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Abstract

In this thesis we classify all indecomposable finite dimensional modules of
clannish algebras with idempotent relations on the special loops. To this
end, we start with the introduction of the notion of asymmetric and sym-
metric strings and bands in terms of words. The classification will be given
in terms of those. We first examine directions on special letters in these
words of a clannish algebra. Then we reduce the case to skewed-gentle al-
gebras and construct a bundle of semichains for such an algebra. Thus, we
are able to reduce the classification problem for skewed-gentle algebras to
the matrix problem of bundles of semichains studied by Bondarenko. From
this problem, we extract one classification of the indecomposable finite di-
mensional modules of a skewed-gentle algebra. From this classification, we
can deduce a classification for clannish algebras. Finally, we adjust this clas-
sification to obtain one similar to that obtained by Crawley-Boevey, in which
the symmetric band modules are indexed by a vector space equipped with a
pair of idempotent endomorphisms. In contrast to Crawley-Boevey’s classi-
fication, however, ours gives representations with better bases, not requiring
the introduction of a fixed non-zero non-identity element of the field, and so
working over the field with two elements. Applied to the algebra generated
by an idempotent and a square zero element, it confirms a conjecture of
Crawley-Boevey in 1988.
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1 Introduction

Interesting problems from representation theory can be described by quivers
with certain relations. One type of such problems are clannish algebras.
They were introduced in 1989 by Crawley-Boevey [CB89] and are the main
subject of this thesis. Crawley-Boevey classified the modules of clannish al-
gebras in terms of strings and bands if the underlying field has at least three
elements. This is a direct conclusion of the classification of the indecom-
posable representations of clans in [CB89|, whose notion was motivated in
particular in order to solve the Gel’fand problem [Gel71|. The method used
to obtain the classification for clans is the so called functorial filtration. It
was developed by Gel’fand and Ponomarev [GP68| and set by Gabriel into
the functorial setting. Ringel also applied this method for the classification of
the indecomposable representations of the Dihedral 2-Groups [Rin75]. This
classification is also given in terms of strings and bands. Crawley-Boevey
used the same approach for another of his papers prior to [CB89]: in [CBS88],
Crawley-Boevey gives a classification of the indecomposable modules of the
clannish algebra k(e,a | €2 = £,a% = 0). Similar to the result in [CB89], this
classification does not include algebras which have a base field with less than
three elements. This is due to the introduction of ¢, a non-linear combin-
ation of the letter € and 1. However, Crawley-Boevey conjectured in the
introduction of [CB88| (near the end of page 386) the existence of an analog-
ous classification for arbitrary fields given in the original alphabet (replacing
the letter ¢ by €) of the algebra.

The aim of this thesis is to give a classification of the indecomposable fi-
nite dimensional modules of a clannish algebra in terms of asymmetric and
symmetric strings and bands independent of the cardinality of the base field.
The algebra considered in [CB88| will serve as one of our standard examples.
In order to fill the gap in the existing classification, we will use a different
approach than the functorial filtration method. To this end, we will at first
consider skewed-gentle algebras, give a classification for them and then de-
duce from that one the classification for clannish algebras. We can proceed in
this way since the skewed-gentle algebras belong by definition to the class of
(quasi-)clannish algebras. Skewed-gentle algebras were introduced by Geift
and de la Pefia as a specification of quasi-clannish algebras [GdIPn99] which
are a generalisation of clannish algebras.

Similar to [BMMO3], we will exploit the connection between skewed-gentle
algebras and a matrix problem. Here, we reduce the classification problem
of indecomposable modules of a skewed-gentle algebra to the matrix prob-
lem in terms of bundles of semichains introduced by Bondarenko in 1988
[Bon88, Bon91|. This will enable us to obtain a first formulation of the in-
decomposale finite dimensional modules of a skewed-gentle algebra in terms
of strings and bands and deduce a respective first formulation for clannish
algebras. However, this first formulation does not confirm Crawley-Boevey’s



conjecture yet. In order to do so, we will refine the first classification result
by applying results from [Bre74].

The same matrix problem which was studied by Bondarenko, was also stud-
ied by Deng in the context of bushes [Den00|. He found that his results can
be applied to clannish algebras including base fields of cardinality two. How-
ever, the results by Deng cannot directly confirm the conjecture imposed by
Crawley-Boevey in [CB8§|.

In this thesis, we draw clear parallels between chains and cycles as considered
by Bondarenko and string and band modules of skewed-gentle algebras. We
also include a detailed discussion of the relevant results of Bondarenko since
they are pertinent to our approach. We include additional examples to shed
some light on the results which are available in [Bon88| but not in the english
translation [Bon91]. Additionally, they will help the reader to gain a better
understanding of the technical construction given by Bondarenko.

1.1 Outline

This thesis is structured as follows:

In Chapter 2 we collect the preliminaries which are used in the later chapters.
Those include the basics of representation theory as well as the notion of clan-
nish algebras. Based on its definition, we define words. Here, we distinguish
in particular between ordinary and special letters. This property is deduced
from the definition of a clannish algebra. Furthermore, we introduce the
properties coadmissibility and minimality for words and describe associated
modules. For those, so called periodic words are of particular interest.

We proceed in Chapter 3 by defining asymmetric and symmeiric strings and
bands which are given by so called undirected words. The classification (The-
orem 6.9, Theorem 6.10) will be given in terms of those. To any directed
word, an undirected one can be associated. We introduce two types of direc-
ted words (weakly consistent and consistent words) and compare those types
for directed words which have as associated undirected words asymmetric
and symmetric strings and bands. The definition of the weakly consistent
and consistent words depends on a linear ordering on certain words which
we introduce in the previous chapter.

We start Chapter 4 by presenting the results of [Bon88, Bon91] and by giving
detailed examples which we found to be missing in the existing literature. In
doing so, we fix notation for this type of matrix problem. After introducing
the basics on this topic, we give an explicit construction in order to show
that for any skewed-gentle algebra A there exists a bundle of semichains X
(Theorem 4.70). From this construction on, we reduce ourselves to skewed-
gentle algebras. The construction allows us to give an explicit description on
how to obtain £-graphs from undirected words. We show in Theorem 4.113
that any asymmetric and symmetric string and band results in an £-graph
which leads to a canonical X,-representation. We even find by Corollary



4.117 that there exists a 1-1-correspondence between their equivalence classes
and the isomorphism classes of the £—chains which give canonical represent-
ations. We obtain similar results with respect to asymmetric and symmetric
bands and simple £—cycles (Theorem 4.130, Corollary 4.142). We prove in
Section 4.7 that the directions added on the constructed £—graphs coincide
with those on letters of so called finite index in weakly consistent and con-
sistent words.

The main results which are required in order to obtain the classification, are
to be found in Chapter 5. We show that the category mod(A) of finite dimen-
sional modules of a skewed-gentle algebra A and the category Rep(X,) of
representations of the bundle of semichains X, are equivalent (Theorem 5.6).
We present a classification of the finite dimensional modules of the skewed-
gentle algebra A in terms of strings and bands (Theorem 5.49). From this,
we deduce a respective classification for clannish algebras A (Theorem 5.50).
In the final chapter, Chapter 6, we examine the symmetry axes of the sym-
metric bands more closely in the context of the four subspace problem. In
order to do so, we apply results of [Bre74]. Finally, these results allow us
to refine the classification result as formulated in Chapter 4 such that we
will be able to confirm the conjecture stated by Crawley-Boevey in [CB8§|
(Theorem 6.10).

1.2 Main Theorem
1.2.1 Main Theorem for the algebra k(c,a |2 =¢,a% = 0)

We start this Subsection by first giving the respective result from [CBS8S].
To this end, let k be a field with at least three elements and let A = k(e,a |
e? = ¢,a® = 0). We consider the alphabet T' = {a,a™!,¢*}, where ¢t = Ae — pl
with 0 # A, u e k and X # u. We call t* a special letter with formal inverse
given by itself. We build words by considering sequences in the letters of T,
in which each t* is either followed by a or a™!, and each a or a™! is followed
by t*.

For the classification, we want to consider only certain words. We distin-
guish between asymmetric and symmetric strings and bands. Strings are
finite words in a, a”! and t*, whose first and last letters are given by ¢*. A
string is symmetric if it is equal to its inverse which is obtained by reversing
the order of the letters, and exchanging a and a™'. An example for an asym-
metric string is the following: t*at* since it is unequal to its inverse t*a~'t*.
An example for a symmetric string is given by t*at*a~!t*. Important is that
we have that the sequence left of the middle ¢* is equal to the inverse of the
sequence right of it. Thus, this letter t* in the middle of the word gives a
symmetry axis.

Bands are defined by infinite periodic words. To specify a band it suffices
to give one period. An example for an asymmetric band can be described
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by its periodic part, the finite subsequence t*a. The whole band is then
of the form ...t*at*at*a.... Important is that when considering the whole
word, it is not equal to its inverse shifted by any position. For a symmetric
band, we want exactly the opposite. We want that it is equal to its in-
verse shifted by some position. An example for a symmetric band can be
described by the finite subsequence t*at*at*a 't*a~' which results in the
word ...t*at*at*a 't a 't at*at*a 't a”! ... We see - by comparing the
left subsequence to the inverse of the right subsequence - that there are two
symmetry axes per periodic part in the band, given by the first t* and the
one in fifth position.

We want to consider modules given by exactly those four types of words.
For this we need to replace each letter ¢* by either ¢ or t~!. We can consider
t* as a placeholder for one of the other two letters. The question is which
of the two letters to use to replace t*. Crawley-Boevey gives an answer by
giving an ordering on the words. We consider in a word the inverse of the
subsequence left of a letter t* and compare it to the subsequence right of
t*. Comparing those two subsequences defines by which letter ¢* is replaced.
Here, we replace t* by t if the inverse of the left subsequence is bigger than
the right subsequence. Otherwise, we replace t* by t~'. There are some let-
ters - those which we have called symmetry axes above - which do not obtain
a unique replacement this way since the inverse of their left subsequence is
equal to their right subsequence. But we will see in the presentation of the
modules that we can omit this discussion.

Considering the words with t* replaced as described above, they describe
modules. Each string results in a string module, and each band in a band
module. For the bands, their repeating structure allows to only consider
one of their periodic parts. We will give examples for the words above. To
this end, we display each letter of the form x by an arrow from the right
to the left, and each letter of the form z~! by an arrow from the left to
the right. Now setting vector spaces from a certain module category at its
vertices describes the respective module, consisting of a vector space given
by the direct sum of the vector spaces at its vertices and the action of the
algebra described by the displayed arrows. Note that all considered vector
spaces are finite dimensional.

For the asymmetric string t*at” we replace each t* such that we consider tat
for the module. Let V' be a k—module. The A—module M (tat,V') with the
Vs being disjoint copies of V' is described by

t t

Vo Vi<——"V;

Vs (1)

This module gives an example in the image of the functor in [CB88, §1, p.
388|, applied to modk.

For the symmetric string t*at*a™'t* we consider tat*a™1t"!. Here, the letter
t* in the middle has not been replaced since it is a symmetry axis, but is
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determined by the category of the vector space. Let V be in mod k[s]/(q(s)),
where ¢ describes the quadratic polynomial with ¢(¢) = 0. The A-module
M (tat*a™'t71, V) with the V/s being disjoint copies of V' is given by:

Vb-;Vl-&Vth:s. (2)

Since t is a linear combination of € and 1, the module can also be displayed
with V being a k[f | f2 = f]-module and with € = f on the loop. This
module then gives an example in the image of the functor in [CB88, §1, p.
388], applied to mod k[ f | f? = f].

For the asymmetric band given by ...t*at*ata... we consider the sub-
sequence ta. We consider V in modk[T,T7!] where T acts as the shift
between the repetitions. The A—module M(...tata...,V) with the V/s be-
ing disjoint copies of V is given by

V();t—/vl- (3)

This module gives an example in the image of the functor in [CB88, §1, p.
388], applied to mod k[T, T7].

We consider for the symmetric band ...t*at*at*a 't*a"! ... the subsequence
t*at*at*a 't 'a~!. Similar to the symmetric string case, the letters giving
the symmetry axes are defined by the category of the vector space. Let V be
in modk(f,g)/(q(f),q(g)) with ¢ the quadratic polynomial as above. The
A-module M(...t*atat*a 't ta™t ..., V) with the V;’s being disjoint copies
of V is given by

t:fCVO L AL L V3:_>t=9- (4)

Similar to the module of a symmetric string, we can express this module in
terms of € on the loops with V being a k(f,g | f? = f,¢* = g)-module. Tt
gives an example in the image of the functor in [CB88, §1, p. 388], applied
to modk(f,g| f* = f,9* = g).

Crawley-Boevey states in [CB88| that the modules of this form give indecom-
posable finite dimensional modules of the algebra:

Theorem 1.1. [CB88, Main Theorem| Let k be a field with at least three
elements, let A =k(e,a|? = ,a> =0). Let M be a list of modules obtained
from all asymmetric and symmetric strings and bands as described above
in examples (1)-(4), with the modules V' running through a complete list of
non-isomorphic indecomposable modules for each module category. Then M
gives a complete list of non-isomorphic indecomposable A—modules.

As we have seen, this result does not operate on the original alphabet
of the algebra but introduces the letter t* (¢,¢71). Due to this introduction,
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the field k is required to have at least three elements.

The main result of this thesis confirms Crawley-Boevey’s conjecture from
the same paper [CB88]. Here (near to the end of page 386), he conjectures
that there is an analogous classification to the one given above in which the
letter t* (t,t71) is replaced by the letter e* (g,e71). This classification would
hold for arbitrary fields.

In our setup, by replacing t* by €, the above given examples for strings and
bands correspond to the following:

The word e*ae* is an asymmetric string and e*ac*a"'e* describes a sym-
metric string. Repeating the sequence €*a gives an asymmetric band, while
repeating e*ac*ac*a 'e*a~! describes a symmetric band. We have replaced
each t* by ¢*. It follows that we need to replace each of these £* by either
e or e 1. In order to do so, we proceed analogously as above with the ¢*’s.
Also for building the modules from those words, we proceed analogously as
above. This leaves us with the following modules: For the asymmetric string
we obtain from cae the A—module M (eae, V) with V' a k—module, and the
Vi’s disjoint copies of V:

Vo=—V<="—Vo=——1V5. (5)

For the symmetric string we consider eac*a™'e™!. The A—module M (cac*a"te™1, V)
with V in modk[f | f? = f] and the Vj’s disjoint copies of V', is given by:

W)<€—V1<a—V2:>€:f. (6)

For the asymmetric band we consider ea. The A-module M(...caca...,V)
with V' in mod k[T, T~!] and the Vj’s being disjoint copies of V, is given by

Vo<-——Vi. (7)
~_7

Finally, we consider the symmetric band. Here, we obtain the A—module
M(...c%acac*a e a7t ..., V) with V in modk(f,g | 2= f,9°=g), and all
Vi’s being disjoint copies of V:

I Vo="=Vi="—Va="—V; Je=s. (8)

Here, a depiction of the form Vy «— V; means that we have for e(v1) = vg
that e(vg) = vo, where vy € Vp, v1 € V5. This is due to the idempotent relation
on €.

Our main theorem applied to k(s a | e2 = £,a? = 0) reads:

Main Theorem. (k(e al|e?=c¢,a%=0)) Let k be an arbitrary field, let
A =k(e,a|e? =¢e,a?=0). Let M be a list of modules obtained from all
asymmetric and symmetric strings and bands as described in examples (5)-
(8), with the modules V' running through a complete list of non-isomorphic
indecomposable modules for each module category. Then M gives o complete
list of non-isomorphic indecomposable A—modules.
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1.2.2 General formulation of the Main Theorem

Let k be a field. Let w be an asymmetric string and let V' be a k—module.
Then we denote by Mj(w, V') the following module:

K1 Ko K3 rc
wy Wy w3 wy"

Vo Vi Va Vi

where k; € {+1,-1} and w = wy...w,, which we will discuss in detail in
Section 2.4.

Let w = ue*u™! be a symmetric string (with m being the length of u) and let
V be a k[f | f2 = f]-module. Then we denote by Ma(w, V) the following
module:

K1 K9 K3

3 Km
‘/0 wq ‘/1 Wy ‘/,2 Wg Win, VmD‘E:f-

Let w; be an asymmetric band of period p, an let V' be a k[T, T~1]-module.
We denote by M3(v, V') the module

K1 Ko K3 Kp-1

wy Wy Ws Wp-1
W—W=—"Vr =5 Vo
wgp

Let w; be a symmetric band of period p with periodic part e*un*u™!, Ju| = m,
and let V be a k(f,g| f? = f,¢* = g)-module. We denote by M4(v,V) the

module

2 ~3 2t Km+1

8:fCVO Wy Vi w3 v Wa o Wmel Vmgn:g.

The V;’s in the modules are disjoint copies of the given V. The k;’s are
directed according to the linear ordering (cf. Definition 2.41) on the words
for special letters w; (cf. Section 2.3). Otherwise, k; is given by the ordinary
letters (cf. Section 2.3) in w or wy, respectively.

Our final classification result reads as follows:

Main Theorem. Let A be a clannish algebra. The modules of the form
M;(w, V), i=1,2,3,4, with w running through the sets of asymmetric and
symmetric strings and bands, respectively, and V' running through a complete
list of non-isomorphic indecomposable modules for each module category, give
a complete list of pairwise non-isomorphic indecomposable modules of A.

14
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2 Preliminaries

We start this chapter by revising the basics of representation theory in Sec-
tion 2.1. Moreover, we introduce clannish and skewed-gentle algebras in
Section 2.2 following [CB89| and [GdIPn99|. Section 2.3 deals with direc-
ted and undirected alphabets obtained from a clannish algebra and words
built from any of the alphabets. In the next chapter, we define the notion
of asymmetric and symmetric strings and bands which are given by equi-
valence classes of certain words. We examine in Subsection 2.3.1 the so
called Z —words more closely which lead to the notion of bands. In particu-
lar, we determine certain properties of words in Subsections 2.3.2 and 2.3.3.
These properties are required in order to describe the words which lead to
£-graphs giving canonical X,-representations (compare Sections 4.5 and
4.6). We close the chapter with Section 2.4 which explains how directed
words describe A—modules.

Throughout this thesis let k be a field. Note that k is not necessarily
algebraically closed.
Moreover, we denote by N the natural numbers including 0.

2.1 Quivers and their representations

We follow [ARS97]. For k algebraically closed, see also [ASS06].

A quiver @ is given by a quadruple (Qo,Q1,s,t) consisting of a finite
set of vertices g, a finite set of arrows ()1 and two maps s,t: Q1 — Qo,
assigning to each arrow z € Q)1 its source s(x) and its target t(x), giving
x:8(x) — t(x). A loop at vertex i is an arrow x € Q1 with s(x) =t(z) = 1.
A path p in Q is given by a sequence p = p,, ...p; of arrows p; € Q, 1 <i < n,
such that s(pi+1) = t(p;). The length of such a path p is n. We denote by
s(p) = s(p1) the source of p and its target by t(p) = t(p,). For each vertex
i € Qo we have the trivial path e; of length 0 with s(e;) =t(e;) = i.

The concatenation poq of two paths p=p,...p1 and ¢ = gy ... q1 is given by

Prn---D1Gm---q1 if s(p1) =t(qm),

if g =
poq= Pn p1 1 7= Cs(p1)>
Gm - --q1 ifp=eygn)
0 otherwise.

In the following, we also write pq instead of p o g for short.

A k —linear representation of ) is given by a tuple V' = (Vi, V4 )ieQo.acQ, Where
Vi is a vector space for each ¢ € Qg and V, : V; - V; is a linear map for each
a:i— j €. The representation V is called finite dimensional if V; is finite
dimensional for all i € Q.

Let V = (V;,Va)iq and W = (W;,Wy); 4 be two representations of a given
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quiver Q. A morphism f:V — W is given by a family f = (fi)iq, of
k —linear maps f; : V; — W; such that f;V, = W, f; for (a:i1 - j) € Q1, i.e.
the following diagram commutes:

o,

-
f.

J
PN .

=

Va

P a—

S

The composition of two morphisms of representations is given in the obvious
way. The direct sum V@ W of V and W is given by

Vo O
(%EBWZ',VQGBWQ—(O Wa))ia.

A representation V' = (V;, Vy)i 4 is called indecomposable if it cannot be writ-
ten as a direct sum V =W & U of two non-zero representations W, U.

We denote the category of representations of a quiver @ by Rep(Q). The
full subcategory of finite dimensional representations is denoted by rep(Q).
If @ is finite, then both categories are abelian.

Moreover, one can associate to any quiver @ the path algebra k Q. This is the
k —algebra with underlying k —vector space with basis given by the paths in
@. The product of two basis elements is given by the above concatenation.
The path algebra is associative. Furthermore, k @ is finite dimensional if and
only if @ does not have oriented cycles, see [ARS97, §III.1, Proposition 1.1].
It is unital with 1 =30, €v-

A relation r on a quiver () is a k-linear combination of paths p; which
have lengths at least two. For R a set of relations on @, the pair (Q,R)
is called a quiver with relations. Its associated path algebra k(Q,R) is
given by k@Q/(R). Generally, we are going to consider for any algebra A
left A—modules and denote by Mod(A) the category of all those modules.
We denote the full subcategory of finite dimensional modules by mod(A).
It is a well-known result, e.g. |[ARS97, §III.1, Theorem 1.5|, that the cat-
egories rep(Q)) and mod(k Q) are equivalent. This induces an equivalence
between rep(@,R) and mod(k Q/(R)) [ARS97, §II1.1, Proposition 1.7].
Furthermore, the following Krull-Remak-Schmidt-Theorem is well-known:

Theorem 2.1. [ARS97, Theorem 2.2 (b)] Let A be a k—algebra and let
{Vitier and {Wj}jes be two finite families of finitely generated indecomposable

A-modules. If
[vi= 1w,
i€l jeJ

then there exists a permutation w: 1 — J such that V; = Wy for all i€ 1.
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2.2 Clannish algebras

We consider clannish algebras in the sense of [CB18], with one minor restric-
tion: we ask the relations on the special arrows to be idempotent relations.

Let Q be a quiver, Sp a subset of the loops of Q. We call any € € Sp
a special arrow, and in contrast to that any a € Q; \Sp an ordinary arrow.
We denote the set of ordinary arrows by Q™% Let RS = {¢2 —¢ | ¢ € Sp}
describe the idempotent relations on the special arrows, and let R be a set
of monomial relations on Q which do not start or end in a special loop, nor
involve the square of one.

Definition 2.2. Let A = kQ/(RURSP). We call the algebra A clannish if
the following conditions hold:

(i) at most two arrows start at any vertez: |{a € Q; | s(a) =v}| <2 for all

UEQ07

(1)* at most two arrows terminate at any verter: |{a € Q; | t(a) = v}| < 2
for all v e Q,

(ii)  for any a € QY"Y, there is at most one ¢ € Q; such that ca ¢ R,
(ii)* for any a € Q"Y, there is at most one be Q, such that ab ¢ R.
Example 2.3. 1. The algebra A =k Q/(RURSP) with quiver Q
ool
Sp = {e} and R = {a?} is a clannish algebra.

2. Let Q be given by

K

EC._m>O_y>.:’>n

with Sp = {e,n,k} and R = {yz}. Then kQ/(RUR®P) is a clannish
algebra.

3. Consider the quiver QQ

with Sp = {k} and R = @. The path algebra kQ/(RUR®P) is not

clannish since (1)* does not hold for vertex 2.

18



4. The algebra A =k Q/(RURSP) with quiver Q

1—%*5>9_Y.3

z

4
with Sp = @, R = {yx,yz} is clannish.

Similar to clannish is — as the name already suggests — the notion of
quasi-clannish which is a generalization of the former. To this end, let @,
Sp, Q™4 and RSP be as above. Denote by R a set of relations, by (R) the
ideal in k Q/(R5P) generated by the classes of elements in R. Let J be the
ideal in k Q/(R5P) generated by the ordinary arrows.

We denote by g the following automorphism of k Q/(R5P) of order 2:

g(1y) =1, for all v € Qq,
if ¢ ord

g(a) = ¢ 1 (a) € Qg ’ for all a € Q™
—a if t(a) € Q,",

g(e) =1y -¢ for all € € Sp,

where QQF = {s(¢) | £ € Sp}, Q§™ = Q1\ Q.

Definition 2.4. [GdlPn99, Definition (4.2)] Let A = kQ/(RURP). Then
A is called quasi-clannish if the following conditions hold:

(i) (R)<cJ?is a(g)—ideal in kQ/(RSP),

(i) at most two arrows start at any vertex: |{a € Q1| s(a)=v}| <2 for all

v € Qo,

(11)* at most two arrwos terminate at any vertex: |{a € Q1 | t(a) = v}| <2

for all v e Qq,
(iii)  for any a € QYY there is at most one be Q1 with ab¢ R,
(i1i)* for any a € QYY there is at most one c € Q1 with ca ¢ R.
Lemma 2.5. [GdIPn99] Any clannish algebra is quasi-clannish.

Example 2.6. By Lemma 2.5, Example 2.3.1., 2. and 4. also are quasi-
clannish algebras.

The converse of Lemma 2.5 does not hold in general. But one can restrict
the notion of quasi-clannish as follows:

Definition 2.7. Let A =kQ/(RURSP) be quasi-clannish. We call A string-
quasi-clannish if R consists of monomial relations only and no relation con-
tains the square of a special loop.
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Then we obtain the following result:
Lemma 2.8. Any string-quasi-clannish algebra is clannish.

Proof. 1t is enough to check that no relation starts or ends in a special loop.
We give a proof by contradiction.

Let € € Sp and let p and ¢ be paths in @ such that ep and ¢e are again
paths. Assume for simplicity that p and ¢ only consist of ordinary arrows

that do not end in vertices incident to special loops. By Definition 2.7, (R)
is (g)- invariant in k Q/(R5P). The action of g on ep and ge is given by the
following:

9(ep) = (Ly(e)-c)p = p — €D, (9)
9(ge) = q(14) —€) =q - ge. (10)

Now (9) and (10) do not lie in (R) since R only consists of monomial rela-
tions. Thus, they give a contradiction. O

Definition 2.9. [GdIPn99, Definition (4.2)] Let A =k Q/(RURSP) be quasi-
clannish. It is called skewed-gentle if it additionally satisfies the following
conditions:

(iv) R consists of monomial relations of length 2,
(v) for any a € QY there is at most one be Q1 with abe R,
(v)* for any a € QY there is at most one c € Q1 with ca € R.

Example 2.10. 1. The algebras in Example 2.3.1. and Ezample 2.3.2.
are skewed-gentle.

2. The algebras in Example 2.3.3. and 2.53.4. are not skewed-gentle.

3. The algebra given by the following data is not skewed-gentle:

Q: 122 3—>4,

Sp=¢, R ={cba}.
Lemma 2.11. Any skewed-gentle algebra is clannish.

Proof. Since any relation is of length two, it does not contain the square of
a special loop. Lemma 2.8 yields the result. O

Remark 2.12. Any algebra which is Morita equivalent to a clannish (quasi-
clannish, skewed-gentle, respectively) algebra is also called clannish (quasi-
clannsih, skewed-gentle, respectively).
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2.3 Words

In order to give a description for words of the clannish algebra A, we consider
the latter in terms of the quiver Q with relations RURSP. We follow [CB18]
for most definitions in this section.

Let A =kQ/(RURSP) be a clannish algebra.

A letter is an arrow x € Qq, its formal inverse 271, or a symbol €* for any
€ € Sp. The formal inverse of a symbol € is given by itself.

We call a letter a*! for a € Q‘frd of ordinary type or simply ordinary, and a
letter e*!, e* for € € Sp of special type or simply special. We distinguish direct
letters, which are of the form « for some x € Qq, from inverse letters, which
are of the form x~! for some x € Q;.

In the next step, we want to build words from certain sets of letters, so called
alphabets. We are going to consider two types of words, coming from two
types of alphabets.

We denote by

Pa(A) = {a,a7 [ac QP} u e, |« e Sp}
the directed alphabet of A, and by
Tua(A) = {a,a | ae QI u{e* | e eSp}

the undirected alphabet of A.
There exists the following forgetful map:

QSid: I_\d(A) - Fud(A)
z® if z e QMY (11)

*

x*  if x € Sp,

xh —

for ke {+1,-1}.

Example 2.13. Let A be as in Example 2.2.1. Then its directed and undir-
ected alphabet are given by

Lua(A) = {a,a™t,e*},
I‘d(A) = {a,a_l,e,s_l}.

Example 2.14. Let A be given by the quiver

Ec\/e]
N

21
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with Sp = {n, k,e}, R ={ca,db,ec}. Its undirected and directed alphabets are

Twa(A) ={a,b,c, d,e,a_l,b_l,c_l,d_l,e_l,6*,/6*,77*},
Lq(A) = {a,b,c, d,e,ail,bfl,cfl,dfl,efl,s, ﬁ,n,efl, /{1,7771}.

In the following, we might simply write I'yq, I'q if the given algebra is
clear from the context.
Let T be either a directed or undirected alphabet for a clannish algebra A.
Then a I'-1-word w; is given by a sequence of letters from I' of the following
form:

Wy ... Wy it 1={0,...,n},(n>0),
if I=N
w={ o (12)
Lo W_wo if I=-N,
LW QW QW | 1w ... if I= Z,

such that
(i) for two consecutive letters w;, wir1: s(w;) = t(w;+1) in Q,

(ii) for two consecutive letters w;, wis1: wi‘1 + Wiy1,

(i) if 7 =71 ...7; € R, then neither r nor its inverse 7~ = r;1... 77 occur

as a consecutive subsequence of w.

(iv) for € € Sp, €*¢* does not occur as a consecutive subsequence of w; in
I'yq, nor do ee and e te7!
Lq.

occur as a consecutive subsequence of w; in

Note that the "|" in the definition of a Z —word is necessary to indicate the
position of the letter wy and wy within the word.

Example 2.15. Consider the algebra A from Ezxample 2.2.1.

Then for I ={0,1,2,3},

w=¢clae

is a I'q—1-word. For1=127,

1

* * -1 % -1 _*
Wy =...ag"ag’ |a " eta" e L.

1s a I'yq — Z —word, where w; consists of repetitions of the displayed subword
to the left and to the right.

Example 2.16. Let A be as in Evample 2.14. Then
wy = e*a td er ebn* b tag*a d ekt ebn b a . .
is a T'ywq — N—word and the following gives a T'q — (- N)—word:

wey=...d Yere tdasta td ek,
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The length of a I' - I —word with I = {0,...,n} is given by n. For I = {0},
a I' - I-word is given by a trivial word 1, , for some vertex v € )9 and
ke {+,-}. Wecall a ' -I-word w; directed if T' = T'q and undirected if
I' =Twq. With this adjective to describe the words, we might also drop the
I'-notation and say for instance "directed I -word" instead of "I'q—I —word".
We denote the set of all directed I-words by W'(I'q(A)), and the set of
all undirected I-words by W'(I'ya(A)). If the given algebra is clear from
the context, we write W, instead of W'(I'+(A)) where « € {ud,d}. We
denote by W(T'x(A)) = Ujjew W'(I'x(A)) the set of all finite words of I', (A),
* € {ud,d}. We write W, (x € {ud,d}) for short. For any word in W,, we
drop the subscript in the notation when convenient and write w € W, of
length n instead of w; € W, with I ={0,...,n}.
Note that (11) induces the map

DL W(Ta(A)) — W(Tua(A)). (13)

For a directed I-word vy, we call an undirected I-word w; € ®¢, (v;) an
undirected version of vy.

Vice versa, for some undirected I -word wy, we call any directed I -word v,
in the preimage (®°,)™" (w;) of w; a directed version of w;.

For a given I' — I —word w; there exists for every ¢ € I an associated vertex
vi(wy) in Qq, given by

for 1=%7: Ui(wz) = S(’U)Z) - t(wi+1)’
i) = t(w; if 1 >1,
for I=N: Ui(wN) _ S(w ) (w +1) 1 Z
t(wr) if v =0,
i) = t(w; if 4 < -1,
for I=-N: vi(w_ ) = s(wi) = t(wir1) if i
s(wo) if1=0,

s(w;) =t(wiy1) if0<i<mn,

t(wy) if i =0, it w#1,, for all v,k
for I={0,...,n}: v;(w)= s(wy) fiem
{v if w=1,,, some v, k.

Example 2.17. We consider the word w from Ezxample 2.15. Then
vi(w) = s(w;) =1 for all i € {0,...3}.
Example 2.18. Let A and wy be given as in Frample 2.16. Then
vs(wy) = s(ws) = s(k*) =5 =t(ws) =t(c),

va(wy) = s(wz) = s(a™t) = 2.
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The inverse of a I' - I-word w; as in (12) is given by

wyt . wrt if I ={0,...,n},(n>0),

wpt = e - )
wy w1y ... if I =-N,
cowytwtwgt JwTiwTl o i T =7,

with (z71)7! = z for any letter z e I.

Note that the inverse of a I' - N—word is given by a I' = (-N)-word by
definition, and, dually, the inverse of a I' — (- N)-word is an I' = N—word.
We define the inverse of a trivial word by (1,,)7! = Ly —r.

Example 2.19. The inverse of w from Example 2.15 is given by

wl=elg e,

For w, from the same example, we obtain the inverse

w;' = .. agtag* a7t

Example 2.20. The inverses of the words from Example 2.16 are given by
(wy)t =...a b e ke dae”,

(w,N)_1 =k e ldaca'd e e M. . ..

Now we choose for each letter [ € I' a sign sgn(l) € {+,—-} such that

two distinct letters [ and [’ with the same starting vertex in Q have the
same sign if and only if {I,I'} = {z7!,y} and either zy € R or 2 = y € Sp.
Thus, if w; and w;,1 are two consecutive letters in a I' — I -word w;, then
sen(w;?) = -sgn(wpn).
The sign of a I'=I—-word w; for I={0,...,n} or I = Nis given by sgn(w;), or,
if wy =1y, by k. Simlarly, for I=-N, it is given by sgn(wp). Additionally,
we assume for a given algebra A that the sign on a letter is compatible with
both alphabets I'q and I'yq, that is, for any two letters x € I'g, y € ['yq with
¢1,(x) = y we have sgn(z) = sgn(y).

Example 2.21. Consider A as in Ezample 2.3.1. and T'q(A), Tywa(A) from
Ezample 2.13. It follows from the relations on A that sgn(a) = sgn(a™') and
sgn(e) = sgn(e™), but sgn(a) # sgn(e).

Example 2.22. Lei A be as in Example 2.1/ and consider its undirected
alphabet T'yq. We obtain the following correspondences from the given rela-
tions:

sgn(c™') = sgn(a)# sgn(d™),

sgn(d™') = sgn(b) # sgn(c™t),

sgn(e”!) = sgn(c) * sgn(x*),

sgn(b™') # sgn(n*),

sgn(a™') # sgn(e*).
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Thus, we can choose the signs as follows:

sgn(c') =sgn(d ') =sgn(d) = sgn(x") = sgn(n*) = sgn(c") = +,
sgn(e™!) =sgn(a™) =sgn(b™!) = sgn(a) = sgn(b) = sgn(c) = sgn(e) = —.

As for each letter x € I', the source and target vertices s(z) and ¢(x) are

defined via the quiver QQ, we can extend this definition to some words. We
define for w; a I'-I-word with I = {0,...,n} or I = N, the source to be given
by s(w;) = vo(w;). For I ={0,...,n}, its target is given by t(w;) = v, (wy),
respectively for I = =N by t(w;) = vo(wy).
The composition vw of a I' = T-word v and a I' = J—word w is given by
the concatenation of sequences of letters, provided s(v) = t(w), sgn(v™!) =
-sgn(w), and vw is again a I'=I' —=word for some I'. Conventionally, we define
lyklok = lyk. The composition of a I' - (- N)-word v_y and a I' - N -word
wy is indexed in a way such that

(vw)z =...v_1v9 | Wwa. ...
Example 2.23. Let A be as in Fxample 2.2.1.

1. Let w = e tae, v = ac. Then we know by Ezample 2.21 that sgn(e) =
—sgn(a) and thus
wv = ¢ 'acae.

Note that vw s not o word, since the two words cannot be composed in
this order.

2. Letw_y=...aca"! be an (- N)—word and let vy =ca ... be an N -word.
Then the composition (wv)y is a Z-word given by
(wv)y =...aea”" |ea....
Example 2.24. Consider A as in Fxample 2.3.1. and w_y and wy from
Ezxample 2.16. Then we cannot compose them since sgn(k*) = + = sgn(n*)
and also their concatenation does not result in a I' = Z —word.

Any word which is bounded from below or above (I € {N,-N,{0,...,n}})
can be composed with a suitable trivial word:

lyswlgr if  v=v9(w), Kk =—sgn(wy),
v=v,(w), F=-sgn(w,),

Ly Wy it v=wvo(wy), k=-sgn(wy),

woyly, if v=vo(w-y), k=-sgn(wgl).

A subword of a I' — [ —word wy is a subsequence of consecutive letters of wy.

Example 2.25. Any ' — Z-word has an N—-word and an (- N)-word as
subwords.
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We fix some notation for certain subwords of a I'=I —word wy, where i € I:

wi[<i] = . wi—gwi_1,
wi[<i] = wiw;,
wi[> 1] = wiriwise ...,
wi[> 4] = wiwisq .. ..

Thus, w; = wy[< i]w[> ] = wi[< i]w[>¢] for any i € 1.
For a finite I'-word w of length n it follows

w[< 1] =1, ,, where v =vg(w),k =sgn(wy),
w[>1] = wy,

w[>n] = 1y 4, where v’ = v, (w), k" = —sgn(w,),
w[<n] =w.

Example 2.26. 1. Let A be as in Example 2.3.1. Consider w as in Ex-
ample 2.23.1. Then

w[<3]=¢""aq,

w[<2] =1,

w[<1]=1y,, where k=sgn(et),
w[< 3] = w,

w[< 2] =w[< 3],

w[< 1] = w[< 2],

2. Let z; = (wv)y from Ezample 2.23.2. Then

2[<1] = 2[< 0]
2[>0] = 2[21]

Example 2.27. 1. Consider A from Ezample 2.8.1. and wy as in Ex-
ample 2.16. Then

IN

z =w,
z =0

v

wy[> 3] =wy[>4] =ex*cbn” ...,

wy[<1] =1y, v=vo(wy),k =sgn(w)

2. For w_y from FExample 2.16 one has

w_y[<-2]=...a"'d?,



There exists an equivalence relation on W,, * € {d,ud}:
v ~w if and only if v =w™ or v =w. (15)

Example 2.28. 1.) Let A be as in Evample 2.8.1. For w = ac*a™le*,

v =c*aca”! we obtain w ~v since v=w'.

2.) Consider A from Ezample 2.14. The words v = dac* and w = e*a™*d™!
are equivalent.

For T = Z —words we define the shift w;[m] of w; for some m € Z by
wy[m] = Wy | Wt - (16)

If there exists p € N\{0} minimal with the property w, = w;[p], then we call
p the period of w, and can write wy in the following way:

W= ... W .. Wy | Wy Wy

We call the finite subword wy...w, of w, periodic part and denote it by
w,. We say that any letter of the form w;, (1), for k>0, i€ {1,...,p}

belongs to the positive copy w,ﬁk) of 1wy, while any w;,x, for £ < 0 and i €
{0,-1,...,—p+1} belongs to the negative copy wé“.

Example 2.29. Consider A as in Example 2.8.1. and w, with periodic part
Wy =c*a. Then
w _ (1) _ . (2)
1w = Wy w3wyg = Wy,

~(0) ~(=1)
W-1wWo = Wy W-3W-2 = Wy

since p =2 and
W1 = Wie(1-1)2, W2 = Wo4(1-1)2, W3 = Wii(2-1)2) W4 =W24(2-1)25

Wo = W0o+0-2; W-1 = W-1+0-2, W-2 = Wo4(-1).25 W-3=W_14(-1)-2

Remark 2.30. Let m € Z be positive. Then shifting by —m means moving
the letters of wy by m positions to the right. Shifting by m means moving
the letters by m positions to the left.

Lemma 2.31. The shift is additive:
wy[m+n] = (w[m])[n].

Proof. Consider the shifting map 7,,, : Z — Z, defined by 7,,,(7) = i+m. With
respect to the positions of the letters, the shift is exactly given by this map
acting on their indices. One has 7,4, (7)) =i+ m +n = 7,(7,(7)), giving the
result. O
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We introduce an equivalence relation ~, on W7 for « € {d,ud} as follows:
wy, ~z vy, if and only if w, = v,[m] or wy, = v;l[m] for some me Z.

Example 2.32. 1. Take A as in Example 2.3.1. and consider the two
following words of period 4:

wy =...cacla | caca. ..,
vy =...a tea e atea e L
The tnverse of wy is given by
w,'=. . eate o eaT e T

It follows vy ~; wy, since vy = w;[-1].
2. Let A be as in Example 2.28.2. and consider
wy = ...k eby b e | Krebpth et L
vy = b e eyt et erebnth L
Then vy ~ wy, since vy = w, [-2].

Lemma 2.33. The relations ~ and ~; are equivalence relations on W,, WZ,
respectively.

The proof is given in the next subsection.
Since one can clearly distinguish between the equivalence relations ~ and ~,
we drop the index of the second equivalence relation and use ~ instead of ~;
for easier reading in the following.

2.3.1 Properties of Z-words

In this subsection, we examine I' — Z —words more closely. We obtain nice
properties with respect to their shifts and inverses.

Lemma 2.34. Let w, e W%, » € {d,ud}, and let k € Z. Then
wy ' [-k] = (wa[k]) .

Proof. The statement follows easily by comparing the two:
Write wy, = ... w_jwp | wiws . ... Then the shift by k € Z is given by

U}Z[k] = W1 W | We+1Wk42 - - -
and its inverse by

-1 -1 -1y, -1 -1
(wo[k])™ = wpnwi [ wplwily -
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On the other hand, the inverse of w; is

-1 _ -1 -1

Wy =...wp Wy |w W2 -
Shifting this by —k gives
wy k] = wpwy !t [wl gy
It follows that w;*[~k] = (w,[k])~L. O

Corollary 2.35. Let w, €e W%, « € {d,ud}, and let k € Z. Then
wy k] = (wz[k])_l if and only if wy = (wZ[Qk])_l

Proof. By Lemma 2.34, we have that (w,[k])™' = w;![-k]. Applying this to
wy[k] = (wz[k])™! and then using a shift by —k on both sides of the newly
obtained equation gives

2 [-2k] =

Applying again Lemma 2.34 to the left hand term, it follows that

(wy[2k] )71 = wy,.

Example 2.36. Let A be as in FExample 2.3.1. Let

* —1 _* * =1 % % -1 %
wy=...e5a €'aleta e acTa T e"a. . ..

Note that w; is periodic with p = 4. Now consider the shift of w, by 2. Then

wy[2] =...e%a etac*a | etacta ea. ..
1_

[
(wz[2])” a7 leta | efa et acta e .
and thus wy = (wz[2])7. Similarly, we obtain that wy[1] = (w,[1])7 .

Example 2.37. Consider Ezample 2.32.2. Then v, = w;'[2]. We have
vy = (wz[2])7 as well.

Proof of Lemma 2.33. We first show reflexivity, symmetry and transitivity
for ~. Then we show the same for ~

o Reflexivity of ~ obviously holds since w = w for any finite word w.
Similarly, if v = w™!, then also w = v™! and hence symmetry is given.
For transitivity, we use the same arguments: let v ~ w, w ~ u. Without
loss of generality, let v = w™!. Then either w = u and it follows v = v~ *,

hence v ~ u; or w=u~! and v = u, hence v ~ u.
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e For the relation ~,, reflexivity is given by w;, = w;[0]. To show sym-
metry, assume w; ~ v;. Assume at first w, = vy[m] for some m € Z.
Then v, = w,[-m] and thus v, ~ w,. If, on the other hand, w, = v;![m]
for some m € Z, then it follows that v; = (w;[-m])™ = w;*[m] (Lemma
2.34). Hence, vy ~ wy. To show transitivity, let w;, ~ v, and v, ~ u.
Assume at first wy = v,[m] for some m € Z. If v, = uy[k] for some
k € Z, then w, = uy[k][m] = uy[k + m]. Hence, w, ~ u;. Now assume
that v, = u;'[k] for some k € Z. Then we obtain that wy = u; [k +m]
and thus w;, ~ uz. Now assume that w, = v;'[m] and v, = u;'[k] for
some k € Z. Applying Lemma 2.34 gives that w;, = uz[m — k] and thus
wy ~ uy. If; on the other hand, v, = u,[k], then, again by the same
lemma, w; = uy'[m - k]. It follows that w;, ~ u;. Hence transitivity
also holds.

O

2.3.2 Coadmissible words

In this subsection we introduce the notion of a coadmissible word. It is
useful with respect to the context of matrix problems for clannish algebras
(cf. Chapter 4). The connection becomes clear in Sections 4.5 and 4.6.

Definition 2.38. Let w; e I, for x € {d,ud}.

Then wy is left coadmissible provided that either 1 is not bounded below, or
sup(I) = n € N and there does not exist a letter | € I'x such that lw, is again
a word for 1 =e*! orl=¢* for someeeSp.

Stmilarly, w; is right coadmissible provided that either 1 is not bounded above,
or sup(I) = n € N and there does not exist a letter | € T\ such that wl is
again a word for 1 = *! or 1 =¢* for some ¢ € Sp.

We call w; coadmissible provided that w; is both left and right coadmissible.

Example 2.39. Consider A as in Example 2.3.1. Then
1. w=¢a 1s left coadmissible, but not rightcoadmissible,
2. w=ae” is right coadmissible, but not left coadmissible,

L is coadmissible.

3. w=ceae”
Example 2.40. Let A be as in Example 2.14.

1. The word wy from Example 2.16 is left coadmissible.

2. The word w_y from Example 2.16 is right coadmissible.

3. Let wy, be as in Example 2.52.2. It is coadmissible.

4. The word w = ex”c is also coadmissible.
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5. The word w = e 1s left coadmissible but not right coadmissible.

Denote by
W(T.(A)) = {w; e W(T',(A)) | wy right coadmissible }
the set of all right coadmissible words in T'y, with % € {d,ud}. Now let
WP =W, u WY
with » € {d,ud} be the set of positive I',—words, and let

WEE(T L (A)) = {w e W™ | t(wr) = i,sgn(wi) = K}

K

be a subset of W) consisting of words that have the same target vertex ¢
and the same sign k. We also write W}, for short.
Define

W = Wres a W(T, (A))

to be the set of positive right coadmissible T',—words. Let

WP = WP A W(I,(A))

*,0,K *,0,K
be the respective subset.

—_—

Definition 2.41. We define for two words v,w € WY, = € {d,ud} that
v<w if

(1) v=waz for some suitable word z € WP and a direct letter a, or
(2) w=vb"'z for some suitable word z € W™ and an inverse letter b™", or

(8) v=uaz and w=ub"'%, for suitable words z,% € W2, u e W,, a direct
letter a and an inverse letter b1,

Theorem 2.42. The relation ” <7 defines a lexicographical linear ordering
on W, for each » € {d,ud}, respectively.

Proof. Let v,w € Wf(’:% for » € {d,ud}, v # w. We show that either v <w or
w < v holds. Let n € N maximal such that v1...v, = wy...w,. Then there
are three different possibilities:

(1) Un+1 F Wnt1,
(i) [o] = n, [w] > n,

(iii) |w|=n, |v]>n.
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Let us first consider the case n = 0 separately. We obtain in case (i) by
definition of W7 that sgn(vi) = sgn(wi). Thus, by definition of sign,
{vy,w1} = {x,y7 '} with either yz = 0 or x =y € Sp. Let us assume without
loss of generality that v; = y~! and wy = 2. Then we can write

v=ylu, whereu=uv[>2],
w=xz,  where z=w[>2].

