V, M —Hom( V, Y) —Ext ~(V, X) .

| f Extl(V, X)=0 then di m Hom(V, XeY) = dimHon(V,M = dimHom(V,N as
required, so suppose Ext 1(V, X) #0. By observations above X--»V and VX
so that HomV,X)=0. If Zis a conplenment to X in Ker(8) then al so
Hom(V, Z2) =0 by the choice of X. Now there is an exact sequence
0—>Z—>Y—N, so 0——HomV, Z) —sHom( V, Y) —sHom(V, N) i s exact, but the

first termis zero. Thus
dimHom(V,M = dimHom(V, XeY) = dimHom(V,Y) = dimHom(V, N,

as required.

5. W have an exact sequence 0 X M—Y- 0, so Mdegenerates to

XeY. Also XeY ¢ M for otherw se the sequence
0——Hom( Y, X) —Hon{ M X) —sHon( X, X) —0

is exact on the right by dinensions, so Xis a sunmand of M which is
i mpossi bl e. Thus dim OX@Y < dimO,, Now XeY = m N so by induction

M ho
XoY = N. Also M= XeoY. Thus M = N.
e e e

xt xt xt
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85. Representation type of al gebras
We prove Gei s Theoremthat degenerations of wild algebras are wld.

THE VARI ETY ALGMOD

® Let Algnod(n,r) = {(x,y)eA g(n)xHonk(Kn, Mr(K)) Iyel\/bd(KX,r)} wher e
for xeAlg(n) we wite Kx for the correspondi ng al gebra.

® This is closed subset, so an affine variety.

® |let m Algnod(n,r)——>Alg(n) be the projection.

e W have 1 i(x) = Mbd(K ).

e G (r) acts on Al gnod(n,r).

THEOREM m: Al gnod(n, r)—Al g(n) sends G.(r)-stable closed subsets to

cl osed subsets.

(A subset X being G stable just neans that gX<X for all ge@. The
theoremis a refornulation of Lemma 3.2 in Gabriel’s article in SLN
488. CQur proof is sinpler since it avoids using sem sinple nodules. W

first need sone | enmas.

® |et Mbe a vector space of dinension m
® let Surj(Mr) = {e: M—)Kr surjective}.

® G (r) acts on this.

LEMVA. Let o SurJ(IVlr)—>Gr( ) be the map sending 6 to Ker(e)
1. ocidentifies G (r)- orbltsm Surj(Mr) with points in G( ).
2. o is a norphism

3. cis locally a projection UxG(r)—U.

(Thus o is a fibre bundle, and Gr(mMr) =Surj(Mr) Il G(r)).

PROCF. (1) is clear. For A K C—M define
o {eeSurJ(Mr)Ieh i s isonorphisnt.
* = {NeG (o )IM:N®IrT(A)}

The VA are an open covering of Surj(Mr), the UA are an open covering

23



of C-Ir(mMr), and o sends VA—)UX Usi ng these coverings one can prove

(2), but we skip this. Now we have inverse maps

0 +>(Ker 6, 62)

A U, x GL(r)

(U, 9) =gr 1pU

wher e Py is the projection M—In(A) conplenmentary to U, and

Xl: I n(A)—>Kr. Thus o is locally a projection UAXGL(I')—)UA.

LEMVA. If X is a variety then the projection XxSurj(Mr)——X sends

GL(r)-stable closed subsets to closed subsets.

PROCF. The map factors as XxSurj(Mr) ——— XXG(mr) —— X

® Using that o is locally a projection one can show that (1,c) sends
closed G.(r)-stable subsets of XxSurj(Mr) to closed subsets.

® Since Gr(mMr) is projective, it is "conplete", which neans that p

sends cl osed sets to cl osed sets.

PROOF OF THE THEOREM Let
W= {(x,0)eA g(n)xsurj (K", r)IKer(e) is K - submodul e of (Kx)r}.