Thus, by (3) of Definition 2.41, we obtain that v > w. In case (ii) we have
that v = 1; .. We can write w = 1; yw. Hence, w = vwyu for u = w[>2]. If wy
is an inverse letter, we obtain by (2) of Definition 2.41 that v < w, otherwise
by (1) of Definition 2.41 that w < v. Case (iii) is analogous.

Let now n > 0. In case (i) we have sgn(v,) = sgn(w,). It follows that
sen(v) = —sgn(v;!) = —sgn(w;') = sgn(weer). Thus, {vner,woet} =
{x,y7 '} with either zy = 0 or = = y € Sp. Without loss of generality assume
that v,41 = y‘l, Wp+1 = . Then we can write for u = v1...v, = W1 ... W,

that
w=urz,  wherez=w[>n+2],

v=uyls, wheres=v[>n+2].

Condition (3) of Definition 2.41 gives that w < v. In case (ii), p = sgn(wp+1) =
—sgn(wy,) = —sgn(vy,). Hence we can write v = vy ...v,14y,),, and

W=vWpu  with  w=w[>n+2].

If wp41 is now an inverse letter, it follows w > v by (2) of Definition 2.41.
Otherwise we obtain w < v by (3). Case (iii) is again analogous to (ii). O

Remark 2.43. It follows from above that we have for a,b e Q™ with t(a) =
5(b) in Q and sgn(a) =sgn(b™!) = k that

a<lyq) k< bt

—_—

We call two I',—words vy and wy comparable if vy, wy € W7 for some
ielnJ, ke{+,-}, xe{d,ud}, and if v; = wy, vy < wy or wy < v;. Otherwise
we call them ncomparable.

Example 2.44. Let A be as in Ezample 2.3.1. Then w =ac* and v=a"'e*

are two undirected finite right coadmissible words. One has w = 1y, a2,
v = lt(aq)ﬁaflz with k = —sgn(a) and z =u=¢*. By (3) of Definition 2.41
it follows that w < v.

Example 2.45. Consider A as in Example 2.14.

1. Let wy = e*a_ld_le/@*cbn*b_la. .. and vy = e*a tdek*e Ydas* ... be
two undirected right coadmissible N—words. Then wy < vy by (2) of
Definition 2.41. We have used bold letters to indicate the positions of
interest in vy and wy.
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2. Consider the following undirected finite right coadmissible words:
w=ek’c, v=er'ch, u=ex*cdt, x=ch.

Then w<wv by (1), v<u by (2) of Definition 2.41, and x is incompar-
able to w,v,u.

Note that ®¢, induces several other maps with the same assignment:

&l W(Ta(A) — W(Tw(A)),
((bpos)d . Wgos N Wgzsg

ud
(@), W — Wi

ud

We also can use the notions of direct%d and undirected versions with respect
to the maps @2, (@)1, and (&) .

ud? ud

Example 2.46. Let A be as in Fxample 2.3.1.
Let v =eae™! be a directed word. Then (®)¢, (v) =w =c*as*.
Now consider the undirected word w = e*ae*. Then

-1 111 -
(@id) (w) = {eae,cac™ !, e tac™ e tae},
i.e. it contains v but there are also more directed versions of w.

Example 2.47. Consider A from Ezample 2.3.1. and the words w, s and
wy from Fxample 2.45 . Then

((I)id)_l (w) = {eﬁ*C,eﬁ_lc}7
-1
(q)id) (S) = {Cb}7
((I)(‘i‘d)_l (wy) ={...ca d renchnp'a,...e 'a" d T ercbnb a,

e ta d en b a, . L .

2.3.3 Minimal words

Let I be finite throughout this subsection. Let v be a I'yq —I -word of length
m with ¢(v1) = s(u) for some p € Sp and s(vy,) = s(n), for some 7 € Sp.
Let k e N. Then we define

S (DD Gem1) ()

with

vt if i even, w*if i even.

o0 _ {v if ¢ odd, and k() - {77 if ¢ odd,

Then v¥ is again undirected.

33



Definition 2.48. Let w be a I'yq —1—word of length n. We call w composite
if wis of the form w = v!*] for some word v of length m < n and some k > 0.
Otherwise, we call w minimal.

Example 2.49. Let A be as in Example 2.53.1. and consider its undirected

alphabet. Let

1 1

* =1 % % -1 _*
w=ac a € ac a £ a.

Then w = vl®] for v=a. Thus, w is composite and v is minimal.

Remark 2.50. We can also interpret the notion e for some periodic I'q —
Z —words vy as follows: Let @ZSZ') = ettt for all i € Z.. Then ] describes
the smallest subword of v, which contains x € {t,t™'} p times. Consider for
instance p=3. Then

¢ = erpppelent,
Lemma 2.51. Let w be a finite Tyq—word of length n with w = w™". Then
w 1s composite.

Proof. Writing the equality w = w™! in terms of letters gives

-1 -1

Wi. .. Wy =W, ... W .

It follows that
wi=w, . Vie{l,...,n}. (17)

If n is odd, then we can write n = 2k + 1 for some k € N. In particular, we
obtain that wy.1 = w,;il. It follows that w1 = €* for some € € Sp. Moreover,
we have that

Setting u = w; ... wy, we can write

* -1
w=ue u .

Hence, w is composite.
If n is even, then n = 2k for some k € N. It follows by (17) that wy = w; 1,
which contradicts the definition of a word. O

The converse only holds conditionally:

Lemma 2.52. Let w be o composite finite I'yg—word with w = olk] for some

minimal v and some k € N. If k is even, then w =w™".

Proof. Since k is even, w is of the form

* * =1
ve ...EU

for a suitable € € Sp. Its inverse is given by
wl=ve* . efvh.

It follows that w = w™". O
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Example 2.53. Let A be given as in Example 2.3.1. Recall that T'yq(A) =
{a,a™t e*}.
Let w = ae*a 'e*a = v® for v =a. Note that k =3 is odd. The inverse of w
1s given by

wt=ateas*a .
We see that w +w™ L.
Consider in contrast to that x = v14 = ac*a e*ac*a™. Its inverse is
r =as*aetasta !

and thus © =z~ L.
Lemma 2.54. Let w be a finite T yq—word with w + w™". Ifw is coadmissible,
then w s not composite.

Proof. Assume towards a contradiction that w is coadmissible and compos-
ite. By Lemma 2.52 it follows that w = v[¥] for some minimal v with & odd.
In particular, k # 2 and there exist €, € Sp such that e*vn* is again a word.
It follows that e*wn* also is a word. Thus, w is not coadmissible which gives
a contradiction. O

Example 2.55. Let A be as in Frample 2.14. Recall that

Cuwa(A) ={a,b,c,d, 67a_l,b_l,c_l,d_l,e_l,e*ﬂi*,n*}.

1

Let w=c'k*e'd. Then w+w™' and w is coadmissible. Futhermore, w is

not composile.
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2.4 Modules obtained from directed words

It is not possible to obtain modules from words in I',q since the letters of
special type €* for € € Sp are not directed. In Section 3.1, techniques are
introduced on how to give these letters a direction such that one obtains
words in I'q. From those we can directly obtain A—modules and hence it is
enough to consider only directed words in this section. The general theory
on this topic can be found in [Rin75]. Here, we mostly follow [CB88| and
|CB18§|.

Let wy € Wj. The A—module M (wy) is given by a k —vector space with basis
b;, i € I, and with action of A in terms of the quiver Q as follows:

bi if vi(wi) = v,
evbi = .
0  otherwise,
for e, a trivial path in A associated to the vertex v in @, and for x € Q:
bi—l if’i—le[,wi:x,
biv1 ifi+1€[,wi+1=x_1,
SCbZ = . _1 Sp
b; if wi=2"" or wiy1 =2, and x € Q7"

0 otherwise.

Example 2.56. Let A = k{e,a)/(e? —¢,a?), and thus T'q = {a,a™',e,e71}.

Let w = a tcacas™! € Wy be a word of length 6. Then the corresponding
module M (w) has as a k-vector space basis by, . ..,bg and can be depicted as
follows:
a b5 15
N
c by bg
e
a b3
rd

bo \S\l 6/ b
by
or easier, as in the rest of this thesis:
by — by «— by < by «— by «— by —> bg.

Remark 2.57. It is important to keep the relations in mind when reading
modules as depicted above. This applies in particular to special letters. Due
to their idempotent relations, a depiction of the form

b1 «<— b;
for € € Sp, 1s read as follows:

e(bi) = b1,
E(bi_1) = bz‘—1~
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Example 2.58. Let A be given as in Example 2.1

561 5QH
N
nC3/ \4

with Sp = {n,k,e}, R = {ca,db,ec}. Consider w = ex ‘cbnb~lac. It is of
length 8. The module M(w) has basis by, ...,bs as k—vector space and is
depicted as

¥

or equivalently,

c b n b

b0<6—b1ib2@b3<—b4<—b5+b6<a—b7ib8,

Example 2.59. Let A = k{e,a)/(e? —¢,a?) as in Ezample 2.3.1., and thus
Lgq={a,at e et}

Let wy = ...acae™t | acaetacas™t - € W3 of period 4. This gives a module
M(wy) that is infinite dimensional as a k-vector space and can be depicted
as

1

AN

ba ba

v

or as follows:

£ a £ a £ a £ a £ a
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Example 2.60. Let A be as in Example 2.58 and let wy, be a directed Z —word
in the respective alphabet with periodic part given by wg = b™'c 'rcbn. The
underlying k —vector space of M (w;) is infinite-dimensional. We depict the
module as

One can see in all examples, that the action of the formal inverses is
depicted by arrows going from left to right, while the one of direct letters is
depicted by arrows from right to left.

There are two important A—module isomorphisms. For w; any directed
I -word, the morphism 4,, : M(w) — M (w™') is bijective by reversing the
basis. For w, € W%, there is a similar isomorphism i, : M (w;) — M (w;")
by reversing the basis according to taking the inverse. For wj the map
twy ki M(wy) — M (wy[k]), bi = bi_g, k € Z is also an isomorphism.

Example 2.61. We consider Example 2.59. Then p = 4 and t,4 acts as
Jollows on the module M (wy):

by
th,‘l__,_.._,»-""'ly f V
E by by
P V'
a Izﬁl._.-ng,&; b
£ O A tug,a
b72 th’4.-"'..““bo e
b R :

e a e
b_a

Example 2.62. Let A and wy, be as in Example 2.60. The period of wy, is 6

38



and t; 6 acts on M(w;) as depicted:

gy D12
tugs. et
) . """"b"”bll bz
’LUz,G A/\ ‘‘‘‘‘ / thy()
b bs by <C . bo
bo b c b4 ,_‘.‘-bs
b ‘<C K bs -
by <

Hence, words in the same equivalence class give rise to modules in the
same isomorphism class. Note also that each map ¢,,, , gives rise to a periodic
part and vice versa.

2.4.1 Modules from periodic words

Let w; € W] be of period p, i.e. w; = wy[p]. Then we can abbreviate the
depiction of M (w,) to the periodic part and obtain the picture of a classical
band module (see [Rin75, CB8§|).

Example 2.63. We consider Ezample 2.59 from the previous subsection.
Using periodicity of wy, the depiction of M (w;) can be reduced to

Example 2.64. Consider again Example 2.62. Then we can depict M (wy)
in the following short form:

n

bo

In this case, the A—module M (w,) is free of rank p over k[T, T71], for T
acting as t,, ,, and hence becomes a A — k[T, T]-bimodule.
Thus, given a k[T, T!]-module V, we can "extend" the module M (w;) to
the module M (wz, V') = M(wz) ®yrp-1]V = @ier Vi for some finite set 1
of cardinality p and V; = V for all i € I: since M (w,) is free of rank p over
k[T,T'], we have as k —vector spaces

M (ws) ®yp -1V 2 (K[T, TP @ ppp-11V 2 V2.

The depiction of M(wz, V') is similar to the one of M (w;), with disjoint
copies of V' at the vertices instead of basis elements. Indexing the copies of
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V' is helpful to read the action of A which is given according to wy,.

To describe the action of A on the vector space M (wz, V') more detailed, we
introduce a more formal way of describing the module M (wy, V). To this
end, let for i € {0,...,p—1}

V{={Q_}|’I_)Z'=UEV,Q_]]'=O Vji’i},
pi: VoV, vev=(0,...,0,0,0...,0).
Then we have im(gp;) =V; 2V for all i € {0,...p—1} and

M(w,, V)= @ Vi= @D im(y;) (18)

0<i<p-1 0<i<p-1
as k —vector spaces. By the action of A on M (w;, V'), we have

WiPir1 = Pi, (19)
that is, the following diagram commutes:

Wy Wi+1

V;+l

............. Pi+1l
Pi Pi+2

v
Let (vo,...,vp-1) € ®im(p;). Then

p-1
z(vo,...,vp-1) = P x((0,...,0,v;,0,...,0)) forall zeQq,
i=0

where by (19) for all x € Q9"

(Ogiv); if Jarrow : V; -V,

z((dijv)i) :{

0 otherwise,
and for all € € Sp:

(6;5v); if Jarrowe: V-V
e((6:5v)5) =1 (digv)y  if 3 arrow e: V; - Vj,

0 otherwise.

Example 2.65. We consider again M (w;) as in Example 2.63, and V a
k[T, T ']-module. Then M (w;,V) is of the form




where the V;’s are disjoint copies of V. Also in this depiction, the special
letters € and ™1 are acting with respect to the vector spaces as described in
Remark 2.57. The action of A on M(w,, V') is thus given as follows: let
(vo,v1,v2,v3) € M(wyz, V). Then a and & act according to the depiction:

a(vo,v1,v2,v3) = (v1,0,v3,0)

e(vg,v1,v2,v3) = (Vg + U3, 1 + v2,0,0)

Example 2.66. Consider again Example 2.62. Then we can depict for a
given k[T, T~ ]-module V, the module M (wz, V') in the following short form.:

n

Vo

The action of A on the module is given by

(vo,v1,v2,v3,v4,V5) 2, (0,v9,0,0,v5,0)
N (0,0,v1,v4,0,0)
5 (0,0, v3 + v3,0,0,0)
15 (0,0,0,0,0,v +vs).

2.4.2 Modules from periodic words with w0, = e"ontv™!

In this subsection we consider directed Z—-words w; of period p = 2m+2 with
periodic part w, of the form evonPfv~t, where k,u € {+1,-1}, v a subword
of w, with |v| = m, and €,7 € Sp. We examine words of this form also
more detailed in Subsection 3.2.4. They will play an important role in the
classification of indecomposable A—modules (cf. Chapter 6).

For V a k[T,T~!]-module, we have seen in the previous subsection how to
depict the module M (w;, V). Let u = k = 1, and let the V;’s be disjoint
copies of V. Then

M(wz,V): Vi W Va2
e=T

We can abbreviate this depiction using the symmetries in the two idem-
potents. To this end, let W = V@ V. Then W is a k(f,e | f2 = f,e? =
e)—module and we can depict M (w;, W) as follows:

V1 V2

Wi

M(wy, W):  e=e C Wo W, Dn:f (20)

where the Wy’s are disjoint copies of W and M (w5, W) = @], W; as k —vector
spaces. Note that one can consider the maps ¢; from the previous subsection
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also with respect to M (w,, W). To this end, consider ¢; : W; — W, where
Wi={z|zi=2eW,z; =0 Vj#i}, 0<i<m. One obtains as before
M (wz, W) = @], W; as vector spaces. The commutativity relations are now
given by

VP = Pi-1, 1<i<m
Po = fpo, (21)
Pm = €Pm.-

Thus, A acts on M (w,, W) according to wy, that is, with the notation from
the previous subsection and w e W:

(dipw); if 3 arrow z: W; — Wy,
z((dijw)i) = { ’

0 otherwise,
for all z € Q*4, and for all € Sp

(dijw);  if 3 arrow e : W; — W for some I,
e((dijw);) =1 (dpw); if 3 arrow e: W; — W,

0 otherwise.

In particular, we have that

e((diow);) = (dio f(w));, and (22)
N((6imw)i) = (dime(w));. (23)

Example 2.67. Let W be a k(f,e| f? = f,e? = e)—module and let A be as in
Ezample 2.5.1. Consider the periodic word wy in Tq(A) with periodic part
Wy, = efacaetagta ea e aTt ) ke {+1,-1}. Then we depict M (wy, W)
as

e:eCWO a %] < Wo = W3 £ Wy - W5j€=f

with the W;’s disjoint copies of W for alli € {0,...5} and €,a acting according
to the above descriptions:

a’(vﬂv V1, V2, 7)3,'04,'[)5) = (Ulv 07 V3, 07 7}570)7

e(vo,v1,v2,v3,v4,05) = (fvo,v1 +v2,0,0,v3 + v4, ev5).

Example 2.68. Let W be a k(f,e | f% = f,e* = e)—module and let A be as
in Ezample 2.58. Consider the periodic word w; with W, = néb‘lc‘ln“bc,
O, pe {+1,-1}. Then M (wy, W) is depicted as follows:

n:eCWO—b>W1—C>W23;~;=f
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where the W;’s are disjoint copies of W,0<i <2, and A acts as follows:

(vo,v1,v2) N (0,0, 0)
'i) (0a07vl)
> (fvo,0,0)

—> (0,0, evy).
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3 Words of string and band type

As mentioned before (see Section 2.4) we would like to base the classification
theorem on undirected words. Hence, we need to find a bridge from those
to the A—modules in the classification statement.

To do so, we are going to introduce two different types of directed words
in Section 3.1. One type is given by weakly consistent words for which the
direction of the special letters depends on the directions of the ordinary
arrows in the word. Here, the direction refers to the exponent of the letter
and thus to its type (inverse, direct). In contrast to the weakly consistent
words, we have the consistent words that include the special letters in the
data set for the directions of the special letters. In particular, we introduce
the ¢*—index for letters of weakly consistent words and the c—index for letters
of consistent words. Those indices measure the distance from a directed
special letter to the letters which give conclusion on the type of directed
word.

In Section 3.2, we introduce the notion of asymmetric and symmetric strings
and bands. Our goal is to give the classification of the indecomposable finite
dimensional modules in terms of those strings and bands. In order to do
so, we will see in Chapter 4 that they result in £-graphs from which the
canonical X, -representations are obtained. In preparation of these results,
we take a closer look on the symmetries in symmetric bands in Subsection
3.2.5.

It is only natural to compare the weakly consistent and consistent directed
versions of the strings and bands with the hope that one type of those will
describe the finite dimensional indecomposable modules. This comparison is
the content of Section 3.3. We will see that the directions coincide on letters
of finite index, excluding one particular type of letter for symmetric strings
(Theorems 3.53 and 3.61, Proposition 3.67).

3.1 Types of directed words

Througout this subsection let I' be either the directed or undirected alphabet
of a clannish algebra A.

Definition 3.1. Let w; be a non-trivial I' — 1 —word. Then the direction of
the letter wj, j €1 is given by

1 ifwj=x for some x € Qq,
dir(w;) =dirj(w;) ={ -1 if wj =27 for some = € Qy,
0 fwj=c" for someeeSp.
Note that for I' = I'q one has dir;(w;) # 0 for all j € L.

We can use the direction of a letter to visualize it, respectively the word it
belongs to:
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If [ e T is a letter with dir(l) = 1, then we depict it by an arrow going from

right to left:
l

<~ .

If, on the other hand, h € T" is a letter with dir(h) = -1, then it is of the
form h =171 for some [ € Q; and we depict it by an arrow going in opposite

direction: l

.
A letter [ € T of the form [ =* (i.e. [ € 'yq) is depicted by an edge:

l*
This visualization is very helpful to the reader: we are going to see later (in
Subsections 3.1.1 and 3.1.2) that the directions on the special letters for the

two mentioned types of directed words are given in an intuitive way with
respect to this visualization.

Example 3.2. Consider the finite directed word v = € ae of length 3 with
alphabet given by A as in Ezample 2.31. Then the directions of the single
letters are given by

dir(vy) = -1, dir(ve) =1, dir(vs)=1.

If we consider the undirected word w = ac*a"'e* obtained from the undirected
alphabet of the same A, then the directions are given by

dir(wy) =1, dir(wg) =dir(wy) =0, dir(ws) =-1.

According to the above description, we can depict the two words as follows:

e a €

v )
a & a ¢g*

w ——— —

3.1.1 Weakly consistent words

Throughout this section let w; be a coadmissible undirected I —word for either
I={0,...,n} (n>0) or I=7Z.
We are now going to define weakly consistent words.

Definition 3.3. Let v; € (®%,)" (w;). We call v; weakly consistent provided
that

1 if (wi[< D7t 2 w[> 4],

dir(v;) = dir; (vr) = {-1 if (wi[<j) 7" <wn[> 4],

for all j €I with w; a special letter.
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In case of equality, the direction is not uniquely defined. This means we
can either have dirj(v;) = 1 or dirj(v;) = =1 if (wi[< 7])7 = wi[> j].
It is possible to construct a weakly consistent directed version from an un-
directed word by assigning exponents to the special letters in the undirected
word as described in Definition 3.3.

Remark 3.4. It is clear from the definition that there does not always exist a
unique weakly consistent directed version v; of wy, e.g. we will see in Section
3.2 that there is a unique weakly consistent directed version for words of so
called asymmetric types, but not for symmetric ones.

Remark 3.5. Note that the directions on letters of ordinary type are the
same n the undirected word w; as in its weakly consistent directed version
%

dirj(wr) = dir;(vr) for all j €I with w; of ordinary type.

Example 3.6. 1. Consider the algebra A as in Example 2.3.1. Let w =
e*ae*. Let v e (04,)7 (w) be weakly consistent. We have v = viavs
with v; € {e,e7} for i=1,3. We have for the letter v that w[< 1]7! =
Lyey s £ = —sgn(e*), w[> 1] = ac*. Hence, w[> 1] = w[< 1] az, for
z=¢*, and thus w[< 1]71 > w[> 1] and dir(vy) = 1. It follows similarly
that dir(ve) = 1. Hence, v is of the form eae.

2. Let A be as in Example 2.14. Consider w = ade*d'a™" and let v €
(@)™ (w). Then v is given by v = advsd " a™" with vy € {e,e™}. We
have

(w[<3])t=dtat = o[> 3].
Thus, v is weakly consistent for any choice of vs.

To measure at which point of w; the relevant information for the direction
of a letter v; in a weakly consistent directed version vy is found, we introduce
an index for each j €I for which v; is of special type:

Definition 3.7. Let v; be a weakly consistent directed version of the undir-
ected 1 —word wy. The c*—index of a special letter vj, j €1, is given by

ind; (v;) = sup{length(zy) | (wi[< iD= 2wy, wi[> 4] = zvay )}
for some undirected subwords zy, uy, xy of w.

Note that we can also define this index on the undirected version wy
since the direction of special letters in v; only depends on w;. We define
ind; (wy) = ind; (v;) for v; a weakly consistent directed version of wy.

We denote by J* the interval [j—ind} (w;), j+ind} (w;)] in Z, and its left and
right hand side subintervals by J* = [j - ind} (wy), j], J3 = [, 7 + ind} (wy)],
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respectively.
The letters left (resp. right) of J* determine the direction on v; for v; weakly
consistent. We denote them by

j2 =g —indj(w) -1,
Jy =7 +ind; (wy) + 1.

For I = {0,...n}, we set conventionally j* =0 (j7 = n+1) if wj» = 1;,
(wjr = 1; ) for i = t(w1), Kk = sgn(w1) (i = s(wy), K = sgn(wy), respectively).

Remark 3.8. By definition, w;+, w;» are of ordinary type. Hence,

Ji
dirjx (wy) = dirjx (w;) = dirj(vr).

Example 3.9. 1. Consider w (v, respectively) as in Example 3.6.1. Then

indj (w)=0, 1*=[1,1], 12=0, 1;=2,
ind;(w) =0, 3"=[3,3], 3:=2, 3i=4.

2. Let A be as in Example 2.3.1 and let w = e*a ‘e a ‘e ac*ac*. Then
indf(w) =0, 1*=[1,1], 1*=0, 1*=2,
ind;(w) =0, 3%=[3,3], 3" =2, 3]=4,
ind; (w) =4, 5% =[1,9], 5 =0, 5% =10,
ind7(w) =0, =[7,7], 7T5=6, T7;=8,
indg(w) =0, =[9,9], 9* =8, 97 =10.

Example 3.10. 1. Consider w and v as in Example 3.6.1. Then

U1* = lt(vl),n with K = Sgn(vl)a

’UHr

V2,

U3+ = V2,

U3 = 15(1}3)# with p = sgn(vg),

and thus

dir(ws) = dir(va),

dir(v1) = dir(1y(y,) ) = dir(ve),
dir(vs) = dir(v2) = dir(1(u,),u)-

2. Let w and v be as in Fxample 3.6.2. Then

v3s = Ly m, K =sgn(d),

Ugx = ]‘t(d),f’{,?

i.e. v3x = vz, It follows that dir(vs) = 1 and dir(vs) = -1 is possible.
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3.1.2 Consistent words

Throughout this subsection let v; be a coadmissible directed I-word for
either I={0,...,n} (n>0) or I=Z.

Definition 3.11. We call v; consistent provided that for any j € I with v;
special, we have that

1 if (w[<iD 2 ul[> 4],

dir;(vy) = { -1 if (ul<iD <ul> 4]

Again, in the case of equality, the direction is not uniquely defined, i.e.
we can either have dir;(v;) = 1 or dir;(v;) = 1 if (v,[< j])7 = vi[> j].

Example 3.12. Consider the coadmissible directed word v = eae from FEz-
ample 3.6.1. Then we have that

v[<1]7t = Li(ur),—p with p=sgn(vy), v[>1]=ae,

v[<3]t=ate, w[>3]= Ls(ug),e with k& =sgn(v3).

Then clearly, v[< 171 > v[> 1] and v[< 3]™ > v[> 3], so v is consistent.
Thus, it is both weakly consistent and consistent.

Example 3.13. Let A be as in Fxample 3.6 2. Consider the directed word

v=ercbnblacta b nbltaectatd e k.
'U1U2'U3U4v5 Ve V7 U8 Vg 'UlOyll V12 V13 V14 V15 V16 V17 V18

It is consistent with respect to the letters va, vs, v11, vi4 and vig. The entire
word 18 not consistent since it is not consistent with respect to vs.

For each j € I with v; of special type, we define its c-index as follows:

Definition 3.14. Let v; be as above a directed version of some undirected
word wy. The c—index for j € I with v; special is given by

indj(v;) = sup{length(zy) | (v[< iD= 2wy, vi[> 4] = zvay )
for some subwords zy, uy, xy of v;.

Note that it is not as easy as in the case of weakly consistent words to
construct a consistent directed version from an undirected word. However, it
can be done by proceeding inductively on the c—index of the special letters.
We introduce some notation with respect to the c—index. We denote by J¢
the interval [j —ind§(wy),j +indj(w;)] in Z, and its left and right hand side
subintervals by J¢ = [ - indj(wi), ], J§ = [4,j +indj(w;)], respectively.
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The letters left (resp. right) of J¢ determine the direction on v; where v; is
consistent. We denote them by

j< =4 —indj(w;) - 1,
j$ =g +indj(wy) + 1.

For I = {0,...n}, we set conventionally j¢ =0 (j¢ = n+ 1) if wje = 1;, for

i =t(wy), k=sgn(wr) (i =s(wy), k =sgn(w,)). We proceed similarly with
je.

Example 3.15. Consider the consistent directed word v in Example 3.12.
Then, as mentioned above, we have J = J*, j¢ = j* and j$ = j;, hence given
as i Erxample 3.9.

Remark 3.16. As in the previous subsection, we do not have any conditions
concerning the direction on letters of ordinary type, i.e. if v is a consistent
directed version of an undirected word wy, then

dirj(wy) = dir;(vy) for all j €1 with w; of ordinary type.

But in contrast to a weakly consistent orientation, we can now also have vj,
vjx of special type. Still, we have by definition

dirje (v) = dirje (vy) = dir;(vy).
Lemma 3.17. Let w; be an undirected 1 —word. Then
ind; (wz) > indj(vz)
for any j €1, any vy e (®4) 7" (wy).

Proof. The inequality follows directly from Definition 3.7 and Definition 3.14.
O
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3.2 Strings and bands

In this section, we classify certain types of undirected words. Our underly-
ing goal is to use these types to give a classification of the indecomposable
A-modules.

Let A be a clannish algebra throughout this section.

3.2.1 Asymmetric strings

Definition 3.18. Let w be a finite undirected word. It is said to be of
asymmetric string type if w is coadmissible and w + w™!.

We denote by W the set of all w e Wyq of asymmetric string type and by
we W / ~ with the equivalence relation ~ defined in Section 2.3. We call
weW? an asymietric string.

Example 3.19. Let A be as in Ezample 2.3. The word w = €*ae” 1is of

asymmetric string type while = e*ac*a™'e* is not since x = 271

Note that any asymmetric string w is minimal by Lemma 2.54.
We obtain for w of asymmetric string type, and for every directed version
€ (92 )7 (w), a module M (v) that is depicted, for a k—basis by, ... , by, as

v1 v2 Un-1 Un
bo by . b1 by

Definition 3.20. Let w be an asymmetric string and v € (@id)fl (w). Then
the module M (v) is called asymmetric string module.

Proposition 3.21. Let w be an asymmetric string. Then v € (®2)7" (w)
is weakly consistent if and only if the following holds for all j € I with v; of
special type:

Ldf (wl<g])™ > wl>4] (24)
-1 if (w[< )7t <w[> 4]

Proof. Tt follows directly from Definition 3.3 that v is weakly consistent if
(24) holds.

For the other implication, it is enough to show that (w[< j])™ # w[> j] for
all j eI with v; of special type. Assume there exists j € I with (w[< j])™' =
w[> j]. Let u = (w[< j])™! = w[> j]. With w; = &*, one can write w as
follows:

dir(v;) = {

-1 _*
w=u £ U.

-1

Then w = w™", contradicting the definition of an asymmetric string. O

Corollary 3.22. For each asymmetric string w there exists a unique v €
(@) (w) such that v is weakly consistent.
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Proof. By Proposition 3.21, we know that any dir(v;) with v; of special type
is uniquely determined by dir(w;+) and dir(wjx). Since both w;+ and w;-
are of ordinary type, their directions are known. Thus, one can construct
a weakly consistent directed version for any asymmetric string. Uniqueness
follows by Proposition 3.21. O

3.2.2 Symmetric strings

Definition 3.23. Let w be a finite undirected word. It is said to be of
symmetric string type if w is coadmissible and can be written as w = ue*u~!
for u a minimal undirected word.

We denote by W’ the set of all w € Wyq of symmetric string type and by
W’ = WS/ ~. We callwe W a symmetric string.

By w being of the form w = ue*u!, the condition w = w™! is implied (cf.

Lemma 2.52). Note that u is left coadmissible. Let u be in the following of
length m.

Example 3.24. Let A be as in Ezample 2.14. Then w = k*cbn*b ¢ " is
of symmetric string type with u = xk*cb.

Similar to the case of asymmetric strings, we can obtain modules using
the data of symmetric strings or more precisely, using the data u.
Namely, for every te (P d) (u), there are directed words of the form v*
te*1t71 with v* € (®9) 7 (w) and * € {+,—}. Now for each v*, * € {+,- }
arising in this way, we obtain two modules M;(v*), i = 0,1. Note that for any
i, we have M;(v") = M;(v™). Hence, it is enough to consider either v* or v™.
We call the one word out of the two that we consider v. Taking into account
that any idempotent € acting on a vector space V gives the decomposition
V =im(¢e) @ ker(¢), the module M;(v) is depicted as

t1 to

by < by L by ) i

with € acting as 7.
Let V be ak[f | f? = f]-module. Then we can depict the above module also
in the following way:

t1 to

tm-1
m— ml%vmja‘f

where the V;’s are disjoint copies of V.

Vo Vi

Lemma 3.25. Let w = ue*u™! be a symmetric string. Then there exists a
weakly consistent directed word v e (®2,)™" (w).

Proof. Since u is minimal, the direction of any v; of special type with j €1,
j #m+1is uniquely determined by dir(w;») and dir(w;).

For j =m +1 we have that ind}(w) = m. Thus, (w[< j])~ Low>j]=u
and the direction of v,,41 1 not uniquely determined. Thus, choosing any
orientation on v, gives a weakly consistent directed version. O

-1
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As one can see above, there are two options for a weakly consistent

directed version v of an asymmetric string w = ue*u"':

vt =tet™, ie. vpme1 =€, and

Vo= ts_lt_l, i.e. Umsl = 5_1,
where ¢ € (®4,)7" (u).

Example 3.26. Consider w from Example 3.24. Then
v* = kebnb te e

v = kebp o e kTt

are both weakly consistent directed versions of w.

It is not obvious whether there exists a unique consistent word v with
(®¢,) (v) =w for w a symmetric string.

3.2.3 Asymmetric bands

Definition 3.27. Let w; be an undirected Z —word. It is said to be of asym-
metric band type if w, = wy[p] for some p >0, and wy, # w3 [k] for all k € Z.
We denote by W the set of all w, € WZ, of asymmetric band type and
Wf = W“/ ~ with the equivalence relation ~ on Z —words from Section 2.83.
We call w € Wf an asymmetric band.

Example 3.28. 1. Let A be as in Example 2.3. Consider
wy=...c5ag" |ac”a...

It 1s of asymmetric band type with p =2 since

-1 _ 1

* =1 _* -1 _* -
w, =...ea € |a"ea

yields that w;t # wy.
2. Consider A from Ezample 2.14 and let w, with periodic part w, =
dac*a'bn b tetk*e . It is of asymmetric band type with p = 10.

We obtain for every directed version vy € (P¢ d)_1 (wy) of the same period
as wy, and for V a k[T, T~']-module, a module M (v;, V).
Similar as for wz, we denote the periodic part of v; by 0, = v1...v,. We
depict M(vz, V') in the following way:

V1 V2 Up-1
Vo t/ V-1
Up

It is not as straightforward as in the string cases to make statements on the
uniqueness of weakly consistent and consistent directed versions of asym-
metric bands (compare Section 3.3).
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Lemma 3.29. Let w; be an asymmetric band of period p. Let v, € (®%)7" (w;)
be of period p and weakly consistent. Then

1 «— (w. 5...wi1) ' >wisr...w. 5
dlr(U]) = ( ‘7_% J )_1 I 2
-1 = (wj_g...wj,l) <wj+1...w,%

for all j € Z with vj a special letter, where

_|p if p even,
p+1 if p odd.

Proof. Let v, be weakly consistent. Let j € I with v; special. If

(w,

-1
j_é...'u)j_l) > Wjs1 .. W, b,
2

J+3

it follows that (w[< j])™* < wz[> j]. Then we have by Definition 3.3 that

dir(v;) = 1. It follows similarly that (wjl~ i) < Wi W implies
2 2

dir(v;) = -1.

For the other implication, it is enough to show that

-1
(wj_g ...U)j_l) F Wj+1 ...U)j+g. (25)

Assume towards a contradiction that we have equality in (25). Consider p
to be even. Then we have that p = p. We have in particular that

wly =w;,p. (26)

The length of the subword Wj_p - Wi WjWjs1 -+ Wiy B is p+ 1. It follows

by periodicity that w,_p = Wi,z Combining this equality with (26) results

_pr
2

in w;,p =€ for some € € Sp. Let w; be given by n*, n € Sp and denote by u

2 .
the subword u = Wiy Wj-1- We can thus write

W) pyp - W1 WjWis1 - Wiy P = un*u e, (27)
Consider now wy[j — % +1]. Tt has periodic parts of form (27). Thus,
wolj -5 +1] = (wo[j - +1]) 7"
2 2
It follows (Corollary 2.35 and Lemma 2.34) that
wy, = (w2 = p]) ™ = wy ' [-2) + p). (28)

This contradicts w; being an asymmetric band.
Let now p be odd. It follows that p = p+ 1. The length of the subword
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Wy pA Wy ptl g Wy Wyprl Wy 1 IS P + 2. It follows by periodicity

that

wj_pTJrl_'_l = wj+pTH- (29)

We have by equality in (25) that
-1
(ij’QLlH) = Wjppt g (30)

Combining (29) and (30) gives that

-1
Wyt = (0,001 (81)
which contradicts the definition of a word. O

Corollary 3.30. Let w; be an asymmetric band. Then there exists a unique
directed version v € (D2,) that is weakly consistent.

Proof. By Lemma 3.29, one can always construct a unique weakly consist-
ent directed version for an asymmetric band analogously to the asymmetric
string case in Corollary 3.22. O

Corollary 3.31. Let w; be an asymmetric band. Let v, € (82,)7" (wz) be a
directed version. Then v, is consistent if and only if we have

; -1
Zf (Uj_%"...vj,l) >vj+1...vj+%5, (32)

~ -1
-1 Zf (Uj_%"...vj,l) <Uj+1"'vj+§v

dir(vj) =

Jor all j € Z with v; of special type, where p as in Lemma 3.29.

Proof. Let v, be consistent. Then (32) holds by the same line of argument
as in the proof of Lemma 3.29.

The converse implication follows from Lemma 3.29, since indj(v;) < ind; (vz)
(see Lemma 3.17) for all j € Z. O

Remark 3.32. It follows from Lemma 3.29 and Corollary 3.31 that every
J € Z giving a letter w; of special type in an asymmetric band wy has finite

p

c*~inder. In particular, ind} (w;) < §,

type also has finite c—indez.

and thus any j € Z with w; of special

Proposition 3.33. Let w, be an asymmetric band of period p. Then there
exists a unique weakly consistent o, € (9,)™" (w;) of period p.
Furthermore, if there ezists a consistent directed version v, € (%)™ (w,),
1t 15 unique.

Proof. Existence and uniqueness of a weakly consistent directed version is
given by Corollary 3.30. Uniqueness of a consistent word follows from Co-
rollary 3.31. 0
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3.2.4 Symmetric bands

Definition 3.34. Let w; be an undirected Z —word. It is said to be of sym-
metric band type if w;, = wy[p] for some p > 0 and w, = w;[k] for some
keZ.

We denote by W* the set of all w, € W, of symmetric band type and by
WS = Ws/ ~. We callwe WS a symmetric band.

Example 3.35. Let A be as in Fxample 3.28.1. Then

-1 -1
wy=...e°ag"a" " |ag¥a" ...

1 1

is of symmetric band type with Wy, = ac*a™"€* since w," = wy.

Lemma 3.36. Let wy be of symmetric band type. Then there exists | € Z
such that the periodic part of wy[l] is of the form e un*u™' for a suitable
undirected finite word u, and £,m € Sp.

Proof. First consider the case where |[w,| = 2. By definition of clannish
algebra, this is only possible for the algebra given by the quiver consisting
of two special loops €,7. Then it follows directly that p =2 and w, = ¢*n* or
wp =n*e*. Hence the result follows with u a trivial word.

Now let |@p| > 2. By definition of symmetric band type, there exists k' > 0
such that wy = w; [k'].

If k" is even, we can write k' = 2k for some k € Z. Applying Corollary 2.35
gives

wy = (wy[-2k]) 7! if and only if w,[-k] = (w,[-k]) 7"
The second equation implies
_ -1
Wp-k = wp—k?
Wy (k—i) = w;_l(k”), forallteZ.

Hence, w1, is a letter of special type.
We obtain two finite undirected words v = wy_41 ... wp and = w1 ... Wy_p_1
such that the periodic part is of the form w, = xw,_rv. Without loss of

generality assume |z| < |v]. Then there exists 1 < j < p such that y = w; ... w,
gives

(yz)™" =v. (33)

Let |v| =1, |[z| =g and |y|=h (i.e. I=h+g).
By (33), we have that



so y is a subword of v™1, ie., y1...yp = vl_l . .vl__l(h_l). But by periodicity, y
is also a subword of v, i.e., y1...yn = V_(4-1)--.v;. Combining the last two
equalities results in

-1
v .. ‘Ul—(h—l) =Y1...Yp = Ul—(h—l) ...

Hence, y is selfinverse, i.e., of the form y = zp*z~!, for some undirected
(finite) word z and some special letter . Furthermore, w; is of the form

«_—1 “1, % -1 -1
2T | mwp_ T 2 2T s Wy L

Now the periodic part of w; is of the form w, = 2w, gz zp*2". For m = |z
we obtain w,[m] with periodic part w, gz 'zu*z"'2. Then for u = z7'x,

e*=p* and n* = wy_k, we obtain w, of the desired form.

Now consider k' to be odd. Then we can write k' = 2k + 1 for some k € Z.
We obtain, analogously to the previous part (compare structure of proof of
Lemma 2.34) that

wa[-(k+1)] = (wa[-k]) "
This property results in
Wyl = Wy (),

a contradiction to the definition of a word. Hence, k' cannot be odd.

If ¥ =0, it follows that w, = w;l and thus w,, is of special type. Moreover,
w;,}l .. .wfl =W Wp-1, Le, Wl... . Wp_1 = ue*u~" for some undirected finite
word v and some € € Sp. With 7 = wy, it follows that @, = ue*u~'n*. Then

w;[~1] has periodic part e un*u~. O

Corollary 3.37. We can assume for a symmetric band wy, of period p that
A~ % *,—1
Wp = unu.

Proof. By Lemma 3.36 there exists k € Z such that w;[k] has periodic part
of the form e*un*u™t. Now wy[k] ~ wy, i.e., they lie in the same equivalence
class in W?. Hence we can choose w;[k] as representative of [w;] and thus
assume the periodic part to be of the form above. O

Assume from now on for w; a symmetric band of period p that its periodic

part is of the form w, = e*un*u™" with |u| = m, ¢,n7 € Sp. Note that u is
minimal due to the minimality of the period p.
According to Subsection 2.4.2, we obtain for every v, € (®¢,)7!(w;) of period
p, with 9, = e*tn"t™! and for V a k{e, f)/(e*~e, f>~ f)-module, a A-module
M(v,,V) (where 1,5 € {+1,-1}, 2,7 € Sp, £ € (B1)" (u)). We depict
M(v;, V') as described in Subsection 2.4.2 as

T L T A P
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Assuming b, = e*un*u~!, we can now determine the integer(s) k for which

we have w; = w;'[k] (compare next subsection).

3.2.5 Symmetries in symmetric bands

We have seen in the previous subsection that the periodic part of a sym-
metric band is of a certain form. Now we want to show that those words
admit exactly two types of reflection symmetries and one type of translation
symmetry.

In order to do so, we consider the infinite dihedral group and its properties.

It is well known that the group of isometries on Z, that is, the group of
bijective maps f : Z — Z that are distance preserving with respect to the
norm d(x,y) = |z—y| on Z, is given by the infinite dihedral group D ([Coh89,

p. 20]).
Consider the following two kinds of isometries for k € Z:

il — L,i— 2k —1
T L — Lyi— i — k.
Definition 3.38. An isometry of the form ry is called reflection (symmetry)
and one of the form 1, translation (symmetry).
Clearly, r,% =id holds for every k € Z, i.e., r; is self-inverse, and Tl_l =7
for any [ € Z. It follows for ¢ € Z that
remr(i) =i+ 1= 7 (i) = 7 (0).

In particular, this holds for 7 := ry and 7 := 73 which generate Do ([Coh89,

p. 20]):
Do = (r,7 | r? =id, rrr = 771).

Note that reflections reverse the order. For i < j in Z we have r(j) < r(7).

Definition 3.39. We define the action of Doo on Wy for wy = (w;)iez as
follows:
r(wZ) = (w;(ll) )i627 (34&)
7(wz) = (Wr(s) )iez- (34b)
Lemma 3.40. The operations in (34a) and (34b) give a (left) group action
of Do 0on Wy.

Proof. Since we have defined the action on the generators of D, it is enough
to show well-definedness:

P2 (ws) = r(r(ws)) = r((withyViex) = (wiiez,
rrr(us) = r(r(r(w2))) = 1(r((wry)iez)) = 7wk ) )iez) = (WrrngiyJiez

= (w103 iez = 7 (wy).

58



Lemma 3.41. The following holds for any k € Z and any Z —word wy:
Tk(wz) = wz[_k]
Proof. The equation follows by definition of 7 and the shift on words. O

Denote by Sym(W,) the set of permutations on W,. Then by the action
of Deo on Wy, we obtain 7,7 € Sym(W,) and an injective map

(r,7 | r? =id,rrr = 77 1) & Sym(W,).
Let from now on be wy; a symmetric band of period p with periodic part

Wy = e*untul.
We denote the stabilizer group of w, under Do by Stabp_ (w;).

Lemma 3.42. For any a € Z, the composition r1, is a reflection of the form
re on W,

Proof. We have that

rra(ws) = (W} i))iez = (Wils_gyiez = (W5ly)iez,

-1 -1 -1
ra (wy) = (wrg(i))iez = (w2g_¢)iez = (wo )iz
2
Hence, they both act in the same way on W;. 0

Lemma 3.43. Let S, 4 = (T, 774) for n,a € Z. Then

Sn,a = {Tkny rTa+kn}keZ'

Proof. We first show that Sy, 4 2 {Tkn, "Taskn tkez. Clearly, (7)) = {Tkn trez-
Furthermore,

(TTa)(Tkn) = T(TaTkn) =TTa+kn

and the inclusion follows.

In order to show S, 4 S {7n,"Taskn tkez, We assume for contradiction that
this inclusion does not hold: Assume r7, € S, , with b # a + kn for any k € Z.
Then the following composition is also in Sy, 4:

(r7a)(rmp) = (r7a”)Th = T—aTp = Th—a-

Here, we have used that rmyr = 7_; for any [ € Z which follows inductively
from r7r = 77, Now 7p_q € Sn,q if and only if b—a = In for some [ € Z. This
results in b = a + In which contradicts the assumption on b. O

Proposition 3.44. Let w; be a symmetric band of period p, W, = e*un*u !,

Then
StabDw (wZ) = Sp72.
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Proof. We first show the inclusion Sy, 9 € Stabp_ (w;). By Lemma 3.43 we
have Sy 2 = {Tkp, "Toskp hez- Let us examine the elements of S 5.

By Lemma 3.41 and periodicity we know that 73, (w;) = wz[kp] = w; for any
k e Z. Thus, Ty, € Stabp_, (wz).

Let us consider now elements of the form r7o,g,. If k is even, we can write
k =2l for some [ € Z. Then 779, is a reflection of the form ry,;, by Lemma
3.42. For [ > 0 this describes the reflection in the first position of the positive

copy uA)I(,Hl). For [ <0, we rewrite 1+ Ip as follows:

L+lp=1+({-p+p=-p+1+({+1)p.

Thus, it describes for [ < 0 the reflection in the first position of the negative
copy uA)I(,Hl).

Now consider k to be odd. Then k +1 is even and rro,y, is a reflection of
the form r, . Using p = 2m + 2, we can rewrite the subscript:

1+%
k 2+(k+1)p-2m-2 k+1
o Rp 2 (ke Dp2m=2 kel (35)
2 2 2
For % <0, kp describes the reflection in position m + 2 of the negative
2
k+l
copy u?l(, 2 ). For % >0, we rewrite (35) to
k+1 k+1 k+1
5 p—m:( —1)p—m+2m+2=(T—1)p+m+2.
Hence, 7, xp describes the reflection in position m + 2 in the positive copy
2
NCY
p 2.

It follows that r7mo,kp(ws) = wy for any k € Z. Thus, any element of S)
stabilizes wy, so Spa € Stabp, (ws).

It remains to show equality. By definition, Stabp,_, (w;) is a subgroup of De.
The non-trivial subgroups of D are given by ([Speb56, §1.2.4, Example 2|)

Gy = (r7y,), for some n € Z, (36)
Gon = (), for some n >0, (37)
Gna = (Tn,774) for some n>1,0<a<n. (38)

Lemma 3.43 shows that S, , = G, which is the largest subgroup of De.
Hence, it is enough to show that Stabp_(w;) # De. To this end, assume
towards a contradiction that we have equality. Then 7(w;) = w; for any
[ € Z. In particular, this holds for [ = p—1. It follows by Lemma 3.41 that

wy[p—1] = Tp-1(wy) = ws,

contradicting minimality of the period p. Hence, Stabp_(w;) # Do and
Sp2 = Stabp_ (w;) follows. O
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Corollary 3.45. Let w; be a symmetric band of period p > 0 with periodic
part Wy, = e unul.
Then w, = w;'[k] if and only if

=-2 (modp), k=2m (mod p), (39)
=-2(m+2) (modp) ork=2(2m+1) (mod p). (40)

Proof. Consider the equalities

which result from the symmetries in the periodic parts. By Proposition 3.44
we know that these are all reflection symmetries of w,. Applying Lemma
2.34 and Corollary 2.35 to the above equations yields the result. O

The previous Lemma and Proposition illustrate that the symmetry points
are given by the letters with index j = 1,-m,—(2m + 1),m + 2 (mod p)
which are exactly the symmetry points in the positive and negative copies
of the periodic part. Hence, there does not exist a unique weakly consistent
directed version for symmetric bands. The next lemma shows that we can
use a simplified criterion to check on weak consistency for directed versions.

Lemma 3.46. Let w, be a symmetric band with period p and periodic part
Wy = e*un*u~t. Let v, € (89,)7" (wy) be a directed version. Then v, is weakly
consistent if and only if for all j € Z with j #1,-m,-(2m+1),m+2 (mod p)

and v; of special type we have that

dir('[) ) _ 1 ’Lf (wj—(erl)wj—m - ’U}j_l)_l > Wit - - - WigmWi+m+1,
’ -1 4f (wj_(mﬂ)wj,m - wj,1)71 < Wit -« - WijpmWi+m+1-
Proof. By Corollary 3.45 we have for any j = 1,-m,—(2m+1),m+2 (mod p)
that (wy[< j])™' = w,[> j]. Hence, any letter v; indexed by such a j can
have direction 1 or —1 in a weakly consistent directed version.

Thus, it is enough to show that for j # 1,-m,—-(2m +1),m + 2 (mod p) we
have that

-1
(wj_(m+1)wj_m . wj—l) FWjsl - o WirmWirm+1-

Assume towards a contradiction that the two terms are equal for the index
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j. We write

Rl = Wi (m+1)Wj-m - - - Wj-1,
22 = Wj+1 .- Witm,
2= 2 W22 = Wi (ma1)Wi-m - - - Wj—1WjWj1 -« - Wi,
T1=Wj—m - -Wj-1,
T2 = Wil -+ - WijrmWjtm+1,

T=T1WjT2 = Wj—m -+ - Wj-1WjWj+1 - - - WjtmWjrm+1-

1

By assumption 2]~ = z2. Hence,

wily=wj Vie{l,...,m+1}.

In particular, w]f_l(mﬂ) = W4 (m+1)- Furthermore, |z| = |z[ = p. Tt follows by
periodicity that w;_(mi1) = Wjsme1)- Then w;_ (1) = wjf_l(mH) is given by
a special letter, say x*. Let w; = u*. Then we can write

* * =1
wj_(m+1)wj_m < Wi 1WiWyg1 - - Wjam = K YU Y
where y = wj_p, ... w;_1. By periodicity, it follows that

wy[j] = (wZ[j])_l-

This can be rewritten to
w; = w; ' [-25]. (41)

By choice of j # 1,-m,—(2m + 1),m + 2 (mod p), equation (41) gives a
contradiction to Corollary 3.45. 0l

Corollary 3.47. Let w; be a symmeltric band of period p and with periodic
part Wy, = *un*u~t. Then we have for all j € Z with j # 1,-m,—(2m+1), m+2
(mod p) that ind}(w;) < oo, in particular, ind} (w;) < §.

Proof. This result follows directly from Lemma 3.46. 0l

Remark 3.48. Let wy be a symmetric band as in Corollary 3.47 and let vy €
(92 )" (w,). By Definition 3.7 and Definition 3.14, we have that indj(vz) <
ind; (vz) for all j € Z. Thus it follows by the above Corollary that indj(vz) <
L <oo forall j € Z with j #1,-m,—(2m +1),m+2 (mod p).

Proposition 3.49. Let wy, be a symmetric band of period p with periodic

part wy, = e*un*u~t. Then there exists a weakly consistent directed version

vs € (By) 7 (ws).
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Proof. By Lemma 3.46 we know that for j # 1,-m,—-(2m+1),m+2 (mod p)
we have ind} (w;) < §. Thus, we can simply set dir(v;) = dir(w;») = dir(w;: ).
For any j =1,-m,—(2m+1),m+2 (mod p), we know by Corollary 3.45 that
(wy[< j1)7' = w,[> j]. Hence, setting dir(v;) to be 1 or —1 gives a weakly
consistent word. O

Lemma 3.50. Let wy, be a symmetric band with period p > 0 and periodic part
W, = e*untut. Let vy € (99, Y (w,) be a weakly consistent directed word
as in Lemma 3.46. Let j € Z with w; a special letter and indj (vy) = d < oo.
Then there do not exist k,l € Z with wy,w; special letters and indj(v;) =
ind/ (v;) =00 and |j - k| =]j -] < d.

Proof. Assume towards a contradiction that such indices k, [ € Z exist. Then,
by Corollary 3.47, wg,w; describe symmetry axes.

By assumption, w; lies exactly in the middle between w;, and w;. Let x
describe the subword between wy and w;, hence ™! describes the subword
between w; and w;. By definition of w;,w; as symmetry axes, we have

wy[> 1] = (w[< 1]) 7

and
wy[> k] = (wy[< k])_l.

By the symmetries in j,k and [ we obtain
wy[> 1] = (wy[< k]) 7L

Now we can write w;[< j] = 7 wyw,[> 1] and (wy[< 7])7! = 27 wpw,[< k] 7L
Thus indj (w;) = oo, a contradiction to the assumption. O

We can also determine the stabilizer Stabp_ (w;) for w, an asymmetric
band of period p:

Proposition 3.51. Let w; be an asymmetric band of period p. Then
Stabp,. (wz) = {Tkp }kez-
Proof. We know by Lemma 3.41 that
Tip(wz) = wy[-kp).

Thus, 73 € Stabp, (w;) for any k € Z. Assume that {7y }rez # Stabp, (ws).

We know that Stabp_ (w;) is a subgroup of Ds. They are given by (36)

- (38). Thus, Stabp_ contains a reflection of the form 77y = rx with k €
2

{0,...,p—1}. Then
rr(wz) = (wily)iez = (1) ez
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Denote by 1, the periodic part of r7i(w;). It is given by

-1 -1

O | -1
Up = Wp_p ... Wy Wy ... Wy

Since 77y, € Stabp,, (wz) it follows that W), = @y:

Wy ... Wy :wlil...wl_lwgl...wgl.
This equality yields that
_ -1 -1
WY Whe] = Wp_q - .. W] (42)
wk...wp:wgl...wgl. (43)
We obtain that
wy = w, [k -1]
which contradicts w; being asymmetric. O
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3.3 Comparison of weakly consistent and consistent words

In this section we examine correspondences of the two types of directed words
introduced in Section 3.1. To this end, we can consider the asymmetric and
symmetric strings and the asymmetric band as one case. The approach on
symmetric bands is more complicated and thus is considered separately.

We see that for the asymmetric cases there exists a unique directed ver-
sion that is both consistent and weakly consistent. In the case of symmetric
string, there exist two possible directed versions which are also both consist-
ent and weakly consistent.

The symmetric band is the most complicated case. Here, we know what
the consistent directed versions look like with respect to the symmetry axes.
Moreover, any consistent directed version is also weakly consistent. But the
converse does not hold: only any weakly consistent directed version with
symmetry axes oriented in the way of types 1) - 4) in Proposition 3.70 is also
consistent.

Recall with the following example some notation from the Subsections 3.1.1
and 3.1.2:

Example 3.52. Let A be as in Fxample 2.14. Consider

W = W WaW3Wa W5 WeW7WWe (44)

=e*a by b tacta L (45)

The word v = ta b Yo ac ta™td ™! is a weakly consistent and consistent
directed version of w. The special letters in v are indexed by 1,4 and 7. For

j=1and j="7 we have ind;(w) = indj(w) and thus most of the following
data coincides:

j=1: ind] (w) = ind{(v) =0,
1" = [1 -ind] (w), 1 +ind] (w)] = [1,1],
1°=[1-ind{(w),1+ind{(v)] = [1,1],
wis = 1+indj(w) -1 = we,
vie = 1+ind{(v) - 1 = wy,
wyx =1 -indj(w) +1 =1y ,,

Vie = 1- 1ndf(’U) +1= 18(6),:‘47

J=T: ind7(w) =ind5(v) = 1,
7" = [6,8] = 7°,
wyx = V15 = Wy,

Wyx = Vie = Ws.
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For j =4 we obtain different values:

indj (w) =3, ind§(v) =2,
4* = [1,7], 4°=12,6],
Wy = W1, Vqe = Wi,
wyr = W, vge = wr.

3.3.1 Directed words from strings and asymmetric bands

Let us first show that a weakly consistent orientation on asymmetric and
symmetric strings and asymmetric bands is also consistent.

Theorem 3.53. Let w be a siring, either asymmetric or symmetric, and
let w, be an asymmetric band. Let v € (92)7 (w) (v, € (92,)7" (wy)) be
weakly consistent. If w is a symmetric string of the form ue*u™', assume
additionally that v = t"t™! for t € (®1,)7" (u) and k € {+1,-1}. Then v (v,
respectively) is consistent.

Remark 3.54. Recall that any weakly consistent directed version is uniquely
given in both asymmetric cases. Only for the symmetric ones do we obtain
more than one possible weakly consistent directed version (compare Section

3.2).

Proof of Theorem 3.53. We show the statement for w an asymmetric string.
The other two cases are analogous.

Let v € (®,)™" (w) be weakly consistent and assume towards a contradiction
that v is not consistent. Then there exists 1 < j <n with w; a special letter
and dir(v;) # dir(vje) and dir(vje) = dir(vje). Thus, ind}(w) > indf(v) and
vje =vje are special letters. Let 2~! denote the undirected subword between
wje and w; in w; hence, x is the undirected subword between w; and wje.
Set y =w[< j¢], z = w[> j¢]. Then w is of the form

-1
YWieT W;TWj¢ 2.

Assume without loss of generality that dir(v;) = 1. Hence, dir(vje) =
dir(vje) = 1. The weakly consistent orientation with respect to the pos-
itions j¢, j¢ and j gives the following inequalities:

-1 -1
1) y = <z wjrwjez,
2) zwjez <zwiey e z <y,
3) e 'wjrwjey ! < 2.

Thus, we get
-1 -1 -1_ -1
T wizwiey  <z<y  <TTwjrwjez.

Comparing the first and last word in this chain of inequalities gives y~! < z,
a contradiction to inequality 2). O
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The next step is to show that a consistent word is also weakly consist-
ent. This is more complicated to show than the previous statement. Let us
therefor first introduce some auxiliary lemmas.

Lemma 3.55. Let w be a string, either asymmetric or symmetric, and let w,
be an asymmetric band. Let j € I (for I ={0,...,n} or I = Z, respectively)
with wj of special type and ind (w) = d < oo (ind;j (w;) = d < oo, respectively).
Then there do not exist k,l € I with k < j <l, wg, w; both of special type, and
l7—k| =17 -1 <d such that ind;(w) > d and ind; (w) > d (ind;(w;) > d and
ind; (wy) > d, respectively).

Proof. We first show the statement for w an asymmetric string. For sym-
metric strings, the proof is analogous.

Assume towards a contradiction that such indices k,l € Z exist with the
above properties. Denote by x the subword of w between w; and w; (hence
z~1 gives the subword of w between wy, and w;). Since |j —k| =|j -] < d, we
have |z| < d. Denote by y the subword of w between w;» and wy, (hence y™*
describes the word between w; and w;x and we have |y| + [z + 1 = d). Also,
kE* < j* and ji <[}, so let z (respectively u) be the subword between wyx

and wjx (w;+ and wyx, respectively). Thus, w is of the form

...wkfzwjiywkx_lexwly_leiuwli e (46)

Assume without loss of generality that |y| < |z|. Then by symmetry in wy
and wy, y is a finite subword of a word of the form

(nx—x—ls*x)h’

for some h € N, where s" = s...sis a word given by h copies of s and n* = wy,

£* =wj. One has |y| +|z| + 1 = ind}(w), |y| + |u| + 1 = ind] (w).
For x = x1...xy we know that z; is ordinary. By symmetry in position [ we
obtain

Ty= (wji)_l. (47)
Similarly, symmetry in position k results in

a;}l = (wj)" (48)
Combining (47) and (48) gives

Thus, ind; (w) > d + 1, contradicting the assumption on its c*~index.

Now let w; be an asymmetric band. Assume again towards a contradiction
that the indices k,[ € Z as above exist. By Lemma 3.29, ind} (wy) is finite and
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it is enough to consider for j = j (mod p) the subword ¢ = wy[> jlwyw,[< 7]
of wy; to determine the weakly consistent orientation in position j. The let-
ters wy, and wy are by assumption in ¢. Also, it follows from indy+ and ind;:
that both wy+ and wy+ are not contained in ¢. We extend ¢ to the left up to
and including wyx, and to the right up to and including w;;. We denote the
resulting word by .

Now % is a finite subword of w, which is of the same form as the subword in
(46). Using the same arguments as in the asymmetric string case on i, the
proof for an asymmetric band follows analogously. O

Lemma 3.56. Let w be a string of length n, either asymmetric or symmetric,
for some n € N, and let w, be an asymmetric band. Let v € (@ﬂd)_l (w)
(v, € (92)7" (w,)) be weakly consistent. If w is a symmetric string of the
form ue*u™, assume additionally that v = te"t™" for t € (%)™ (u) and
k € {+1,-1}. Moreover, let j € I (I ={0,...n} or I =7Z) with w; special
and ind;(v) = d (ind;(vz) = d, respectively). Let k,l € I and k < j <1 with
lj— k| =7 -1 <d, wg and wy special letters, and ind;(v) < d, ind] (v) < d
(ind; (v;) < d, ind; (vz) < d, respectively).

Then either dir(vy) = —dir(v;) or dir(vy) = dir(v;) = dir(v;).

Proof. We show the statement for w an asymmetric string. For symmetric
strings and asymmetric bands, the proof is analogous by the same arguments
as in Lemma 3.55 (for symmetric bands first consider j # m + 1 which is
analogous to the proof for asymmetric strings. For j = m + 1 it follows by
symmetry of w that indj (w) = ind; (w) and thus that dir(vg) = —dir(v;)).
Assume without loss of generality that dir(v;) = -1 and ind; (w) > ind;,(w).
For dir(v;) = 1 we consider the following cases regarding the positions of j7
and [7:

e [} <ji. Then L* c J* and we need to distinguish
1) j<I* and
2) I*<j.

e ji <I[}. Similarly to the above, we distinguish
3) j<I* and
4) 1* <j.

e ji =1]. This case is given by 5) below and does not need further

distinction.
We prove now for each of the five above cases that the statement holds.

1) 17 <75 and j <1*: Since I} € J*, we obtain by symmetry in position j
that k* € J*, too. We obtain from the same symmetry that ind;(w) =
ind; (w). Then, again by symmetry in position j, dir(v;:) = —dir(vy»)
and dir(v;+) = —dir(vgr ). Hence, dir(v;) = —dir(vg).
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2) I < ji and I* < j: For two suitable undirected words z1, x2 with
ind; (w) = |x1| +|z2| + 1, w can be written within the interval L* as:

with w; = n*.

-1 -1 *
W Ty WHT] W TW (50)

*

To determine position k, we use symmetry in j and distinguish the
following cases:

a)

|z1| = |z2| + 1:
We have z1 = axy! for a = w;+ € Q"¢ and we can rewrite w from
(50) to:

1

-1_-1_x -1 -1 -1 -1 %
S €Ty 1) T2 WEWr Ty WL WAL ) T2Wpk - .

where w;: = ¢. Thus, indj(w) = 2|2a| + 2 = ind; (w). Hence, by
symmetry in j, wgs = wj' and thus dir(wys) = —dir(wg). It
follows directly that dir(vy) = —dir(v;).

|z1] > |zo| + 1:

We have z1 = z3az;! for some suitable undirected word x3 and
a = wy+. Using the symmetries in positions [ and &, we can deduce
from (50) the following form of w:

1 1

-1 -1 % -1 _-1_-1 -1 -1, -1 —1 x
€Ty Ty AT Ty WETIW T WiTA T T WTIATS 1) T2W -
where wpx = cb, n,e € Sp. Then indg(w) = 2[za| + |z3[ + 2 =
ind; (w) and it follows by the same line of argument as in 2)a)

that dir(vg) = —dir(v;).

|z1| < 22| + 1:

If |z1| = |z2|, then wy is of ordinary type which is a contradiction.
Hence |z1| < |z2] and we can write x3 = x7'e*x3 for a suitable
undirected word z3 and €* = w; a special letter. For |z3| = 0 one

has x3 = z7'e* and w is given by

* -1 *, =1 _*
L WEE TIWT WXL Ty E wl:

It follows by symmetry in j that z; = a & for @ = w;» and some
suitable word Z1. Refining w by this gives

cat

5*a_150117*:611awka_lileiflawla_ljm*iﬁlae*wli .
with w; =n*, wy, = €*.

It follows from the above that indj(w) = 2|Z;| + 4 = ind; (w) and
as above that dir(vg) = —dir(v;).

Now let |z3| > 1. Then 3 = z7'e*z3. Assume for contradiction
that dir(vg) = dir(v;) = —dir(v;). Recall that we assume without
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loss of generality that dir(v;) = —1. Hence, dir(vy) = dir(v;) = 1.
We obtain from (50) by symmetry in position [ the following form
for w:

. .wlixglwkxlwjxflwlxm*xfla*wgwli e

with wps = a, wyx = ¢, wj =n", wy, =w; = €*. The weakly consistent
orientation gives the following inequalities:

(i) from position j (after eliminating 27'e* on both sides from
the left):

1

z3a”t .. <xintayt

*
g xsc...,

(ii) from position k: xln*xflg*xm*azils*q:gc. o<xgal L

Extending (i) by z1n*27le* from the left on both sides and ap-
plying (ii) and again (i) gives:

1 1 1 1

* -1 % — * =1 % * =1 _*
TN X1 € T3Q ... <X T1 € T1N) Ty € X3C...

<xga”l.. <xntayietase. ...

Thus, comparing the first and last element of the inequality-chain
and reducing by the same word as added before, we obtain

J;ga_l...<xgc...,

a contradiction to the definition of the linear order introduced in
Section 2.3.

3) ji <lIi and j < 1*: Let x1,x3 be two undirected suitable words with
|z1] + |z3| + 1 = ind; (w), such that (by symmetries in j and ) w is of
the form:

. .wjf:cIlwkxlb_lﬂsga_lxglexgwlixglb:cflwlxleixgwli e

with wjs = b~! and wyx = a.
Since dir(w;:) = ~1 by assumption, it follows directly indj(w) = |21
and thus wy+ = w;+. Hence, dir(vg) = dir(v;) = —dir(v;).

4) 5 <li and I* < j: Let x1, 29 and z3 be three words such that |x;| +
|zo| + x3| + 2 = ind} (w) and w is of the form:

...wlixglb:r;lexflwlmm*xgwjixgwli e (51)

where w; =0, w;x = bl
Similar to case 2), we distinguish the following subcases:

a) |z1] =[xl
By symmetry in j, we obtain w; = b an ordinary letter. This
contradicts the assumption on wy.
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b) |x1| = |zo| + 1:
We can write z1 = bxgl and w as follows:

.. .wlfxgbzz:glexgb_lwlb:cgln*ﬂsgwjixgwli e

We have |z3] > 0 (otherwise it follows w; = w;+, a contradiction to
the different types of the two letters).

If |z3| = 1, then x3 = ¢* = wy, and w;» = wpx. Thus, dir(y;) =
dir(vj), contradicting the assumption. Hence, |z3| > 1.

We can write x3 = €*bry. Assume towards a contradiction that
dir(vg) = dir(v)(= —dir(v;)). We consider w of the following
form:

. .wli:EZIIb_lwkbeIwjxgb_lwlbxgln*xgwﬁs*b:n4wli .

with wg = w; =¢€*, wj =0, wyr = bl
Since v is weakly consistent, the following inequalities hold:

(i) for position I: wyr ... < wl_*1 cs

(ii) for position k: bx4wl}1 o> bx;ln*fcgb_ls*bmgln*asgb_ls*bmwli

(iii) for position j: .fcgb’la*bmwlll .. < xgb’la*bmgln*xgb’la*bmwli e

We extend (iii) from the left by zob'e*br;'n* and obtain the
following chain of inequalities, using (iii), (ii) and then (iii) again.
Igb_lé*bl’gln*:ng_l&‘*b$4wl_i1 ...
< ﬂvgb_lf—:*bxgln*xgb_lf—:*bxgln*:cgb_lf—:*bmwli ...
< xgb_le*bmwl}l ...

< ang_le*bxgln*xgb_ls*bx4wli e
Comparing the first and last term gives
-1
wli ...<wli...’

a contradiction to (i).

) |z1] > |zo| + 1:
We can write x1 = :mbwgl for a suitable undirected word x4 and
obtain for w:

LW .x4bx§1wj:r2b_1xfwlx4bx§117*m2wj:xgwli ..
with w; =n", w; = " and wjy = bl
Let us first consider the case |z4| = |z3]. It follows x4 = 31 and

thus by symmetry in position j that w; = wl_il. But wy is of special
type while w;+ of ordinary type, giving a contradiction.
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Now assume |z4| < |x3|. We obtain by symmetry in position j
that x3 is of the form x3 = z;1e* x5 for a suitable (possibly trivial)
undirected word x5. By symmetry in position [, we can write w
as follows:

Wy a:glwkmbxglexgb*lx;lwla:4bx§1n*angfla:;1£*x5wli .

with w; =n*, wy = w; = €*.

Assume for contradiction that dir(v;) = dir(vy) = —dir(v;). The
directed version v of w is weakly consistent, giving:

(i) from position k:

x5wl’*1 o> x4b:r§177*xgb’lx;le*mbxgln*xgb’le

e wswyr ..y
(ii) from position j: x5wl}1 .. < $4b$§17]*x2b_11‘;15*x5wl: ce
(ili) from position : wy'... > wy ..
(Note that in (ii) we have reduced both sides from the left by
woblayte®).
Extending (ii) from the left by v = x4br;'n*zeb to le* and ap-
plying (i) and (ii) afterwards gives
-1 o DU B
VIsWp ... < VTgbxy N w2b Xy e TRWY
< :1:5le1 S <UTBWEE -
Comparing the first and last term of this chain of inequalities
gives
wl_il...<wli...,

a contradiction to (iii).

Now consider the last case |z4] > |v3|. We can write x4 = 5w 23"
for some suitable x5. We can deduce the following form for w:

1 -1 -1 -1 —1p. -1 -1
C Wiy N T2b w3 Ty wTswyr g bry wiTeb X3
c_lxglwlx5cx§1bxgln*:vgwjixgwli .
with wys = ¢, wj =n", w =w; =" and wjx = bl

Assume for contradiction dir(v;) = dir(vi) = —dir(v;). We obtain
from the weakly consistent orientation on v:

(i) from position I: wl_il C > W
ii) from position k:
(i) p

w]_*l D> b_lazgc_

lxgle*xg,cxglbazgln*mzb_lxgwli o

(iii) from position j:

:L’gb_lxgc_lxgle*wg)cxglbxgln*xgb_lzrgwli e

1 -1

€*x5ca:§1b:v§1n*x2w]f e

> x2b71x3w111xg
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(Note that we have reduced in case (ii) both words from the left by
wser3tbryintze.) Applying (iii), (i) and again (iii) gives (after
reducing in the last step by zob lzzc™! 16*x5cx§1bx§1n* from
the left):

T5

xgb_lazgwlil:vgle*x5cx§1bx§1n*x2w;} ..

15*:6503:;;1bxgln*xzb_lxgwli e

<xob tzge oy
< zowd

-1
< x2b ™ w3WYS - .
Comparing the first and last term gives
-1
wli ...<wli...,

contradicting (i).

[21] < |of:
In this case we can write xo = 2]
and consider w in the following way:

le* 4,4 for some suitable word x4

. wli:L’glba:fwkxlwjxilwlxm*azile*mwﬁ TIWp -

with wj: = b1, wj =n", wy =w; =¢<".
Assume for contradiction that dir(vy) = dir(v;) = —dir(v;). The
following inequalities hold:

(i) from position k: x4b_1x3wl11 L 951n*x{lé*xln*x{lg*mb_la:gwli o

1 1

(ii) from position j: zin*x] €*x4b_1x3wli L J:4b_1:z3wl_ s

(iii) from position I: wl_il C> W
We extend (ii) from the left by z17*27'e* and obtain the following

chain of inequalities, applying (ii), (i) and (ii) again:

15*x4b_1x3wl21 ...

1

. -
L1 Iy
<xinry 5*:1:177%[15*1:4[)_11:310[1 .
< a:4bfla:3wli1 .

16*m4b_1:n3wli e

<xzintxy

Comparing the first and last term gives
-1

wli ...<wli...,

a contradiction to (iii).
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4*) In contrast to w of the form as in (51), one can also have w given by

...wljz_ley_lb:r_lwlijiyn*zwli . (52)

with w; = 0", w;: = b~L. To analyse (52), we distinguish the following
cases:

a*)

b*)

|2l = lyl:
By symmetry in position j, we have w;+ = b=, This contradicts
dir(v;) = 1.

2] <yl:
We can write y = gaz™! for a suitable subword 7 and wy+ = a. Tt
follows that (52) can be refined to

-1 -1- -1 “1--1p -1 .
c W wETh T Ywpr 2T wizaT Y by wirwryazT oy zwps

Note that we have also used symmetry in j to extend to the left.
One has ind;(w) = |z and wy» = w;+. Hence, dir(vg) = dir(v;) =
—dir(vy).

lyl < zl:
We can write z = 4y 1bz with wjr = b~! and Z a suitable subword.
Refining (52) results in

W Z_lb_lywjy_lbm_lwlmwji yn*y_lewli . (53)

Now |z| # |z| (otherwise w; = wj+). Consider |z| > |z|. Then
Z=x"1e*2 with w; = * and 2 a suitable subword. Thus, (53) can
be refined to

. wli2_1a*xb_1ywjy_lbx_lwlmw]—iyn*y_lbx_la*éwli .
If |2] = 0, we can write x = ™!
subword. By symmetry in position j, we obtain indj(w) = |Z|+ 1
and thus wy» = wj». It follows that dir(vy) = dir(v;) = —dir(v;).
Now assume || > 0 and for contradiction dir(vg) = dir(v;). The
following inequalities hold:

Z with w;» = a and z a suitable

(i) position k: 2a™t---> ab lyn*y tbrterwb lynTytha e s . .
(ii) position I: a™t--->c...
(iii) position j: y~ bz te*ab lyn*y tbrte* se- - > y b e 27t L L.
Reducing inequality (iii) from the left by y~*bx~'e* and applying
(i) afterwards, we obtain

!Eb_lyn*y_lbx_lz—:*éc. > Eath L

> ob Lyt y b e ab tynty Thr e se .
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We reduce the first and last term on the left by ab~lyn*y tbz=te*.
Applying then (ii) results in

s> ab lynty T iba e 2> a7t L
Comparing the first and last term of this chain of inequalities
contradicts the linear ordering on WY7 .
Finally, consider || < |z|. Then write z = #a~'z where w;+ = a and
Z a suitable subword. The word w as in (53) can be refined to

O DU | 12 -1~-1
cwprZa T wETwp 2 b ywsy T bzaT T wmwgs

It follows that indj(w) = |z| and thus wy+ = w;+. It follows that
dir(wvg) = dir(vy) = —dir(v;).

5) ji=1i:
It follows that dir(v;) = dir(w;+) = dir(w;+) = dir(v;). By assumption
dir(wv;) = —dir(v;) giving a contradiction.

For dir(v;) = dir(v;), we automatically obtain the statement, since we either
have dir(vg) = —dir(v;) or dir(vg) = dir(v;). O

Example 3.57. Consider A, w and v from Fxample 3.52. Recall that v is
weakly consistent. Note that w is an asymmetric string. For j=4, k=1 and
[ =7 we have

|j_k|:|j_l|:37

ind; (w) =3,

indg (w) =0 < indj (w),
ind; (w) = 1 <ind; (w).

The assumptions of Lemma 3.56 are satisfied. We see that

dir(vg) = dir(vy) = dir(vy).

Example 3.58. Consider A from Ezample 2.8.1. Let

. * =1 * % %
w: € a € ae ae

be an asymmetric string. Then

v: e la leacace

s a weakly consistent directed version of w. Take j =3, k=2,1=5. Then

we have

|j_k|:|j_l|:27

ind} (w) =2,

indj (w) = 0 < indj (w),
ind; (w) =0 < ind; (w).
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Furthermore, we see that
dir(vg) = —dir(vy).

Lemma 3.59. Let w be a string of length n, either asymmeltric or symmetric,
for some n €N, and let w, be an asymmetric band. Let v e ()" (w) (vs €
(@) (wy), respectively) be weakly consistent. If w is a symmetric string
of the form us*u™", assume additionally that v = te"t™" for t € (®¢,)7" (u)
and k€ {+1,-1}. Let jeI (I ={1,...,n} or I =7) and indj(v) =d < oo
(ind} (v,) = d < oo, respectively). Let k,l € I with k <j <1, |j—-kl =]j-
l| <d, wg and w; special letters, and indj(v) > d,ind; (v) < d (indj(v;) >
d,ind; (v;) < d, respectively). Then dir(v;) = dir(v;).

Proof. We show the statement for w an asymimetric string. For symetric
strings and asymmetric bands, the proof is analogous by the same arguments
as in Lemma 3.55.
Observe that j +ind; (w) < +ind; (w) (otherwise indy (w) < d by symmetry
in position j).
Consider at first the case j +indj(w) = [ +ind; (w). Then ji =} and thus
dir(w;x) = dir(w;x ). It follows directly that dir(v;) = - dir(wv;).
Now let j+indj(w) < l+ind; (w). Then ji <[} also. Assume j ¢ L*. Denote
by @ the subword between w; and w;x and by y the subword between w;«
and wjx. Assume for contradiction that dir(v;) = dir(v;) and without loss
of generality that dir(v;) = —1. By symmetry in the positions [ and j, w is
then of the form

1

-1 -1, -1 ~13-1,_~
cwprTwErh Ty fT L wy L wp y T b T wrw gy wys

L*

where w» = b ws = ¢, wpr = a and wp = f. It follows that ind}(w) =
J+ J- T Z k

|z| < d which is a contradiction.

Now consider j € L*. Denote by y the subword of w between the letters

w; and wj.+, by x the one between w; and w;, and by z the subword of w

between w,+ and wyx:
J+ +

-1, -1
WY WET T W TWYW i ZWE (54)

Then ind} (w) = |z[ +[y[ + 1> [y| + |2| + 1 = ind; (w) and thus |z| > |z].
Assume towards a contradiction that dir(v;) = —dir(v;) and without loss of
generality that dir(vj) = -1. Let w;+ = ¢ and wyr = bL.

Assume at first dir(vg) = 1. We obtain the following inequalities from v
being weakly consistent:

: s B -1
(i) from position k: Ywis - > T WBWYW,E 2

.. .y .. 71
(ii) from position j: wjxzwys ... > Wis s
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(iii) from position I: x‘lexwkyw;} > YW W

We extend (ii) from the left by the word y. Applying now the above inequal-
ities in order starting with (i) gives

-1 -1 -1 -1
X wjxwlywﬁzwli . < ywjf o< yw]:zwli . <XZ w]xwkywﬁ -

Since wy, = w;, we can reduce the above chain to

Wy ZWs - < wj_il e (55)

By assumption on dir(v;), both letters w;+ and w;: are inverse. Hence, (55)

is contradicting the definition of the linear order ”<" defined in Section 2.3.
Let now dir(vg) = —=1. Observe at first that |x| # |y| in (54) (otherwise, by
symmetry in [, wj = w;» giving a contradiction to them being, respectively,
of special and ordinary type). We distinguish the different possibilities:

(i) Assume |z| > |y|. By symmetry in position [, we can write
z=gby "
Thus, (54) can be refined to
wjiy_lwkyb_lgj_lwjg]by_lwlywji 2wy ..

It follows that wy+ = wj=. Thus, ind}(w) = |y| < d, giving a contradic-
tion to the assumption on the ¢*—index of wy.

(ii) Assume |z| < |y| in (54). By symmetry in position [, we can write
y =a71n*g for a suitable subword § and w; = 7*. Refining (54) by this
results in

~—1_ % -1 =1 %~
Wi N TWET T Wi rw T N wss 2w (56)

It follows that |g| # || (otherwise wj» = w;). Hence, let at first [g] < |z|.
Then z = gcz for a suitable subword = and wj» = = ¢!. The refined
version of (56) is given by

U I s 2
Wiy N YCTWET ¢ Y WiYCTWT O C Y ) YwE 2wy

It follows that w;+ = w;x and thus dir(v;) = -1, a contradiction to the
assumption on the direction of v;.

Consider now the case |g| > |z|. Then g = ze*y for a suitable subword
7y and w; =e*:

——1 *_—-1_%* -1 =1 % %
Wiy e TN TwEr T wizwW T N TE YW 2w .. (57)

Refining ¢ analogously as y and g above results in contradictions in
the cases |g] # || and |g| < |z| (analogously to the above).
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For |y| > |z| we can write 4 = 271n*s for a suitable subword s. Thus,
we consider now

=1 % % -1 =% -1 =1 % % -1 =%
cwirsT I zet T n rwpr T wizwrT n ee rT n swiszwys ... (58)

Now, comparing (56) - (58), we see that instead of refining further, we
can consider |s| - 0 instead. Assume without loss of generality that
|s| = 0. This results in x = ¢z for some suitable subword Z. It follows
that w;+ = w;+ and thus dir(v;) = 1. This contradicts our assumption
on the direction of v;.

O

Example 3.60. Let A be as in Example 2.3.1. Let

1 1 1

* * * * - * * - * - * *
w: e agagag’a " eag’a T eTa e ae
be an asymmetric string. The following word is a weakly consistent directed

version of it:

v: cacacaca tecactatetatetae

iel: 12345678 91011 12 13 14 15 1617
Consider now j=11, k=9 and [ =13. We have

|j_k|:|j_l|:27
ind; (w) =2,
indy(w) =6 > ind; (w),

ind; (w) =0 < indj (w).

We see that
dir(vj) = dir(v;).

With these auxiliary lemmas, we are able to prove the following theorem:

Theorem 3.61. Let w be an asymmetric or symmetric string and let wy, be
an asymmetric band. Let v e (@)™ (w) (vy € (9,)7! (wy), respectively) be
a directed version of w (wy, respectively). Then v (vy, respectively) is weakly
consistent if and only if it is consistent.

Proof. We show the statement for w an asymmetric string. For symmetric
strings and asymmetric bands, the proof is analogous by the same arguments
as in Lemma 3.55.

Let w be an asymmetric string. Let v € (®¢,)7" (w) be consistent and z €
(@) (w) weakly consistent. We show the statement by induction on
indj(w) for jeI={1,...,n}.

For ind(w) = 0 it follows that ind}(w) = indj(w). Hence wjs = wje and
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wj+ = wje are of ordinary type. So dir(v;) = dir(z;).
Now let ind} (w) = d > 0. Again, the statement is clear for ind; (w) = indj(w),
so assume ind; (w) > indj(w). Let k,l € I such that k = j¢, [ = j{. Then

dix(vx) = dir(er) = dir(v;) (59)
and |j — k| =|j =] <d. Thus we can apply Lemma 3.55 and either have
a) indj(w) < d and ind; (w) < d, or
b) indj(w) > d and ind; (w) < d.
Let us first consider case a): by induction we obtain

dir(vg) = dir(zx) and
dir(vy) = dir(z).

By Lemma 3.56 we either have dir(z;) = dir(z;) = dir(z;) and we obtain by
(59) the result. Alternatively, we have —dir(z;) = dir(z;). Then it follows by
induction that dir(vy) = —dir(v;), a contradiction to (59), so this case does
not occur.

In case b) it follows by induction that dir(v;) = dir(z;). By Lemma 3.59
we obtain dir(z;) = dir(z;) and using induction on [ and (59) results in
dir(z;) = dir(vy). O

Corollary 3.62. Let w = ue*u™" be a symmetric string and v e (92,)7" (w)
be (weakly) consistent. Then v =te"t™" for t € (®2,)7" (u), ke {+1,-1}.

Corollary 3.63. For any asymmetric string (band, respectively), there exists
a unique consistent directed version.

Proof. By Corollary 3.22 we know that there exists a unique weakly con-
sistent directed version for any asymmetric string. Corollary 3.30 gives the
same for asymmetric bands. Theorem 3.61 states that any consistent direc-
ted version of an asymmetric string or band is also weakly consistent. Thus,
uniqueness of a consistent directed version is inherited from the uniqueness
of a weakly consistent directed version in both cases. O

3.3.2 Directed words from symmetric bands

For symmetric bands, the relation between consistent and weakly consistent
orientations is not as intuitive as in the other cases. The two sets of types
of directed versions are not equal, but there is merely an embedding of
the consistent directed versions in the set of all weakly consistent directed
versions.

As in the previous subsection, we will need some auxiliary lemmas in order
to describe this embedding.

79



Lemma 3.64. Let w; be a symmetric band of period p > 0, with periodic
part Wy, = e*un*u~t. Let j € Z with w; a special letter and ind (w) = d < oo.
Then there do not exists k + 1 € Z with wy, w; special letters, |j—k|=|j-1|<d
and ind} (w;) > d, ind] (w;) > d.

Proof. Let us first make two observations: by assumption on ind;(w;), we
have that 7 # 1,-m,—(2m + 1),m + 2 (mod p). Assume without loss of
generality that k < j < [. It follows by Lemma 3.64 that indj (w;) < co and
ind; (wy) < oo.

Assume for contradiction that k,l € Z as in the statement exist. By the
second observation we know that neither k nor [ gives the position of one
of the symmetry axes. By Lemma 3.46 we only need to consider a finite
subword of wy to determine the direction on w;. Hence, the statement follows
analogously to the proof of Lemma 3.55 in the previous subsection. O

Lemma 3.65. Let w; be a symmetric band of period p > 0 with periodic
part W, = e*un*u~l. Let v, € (@) (wy) be weakly consistent with periodic
copies ’f)](,i) = etityit) fort e (®%) 7 (u) and pi, ki € {+1,-1}. Let j € Z with
w; a special letter and indj (w;) =d < oco. Let k,l € Z with |j - k| =]j -1 <d,
wg, wy both special letters and indj(w;) < d, ind; (w;) < d.

Then either dir(v;) = dir(vg) = dir(v;) or dir(vy) = —dir(v;).

Proof. By Lemma 3.46 we consider for k,[,j each only finite subwords, so
also in sum a finite subword of wy. Thus, the proof is analogous to the proof
of Lemma 3.56 of the previous subsection. O

Lemma 3.66. Let w, be a symmetric band of period p > 0 with periodic
part Wy, = *un*u~t. Let v, € (@ﬂd)_l (wy) be weakly consistent with periodic
copies @;[(,l) = etityit™! fort e (D)7 (u) and pi, ki € {+1,-1}. Let j € Z with
w; a special letter and indj (w;) = d < oco. Let k,l € Z with |j - k| =]j 1| <d,
wg, wy both special letters and indj,(w;) > d, ind] (w;) < d.

Then dir(vj) = dir(v;).

Proof. By the same arguments as in the previous proofs, this proof is ana-
logous to the proof of Lemma 3.59 of the previous subsection. O

Now we are able to relate consistent directed versions to weakly consistent
ones of symmetric bands.

Proposition 3.67. Let w; be a symmetric band of period p with periodic

part W, = e*un*u~t. Let z, € (@) (wy) be weakly consistent with periodic

copies ig) = c%isnis™, where s € (94,)7 (u) and 0y, 6; € {+1,-1}. Further-
more, let v, € (@) (w,) be consistent with periodic copies @,SZ') = ghitprig=t
for t e (®) 7 (u) and s, ki € {+1,-1}.

Then one has for all j € Z with w; a special letter and ind;(w;) < oo that
dir(vy) = dir(z;).

80



Proof. By Lemma 3.46, we only need to consider a finite subword for j
in order to check on consistency and weak consistency. Thus, the proof
is analogous to the proof of Theorem 3.61, using Lemmas 3.64, 3.65 and
3.66. O

Corollary 3.68. Let w; be a symmetric band of period p with periodic part

W, = e*un*u~l. Then any consistent v, € (@) (wy) preserves the sym-

metry axes of w, with respect to u.

Proof. The statement follows directly from Proposition 3.67. O
Example 3.69. Let A be as in Example 2.3.1. and let wy, be a symmetric
band of period 8 with

1 1

. -
eta™",

N

* * * -
Wy =€ ag ac a
*
u=ae a.
Let v, be a consistent directed version of w,. Then

(i ; ;-1 -1 -1
Ulgl)=5’“a6a5'“a € a T,

t = aca,
for all i € Z, where p;, k; € {+1,-1} and t is a directed version of u.

Proposition 3.70. Let w; be a symmetric band of period p with periodic
part W, = e*un*u~l. Let vy € (@) (wy) be a directed version of wy with
periodic copies ﬁz()i) = ettt for t e (@) (u) and pi, ki € {+1,-1}.
Then vy, is consistent if and only if it is of one of the following four types:

1) pi=r;i=-1 forallicZ,
2) wi=r;=1 foralli€Z,
3) (unique sink) there exists a unique j € Z such that:

-1 Vi<j,
e ’
pi = 1 Vi>j

4) (unique source) there exists a unique j € Z such that:

1 Vi<j,
o .
S BRI

Proof. By Corollary 3.68 we know that the symmetry axes of w, are pre-
served by consistency, i.e. any consistent x, € (®¢ d)_1 (w;) has periodic cop-
ies of the form iz(,l) = etisntis™t for pi, ki€ {+1,-1}, s € (@id)_l (u). Hence,

81



we can reduce each subword v and ™! to a vertex and only consider the sym-

metry axes to show consistency. Thus, any periodic part w,@” = ghiyntiu~! is
being reduced to e*in™. To do so, we use a new indexing of the letters, only
referring to those giving symmetry axes. We denote by ¥, the thus reduced
version of v,. Then, v; is consistent if and only if ¥, is consistent. We can
picture v, with respect to 1) - 4) as follows:

J

J

Let us first show that @, given by 1) —4) is consistent:

b

4

As we can see, we have indj(?;) = 0 for all j € Z. Hence, dir(v;) is
uniquely determined and we have

’lv)j,1 = ’ng and 17]'+1 = T}ji
for any j € Z. Now T)j__ll < ¥j41 and thus

(0a[<J]) 7" <[> ]
Thus, any 0, of form 1) is consistent.
This case is analogous to 1) with reversed inequalities.

For all j € Z with ind§(9;) = 0, the result is clear by the same arguments
as given in case 1).

Let us now consider 9;, U;+1 for j € Z with indj(¥;),indj,;(9) > 0. By
the form of 3), there exists only one pair of indices with this property,
namely the two neighbouring letters with opposite directions: dir(9;) =
—dir(9j41). We have

foralli<j: dir(;) = dir(v;),
forall k>j+1: dir(ox) = dir(9;41).

It follows dir(v;) = —dir(9g) for all i < j, k > j + 1. Thus,

giving indj(v;) = co = indj,; (¥;). Hence, any v; of type 3) is consistent.

The proof of this case is analogous to case 3).
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Conversely, assume that ¥y is consistent.

If all letters of ¥, have the same direction, i.e. indj(%;) = 0 for all j € Z, then
Uy is of type 1) or 2).

Assume now that there exists j € Z with indj(9;) > 0, i.e., one has for its
direct neighbours 0;_1, 911 that dir(9;-1) = —dir(?;4+1). Assume without loss
of generality that dir(?;) = dir(?9;-1). Then the vertex between 0; and ©;.1
is either a source or a sink. Let x = x1 ...z be a finite subword of ¥, with
x| = ’lv)j+1 and dil”(.%‘i) = dir(@j+1) for all 1 <4 < k. Similarly let z = z1...2
be a finite subword of @, with z; = 0; and dir(z;) = dir(¢;) for all 1 <4 <.
Assume without loss of generality that |x| < |z|. Denote by y the N —subword
of ¥, starting on the right hand side of x and assume dir(y;) = —dir(xg).
Thus, we assume that ¥, is none of the above types, in particular it is neither
of type 3) nor of type 4). We obtain that

indf,(9) =|2| -1, and
G+1)E=0G+1) = (Jz[-1)-1=7+1-]z],
G+DS=G+D)+(x|-1)+1=75+1+]x|

It follows that dir(9;.1) = dir(v;) giving a contradiction. O

Corollary 3.71. Let w; be a symmetric band of period p with periodic part
Wy = e*un*uTl. Let v, € (@) (w,) be weakly consistent, given by one of
the types 1)—4) of Proposition 3.70 and with periodic copies 17;1) = ghigprit=!

where t € (P?

ud

"1 (w) and pi, ki € {+1,-1}. Then v, is consistent.

Proof. The result follows from Proposition 3.67 and 3.70: by Proposition
3.67 we know that weakly consistent and consistent orientations coincide on
those j € Z with ind}(w;) < co. Proposition 3.70 gives that letters v; with
ind; (w;) = oo are consistent for the types 1) - 4). O
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3.4 Formulation of Main Theorem

We have now considered all components which are necessary to state the
main theorem of this thesis. The proof of it will be given later (Chapter 6,
Theorem 6.10).

For an easier formulation, we denote by W; the following set of words, and
by C; the following category (i = 1,2,3,4):

Wi Ci

asymmetric strings | modk

symmetric strings | modk[f | f2 = f]
asymmetric bands | mod k[T, T !]

symmetric bands modk(e, f |eZ=¢, f? = f)

| W DN | .

Furthermore, we denote by V; a complete set of all finite dimensional, pair-
wise non-isomorphic indecomposable modules of C;, i = 1,2, 3,4.

Let w e Wy, V be a Ci-module. Then we denote by My (w, V) the following
module:

where

o { 1 if (w[<i])™" > w[> 1],

1 else,

for all ¢ e I with w; a special letter, and where the V;’s are disjoint copies of
V.

Let w = ue*u™! € Wy and let V be a Cy—module. Then we denote by
Moy (w, V') the following module:

K1 K9 K

w w w3 Km
Vo Vi< Vg = < Vi )=t

where

o { 1 if (w[<i])™" > w[> 1],

1 else,

for all 1 < ¢ < m, with w; a special letter, and where the V;’s are disjoint
copies of V.

Let wy, € W5 be of period p, an let V be a C3—module. We denote by
Ms(v, V) the module

Ky
wfl wSQ w;S wpfll
Vo w ‘/p—l )
K
wpp



where

ﬁ:{ 1 if (wi[<i]) ™" > wa[> ],

1 else,

for ¢ € Z with w; a special letter, and where the V;’s are disjoint copies of V.
Let w, € Wy be of period p with periodic part w, = e un*u!, and let V be
a C4—module. We denote by My(v, V) the module

K2 KFm+1

Wiy wy wy w, M
e=e ‘/0 ‘/1 ‘/2 i Vm ) n=Ff ,

where

1 if (wel[<i]) ™ > w[> 1],
R =
-1 else,

for all 2 <i<m+ 1 with w; a special letter, and where the V;’s are disjoint
copies of V.