This is closed subset by sane proof that GrA is closed in G. Now we
have a comutative di agram
W s Alg(n)xsurj (K", r)
le loroi.
Al gmod(n, r) -5 Al g(n)

where p sends (x,8) to (x, quotient nodul e structure on Kr). Now p is
onto, since any r-dinensional A-nodule is a quotient of AL Usi ng the

covering VA one can show that p is a norphism
If Z < Algnod(n,r) is G (r)-stable and closed, so is p_l(Z). Thus

p_l(Z) is G(r)-stable closed subset of AIg(n)xSurj(Knr,r). Thus
n(Z) = proj.(p_l(Z)) is closed by the | enma.
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NUMBER OF PARAMETERS
Let G be a connected al gebraic group acting on a variety X

EXERCISE. If Y&X is constructible and G stable, then you can wite
Y=2 0.. 02

with the Zi being G stable irreducible locally closed subsets of X

This deconposition is not unique, but the nunmber of top-dinensional Z

is the nunmber of top-dinensional irreducible conponents of Y, so is

uni que. The key idea for the proof is that if Z&X is locally closed

and irreducible then the fact that G<Z is irreducible inplies that G

is irreducible.

DEFI NI TIONS. The nunber of paranmeters of Gon Yis

pdY) = max [diannX(S) - s] = max [diannX(ss) - s].

The nunber of top-dinmensional fanilies of orbits is

tG(Y) = Zs (no. of irred conps of YnX(S) of di nensi on S+HG(Y))-

REMARKS.
1. W don't tal k nmuch about tG but it is well-behaved
2. If the set of orbits YYGwas a variety, then u would be its
di mension and t woul d be the nunber of top-dinmensional irreducible

conponents.

PROPERTI ES (| eft as exercises).

1. If Y, X are G stable, then u(UYi):nax{uYi}.

2. uY=0 & Y contains only finitely many orbits, and if so, then tY is
the nunmber of orbits.

3. If Y contains a constructible subset Z neeting each orbit then
pY = dimZ

4. |f f:Z—X is a map, and the inverse inmage of each orbit has

dimension =d then uX 2 dimzZ - d.
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LEMVA. |f m: X—>sY is constant on orbits, and sends G stable cl osed
subsets of X to closed subsets of Y, then the function y F—ud T 1(y))

i s upper senicontinuous.

PROOF. First yr—dimm 1(y) i s upper senicontinuous, since
{yeY | dimm S(y)=r} :on@(IdH&ilﬂx)a}y

Now nIX sends cl osed G stabl e subsets to cl osed subsets, and
(=s)
-1 . -1
ur M) = mx (dim(aly )7 Hy) - s
(=s)

TAME AND W LD

THEOREM (Drozd). A finite dinensional algebra Ais either
Tane: for any r there are A-K[ T]-bi nodul es IVH C N'\I f.g. free/KT],
such that any indeconposable A-nodule of dinension =r is
i sonor phic to sone I\/I K[ T]/(T-2).
Wld: there is an A-K<X, Y>-binodule M f.g. free/ KX, Y> such that

the functor M sends non-isonorphic f.d. K<X, Y>-nodul es

K<X, Y>
to non-i sonor phi ¢ A-nodul es.

The proof is hard.

LEMVA,
1. IfAisvw'ldthereissvw'thul\/bd(A,sr)zrzfor all r.
2. If Ais tane then u Mod(Ar) =r.

PROCF. If Mis an A-B-binodule, free of rank s over B, then after
choosing a basis of Mover B one obtains a hormonorphi sm A—)MS(B), and
this induces a map Mod(B, r)——Md(A, sr) corresponding to the functor
I\/bB-.

(1) W have a map Md(K<X, Y>, r)——Md(A sr). The inverse imge of an
orbit is an orbit, so has dinmension = dimG.(r). Thus

i Mod(A sr) = di mNMbd(K<X, Yo, 1) - dima(r) = 2r2 - r2 = 2,

1
-
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(2) 1 1=i...00y K[T](l\/|j)

% Mj ®K[T]/(T-A.) defines a constructible subset of Md(A r) of

=N is a sequence with ) rank =r, then
J
dimension = k =r. Let Z be the union of these sets over all possible

sequences. Then Z neets every orbit so u Md(A;r) =dimZ =r
THEOREM (Gei B). A degeneration of a wild algebra is wild.

This is not the original version circulated by Geif3, in which only
speci al degenerations were allowed, but a private communication from
him (1 had sinultaneously proved the general case w thout the use of

Al gnod by replacing nodules with their projective presentations).

PROOF. By the | emm {xeAlg(n)IKX is wld} = Ur M wher e
N} = {xeAlg(n) | u Nbd(KX,r) >r}

Now N} is closed by the properties of Algnod and u, and it is
obviously G (n)-stable. If x,yeAlg(n) and y € G(n)x, then

vaw'ld=>xeMr (sonme r) =y € G(n)x ng =>Kva'|d,

as required.

EXAVPLE. A = K<a,b>/(a2—bab,b2—aba,(ab)2,(ba)2) degenerates to

B = K<a,b>/(a2,b2,(ab)2,(ba)2). Now B is known to be tane, so Ais
tanme. This is the only known proof that Ais tame. (The degeneration
is given as follows. Let xt e Alg(7) have basis 1, a, b, ab, ba, aba, bab
and nultiplication as indicated, and a2:tbab,b2:taba,(ab)2:(ba)2:0.
Then th =z A for t=#0, and Kxo = B.)

RENMARK. {xeAlg(n)IKX finite rep. type} is openin Alg(n). See
Gabriel’s article in SLN 488. The proof uses the second Brauer-Thral
conjecture, which is hard, and was not properly proved until nuch

| ater.
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8§6. Kac’s Theorem

We give part of the proof of Kac’s Theorem and sketch the rest.

® |et Qbe a quiver with vertices {1,..,n}.
The Ringel formis defined by <« B> = ) “iljg_i - Za:i—>j ociBj
For KQ nodul es have dimHon(X Y) - dimExt (X Y) = <dimX, dimY>
The Tits formis g(a) = <a, > = dimCG(«) - dimMd(KQ «).

The correspondi ng symmetric bilinear formis («, B) = <«, B> + <B, a>.

o € ez" is the ith coordi nate vector.
g is asinple root if there is no loop at the vertex i.
| f g is sinple, there is a reflection ci:Zn—>Zn, ou—)oc—(oc,ei)ei.
The Wyl group W= <o, Iei sinple> < GLn(Z).

W preserves (-,-) and q.

® The fundanental region is the set

F = {oceanloc:#O, support («) connected, («, ei)so VY (sinple) g }.
Here support(«) denotes the subquiver of Q and the word sinple is

i n parentheses since («, ei)so is automatic if there is a loop at i.

® Real roots = {W ei) [ weW € sinmpl e}. These have q(«)=1.
I magi nary roots = WF). These have q(«) =0.

(Strictly speaking these are only the positive inmaginary roots).

THEOREM (Kac). |f aeN" then there is an i ndeconposabl e representation
of dinension « ¢« a« is a root. If so, then

* u(Ind(KQa)) = 1-q(o)

® t(Ind(KQa) = 1.
(where we use the action of G («a) on Md(KQ «)). In particular, for «

a real root there is a unique indeconposabl e representation.

LEMVA A, For aeF we have p(lnd(KQ «)) = 1-q(e«) and t(Ind(KQ «)) = 1.
LEMVA B. For g si nmpl e and ocean, oc;tei we have pu(lnd(KQ «)) =
u(lnd(KQ,oi(oc))) and t(Ind(KQ «)) = t(Ind(KQ,oi(oc))).
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PROOF OF THE THEOREM If « is an inmaginary root, then a=Wm ), BeF and
the I enmas give the assertion. If « is real root then oc:vv(ej) with ej
a sinple root. Now I nd( KQ ej) = {pt}, so u(lnd(KQ ej)):o and

t (I nd( KQ ej ))=1, and Lenma B gives the assertion.

Suppose there is an indeconposable of dinension « and « is not a real
root. By Lenmma B there is an indeconposabl e of dinension w(«) for all
w, and in particular w(a) =0 for all weW Choose B = W(«) m ninal.
Since B is made snaller by any reflection, it follows that (g, ei)so
for all sinple roots g - Now there is an indeconposabl e of dinension

B, so support(B) is connected. Thus BeF.

LEMVA A

Suppose «aeF, so that «=0, «#0, support(a) connected and («, ei)so vi .
We have to prove that u(lnd(e)) = 1-g() and t(Ind(w)) = 1.

LEMMVA 1. Either
1. support(«) is Euclidean and g(«)=0, or

2. if oc:Bl+..+Br (r=z2) with Bi =0 non-zero then q(«) < Zq(Bi).