The exponents k; with ¢ € I such that w; is an ordinary letter, are given by
the respective exponents in w or wy, respectively, in the above descriptions
of M;(w, V'), M;(ws, V), respectively. Our final classification result reads
as follows:

Main Theorem: Let A be a clannish algebra. The modules of the form
M;(w, V), i=1,2,3,4, with w running through W; and V running through
Vi, give a complete list of finite dimensional, pairwise non-isomorphic in-
decomposable modules of A.

Remark 3.72. We can see by the definition of Mi(w,V) and Mz(w,V)
that we actually consider modules arising from weakly consistent directed ver-
sions of w for the asymmetric cases. Recall that they coincide with consistent
directed versions for those two cases.

Similarly, we know by Theorem 3.61 that the set of weakly consistent and
consistent directed versions of symmetric strings coincide. We consider those
versitons here, too.

The case of a symmetric band is - as before - the most complicated one and
requires further investigation. On first sight it might seem to behave sim-
tlar to the other cases with respect to its directed versions, but we need to be
careful here: the directions chosen on the symmetry azes are hidden in the
action of e and f on the vector space.

85



86



4 Formulation of a matrix problem

In this chapter, we reduce the setting to skewed-gentle algebras (see Sec-
tion 4.3) and give an explicit construction of a bundle of semichains for a
given skewed-gentle algebra. In order to do so, we first present in Section 4.1
the results and constructions on representations of bundles of semichains ¥
from [Bon88, Bon91]. We introduce in particular the sets &(£) of so-called
simple, admissible £-chains, and the set of so-called simple £—cycles 6(2)
Starting from those sets, [Bon91]| gives a nice construction of the canonical
X-representations which finally lead to a classification of those. By trans-
forming our classification problem into the classification problem presented
in those papers, we are able to use their classification results for our purposes.
Before doing so, we give an explicit description of the category Rep(X) of
representations of the bundle of semichains X (cf. Section 4.2).

We proceed in Section 4.4 with the above mentioned construction of a bundle
of semichains X, for a given skewed-gentle algebra A and thus prove that
such a bundle always exists for a skewed gentle algebra (Theorem 4.70). Fur-
thermore, our method describes a unique way of constructing the bundle. In
Section 4.5 and 4.6, we describe how to obtain £-graphs from words in
Fwa(A). We find in particular that words given by asymmetric and sym-
metric strings result in simple, admissible £—chains (Theorem 4.113). Sim-
ilarly, we can obtain such £—chains from symmetric bands (Theorem 4.113).
We also see that asymmetric and symmetric bands result in simple £—cycles
(Theorem 4.130). To this end, the notion of minimal and coadmissible words
becomes important (cf. Chapter 2). Finally, we are able to show that there
exists a 1-1-correspondence between strings and symmetric bands and the
isomorphism classes of simple, admissible £—chains (Corollary 4.117). Simil-
arly, we see that there exists a 1-1-correspondence between asymmetric and
symmetric bands and the isomorphism classes of simple £—cycles (Corollary
4.142).

Another advantage of our construction is described in Section 4.7: we show
here that the directions on £-graphs coincide with the directions on spe-
cial letters of finite index due to the way we construct the bundle. Chapter
5 will show in which way this result helps us for the classification of the
indecomposable modules.

4.1 Matrix problem for bundles of semichains

We introduce in this section the notion of a bundle of semichains and their
representations after [Bon91]. Therefore, we stay close to the structure of
[Bon91]. Furthermore, we outline the strategy for the classification of the
indecomposable representations of bundles of semichains given in [Bon91|
and proven in [Bon88|. We also cite useful properties with respect to this
classification from |Bon88|.
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We start with some definitions and notation.

4.1.1 Bundles of semichains

Definition 4.1. Let II be a finite partially ordered set. Then Il is a semi-
chain if it can be written as a disjoint union

k
IT= |_| Hia
i=1
such that each 11; consists of either one element or two incomparable elements
and such that for all v €1l; and y € Il; with @ < j one has x <y.
The sets II; are called links of 11.

We denote the elements of a two-point link II; by x*, x~, respectively, and
write x¥2x” to denote their incomparability.

Remark 4.2. If each I1; consists of one point, then Il is called a chain.

Example 4.3. The semichain 11 =TIy UTly with I1 = {1}, Iy = {2%,27} can
be depicted in o Hasse diagram in the following way:

T\l/

Denote by X = {€q,...,Cx,Ry,..., Ry} a family of pairwise disjoint
semichains, that is,
&nd;=0 Vi # 7,
RiNR; =0 Vi # 7,
CGnR; =2 Vi, j.

Moreover, denote by

N N
c-Ue, "=Un;
i=1 i=1

the union of the respective semichains.

Definition 4.4. We call elements of € column labels and those of R row
labels. Accordingly, any €; and € itself, any R;, R itself is called a column
label set and row label set, respectively.

Denote by £(€&;) or £(R;) the set of links of the semichain €; or R;,
respectively. The union of the sets £(&;),...,£(¢&,) is denoted by £(C),
and the union of £(R1),...,L(R,) similarly by £(R). Moreover, we set
£=8(%X)=£L£(€)uL(R). Denote by Xy = CUR the set of elements of € and
R. Let o be an involution (that is, 0? =id) on Xy such that o(X) = X for
all elements X belonging to a two-point link.
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Definition 4.5. A bundle of semichains is a pair X = (X,0) where X =
{€1,...,CN, Rq,...., RN} is a family of pairwise disjoint semichains and o
an involution on the set Xg of elements of the semichains.

Example 4.6. Let N = 2, X = {€1, &, R, R}, where € = {€];x¢7;},
Cy={Cn}, Ry = {R11 >Rz}, Ro = {Ru2). Let o be given by

o: Ry = Co1, Rz NRoy, ¢§IH¢§1,<€{+,—}-

Then X = (X,0) is a bundle of semichains.

Example 4.7. Let N =1, & = {Q:hi%:h}, Ry = {%11 > NRqg > 9%13} and o
acts as follows:

¢§1 < thp Ce{+ -},
Riz < Rig,
R11 < RAys.

This gives for X = {€1,9R} the bundle X = {X,0}.

Definition 4.8. A representation of the bundle X = (X,0) over k is given
by a collection of the form U = (Ux,U") xexy,1<i<N Such that

e Ux is a finite dimensional k —vector space of the form k"X where nx =

dim(Ux) and such that dim(Ux) = dim(Uy(x))-

o U': Dcee, Uc — @renr, Ur is a k-linear map for each 1<i< N.
Equivalently, U can be expressed as a finite matriz with band structure
gwen as follows:

- horizontal bands are indezed by the elements R € R;,

- vertical bands are indezed by the elements C € €.
We denote by P(X) the band indexed by X € Xy. Then
- the band P(X) has dim(Ux) rows (columns) if X e R (X € €).

Remark 4.9. Note that for some elements X € Xg the corresponding band
P(X) may be empty.

We are going to see examples for X-representations in Subsection 4.1.4.

Definition 4.10. Let U = (Ux,U")x,; and V = (Vx, V") x,; be two represent-
ations of X. Then U and V are said to be equivalent if for anyie {1,..., N}
the matrices U' and V' can be obtained one from the other by a sequence of
transformations of the following types:
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1. Perform an arbitrary elementary transformation of the rows (respect-
ively columns) within the band P(X) in U', X e R; (X € &;), for any
1<i< N, but

la. if o(X) =Y with X e Ry, Y e R; (X €&, Y € &), for some
1 < 7 < N, then perform the same transformation on the band
P(Y) in UY.

1b. if o(X) =Y with X e R;, Y €€ (X € &, Y € R;), for some
1< j < N, then perform the inverse transformation on the band

P(Y) in UY.

2. For X <Y inR; (€;) for some 1 <i< N, add a multiple of the band
P(X) to the band P(Y) within the matriz U’

Transformations of the types 1,1a,1b and 2 are called admissible.

Remark 4.11. We will make use of admissible transformations in particular
in Section 4.2 in order to define the category of representations of a bundle
of semichains.

Definition 4.12. Let U and W be two representations of the bundle X.
Then the direct sum U @ W of the two representations is defined as follows:

o The vector space (U @ W)x for X € X is given by Ux & Wx.
o The matriz (U@ W) forie{l,...,N} is given by

UZ-W-:(@UC)@(@WC)MJ(@UR)@(@WR)_

Ce¢; CeC; ReR; ReR;

Remark 4.13. Note that the intuitive definition of a direct sum of two
representations would be to define U @ W* as maps

@ (U0®Wc)—> @ (URGBWR).
Ce¢; ReR;

We use the natural isomorphism between these direct sums and the respective
ones given in Definition 4.12 in order to define them as we did.

Definition 4.14. Let U be a representation of the bundle X. Then U is
indecomposable if it is not equivalent to the direct sum of two non-trivial
representations of X.
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4.1.2 £-graphs

The aim of this subsection is to define £— graphs. From those we construct
in the next subsection certain representations of X.

Recall that £ = £(X) denotes the set of links arising from the semichains
in X. In the following we identify links consisting of one point with the
corresponding point itself. The number of points of a link X is denoted by
r(X).

We are going to consider the following two symmetric binary relations on £:

Definition 4.15.  a) The relation o € £x £ is given by the tuples (X,Y")

such that
either X=zY, r(X)=r(Y)=1, o(X) =Y,
or X=Y, r(X)=2.

If (X,Y) € o, we write XaY'.
b) The relation B c £ x £ is given by the tuples (X,Y') such that

either X e (), YeL(R),
or X e (M), YeL(e), forsomel<i<N.

For v € {«, B}, we say that two links X,Y € £ are in y—relation, if XY
holds. We write X~Y if X and Y are not in y—relation.

Remark 4.16. Let X € £. It follows by definition:

XaX if and only if X is a two-point link,
XaX if and only if X is a one-point link.

Example 4.17. Consider the bundle of semichains given in Example 4.7.
Let €11 denote the link containing the two points €1 and €7,. We identify
the other links only consisting of one point with the points themselves. Then
we obtain the following relations:

R1;B8C11 forany 1<j <3,
¢r1alyy,

Ri1aRs,

RioaX  for any X € €1 UR;.

Next, we define an L£—graph. To this end, let  be the set of finite
non-oriented graphs consisting of chains and cycles of the form

C1 P1 Cc2 Cm—-1 Pm-1 Cm
[ ] o [ ] [ )

m>1
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(&1 P1 c2 Cm-1 Pm-1 C‘n

Pm

Denote in the following by

B m—1 if C is a chain of length m,
m =
m if C is a cycle of length m.

the number of edges in the graph C. For cycles, we consider in the following
indices ¢ > m modulo m.

Definition 4.18. Let C = (¢, pj)i<icm-1,1<j<m € . An £-graph on C is a
Junction g: C - Lu{a, B} with

g(ci) € £, forall 1 <i<m,

9(p;) € {o, B}, forall 1< j <m,

such that the following holds:
a) If p; connects the nodes c; and civ1 in C, then g(c;)g(pi)g(civ1).
b) For p; and p;+1 neighbouring edges in C, then g(p;) + g(pis1)-
c) If C is a cycle, and g(cp,), g(c1) are one-point links, then g(pm) # a.

The length of an £—graph g is denoted by |g| and given by the number m of
nodes in C.

Remark 4.19. Note that we have added condition c) in Definition 4.18 in
contrast to the original [Bon91]. This condition has to be given in order to
guarantee a correct notion of equivalence.

Definition 4.20. We call an £—graph g on a chain C' an £—chain and an
L—graph g on a cycle C an L-cycle.

We denote in the following z; = g(¢;) and A; ;41 = g(pi). Thus, we can
describe an £-graph ¢ uniquely by the sequences gy = {xq,...,Tn} and
g1 = { M2, -, Ameim ) (90 = {Mi2,.-., Am1}, respectively). Using for an
a-relation the symbol ~, and for a S-relation the symbol —, we can depict
an £—cycle as

Tl ~29 — -+ — Tyl ~ Ty OF Tl — T2~ ~Tm-1 — Tm

| | e A

depending on g1. Recall that the second kind of depiction only is given if x
and x,, are not one-point links. We depict an £—chain in a similar way.

Example 4.21. Let X be given as in Ezample 4.7 with relations as in Ez-
ample 4.17. Then
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1. g: Rig— €11 ~ €1 —Riz ~ R — €1 is an L—chain, and

2. the following is an L£—cycle:

g+ €1 - Rz~ R - €~ Ep - R ~ Rz - G
e

Using the description of an £—graph g via the two sequences gg and g1,
it is easy to define the corresponding reversed graph g*, or to compare g to
a second graph:

Definition 4.22. Let g be an £—graph with sequence of links go = {x1,...,Tm}
and sequence of relations g1 = {Ai2,..., Am—1m} (90 = {M2,..., Am1}, Te-
spectively). Its reversed £—graph g is given by

96 = {x’m,v e 7$1}7
o Dme1ms 5 A2} if g an £ — chain,
917 {Mm—tms s M2, Am1} if g an £ cycle.

Definition 4.23. Let g and h be two £—graphs given by go = {x1,...,Tm},

g1 ={ M2, Aij} and ho ={y1,...,ym'}, ha = {12, ..., pir jr } where (i,7) =
(m—1,m) if g is an L-chain and (i,5) = (m,1) otherwise, (i',j") = (m' -
1,m") if h is an £-chain and (i',j") = (m',1) otherwise. Then g = h if

(1) m=m’,

(1) x;=y; for all 1<i<m,

1) Nij =i forall1<i<m,2<j<m (1<j<m
J = Hig

Example 4.24. Consider the £—graphs from FExample 4.21. Then we obtain
the following reversed graphs:

1. g% = €11 =Ry ~ Riz — i1 ~ Ep — Ryo,
2. g"=g.

We define next two properties of £—graphs. They are called admissibility
and simplicity. Later, those properties will be useful in order to define so
called canonical representations and in order to describe their constructions.

Definition 4.25. An £—chain g is called admissible if the following holds: if
there exist X,Y € £, X #Y with XaY, and ¢; € C with g(¢;) = X, then there
exists an edge p € C containing ¢; (i.e., p=p; or p = pi—1) with g(p) = a.

Remark 4.26. This condition holds for any £—cycle.
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Example 4.27. Both £-graphs from Ezample 4.21 are admissible. For the
same bundle X, the following £—chain is not admissible:

g i Ria — €11 ~ €11 — Rys.

This 1is due to T4 = Ri3 being a one-point link which is in a—relation with
the one-point link PR11.

Remark 4.28. As we see in the above example, admissible £—chains are
allowed to have two-point links as end points without any restriction (see
Ezample 4.21.1).

The critical one-point links are those being in a—relation with other one-point
links. Hence, one-point links which are not in any a—relation can also be end
points in an admissible £—chain.

The notion of simplicity is given in terms of isomorphisms.

Definition 4.29. A homomorphism 7 : C — C’ of graphs is given by a map
on the nodes c; which preserves adjacency. That is, two neighbours c;, ciji1
in C are sent to neighbours c} =7(¢), c;ﬂ =7(cis1) in C".

If the homomorphism T is bijective, it is called isomorphism.

Definition 4.30. Let 7: C - C’ be an isomorphism of graphs and let g, ¢’
be two £—graphs defined on C, C', respectively. Then T is an isomorphism
of £—graphs if g =g'7.

We denote the group of automorphisms on an £—graph g by Aut(g).

A rotation for an £—cycle g is given by an automorphism T for which there
exists k € Z such that 7(c;) = ¢y for all 1 <i <m. The group of rotations
on g is denoted by Rot(g).

Definition 4.31. We call an £-chain g symmetric if Aut(g) is not trivial.
An L£-cycle g is called symmetric if the quotient group Aut(g)/Rot(g) is
not trivial.

Definition 4.32. We call an £-cycle g simple if Rot(g) = {id}.

Example 4.33. 1. Consider the £—cycle from Example 4.21.2. Then its
underlying graph Cy is of the form

] —C —C3 —C4 — C5, — Cg — C7 — C8.
l |

The automorphism group of g is given by Aut(g) = {id, 7} where 7 is
an isomorphism on Cy, with the action

C4 <> Cs, C3 <> Cg, C2 <> (7, C1 <> C8.

The morphism T is clearly not a rotation, so Rot(g) = {id}. Thus, g
s symmetric and simple.
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2. Consider for the same bundle as before the cycle

g: €1 - Rz~ R -~ - R ~ Rz -y
e A

It has the same underlying graph as given in 1. For 1.3 :¢; = cjz3 we
have Aut(g) = Rot(g) = {7u3,id}. Thus, g is neither symmetric nor
simple.

3. Consider again the same bundle as before. Let
g= € -Riz~R1 -~ - Rz ~Rinn -y
be an £—chain. It is symmetric since

Tic <> c9y, 1<i<4

gives a non-trivial automorphism on g for the underlying graph
Cyic1—cag—c3—c4—c5—Cg—C7—Cs.

Remark 4.34. It is easy to see ([Bon88, §2[) that for a simple £—cycle g
one has | Aut(g)| < 2.
If g is additionally symmetric, then | Aut(g)| = 2.

The notion of simplicity for £—chains is given in different terms. In order
to give this definition, we first introduce so called double ends for £-chains.

Definition 4.35. Let g be an £—chain of length m > 1. The left end x1 of
g is called double if Ao = 58 and x1ax1. Analogously, the right end x,, of g
is called double if X\p,_1,m = B and xy0xy,. We denote the number of double

ends of g by d(g).
Remark 4.36. Note that in the case of m =1, we define d(g) =1 if zicux;.

Let h be an £-chain with d(h) = 2. Then the £—chain hl*] for & > 0 is
given by
R~ p @) o )

where

h@:{h if i odd,

h* if i even.
Note that we can also construct %) if only the right end of h is double.

Definition 4.37. Let g be an £—chain. Then g is called composite if there
exists an L—chain h and some k> 1 such that g = k],
Otherwise, g 1s called simple.
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Example 4.38. The £—-chain g from Exmaple 4.83.3. is composite with
k=2 and
h= &1 -Rizg~Rn - &1

The L£—chain h is simple.

Lemma 4.39. An £—chain g is symmetric if and only if it is composite of
the form g = RV with b stmple and k even.

Proof. Let g = hlF] be composite with h simple and k even. Let h be of
length n and its underlying graph C}, be given by:

Chici—cog—-—cy.

The £—chain g is thus of length n’ = kn. The map 7:Cy - Cy, ¢; = Cpri1—i
gives a non-trivial isomorphism of g. Hence, g is symmetric.

Conversely, assume ¢ to be symmetric. Let 7 € Aut(g) be non-trivial. By
definition, the images of neighbouring nodes under 7 are again neighbours.
Thus, 7 is either be given by a translation or a reflection. Since g is not a
cycle, T cannot be given by a translation. Thus, it is given by a reflection.
This implies ¢ being composite of form ¢g = hlF] where k is even for h
simple. O

Lemma 4.40. An £—chain g is simple (admissible) if and only if its reversed
L—chain g* is simple (admissible).

Proof. Follows from the definition of the reversed £—chain. O

Definition 4.41. Let C' be an Q—graph and g be an £—graph on C. A
subchain of g is given by restriction of g to a connected subgraph of C.

Example 4.42. If g is composite, say g = hlk] for some h, some k, then
each WD 1<i <k, is a subchain of g.

Finally we are able to denote the sets of £—chains and £-cycles which
are used to construct the canonical representations of the bundle.

Definition 4.43. We denote by S(L) the set of simple admissible £—chains
and by S(L) the set of simple £—cycles.

4.1.3 Subchains via orientations

We set in this subsection the prerequisites for the construction of a repres-
entation of the bundle from each £—graph. To this end, we introduce four
types of subchains which determine the maps of the representations. Sub-
chains of these types will be called elementary subchains.
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From now on consider an £—chain g € &(£) with go = {x1,...,2,}. We
embed ¢ into another £—chain denoted by g as follows:

g if d(g) =0,
N A if d(g) =1,z double end,
9= g~g® if d(g) =1, x,, double end,
g ~g~g° if d(g) =2
Consider in the next step x; = ;41 for some i € {1,...,m}. Then, clearly,

Ti0iv1, 1.e. A1 = o Starting from that relation in g, we construct a
maximal symmetric subchain §*) = w ~ w*, that is, the right end of w is
given by z; and the left end of w* by x;41. Now we consider the neighbours
of that subchain in §: if 3 does not contain the left (respectively, right)
end of g, we denote by y; (respectively, z;) the element in gy such that y; Sw
(respectively, w*5z;) extends w (respectively, w*) to another subchain of g.
Otherwise, we set y; = oo (respectively, z; = 00).

Remark 4.44. Note that by construction of §(i), we have that y; + z;
(otherwise one obtains a contradiction to the simplicity of g) and either
Vi, zi € £(Cr) U oo, or y;, z; € L(Rg)Uoo for some ke {1,...,N}. We assume
X < oo for all X € £, and thus obtain either y; < z;, or z; < y;.

Some types of the elementary subchains depend on an orientation on
the already mentioned subchain z; ~ x;41 where z; = x;,1. We define this
orientation.

Definition 4.45. Let x; = x;11 € go as above.
We write x; ~ x;41 if one of the following conditions holds:

a) yi <z and x; € £(), yi € £(Y) U oo, P € {€, R},

b) yi >z and ;€ £(), yi € £(Y) U o, D Y € {C,R}.
We write T; ~ 2411 if one of the following conditions holds:

a) yi >z and x; € £(), yi € £(Y) U oo, P € {€, R},

b) yi <z and ;€ £(9), yi € £(Y) oo, Y # Y € {€, R}

Remark 4.46. Note that in case a) we always orient towards the larger link.
In case b) we orient the other way around.

We are now able to finally define the notion of an elementary subchain
for £—chains.

Definition 4.47. Let g € G(£). An eclementary subchain of g is given by
any of its subchains that is of one of the following forms:
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1) xi—q -,
—_
2) Tis1 ~ X — Tis,

-
3) Ti1—Ti ~ Tiv1,

4) Tisi ~ Ti — Tig1 ~ Tiza.

Elementary subchains for £-cycles are defined similarly. Here, we set
g = g and obtain elementary subchains as defined above. But we need to
take care in the case that g is symmetric: if there exists an automorphism
7 # id with 7(¢;) = ¢j41, then the elements y; and z; belong to w ~ w* and
coincide. Hence, we cannot use the above construction. In this case, we
assume

Ti ~ Tiv1 if T; € 2(%) (60)
and
T~ Tiv1 if ZT; € S(Q:) (61)

We denote by e; j(g) = e;,i(g) an elementary subchain of g with ends given
by z; and x;. Note that we read the type of elementary subchain from left to
right within the £—graphs, meaning that i < j (in cylces considered modulo
m if necessary).

Remark 4.48 (|[Bon88, Lemma 2|). An L£-cycle g always contains a maz-
imal elementary subchain of length 2. That is a subchain x;_1 —x; which does
not belong to any elementary subchain of greater length. We denote by ea(g)
such a subchain with least i € {1,...,m}.

4.1.4 Construction of representations

In this subsection, we describe the canonical representations which we can
construct from £-graphs in &(£) US(L). We restrict ourselves to the con-
struction of the matrices of the respective representation, since we can con-
clude any information on the vector spaces from them.

The constructions require a lot of notation and description such that we first
give an overview on the representations and a very rough idea on how we
can obtain them, before going into a detail.

Overview on canonical representations.

where

© =g, @o a monic, irreducible polynomial over k,

do(g) = 0(9)/2,
(5(9) = #{Z € {1, - ,m} | Ti F Tij4l,LTiy Tijs1 € Q(X),X € {Q:, 9%}}
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L—graph g representation U

d(g) =0 Ui(g)
L—chain | d(g) =1 Us(g),s=1,2
d(g) =2 Us(g,p);s=1,2,3,4,peN

symmetric, dp(g) even | U(g,p),p0 #t,t+1
L-cycle | symmetric, dp(g) odd | U(g,¥), 0 #t, t—1
non-syminetric U(g,p),p0 #t

Overview on constructions.

The general idea for constructing a matrix U?, 1 <4 < N, of a representation
U for an £-graph g € §(£) uS(L) is the following:

The rows and columns of U’ are divided into bands which are indexed by
the elements of R; and €;, respectively. Each x; € gy being equal to such
an element indexes a row/column (or subband in case of a cycle) in the
respective band. The entry in the intersection of a row (subband) x; and
a column (subband) z; is 1 (identity block) if z; and x; are the ends of an
elementary subchain. Otherwise, the entry is 0.

In detail, the construction is more complicated (e.g. in case of a cycle, there
can also exist non-zero entries not given by an identity block) and requires
a lot of descriptive notation.

First, we set some general notation:

Let g€ S(L)US(L), go = {x1,...,%m}. Denote
90 = {wi € go | micws}

and denote by W¥(g) the set of maps of the form

1/} : 98 - {+17 _1}
such that ¥ (z;) = £1 whenever z; = ;..

Remark 4.49. [Bon88, §3.2.] Let g€ S(£)US(L) and let ¢ € ¥(g). Then
for the reversed graph g* there exists a similar set V(g*) with maps V™ given
by opposite sign.:

V(i) = —(z), i€ go-

Since ¥ € ¥(g) is not always uniquely defined (in particular, on double
ends), we have the following options and conventionally assume the following
for an £—chain g:

Remark 4.50. Note that any x; € g5 is given by a two-point link X € £.
The elements X* and X~ of X each describe a band in the respective matriz.
From the data given by g, we do not know to which band any x; € g5 with
x; = X 1s assigned. This is fized by the maps in V.
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a(g) [ [¥(g)] [ convention on & € U(g), s € (L. . [¥(g)]}
0 1 11 uniquely defined
1 ) P1(z1) =-1 o(x1) = 1 if 21 is the double end
Vi(zy)= 1 to(my)=-1 if z,, is the double end
1
1

5 4 Pi(x1) =-1 apo(z1) = Y3(w1) =-1 a(xy) = 1
Pi(zm) = 1 o(xm) = V3(xm) =-1 Ys(zp)=-1

Let X,Y € £ with XaX, YaY, Z e€Xy, x; € go and 1 <s5<4. We denote

9o(X) ={z; € go | z; = X},
90,5(Y) ={xi € go | wi = Y, b5 (i) = £1},
Z if Z=X
n(Zg.s)={ PO HZX
l96,,(Y)| it Z=Y¢
n(x;) = #{xi € go | xi = 25,0 <i < j}.

Remark 4.51. The sets gj (Y) are built in case of Y being a two-point
link. For one-point links X, we consider the set go(X).

To some extent, we can - with respect to the construction - group together
representations of the types U (g) and Us(g) for s = 1,2. The representations
U(g,e) and Us(g,p), s = 1,2,3,4, p € N, are each similar to the construc-
tion of the first two, but will be treated separately. Thus, we start with
the construction of U(g) and deduce from it the constructions of the other
representations.

Construction of U;(g), Us(g).

Let g € (&) with d(g) = 1. We start with the matrices U',..., U of U1(g).
Letie{l,...,N} and let X,Y,Z%, Z~ € €;uR;. Then the structure of U’ is
given as follows:

e The bands of U*:

- The row bands are indexed by the elements of fR;.

- The column bands are indexed by the elements of €;.
e Order of bands:

- The column/row band P(X) is situated left /above of the column /row
band P(Y) if X <Y.

- Additionally, if Z* and Z~ are two incomparable elements, P(Z™)
is situated left /above of P(Z7).

e Sizes of bands:

: dlmP(X) =n(X,g,1),
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- If o(X) =Y, then n(X,g,1) =n(Y,g,1).

e Within the bands:

- The rows (columns) of P(Z) are indexed by the elements in

90(Z), if Z is an element of a one-point link,

ggl(Z), if Z=2%is an element of a two-point link ,¢ € {+,-}.

- The j—th row (column) within P(Z) is indexed by the element
zi € go(Z) (951(Z)) such that n(xg) = j.

- If 2 ~ xpy1 in g with z # xpy1, then n(xg) = n(wre)-

To describe the entries of the matrix U?, we denote by zj, N x; the entry in
row z3 and column x; of U'. Then

R 1 if there exists ey j(g),
T NTj = .
! 0 otherwise.

The matrices Us(g) are constructed for each s € {1,2} as described above,
using the respective map ¥, to determine the sets gf—)'ys, and using these sets
to determine the elements indexing the respective bands. We obtain two
representations from one £—chain.

Example 4.52. on Ui(g).

1. Let N =1 and Ry = {9%11 > Ri9 > 9%13}, ¢ = {Q:irlié@h} with 0(9%11) =

R13 and otherwise o acts as identity. Let

«— ——

g: Ri2 = €11 ~ €11 =Rz ~ Ri1 = €11 ~ €11 — R
Tl €2 €3 T4 T5 T6 €7 xg

Pt +1 -1 +1 -1

The elementary subchains of g are:

Type 1) e12(g) =x1—x2, Type 3) e13(g) =1 -T2 ~73,
g) =3 = 1, es7(g) = w5 - Fg ~ a7,
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Following the above instructions, we thus obtain for the representation

Ui(9) = (Usyy, Unyas Usygs Ues s Uql,Ul) that U' is of the form

11 <
To ®e T3 Ty
) Riz x4 0 0 1 0
U= 9‘{12 Tl 1 0 1 0
s 0 0 0 1
Ry 25| 0 1] 0 1

The vector spaces have the following dimensions:

dim(Umn) = dim(U%m) =1,
dim(Ug;, ) = dim(Ug: ) = dim(Us,, ) = 2.

2. Let N =5 and let the bundle X = (X,0) be given by the semichains

¢ = {€¢]; ¢, }, R1 = {R11 > Rz},
Co = {€g1 < o < Co3}, Ry = {Ra1 > Roo > Aoz},
€5 = {€52¢5, }, N3 = {NR31 > N3z},
€4 ={Csy <y}, Ry = {Ra > Raz},
C5 = {€55C5, }, Rs = {Rs1 > Rs2 > Rz},

and let o be acting as follows (and as identity otherwise):

Ca1 < Rig, Ra1 < R3o,
Ca3 < Rs1, R41 < Rss,
€41 > NRag.

Consider the £—chain

-
g: Rag — €41 ~Roz — o1 ~ Rin = €11 ~ €11 - Ry

x1 €2 €3 X4 €5 T6 7 X8
wl : +1 -1

The elementary subchains of g are given by

Type 1): x; —xie1 V1<i<8 odd,

Type 3) Ty —Tg ~X7.
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The representation Uy(g) is given by the matrices

¢, ¢
1 6 L7 2 i’Zl
U = Ri2 =5 0 1 |, U= 4

9%11 T8 1 1 9%23 3

(WF)
U4 — x2

and U3 and U® are empty. The vector spaces of U1(g) have dimensions
dim(U€§1) =dim(Up,, ) =dim(Un,,) =1, (e{+,-},
dim(UQil) = dim(Um“) = 1, 1€ {2,4}

and all other vector spaces have dimension 0.
Example 4.53. on Us(g).
1. Consider the same setting as in Example 4.52.1. and let

-
g: Rz - €1 ~ €1 Rz ~ R - &y

xr1 x9 xrs3 T4 Ts T6
. 41 -1 +1
o +1 -1 -1

The elementary subchains are
Type 1):  e12(g) =x1-m2, Type 3): e13(9) =21 -T2~ 3.
6374(9) = $3 - x47
e5.6(9) = x5 — x6.

We obtain the following two matrices UL for the representations Us(g),

s=1,2:
11 <y ST
To Xg X3 X2 T3 T
Ul _ %13 T4 0 0 1 Ul _ %13 T4 0 1 0
1~ ) 2 -
5)%12 I 1 0 1 9%12 I 1 1 0
9%11 xIs5 0 1 0 ERH Is5 0 0 1

The dimensions of the respective vector spaces are given by:

s=1: dim(Un,,) =dim(Ug; ) =1, 1<i<3
dim(Ug;, ) =2,

s=2: dim(Uy,,) =dim(Ue; ) =1, 1<i<3,
dlm(UQIl) =2.
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2. Let X = (X,0) be as in Example 4.52.2. Consider the following £—chain
with two double ends:

-
g: Rso — C51 ~ C51 — Rp1 ~ Cog —NRoy ~ R3o — 3

T1 Ty ®3 T4 Tz T Ty T8
(% +1 -1 +1
o : +1 -1 -1

The matrices U11 and Uil of the representation Ui(g) are empty. The
others are given by

Ca3 <5
ljl2 = 5 5 Uig = 8 s
a1 Rgp a7
&G €5
T2 zs3

Uir’: Rso  x1 1 1
%51 Ty 0 1

The corresponding vector spaces Un,,, Ugyy, Uy, Uggl, Usser Uy, s
Uggl and U@gl have dimension 1. The other vector spaces have dimen-
ston 0.

Let us now consider s = 2. The malrices Uy and Uy are also emply.
The other matrices of the representation Us(g) are given by

U; = U7,
Us = Uy,

¢35
U3 _ T8

The following vector spaces have dimension 1: Un,,, Ug,y, Uns,, U¢§1,
Unsyr Umsys Ugr, and Ug; . The rest of them has dimension 0.

Note that we can obtain the entries of U7 from those of U{ in Example
4.53.1 by switching the columns. That is due to the following statement:

Lemma 4.54 ([Bon88, §6, Statement 3.2.]). Let g € &(£) with d(g) = 1.
Switching the positions of the bands indezed by two incomparable elements
X %X~ gives an equivalent set of representations.

Construction of U(g, ¢).
The case U(g, ) for g € S(£) is similar to the previous one, but a bit more
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complicated. Recall that ¢ is a monic polynomial in k[¢] which is irreducible
over k. Note at first that the choice of ¢y depends on the given £—cycle g:
if ¢ is non-symmetric, then g # t. For g symmetric, we distinguish between
00(g) being odd or even: in the first case, we assume that ¢g # t,¢t—1, in the
second case that ¢g # t,t+1. Moreover, we consider — as in the case of U;(g)
— the sets go(Z) and gy;(Z) as indices within the bands. But in contrast
to the case of £-chains, the elements of the respective sets do not index
rows and columns, but subbands within the bigger bands. The size of each
such subband is given by ¢ = deg(y) where ¢ = ¢. Let x; nz; denote the
intersection of the two respective subbands. Then for g not being of length
four and symmetric, the entries of U? are:

Lyxe  if there exists ey j(g) # e2(g)
rpnxj =1 F, if there exists ey ;(g) = e2(g) ,

0 otherwise

where F, denotes the Frobenius block of ¢. Recall that for the polynomial
© =t" +a,_1t" 1+ ag its Frobenius block is given by the (n x n)-matrix

0 —ag
1 . —a1
F,=
0 -ap—o
I -ap

In the special case that g is symmetric and |g| = 4, there exist two elements
x7, 141 such that there are two elementary subchains elll+1(g) of length 2

and e?;,,(g) of length 4. Then we combine the above instructions and set:
Ty N1 = Lo + Fy

Remark 4.55. In the special case where g is symmetric and |g| = 4, we have
that ea(g) = ell’lﬂ(g):

e2(g)
T1] ~— T2 — T3 ~— T4 Tr] ~— X9 — T3 ~— T4
l | l |

ea(9)

Remark 4.56 (|[Bon88, §6|). Admissible transformations of type 1 allow us
to consider subchains of the form és(g) = x;-1 — x; with i not being the least
in {1,...,m} instead of ea(g). In this case, the block in x;_1 Nx; is given by
F, or F;l,

Example 4.57. on U(p,g).

105



1. Consider the same setting as in Example 4.52, 1. and let

go: I Z2 €3 T4 x5 Te €T Ts
padc

g: €1 -Riz~ R -G~ - R ~ Rz -
e

P -1 +1 -1 +1
(S| +1 -1 +1
(CERE +1 -1 -1
Yy +1 +1 -1 -1

The £—cycle g is symmetric, 0(g) = #{2,6} =2 and 69(g) = 1 is odd.
Thus, @o #t,t —1. We choose ¢p =t+1, deg(p) =2:

o=(t+1)2=t>+2t+1.
The corresponding Frobenius matrixz is given by
0 -1
b0 )

We obtain the following matrices UL of Us(g, @), s = 1,2,3,4 (recall
that each x; € gy indexes a subband of size 2):

¢y ¢

T4 xTs I xIs
Ry 9]0 0 0 0]0 -1 0 0
O 0 0 0|1 -2 0 0
=0 0 1 0|1 0 0 0
Ul = o 0 o0 1|0 1 0 0}
Ry 23] 1 0 0 0[]0 0 1 0
o 1 0 0/0 0 0 1
%0 0 0 0/0 0 1 0
O 0 0 0|0 0 o0 1

with vector spaces of the following dimensions for s =1:
dim(%n) = dlm(mlg) = dlm(Q:_{l) = dlm(th) =4.

In the following, we are going to neglect the subband structure within
the matrices. In this example, it means that each entry denotes from
now on a respective block matriz of size 2 x 2, that is, any 1 is going
to denote a 2 x 2—identity matriz. In this version, the matrices U! are
given by
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+ -
11 Q:ll

T4 I I Ts
2)%13 T2 0 0 FAO 0
Uj = | 0 1|1 0}
%11 I3 1 0 0 1
6 | O 0 0 1
11 ¢
T Tr4 T8 xIs5
Rz 22 [ F, 0 0] 0
U; = er| 10 1] 0 |
Rt x3| O 1 0 1
ze | O 0 0 1
<
T4 T xIs xTs
9%13 xI9 0 F@ 0 0
Us = x| 01 0 1}
%11 I3 1 0 1 0
z6 | O 0 1 0
1 ¢
L1 T4  T5 X8
Rz w2 F, 0] 0 0
Us = zr| 1 0] 0 1
Ri1 z3 0 1 1 0
zg | O 0 1 0

The dimensions of the vector spaces are given by
dim(R11) =dim(R13) =4 for all s=1,2,3,4,
and

s=1,4:dim(€7,) =4, dim(¢}) =4,
s=2:dim(€],) =6, dim(¢y) =2,
s=3:dim(€};) =2, dim(€y,)=6.

2. Consider the bundle of semichains as in Example 4.52.2. Consider the
following £—cycle
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go: I X2 X3 X4 T5 Z6 g €rg
5
g:  Ca3 ~ NRs1 - €51 ~ €51 — Rz ~ Ry1 - €41 ~ Rog
\ |

1 +1 -1

It is non-symmetric, so we can choose ¢ = (t—1)3 =3 - 3t> + 3t - 1.
Its Frobenious block is thus given by

Its elementary subchains are:

Type 1): z; — xi1 V1<1i<8, even,
ea(g) = v3 — 1,

Type 2): x3 ~ x4 — T5.

The representation U(g, @) consists of the two empty matrices UL, U3
and additionally the following ones:

o3 (WR]
U2 — T U4 —

Roz w3 ’ Rar w6 7

U5: Rs3 5 1 1 )
Rs1 29 1

The following vector spaces of the representation have dimension given
by deg(v) = 3: Unys, Usys, Unyys Ueyys Unsys Uniys, UCSI’ where ( €
{+,-}. All the other vector spaces of U(g,y) have dimension 0.

Construction of Us(g,p).
Recall that g € §(£), s =1,2,3,4 and p € N is fixed. To describe the matrices

in Us(g,p), we need a slightly adjusted notation: Let X,Y € £ with XaX,
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YaY and let Z € Xiy. Denote

90(p) = {(%i,q) | zi € go,1 < q < p},
90(X,p) = {(zi,q) € go(p) | x: = X},
96.5(Y,p) = {(zi,0) € go(p) | i = Y, s () = =(-1)71},

(Zgs.p) - | 10PN Z=X
95, (Vop)| if Z=YC,Ce{+,-}]

n(zj) =p-#{rr €go | vj =, 1 <k <j},
n((xj,q)) = (n(z;) - 1p +q.

Now let i € {1,...,N}, X,Y,Z,Z*,Z~ € €; UR;. Then the matrix U’ is
structured as follows:

e The bands of U*:

- The row and column bands are indexed by the elements of R;, €;,
respectively.

e Order of bands:

- The bands are ordered as in the previous cases.
e Size of bands:

- dim P(X) =n(X,g,s,p),

- If o(X) =Y, then n(X,g,s,p) =n(Y,g,s,p).
e Structure in bands:

- The rows/columns of P(Z) are indexed by elements in

90(Z,p) if Z is an element in a one-point link,

gg (Zp)if Z = Z¢ is an element in a two-point link.

- The row/column (x;, q1) is situated above/left of the row /column
(SU]', QQ) if
i<j or  1=7,q1<q.
- The j—th row (column) within P(Z) is indexed by (xk,q) € g90(Z,p)
(96,5(Z,p)) such that n(zy,q) =j.

- If 2 ~ w1 in g with zp # xpy1, then n(xg) =n(wre).
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In order to describe the entries in U’, we denote by (z,q1) N (zj,q2) the
entry in row (z,q1) and column (z;,¢2). Then

1 if there exists ey j(g) and (a), (b) or (c) holds,

0 otherwise

(zg, q1) N (25, 92) = {
(62)
where
(a) @1 = ¢,
(b) g1 =q2 -1, g2 odd and either k or j is equal to 1,
(¢) g1 =q2—1, g2 even and either k or j is equal to m.

Remark 4.58. The construction of Us(g,p) seems to be — in comparison to
the other representations — chosen arbitrarily. The background is the follow-
ing [Bon88, §3.2/:

When constructing Us(g,p), we actually consider Us(h,1) where h = gl?l.
For the latter, we consider

W(h) ={¢s | 1s € W(g)}, ths:hg - {+1,-1},
such that
77[_) | o) = ws(g) ng(]) =9,
i) gD =g

Note that hS = U§:1 (gé]))a.

Denote in the following by (x,q;) the copy of xy in the subchain g{%) of h.
The information on how to put an orientation in h on its "joints" is vital to
understand the connection to the earlier given construction:

(xi,Qk)"'(fL'i,QkJrl) ifiE{l,m},xiE%, (63)
(xla(Jk)N(x’qu}€+1) ’LfZE{17m}7ZEZEQ: (64)

Interpreting (a) - (c) in this context gives a clear idea on what is happening:

(a) We consider in each copy ¢\%) of g the elementary subchains. If ex,;(9)
exists, then (a) ensures that we take the respective elementary subchain
ek,j(g(qﬂ')) i each copy g(qﬂ') wmto account, that is, we put 1 as entry in
each copy q; of xp Nx;j.

(b) Here, we consider two neighbouring copies (1) ~ (@) of g Since go
s odd, q1 is even and we know that they are of the form

gl = g*, g\ = g.
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Thus, ¢\ ends with the respective copy of 1 € go, and ¢(%) starts
with the respective copy of x1 € go. The middle of ¢(1) ~ ¢(42) s given

by

=X~ X — (65)

with some direction given on x1 ~ x1. If k=1 in (62) and (b) holds,
then (1,q1) € ¢\ s the end point of an elementary subchain, oth-
erwise (j = 1), an end point is given by (x1,q2) € g'9). Tt follows for

(65):

R T if k=1,
=X YT — .. ’ij=1.

Hence, (b) ensures that we take all elementary subchains including the
"joints" of the form x1 ~ x1 into account.

(c) It ensures — similar to (b) — that all elementary subchains including the
"joints" of the form xp, ~ xy, are taken into account.

We can conclude that we still follow the simple rule to put a 1 in the entry
of a row and column if the elements indexing those are the ends of some
elementary subchain in g[p], and we put O otherwise. The notation used in
the construction is required since we consider different copies of g.

In the following we work on h = g[P] to construct U, s(g,p) but might still use
the notation from the formal construction given above.

Remark 4.59. [Bon88, §6, Statement 4.3.] Choosing the orientations at all
joints in the opposite way than described in (63) and (64), gives an equivalent
representation for each s=1,2,3,4.

Example 4.60. on U(g,p).

1. Consider the same setting as in Example 4.52.1. and let

g: €1 -Riz~Ru1 -y

x1 Z2 x3 Ty

P -1 +1
1/12 +1 +1
Y3 -1 -1
1/14 +1 -1
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We choose p=3. Thus, we consider

h=g®) = g g L B Z g

=C11 -Riz ~Ri1 - €11 ~ &1 - R ~ Rz -

€11~ - Rz ~ R - €y

T xT9 I3 T4 T4 T3 T2 I T xT9 X3 Ty
1 3
P -1 +1  +1 -1 -1 +1
Yo +1 +1 +1 +1 +1 +1
Py -1 -1 -1 -1 -1 -1
vy +1 -1 -1 +1 +1 -1
The elementary subchains of h are:
Type 1) e(ml,k),(mg,k)(h)7 k=1,2,3,
Type 2)  e(q, 2),(x2,3) (1),
Type 3)  €(a5,1),(xa,2) (1)
The matrices UL in Uy(g,3), s =1,2,3,4, are given by
11 ¢
(174,1) (174,2) (37473) (37171) ($1,2) (x173)
(x2,1) 0 0 0 1 0 0
1 %13 (562,2) 0 0 0 0 1 0
Ui = (22,3) 0 0 0 0 1 1
(x3,1) 1 1 0 0 0 0
9%11 (x3,2) 0 1 0 0 0 0
(x3,3) 0 0 1 0 0 0
+
11
(.1'1,1) (1'1,2) (1'1,3) (1'4,1) (1'4,2) (ZL‘4,3)
(x2,1) 1 0 0 0 0 0
1 9%13 (.%‘2,2) 0 1 0 0 0 0
Uy = (z2,3) | 0 1 1 0 0 0
(x3,1) 0 0 0 1 1 0
R (x3,2) 0 0 0 0 1 0
(x3,3) 0 0 0 0 0 1
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<h

(.%'1,1) (.%'1,2) (.%'1,3) (.%'4,1) (.%'4,2) (.%'4,3)
(22,1) [ 1 0 0 0 0 0
9{13 (:B2,2) 0 1 0 0 0 0
Us = (22,3) | 0 1 1 0 0 0
(x3,1) 0 0 0 1 1 0
Rt (1’3,2) 0 0 0 0 1 0
(x3,3) 0 0 0 0 0 1
11 ¢
(‘Tlvl) ($172) ($173) (‘T471) (‘T472) (1:473)
(x2,1) 1 0 0 0 0 0
Rz (22,2) | 0 1 0 0 0 0
Uj = (22,3) | 0 1 1 0 0 0
(23,1) [0 0 0 1 1 0
9%11 (1'3,2) 0 0 0 0 1 0
(x3,3) 0 0 0 0 0 1

The dimensions of the vector spaces are given by the respective band
sizes, and dim(R12) = 0.

. Consider the bundle of semichains from Ezample 4.52.2. and the fol-
lowing £—chain with two double ends:

g:

(I
P
(UEE
(R

€11 —Rig ~Co1 —Rop ~R3o — €34

I L2 L3 Zq Is Le

-1 1
1 1
-1 -1
1 -1

Let p=2. Then we consider for the construction of the representations

Us(g,2) the £—chain

h = g[Q] :

h: €11 =Rz~ Ca1 —NRop ~R3z — 31 ~ €31 — N3z ~ Roy — Co1 ~ Rz - €y

I T2 T3 Tq Zs Ze Te Ts T3 T2 I
1 2
P -1 1 -1 1
o 1 1 -1 -1
Py -1 -1 1 1
Wy 1 -1 1 -1
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For any s, the matrices Uf and U2 are empty. Thus, the vector spaces
Ux,; for X e {€,R}, j e {1,2}, U¢§1 for ¢ € {+,-} and Ung, for
1 < j <3 have dimension 0. Moreover, the vector spaces Uy, ,, Ug,s,
Ueyyy Uy, Umyy and Ugp,, also have dimension 0. The dimensions of
the other vector spaces are for any s € {1,2,3,4} given by

dim(Upy,, ) = dim(Usp,, ) = dim(Un,, ) = dim(Us,, ) = 2,
dim(Uyg ) =dim(Ug ) =1, (e{+,-}.
11 31

The other matrices are given as follows:

s=1:
11 <y o
) (r1,2)  (21,1) ) (23,1)  (23,2)
Ul = Rig (:L‘Q,l) 0 1 s Ul = Ro (£U4,1) 1 0
(x2,2) 1 0 (334,2) 0 1
<5 <3
3 (1'6,1) (m672)
Uy = R3a (565,1) 1 1 s
(.1‘5,2) 0 1
s=2:
11 <y,
1 (IIZ‘l,l) (‘Tlaz) 9 9 3 3
Uy= Rip (2,1) 1 0 , Uj=Ui, U;=Uj,
(.IQ,Z) 0 1
s=3:
31 <5
1 1 9 9 3 (1‘672) ('Iﬁv]-)
U3 = Ula U3 = U2a U3 = %32 (.%'5, 1) 1 1 s
($5,2) 1 0
s=4:
Ui=Ui, Ui=U3j, U;=U3.
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4.1.5 Classification Theorem

Theorem 4.61. [Bon91, Main Theorem] Choosing one representative in
each isomorphism class of £—chains and £—cycles of S(£) US(L) gives the
following classification.:

The set of representations of the form Us(g), Us(g,p) and U(g, @) associated
to the representative £—graphs is a complete set of pairwise nonequivalent
indecomposable representations of the bundle X = (X,0).
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4.2 The category Rep(X)
Let X = (Cq,...,Cn,NR1,...,9) be as in Section 4.1, and let X = (X,0) be

a bundle of semichains with involution o.
Let U = (Ux,U") xex,,1<i<n be a representation of X. For S ¢ X a subset,
denote by Ug the k —vector space

Us = @ Uy.
YeS

Then U’ : Ug, = U, can be written in terms of an (ng xngé, )—matrix, where
1 1

ngl = dim(Us, ), nﬂUQi = dim(Usy, ).

Similarly, we denote by n)U( the dimension of the vector space Ux, X € Xp.
We write U&Y : Ux — Uy to denote the respective restriction (block matrix
in) of U, X e &, Y e N;.

Let W = (WXawi)Xexo,lsisN be a different representation of X. Its map
W': We, - Wy, is given by an (ngj X ng;/i)—matrix.

Remark 4.62. Note that the bands in U' and W' are indexed by the same
elements, but are of possibly different sizes.

Definition 4.63. Let X = (X,0) be a bundle of semichains as described
above. Then the category Rep(X) of representations of X is given by the
following data:

e The objects of Rep(X) are given by representations of X, that is, tuples
of the form U = (Ux,U") xexy,1<i<N -

o A morphism 0:U — W between two representations U = (Ux,UYx,
and W = (Wx,W")x, is gien by a tuple 8 = (P,Q). Each entry
of this tuple consists of N k—linear maps P',..., PN, Q',...,Q",
respectively, such that the conditions (i) - (iv) below are satisfied. As in
the defintion of a X—representation, one can also equivalently consider
the P'’s and Q"’s as finite matrices with band structure given by the
semichains of the bundle.

(Z) PilUQ —>W¢i anin:qui _)me V1<i< N,
(ii) QU =W'P! V1<i<N,
(117) for X,)Y €eXo, X #Y and o(X)=Y:
(a) if X €R;, Y € Ry for some 1<4,5 <N, then

Qé{X:Q?Y?
(b) if X €&, Y e for some 1<1i,j <N, then
P)i(X :P{/w
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(c)if X e Ry and Y € €, or X € & and Y € R, for some
1<4,5 <N, then
Qi x = P}j,Y (Pl = Q{/Y? respectively)
(iv) for X,Y € Xy and » a block of the respective size with arbitrary
(possibly zero) entries from k:

(a) if X,Y €&, for someie{l,...,N}, then

)

. 0 ifX<Y or XaY
PXY: .
« fX>2Y

(b) if X,Y €R; for someie{l,...,N}, then

i 0 if X>Y or X&Y
Qxy = . .
x f X<Y
e The identity morphism on a representation U is given by 1y =
(P,Q) where P'=1¢xe., Q' = 1y.xr., where 7; = ng{i, c; = ng
e Let 0=(P,Q):U -V, p=(R,S):V - W be two morphisms. Then
their composition is given componentwise: @of = (RP,SQ) such that
S'\QU =W'R'P* V1<i<N.
Note that P? and @Q° inherit their band structures from U?, W, respect-
ively:
o Pl is of size n%¥ xn{ with X,Y €¢&;.
. Qg(y is of size nI)/(V X n}[{ with X,Y e R;.
It is a well-known fact that the Krull-Schmidt Theorem holds for Rep(X)
(see [Bon91, KR77]) and that Rep(X) is additive.
Example 4.64. Let N =1, X = {€1,0R1} with
¢ = {€];=¢, },
9%1 = {9%11 > 9{12 > %13}.
Let o act as identity on the elements with the following exception:
0’(9{11) = %13.

We know from the previous section that its representations of X = (¥X,0) have
the following band structure with ng,, = nx,,:

+ +
11 11

Ri3
Rio (66)
Ri1
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Let U and W be two representations of X and 6 = (P,Q) : U — W be a
morphism between them. Then the components of 0 are of the following
forms with respect to their bands:

T Rz Rz Ry
. 11 51 Riz | A 0 0

P! = Qfl 8 . Ql = Rio * * 0
11 9%11 * * A

Here, both A and > denote a block of the respective size with arbitrary entries
from k. The two A-blocks are equal.

Example 4.65. Let N =1 and X = {€,R1} with

Q:l = {Q:H < 612 < Q:T3§Q:I3 < Q:14}, (67)
M1 = {Ri1 > R=NRy, > Ris) (68)

The involution o acts as follows:
o: € R, C1a ~ Cyy,

and as identity on the other elements. Thus, any representation of X is of
the following form with ne,, = nw,, and ng,, = ne,,:

Cii €2 € €y iy

Ri3

.
12 (69)
Ry
Rt

Let U and W be two representations of X and 0 = (P,Q):U - W a morph-
ism. Its components are of the following forms with respect to their bands:

¢ €2 €y €y Cyy

Rz R, R Rn

¢1| B * * * *

@12 0 A N N N 9%13 * 0 0 0
Pl=g, [0 00} Q=X ~ ]~ 1010

€3 0 0 0 * * gm ol 0 Ml 103

¢y 0] 0 0] 0] A nip x| * 1

Here, A and B denote blocks of the respective sizes with arbitrary entries
from k.

We now prove the well-definedness of compositions in Rep(%).
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Lemma 4.66. Let 0 = (P,Q):U -V and p = (R,S) : V > W be morphisms
in Rep(X). Then ¢ o6 € Rep(X).

Proof. Tt is enough to check (iii) and (iv) of Definition 4.63. In order to do
so, we denote in the following the ordering of the bands in the matrices by
<. Let X, Y eXg. Wewrite X <. Yif X<Y,orif X=Z"andY =2Z". In
particular, it follows that

Piy =0and Ryy =0 for X <. Y,
Q%y =0and Siy =0 for X >, Y.
Since we use (iv) to prove (iii), we start with the former.

(iv) Let X and Y be in Xp. It is enough to consider the zero blocks in the
composition.

(a) Let X,Y e€@; for some i€ {1,...,N}. Let X <Y. We obtain

(R'P")xy = Y, Rx;Pyy

ZGQ:Z‘
_ i i i i i i
= Z Ry Pzy + Z Ry, Pzy + Z Ry 7 Pzy
Z<: X X< Z<. Y Y<.Z

+ R&Xp)i(y + Rg(YP}i’Y
=0. (70)

Finally, let X and Y be incomparable, say X <. Y. Then

(Ripi)XY = Z R&ZP%Y + Z R&ZP%Y + Rg(XP)i(Y
Z<s X Y<.Z

+ RS(YPf/Y
~0, (71)

and

(R'P)yx= Y RyzPyx+ Y, Ry;Pyx+RyxPiy
Z<: X Y<iZ

+ Rg/YP{/X
=0. (72)

Combining (70) - (72) gives
(R'P)xy =0 if X <Y or XxY
(b) Proceeding analogously to (a) results in

(S'Q)xy =0 if X>Y or XzY.
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(i) Let X #Y € Xo with (X)) =Y. Note that X and Y are comparable.

(a)

Let X €R; and Y € R, for some ¢,j € {1,...,N}. We have that
Qkx=Q), and Six =50 (73)
We obtain that

($'Qxx = 3 SkzQzx+ ¥ SxzQ7x +SxxQxx
Z<: X X<:Z
= Sxx@xx (74)
and analogously, that
(S7Q7 vy = Sy Qy (75)
Combining (73), (74) and (75) gives the desired result:
(5°'Q)xx = (Q)yy.

Consider X € €; and Y € €; for some ¢ € {1,...,N}. It follows
analogously to (a) that

(R'P)Yxx = (R P)yy.

Let X € € and Y € R; for some 4,5 € {1,...,N} (X € R; and
Y €¢;). It follows analogously to (a) that

(R'PYxx = (SQ)yy (R P)yy =(8'Q")xx)  (T76)
We know already from (a) and (b) that
(R'P')xx = R x Pyx,
(7Q")yy = 53y QY y-
This results with (76) in
(S'Q)yy = 53y Q}y = RyxPix = (R'P')xx

The case X € R;, Y € ¢; for some ¢,j € {1,..., N} results analog-
ously to the above in

(S'Q)xx = (R P)yy.
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Remark 4.67. In terms of matrices, a morphism 0 = (P, Q) is an isomorph-
ism provided that any of its components P' and Q° has full rank.

Any admissible transformation has full rank and respects the conditions (i)
- (iv) of a morphism in Rep(X) by definition. Thus, any admissible trans-
formation gives an isomorphism in Rep(X).

The converse of the previous remark is not trivial but we obtain the
following:

Lemma 4.68. Any isomorphism in Rep(X) is given by a finite product of
admissible transformations.

Proof. Let 6 = (P,Q) be an isomorphism in Rep(X). Then, in terms of
matrices, P’ is an upper and Q" is a lower triangular matrix for any 1 <i < N.
We first consider Q".

We apply Gauss elimination to the block rows of Q. Note that for incom-
parable elements X %X~ the block Qgﬁx- — which is situated below the
diagonal block QfX+X+ — is already 0 and does not need to be eliminated.
Together with @ having upper triangular form, Gauss elimination thus only
requires admissible transformations of type 2. We denote the obtained mat-

rix by Q"

Qi = ( H G(kvl’)‘)) Qia (77)

(3B

where G(k,I,\) describes the operation on the row blocks k and [ with
A ek (e.g. adding block row k multiplied by A to block row [). Now Q" is
of diagonal block form: (XY € €)

Oy = 0, if X=#Y,
XY s ifX=Y.

Thus, we can write it as follows:

Q' = ] Dk (78)

XE@Z'

where Dé( denotes the square matrix of same size as Q°, with an arbitrary
block (D% )x x, identity blocks in all other diagonal blocks (D% )yy, Y # X,
and O—entries in all off-diagonal blocks:

AL fZ=Y=X
(Di)zy={1 i#Z=Y+X.

0 else
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Any such Dg( is an admissible transformation of type 1a or 1b. Thus, combin-
ing (77) and (78), we can write Q" as a product of admissible transformations
of type 2 and of type 1:

Q":(H G(k,l,)\))( I1 Dgf).

BN Xe€;

Now consider P?. Proceeding analogously as for Q¢ with respect to P being
of upper triangular form and with respect to its block columns, we obtain

Pi= ( [T Dg(.) ( [T G‘l(kz,l,)\)).

Xe€; kLA

with similar notation as above. In particular, we denote by /_lg( its non-
arbitrary block of Dé( in position X X. Thus, P’ can be written as a product
of admissible transformations of type 1 and of type 2.

Note that the assumptions on certain matrices with respect to admissible
transformations of type la and 1b are satisfied. This is due to Q* and P’
being for any 1 <¢ < N of diagonal block form. Thus, for X # Y € Xy and
o(X) =Y, we have

- for X eR;, Y eR,; (X e, Y ed;) for some 4,5 € {1,..., N} that
k=4 (A=A,
~for X eRy, Y e€; (X e, Y eRy) for some 4,5 € {1,..., N} that
k=4 (A= 4).
Finiteness of the products follows in both cases from the finiteness of Q°, P,
respectively. O

Remark 4.69. By Lemma 4.68, isomorphic representations in Rep(%) are
given by equivalent ones (cf. Definition 4.10). In particular, the commutativ-
ity relation QU = W*'P" implies for the isomorphism 0 = (P,Q): U — W
that

Ui - (Qi)_l WPt

Thus, condition (iii) on morphisms ensures that any arbitrary elementary
transformation on the band P(X) implies the same or, respectively, inverse
transformation on the band P(Y'), where X and Y are two links with o(X) =
Y.
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4.3 Reduction to skewed-gentle algebras

In the following subsections, we take the next step in order to obtain a clas-
sification of the indecomposable finite dimensional modules of a clannish
algebra.

We can deduce from any clannish algebra A a skewed-gentle algebra A, by
neglecting some of the zero relations of A such that all necessary conditions
for A are fulfilled (compare Definition 2.9, conditions (v) and (v)*).

In the following, we will restrict ourselves to skewed-gentle algebras A. Re-
call that any skewed-gentle algebra is clannish by Lemma 2.11. Hence, the
previous results on clannish algebras also hold for skewed-gentle algebras.
Starting in the next subsection, we describe how to transform the setup of
a skewed-gentle algebra A into the setup of a bundle of semichains X, as
described in [Bon91]. The construction of X, will be given in such a way
that it is compatible with the directions on special letters of finite index for
strings and bands (Proposition 4.145). Eventually, our construction will lead
to an equivalence between the categories Rep(X,) and mod(A) (Theorem
5.6). Moreover, we obtain a classification of the indecomposable finite di-
mensional modules of a skewed-gentle algebra in terms of strings and bands
(Theorem 5.49). This classification derives from the former mentioned equi-
valence. Finally, we will be able to give a reformulation of this classification
which will lead to the classification for clannish algebras as conjectured in
[CB88| (Theorem 6.10). Starting from the classification on skewed-gentle
algebras, we will deduce a classification on clannish algebras as follows:

Let A =kQ/(RURSP) be a skewed-gentle algebra and let A =k Q/(Ru RSp)
be a clannish algebra. Assume that we obtain A from A by adding the set of
relations {ry...7, }ier to R. Denote by (Vi, Vz)ieQo,ze, @ A-representation.
Take the list of indecomposable finite dimensional modules of A given by
its classification and dismiss all those modules V' which do not fulfill the
relations 7 € {7y ... 7k, bier: VHVTI% # 0 for all 4 € I. The remaining ones give
a classificaiton of the indecomposable finite dimensional modules of A.
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4.4 Construction of a bundle of semichains

In this section we want to give a description on how to transform the setup
of a skewed-gentle algebra A into the setup of a bundle of semichains X, as
described in [Bon91]. The construction of X, will be given in such a way
that it is compatible with the directions on special letters of finite index
for strings and bands (Proposition 4.145). The construction given here co-
incides to some extend to the one of a bush given in [Den00| (see Remark
4.77). Eventually, our construction will lead to an equivalence between the
categories Rep(X,) and mod(A) (Theorem 5.6).

For the rest of the chapter, let A be a skewed-gentle algebra (unless stated
otherwise) given by a quiver @) with set of special loops given by Sp and a
set of relations R. Let V = (V, Va)ier,ate be an arbitrary representation of
A.

Let 7 = riro € R be a relation and let a € Q1 be an arrow. Then we write
a€rifri =a or ro = a. Note that in this case we have that a € Qj”d.

The goal of this section is to prove the following statement:

Theorem 4.70. Let A =k Q/(R5PUR) be a skewed-gentle algebra with R as
described above. Then there exists for A a bundle of semichains Xy .

We give the explicit construction of X, in the Subsections 4.4.1 - 4.4.5
and the proof of the above theorem. Examples for the complete construction
will be given in Subsection 4.4.7.

4.4.1 Filtrations from relations

In this subsection we describe how we obtain filtrations from the relations
in RURP. We need the filtrations in the following subsections in order to
create semichains and assign them to the bundles.

We obtain five different types of filtrations. The types (1) - (3) are obtained
from relations in R, while the filtrations of type (4) are obtained from RSP.
Filtrations of type (5) will be called standard filtration. They do not arise
from a relation.

First we describe the filtrations we obtain from R.
Let i € Qo and a € Q9 with s(a) = 4. If there does not exist r € R with a € 7,
then a filtration on ¢ is given by

(1) F;:0cker(a)cV;,

where ker(a) describes the subspace generated by the kernel of a. We call
any filtration of this form a filtration of type (1).

If there exists 7 € R with a € 7, then there exists b € Q"% with #(b) = i and
r = ab. We consider

(2) F;:0cim(b) cker(a) cV;,
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where im(b) denotes the subspace given by the image of b. This gives a

filtration of type (2).
Assume now that t(a) = i. We distinguish as before: if there does not exist
r € R with a € r, then

(3) F;:0cim(a)cV;.

gives a filtration of type (3).
If there exists a relation r with a € r, then we obtain again a filtration of
type (2).

Let us now consider filtrations which we obtain from RSP,
Let € € Sp with s(¢) = 4. Then we have the idempotent relation €2 = € on
and thus we can decompose V; into V; = im(e)@ker(e). We obtain a filtration

1m(£ (79)

c \/

ker(e)
which we call a filtration of type (4). Instead of (79) we write:
0 cim(e) @ ker(e) = V;
for this type of filtration.
At last, we consider a filtration that is not arising from a relation. We
call this filtration standard or a filtration of type (5) and it is of the form
(b)) F;i:0cVi.
This filtration arises at vertices i € (o which have at most one incident arrow.
Thus, if i € Qo is not an isolated vertex (where isolated means that no

arrows start and no arrows end in ), then we obtain two filtrations Fi(l),

Fi@) for 4, of which at least one is of type (1) - (4), and the other is of type
(1) - (3).

If, on the other hand, i € Qg is an isolated vertex, then both Fi(l) and FZ.(2)
are filtrations of type (5).

4.4.2 Semichains from filtrations

In this subsection we describe how to construct several semichains from fil-
trations of type (1) - (5). Here, we are going to distinguish between the types
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(1) - (3), (5) and type (4). This is due to the fact that (1) - (3),(5) have the
form of a chain, while (4) is of diamond form. The goal is to obtain for each
F; of the above types a semichain S; with elements corresponding in some
way to the bases of the subspaces.

Let
FiIOZWOC%1C"'C%n:%

be a filtration of V; of type (1) - (3) or (5), i € Qo. Note that n < 3.
In the first step, we determine the bases of the respective subspaces and set

BiO = 07
B;1 is abasis of Vjq,

Bis is B;1 extended to abasis of Vjo,

giving iteratively
Bij is B; k-1 extended to abasis of V. (80)

Additionally, we assume the following with respect to the bases { By }x:
Let a:1— j € @1 and let

Fj:0=VjocVjic---cVi, =V

be a filtration on V. Note, that in case of a being a loop, we have i = j and
thus V; = Vj.

Let k € {0,...,m} such that Vjj gives the subspace generated by the image
of a, and let [ € {0,...,n} such that Vj; is the subspace generated by the
kernel of a, say

‘/jk = (wl,...,w%),
V;l=(1}1,...,vl~) and
Vi/Vir = {x1+ Vi, . zm + Vi),

where the elements wy, ..., w; are linearly independent and same holds for
v1,-.., 0 and @1, ..., 2. To simplify notation, in what follows, we will call
(x1,...,27) a basis of V;© V; and write V; © Vj; short for (x1,...,z5).

We assume that there exists for any wy, € {wy, ..., w; } aunique z4 € {z1,..., 75}
such that a(zg) = wp,.

By definition of {B;;} in (80), it follows that
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Hence,
Bi,k—l =Bip\Bix-1 Vke{l,...,n} (82)

is well-defined. Using (82), we can now define the elements Sj; of the semi-
chain §; corresponding to Fj. ‘
For ke {1,...,n}, the element Sj;, corresponds to B}, ,_,. We write

Sik = Bjp1 Vke{l,...,n}. (83)

Every element S;; belongs to a one-point link of the semichain. This one-
point link will also be denoted by S;;. It will be clear from the context,
whether we refer to S;; as an element or as a link of the semichain S;.

It remains to settle an ordering within the elements {S;; } of S;. There are
two possible ways to do that and we will use both in the following:

(i) We order the elements of S; with respect to the subspace inclusions in
F;, meaning

S@k > S@',k—l Vk e {2, R ,n}. (84)

We denote the resulting semichain by SZ.(C) where the superscript stands
for compatible with respect to the subspace inclusion:

SZ(C) : {Si,l < S@Q <-ee < Si,n—l < Sz,n} (85)

(ii) We order the elements of \S; in reversed order with respect to the sub-
space inclusions in Fj, giving

Si,k < Sz',k—l Vk e {2, R ,n}. (86)

We denote the resulting semichain by Si(r), where the superscript stands
for reversed:

SZ(T) : {Sz,n < Si,n—l < <L SLQ < Si,l-} (87)

Remark 4.71. In case of i being an isolated vertex, we obtain two standard
filtrations. FEach of them gives a semichain consisting of a single one-point
link. We call this kind of semichain standard.

Since there is no ordering given on those semichains, we have

i) = 5" (88)

for any standard semichain S;. Yet, for notational reasons, we will distin-
guish between those two copies of S; in the following.
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Thus, we have to choose S; from the set {SZ.(C),Si(T)}. How to do so, we
discuss in Subsection 4.4.4.

Let us now come to the semichains arising from filtrations of type (4). Hence,
let

F;:0=Vipc (Vi@ Vp)=Vsy (89)

with Vis = V;. Let € € Sp with s(¢) =14, and let Vj; =im(e), Via = ker(e).
Let B;j, be the basgis of Vj, for k = 1,2. Then we have the following properties:
(i

) Bi1 is the basis of im(¢),
(i) Bis is the basis of ker(e),
) B
v) Vi

(iii
(iv) Vi =(Bi) ® (Bi2)-

Again, we want to denote the elements of S; in terms of the bases of the
respective subspaces of F;. By (89) and (iv), there are only two bases to
consider, namely B;; and B;».

Thus, the element S;; of S; corresponds to By, k =1,2. We write

i1 nBz2 =

S 2 By k=1,2.

By (iii), neither B;; c B;o, nor B;s c B;1. Hence, it is reasonable to consider
S;1 and Sjo to be incomparable elements of .5;. We write

Si1%Si2

to express the incomparability.
Together, these two elements form a link, denoted by S; ., or simply by S
(since s(g) =i by € being a loop), giving

Si = {Sﬂ%éslg} (90)

We might by abuse of notation also denote the semichain S; by S if it is
clear from the context, and refer to it as special semichain.

Hence, we obtain for each ¢ € (Jy two semichains that we denote by S(l)

and Si( ). Bach of them is of the form Si( ), Si(c) or Se.

Subsection 4.4.4 will give more information about the detailed choice of the
semichaing as one of the just mentioned forms.

First we want to extend the definiton of signs from letters to filtrations
and semichains in the next section. Thus, the assignment of semichains to
bundles in Subsection 4.4.4 can be given in a unique way.
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4.4.3 Signs for filtrations and semichains

To describe the assignment of the semichains to the bundles R and €, we
will draw back on the notation of signs (compare Section 2.3).

Recall that we assign to each letter z € ', x € {ud, d}, a sign sgn(z) € {+,-}.
Two letters 1,1’ have the same sign if and only if {I,I’} = {71, y} for two
arrows x,y, and either zy € R or x = y € Sp.

Assume from now on that we have chosen the same sign for every ¢ € Sp:

sgn(e) = k, for all € € Sp, some k € {+,-}.

We want to use the signs of the letters appearing in a filtration to give their

filtration a sign. To this end, let Fi(J), j € {1,2}, be a filtration for some

i € Qo. Depending on the type of Fl.(j)7 we choose its sign as follows:

type (1): We choose the sign of Fi(j ) with respect to the ordinary arrow determ-
ining it:

sen(F}")) = sgn(a™). (91)
type (2): We have for the two ordinary arrows determining Fi(j) that sgn(a™!) =

sgn(b), and we choose the sign of the filtration according to this prop-
erty:

sen(FY)) = sgn(a™) = sgn(b). (92)
type (3): We proceed similar as in the case of type (1) which yields that
sgn(Fi(j)) =sgn(a). (93)

type (4): Asin the cases of type (1) and (3), there is only one arrow determining
subspaces within the filtration, and thus we set

sgn(Fi(j)) =sgn(e). (94)

type (5): In this case we need to distinguish between i being isolated or not. Let
Fi(]) be the second filtration on the vector space V;, hence, j # j € {1,2}.

If ¢ is not isolated, then Fi(j) is not of type (5) and we can choose its
sign according to the above description. Then we set

sen(F ")) = —sgn(F). (95)
Otherwise 7 is isolated. Then we set conventionally

sgn(Fi(l)) =+, sgn(Fi(Q)) =, (96)
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Lemma 4.72. By choosing the signs as in (91) - (96), we have
Sgn(Fi(l)) * sgn(Fi@)) for all i € Q.

Proof. Assume without loss of generality that Fi(l) is a filtration of type
(5). Tt follows by construction above that sgn(Fi(l)) * sgn(Fi(z)) for Fi@) a
filtration of type (1)-(5).

Assume towards a contradiction that sgn(Fi(l)) = sgn(Fi@)). Let Fi(l) be a

filtration of type (2). We consider the different possibilities for FZ.(2): If it is
of type (1), then we have locally at vertex i the situation

with ab = 0. Hence, sgn(a™') = sgn(b) = sgn(Fl.(l)) and sgn(FZ.(Q)) =sgn(ct).
Thus, by assumption sgn(c!) = sgn(b). It follows cb = 0 as well, giving
a contradiction to the assumption on the type of Fi(z) (since the relation
cb = 0 would imply that Fi(2) is of type (2)). For Fi(Q) of type (3) we obtain
similarly a contradiction.

For FZ.(Q) of type (2), we locally have

with ab =0 and dc = 0. Hence, since we assume the filtrations have the same
sign. It follows that sgn(a™') = sgn(b) = sgn(d') = sgn(c). This implies
that ad = 0 and ¢b = 0, a contradiction to A being skewed-gentle.

Let FZ.(Q) now be of type (4). Then we have at vertex i:

y ()

—_— ' ——>

with ab = 0, € € Sp. For the filtrations to have the same sign, the relation
ae = 0 or the relation €b = 0 must be satisfied. By definition of skewed-
gentle, the relations may not start or end in a special loop. Hence, we obtain
a contradiction.

It remains to consider cases where one of the filtrations is of type (4) and the

other is not of type (2), not of type (5). Without loss of generality let Fi(l)
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be of type (1). If FZ.(2) is of type (3), we consider at vertex i the following
situation:

e*

, ()
— > e
Since sgn(Fi(l)) = Sgn(FZ.(Q)), it follows that sgn(e*) = sgn(b). This implies
that eb = 0 which gives a contradiction. We obtain a similar contradiction
for Fi@) being of type (1). O

Thus, we know how to obtain a sign for each of the two filtrations Fi(l), Fi(z)
on a vertex 7 € ()g. By the previous lemma, it is clear that there does not
exist ¢ € Qo such that its two filtrations have same sign.

We want to use this data in order to choose for each filtration Fi(]), j=1,2a

corresponding semichain Si(j )in a unique way. In Subsection 4.4.2, we have
already discussed what kind of possibilities we have for this choice.

For a filtration of type (4) there is no choice given since the correspond-
ing semichain is given by (90).

Hence, let Fi(j) for j € {1,2} be a filtration of type (1) - (3) or (5) with
Sgn(Fi(j)) =p and pe{+ -}

The corresponding semichain Si(j ) can either be compatible with the sub-
space inclusions of Fl.(j ) as described in (85), or we use a reversed ordering
in the semichain with respect to the subspace inclusions (cf. (86)). In the

first case, we denote the semichain of the respective form by Si(j’c), in the
second case by Si(]’r).
Recall that sgn(e) = « for all € € Sp. We choose Si(]) according to the sign

of F, Z.(j ) as follows:
if =k, set Si(j) = SZ.(j’c), (97)

otherwise, set Si(j) = Si(j’T), (98)
and in any case set sgn(Si(j)) = [
This choice will help us in the next subsection to assign the semichains in a
unique way to the different bundles. In addition, we obtain an "orientation"
on the £-graphs which matches the directions on letters of finite index. Ad-
ditionally, we will see that the letter v,,+1 which gives the symmetry axis in
a symmetric string, is excluded from this result.
4.4.4 Assignment of semichains to bundles
When assigning the semichains to the bundles SR and €, we need to take

the definition of admissible transformations into account. Here, the trans-
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formations of type 2 are of importance since the allowed row and column
operations in the matrices of the representations should coincide with those
operations on the vector space which do not change the chosen (sub-)bases
with respect to the filtrations. We have already done some of the work for
this in the previous subsection.

As mentioned before, we would like to obtain a basis change matrix on each
vector space V;, © € QQp, in terms of the matrix problem. To this end, it
is clear that the two filtrations at each vertex i € QQg are assigned each to
different bundles.

Keeping the goal in mind that the orientation Bondarenko gives on £—chains
and £-cycles coincides with the one we have described on bands and strings
(compare Chapter 3.3), we give the description of a certain assignment. We
claim that the orientations then coincide with the directions on the respect-
ive letters of finite index, if the letter is not given by the symmetry axis of a
symmetric string. (Proposition 4.145, Subsection 4.7).

Let j € {1,2} and let 7 be its complement with respect to {1,2}. Then, as
described in the previous section, we obtain for each i € Qo two semichains
S/, S?. Each of them has a sign, say for a fixed i € Qo:

Sgl’l(SZ]) =k, Sgl’l(SZj) = —K,

where k is still chosen in such a way that sgn(e) = k for all £ € Sp. We set

N =57,

¢ =57
Proceeding like this for any i € Q)g, we obtain two bundles R = Uj.; R; and
¢ = U, ¢, where |Qo| = n and for any semichain 9R; € € we have that
sgn(R;) = -k, for any €; € € we have that sgn(¢&;) = «.
Thus, all semichains in € are of special or compatible type, while R consists

of semichains of reversed type.

Remark 4.73. Note that there exists one exception for which the above
construction does not work. For A =kQ/(RURSP) given by

Q: 661317

with R =@ and Sp = {n,e}, we cannot use the construction given in this and
the previous subsections. Instead, we consider A’ =k Q'/(R' URS?") with

Q: <(C1—"=2)m,
R’ = @ and Sp’ = {n,e}. Considering representations V' of (Q'jR’URSp,)
with V| bijective is equivalent to considering representations V of (Q,RU RSP)
with Vi 2 Vi 2 V) and Vo =V, V; = V.
Hence, we replace A in the following by A" and use the mentioned identific-
ation of their respective representations.
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Remark 4.74. Note that generally any assignment of the semichains to the
row and column label sets gives a bundle of semichains. We can for example
also assign semichains of the types Sij’c to the row label set and similarly
those of type Sg7r to the column label set. We have chosen this particular
assignment in order to obtain a compatibility with respect to directions (cf.
Proposition 4.145).

4.4.5 The involution o

While the ordering within the semichains relates to admissible transform-
ations of type 2, the involution o relates to the definition of admissible
transformations of type 1 (compare Section 4.1 and [Bon91|). Hence, we
need to take the admissible transformations of type 1 into account in order
to define o,.

In Subsection 4.4.2, we have chosen some bases depending on each other; the
basis of the image of an ordinary arrow is chosen with respect to its preim-
age without kernel. We choose o such that the admissible transformations
reflect this correspondence.

By [Bon91], the involution is clearly defined on elements of two-point links.
By construction, the two-point links are of the form S, for £ € Sp. Recall
that we denote its elements by S7 = basis of im(e) and S_ = basis of ker(e).
Then oy acts as the identity on those two elements:

on: SIe ST
S. = SC.

Any other link in our construction is given by a one-point link. We now
describe how o acts on those. To this end, let S/, S,lf be two elements of
the form

S 2 basis of V; @ ker(a), (99)
St 2 basisof im(a) (100)
for some a :i - k € QY. Recall that we have chosen the basis of im(a)
depending on basis of V; © ker(a) in Subsection 4.4.2. Then o acts as
follows:
CHRE S

On any other element S} which belongs to a one-point link, and which is not
of the form (99)-(100), o acts as identity:

) q q
ox: Sy S).
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Definition 4.75. Let A be a skewed-gentle algebra. We define its associated
bundle of semichains by Xp = (Xa,04), where X and op are defined as in
the construction abowve.

Remark 4.76. By the above definition of the involution oy, the basis of V;©
ker(a) and basis of im(a) for any a € Q"4 are connected in X5. By defini-
tion of admissible transformations of type 2, we need to change one of those
bases whenever we change the other. Hence, X is compatible with this kind
of dependences.

Remark 4.77. We find in [Den00, Example 3] a construction of a bush for a
clannish algbra. This construction is similar to our construction for the fol-
lowing reasons. First, a bush is by definition a bundle of semichains. Second,
Deng imposes additional conditions on the clannish algebra which coincide
with our restriction to skewed-gentle algebras. Thus, Deng also considers
skewed-gentle algebras. The semichains constructed in [Den00] correspond
in the following way to the filtrations given in Subsection 4.4.1: the semi-
chain given by {i°xe} corresponds to a filtration of type (4). The semichains
{a™ <} and {i® <b™} correspond to filtrations of type (1) and (3), respect-
wely. A filtration of type (2) corresponds to the semichain {a~ <i® <b*}.
But there are also some differences. First of all, Deng’s construction does
not determine a bush in a unique way. After having chosen signs on the
letters, our construction is uniquely determined. Second, all semichains are
chosen in a compatible order with respect to the subspace inclusions of the
respective filtrations. In contrast to that, we include semichains with reversed
order to obtain compatibility between the directions of special letters in words
and relations of the form x;axiy in the £—graphs.

4.4.6 The relations a and

This subsection describes the a— and [S-relations for our setup according
to their definitions in Section 4.1. These relations follow naturally from our
construction.

Note at first that these relations are defined between links of the semichains
(in contrast to o, which is defined between elements).

Let us first describe the f-relations. Recall that we assign for any ver-
tex 1 € Qg one of its semichains to R, and the other to €. Recall also that
the vertices of () index the semichains in the bundles. We obtain

SIS for any i€ Qo,j € {1,2},5 %7€ {1,2}.
Thus, § indicates whether there is a switch between the two bases of V;.

Remark 4.78. Any link is in exactly one S—relation, up to symmetry.

134



The a-relations are formed in a more complicated manner since they
depend on o and the number of elements in the links.
Our setup results in the following a—relations:
Links of type S;, € € Sp, are always in a—relation with themselves, since any
special loop gives a two-point link. Hence,

S.aS. VeeSp.

Now let Sf describe a one-point link. Then, whenever o does not act as
identity on such a link, we have

Sga(aA(Sf)).

Remark 4.79. Any one-point link S with o(SZ) = S§ is not in any a—relation.
Thus, those links do not have to be considered for admissibility. Links of the
form Se+ are also not of interest for admissibility since they are two-point
links.

Remark 4.80. Note that only links of the form S.- for some € € Sp give
candidates for double ends; they are the only links in a—relation with them-
selves.

We see later (compare Sections 4.5 and 4.6) that any a-relation in an
L—-graph g, coming from a word w represents a letter w; of w.
After giving the construction, we can formulate the proof of Theorem 4.70:

Proof of Theorem 4.70. The statement follows by the construction above.
O

4.4.7 Examples

We give examples on how to construct a bundle of semichains for two skewed-
gentle algebras.

Example 4.81. Let A be given as in Example 2.3.1. We choose the signs of
the letters of T'wq = {€*,a,a™'} as follows:

sgne® =1, (101)
sgna =sgn(a™') = -1. (102)

The filtrations are of type (4) and type (2), respectively:
Fl(l) ¢ O0cim(e) @ ker(e) = V7,

F1(2) i Ocim(a) cker(a) cVy
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and give the following semichains:

S = {Shxsy,
(2 ) ={S11 > S12 > S13},
(2 <) = = {S11 < S12 < S13}.

The elements correspond in the following way to the bases of the subspaces:

SZ. 2 basis of im(e),

S_« = basis of ker(e),
Si1 = basis of im(a),
Si2 = basis of ker(a) ©im(a),

Si3 = basis of V] © ker(a).
The filtrations and semichais inherit their signs from (101) and (102) in the
following way:
sgn(Fl(l)) =1, sgn(S%l)) =1,
sgn(Fl(Q)) =-1, sgn(SfQ’T)) = sgn(S§2’C)) =-1

Sf2) _ 552,1“)

Hence, we choose and obtain

Ry = sz) and
¢ =50,

We set €5 = S5, € = S, Ry = S, where i = 1,2,3. The involution

acts as identity on the elements, except for the pair op(R11) = Ri3. Hence,
XA = (XA, 04) is given with oy as defined above, and with X5 = (€1, R1).
We denote the two-point link containing €I, and €. by C.«. The following
relations are given on the links:

a — relations:  Ri1afR3
Coralox
B — relations: Ry fC~, 1=1,2,3.

Remark 4.82. The above algebra has motivated the Examples 4.7 and 4.17,
where €11 15 to be identified with C.x.

Example 4.83. Consider A from Ezample 2.14. Recall that its undirected
alphabet is given by

-1 -1 -1 -1 -1 % % %
FUd:{a7a’ Jb7b ,C, C 7d7d ,€,€ ,E K, }
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and that the following zero relations hold: ca =0, db=0, ec=0.
We choose the following signs according to those relations:

sgn(e”) =sgn(n”) = sgn(x”) = -1,
sgn(c™) =sgn(a) = -1,
sgn(e™) =sgn(c) = 1,
sgn(d™!) =sgn(b) = 1,

sgn(a )= 1,
sgn(e) = -1,
sgn(b™h)= 1,
sgn(d) = 1.

We consider the following filtrations:

Y
Y
Y
F
Josy

0 cim(e) @ ker(e) = 4,
:0 cim(a) c ker(c) c Va,
0 < im(y) @ ker() = Vi,
:0 cim(d) c Vy,

:0 cim(k) @ ker(k) = V5,

From those we derive these semichains:

S {5757},

1

2

2

S (S < Sia},
S5 {53y < S5y < 55},
S5 {851 < S <553},

SV (SF=S, Y,

3

S(Q’C) : {S31 < 532},

19450 <9,

4

S {8 <55,

S {SFsS7),

5

529, {S51 < Ss2 < Ss3},
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552,1")
5,2(1,7“)
5,2(2,7‘)

S§2,r)
Sil,r)

SiQ,r)

SEEZ,T)

:0 cker(a) c Vi,
:0 cim(b) c ker(d) c Vs,
10 c ker(b) Vs,
10 cim(e) c Vi,
:0 cim(c) c ker(e) c V.

:{S11 > Si2},
{55 > 55 > s51,
{88 > 55 > 8y,

:{S31 > S32},
{85 > 550,

(s> 50,

: {S51 > 552 > 553}

(111)



where the elements correspond to the following bases:

SY. 2 basis of im(e), SZ. 2 basis of ker(¢),

S11 = basis of ker(a), S12 = basis of V; e ker(a),
Sg) = basis of im(a), Sg) = basis of ker(c) ©im(a),
S%) = basis of V5 © ker(c),

S{2) 2 basis of im(b), S$2) 2 basis of ker(d) © im(b),
S$2) 2 basis of Vy © ker(d),

S,y+ = basis of im(n), S+ = basis of ker(n),

S31 = basis of ker(b), S39 = basis of V3 © ker(b),
Sﬂ) = basis of im(d), Sg) = basis of V; ©im(d),
Sﬁ) 2 basis of im(e), Sg) 2 basis of V; ©im(e),

St 2 basis of im(k), S+ = basis of ker(k),

S51 = basis of im(c), Ss2 = basis of ker(e) ©im(c),

Ss3 = basis of Vi © ker(e).

The semichains in (111) inherit their signs from (103) - (110):

sen(sy") = -1, sen(S{*?) = sen(s*") = 1,
sgn(Sél’c)) = sgn(Sél’T)) = -1, sgn(S§2’c)) = sgn(SéQ’T)) =1,
sgn(S?El)) = -1, sgn(S?EQ’C)) = sgn(Sézr)) =1,
sen(s§ ) =sen(S{") =1, sen(S{*?) =sen(s) = -1,
sgn(Sél)) =-1, sgn(SéZ’C)) = sgn(Sém)) =1.

Assigning the semichains to the row and column sets according to their signs
results in:

¢ =50 Ry = 577
€y = 5 Ry = 57
€5 = 5 Ry = 57
€y = 5 Ry = 50"
€5 = 54 Ry = 57

Renaming the elements in the semichains regarded as elements of row or
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column sets gives X5 = {€y,...,C5,Rq,... R} where

¢ {€IxC} A1 {R11 > NRia},

€y {Co1 < €0 < Ca3}, Ra : {MRa1 > Rop > Noz},
C3:{€=C }, Rz : {R31 > Rza ), (112)
€4 {€y1 < Cya}, Ry {Ra1 > Raz},

Cs5: {Cr=, }, Rs : {Rs1 > Rs2 > Rs3 ).

The involution op acts on the elements of the semichains in (112) in the
following way:

op R < Ep o3 < Ry
Ro1 < 9{32 9%23 < RApn
€41 < Rs3.

On any other element, op acts as identity.
We obtain the following a—relations:

Co108R91 Ca3aR51
Ra1 Rz RozaRy
C410R53 C.al,
¢,ad, C.al,

and the following B—relations:

C. LR 1=1,2
€2 BNR2; 1,7=1,2
¢, BR3; 1=1,2
C4i SR, 1,7=1,2
¢8R5 1=1,2,3.

Remark 4.84. The above example gives algebra of Example 4.52.2.

We have seen how to construct a bundle of semichains for a given skewed-
gentle algebra. In the next step, we examine how to construct £—chains and
L-cycles in X5 from words in I'yg(A).
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4.5 £-chains from finite words

Recall that we consider a skewed-gentle algebra A. We consider finite I' g (A)-
words w. Starting from this data, we construct an £-chain g, in XA. The
idea is to obtain for each letter w; of w an a-relation in g,,, and for each
node between two letters we get two links in g, which are connected by a
[-relation.

We see at the end of this section that asymmetric and symmetric strings, as
well as the subword u of the periodic part of a symmetric band give simple
admissible £—chains (Theorem 4.113) and that any such £-chain can be
constructed from those words (Theorem 4.116). These results yield the ex-
istence of a 1-1-correspondence between certain equivalence classes of words
and certain isomorphism classes of £—chains (Corollary 4.117).

Before we get to this and related results, we give the construction of an
L—chain g, for an arbitrary finite I'yq(A)-word w and discuss its well-
definedness and uniqueness.

Within the construction, we are going to refer to the start and target of a
letter w; of w. When depicting w in terms of arrows as described in Section
3.1, the start (target) of w; is always assigned to its right (left) hand side
with respect to the depiction.

Construction of g,. Let w be an undirected finite word of length n.

We construct the corresponding £—chain g,, as follows:
1. Depict w as Dw:vog}—lvllf—z L,

2. Associate to each v; the values v;(s) and v;(t) — start and target of the
letters w; and w;.1, respectively.

Note that the vertices v;(s) and v;(t) describing the start and target of the
letters in w are to be distinguished from the associated vertices v;(Q) = v;(w)
in the quiver (cf. Section 2.3).

Extending w by trivial words to 1, (g).wly, (q),., for appropiate k, u1, gives
again a word. We consider vo(s) (vn(t)) as start (target) of the respective
trivial word.

3. We associate to each v;(s) a node ¢; in the graph C,,, and to each v;(t)
a node ¢;. Thus, Cy, is a linear graph of form:

ng: co—Co—C1—C]—**—Cp—Cnp.
4. Consider each letter w; as a map sending the element v;(s) to v;—1(¢):
wi v (8) P vi_1(t).

Assign to each of those a vector space X, X, where X, X belong to one

. 1 2 . .
of the filtrations FUE ()Q), Fv(i_)l(Q)7 respectively. For some ¢ € Qg we have
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that
X in Fv(j()Q) is assigned to v;(s) if sgn(w;') = Sgn(Fv(j()Q)),
vi(s) € X and vi(s) ¢ V(0 © X,
X in Fg()@ is assigned to v;(t) if sgn(wjs1) = Sgn(Fg()Q)),
vi(t) € X and vi(t) ¢ V0, © X,

where j,7€{1,2}, j #7.

Note that we treat 1,(qg),. as wo, and 1,, (o), s Wn+1, in order to determine
corresponding subspaces for vg(s) and v, (t), respectively.

In a filtration of linear form, there exists a maximal subspace as needed in
step 4. In a filtration of diamond form, this maximal subspace is also defined
since there only exist two proper subspaces which are complementary to each
other.

5. Assign to each v;(s), v;(t) a link, using the associated subspaces ac-
cording to Section 4.4.2:

if v;(s) is assigned to X, then the link L;=basis of X is assigned to
B Ui(s)7 B 3
if v;(¢t) is assigned to X, then the link L;=basis of X is assigned to

Ui(t),

for 0 <i<n, Liiiieﬂ((’:m(@uﬂ%vi(@). -

Since v;(s) and v;(t) belong to uniquely determined subspaces X, X as de-
scribed in step 4, the links L; and L; are each uniquely given. Moreover, one
of the two links belongs to the column label set £(&,,(q,), and the other to
the row label set £(R,, (o))

6. Order the links according to the ordering of their corresponding vertices

n w:

%) V1 Un
—t~—— —_— —
vo(s) vo(t) vi(s) wvi(t) - vn(s)  vn(t)
LO Ijo L1 I:l e Ln En

7. Set gy : Cy, = LU {a, B} with

) )

. 6 _ .
{ C; = I; 5 )‘i,i if C; — C; 11 ng

G v N i G2 i in Gy,
where
x; = Ly, f‘iZEi, V0 <17 <n,
Aii =5, VO <i<n,
1441 = @, VO <i<n.
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This construction gives g, with

gw,O = {w()ajOv o axnafnh

Juw,1 = {)‘0,67 )‘6,17 SRR /\Tlﬁ}
which can be depicted as
Gw P TO =Ty~ T1—T1~ "~ Ty~ Tn.

Recall that we work with undirected words, i.e., for any special letter w; = £*
its direction is not defined. Thus, we are not able to determine for its start
v;(s) and target v;_1(t) a subspace: they either belong to the kernel or the
image of €. But recall also that we only use the subspaces in order to de-
termine a link for each start and target. The two-point link €.+ is associated
to both subspaces ker(¢) and im(e). Thus, we can still uniquely assign the
link €.+ to v;(s) and v;_;(t) without knowing the direction of w;. We write
in abuse of notation v;(s) € €* and basis of £*= €.x.

There are two other important properties of the construction worth men-
tioning:

Remark 4.85. By step 7, we have that L;—L; and L; ~ Li1. This confirms
that a B—relation indicates a change between the two bases of a vector space
given by the respective filtrations, and that an a—relation is given for each
letter. Moreover, if we consider a subchain consisting of two links connected
by an a—relation, we can read from the arrangement of the links whether the
corresponding letter is inverse or direct.

Remark 4.86. As mentioned above, the subspaces X and X for v;(s) and
vi(t), respectively, belong to two different filtrations. Thus, we obtain for
vi(8) and v;(t) two links coming from different semichains. It follows that
we obtain for each i € {0,...,n} one link from the column, and one link from
the row label set.