PROOF. W may assune Q=support(«), and so Qis connected. If (2) fails
thenZ(oc-Bi,Bi) = (o, ) - Z(Bi,Bi) = 0, so there is 0=B=«a, PB=0, «,
with (o B, B)=0. Now

1 B B
0= (aB B =Y (ae)B(og-B)ley + 3% (5. ) [ai ] &j]
=0 =0
so E? =EJ:
i o
a multiple of B. Now the first suminplies that (oc,ei):o for all i.

whenever (ei,ej)<0, ie if an arrow connects i—j. Thus « is
This inplies that Qis Euclidean and that q(«)=0.
IN THE FI RST CASE of Lemma 1 there is a conplete classification of the

representations of dinmension « and using this one can prove Lenma A

Thus we now assune that the second case of Lenma 1 hol ds.
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LEMVA 2. The general rep of dinension « is indeconposable, ie

I nd(KQ «) contains a non-enpty open subset of Md(KQ «).

PROOF. If a=p+y (B, y#0) there is a map
0: A ( «) xMod( KQ B) xMod( KQ, y) —sMd(KQ o), (g, X, Y) —g(xeay).

This map is constant on the orbits of a free action of H=G(B) xA (%),
sodimlme) =dimLHS - dimH Using the fact that g(a) = dima(«) -
di m Mbd(KQ «), one deduces that

dim Md(KQ &) - dimlIn(e) = q(B)+q(¥)-q(a«) > O,

so In(8) is a proper subset of Mdd(KQ «). The assertion foll ows.
_ , .1 .2
DEFI NI TI ON. Let A—(Al,..,hn) with Ai —(Ai,hi,.

..) a partition of @ -
® oeEnd(w) is of type A if the naps ei eEnd(Km) are nil potent of type

Ai (so Air is the nunmber of Jordan bl ocks of size = r).
® The zero nmap corresponds to the sequence z with zi:(oci,o,...).
® |Let NA = {6|6eEnd(«) of type A}. It is locally closed.
e |f geEnd(w) |et Ivbde = {xeMd(KQ «) IeeEnd(KX)}

LEMVA 3.

. _ r
1. If eeNAthen dlml\/bde _Za:irejrzr A Aj
2. dimNA:dimGL(oc) YD) Ai A

PROOF. It is easy to check that if feEnd(V) and geEnd(W are nil potent
endomor phi sms of type p and v, then di m{h: V—Wgh=hf} = T, MRV E))
follows i medi ately. For (2) note that NA is an orbit for the

conjugation action of G («) on End(c«), so if OENA t hen

dim NA =dimGA(a) - dim{geCG(«) |go=6g}
= dimG(«) - dim{geEnd(«) |go=09}
=dimG(q) - L T Air Air.

DEFI NI TI ONS.

® g=dimGA(a. If xeMd(KQ «) then its orbit has di nmension

g - dimEnd(KX).
e | = Ind(KQ ) :Us<g I(s)' Not e t hat I(s) is locally closed in

Mbd(KQ «) by the results about equi potent endonorphisns in §3.
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® B = {xeMd(KQ ) IKX is a brick, ie End(KX):K} = |
e N = {non-zero nilpotent 6eEnd(a)} = U N

(9-1)°

A£Z A
e M = {(x, 8) eMd(KQ, ) xNIOeEnd(KX)} = Uhiz NNA'
o I(s)N = {(x, 0) el (S)leeeEnd(KX)} < N
LEMVA 4.

1. for A#z we have dimM\IA<g-q(oc), so dim MW < g-q(«).
2. For s<g-1 we have diml(s) < s+l-q(«), soO ”(I(s)) < 1-g(w).
3. Bis non-enpty and open in Md(KQ «), so u(B) = 1-q(«), t(B) = 1.

Now Lemma A follows from(2) and (3) since Ind(KQa) = B u Us<g-1| (s)
PROOF. (1) Let M\IA—H»NA be the projection. Now m 1( 6)=Mod is of
const ant di nension, so
Lenma3 ; Lenmal
dimM\IASdimNA+diml\/bd9 = g—zr aq(a ) < g - gq(o),

. r r .
since a = Zr A, and at least two A are non-zero since A#z.

(2) If s<g-1 and xel t hen Kx i s i ndeconposabl e and not a brick, so

(s)
has a non-zero nil potent endonor phism Thus the projection

| NL)I is onto. Now
(s)

(s)
dimm 1(x) = dim End(KX) nN = dimrad End(KX) = g-s-1.

Thus diml(s) = dimI(S)N(g-s—l) =dimM-(g-s-1) = s+1-q(«) by (1).

(3) For s<g-1 we have

diml(s) < s+l-g + dim Md(KQ «) < di m Md(KQ «),

o) E is a proper closed subset of Mod(KQ «). Al so, by Lemma 2 the
set of deconposable representations is contained in a proper closed
subset of Mdd(KQ «). Thus B#@. Also B is open in Md(KQ «) by upper
semcontinuity, so it is irreducible. Now u(B) = dimB-(g-1) = 1-9( )

and t (B)=1.
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LEMVA B. SKETCH

DEFINI TION. A representation of Qover an arbitrary field Fis

absol utely indeconposable if it renmins i ndeconposable as a

representation over the al gebraic closure F.
® |Let n(Cga,pr) be the nunber of isonorphismclasses of absolutely

i ndeconposabl e representations of Q over Fpr of dinension «.

LEMVA 1. Let pu=p(lnd(KQ «)) and t=t(Ind(KQ «)). For p=char K, or for

p >> 0 if char K=0, we have n(C;a,pr)/pr”——et as r—om.

| DEA. W use schenes to change characteristic. A (quasi-affine

al gebraic) Z-schenme is a functor (conmmutative rings)—ssets, of form
X(R) = {xeR" | all pA(x) =0, sone g (x)=0}

for sone famlies pA,queZ[Xl,..,Xn]. Cearly X(K) is a variety for any

al gebraically closed field K

Theorem If X is a Z-schenme and char K=0, then dim X(K) = din1X(F;)
for p>>0.

Theorem of Lang-Weil. If char K=p, g is a power of p, and X < P" is an
i rreduci bl e cl osed subset of di nension d defined by polynonmials with
coefficients in a finite field Fq, then the nunber of points of X

whi ch can be realized in P" by an (n+1)-tuple of elenents of qu is

qrd + C)(qr(d—1/2)) as T — .

Conbi ning these two facts we obtain the following. Let X be a
Z- schene. Suppose X(K) has dinension d and t top-di nensiona
i rreduci bl e conponents. For p=char K, or for p>>0 if char K=0, we have

IX(F 1) 11p 9t as r—w.

Now there are Cheval l ey-type results for Z-schenes, so one can study
constructibl e subfunctors, actions of Z-group-schenes on Z-schenes,

etc. Now there is a Z-schenme Md(Q «) with F-points Md(FQ «), there
is a constructible subfunctor Ind(Q «) with F-points the absolutely

i ndeconposabl e representations, and there is Z-group-scheme G.(«)
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acting on Mod(Q «). The assertion of the Ienma follows in a standard

way.

LEMVA 2. Let i be a sink in Q a vertex at which no arrows start. Let
Q' be the quiver obtained fromQ by reversing all the arrows

termnating at i. Then n(Q,oc,pr) = n(Q’,oi(oc),pr) for oc:tei, o=0.

SKETCH. There are inverse equival ences

Reps X of Q of dim « F Reps X’ of Q of dimoi(oc)
%

withe . . X — X G with X < e_ . X
arj—i’j i i ari—j’j

given by reflection functors F and G Here F sends a representation X

in which the map f:®a'j—>i Xj—)Xi is onto, to the representation X’ of
Q wth Xi’ = Ker (f) and XI’( = Xk for k#i, and with maps as in the
representation X, except that the map Xi’—>Xj’ corresponding to an

arrow a:j——i in Qis the conposite of f with the projection onto Xj’.

Now i f oc;tei and «=0 then indeconposable representations of Q and Q@ of
di mensi ons « and o, («) belong to the indicated subcategories, so there
is a 1-1 correspondence between absol utely indeconposabl e

representations of Q and Q.
LEMVA 3. n(Q «, pr) doesn’'t depend on the orientation of Q

| DEA. There is a result of Brauer which inplies that if G acts on a
vector space V over a finite field F then |V/G| = IV*/GI. This can be
used to show that Q and a reorientation Q@ of Q have the sane nunber
of representations over F of dimension « Varying « it follows that Q
and Q have the sane nunber of indeconposables over F of dim« Now
varying F and using a Galois Theory argunent, one can show that Q and
Q' have the sane nunber of absolutely indeconposabl e representations

over F of dinension «.
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87. General representations: results and open probl ens
In this section K = C.

SUBREPRESENTATI ONS

® Wite BC—« if the general representation of dinension « has a
sub-representati on of dinension .

® Wite hon(«,B) and ext(«,B) for the general val ue of din1kbn(KX,Ky)
and di m Ext ( KX, Ky) with (x,y)eMd(KQ o) xMd(KQ B). By upper

sem continuity these are also the mni num val ues.
THEOREM (Schofield). Bt—a & ext(B, a-B) = 0.