Before we start examining the well-definedness of the above construction,
we give explicit examples:

Example 4.87. Let A be given as in Example 2.5.1. Recall that Q is given
by

€ C 1 Q a
with Sp = {e} and R = {a®}. We choose the signs sgn(e*) = & and sgn(a) =

sgn(a™) = —k. Recall from Example 4.81 that the semichains in X are of
the following form:

Q:l = {Q:;*§€;*}
Ry = {R11 > Rz > Rz},
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where

P11 = basis of im(a),
M2 = basis of ker(a) ©im(a),
M3 = basis of V] © ker(a).

Recall that o acts as identity, apart from op(Ri11) = Riz. The signs of the
semichains are given by

sgn(€r) = K,
sgn(MRq) = —k.

1

Let w=c*ac*a™"e*. Then g, is constructed by the following steps:

* * *
3

1. Dw : Vo— V1 <L () 6*’Ug L 1)48—1)5
vo vl v2 v3 vq v5
T et R e P e R U P St
vo(s) vo(t) —vi(s) vi(t)«—wva(s) va(t) —ws(s) va(t)—va(s) va(t) —vs(s) vs(t)
Cw: €o—Cy—C1—C—Co—Cy—C3—C3—C4—C4—C5—Cs
vi | vi(s), vi(t) | sgn(w;t) / sgn(wis1) | subspace link
Vo vo(s) -K ker(a) Rz = Lo
vo(t) K e* Cor = Lo
vy v1(8) K e* € =Ly
V1 (t) —-K im(a) %11 = L1
() UQ(S) -K Vie ker(a) Riz = {/2
4.45. va(t) K e* Cor = Lo
V3 v3(s) K e* € = L3
v3(t) -K Vieker(a) | Riz=Ls
vy v4(s) -K im(a) R =Ly
v4(t) K e* Cor =1Ly
Vs v5(8) K e” € = Ly
U5(t) —K ker(a) 9%12 = L5
6.+7.
Ju * Lo—ZONLl—[_/1~L2—[_/2~L3—[_/3~L4—[_/4~L5—I_/5 (113)
R12-Cox ~C s —R11~R13—Cx v s —R13~R11-C_x~Cox —R12 (114)
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Example 4.88. Let A be given as in Example 2.14. Recall that Q is given

" 561 5QH
vl
nC3/ \4

Sp = {n,e,k} and R = {ca,db,ec}. We choose the signs of the letters as in
Ezample 4.83. We recall the semichains from (112):

(O {@;iﬁ@g} Ry : {9%11 > 9%12},
Co: {Co1 < Ca < C3}, Ra 1 {NRa21 > Rop > Roz},
C3: {€)=C, }, Rz : {NR31 > Rz},
Cy: {Cy < Cya}, Ry {Ra1 > Raa},
C5: {C =, }, Rs : {Rs1 > Rsz > N3},
where
P11 = basis of ker(a), Ri12 = basis of V4 © ker(a),
€91 = basis of im(a), €99 = basis of ker(c) ©im(a),
€93 = basis of Vs © ker(c),
MRo1 = basis of im(b), Moo = basis of ker(d) ©im(b),
MRog = basis of V3 6 ker(d),
P31 = basis of ker(b), M3o = basis of V3 © ker(b),
€41 = basis of im(e), C49 = basis of Vj ©im(e),
My41 = basis of im(d), MRy9 = basis of V; ©im(d),
MAs1 = basis of im(c), NRs2 = basis of ker(e) ©im(c),

NRs3 = basis of V5 © ker(e)..

Let w=n*"b"tc ket

lows:

Its corresponding £—chain g, ts constructed as fol-

n* b c K* e
Dy wvy—v] — Vg —> U3—Ug4 —> Us

vo v1 v2 v3 V4 V5
n* b c K* e
vo(s) vo(t) —wi(s) vi(t)—wv2(s) va(t)—v3(s) vs(t) —va(s) va(t)—ws(s) vs(t)

Cw: c€o—Cyp—C1—C—Cy—Cy—C3—C3—C4—Cy—C5—Cs
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vi | vi(s), vi(t) | sgn(w;t) /sgn(wis1) | subspace link
Vo ’U()(S) 1 ker(b) 9‘{31 = LO
vo(t) -1 n ¢y = Lo
V1 v1(8) -1 n* ¢ =Ly
U1 (t) 1 Vse ker(b) Rao = Ly
Vg va(s) 1 im(b) MRo1 = Lo
4.4+5. va(t) -1 Vo oker(c) | €23 = Lo
V3 ’1)3(8) 1 im(c) 9{51 = L3
v3(t) -1 K (O
vy v4(s) -1 K Cpox =Ly
v4(t) 1 Vs oker(e) | Rs3 = Ly
Vs 1)5(8) -1 im(e) Q:41 = L5
U5(t) 1 Vio 1m(d) Ryo = I/5

6.+7.
Guw '+ R31-Cpx ~C « —R32~NR21 —Co3~R51 —C, 4 ~€, 5 ~R53~Cy1 -Ry2

Next we show the well-definedness of g,,. This includes several state-
ments. In particular, we show that equivalent words result in isomorphic
L£—chains. We consider these results at first separately and then sum them
up in the context of well-definedness.

Lemma 4.89. The above construction results in an £—chain g, for any
finite Tyq(A*)—word w. This £—chain is unique for any word w.

Proof. Observe at first that C,,, is always given by a chain. Also, by step 7,
condition (b) of the definition of an £—graph is satisfied. It remains to show
condition (a) of an £-graph.

First we show that L;3L; holds for all i € {0,...,n}. We have by step 4 and
step 5 that v;(s) € X, v;(t) € X and basis of X2 L;, basis of X2 L;.

Since sgn(w; 1) # sgn(w;s1) (cf. Section 2.3), L; and L; do not belong to the
same label set by construction. For ¢ fixed, assume without loss of generality
that

L; € £(€),

It follows by definition of the S-relation that L;3L; for any i € {0,...,n}.
It remains to show that L;_jaL; holds as well. Recall that for an ordinary
arrow (x:j > k)€ Q‘l’rd, the links corresponding to the bases of the subspaces
im(z) and Vj @ ker(x) are connected by oa and thus satisfy the a-relation.
For any special loop € € Sp we have €.+ a€.-.

We have for w; € {x, 27!} for some (z:j - k) € Q3" the following depiction:

vi-1 () <— vi(s) if w; =z,

Ui_1(t) i> UZ‘(S) if Ww; =$71.

145



Hence, 71 : v;(s) = v;_1(t) can be interpreted as z : v;_1(t) + v;(s). Thus,

im(x) if w; =z,
Ui_l(t) € ] 1
Vieker(z) ifw;=a",

R

im(x) if w; =x7.

It follows that the corresponding links L;_1 and L; of vi_l(t)_and vi(s) are

one-point links and that oa(L;-1) = L; by the above. Hence, L;_jaL; holds.
If, on the other hand, w; = €* for some ¢ € Sp, then we depict the letter as

i1 () 0i(s).

As described above, we obtain as corresponding link both for v;—1(¢) and
v;(s) the two-point link €.« = L;_1 = L;. It follows directly L; jaL;.
Finally, we show that the resulting £-chain g,, is unique for any w. The
subspaces X and X are uniquely given for each v;(s) with w;, and each v;(t)
with w;4+1 ordinary, respectively: each arrow x € ch’rd gives rise to exactly
one filtration at its starting and one at its terminating vertex in @, due to
the construction from Section 4.4. We assign v;(s) (v;(t)) to a subspace X
(X) according to the sign of the letter w;' (w;s1). Hence, we consider for
vi(s) (vi(t)) a uniquely given filtration. It follows from w; # w;s1 that X
and X come from different filtrations. By the construction of semichains in
Section 4.4.2, it follows that also the links assigned to v;(s) and v;(t) are
uniquely determined for each of them.

In contrast to ordinary letters, special letters do not give rise to uniquely de-
termined subspaces: since they are not oriented, it is not determined whether
for w; = &* special its associated values v;(s) and v;_1(t) belong to ker(e)
or im(e). But both subspaces correspond to one link €.«. Thus — though
the subspace assignment is not unique — the assignment to a link is unqiuely
given. 0l

Remark 4.90. Note that the £—chain construction is in particular unique
for trivial words. To this end, consider A as in Example 2.14 and let w =15 ..
We have that

Dy .

We can extend w to wls . and regard wo = wy = 12 4. Recall that the signs at
vertex 2 are given by sgn(a) = sgn(c™') = — and sgn(b) = sgn(d™!) = +. We
consider for the construction the signs

sgn(wp') = -,
sgn(wi) =+,
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and thus assign

vo(s) € Vo & ker(c),
Uo(t) eVoo ker(d).

Hence, we obtain two uniquely determined links to represent vo(s) and vo(t)
in gy. Since they are by signs in different label sets, they are in B—relation
with each other:

gw: Caz —Nag.

Before we come to well-definedness of the construction, we examine the
following properties of isomorphisms between the constructed £—chains.

Lemma 4.91. Let v be a finite undirected word with g, = g,. Then g, is
composite.

Proof. Let gy = {x1,...,2n}, 9oo = {@n,...;z1} and g1 = {1, Aot ),
Io1 = {An-1,---sA1}. Then x,_; = 2441 for all i € {0,...,n—1}, and \; = A\p—;
forallie{l,...,n-1}. Thus, we can write g, of the following form, knowing
it is of even length by construction:

gy : .7;1)\11‘2 e xn/2)‘n/2xn/2 e l’g)\lxl.

By construction, A,/ is given by an a-relation, so with h =21\ 22 ... 2y,
we can write

go:h~h7,
which shows that g, is composite. ]
Example 4.92. 1. Let A be given by
Q: = C . Q a
with Sp = {e} and R = {a®}. Let v=c* and thus
g Riz-Cr ~vCs —NRyg=g, =h~h"
with h = Ry — Cx.

2. Let A be given by
Q: aCl—a>QQn

with Sp = {e,n} and R =@. The semichains of X5 are given by

¢ = {€hxCL}, R = {Ri > Rie},
@2 = {Q:;*iﬁgg*}, %2 = {9%21 > 9%22},
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where

P11 = basis of ker(a),
M2 = basis of V1 © ker(a),
M1 = basis of im(a),
Moo = basis of V5 ©1im(a).

The involution o sends Rio <> Ro1 and acts as identity otherwise.
Let v=c*a"'n*ac* and

h:Rip = Cex ~ Cox = NRyo ~ Rap — Cpe.

Then v~ = v and
(go: h~h")=g; =gy

Lemma 4.93. Let v and w be two finite T'yq(A)—words. Let 7: g, = gy be
an isomorphism. Then

a) T =1id if g, and g, are simple,
b) T e{id,rev} if g, and g, are composite,

where rev(c;) = cpr1—i for any i € {1,...,n}, and n is the length of the
underlying graph.

Proof.  a) Let the underlying graphs of g, and g, be given by

Cy,:c1——c, and
/

ng : Cll -t cn?
respectively. Recall that the image of two incident nodes under 7 is
again given by two incident nodes, i.e. if ¢; — ¢;+1, then 7(¢;) = 7(¢i11)-
Let g, = gw. Then 7 = id € Aut(g,). It remains to show, that 7
cannot be of any other form. Assume towards a contradiction that
there exists 7 € Aut(g,) with 7 #id. Then there exist ¢ # j € {1,...,n}
with 7(¢;) = ¢}. Tt follows that 7(cis1) € {c},1,¢}_1}, say without loss
of generality 7(ci1) = c;._l. Thus,

T(cisk) =y forke{i+1,...,min{n—-14,j-1}},
7(cick) =y for ke {l,...,min{n-j,i-1}}.

For reasons of well-definedness of the indices, it follows i = j -1 =
for n even, and 1 = j = "T” for n odd. Hence, 7 =rev and g, = g;,. B
Lemma 4.91, g, is composite.

EPAENTH
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Let now g, # g, We want to show that there does not exist an iso-
morphism between the two £—chains. Assume towards a contradiction
otherwise. Then 7 # id and there exist i # j € {1,...,n} with 7(¢;) = /.
Analogously to the above, we obtain that g, is composite which gives
a contradiction.

b) Let g, = A¥l and g, = mt composite. If g, = gu, then 7 = id € Aut(gs).
If additionally g, = g;;, then by same line of argument as in a), 7 = rev €

Aut(gy).
Consider now g, # g. Then 7 # id. By same line of argument as in
a), it follows that g, = g;;, and thus 7 = rev.

O

Remark 4.94. I follows that we have in Lemma 4.93, a) that g, = g, and
in Lemma 4.93, b) that g, = gy 0T gy = g,

Lemma 4.95. Let v and w be two finite Tyq(A)—words with v =w"". Then
Y = Go-

Proof. Let w = wy ...w, be an undirected finite word. Then we have that

v = w! = w,'...wy'. We obtain the following correspondences on the

associated values of the nodes v; of w and v} of w™!, 0 <i < n:
Wi(t) > vn-i(s), (115)
vi(8) < vpi(t). (116)
As maps, the letters act similar on the corresponding pairs. Thus, the links of

corresponding associated values coincide for all 7 € {0,...,n} and we obtain
by (115) and (116) that

i = Ln—iu
Ln—i'

S~

i
Using those equalities, we obtain as £—chains:

Guw :LO_EONLl_""“Ln—l_I/n—l"’Ln_f/n
Guw-1 ILn—LnNLn_l—"'NLl—Ll NLo—Lo.

It follows that g,, = g,,-1- O
Lemma 4.96. Let v and w be two finite T'yq(A)— words. Then we have

(i) gv = gw if and only if v =w,

(1) gv 2 gw if and only if v~ w,
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Proof. (i) Let v = w. Denote by v;(—) the associated values of the nodes

of w and by v](-) those of v. Then we have for any i € {0,...,n}
that v;(s) = v](s) and v;(t) = v;(t) correspond to the same subspace,
respectively. Hence

LY=L, and

LY =LY, forall0<i<n.

It follows gy, = gu-
Conversely, let g, = gy. Then

T =z}, and z; =z, for all 0 <4 < n,
v _ W .
Aii = Ao for all 0 <i < n,
v\ . B
)‘E,z‘u = AL forall0<i<n—1.

We have v;(s),v!(s) € X; and v;(t),v[(t) € X; for all 0 < i < n. Tt
follows that v; = w; for all 0 <7 <n and thus w = v.

By definition, v ~ w if and only if v = w or v = w™'. The case v = w
follows from (i) with 7: g, - g given by the identity.
Let now v =w™! and let

Gv,0 = {yOa gOv <oy Yn, gn}v gv,1 = {)\0()7 )\()17 ceey )\nﬁ}7

Guw,0 = {370, Ty -5 T jn}a Juw,1 = {p067p617 I apnﬁ}

We know by the previous lemma that g, = g,,. Hence,

gv,OZ{meny-~-7f0;x0}v gv,1 = {pn'f_b"'apO()}'

Denote by Cy,, Cy, the respective underlying graphs of g, and g,
consisting each of 2n nodes ¢, ;, ¢y, respectively (n = |w| = |v]). Then
7: Oy, - Cy,, gives an isomorphism between g, and g,, by

T :Cyi ™ Cw2n—i-

This can be seen by renumbering ¢,0 = {vo,...,y2n} and the sets
w0, 9v,1, Gw,1 similarly. With these renumbered sets, we obtain that

Yi = Tan—i,  Nij = P2n—i2n—j-

We conclude that g, = gy.
Conversely, let g, = g, with g, # g. Then the isomorphism 7 : g, —
gw is given by the map rev (Lemma 4.93). Thus, g, = g, = gy-1-
Uniqueness of the construction yields that w = v™! and thus w ~ v.

O
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Example 4.97. Let A be as in Example 2.3.1. We have determined its
corresponding bundle of semichains in Fxample 4.81.

Let w=c*ac* and v =c*a"'e*. Then v=w"" and it follows that v ~ w.

We obtain the following corresponding £—chains:

go: Rz — o ~ v —NRy3 ~ Ryp = Cox ~ Cor = NRyg,
gw: Rz = Cer ~ Cox —=NRy1 ~ Ryz — Cor ~ Cov — NRya.

Let the underlying graphs be given by

ng: Cl —C3—C3—C4—C5 —Cg—C7—C8,

C U 4 ! I U ! ! U
g Cl —Cy—C3—C4—C5—Cq—Cy—Cg.

v °

Then 7:Cy, — Cy, gives an isomorphism between g, and g, by
C; V> Co_; 1<4<8.

Lemma 4.98. Let w be a finite I'yq(A)—word with corresponding £—chain
Juw- Then gy, 1s composite if and only if w is composite. In particular,

Juw = gi[;k] if and only if w = vlFl.

Proof. Let gy = hl¥] be composite for some £—chain h and some k > 2.
Assume without loss of generality that d(h) = 2. Let h start in the link €.«
and end in &+ for n,e € Sp. The key argument is that links of the form €+
for p € Sp correspond to both basis of im(u) and basis of ker(u). Thus,
h corresponds to some non-coadmissible word v such that e*vn* is again a
word. Set g, = h. Any £-chain of the form

h~h*
translates to vn*v~! since g} = g,-1. Similarly, any £-chain
h* ~h
translates to v~ "e*v. Since g, = gz[,k]7 it follows by uniqueness of the con-
struction that w = v[¥] = vyp*o~le* ...
Conversely, let w = vl*] for some & > 2 and with v such that e*vn* is again

a word. Thus, g, starts in €.+ and ends in €,». We know that any special
letter p* is translated to

1

e~ €y

in a corresponding £—-chain. Extending v to vn* yields the £—chain
9o ~ Cps.
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Extending further to vn*v™! yields

ngg;-

*

Thus, the corresponding £—chain of olFl = uproler .

o

is given by

=gy~ gy~
It follows by uniqueness of the construction that

Juw = gq[;k] .

O

Example 4.99. Let A be as in Ezample 2.1} and X5 as in Ezample 4.83.
Let w=a"'bn*b~ta. Then

Gw:  Cer =Ry ~ o1 —Rao1 ~ Razo — Cpr ~ Ce —NR3o ~ Roy — o1 ~ Ryp — Cn
and gy = h[?) is composite for

h: € —NRig~Co1 —NRop ~ Rz — &
It foll[gws that h = g, for the subword v = a™'b of w. Morover, we have that
w = v,

Statement (ii) Lemma 4.96 is of importance for our theory about strings
and bands. It shows that equivalent words give isomorphic £—-chains. We are
especially interested in constructing £-graphs for symmetric and asymmet-
ric strings and bands which are representatives of equivalence classes. Our
hope is to get simple (admissible) £—graphs such that we obtain canonical
representations from those.

To this end, we examine now the properties of g,, for w a (non-)coadmissible
word. Write L for a link given by L; or L;. We consider — with notation
from the construction — the following sets:

Lo = {Li, Li}is, (117)
£ ={P=(Li,Lj)| LiaL;, je{i—1,i+1}}. (118)

Let P, P’ be two pairs from £o. We write P ~ P’ if P = (L;,L;) and
P" = (Lj,L;). We denote the respective set of pairs up to symmetry by

£ = %/~ and furthermore, (119)
£8 ={L;e L, | AP € £2 with L; € P}, (120)
Ly = {(Li, L)L} (121)

Properties of these sets will lead to properties of g,, with respect to coad-
missibility.
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Lemma 4.100. Let w be a finite I'yq(A)— word which is not left coadmissible
or not right coadmissible. Then Ly = €. or L, = €.+, respectively, for € € Sp
such that e*w or we” is again a word.

Proof. Assume w is not left coadmissible. Then there exists € € Sp such that
e*w is again a word. Note that € is unique by Remark 4.73 and Definition
2.9. We have vy(s) € ker(e) and hence Lg = €.

The statement follows similarly for w not right coadmissible and L. O

Lemma 4.101. Let w be a finite T'yq(A)— word. Assume that there exist
i €{0,...,n} with L; = Cov for some ¢ € Sp, and with L; € £2. Then either
Li = Lo, or L; = L. In this case, L; gives a double end.

Proof. Let L; = Cox € £% for some i. Then L;aL; holds. By assumption,
the pre- and successor links are not given by €.+. Hence, L; can only be
connected by S-relations to other links in £,,. By definition of an £—-graph,
a— and fS-relations take turns in g, 1, i.e., L; must be the first or last link
of the £—chain g, (otherwise there would be two f-relations in a row). It
follows L; = Lo or L; = L,,.

In any of these cases, LiaL; holds and L; is connected by a S-relation to
the rest of gy, hence it gives a double end. O

Example 4.102. Let A be as in Ezample 2.1} with X as in Ezample 4.83.
Let w=a"'d™'. Its corresponding £-chain is given by

guw: Cor —NRig ~ Co1 — Roz ~ Ry1 — Cyo.

Then £8 = {€.+,C40}. We have Lo = €« and €~al.«. Hence, €.+ gives a
double end. The link €42 is not of the form € « for any p € Sp. It does not
give o double end since € oalys.

Lemma 4.103. Let w be a finite coadmissible I'va(A)—word. Then there
does not exist L; € £& with L; = €.« for any e € Sp, 0 <i < n.

Proof. Assume towards a contradiction that there exist 7 as above with L; =
€.« € £2 for some € € Sp. Tt follows by construction that Li=Lyor L;=L,.
Assume without loss of generality the first case. Then vy(s) € ker(e) and
thus basis of ker(e) =€« = Ly. Thus, vg(Q) = s(¢). It follows that e*w is
again a word. This contradicts w being coadmissible. O

Corollary 4.104. o) Let w be a left coadmissible finite T'yq(A)—word.
Then Lo € £2 with Ly # €.« for any € € Sp. Moreover, Lo corresponds
to the basis of one of the following subspaces: ker(a) for some a € Q*¢,
Vio(@) ©im(b) for some b e QSd, or Vo (Q)-

b) Let w be a right coadmissible finite Tywq(A)—word. Then L, € £2 with
L, # €.« for any € € Sp. Moreover, L, corresponds to the basis of one
of the following subspaces: ker(a) for some a € Q9*9, Vio(g) ©im(b) for
some b e Q‘frd, or Vi (Q)-
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Proof.  a) By the same line of argument as in Lemma 4.103, it follows
that Ly # €.« for any special loop &, and that Lo € £%. Assume
towards a contradiction that Ly does not correspond to any of the bases
of the subspaces. We already know that it also does not correspond
to basis of ker(e) nor to basis of im(e) for any € € Sp. Thus, by
construction, Ly either corresponds to basis of im(b) for some b € Q‘l)rd,
or to basis of V, (g) © ker(a) for some a € Q™. The first case would
require an additional letter wg = b~!, the second an additional letter
wo = a. Both cases give a contradiction to w starting in wy, i.e., to the
length of w.

b) The result follows similar to a).
O

Example 4.105. Let A be as in Ezample 2.14 and let w = e*a™'d™!. Then
w 1s coadmissible and g, is given by

gw: Rl — Cor ~ Cx =Ry ~ Co1 — Roz ~ Ryp — Cyo.
We have
£8 = {1, Cy0}.

Both links are not of the form €.« for any p € Sp.

Remark 4.106. The word w from Example 4.102 is not left coadmissible
and the link €.« belongs to the set £&. Thus, we could assume that the
converse of Lemma 4.103 holds. But that is not the case:

For instance, let A be as in Example 2.8.1. and let w = a. Then w is neither
left coadmissible nor right coadmissible. Its corresponding £—chain is given

by
Ju * Qs* _%11 Nm13_€£*-

We have (Ri1,R13), (Cox, Cx) € @2‘) It follows that £% = @. Hence, £ does
not contain any link of the form €+, but w is not coadmissible.

The example given in the previous remark can be generalised:
Lemma 4.107. Let A be given by
Q: -« C . Q a
with Sp = {e} and R = {a*}. Let w be a finite T yq(A)-word with w # 1;,; for

any i € Qo, any K € {+,—}. Furthermore, let w be neither left coadmissible
nor right coadmissible. Then £2 = @.
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Proof. Since w is neither left-coadmissible nor right-coadmissible, we know
that wy = x for z € {a,a”'}. Then wy = £*. Assume without loss of generality
that wy = a. It follows that

vo(s) € ker(e), basis of ker(g) =€+ = Ly,
vo(t) € im(a),

v1(8) € Vi, (@) © ker(a),

vi(t) ee”, basis of e* 2 €.« = Ly,
vo(s) ee” basis of "= €.+ = L.

Hence, we have that
LgaLlaLg

and thus Lo ¢ £&. Similarly, we obtain that L, ¢ £%. By construction, any
other link in g, ¢ is in a—relation with one of its neighbouring links and thus
belongs to £. O]

If we exclude the algebra from Lemma 4.107, the converse of Lemma
4.103 and its Corollary 4.104 do hold:

Lemma 4.108. Let A be different from Lemma 4.107. Let w be a finite
Tua(A)—word which is not coadmissible. Then L& + @.

Proof. Since w is not coadmissible, it is not left coadmissible or not right
coadmissible or both. Assume without loss of generality that it is neither
left coadmissible nor right coadmissible. Then there exist €, 4 € Sp such that
e*wp”* is again a word. Thus, when considering g,,, we have that

vo(s) € ker(e),basis of e*2 €.+ = L,
vp (t) € ker(u), basis of 2 €« = Ly,.

By form of A, we know that L; and L; are not in a-relation with Lq.
Similarly, we have that L,aL,_1 and L,aL,_1. It follows that

Lo, Ly € £2.
O
Corollary 4.109. Let A be different from the algebra in Lemma 4.107.
a) If w is a left coadmissible finite Tyq(A)—word, then £3 + @.
b) If w is a right coadmissible finite I'yq(A)-word, then £& + @.
Proof. Both statements follow from Lemma 4.108. O

We have seen that the property of £2 being empty or not does not give
any hint about w being coadmissible or not. But the types of links contained
in £2 do.
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Remark 4.110. The above statements give a hint about the connection
between the terms of admissibility and coadmissibility. We have chosen the
term coadmissibility for the respecting property since we do not only require
admissibility on our £—chains. Recall, that admissibility states that

for XY € £ with X # Y, XaY and g(¢;) = X for some i , there exists
an edge p containing ¢; with g(c;) = a.
Thus, admissibility does not include two-point links. Coadmissibility on
words gies admissibility on their corresponding £—graphs extended to two-
point links:

for X,Y € £ with X =Y and g(c¢;) = X for some i , there exists an edge
p containing ¢; with g(¢;) = a.

Finally, we see that the chains arising from asymmetric and symmetric
strings or symmetric bands have certain properties:

Proposition 4.111.  a) Let w be an asymmetric string. Then d(g.,) = 0.
b) Let w=ue*u"t be a symmetric string. Then d(g,) = 1.
c) Let w, be a symmetric band with 1, = e*un*u™ . Then d(g,) = 2.

Proof. a) By definition, w is coadmissible. Thus we have by Lemma 4.103
that Lg # €.+ # L, for any € € Sp. By construction, only links of type
¢+ give double ends. Hence, it follows that d(g,) = 0.

b) The word w is left coadmissible, but not right coadmissible. Applying
Lemma 4.108 yields that L, = €.+ € £&. Lemma 4.101 gives that L,
is a double end. Since u is left coadmissible, we have that Lo # €«
for any p € Sp. Thus, Lo does not give a double end. It follows that

d(gu) =1

¢) Since e*un* gives a word, u is neiter left coadmissible nor right coad-

missible. As in b), it follows that Lo = €.+ and L, = €,+. Hence, we
obtain that d(g,) = 2.

O

Example 4.112. Let A be as in Ezample 2.3.1. with Xz as in Ezample
4.81.

a) Let w=c*ac” be an asymmetric string in T'yq(A). Then
Guw: Riz = Cer ~ Cor =Ry ~ Rz — Cov ~ Cv — Ny
has no double end.

b) Let w=¢€* be a symmetric string in T'yq(A) with u = 11, where p =
sgn(e*). Then
Gu: Rz —Cex

and d(gy) =1, since its right end is double.
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¢) Let wy be a symmetric band in Tyq(A) with w, = e*ac*a™'. It is of
period 4 with u=a. We obtain

gu: € =Ry ~ Rz - Cx
with d(gy) = 2.

The final and most important result of this section ensures that we obtain
for asymmetric and symmetric strings or symmetric bands £-chains which
are simple and admissible. Thus, we make sure that a representative of an
equivalence class of certain words gives a representative of a certain equi-
valence class of £—chains. Hence, the constructed £-chains give canonical
%A—representations.

Theorem 4.113.  a) Let w be an asymmetric string. Then g, € &(£).
b) Let w=ue*u"! be a symmetric string. Then g, € &(L).
¢) Let wy, be a symmetric band with W, = e*un*u~t. Then g, € G(L).

Proof. We know by Lemma 4.89 that the construction gives an £—chain for
the respective words in a) - ¢). It remains to prove simplicity and admissib-
ility.

a) For w an asymmetric string, we have that d(gy) = 0, i.e., neither Lo
nor L, are of the form €.+ for any ¢ € Sp. By Lemma 4.104 we know
that Lo and L,, correspond each to a one-point link that is not in an
a-relation. Thus, admissibility at the beginning and end of g,, is given
(cf. Remark 4.79). By construction, we also have admissibility for the
rest of the chain.

By Lemma 2.54 we know that w is not composite. Lemma 4.98 yields
that g, is also not composite.

b) The same line of argument as in a) gives admissibility for any link but
the double end. Here, admissibility follows since the link is of the form
¢+« which is in a-relation with itself and thus does not need to be
considered for admissibility (cf. Remark 4.79).

Simplicity of g, follows as in a) by minimality of w.

¢) Both admissibility and simplicity follow analogously to b) for both
ends.

O

Example 4.114. Consider again Example 4.112. Recall that by construc-
tion, we only have to check on admissibility at the start and end of the re-
spective £—chain. We show that all three examples give £—chains in S(L):
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a)

b)

c)

Both ends are given by Ria. Now op acts as identity on PRis. By
Remark 4.79, this link is in no a-relation and thus admissibilty at
both ends is given. Furthermore, simplicity follows since R11 + Ri3.

The link R1o does not prevent admissibility by same line of argument
as in a). The link €.+ is a two-point link and does not need to be
considered for admissibility. Hence, g, is admissible. It is simple since
it does not contain any a—relation.

Both ends are given by two-point links. Thus, g, is admissible. Since
Ri1 # Ris, it is also simple.

Example 4.115. Let A be as in Example 2.1/.

a)

b)

Let w = dag™ be an asymmetric string. Then
gw: €2 =Ry ~NRoz — Co1 ~ Ryg — Car ~ v =Ry

The only links serving as double ends of a subchain are given by €.
It follows that d(gyw) = 0. The form of g, yields that it is simple.
Furthermore, both €40 and R11 are in no a—relation. Thus, g, is also
admissible. Hence, g, € S(L).

Let w = das*a™'d™! be a symmetric string. Its corresponding £—chain
1s given with u = da by

gu : €12 = Ra1 ~ Roz — Co1 ~ Ry — Ces.

The link €.+ gives a double end. Analogoulsy to a), €42 does not give
a double end. Thus, d(gy) = 1. Apart from the double end, we do not
have another link in g, o which is of the form €+ for some u € Sp.
Thus, g, is simple. Furthermore, g, is admissible since €49 is not in
any a—relation. It follows that g, € S(L).

Let wy, be a symmetric band with v, = e*a 'bn*b'a. Then u = a™'b
and
Gu:  Cor =Ryg ~ Eo1 — Roy ~ Rizg — Gy

Both €.+ and &« give double ends: d(gy,) = 2. It follows also that g,
is admissible. Moreover, there are no other links of the form &, for
some p € Sp contained in gy 0. Hence, g, is simple and g, € S(L).

Theorem 4.116. Let g € &(£) with

a)

b)

d(g) = 0. Then there exists a word w of asymmetric string type with
Juw =49.

d(g) = 1. Then there exists a word w of symmetric string type with
w=us*u"! and g, = g.
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a) d(g) = 2. Then there exists a word w, of symmetric band type with
periodic part W, = e un*u~t for some £,m € Sp, and g, = g.

Proof. Let go ={xg,...,Tm}-

a) Applying the construction backwards on g results in an undirected
word w with g, = g. It remains to show that w is of asymmetric string
type. We know that g is simple which yields by Lemma 4.98 that w
is not composite. It follows that w # w™'. Now assume towards a
contradiction that w is not left coadmissible. Then there exists € € Sp
such that e*w is again a word. It follows that x¢ = €.+ which gives a

double link.

b) By construction, we obtain a word u with g, = ¢ and with u not left but
right coadmissible if xg is a double end, and with u not right but left
coadmissible if z,, is a double end. Assume without loss of generality
that x,, = €.+, for some ¢ € Sp, is a double end. Then ue” is again a
word and we can set w = ue*u~t. It follows by definition of u that w
is coadmissible. Analogously to a) we have that u is simple. Hence, w
is of symimetric string type.

¢) Similarly to b), we obtain by applying the construction backwards a
word w which is neither left nor right coadmissible with g, = g. Since
g has two double ends, we know that xg = €.+ for some € € Sp and
that x,, = €+ for some n € Sp. Thus, e*un* is again a word. We set
wp = e*un*u~! and consider w, with this periodic part. We know that
wy = w; [-1] and that w;, = wy[p] by the form of w,. It remains to
show that its period p is given by 2|u| + 2. We know by Lemma 4.98
that u is simple. Thus, there does not exist any p’ < p with wy, = w,[p’].

O]

Thus, we clearly obtain by Theorem 4.113 and 4.116 a 1-1-correspondence
between words of asymmetric string type and £—chains with no double ends,
and a similar correspondence between words of symmetric string type and
£—chains with one double end. We also obtain a 1-1-correspondence between
words of symmetric band type and £—chains with two double ends. But we
also get the following 1-1-correspondence:

Corollary 4.117. There exists a 1-1-correspondence between the equival-
ence classes of asymmetric and symmetric strings, symmeitric bands, and
the isomorphism classes of £—chains in &(L).

Proof. Theorem 4.113 and Theorem 4.116 give a 1-1-correspondence between
the set of words of asymmtric string, symmetric string and symmetric band
type and the set of simple, admissible £—chains. By Lemma 4.96 we obtain
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a 1-1-correspondence between the equivalence classes on the words of asym-
metric and symmetric string type and the isomorphism classes of the chains.
We observe for words of symmetric band type that a corresponding £—chain
constructed from its inverse, shift or inverse shift is also based on either
w or u~'. Thus, we also obtain a 1-1-correspondence between the equival-
ence classes of words of symmetric band type and the isomorphism classes

of £—chains with two double ends. O
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4.6 £-cycles from periodic words

Throughout this section, let A be as Section 4.4. We consider Z —words wy,
in Tyq(A) of period p. For any such w, we want to obtain a corresponding
L-cycle gy, To this end, we give a construction. The idea is similar to the
one of the previous section and we find similarities between the construction
of £-cycles and the one of £-chains.

At the end of this section we see in Theorem 4.130 that asymmetric and
symmetric bands result in simple £—cycles. Theorem 4.141 shows that there
exists a correspondence between the set of words of band type and the set of
simple £—cycles. In addition, we show that there exists a 1-1-correspondence
between the equivalence classes of bands and the isomorphism classes of
£—chains in & (Corollary 4.142).

We use the same notation for the construction as in Section 4.5 for the
construction of £—chains.

Construction of g,,. Let w; be an undirected Z —word of period p and
with @, = w1 ... w,. We construct its corresponding £-cycle g, as follows:

. N w1 w2 Wp
1. Depict Wy as Dy, @ 09 < U1 < V2... < Up.

2. Set v, = vg.

3. Associate to each v; the values v;(s) and v;(t), for all 0 < i < p-1,
which give the start and target of the letters w; and w;,1, respectively.

4. Associate to each v;(s) a node ¢; in the graph Cy,, , and to each v;(t),
0<i<p-1lamodeg in Cy, ,0<i<p-1. The graph Cy, is cyclic
and of the form

Cguy t G0 — €1 — € — =+ — Cp-1 — Cp-1 — €0
I |

5. Consider each letter w; as a map sending v;(s) to v;—1(t), where i €
{1,...,p}. Assign to each of those a unique subspace X, X in one of the

filtrations quij()@, qui)l(@, respectively, j,k € {1,2}. For some i € Qg

we have that
is assigned to v;(s) if sgn(w;') = sgn(Fv(j()Q)),
vi(s) € X and vi(s) ¢ V(0 © X,
X in Fg()@ is assigned to v;(t) if sgn(wjs1) = Sgn(Fg()Q)),
vi(t) € X and vi(t) ¢ V0, © X,

: ()
X in Fvi(Q)

for all 1 € {0,...,p -1}, 7# 7, j,7 € {1,2}. Note that we identify w,
with wq according to periodicity.
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6. Using these subspaces, assign to each v;(s) and v;(t) the link corres-
ponding to the basis of its subspace:

if v;(s) is assigned to X, then the link L;=basis of X is assigned to

v;(8),

if v;(t) is assigned to X, then the link L;2basis of X is assigned to
vi(t),
for0<i<p-1, L; #:EZ‘ e L(CUR).

7. Order the links according to their corresponding values v;(s) and v;(t):

(%) v1 Up-1 %)
— — —
vo(t)  wi(s) wi(t) - Up-1(8)  vp-1(t)  wvo(s)

I_/Q L4 [_/1 Lp—l Ep—l Lo

8. Set guy, : Cy,, -~ Lu{a, B},

_ _ ) S )
C; = Iy )\

. o _
{ Ci = X; i if C; —C;
—

where

ii+1 = @
for all 0 <7 <p-1, with the indices considered modulo p.

We obtain the £—-cycle g, with

Guwy,0 = {T0, T1, %1, ., Tp-1,Tp-1,%0},

ng,l = {a,ﬁ,a,...,a,ﬁ}.

Remark 4.118. Note that one can also construct an L£—cycle using Wy,
given by k copies of wy,. These L—cycles are not simple. We denote in the
following by g, the £—cycles constructed from w,,.

Example 4.119. Let A be as in Ezample 2.3.1. with Xa as in Ezample
4.81. Let wy be a periodic Z —word with wy, = €*a. Its £—cycle is constructed
as follows:

e* a

1. DwZ : Vo— V1 <— V2.

2.48. vo(t) —— vi(s) 01(t) =<2 vg(s)
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C

guy © G0 — €1 — &1 — €
I |

5.+6.
v; | vi(s),vi(t) | sgn(w;l),sgn(wis1) | subspace link
V0 Uo(S) -1 Vie ker(a) Riz3 = Lg
vo(t) 1 e* ¢ =Ly
U1 1)1(8) 1 8* Q:g* = L1
’Ul(t) -1 1m(a) %11 = El
7.+8.

g+ Cex ~ Cox = Ry ~ Ri3
| |

Example 4.120. Let A be as in Example 2.1 and let X5 be as in Ezample
4.83. Let wy be a periodic Z —word with wy, = n*blac*a b, Its corresponding
L-cycle gy, is constructed by the following steps:

n* b a e* a b
Vo— V1 —> V2 <— VU3— Vg4 —> V5 <— Vg

1. Dy, :

() L a(s)  va(t) Lus(s)  ws(t) —va(s)  wa(t) Sws(s)  ws(t) < vo(s)

2.+3. Uo(t) i vl(s)

4.
ngz: Co—Cl —C —C2 —Cy—C3 —C3 —C4—C4—C5 —Cs — Cp
l |
5.46.
v | vi(s),vi(t) | sgn(w;t),sgn(wis1) | subspace link
Vo ’Uo(S) 1 V3 S) ker(b) 5)%32 = L()
vo (1) -1 n* ¢y = Lo
V1 v1(s) -1 n* &y = Ly
Ul(t) 1 V3 S) ker(b) 9%32 =14
V2 1)2(8) 1 1m(b) 9%21 = L2
'Ug(t) -1 1m(a) Q:Ql = I:Q
U3 v3(s) 1 Vieker(a) | Rig = L3
v3(t) -1 e* Cox = I_/g
V4 v4(s) -1 e* Cor =Ly
v4(1) 1 Vi oker(a) | Rz = Ly
Vs ’1}5(8) -1 im(a) @21 = L5
U5(t) 1 1m(b) 9{21 = I_/5




7.4+8.

ng :

Cpe ~ € — Rgp ~ Rop — €1 ~ Riz — Cox ~ Cov — Rip ~ €21 — Rar ~ Ra
I |

We denote the sets £, and £f  analogously to (117) and (119). Let
Ei € {Ll, Ez}

Remark 4.121. For any w; of period p, we consider an £—cycle g, of even
length such that

#{05 € ng,l} = #{ﬁ € ng,l}‘

This means that each link f)i € Ly, 15 10 at least one a—felation.

Note that in particular S?UZ =@, i.e., none of the links L; € £,,, corresponds
to bases of subspaces of the types ker(a) (resp. ker(a) © im(b) if ab = 0),
V eim(a) or V, for any a € Q9.

Theorem 4.122. The above construction gives for any undirected periodic
word wy a unique L£—cycle gy, :

wy =uy if and only if  Gu, = Guy-

Proof. We first show that the construction results in an £-cycle: By the
same line of argument as in Lemma 4.89, the construction gives an £—graph.
Since the underlying graph is given by a cycle, the £-graph is an £—cycle.
Let wy = uy, i.e., w; = u; for all ¢ € Z. In particular, it follows w, = @,. By
construction, we have v{’(z) = v}*(x), for all i € {0,...,p— 1} and z € {s,t}.
Here, we denote by v;" the respective vertex in D,,,, and by v, the respective
vertex in D,,. We proceed similarly with the corresponding links and mark
their correspondence by an appropiate superscript. The previous equalities
yield that LY = L¥ and LY = LY for all i € {0,...,p—1}. The order of the
relations « and 8 in gy, 1 and gy, 1 is fixed by construction. It follows that
Gwy, = Gug-

Conversely, let g, = gu,- Then gu o0 = guo and guw,1 = gu,1. We have, in
particular, that LY = L¥ and L = L¥ for any i € {0,...,p—1}. This implies
that v}’ (z) = v}*(x) for any i € {0,...,p—1} and any = € {s,t}. It follows that
w; = u; for all i € {1,...,p}, L.e., W, = up. Periodicity yields that w, = u,. O

Proposition 4.123. Let w, and uy be two undirected Z —words, both of
period p and with uy = w;*. Then Guz, = Gy, -

cwitwy . We

Proof. Let w, = w;y...wp. Then we have that 4, = w ! »

];_1 ..
obtain that

. w w w
S e
Wp



u u u
Dy + v — 0T T
w;l
We can rewrite D, in the following way:
Wp-1 Wp-2 w
Cou P u __P 1 u
Dy, = vy *_/ Up-1
Wp

Comparing D,,, with the rewritten D,,, yields that

vi(s) = U;U—l—i(t)a
v (t) = vply4(s)

This results in the following correspondence between the links:

for all 1 € {0,...,p—1}.

LY = Lw .
_ p—1-1 ; _
I =LY, for all i € {0,...,p—1}.

By construction, the order of the relations in any £-cycle g, is the same
for any Z -word x;. Thus — by equality on the links — it follows that g, =
Guy - O

We can enhance the statement of Theorem 4.122:

Theorem 4.124. Let wy, and uy be two undirected Z —words of period p.
Then

wy ~ Uy if and only if  Gu, = Guy-
Proof. By definition, w; ~ uz if and only if wy = uz[m] or wy = u;'[m] for
some m € Z.
Let wy = ug[m] for some m € Z. It follows that

Wp = Uy - - - UpU] - . . U1 (122)

Denote the underlying graphs by Cu, = {¢}, 0} }i<icop,, Cuz{ci, dj}1<icap,. We
1<j<2p 1<j<2p
have that

Guz,0 = {0, To, ..., Tp-1,Tp1},
Gwz,0 = {xmajmw--7:1719—175:17—17‘-wxm—h‘im—l}-

It follows that 7 : Cy, - C\, which acts as the shift by -m (¢; = ¢}_,,) gives
an isomorphism between the two £—-graphs g,, and gy,.

Let wy = u;'[m]. We assume without loss of generality that m € Z /pZ and
m > 0. Let 1, = u1...up. It follows that

(N u;(mﬂ) . .u{lu;,l . u;)}m (123)
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Denote the underlying graphs of g, and gy, by

CuZ = {C’ia 6j}1§i$2p,7 and

1<j<2p
! !/
Cuy = {ci; 5j}1§ig2p,-
1<5<2p
Futhermore, let
Guz,0 = {.fo, - ,.%'pfl,ﬂ_fpfl,l'o},

Gwy,0 = {g(]’ cee ayp*hgp*l)y()}‘

By (123), we can express gu,,o in terms of the links in £,,:

Gwy,0 = {xp—(m+1)7 ooy 21,21, 20, - - - 7jp—m7 :Ep—m)jp—(m+1)}'

Consider the isomorphism 7 : Cy, — Cy,, given by Top-1 orev. We want
to show that 7 gives an isomorphism between g,, and g,,. To this end, we
show that gu, = gw, o ™. We renumber at first the sets g,, 0 and gu,,0 as
follows:

Guz,0 = {z0,21,... ,£U2p—3,902p—2},
Gwz,0 = Y0, Y15+ -+ Y2p-3, Y2p-2}
= {Z2(p-(m+1)) 11 T2(p-(m+1)) > -+ T2(p-m)+15 L2(p-m) }
= {Z2p-2m-1, T2p-2m-2, - - - , L2p-2m+1, L2p-2m } - (124)

Note that we consider all indices modulo p. The map 7 acts as follows on
Cy,,:
{Co, Ce ,Cgp_g}
> {cap-2, o}

T2m-1
> {Cop-2-2m+1, C2p=2-2m - - -, C2p—2-2m+3, C2p-2-2m+2 |

={Cop-2m-1,C2p-2-2m> - - - , C2p-2m+1, C2p-2m } (125)

Comparing (124) and (125) yields that

ng’ﬂ' = guz'

It follows that g, = gu,-

Conversely, let g, = g, with w; # u;. We know by Lemma 4.126 that
m: C’ng — Cguz is given by a translation, a reflection or a composition of
those. Any translation on Cg, by some m € Z results in a shift by 2m on
wy. Similarly, any reflection on C w results in a shift composed with taking
the inverse on w,. Thus, m implies that

wy = ul[m] for some meZ and pe {+1,-1}.
We obtain that wy, = uz[m] or w, = u;'[m]. In both cases, we obtain that

Wz, ~ Uy, D
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Example 4.125. 1. Let A be given as in Example 2.14. We consider X
as i Example 4.85.
Let wy, and uy be two undirected periodic 7. —words with W, = E*a_lbn*b_la
and 1y, = n*btac*atb. Then wy = u;'[1]. We obtain as corresponding
L—cycles:

ng :

Cor ~ Cox — Ry ~ €1 — Ra1 ~ Rz — Cr ~ Cpr — RAgp ~ Rgy — Ca1 ~ Rio
I |

and

Guz,

Cpr ~ Cox — MR3g ~ Rop — €21 ~ Rz — Cx ~ Cx — Ry ~ o1 — Ro1 ~ Rao
L |

Denote the nodes of C, wy Y {¢i}1<i<12 and those of C, vy Y {ch<i<io
Then : Cy,, —> Cy,, given by m(c) = cive yields that

ng = guz .

2. Let A be as in Example 2.8.1. with X5 as in Ezample 4.81. Let w,
and uy be periodic with W, = ac*ag™ and U, = a~‘e*as*. Then

ng : 9‘%13 ~ 9{11 —_ Q:g* N Q:s* —_— 9%11 ~ 9%13 —_ Ge* - Ge*
I |

and

ng CORp ~ Riz — Cs* ~ CE* — Ri11 ~ Rz — Ge* ~ @5*
l |

We see that g, # gu, and that u; and w; are not equivalent as well.

Theorem 4.124 shows that equivalence classes of words match by con-
struction equivalence classes of £—cycles. We will enhance this theorem and
show that symmetric and asymmetric bands match simple £—cycles (The-
orem 4.130).