QUESTION 1. Schofield clains this for all K, but his proof only works

in characteristic zero. |Is the result true in general?
THEOREM (Schofield). ext(e«,B) = max{ - <a’,B> | o >« }.
Conbi ned, these two theorens all ow inductive cal cul ati ons.

If B=« are dinension vectors and M has dinension «, there is a variety

n i
L C
Q(Ilf\;& QX.—.El Gr(Bi

i ).

of subrepresentations of Mof dinmension 3. This subvariety has a

*
fundanmental class in H (X Z). For the general representation of

dimension « this class is constant, say c(Q «, B) eH*(X, Z). W describe

bel ow the conputation of this el enent (because of the conplexity I

have not done any exanples). On X there are universal bundles as

fol | ows.

° Sj < (D“j xX is the jth uqi versal sub-bundl e, whose fibre over (Ui)eX
is the subspace U ¢ c¥.

o QJ is the jth uni versal quotient bundle, whose fibre over (Ui)eX is

t he quoti ent (D“j/ Uj .
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If E and F are vector bundles, there is a vector bundle Hom(E, F) whose
fibres are the linear maps between the fibres of E and F. For a vector
bundl e E——>X the set of gl obal sections s:X——E is denoted by T(X E).

Now there is a map

_ o _ak
fjk' Hom(C™, C )—>F(X,5—[om(8j,Qk))

6 +— the section which on the fibre over (Ui)

is the conposition Uj <—>(D°cj i>(I:°Ck—e>03m</ Uk'

is onto (and is usually 1-1 if j#k). Thus we obtain a map

The map fjk
f:Md(KQ o) —>»I'(X, E) where E is the vector bundle
E = a._@ k}[om(Sj,Qk).
I
K

Now the zero set of the section f(x) is Grq: ( X), and by the theory of

QB
chern classes it follows that ¢c(Q«,B) is the top chern class of E.
Now t he cohonol ogy ring of X and the chern cl asses of the Sj and QJ
are known by Schubert calculus. It is therefore possible to conpute

the chern cl asses of E.

SCHUR ROOTS

o is a Schur root if there is brick of dinension «. If so, the general

representation of dinension « is brick.

THEOREM (Schofield). « is Schur root & <B,a>-<a,B> > 0 V BCoa, B=0, «.

If wis aroot, since t(Ind(KQ «))=1, there is unique e=e(a) With
u({xel nd(KQ «) |di m End(«)=€}) = 1-q(«).

Moreover e(a)=1 & « i s Schur root.

QUESTI ON 2. How can you conpute e(«)?
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RATI ONAL | NVARI ANTS

The field of rational invariants is

C(a) = [function field of Nbd(@C;a)]GL(“).

By a result of Kac, you can conpute C(«) if you know it for Schur

roots.

QUESTI ON 3 (standard).
® |s C(«) rational, ieis C(a) = @(Xl,..,xn) for sone n?
® \Maker, is it stably rational, ieis B(“)(Yl""Yn? rati onal for

sone nf?

By Schofield and Le Bruyn, to prove stable rationality it suffices to
understand the quiver with one vertex and two | oops. Question 3 is
connected with questions about noduli spaces of vector bundles on PZ,

and the ring of generic matrices. See the survey by Le Bruyn.

36



Bi bl i ogr aphy

This is a selection of papers. It includes references for the lectures

as well as suggestions for further reading.

Basi cs of al gebraic geonetry

® R Hartshorne, "Algebraic geonetry" (Springer, New York, 1977).

e D Minford, "The red book of varieties and schenes", SLN 1358
(1988) .

® J. E Hunphreys, "Linear al gebraic groups" (Springer, New York,
1981) .

® H Kraft, "Geonetrische Methoden in der Invariantentheorie"
Aspekte der Mathematik (Vieweg, 1984).

® D Eisenbud and J. Harris, "Wy schenes".

The varieties and schenes of nodul es and al gebras

® P Gabriel, Finite representation type is open, in SLN 488 (1975),
132- 155.

e K Mrrison, The schene of finite dinensional representations of an
al gebra, Pac. J. Math. 91 (1980), 199-218.

e H Kraft, Geonetric nethods in representation theory, in SLN 944
(1982), 180-258.

e K Bongartz, A geonetric version of the Mrita equival ence, J.
Al gebra, 139 (1991), 159-171.

® M Gerstenhaber and S. D. Schack, Relative Hochschild cohonol ogy,
rigid al gebras and the bockstein, J. Pure Appl. Al gebra, 43 (1986),
53-74.

Exanpl es of these varieties

® M Gerstenhaber, On dom nance and varieties of comuting
matrices, Ann. Math. 73 (1961), 324-348.

® S Abeasis, A Del Fra and H Kraft, The geonetry of
representations of Ahi Mat h. Ann. 256 (1981), 401-418.

® C De Concini and E. Strickland, On the variety of conplexes, Adv.

Math. 41 (1981), 57-77.

37



S. Donkin, The nornmality of closures of conjugacy classes of
matrices, Invent. Math. 101 (1990), 717-736.

G Lusztig, Quivers, perverse sheaves, and quanti zed envel opi ng
al gebras, J. Aner. Math. Soc. 4 (1991), 365-421

A. Lubotzky and A. R Magid, Varieties of representations of
finitely generated groups, Mem Anmer. Math. Soc. 336 (1985).

Degener ati ons of nodul es

M Gerstenhaber, On nilalgebras and linear varieties of

nilpotent matrices IIl, Ann. Math. 70 (1959), 167-205.

W Hesselink, Singularities in the nilpotent schene of a classica
group, Trans. Amer. Math. Soc. 222 (1976), 1-32.

Ch. Ri edtnmann, Degenerations for representations of quivers with
rel ations, Ann. scient. Ec. Norm Sup., 4® série, 19 (1986),
275-301.

K. Bongartz, On degenerations and extensions of finite dinensiona
nodul es, preprint, 53pp.

K. Bongartz, A generalization of a theoremof M Auslander, Bull
London Math. Soc., 21 (1989), 255-256.

Tane and wi |l d al gebras

Yu. A Drozd, Tanme and wild matrix problens, Arer. Math. Soc.
Transl. (2), 128 (1986), 31-55.

W Crawl ey- Boevey, On tane al gebras and bocses, Proc. London Math.
Soc. 56 (1988), 451-483.

Yu. A Drozd and G-M Geuel, Tane-wi |l d dichotony for

Cohen- Macaul ay nodul es, Math. Ann. 294 (1992), 387-394.

J. A de La Pefia, Sur les degrés de liberté des indeconposables, C
R Acad. Sci. Paris, t. 312, Série | (1991), 545-548.

Ch. Gei 3, "Tane distributive al gebras and rel ated topics", Thesis
(Bayreuth, 1993).

Kac’s Theorem

V. G Kac, Infinite root systens, representations of graphs and

i nvariant theory, Invent. Math. 56 (1980), 57-92.

V. G Kac, Sone remarks on representations of quivers and infinite
root systens, in SLN 832 (1980), 311-327.

38



V. G Kac, Infinite root systens, representations of graphs and
invariant theory Il1, J. Algebra 78 (1982), 141-162.

V. G Kac, Root systens, representations of quivers and invariant
theory, in SLN 996 (1983), 74-108.

H Kraft and Ch. Ri edtnmann, Geonetry of representations of quivers,
in P. Wbb, "Representations of algebras", London Math. Soc. Lec.
Note Series 116 (CUP, 1986).

CGeneral representations of quivers and rational invariants

A. Schofield, General representations of quivers, Proc. London
Math. Soc., 65 (1992), 46-64.

A. King, Mduli of representations of finite dinensional algebras,
preprint 1993, 12pp.

L. Le Bruyn, Counterexanples to the Kac-conjecture on Schur roots,
Bull . Sc. math. 2% série, 110 (1986), 437-448.

L. Le Bruyn and A Schofield, Rational invariants of quivers and
the ring of matrix invariants, in "Perspectives in ring theory", F.
van Oystaeyen and L. Le Bruyn (eds) (Kl uwer, 1988), 21-29.

L. Le Bruyn, Centers of generic division algebras, the rationality
probl em 1965- 1990, Israel J. Math. 76 (1991), 97-111

Cohonol ogy of Grassmanni ans and Schubert cal cul us

P. Giffiths and J. Harris, "Principles of algebraic geonetry"
(Wley, New York, 1978) [Chapter 1, 85]

W Fulton, "Intersection Theory" (Springer, Berlin, 1984) [8§14.7]
S. L. Kleiman and D. Laksov, Schubert cal culus, Amer. Math.
Monthly, 79 (1972), 1061-1082.

39