In order to do so, we examine the automorphism and rotation groups of
L—cycles gy, constructed from asymmetric or symmetric bands w; (Propos-
ition 4.127).
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We denote similarly as in D,,, (see step 1 of the construction) by {v; }ez the

vertices of wy:
w; Wi4+1
. — 'l)i <«

meaning that v; = t(w;+1) = s(w;). Note that we use t(-) and s(-) as start
and target of the letters within w, — regardless of their use in Section 2.3.
Note that each vertex v; gives two nodes in Cy,, = {ci, 0iYo<i<op-1:

v; ={c2i-1, 2} (126)

meaning that co;—1 2v;(s) = s(w;) and co; =v;(t) = t(w;41). Tt follows that
W; = C2i-2 ~ C2i-1.

Lemma 4.126. Let C be a cyclic graph of even length and let © be an
automorphism on C. Then w is given by a reflection of by a translation.

Proof. This follows since the image of two neighbouring nodes under 7 gives
again two neighbours. O

Proposition 4.127. We have that

{id} if wy 1s an asymmetric band,

Aut (ng ) = {

{id,r;} if wy is a symmetric band.
2

Proof. Let w; be an asymmetric band. Then id € Aut(gw,). We know
by Lemma 4.126 that any m € Aut(gy,) is given by a translation or by a
reflection. Assume there exists some 7 # id in Aut(gy, ). If 7 is given by
a translation, then it is of the form o for some k€ {1,...,p— %} This is
due to taking the a— and ([-relations into account. Since they take turns,
we need to shift every node by a multiple of 2. By Definition, we have that
Gwy, = Guy,T2k- This equality yields that

Ti =T 5 ViE{O,...,Qp—l} (127)

where gy, 0 = {x0, 21, ..., T2p-2, T2p-1}. We know that any a—relation matches
one letter in w, as follows:

Coica ~ Coim1 < w1 (t) <= vi(s) (128)
Thus, mog, matches the translation 7, on w;. We know by Lemma 3.41 that
71 (wy) = wy[-1].
This yields together with (127) that

wy, = wy[—]
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for [ < p. This contradicts minimality of p.

Assume now that 7 is given by a reflection. The construction gives that
x9; # x9;-1 for all i € {0,...,2p — 1} since those links are connected by a
B-relation. Hence, any reflection is given by a symmetry on an a-relation.
It follows that 7 is of the form 7T2k7%f01' some k € {0,...,2p—1}. Thus, its

symmetry axis is given on the following a—relation:
C2k-2 ~ C2k-1-
It follows that
Top_o = Top_1 = €.+ for some € € Sp.
Furthermore, we have by (128) that
wy =¢€"
in w,. Using (128) on the image of Tok-3 results in
Wiy = wyt, VieZ.
It follows that m,, 3 matches the reflection 7, on w;. We obtain that

wy = w; (k]
which contradicts w, being asymmetric.

Let now w;, be symmetric. Then id € Aut(gy, ). We know that ), = *un*u™"

for some 7, ¢ € Sp. It follows by construction that

Guy (o) = Cex,
Guy(c1) = Cex,
Gus (Come2) = Epe,
Guwy (Cam+3) = Ty,
gu,0 = {ng(cl)a e >ng(62m+2)},
Gu-10 = {ng(02m+3), s ,ng(C4m+4)}-

In order to have r1 € Aut(gy, ), we need to show that it acts as follows:
2
Cpo <> C1

Com+2 <> C2m+3

C24+i <> C4m+3—i Vie {0, ey 2m — 1}.
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We obtain the following:

7"%(Co) =C-0=0C1
ré(cl) =c1-1 = Cp
r1(Com+3) = C1-2m-3 = C-2m-2 = Cams+2
r1(Cams2) = Cl-2m-2 = C-2m-1 = Coms3
r1(Co4i) = C1o2-i = €1 = Camez-iy

r1 (Cam+3-i) = Cl—dm-3+i = C—dm—2+i = C24i-

Note that we have used that —i = 4m + 4 — 7 mod (4m + 4) for any i €
{0,...,4m + 3}. Hence, 71 € Aut(gw,). Note that the reflection r,, .o, 1
2 2

coincides with r1 (see also Remark 4.128).
2
Assume now that 7 € Aut(gy,) with 7 ¢ {id,r1}. Assume 7 is given by a
2
translation. Then 7 = 7,, s as described in the case of an asymmetric band
2

(with £ # 1,m + 2). We obtain analogously to that case a contradiction.

Assume that 7 is given by a reflection. As explained above, 7 is then of the

form 7y, 1 for k€ {0,...,2p -1} with k # 1,2m + 2. Recall that it matches
2

the reflection 7, on wy. It follows that wy = €* gives a symmetry point in
wy. This gives a contradiction to Corollary 3.45. O

Remark 4.128. Note that the maps r1 and Tom+2+ 1 coincide on Cg, ~ for

any symmetric band wy:
r

((ci)ier) = (Cﬁ)z‘eb

Pomsaet ((C)ier) = (Cqmmmrmy)ier = (e15)ier-

1
2

This follows from 2p =4m +4 and
dm+6+1-1=2+1-1=3-4 mod 2p.
Corollary 4.129.  a) Let w, be an asymmetric band. Then

| Aut(guz )| = [Rot(guy )| = 1.

b) Let wy, be a symmetric band. Then

| Aut(gu, )| = 2
| Rot(guy )| = 1.
Proof. The statements follow from Proposition 4.127. O

The following theorem shows that asymmetric and symmetric bands in-
duce canonical representations of X,.
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Theorem 4.130.  a) Let w; be an asymmetric band. Then gy, € S(2)
and gy, 15 non-symmetric.

b) Let wy, be a symmetric band. Then g, € S(L) and Guy, 1S symmetric.

Proof.  a) Let w, be an asymmetric band. By Corollary 4.129, we know
that |Rot(gw,)| = 1. Hence, Rot(gy,) is trivial and g, is simple. By
Theorem 4.122, g, is an £-cycle. It follows that gy, € S(L).

By Corollary 4.129, it follows that Aut(gy,) is trivial. Thus, gy, is
non-symimetric.

b) Let w; be a symmetric band. By Corollary 4.129, we know that
Rot(gw,) is trivial and thus gy, is simple. It follows by Theorem
4.122 that g,, € 6(£).

Corollary 4.129 yields that |Aut(gw,)| = 2. Thus, Aut(gy,) is not
trivial and g, is symmetric.

O]

Example 4.131. 1. Let A be given as in Bzample 2.3.1. with Xx as
constructed in FExample 4.81.
Let wy, be a symmetric band with W, = c*ag*a .
The corresponding £—cycle is given by

Then u=a and |u| = 1.

Zo X1 X2 x3 T4 T5 Te X7

ng : Q:g* ~ Q:g* - fﬁn ~ mlS - Q:g* ~ Q:a‘* - 9{13 -~ 9{11
L J

We have
Aut(gy,) ={id,r1 =rs }.
2 2

Note that especially reflections can be deduced from the form of the
L~graph. It follows that g, is simple and symmetric.

2. Let A be as in Example 2.1/ with X5 as in Ezample 4.83. Let w, be
an asymmetric band with w, = k*cdte. Then

Zo z1 Z2 x3 T4 Ts Ze Z7

GJuy, Cior ~ Cpr - Ry ~ €2 - Rog ~ Ry - €41 ~ Rs3
| |

It follows that Aut(gy,) = {id}. The only possible reflection would send
x1 < xg9. It would follow xo = x7 which does not hold. It follows that
Juw, 5 simple and non-symmetric.

Remark 4.132. Note that simplicity of gu, and minimality of the period p
are linked. The following example illustrates this.
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Example 4.133. Let A be as in Ezample 2.3.1. with XA as in Ezample
4.81. Let wy be an asymmetric band of period p with W, = £*a. Construct an
L-cycle not from wy, but from u = c*ac*a by applying the above construction
to it. We obtain

xo 1 Z2 €3 T4 T5 T6 x7

Ju * Cor ~ € - Ry1 ~ Rz - Cax ~ Cr - Ry1 ~ Ry
| |

Then Aut(gy) = {id, 74} = Rot(gy). It follows that g, is not simple.

We want to formalise the correspondence between translations and re-
flections on a word w; and those on the underlying graph of gy, as used in
the proof of Proposition 4.127.

This enables us to examine the relation between the stabilizer group Stabp_, (w;)
of w, and the automorphism group Aut(g,,) of its corresponding £—cycle
Gu,- We will see that there exists a 1-1-correspondence (Theorem 4.140).

Let ¢ € Do Recall that ¢ acts as follows on an undirected Z —word w;:

(w;%i))iez, if ¢ =1 for some k € Z,

p(wz) :{

(Wy(i))iez, if ¢ =71, for some k € Z,

where the translation 7, acts as ¢ = ¢ — k and the reflection r; as i — 2k — 1.
Any ¢ € Do induces a map ¢, on the vertices v; of w,. To this end, we
consider the vertices as tuple (v;);cz. We define ¢, as follows:

0o ((v)iez) = (Vp(iy)iez,  if ¢ =73 for some k € Z,
o (%(i)-1)iez, if ¢ =1y for some keZ.

Lemma 4.134. The induced map ., 1s well-defined.

Proof. We need to show that

V(i) = S(U)Zfi)) = t(wgfﬂl)) (129)

with

| -1 if ¢ is a reflection,
Heo 1 if ¢ is a translation.

We show at first that (129) holds for any ¢ = 7, € Do for some k € Z. We
have that

(PU((Ui)ieZ) = (Ui—k)ieZ’
o(wz) = (Wi )iez.-
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For an arbitrary i € Z, we have that v;_j is in position i — k in ¢, ((v;)iez)-
In ¢(w;) we have w;_j, in position i — k and w;,1_j in position i+ 1 - k. We
obtain that
Vi = 8(wi-g) = 5(w¢(i))
= 75(wi+1—k) = t(ww(ﬂl))'
Let now ¢ = 1y, for some k € Z. Note that the order of indices reverses in a
reflected word: if we have v; = s(w;) = t(w;4+1) in wy, then we obtain after
reflecting in 4 that v; = s(w;)}) = t(w;'). Any start (target) of an inverse
letter 7! is given by the target (start) of z. We obtain that
Po((vi)iez) = (V2k-i-1)iez;
-1
p(wz) = (wap_s)iez-

We know that
Vog—i-1 = S(wak—i—1) = t(wak—;)

in w;. We obtain that

-1 _
We(i+1) = W2k—i-1,
,1 _ )
ww(l) = Wok—j-

It follows that

Vok—i-1 = t(w;bﬂ)) = S(W;%i))-

O]

Any ¢ € Do induces also a map ¢, on the nodes of the underlying graph
ngZ of the corresponding £-cycle g,,. To this end, we denote also the
nodes of the underlying graph as tuple (¢;)e; with I={0,...,2p-1}:

C5o ). if ¢ = 1, for some k € Z,
0e((¢i)ier) = ( 2¢(1) )ze[

o)+ ) se if ¢ = ry, for some k € Z,
where Z =z mod (2p).
Lemma 4.135. The induced map . is well-defined.

Proof. First, we need to show that the images of neighbouring nodes are
again neighbours. To this end, let i € {0,...,2p—1}. Consider the neighbours
Ci-1, ¢; and ¢;41 in C, g Let . = 7% for some k € Z. In ¢.(C Z) we obtain

w

in position ¢ -1 C2(i-1-k)~(i-1) = Ci—1-2k>
in position ¢ : Co(i-k)-i = Ci-2k;
in position 1+ 1: C2(+1i-k)-(i+1) = Ci+1-2k-
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We see from the indices that those are indeed neighbouring nodes.
Consider now ¢, = ri for some k € Z. We obtain

in position 7 —1: Co(2k—(i-1))+(i-1)-3 = Cdk—i-2;
in position ¢ : C2(2k—i)+i-3) = Cdk—i-3
in position ¢ +1: C(2k—(i+1))+(i+1)-3 = Cdk—i—4-

and see that those are also neighbours.

Secondly, we show that the correspondence between the nodes and the as-
sociated values of each v; is preserved under ¢, and .. To this end, we
neglect to consider the indices modulo 2p. We have that

v = {c2i-1,C2i} (130)
by construction (recall that v;(s)=cg;-1 and v;(t) =co;). Let o = 7. We
show that

Vo (4) = {02@(21‘—1)—(21—1)7 CQcp(2i)—2i}' (131)
We have that v,,(;) = v;_x. This vertex corresponds to the nodes {¢2; 21, C2i-2x }-
We have that
C2p(2i)-2i = C2(2i-k)-2i = C2i-2k;,
C2p(2i-1)-(2i-1) = C2(2i-1-k)—(2i-1) = C2i-1-2k
and (131) follows.
Let ¢ = ry for some k € Z. We want to show that
Vo(i)-1 = {02<p(2i—1)+(2i—1)—37 CQcp(2i)+2i—3}' (132)
We have v,;-1 = vag—i—1. This corresponds by (130) to {cax-2i-3, Car-2i-2}-
We have
Cop(2i-1)+(2i-1)-3 = C2(2k—(2i-1))+(2i-1)-3 = C4k-2i-2; (133)
Cop(2i)+2i-3 = C2(2k-2i)+2i-3 = C4k-2i-3- (134)
We see that the set in (132) coincides with the values in (133) and (134). O
Conversely, any 7 acting on Cg, —induces a map m, € Deo. To define the
induced map, we use again the correspondence
v = {c2i-1,C2i}

byv;(s)=cg;-1 and v;(t) =co; for all ¢ € {0,...,2p — 1}. We define m,, as
follows:

(ww(%)) if m = 7o for some ke Z [pZ,
Ww(wZ) = ( _12 S

Wiy ivs if =7, s for some k€ {0,...,2p—-1}.
2z 2

i€Z
Recall that any translation is given by an even shift, and that any reflection
is given by a symmetry on an a—relation.
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Lemma 4.136. The induced map m,, is well-defined.

Proof. Each vertex v; of w, corresponds to two nodes {¢2;-1, c2;} with v;(s) =
coi—1 and v;(t) = co;. Each letter w; starts in v;(s) and ends in v;_1(t). Thus,
each w; corresponds to the nodes {cg;_2,¢2;-1}. We need to show that

(Ww(wZ))i £{Crr(zz‘—2)707r(2i—1)}- (135)

Let 7 = 75, for some k € Z. We have that

Tw(wz) = (MM) = (Wi—k)iez,
2 i€Z
Cr(2i-2) = C2i-2-2k> (136)
Cr(2i-1) = C2i~1-2k- (137)
We know that (7, (wz))i = wi—k starts in v;_(s) and ends in v;_;_1 (¢). Thus,
w;_p, corresponds to the nodes
{CQ(i—k)—Qa CQ(i—k)—l} = {coi-2k-2, Coi-2k-1}-

The correspondence in (135) follows together with (136) and (137).
Let m = Tok-3 for some k € Z. Then we have

Cr(2i-2) = Cak-3-2i+2 = Cdk-2i-1, (138)
Cr(2i-1) = C4k-3-2i+1 = C4k-2i-2 (139)
and
-1
Ww(wz) = (wﬂ(i)zfnzs). . = (w2k—i)i€Z'
1€

The letter (my,(w;)); = wyp_; starts in vor_;(s) and ends in vor_;—1(¢) (note
that the order is reversed due to the reflection). It follows with (138) and

(139) that
W 2{ Can2i-2, Can-2i-1} = {Cr(2i-1): Cr(2i-2) }-
O

Lemma 4.137. Let w; be an undirected Z —word of period p. Let m be a
morphism on C,, . Then

(Tw)e = .

Proof. Let m = 1, be a morphism on C, wy which is given by a translation.
Then

muolwz) = (wen ) = (wiok)ies = ms),

1€

(mw)e((ci)ier) = (Cm)id = (Cm)id = m((¢)ier)-
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Consider now 7 =r,;,_s. Then
2

mw(wz) = (w;%i)—iﬁi) = (wgkl;—i)iez =1 (ws),
2 1€7,

(mw)e((ci)ier) = (ez—iy3)

iel - (CM)Z‘E[ = W((Ci)iel)-

O

Remark 4.138. Note that (pc)w = ¢ does not hold generally for ¢ € Deo.
Let wy be a symmetric band of period p. Consider r1,mm+2 € Doo. It follows
that

(r)e((ei)ier) = (esmayers)., = (er0) ey = 1 ((e0)ien)
((Tl)C)w(wz) = (w;i(i)iﬁi) = (w%) = (wi,li)iez = Tl(wz)-

Hence, it holds that ((11)¢)w =71. But we obtain for ry.o the following:
(rm+2)c((€i)ier) = (W)M = (cmsamis)i = (613),;  (140)
=r1((ci)ier) = (r1)e((ci)ier)- (141)

It follows that ((11)c)w = ((rm+2)e)w and thus, ((rm+2)c)w =71-

Let w; be in the following an asymmetric or symmetric band of period
p. We define

Staby, (wy) = Stabp,, (w;)/ ~

where ¢, ~ 1 if and only if both are either of translation or reflection type,
and k—1=0 (mod p).

Lemma 4.139. We have that

{[id]} if wy is an asymmetric band,

Stab? =
abp (wz) {{[idL [7.]7 [V’m+2]]} if wy 1s a symmetric band,

with r =rg.

Proof. Recall that 1y = id. The statement follows from Proposition 3.51 for
wy, an asymmetric band: for any k,l € Z we have that

Tk’p ~ Tlp

since (k—1)p=0 mod p.
For w; a symmetric band, recall that

Stabp,, (wz) = {Tkp, "Toskp f kez
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by Proposition 3.44 and Lemma 3.43. It follows similar to the case of an
asymmetric band that 73, ~ 7, for all [,k € Z. Let now k,[ € Z. We examine

when r7o,p, and r7oyy, are equivalent. We know that rmo., = T, ip for
2
any ¢ € Z. Thus, we know that both r7o.s, and r74, are reflections. We
calculate
kp ( lp) (k: - l)
5 5 5 )P (142)

We want (142) to be divisible by p. This is the case for % e N. Hence,
either both k and [ are even, or they are both odd.

Assume they are both even. Then we can write k = 2k’ and [ = 2{’ for some
k',1" € Z. Thus, (142) turns into

(2k’—2V

5 )p=(]{3,—l’)p50 mod p.

It follows that 179k, ~ 1794, for any k,l € Z which are even. We claim that
TTo+kp ~ 11 for any k € Z even: we can write

TT24kp = TT242k'p = T'1+k/p-
We obtain that
1-(1+k'p)=-k'p=0 modp

which proves the claim.
Let now k and [ in Z be odd. Then we can write k =2k’ +1 and [ =20’ +1
for some k',1' € Z. It follows with p = 2m + 2 that

TT2+kp = TT24+ (2K +1)p = T1+(k/+%)p =T+ (m+1)+k'p = Tm+2+k'p-

Similarly, we obtain that r7o,;, = 7pi2.rp. Hence, we have that rro,y, ~
TTo4tp i Trioskrp ® Tmaosrrp. The latter equivalence is given since

m+2+k'p-(m+2+1'p)=(k"-1")p=0 mod p.
Moreover, we claim that ry,.2 ~ r7o,t, for any k € Z odd. This follows from

m+2-(m+2+k'p)=k'p=0 mod p.

Theorem 4.140. The map
0 : Stab)) (wz) — Aut(guw,)
SD > SDC

15 surjective. For wy an asymmetric band, it is also injective. For wy a
symmetric band, it is not injective.
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Proof. Let wy, be a symmetric band.

Let us first show that 6 is well-defined. This means that any two equivalent
maps in Stabp_ (w;) are sent to the same element in Aut(gy,).

To this end, let k # [ € Z. Consider 7y, 73, € [id]. We have that

(rep)e(e)ien) = (zrom). = (emmmp) ., = (@iers

1€l
and similarly (71,)c((¢i)ier) = (¢;)ier-

We consider next 71,xp, 7141p € [7]. We obtain that

(rist)e((@dier) = (ammirs) o, = (7)o = ()icr

and similarly that (ri1p)c((¢i)ier) = (Cﬁ)id—
Let rm42:kp and Tpi040p be in [7,4.2]. We obtain that

(rm+2+kp)c((ci)id) - (C2Tm+2+kp(i)+i*3)iel B (01*”(4]“1)1’)@‘6[ - (Cﬁ)iel’

and similarly that (Tm+2+lp)c((ci)ie]) = (Cﬁ)ieL
We show that 6 is surjective.
Let 7 =1id € Aut(gu, ). Then 6 !(7) = 7, by Lemma 4.137. It is given by

i€Z

Tw(wy) = (w%) = (w;)iez = id(wy).

Consider now 7 =71 € Aut(gy, ). Then 671 (1) = 7, which is given by
2

Tw(wsz) = w;i (i)—i+1 = (wé) = (wi—li)iez =r(wy).
“*5—/)iaz ¢ i

The map € is not injective by Remark 4.128.

Let wy, be an asymmetric band. Apart from injectivity, the statement fol-
lows analogously to the case of a symmetric band. Injectivity follows from
0:[id] ~ id. [l

Theorem 4.140 shows that the symmetries in w; and g,, match each
other. We can use this knowledge to show the following:

Theorem 4.141. Let g € S(£).

a) If g is non-symmetric, then there exists a word wy, of asymmetric band
type with gy, = g.

a) If g is symmetric, then there exists a word wy of symmetric band type
with gu, = g.
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Proof.  a) Applying the construction backwards yields the existence of a

Z —word wy with w; = wy[p] for p = |¢g|/2 and with gy, = ¢g. It remains
to show that wy # w;1[m] for all m € Z. We know that Aut(g) = {id}
since g is non-symmetric. Theorem 4.140 and Theorem 4.139 yield
that Stab}, (w;) = {[id]}. It follows that w; # w;[m] for all m e Z
and that w; is of asymmetric band type.

Applying the construction backwards yields the existence of a Z —word
wy, with wy = wy[p] for p = |g|/2 and with g, = ¢g. It remains to show
that w, = w;[m] for some m € Z. We know by Proposition 4.127 that
Aut(g) = {id,r%}. We know by Theorem 4.139 that Stab}, (wz) =
{lid], [r], [rm+2]}. Thus, it follows by Theorem 4.140 that 6(r) = r1
with 6 the map from Theorem 4.140. We have that r(w;) = w;, which
corresponds to saying that w;, = (w;[1]) ™. We can rewrite this equality
by Lemma 2.34 to w;, = w;*[~1]. This shows that w; is of symmetric

band type.
O

Theorem 4.130 and Theorem 4.141 show that there is a 1-1-correspondence
between words of band type and simple £—cycles. Similar as for £—chains
(Corollary 4.117), we find another correspondence:

Corollary 4.142. There exists a 1-1-correspondence between the equivalence
classes of symmetric and asymmetric bands, and the isomorphism classes of

L—cycles in S(L).

Proof. The proof follows from Theorem 4.130, Theorem 4.141 and Theorem

4.124.

O]
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4.7 Directions in the £-graphs

Recall that we assigned the constructed semichains to the bundles in a certain
way in Section 4.4: any semichain in a row label set has a reversed ordering
with respect to the subspace inclusions of the filtration it is built from.
The orderings of the semichains in the column label set, on the other hand,
preserve the subspace inclusions of the respective filtrations.

We have claimed in Section 4.4 that the way we cosntruct X, ensures that
the £-graphs g, are compatible with (weakly) consistent versions v; of w;.
This means that the directions assigned to links in g, of the forms

Ty~ Ti41 and Ty ~ Ti41 (143)

match the directions on the corresponding special letters in any (weakly)
consistent version v;. We show this correspondence in Proposition 4.145 for
asymmetric and symmetric strings and bands. Note that in particular the
reversed ordering of the links in the row label sets contributes to this result.
Futhermore, this correspondence does not depend on the signs of the letters
chosen beforehand (as long as the conditions of the construction of X, are
respected). Finally, we should mention that the correspondence is only given

for those letters of finite index, or — in case of a symmetric string — for letters
|w|+1

2 - _
Let A be as in Section 4.4 with corresponding bundle of semichains X, .

Let w; be a I'yg(A) —I- word with I = {0,...,n} (n > 0) or I = Z. For
I = Z, assume additionally that w; is of period p. Denote its corresponding
L—graph by gu,. Let gy 0 = {z0,..., 2} where n is given by 2n + 1 if gy,
is an £—chain, and by 2p - 1 if g, is an £-cycle.

with index unequal to

Definition 4.143. Let w; be a I'yq(A) —1-word as above with £—graph gy, .
For any z; € gy 0 with x; = ;.1 and N1 = o, we define the direction of
Aiiv1 by

) L af i~ T
dir; j41(Gwy) =

e ——————— 5 ¢
-1 4f T~ i

Remark 4.144. Note that dir; ;+1(gw,) gives the negative of the orientation
Junction o defined in [Bon88/:

eo(xi, xiv1) = 1if &3 ~ e,

eo(wi, xiv1) = =1 if Ty ~ @iy

The following proposition shows the compatibility between the directions

of special letters w; of finite index in strings and bands (or index unequal to
# if w is a symmetric string) and the direction on the respective subchain

xk ~ g1 of the corresponding £—-graph.
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Proposition 4.145. (i) Let w be an asymmetric string of length n. Let
ve (@) (w) be (weakly) consistent. Then

dirg;1,2; (guw) = dir;(v)
for all j e {1,...,n} with w; special.

(ii) Let w = ue*u™" be a symmetric string with |u| = m. Let v e (®%,)7" (w)
be (weakly) consistent (v = te"t ™ with t € (®%,)™" (u) and r = {+1,-1}).
Then

dirgj_lygj (gu) = diI‘j(U) (14:4:)
for all j e {1,...,m} with w; special.

(iii) Let wy be an asymmetric band of period p. Let vy € (®%)7" (w;) be
(weakly) consistent. Then

dirg;j—2,2j-1(gu,) = dirjipp(vz)
for all je{l,...,p} with w; special, and for all k € Z.

(i) Let wy be a symmetric band of period p with W, = e*un*u™", |u| = m.
Let v, € (94))7" (w;) be (weakly) consistent with periodic parts of the
form f)l(,l) = elityit™ where t € (9%,) 7 (u) and pi, ki € {+1,-1}. Then

(tv.1) dirgj_2.2j-1(gw,) = dirjigp(vz) forall j e {1,...,p} with w; special,
ind} (wz) < 0o, and for all k € Z.

(iv.2) dirgj-1,2i(gu) = dirji14kp(vz) = = ditjeme2enp(v2), forall je{1,...,m}
with w; special, and for all k € Z.

Proof. Note that we consider letters w; of special type with ind} (w) # #

for w a symmetric string, or with ind} (w;) < oo for w; a band. We distinguish
for the proof between the cases a) and b) of Definition 4.45. Recall that we
put in case a) the direction towards the bigger link of y; and z;. In case b),
we direct towards the smaller link. We have by construction that z; € £(¢).
Thus, we have y;, z; € £(€) U {oo} in case a), and y;, z; € £(R) U {oo} in case
b).

Recall that a letter w; matches in the £—-chain g, the subchain x9;_1 ~ x9;.
In an £-cycle, the letter wy, € W, matches the subchain x2;_9 ~ x9;,_1. We first
consider the cases (i), (i) and (iv.2.) of the proposition since they concern
L£-chains. Afterwards we deal with (¢i7) and (iv.1) which refer to £-cycles.

(i) We obtain for w an asymmetric string the £-chain g,, which is simple,
admissible and has no double ends. We consider g, = g, in order
to determine the directions. Let i € {1,...,n}, where n = |w|. Set
k=2i-1. Then zy, ~ x,1 matches w;. Let g;, 0 = {yk+1,...,Tx-1} and

181



Gr.0 = {Zk+1..., z5-1} be the subchains between y;, and xj, xp1 and
2k, respectively. We have that g;, =g, .

We show at first that yi # oo and zj # co. We know by d(gy) = 0 that
0 = basis of ker(a)(basis of ker(a) ©im(b)) for some a € QS (b €
Q94 ab = 0), and that xa,,12 basis of ker(c)(basis of ker(c) ©im(c))
for some c € Q‘frd (de Qi’rd,cd =0). Assume that yx = oo, 2z # co. It
follows that yg.1 = xo= basis of ker(a). We obtain by the symmetry
in xp ~ x4 that zx_; = basis of ker(a). Since zg, 2k-1 € gu 0, it follows
that g, terminates in zj_; which contradicts the length of g,,. The
case Yy # 00, 2 = oo gives analogously a contradiction. It remains to
consider yg = oo, 2z = oo. Then yr1 = x¢ and zx_1 = Top41. It follows
that g;, = o —-*~Xp_1, gr), = The1 ~--* — T2p41. Thus, we obtain that
Jw =Gl — Tk ~ Tyl — gl’; is composite which gives a contradiction.

Let us now examine the directions given in Definition 4.45.

a) Assume without loss of generality that yg,z, € £(€;) for some
je{l,...,|Qol}, where

¢ ={T1 < &ja < 3}
with

€1 = basis of im(a),
€2 = basis of ker(b) © im(a),
€3 =basis of V; © ker(b)

for a,b € Q‘l)rd, ba = 0. Note that we do not have zp = €.+ and
yr = €+ for n,e € Sp by Definition 2.2. It follows by the previous
discussion that €; is not given by two incomparable elements.
Let yr = €2 and z;, = €;1. We have dirg ;11(gw) = 1. Moreover, it
follows that yi = x¢ and that

wo =a:t(a) «— s(a)=zk ~ Zks1-

For g;, : w1 ~ --- ~ x}_1 we obtain that xg — g, — x) corresponds
to the subword [, of w. Similarly for g, : g1 ~ -+ ~ 21,
the subword rj of w corresponds to Zp41 — gr, —x with x = ;0.
It follows that lp = wi...w;—1, Tk = Wiyl ... Wy—1 and 71 = l,;l.
Denote z = wy4q ... w,. We obtain that

(wl<i)™ =",

w[>i] = rpw.z = I3 az.

This yields (w[<4])™' > w[>i] and it follows that dir;(w) = 1.
Let now z;, = ;3 and y,, as above. Then diry 4+1(gw) = -1. Pro-
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ceeding as above, we obtain w, = b~! and
(wl<i)™ =4,
w[> ] = rpw.z = I b 7 2.

Thus, (w[<i])™ <w[>1i] and it follows that dir;(w) = —1.
Let now y; = €1 and 2z, = 5. Then dirg 441(gw) = -1 and
ZL = Tops+1. We obtain that

wy =a”" :s(a) — t(a) 2yp-1 ~ Yr-
Let [, and 7y, be given as above. Let y = wq,...,w,_1. We obtain

w[>i]=rg = l,;l,

(w[>i])™" = (ywyl) ™" = I ay ™"
It follows that w[>i] > (w[<i])~!. Thus, we have dir;(w) = -1.
Let now yj, = €;3 and keep zi, = €jo. We have that dirg ;41 (gw) = 1.
We obtain for wy as above that w, = b. It follows with [, 7, and
y as above that

w[>i] =1 =13},

(w[>i])™" = (ywyl) ™ = 07y
It follows that w[> 4] < (w[<i])~'. Thus, we have dir;(w) = 1.
Consider now y; = €;1 and 25, = €;3. We know that y; # z¢ and
2k # Tans1. It follows that dirg g41(gw) = —1. We obtain that

w, =b (b)) — t(b) 2z ~ Zpe1,

wy =a” :s(a) — t(a) 2yk-1 ~ Yie
Let the subwords y, 2,1, and r; of w be given as follows:

y:wl...wy_l,
Z =Wyt .- Wy,
lp = wys1.. w1,
e =Wi+1 .- - Wy-1.-

Recall that I and r; correspond up to the first and last link to
g1, and g, . Moreover, we have that 7, = l,;l. We obtain that

(w[< i)™ = (ywyl) ™ = Il ay ™,

w[> 1] = rpw,z = ;b7 2.

It follows that (w[<i])™! <w[>4]. Thus, we have dir;(w) = —1.
Let now y;, = €;3 and z;, = €;1. This means that we have switched
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the roles of ¥ and 2 in the previous part. Thus, we obtain that
w; = a and wy = b. Furthermore, we get

(w[<i])™ = (ywyli) " = 07y
w[>1i] = rpw.z = Iy taz,
where y, z, I and 75 as given as above. Hence, we have that
w[>1] < (w[<4])™! and it follows that dir;(w) = 1.
Assume without loss of generality that y,z, € £(9;) for some
1 <j <[Qol, where
%j = {mﬂ > mjg > fﬁj3}.

We have that 9R;; = basis of im(a), Rz = basis of ker(b) ©im(a),
M3 = basis of V; © ker(a) for some a,b e Q9™ with ba = 0.

Let yr = M1 and 2z, = Rjo. Then dirg 441(gw) = —1. We obtain
that

Wp = Zk—2 ~ Zh-1,
wy =a"":s(a) — t(a) 2 yp-1 ~ Yi.

Note that x-g;, —x) with x = 9312 matches a subword [, of w which
is given between w, and w;. Similarly, denote by rj, the subword
Wi - - - Wy. Note that rg = l;l since g, = g,, . Let y=w1...wy1.
It follows that

(wl<i])™ = (ya ' )" =l lay ™t = rray !,
w[>1i] = rg.

We obtain that w[>i] > (w[<i])~!. It follows that dir;(w) = —1.
For yi, = A2 and 2z, = R;1 we have that diry 44+1(gw) = 1. We have

W1 = Yl ~ Yk+2s
w, = a:t(a) «— s(a) =z ~ 241

It follows with I = wy ... w;-1, l,;l =TL = Wig1.. -Wy1 and z =
Wiyl ... Wy that

(wl<i)™ =1,

w[>i] =l az.

Note that [}, corresponds as before to the chain y; — g;, — x5 where
xy = ker(e). We obtain that dir;(w) = 1.
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Consider y, = Rj3 and 2z, = Rjo. Then dirg 441(gw) = 1. We
obtain
Wn, = 2k-2 ~ Zk-1,
wy =b:t(b) «— 5(b) =yp-1 ~ Yi-
Proceeding similar as above, we obtain that dir;(w) = 1.
Let yr = Rjo and z; = R;3. Then we have that dirg g1(gw) = -1.
We obtain the correspondences
wy = b1 s(b) — t(b) 2 21, ~ Zpe1s
W1 =Ykl ~ Yktl-
It follows as before that dir;(w) = -1.

Consider y; = R;1 and 2, = R;3 resulting in dirg g41(gw) =
We have

|
|
—_

w, =b :5(b) — t(b) 2 2k ~ Zjs1s
wy =a"ts(a) — t(a) 2yp1 ~ vk
We obtain as before two subwords Il and r, with ry = llglz

lk = Wy+1 - - - Wy,

Tk =Wi41 . . Wy-1.
Denote by y = w1 ... wy-1, 2 = W,41 ... wy,. We obtain that

(w[<i])™ = (ywyl) ™" = Iz ay™,

w[> 1] = rpw,z = ;b7 2.

It follows that dir;(w) = —1.

Finally, let y;, = R;3 and 25, = M1 which give that dirg g1 (gw) = 1.
We obtain with the notation from the previous case that wy, = b
and w, = a. Thus, we obtain that (w[<i])™* > w[>i]. It follows
that dir;(w) = 1.

(ii) We construct for w = ue*u™! the simple admissible £—chain g,, which
has one double end given by x2,+1. In order to determine the direc-
tions, we consider g, = g, ~ g,. Let i € {1,...,m} and set k =2i—1. We
have that zj ~ zj41 matches w;. Let as before g, 0 = {yk+1,. .., Th-1}
and gy, 0 = {Tk+2,...,2k-1}. We show that y # oo and z; # co. We
know that xg = basis of ker(b) ©im(a) and that zg,,4+1 = €.+. Assume
that y; # co and zj, = co. It follows by the form of g, that |g,. | > |gs]-
Since gy, = gy, , we obtain that

|grk| + |glk| > 2|gm = |§u|
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This gives a contradiction since g;, and g,, are two non-intersecting
subchains of g,,.

Let yj = oo and z, # co. Then we have that yx.1 = 2o = basis of ker(b)e
im(a). Symmetry in z; ~ xpy1 yields that zp_; = basis of ker(b)
im(a). Thus, z;_1 = 2, with 7 # 0,2m + 1 denotes the last link in g, 0.
It follows that |gy| < 2m + 1 which gives a contradiction.

Finally, assume that y; = o0 and z; = co. Then zp = x9,,+1. But there
does not exist a link 3.1 in gy 0. Hence, xy = £9,,41 is not considered
for directions.

We continue with the examination of the directions.

a) Assume without loss of generality that yg,z; € £(€;) for some
je{1,...,]Qo|}. Note that €; is by the previous discussion not
given by two incomparable elements. Assume that

¢ = {€j1 < &jp < 3},

where we have €;; = basis of im(a),&;o = basis of ker(b) © im(a)
and €3 2 basis of V; e ker(a) for a,be Q9" with ba = 0.

Note that xo = basis of ker(x)( basis of ker(z)eim(y)) for some
z e QY (y e QY with xy = 0), and o1 = €.+. Thus, we have
that zp # €jo. If yi = €jo, then y, = xg. We consider the cases
Yk = Q:jg and 2k = €j17 Yk = Qtjg and Zk = Q:jg, Yk = Q:jl and Zk = Q:j3,
yr = €3 and z; = €;1. They follow analogously to the respective
cases in (i), a).

b) Assume without loss of generality that y, z; € £(9R;) for some
1 <j <[Qol, where

9}&]‘ = {,‘J{ﬂ > mjg > %jg}.

We have that 9;; = basis of im(a), R;2 = basis of ker(b) ©im(a),
M3 = basis of V; © ker(a) for some a,b e Q3™ with ba = 0.

The proof follows analogously to (i), b) with the following restric-
tion: 2, # Mjo. Thus, we only consider the cases y, = Rj2 and
2k = S)f{jl, Yk = 9{]‘2 and k= 9{]‘3, Yk = mjg and 2k = mﬂ, Yk = 9{]‘
and z; = N;3. Note that it follows for yi = Rjo that v = xo.

(iv.2) We obtain the simple admissible £—chain g, with d(g,) =0, o = €.~
and zom+1 = €. We consider g, = g; ~ gu ~ g5;,- Let i € {1,...m} and
set k =2i-1. Then w; =xy ~ rp41. Let g, and g, as in the previous
parts. We show that yj # co and 2, # co. To this end, assume that zj, =

oo and yi = oo. Then we have that g;, = {Zom+1,...,T0,T0,. .., Tp-1}
and gr, = {Tk+2,. - T2m+1,T2m+1,-- -, 2o} In particular, it follows that
To—-'—Tp = Thel — " — Toams1- Lhus, we can write g, = h ~ h* for
h =x9—---—x. Hence, g, is composite which gives a contradiction.
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Assume now that y;, = co and 2, # oco. This means that 2z, = €.
Note that ¢* ~ g ~ ¢g* matches the subword v 'e*un*u™ = s of wj,.
Recall that we have for g;, —xj, with g;, 0 = {Z2m+1,---, %0, %0, .., Th-1}
a matching subword [} of s. Similarly, we have for zy.1 - g,, with
Gre.0 = {Zk+2, -, T2m+1, T2m+1, - - -, To} the matching subword ry with
TR = llgl. Note that

1 -
|ix| = §(|glk| +1)> §|9u| =m+1.

It follows that ind (w;) > m+1. This gives a contradiction to Corollary
3.47 since i € {1,...,m}.

Assume now yi # oo and zp = co. We obtain analogously as in the
previous case a contradiction.

a) Let y, and z, be without loss of generality in €; for some j €
{1,...,|Qol}. Note that &; # {€[.=€ .} for any u € Sp by Defin-
ition 2.2 and since both y; and z; are unequal to co. Thus, let
Q:j = {Q:jl < Q:jg < Q:jg} as in (i),a). Note that yi + ng and zp # Q:jg
since u is a subword of a periodic word. Thus, we consider the
cases Y = €j1 and 2, = €3, yi = €53 and 2z = €. They follow
analogously to the respective cases in (i),a).

b) Let y, and 2, be without loss of generality in 9, for some j €
{1,...,]Qol} where R, = {F,;1 > Rjo > R;3} as in (i),b). Note
that yi # Mo and 2, # M2 similar as in a). Thus, we consider
the cases yr = M1 and 2, = Ry3, yp = Ry3 and 2, = Rj1. They
follow analogously to the respective cases in (i),b).

We have dealt with the £—chains and consider next the £—cycles in the
proposition.

(iii) We obtain the non-symmetric simple £-cycle gy, of length 2p. Let

ie€{l,...,p} and set k = 2i — 2. Then x ~ xp,; matches w;, and, in
particular, wj,x, for all k € Z. Denote again by g;, 0 = {yk+1,-- - Th-1}
the subchain between yj and xy, and by gr, 0 = {®k+2,...,2k-1} the

subchain between xzp,; and z;. Recall that we can have y; = z; in a
symmetric £—cycle (see Subsection 4.1.3). Since gy, is non-symmetric,
this case does not occur.

a) Let y, and z, be without loss of generality in €; for some j €
{1,...,|Qol}. We have €; # {€.%€ .} for all y € Sp by yj, # 2
and Definition 2.2. Thus, Let €; = {€j; < €j5 < €3} be as in
(i),a). Since w; is periodic, we have that yi # €2 and 2z, # €jo. It
remains to consider the cases y, = €;1 and z;, = €3, yx = €;3 and
2, = €1. They follow analogously as in (i),a).
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b) Let yi, 2z, € R; without loss of generality, j € {1,...,|Qol}, where
R; = {R1 > Rj2 > Ry} as in (i),b). We have similar to a)
that yi # Rjo and 2z # Rj2. The cases y;, = Rj1, 2, = R;3 and
Yk = %jg,zk = 9{]‘1 follow as in (i),b).

(iv.1) We obtain a symmetric, simple £—cycle gy, of length 2p = 4m +4. Let
i€{l,...,2m+ 2} with ind} (w;) < co. Recall that i # 1,m + 2 in this
case. Set k = 2i — 2. Then w; matches z; ~ x141. Note that it follows
by choice of ¢ that k # 0,2m + 2. Since g, is symmetric, we might
have z = yx. We show that this is not the case. To this end, assume
otherwise: z;, = yg. Then there exists and automorphism 7 € Aut(gy, )
with 7 # id and 7(ck) = cg+1. Since gy, is simple, 7 is not given by a
translation, but by the reflection Thel- Recall that (T’“%)w describes
the induced map on w;. We obtain with k = 2¢ — 2 that

(e u2) = (wassnpin ) = (wncon)en = (g )yes = i),
J€

We know by Lemma 4.136 that (r;). = r,, 1. It follows by Theorem
2

4.140 that r; € Stab%w(wz). Lemma 4.139 yields that r; = r; or r; =
Tm+2. This contradicts the choice of i # 1,m + 2.

a) Follows analogously to (iii), a).
b) Follows analogously to (iii), b).
O

Remark 4.146. Let w; be a special letter as considered in Proposition 4.145
(i)-(v). Recall that wj=xy ~ xpy1, where k = 2j — 1 if we consider an
L—chain, and k = 2j — 2 if we consider an £—cycle. The proof of the propos-
tion implies the following correspondences with the notation from the proof:

2k~ P+l = Wjr = Wje,
Yk-1 ~ Yk = Wj* = wie.

Remark 4.147. We obtain by the symmetries in the respective words the
following:

(i) In the same setting as in Proposition 4.145 (ii), we obtain that
dirg;-1,2j(gu) = = dirjy|_j+1(v) (145)
forall je{1,...,m} with w; special.
(ii) In the same setting as in Proposition 4.145 (iv.2), we obtain that
dirgj-1,25(gu) = = dir_j 14 (gs1)p(v2)

for all je{1,...,m} with w; special.
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Example 4.148. Let A be as in Example 2.3.1, meaning it is given by the
quiver

Q: aC.Qa

and relations R = {a®}, R = {2 — ¢}, with Xx as in Ezample 4.83. Recall
that its semichains are given by

@1 = {Q;*§€g*},
Ry = {R11 > Ri2 > Rz}

with op(R11) = Ris and otherwise op acts as identity.

1.

b)

Let w = e*ac*as* be an asymmetric string. Let v e (®%)7" (w) be
(weakly) consistent. It is uniquely given by v = €acag, i.e., dir(vy) =
dir(vs) = dir(vs) = 1 (recall that dir;(v) = dir(v;)).

The £—chain gy 1s given by:

«— «— «—
Rig = Cer ~ Cor =Rz ~ Rypp — Cor ~ Cor =Rz ~ Ry — Cr ~ Cr = NRy2
To T X2 r3 x4y T3z  Te X7 X8 T9g Tl L1l

It follows that dirq 2(gw) = dirs 6(gw) = dirg 10(gw) = 1.

Let w = e*ac*ac*a le*ate* be a symmetric band of length 9. Then u =

e*acta, ul = a le*ale*. Let v e (®%) 7 (w) be (weakly) consistent.

Then
dir(vy) =dir(vs) = 1,
dir(vy) = dir(vg) = -1,

i.e., v =cacac®a e ta e for ke {+1,-1}. The £—chain g, is given

by

gu: Riz —Cer ~ Cx =Rz ~Ry1 — Cer ~ Cx =Rz ~ Ryp — Cex

Zo Il ) I3 T4 xIs L6 Ty xrs Z9.

Thus, we have that

dirl,g(gu) = dirS,G(gu) =1

c¢) Let wy be an asymmetric band with periodic part w, = €*a. Let v, €

(0 )" (wy) be (weakly) consistent. Then
dir(visgp) =1 VkeZ.

The corresponding £—cycle gy, s given by
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i) T1 i) T3
Pt

Gz * Cex ~ Cex = Ry ~ Ri3
\ |

It follows that dirgq = 1.

1 1

d) Let w; be a symmetric band with W, = ¢*ac*ac*a™ e*a™", u = ac*a.
Let v, € (92)7 (wy) be (weakly) consistent (@]S” = it t™! with t €

(@) (u) and ki, g € {+1,-1}). We have
dir(vssgp) = 1,
dir(vesrp) = -1

for all k € Z. We consider for wy

(i) the £—chain g,:
gui Cor =Rz~ Ryp = Cox ~ v = Ryz ~ Ry — Cn
o I X9 I3 T4 xIs Te X7
Then we have that dirs 4(g,) = 1.

(ii) the £—cycle g, :

x3 T4 x5 Ze6 x7 s z9 Z10 x11 x12

—
9%13 - Q:E* ~ Q:E* - 9‘{11 ~ 9%13 - €s* ~ €€* —_— 9’1‘13 ~ 9%11 - @E*
¢ i

T2 R @5* 13
| |

T1 € x Ri3 T14
¢ 0

zo € » R11 T15

It follows that

dirg5(gu,) = 1,
dir12,13(gw, ) = -1.
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5 The categories mod(A) and Rep(X,)

We present the most important results in order to prove the main theorem
in this chapter.

We start by describing the functor F' : Rep(¥,) — mod(A) where A is a
skewed-gentle algebra. We show by the Propositions 5.3, 5.4 and 5.5 that
the functor F gives an equivalence of categories. Due to its length, the proof
of Proposition 5.5 is moved to Section 5.2.

The nature of the functor allows us to analyse its image explicitely in terms
of strings and bands. We find that we need to slightly adjust the directed
alphabet of A chosen in Chapter 2.3. For instance, we need to replace the
letter 7! by the letter &% in order to describe the modules in the image of F
properly. This description is found in Section 5.4. However, we would like to
be able to give a description of the indecomposable modules in terms of the
original alphabet I'4(A). We examine this issue in Section 5.5 and summarise
the results in Theorem 5.36. Finally, we are able to give a classification of
the finite dimensional indecomposable modules of a skewed-gentle algebra
in terms of strings and bands (Theorem 5.49). From this result, we can,
according to Section 4.3, deduce a respective classification result for clannish
algebras (Theorem 5.50). We use those results to state the classification in
such terms that it proves the conjecture made by Crawley-Boevey in [CB8§|
(see Chapter 6).

5.1 Equivalence of categories

Let A be as in Section 4.4 with bundle of semichains X,. We show in this
section that there exists an equivalence between the category of representa-
tions of the bundle of semichains X, and the category of finite dimensional
A-modules. To this end, we first describe the action of the functor and prove
then that it is faithful, full and dense (see [ASS06, Theorem 2.5., Appendix]).

Let us first recall the two categories Rep(%,) and mod(A). The objects
of Rep(X,) are given by representations of the form U = (Uy, Ui)XG:{O’ng‘Sn,
where Uy is a k-vector space of dimension dim P(X), U’ : Uy, — Us,
is a k-linear map and n = |Qg|. Recall that any matrix U* is invert-
ible by construction. A morphism 6 : U — W between two representa-
tions is given by a tuple (P, Q) where each entry consists of n maps giving
6 = (P',....,P"Q'...,Q"). Each of the maps P’ and @Q° is given by a
square matrix. For any i € {1,...,n} we have that WP? = Q'U".

Recall that A = k@Q/(RURSP) and that the objects of mod(A) can be re-
garded as representations of the form V = (V}, Va)ieQ(wte. Here, V; denotes
a k —vector space and V,, : V; — Vj is a k ~linear map for the arrow a : i — j.
A morphism f:V — X between two representations is given by a tuple
[ = (fi)ieq, such that f; : V; — X, is a k-linear map for any i € Qo and

191



such that W, f; = f;V, for any a:i — j € Q1.
Recall also that we have chosen sgn(e) = & for all € € Sp.
Let

F :Rep(Xp) — mod(A) (146)

be given by the following:

(I) Let U = (Ux,U")x; € Ob(Rep(X4)). Then F(U) = V with V =
(Vis Va)ia, Vi = @xem, Ux = Uy, and V, : V; — Vj is given as follows:

(i) Let a =€ € Sp. We obtain for V.:

V.=UVL(U7)

i = 5(¢), and the block (V.)y, has size

where

dim(im(e)) x dim(im(e)) ifk=101=1
dim(im(e)) x dim(ker(e)) ifk=1,1=2
dim(ker(g)) x dim(im(e)) ifk=2,1=1"
dim(ker(¢)) x dim(ker(¢)) if k=1=2

(ii) Let a € Q9", sgn(a™!) = -k, sgn(a) = —k. The basis of V; eker(a)
and the basis of im(a) correspond to links in the row label sets
R; and R, respectively. Denote by |R;| the number of links in the
semichain R;. We obtain for V;, : Ux, — Us; a block matrix with

rows corresponding to the links of 9R; and columns corresponding
to the links of fR;:

1, ifk=|R,1=1,

0, otherwise,

where 1 < k < |Rj|,1 <1 < |9, and the block (V4)g, is of size
dim P(Ror+1-%) * dim P(R; sz, 41-1)-

(iii) Let a € Q¢*Y, sgn(a™t) = k, sgn(a) = —x. The basis of V; © ker(a)
corresponds to a link in &;, and the basis of im(a) corresponds
to a link in 2R;. We obtain

V, =V, (U)"
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where

1, ifk=|R,],1=3,

0, otherwise,

(Va)k,l = {

1<k< |%j|, 1<1<|¢), and (Va)lal is of size dimP(%j,\E)%jHl—k) X
dim P(&; j¢;1-1)-

(iv) Let a € Q9" with sgn(a™!) = —k and sgn(a) = x. The basis of V;©
ker(a) corresponds to a link in RR;, and the basis of im(a) to a
link in €;. The map Vj, is given by

Va=U'V,

where

. 1 ifk=1,1-1
(Va)k, ={

0 otherwise
1<k<|¢, 1<1< R, and (V,)r, is of size dim P(€; ¢ j+1-k) X
dim P(R; jgr,[+1-1)-

(v) Let a e Q¢* with sgn(a™!) = x and sgn(a) = k. We obtain that the
basis of V;6ker(a) corresponds to a link in €;. The basis of im(a)
corresponds to a link in €;. It follows that V, is given by

V, = UV, (U) "
where

1 ifk=1,0=]¢

0 otherwise

(Va)k,l :{
1<k< ’Q:j|, 1<1<|€), and (Va)k,l is of size dimP(¢j,|€j\+1—k) X
dim P(€; j¢,+1-1)-

(IT) Let 6 = (P,Q) be a morphism in Rep(X,) with components P!, ..., P"
and Q',...,Q". Then

F(6) = (Q")1<i<n-

Recall that the arrow a:i — j € Q(l’rd gives rise to one filtration in V; and

to one in V;. The matrix V; describes the action of a with respect to those
two filtrations. The filtration of V; can be of the form

0 cker(a) cV; (148)
or 0cim(c) cker(a)cV; (149)
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if there exists c € Qﬁ’rd with ac = 0. Similarly, the filtration of V; can be given
by
0 cim(a) cV; (150)
or 0cim(a)cker(z)cV; (151)
if there exists € Q! with za = 0.

The corresponding semichains consist of two or three links, respectively.
Thus, V, has one of the following sizes with respect to its bands:

(3x3),(3%x2),(2x3),(2x2).

The way we have constructed the semichains in Section 4.4.2 allows us to
describe V, more detailed with respect to its block form. The Tables 1 and
2 give an overview on the details of (I) (ii) - (iv).

Example 5.1. 1. Let A be given as in FErxample 2.3.1. Consider the
Xp—-representation U = (U!, Ue:,, Uss,, Unyy s Ueyy s Ueyy ) with

0 1]0 1
I
=10 o001
0 0|1 0

The respective vector spaces have the following dimensions:
dim(Ugs, ) = 2, dim(Ug;, ) =2,
dim(Ug,, ) =1, dim(Ug,,) =2,
dim(Ug,,) = 1.

We have by construction that

0 0

V, =

oo OO
OO OO
)

= o O
oo O

110 -1] 0
. a1 o1 ol
Ve=UW(UY) = 0l0 ol o
0/0 0] 0

Thus, F(U) is given by V = (Un,, Va, Vz).
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(I) v, semichains V;eker(a) | im(a) v, as block matrix
Riz  Rig Ry
. Ri={Ri1>R2>NRi3} Rj3 0 0 0
(i) | Un, = Un; Ris N1 n, | O 0 0
mj:{mj1>m]'2>mj3}
wp \ 1 0 0
Rz Rig Ry
Ri={Ri1>Ri2>NRiz } Ris 9{]‘1 . ( 0 0 0 )
Ry={R;1>NR;2} wn; \1 0 0
Ry R4y
. 0 0
Ri={Ni1>Ri2} Rj3
Rz | Rji m, |0 0
%j:{i)%j1>9%j2>i}§j3} J
mj; \ 1 0
Riz R4y
Ri={Ri1>Ri2} R iﬁjl % ( 0 0 )
Ry={Rj1>NR2} wy; W10
g1 % ¢z
- 0 0 0
C={C;1<Ci2<C;3} Rj3
(iii) | U, = U, <i3 Rj1 2, [0 0 0
mj={%j1>9}\j2>9’1‘j3}
2, \ 0 0 1
g1 % ¢
C;={C;1<C;2<C;3} Cis %jl . ( 0 0 0 )
Rj={R;1>R;2} w; \0 0 1
Ci1 Ci2
C;={C;1<C;2} N3 0 0
Cia | Rj1 %, [0 0
9%]':{9‘{]-1>9%j2>9%j3} J
2, \ 0 1
Ci1 %2
Q‘i: ¢;1<¢;
{ 1 2} Q:ZQ 9%]'1 SRjQ (O 0)
Ry={R;1>N2} n; W01

Table 1: Details on Va I
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Rz Rz Ry
. mi:{%¢1>mi2>mi3} Ejl ]' 0 0
(iv) | Un, = Ug, Ris | €1 e, [0 0 0
C;={C;1<C;j2<C;3} J
s N0 00
Rz R R;
R;={Ni1>Ri2>Ni3} _ 13 02 01
Rig | €1 | 9 ( )
€j={€j1<¢j2} €j2 0 O O
Rz NRyp
v 1 0
R, ={R;1>NR; ¢t
¢ i@ 1 ¢ 2}€ } iz | &1 Q;Q ( 00 )
(O <O i< O
J J1SS525%53 ¢js 0 0
R, R,
Ri={Ni1>Ri2} ¢, 12 01
Riz | € 7 ( )
Qj:{€j1<€j2} Cj2 0 0
i1 %z E3
€i={€i1<€i2<¢i3} <1 0 O 1
(v) | Ue, = Ug, 3 |C1| e, (0 0 O
J €j={€j1<¢j2<€j3} J
s N0 00
< <; [2%
C;={C;1<Ci2<C;3} ) 01 02 1‘3
Ciz | €5 | ( )
C;={C;1<Cja} ¢jo 0 0 0
i1 €2
€i={e;<C; i (01
rece) iz | €51 ¢j-2 0 0
€j={€j1<¢j2<€j3} €j3 0 O
¢, ¢,
Ci={Ci1<C;2} ¢ 01 12
iz | €51 7 ( )
@j:{€j1<€j2} Cjo 0 0

Table 2: Details on Va 1I
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2. Let A be as in Ezample 2.1/. Let U be a X p—representation given by

Ulz(%), Ul=(1), U®=0

Ut=(1), U®=0

and the non-trivial vector spaces of dimension

dim(Ug+ ) =1, dim(Ug; ) = 1,
dim(Upy,, ) =1, dim(Upy,,) =1,
dim(Up,, ) =1, dim(Ug,,) =1,
dim(Upy,, ) =1, dim(Ug,,) = 1.

We consider the following maps:

Vo : Uy — Ue,, Vi: Uy — Uny,
Vo : Ugy —> Upy, Va: Uy, — Un,,
Ve:Upy — Uy, Ve:Us — U,
V, 1 Ugy — Usy, Vi:Ug, — Ug,.

Note that V,, V., V., Vn and V. are zero maps. Thus, Vy, V., V., Vi
and V, are also zero maps according to (1),(i)-(v). We obtain that

VU= (1]0),
Vi=Va=(1),

Setting V; = Uw, yields F(U) =V.
Proposition 5.2. The map F as defined above is a functor.

Proof. Let v, 6§ € Morph(Rep(%X,)) with ¢ = (R,S):V — W and 6 =
(P,Q):U — V. We show first that

F(40) = F(4)F(0). (152)

Recall that the composition 98 is given by (RP,SQ). We have by definition
of F' that

F(d’) = (Si)lgz’Sm
F(6) = (Q")1zizn, and
F(90) = (5'Q")1<izn-
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Thus, (152) holds.

Let U € Ob(Rep(X4)) be an arbitrary representation. Then 1y is given by
the tuple (P, Q) with P’ = 1o, and Q' = 1,5, for all 1 < i < n, where
¢ =dim(Ug,) and r; = dim(Usy,). We obtain that

F(lU) = (1r¢><r¢)1§i§n = (1Umi)1§i§n-

Moreover, we have that F(U) =V = (V;, Va)ieQo,ae, € Ob(mod(A)) where
Vi = Uy,. By definition, 1y = (1%)15i§n = (1Umi)15i§n‘ It follows that

F(ly) = 1p@w)-

Finally, we show that F' is well-defined. Let T and U be two arbitrary
X-representations. Let V = F(U) and W = F(T). By definition, V
and W are (Q,RURSP)-representations. Let § = (P,Q) : U — T «
Morph(Rep(X,4)). It remains to show that

Q'Va=WaQ' (153)
for all a:4 —> j € Q1. To this end, recall that the commutativity relation
QU =W'P (154)

is given for all 1 <4 < n. Furthermore, we know that @’ is of lower triangular
block form, and that P? is of upper triangular block form. Let us examine
(153) for a:i —> j € Q9*4. Then V, and W, are given by one of (I) (ii) - (v).
Depending on the relations, V, and W, can be of block size (3 x 3), (2 x 3),
(3x2) or (2x2). Note that V, and W, are of the same block form, though
the sizes of the blocks can differ.

(ii) Let V, = V,, W, = W,. Then (153) is equivalent to QIV, = W,Q".
Consider the (3 x 3)-block form
0
0].
0

0
0
1

for V, and W,. Both Q" and @ are also of (3x3)-block form. Denote
their entries by ¢}, qj,, respectively, 1 < k,1 < 3. It follows that (153)
is given if the following conditions hold:

o O O

Qiz = Qi:), =0, (155)
Q{g = qa;g =0, (156)
B3 = q11- (157)
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The conditions (155) and (156) follow from the triangular block forms
of Q" and Q7. We have by construction that

M1 = basis of im(a), (158)
MRi3 = basis of V; © ker(a). (159)

It follows that
Qg%iBymiB = Qijﬁjl,ﬂ%jl' (160)

Recall the order of the links in R; and Rj: Ri1 > R >Rz and Rjp >
Rj2 > Rj3. We obtain that ¢}, = Qjmjl,mﬂ and that ¢}, = Qb It
follows that (157) is equivalent to (160).

Consider the (2 x 3)-block form

0 00
1 0 0)°

The block matrix @’ is of size (2 x 2); @Q° is given by a (3 x 3)-block
matrix. We denote their entries again by ¢;;, and qil. We obtain that
(153) holds if

i3, 043"

Qiz =Cﬁ3 =0, (161>
q{Q =0, (162)
Q%Q = fﬁl- (163)

By the triangular block forms of @ and @’ we know that (161) and
(162) hold. The semichains %R; and 9R; have length 3 and 2, respect-
ively. Condition (163) follows as above from ;3 = basis of V; © ker(a)
and MR;1 = basis of im(a).

Consider the (3 x 2)-block form

0 0
0 0f.
10

Then Q' is given by a (2 x 2)-block matrix, and @’ by a (3 x 3)-block
matrix. If the following conditions are satisfied, then (153) holds:

Q{3 = Qgg, =0, (164)
qis =0, (165)
i1 = @y (166)

We have iﬁi = {mil > g‘tiQ} and D%j = {%ﬂ > mjz > 9{]'3}, where
Rz = basis of V; © ker(a) and R;1 = basis of im(a). Thus, (166) fol-
lows from Q , »., = gi; and Q;‘jl,mﬂ = ¢}5. The lower triangular block
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(i)

form of Q' and @’ implies (164) and (165).
Consider the (2 x 2)-block matrix

()

for V, and W,. Both Q° and Q7 are of block form (2 x 2). We obtain
that (153) is given under the following conditions:

Q{Q =0, (167)
12 =0, (168)
di1 = G- (169)

Similarly to the previous cases, (167) and (168) follow from the tri-
angular block forms of @* and @’. Both R; and R, consist each
of two links. In particular, we have that R;; = basis of V; © ker(a)
agd R = b'asis of im(a). This implies that Qf , ., = ijﬁjhiﬂjl' By
Qn,y:,, = €11 and Qg‘jhmﬂ = q39, (169) follows.

Let V, = Vo (U') ™" and W, = W, (T%)™". Applying (154) to (153), the
latter is equivalent to
Q’V, = W,P".

This equality implies similar conditions to the ones in (ii). These con-
ditions are satisfied due to the block forms of ¢’ and P* and the block
correspondences given by oa(R;1) = €3 (04 (Rj1) = Cio, respectively).

Let V, = UV, and W, = T7W,. Due to (154), (153) is equivalent to
PV, = W,Q".

It follows analgously to the previous cases that (153) holds under sim-

ilar conditions as in (iii). They are implied by the block form of Q'

and P’ and the block correspondence given by the connection of €j;

and R;3 (R, respectively) under oy.

Let V, = U'V,U" and W, = T9W,T". We obtain that (153) is equivalent
to

PV, =W,P'
by (154). We obtain that (153) holds if similar conditions as in (i) with
respect to P* and P7 are satisfied. Due to the triangular block forms
of P* and P?, we know that certain entries are zero. Furthermore, we
know that two blocks coincide since €;; and €;3 (&2 respectively) are

connected by ox. This data confirms that the conditions in doubt are
fulfilled.
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Proposition 5.3. The functor F' is dense.

Proof. Let V = (V;,Va)ico.ac@, € Ob(mod(A)). By construction of Xj,
we have a correspondence between filtrations on V; arising from the arrows
a € Q and semichains in X. Thus, we can deduce from V a naturally
partitioned matrix

Ui:v;_c_)v;r

for each i € Qo, where V. 2 V" 2 V. In particular, V° is given in the basis
determined by the filtration FZ.(] ) that corresponds to SZ.(C). Similarly, V;"
is given in the basis determined by the filtration Fi(j) which corresponds to
Si(r), where j # 7.

It follows that U is a basis change matrix for all i € Qq, partitioned according
to the filtrations Fi(j ) and Fi(J) with bands indexed by the elements of the
corresponding semichains.

Set Ux, = V;" and Ug, = V¢ for all i € Q9. Furthermore, take Ux to be for any
X € Xy the subspace given by the basis corresponding to X by the filtration
associated to R; (&;).

By construction, we obtain for U = (U%,Ux); x that F(U) 2 V. O

Proposition 5.4. The functor F is faithful.
Proof. Let 0= (P,Q):U — T ¢ Morph(Rep(%A)) with F(0) = 0. We have
by definition of F' that F'(0) = (Q")1<i<n- 1t follows that the (Q—component

of 0 is zero. Recall that Q'U’ = W'P? for all 1 <i < n, and that every U®
and every W" is invertible by construction. It follows that

P =(W) ' QUi=0

for all 1 < ¢ < n. Thus, the P—component of 6 is zero. We obtain that
6 =0. O

Proposition 5.5. The functor F' s full.

Proof. Due to its technicality, we refer to Subsection 5.2 for the proof. O

Theorem 5.6. The functor F: Rep(X,) — mod(A) gives and equivalence
of categories.

Proof. The proof follows from the Propositions 5.4, 5.3 and 5.5. 0
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5.2 Proof of Proposition 5.5

Let V and W be two (Q,RURSP)-representations and let f:V — W be
a morphism. We want to show that there exists # € Morph(Rep(X,)) such
that F(6) = f.

By Proposition 5.3, we know that there exist two X -representations U and
X with F(U) =V and F(W) = X. Set

Q" = fi, (170)
P = (X)) QU (171)

for all 1 < ¢ < n. Recall that the matrices in U and X are invertible by
construction. We claim that F(0) = f for § = (P,Q) with components as
described in (170) and (171).

Let i € {1,...,n}. Assume without loss of generality that i € Qg is not
isolated. Tt follows by (171) that X*P? = Q'U’. We show that the respective
other conditions of Definition 4.63 are satisfied for Q* and P*. We have the
following possibilities in @ on the vertex ¢:

@ «(Ci—"=j
(5) k_b>¢Qg
(6) k—2=i—%~j withab+0

(7) k—2si—">j with ab=0
e
(8) k—t>i—2~j withab=0
©) 1,
k#iﬁa-j with ab+0, ca=0
(10) k—2si—2%s

P with ab#0, db=0
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(11) !

C

k—b>z’—ad>j with ab+0, dc+ 0, db=0, ac = 0.

p

Thus, we regard commutativity relations with respect to the ordinary arrows
a, b, ¢ and d, and with respect to the special arrow . We first compute
those commutativity relations. In order to do so, we distinguish the different
possible semichain assignments according to (I), (ii) - (v) in the definition of
the functor F.

(3) Commutativity relations on vertex ¢ with respect to € : i — i € Sp.
By definition of f, the commutativity relation @Q*V. = W.Q" holds.

Furthermore, we have that V, = U’Va (Ui)_l with
~ 10
Ve = (0 0). (172)

The maps W. and W, are of similar (block) form. Recall that the
equality X'P* = Q'U" holds for all ¢. Thus, we can rewrite the com-
mutativity relation Q*'V. = W.Q" to

PV, = W.P". (173)

Denote the entries of P by pt,; for 1 < k,1<2. Inserting (172) and the
respective block form of W into (173) gives

pilozplil Pl
py 0] \o o)

We obtain that P’ is given by the following block form:
(i O
P = - 174
( 0 ph a7)

(A) Commutativity relations on vertex i with respect to a : i — j. By
definition of f we have that

Q' Vo =WQ". (175)

Recall that V, (W,) is given in terms of V, (W,). We distinguish the
following possibilities according to Table 1 and Table 2:

(ii) We consider V, =V, : Un, — Un;, Wa = W, : Xp, — Xy, -
Hence, we can rewrite (175) to

ija = Wan‘ (176)
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Let V, and W, be given by (3 x 3)-matrices. They are both of

the block form
0 00
0 00
1 00

and give maps between filtrations of the form (149) and (151).
Denote the entries of Q)7 by qil and those of Q' by q;;, 1,<k,1 < 3.
Equation (176) results in

7 00\ (0 0 0
Bz 0 0f=f{0 0 0
@s 0 0) \ai1 diz dis
Thus, the matrix Q' is of form
a0 0
Q=1 a2 a3 (177)
431 32 433

Furthermore, we have that ¢ty = q§3.
Let V,, and W, be given by (2 x 3)—matrices. They describe maps
between filtrations of the forms (149) and (150) and are of the

following block form:
0 00
1 0 0)

The commutativity relation in (176) results in

(qig 0 0):(0 0 0),
By 0 0) \ai1 q12 a3
We obtain that @Q° is of form (177) and that qg2 =qty.

Let V, and W, be given by (3 x 2)-matrices. Thus, they give
maps between filtrations of the forms (148) and (151) and are of

the block form
0 0
0 0].
10
We obtain by (176) that

gs 0\ (0 0
i ool-[0 o)
as 0 91 12
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(iii)

The blocks q§3 and ¢i; are equal to each other. It also follows
that Q" is of the following block form:

Q' = (qil v ) (178)

YA YA
421 922

Finally, let V, and W, be given by (2x2)—matrices which describe
maps between filtrations of the forms (148) and (150). Their block

form is given by
0 0
1 0)°

The commutativity relation (176) gives

O
@y O a1 qi2)
It follows that q%Z = qil. We obtain that Q° is of same block form

as in (178).

We consider V,, = Va (Ui)il, W, = Wa (Xi)il. Thus, Va is a map
between the vector spaces Ug, and Uy, and similarly W, : Xe, —
X, We can rewrite (175) as follows:

Q. (U =W, (X)) @
Applying the commutativity relation Q'U’ = P'X? gives
QV, (U =W,P (U) .
Hence, it is enough to consider the commutativity relation
QVo=W,P". (179)

Denote the entries of P’ by p};l with k,[ in the respective range.
We proceed similarly to case (ii). Let V, and W, be (3x3)-matrices.
Their blockform is given by

0 00
0 00
0 01
We obtain from (179) that
00 g5\ (0 0 0
00 g|=[0 0 o0



It follows that q§3 = pég and that P? is of form
(P P2 Pis
P'=|py  ph P223 . (180)
0 0 ps

Let V, and W, be given by (2 x 3)-matrices. They are of block

form
0 00
0 0 1)

The equality (179) results in

0.0 qp)_(0 0 0
0 0 @) \Ps1 P pi)
This equality yields that q‘%Q = p§3 and that P! is of same block

form as in (180).
Let V, and W, be given by (3 x 2)—matrices. Then they have the

following block form:
00
0 0].
01
We obtain by (179) that
0 g3 0 0
0 q%3 = (3 (3 .
0 g3 P21 P22

It follows that qés = pby and that P? is given by

P'- (pél ]’;z) (181)

Let V, and W, be given by a (2 x 2)-block matrix of the form

%)

The equality in (179) results in

o %)=L k)
0 ¢ Py Pho
Thus, we have that q%Q = pby and P* has block form as in (181).

206



(iv) Let Vo = U9V, W, = X/W,. We have that V, : Un, — U,
and W, : Xp, — X¢;. We rewrite (175) to QIUIV, = XTW,Q".
Applying the relation Q7U7 = X7 PJ to the left hand side, yields
that (175) is equivalent to

PV, =W,Q". (182)

Let V, and W, be given by (3 x 3)~block matrices. They are of

the form
1 00
0 0 0].
0 00

The commutativity relation (182) results in

00 Cﬁl ﬁz Q§3
p%l 0 0ol=]0 0 0
0 0 0 0 0

We obtain that q’il = p{l. Moreover, @' is of the block form
@ 00
Q' = qlzl q222 QZ23 : (183)
a1 G5 33

Let now V, and W, be given by (2 x 3)-block matrices. Their
block form is given by

1 00

0 0 0)

We obtain by (182) the equality

pp 0 0\ _(dy dix dais)
p, 00 \0 0 0

It follows that p{l = ¢¢, and that Q" is of the same block form as
in (183). )
Let V, and W, be given by the (3 x 2)-block matrices

1 0
0 0].
00

207



We obtain by the commutativity relation (182) that

pjll 0 qlﬁ qzﬁ
phy of=0 0
p]31 0 0 0

Thus, the blocks qil and p]ﬁ coincide. We obtain also that Q° has
block form
i (41 0
=" S, 184
@ (qél 059 ( )

Finally, let V, and W, be given by (2 x 2)—block matrices of the

form
10
0 0)
Then (182) results in

(p]1:1 O)Z(Qil qié).
py 0 0 0

We obtain that ¢}, = p{l and that Q' has block form as in (184).

Let V, = U9V, (U) ™, W, = X9, (X*)™". We obtain that V :
Ue, — Ug,; and W, : X¢; — X¢;. Furthermore, (175) can
be rewritten to Q?U’V, (U")_1 = X'W, (X")_1 Q'. Applying the
commutativity relation @Q’U’ = X7P7 to the left hand side, and
Q'U" = X" P" to the right hand side, yields that (175) is equivalent
to

PV, = W,P". (185)

Let V, and W, be given by (3 x 3)-block matrices. They are of

the form
0 01
0 0 0].
0 00

Inserting this matrix in the respective positions in (185) gives

0 0 pyy Ps1 Ph P
00 p|=[0 o of
0 0

Ph 0 0 0

—

[\
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We obtain that p{l = p§3 and that

) Plﬁ plﬁ pl:13
P'=1py  pho plgg . (186)
0 0 ps

Let V, and W, be given by (2 x 3)-block matrices. They are of
the form

0 01

0 0 0)
Thus, (185) results in

00 p]n _ P:iﬂ p§2 pés ‘
0 0 py 0O 0 O

We obtain that p{l = pfn and that P is given by a block form as

in (186). )

Let V, and W, be given by (3 x 2)-block matrices:

01
0 0].
0 0

We obtain by (185) the equality

It follows that p{l = pby and that the block form of P’ is given by

i plﬁ plﬁ
P = il 187
( 0 P22) ( )

Let V, and W, be given by block matrices of block sizes 2 x 2:

0 1
0 0)
The equality (185) results in

0 pjll _ pél péQ )
0 ply 0 0
We obtain that p{l = pbs and that P? is of block form as in (187).
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(B) Commutativity relations on vertex i with respect to b: k — i € Q™.
This case is analogous to case (A). Note in particular that Vj is given
by the same block forms as V, in case (A). Due to the analogy, we only
give the results of the calculations:

(i)

(iii)

We consider V, = Vb, Wy = Wb. We obtain for Vb and Wb both
given by a (3 x 3)— or (3 x 2)-block matrix, that Q" is of the
following block form:

, qzﬁ Qiz 0

X3
Q=1 ¢ O
431 G52 433

Furthermore, we get in both cases that q§3 = q’fl. Let V, and W,
be both given by a (2 x 3)- or (2 x 2)— block matrix. Then we

obtain that
Qi — q7il 0
491 G52

and the equality gb, = ¢¥,.

Let Vi, = Vi (UF) ™, W, = W, (X*) ™. Let V; and 1, be both given
by a (3 x 3)— or (3 x 2)—block matrix. We obtain the following
block form of Q'

. CI?u Qﬁ 0
Q=|an @ O
a1 93 433
If V, and W, are both given by (3 x 3)—block matrices, we have
that g3, = phs. If Vi, and W, are of size 3x 2, we get that ¢is = ph,.
If V, and W, are both given by a (2x3)—- or (2x2)-block matrix,
then @ is of the following block form:

. i 0
Q' = (an : )
421 922
Moreover, we obtain that gb, = P§3 if ‘7b~and Wy, are (2 x 3)-block
matrices, and that giy = ph, if V;, and W, are (2 x 2)-matrices.
We consider V}, = UlVb and W, = Xin. Let Vb, Wb be both given
by a (3 x3)- or (3 x 2)-matrix. Then P’ is given by
(P P2 Pl
12
P =10 plzz p123
0 P32 Das
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We obtain also that pi; = ¢F; in both cases.
Let now Vj, and W, both be given by a (2 x 3)— or (2 x 2)-block
matrix. Then we obtain the following block form of P':

pi- plil pi2 )
0 pho
Furthermore, we get again the equality p¢, = ¢f; in both cases.

(v) Let Vi = UV, (UF) ™, Wy = X7, (X*) ™', We obtain for V, W,
both given by (3 x 3)— or (3 x 2)-block matrices that

(P Pla Pl
0 ph pig

Additionally, we obtain the equality p}; = p’§3 in the (3 x 3)—case,
and pt; = pk, in the (3 x 2)-case.

Let Vi, Wy be given by (2 x 3)— or (2 x 2)-block matrices. Then
the block form of P’ is given by

pi - pzil piz '
0 oy
Moreover, we obtain that Py = phy if Vi, W, are of size (2 x 3),
and pi, = phy if Vi, W, are of size (2 x 2).

(C) Commutativity relations on vertex i with respect to c: 1 — i € Q4.
We only consider V., W, in the cases (7) and (9). Thus, we know
that V. terminates in V; with basis given according to the filtration
0 c im(c) < ker(a) c V;. Thus, the terminating vector space of V.
coincides with the starting vector space of V. It follows that V. is given
by a (3 x 3)— or (3 x 2)-block matrix. The same follows analogously
for W,. Proceeding anlaogously to (A) results in the following forms
of Q" and P’ (for both choices of V. and W,):

(ii) Let V. = Ve, W. = W,. We obtain
(dn @ O
Q' = q121 qlzz 0 (188)
a51 432 433
and the equality q§3 = qln.

(i) Tet Vi = Vo (U)) ™, W = We(X')™". Then Q' is of the block
form given in (188). Moreover, we obtain that ¢4y = phg for the
(3x3)-block matrix V4, and i, = pb, for the (3x2)-block matrix.
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(iv) Let V, = U'V,, W, = X*W,. Then we have that
(P P P
P'=1 0 pjy piyl. (189)
0 piy pi3
It also follows that pi, = ¢l;.
(v) Let V. = UV, (U)) ™, W, = XW,(X')™". We obtain that P* is

of the block form (189). If Vj,, W}, are given by a (3 x 3)-matrix,
we have that p?; = p4;. In the other case we get that pi; = phy.

(D) Commutativity relations on vertex i with respect to d:i — p e Q™.
We consider V; and Wy in the cases (8) and (9). Thus, V; starts in
Vi with basis according to the filtration 0 c im(b) c ker(d) c V;. It
follows that V} terminates in the same vector space in which Vj starts.
Because of this, V is given by a (2 x 3)- or (3 x 3)-block matrix. We
obtain similar results for W,. Proceeding analogously to (A) results in
the following block matrices for Q* and P* (for both choices of Vy, Wy
in each case):

(ii) We consider Vy = Vi, Wy = Wy. Then Q' is given by
a0 0
Q' =|a1 a2 a3 (190)
a1 G5 53
We obtain that ¢}, = ¢b, if Vi, Wy are of size (3 x 3). If Vi, W
are (2 x 3)-matrices, the respective equality is given by ¢}, = gb,.

(i) Tet Vy =V (UF) ™, Wy =Wy (X)) We obtain

(M i dis
P'=|g5 g5 Q§3 (191)
0 0 g5

and the equality})ggf q§3 if V,, W, are given by square matrices,
and phs = ghy if V3, W}, are non-square.

(iv) We consider V; = UPV,, Wy, = XPW,. Then Q' has the same block
form as in (190). Furthermore, it follows that pi; = ¢}; in both
cases.

(v) Let Vg = UPVy (UF) ™, Wy = XPW,(X')™. Then P’ has block
form as in (191) and p, = pis.

With the information gathered in (X), (A) - (D), we are now able to analyse
the shape and correspondences within blocks of * and P* in all ten cases.
We want the following properties:
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° QZUZ — WzPl
e Q' is of lower triangular block form
e P'is of upper triangular block form (diagonal form with respect to €)

e Let X denote the link corresponding to the basis of the image of a (b,
¢, d, respectively) and let Y denote the link corresponding to a basis
of the starting vector space without the basis of the kernel of a (b, ¢, d,
respectively). We know that ox(X) =Y. Then the respective blocks
in Q', P and @/, P (QF, P*, Q', P!, QP, PP, respectivley) coincide.

The first property follows by the definition of P® in (171). The last property
is given by the block equalities named in (A) - (D), (ii) - (v). We deduce
the shapes of Q" and P? in each of the cases (1) - (10) from the information
given by the computations (A) - (D) and (X):

(1) In this case, € is the only arrow incident to the vertex i. It follows
from (174) in () that P! has the required diagonal block form. By
construction, € determines the basis of Ug,. The basis of Uy, is given by
the standard basis which corresponds to the only link of the semichain
MR;. Thus, Q' is given by a (1)-block matrix and we are done.

(2) In this case, we either have that V, and W, are both given by a (2x2)-
or a (3x2)-matrix. It follows from (A) that we obtain for the cases (ii)

and (iv) that @Q° is of the form Q' = (Z:; q22). The second filtration
on the vertex ¢ is the standard filtration. It follows that the P* is a
(1 x 1)-matrix and thus fulfills the requirements. ‘

Similarly, we have for the cases (iii) and (v) that P = (pgl p? ), and
that Q" is a (1 x 1)-matrix. .

(3) This case is analogous to case (2).

(4) The starting and terminating vector space of V. are given by Ug,. The
starting vector space of V,, differs from it and is given by Usy,. It follows
that we only combine (A) (ii) and (iv) with (X):

(A) give || (X) gives results in
L\ ; ; ; (¢, 0 i_ (P O
i) /(iv 15=0 fo =05 =0 = |, Pt = o]
(i) /(iv) | ¢io 12 = 921 Q (qél s 0 py

We see that Q' and P? satisfy the required conditions on their block
form.
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()

(6)

The terminating vector space of Vp is given by Uspy,, and the same
property holds for W3. Thus, we combine (B) (ii) and (iii) with (X)
and obtain analogously to (4) that Q* and P’ are of the required from.

Note that the terminating vector space of V}, is given in a different basis
than the starting vector space of V,. Thus, we can have the following
combinations of (A) and (B):

(A) (i) with (B) (iv),(v)
(A) (i) with (B) (ii),(iii)
(A) (iv) with (B) (iv),(v)
(A) (v with (B)  (ii),(iii).

Recall that V, starts in Ug, in the cases (iii) and (v). Tt starts in Upy,
in the cases (ii) and (iv). The terminating vector spaces are given for
V, similarly: in the cases (iv) and (v) it is given by U, and in (i) and
(iii) by Usx,. Summing up the results gives

(A) give(s) (B) give(s) results in
N i . i i q; O i pill plﬁ
i) /(iv) | ¢4, =0 || (iv)/(v) | p5; =0 Q=(Z i),P=( i
(/) | dla =0 | )/ | oy o 0 o
(i) /(v) | phy =0 || Gi)/GGii) | gy =0 Qi=(q%l ?),P%(p 11 M2
921 422 0 po

We can see in the table above that Q% and P? have in each combination
the required form.

We have in contrast to (6) that the terminating vector space of V4, and
the starting vector space of V, coincide. Note that V, is given by a
(2 x 3)- or (3 x 3)-block matrix. The map V} is given by a (3 x 2)-
or (3x3)-block matrix. This allows the following combinations of (A)
and (B) and gives the respective information:

(A) give(s) (B) give(s)
(i) /(Av) | q19=q13=0 || (ii)/(iii) | qi3=¢53=0
(iii) /(v) | P31 =p32=0 | (iv)/(v) | P5; =p3; =0,

The vector space whose basis is not determined by the filtration 0 c
im(b) c ker(a) c V;, is given by the standard basis. The map inheriting
its block structure from this vector space is given by a (1 x 1)-matrix.
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Summarising, we obtain the following block forms:
, a1 0 0 .
(A) (ii) and (iv): Q"= q121 qlgz 01 P = (plu)
431 432 933
[P P P
(A) (iii) and (v): Q' =(qi1), P'=| 0 phy -
0 0 ps
This case is analogous to the cases (4) and (7) combined. This implies

that we consider the combinations from (7) for (A) (ii) and (iv). We
obtain for all those combinations that

) qlﬁ 0 0
Q=g a2 0|
a3 932 433

In contrast to (7), the matrix P' is not given by one block, but is
determined by V; as in (3):

i (P 0
P = s .
( 0 P22)
Note that we have the same combinations of (A) and (B) asin (6). The

terminating vector space of V. coincides with the starting vector space
of V,. We obtain for (A) and (C) the following possible combinations:

(A) (i) with (C) (i),(iii)
(A) (i) with (C) (iv), (v

(A) (iv) with (C) (i1),(iii)
(A) (v) with (C) (iv), (v).

We sum up the information in the following table:

(A) give(s) (B) give(s) (C) give(s)

(ii)/(iv) | g12=q13=0 || (iv)/(iii) | ph = g53 =0 | (i))/(iii) | ¢i3=0
(i) /(v) | p31 =p3e =0 || (ii)/(iii) q12=0 (iv)/(v) | P =p3 =

We obtain the block forms
A qil 0 0 (g, P
W and (v @ =fdn a0 | P= (T T) o)
451 432 433
) qi 0 ) Pi piz Pz_13
W i Q= (B )P[0 ] o)
21 22 0 0 péS

which are of the wanted form.
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(10) We consider the same combinations of (A) and
following combinations are allowed for (B) and

(B) (i) with (D) (ii),(iv
(B) (iii) with (D) (ii),

(B) (iv) with (D) (iii),(v)
(B) (v) with (D) (i), (v).

We sum up the information obtained from the commutativities of the

respective possible combinations:

(6).

The

(A) | give(s) (B) give(s) (D) give(s)
(/) | an =0 | )/ ) | 9y =2, =0 || )/ (V) | s =g =0
(iii) /(v) | Py =0 || (ii)/(iil) | gi3=g53=0 || (ii)/(iv) | ¢i5 =¢13=0

We obtain the block forms
0\ P Pl DPls
) iy and v Q= (M 2 )0 by
QQI (:722 0 0 pé?,
) qlu 0 0 . pz pi
(A) (iii) and (v): Q"=[¢5 ¢ O |, P'= 11 1-12 .
i i i 0 py
q31 432 933

The block matrix @ is of lower triangular and P! of upper triangular

form. Thus, they satisfy the condition.

This case is a combination of the cases (9) (with respect to the arrows
c and a) and (10) (with respect to the arrows b and d). Thus, we
consider the same combinations of (A) and (C) ((B) and (D)) as in (9)
((10)). We sum up the information obtained from those combinations:

(A) give(s) (B) give(s) (C) give(s) (D) give(s)
o q2=0 | . por =01 . |aq3=0] . P31 =0
(ii)/(iv) g =0 (iv)/(v) P =0 (i) /(iii) =0 (i) /(v) sy =0
Py =01 . . | dz=0]| . P =0 ... . |di2=0
(i) /(v) Py =0 (i) /(iii) =0 (iv)/(v) Py =0 (ii)/(iv) 4= 0

In combination, this data results for (A) (ii)-(v) in the following block

forms of P and Q"

(a0 0
Q' = q221 Q§2 0

q31 G52 q§3)

We see that they are both of the required lower and respectively upper

triangular block form.
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5.3 On the computation of inverses

Let U be a Xp-representation and let U’ be one of the linear maps of U,
i€{1,...,n}. In this section, we describe how to obtain the inverse of U".
Recall that U is invertible by construction.

We observe at first that any row and any column band of U’ consists of
maximal two non-zero block entries and at least one non-zero block entry.
Recall that we only obtain elementary subchains of length 2 or 3. Any link =
(y) which is not contained in an elementary subchain of length 3 thus gives
a row (column) consisting of exactly one non-zero entry. Let z and y be
contained in the elementary subchain e, ,(g) of length 2. We have that

1 if z=y and e;y(g) # e2(9),
Uiz, 2) = F, if z=y and e, (g) = e2(9),

0 else,

1 if z=2 and e, y(g) # e2(9),
Ui(z,y) =4 F, if z=x and e, y(g) = e2(g),

0 else.

For any elementary subchain of length 3, we consider several entries in U’.
Any elementary subchain of the form

-
T-Y~z-a

with y,z € &;, ,a € Ry, results in the following entries in U':

ly = ly =
z|1 1 or a|0 1 (194)
a0 1 z|1 1
An elementary subchain of the form
wW-—T~Y-—2
with 2,y € € and w, z € R; gives the following entries in U*:
Y N
1 0 or z|1 1 (195)
z |1 1 1 0

In case of an £-cycle, the elementary subchain es(g) can be involved. If
e2(g) = z— a, then x -y~ 2z — a results in the following entries in U":

ly =2 ly =
x|l 1 or a|0 F, (196)
a|0 F, rz|1l 1
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The elementary subchain w —x ~ g — z with es(g) = w — = gives

R |z
w|F, 0 or z| 1 1 (197)
z| 1 1 w|F, 0

Note that the entries described in (194) - (197) do not have to arise in one
block as depicted here. The entries can be separated by several columns or
rows. In order to compute the inverse of U?, we can rearrange the columns
and rows such that the non-zero entries are given by blocks as described
above (i.e. the respective entries are not separated by zero entries). Those
blocks lie on the diagonal. We denote the rearranged matrix by U’ and
neglect any band structure for this matrix. In order to compute the inverse
of U, it is enough to compute the inverses of the respective blocks:

-1 -1
11 1 -1 0 1 -1 1
(o 1) “\o 1)’ (1 1] {1 0) (198)
-1 -1
10 10 11 0 1
(1 1] " \-1 1)’ (1 o] \1 -1) (199)
T N S O 0 B\ (-F' 1 (200)
0 F,) \o F') 1 1) "\ E, 0
F, 0\ (F' o0 1 1\ (o F (20)
1 1) “\-F;' 1 F, o) ~\1 -F]')

Rearranging the rows and columns of (Qi)_l back to the order given in U,

we obtain (Ui)_1 with the band structure deduced from U’
Example 5.7. Let A be given as in Example 2.3.1. by the quiver

s(:;],;:>a
with Sp = {e}, R = {a?}.

(i) Let w = €*ae* be an asymmetric string. Its corrsponding £—chain is

given by
— —
Jw: Rz - Cou ~ € - Rip ~ Rz - o ~ Coy - Ryo
To T T2 T3 T4  Ts Te  T7

The Xo-representation U(gy) has one matriz U'. It is given by

1 XI5 X9 g

Ty 0 1 0 1
giozo| 1 01 0
zz | 0 0] 0 1

zz3| 0 0] 1 O
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We consider the following U*:

U' =

Zo
3
T
Zq

8
ot

oo o w8

oo~ ~=8

_ o O O

= o ol

Applying (198) to the respective blocks yields

wh™

rg X3 Ty X4

T 1 -1 0 0

_ 2|0 1 0 0
T5 0 0 -1 1
za | O 0 1 0

We obtain be reodering of the columns and rows:

Ul =

(ii) Let w, be a symmetric band with W, = e*ac*a™ .

L—cycle 1s given by

Zo Ea)

-

ng : Q:e* ~ Q:e*
L

T
L5
T2
L6

L2

T4 X0 xT7 I3
0|1 0] -1
110 -1} 0
010 0 1
0|0 1 0

x3

x4

—

- Ry ~ Rz - Cax ~ Eoy - Rz ~ Ry

T5

Its corresponding

Ze X7

J

We obtain

Ut =

We rearrange as follows:

T3
6
T2
T7

T3
L6
x2
T

Tro T4 1 xIs
0 1 0 1
0 O 0 1
0 0 |F, 0
1 0 1 0

Irs T4 I1 i)
1 1 0 O
10 0 O
0 0 F, 0
0 O 1 1

219



and compute its inverse according to (199) and (201):

r3 Tg X9 x7
zs [0 1 0 0
(Ul)—l _rg | 1 -1 0 0
- |0 0 FS' 0
|0 0 -F' 1

Arranging the rows and columns according to U' gives

I3 Te xT9 X7

zo [0 O0]-F,© 1

n-l_ =z 1 -1 0 0
(U) = =

21| 0 0| F,7 0

x5 | O 1 0 0

Remark 5.8. Keep in mind that U’ must not always be unique. Consider
again Example 5.7 (ii). In U', we can also switch the columns x5 and x4
and the rows x7 and xo. Then we obtain the matrix

T4 Ty T1  Zo
I3 1 1 0 0
(Ql)'z zg | O 1 0 0
z7 | 0 0 1 1
z2 | 0 0 F, O
Its inverse is given by
xr3 Te I7 Z2
zq | 1 -1 0 0
I:(Ql),:l_lz z5 | O 1 0 0_1
z1 | O 0 O F,
|0 0 1 -F

. . . -1 .
Rearranging its rows and columns back, we obtain the same (Ul) as in the
example.
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5.4 The image of F' in terms of strings and bands

We analyse in this section the modules in the image of F' in terms of strings
and bands as defined in Subsection 3.2. Recall that an a-relation in an
L—graph corresponds to a letter w;. A S-relation indicates a change between
the bases according to the two constructed filtrations of V;. Thus, we are
especially interested in the a-relations of the £—graph. In particular, we
want to examine the entries in the matrix which come from links incident to
the a-relations and see what happens to them under the action of F'.

Keep in mind that we are going to compose the results in the notation of
strings and bands and thus also change within the proofs to this notation at
some point.

Lemma 5.9. Let g be an £—graph and denote by Us(g) (U(g,V)) a corres-
ponding representation where V is - in case of g being a cycle - the vector
space given according to some @ in the construction, and some s such that

Vs € U(g).

(i) Any subchain of the form x;_1 — T; ~Zi+1 — Ti+2 of g that, in case
of a cycle, does not contain es(g), results in the following action in

F(Us(9)) (F(U(g,V))):

e=-1

Tis1 — T2 if g is an £ - chain with V¥g(x;) = 1,9s(x441) = —1,
Tiil T Tis if g is an £ - chain with ¥s(x;) = -1, 9s(wi41) = 1,
=1

Vict — Vigo if g is an £ — cycle, with Vi_1, Vi disjoint copies of V,

(i) Any subchain of the form x;,_1 — Tj ~ Tiv1 — xiva of g that, in case
of a cycle, does not contain es(g), results in the following action in

F(Us(9)) (F(U(g,V))):

T = misa if g is an £ chain with $y(x;) = 1,0 (wie1) = -1,
Tiol = Tisg if g is an £ - chain with ¥g(x;) = =1, 9s(2i41) = 1,

Vi1 ! Visa if g 1s an £ — cycle, with V;_1,Viio disjoint copies of V

Proof. Recall that V. = UV, (Ui)_1 where i = s(¢) and U belongs to U,(g)
(U(g,V)). Denote by M (z;,z;) the entry in a matrix M in the row indexed
by x; and in the column indexed by x;. In case of an £~cycle, this entry is a
block of size deg(yp) xdeg(p). We show the statement for g an £—chain. The
proof for g an £—cycle is analaogous. Recall that any ¢ € ¥(g) is uniquely
defined for £-cycles (Subsection 4.1.4).

(i) Let first 1s(z;) = 1 and 9s(2i41) = —1. Note that there do not exist
elementary subchains of type 4 for X5 (see Remark 4.73). Thus, we
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. : . ; -1 ~ .
can determine the respective entries in U*, (UZ) and V. (see Section
5.3):

if x =ay,

else,

; 1
Ul(l‘i_l,l‘) = {0

] 1 if iy Ly 5
UZ(J/‘i+2,$):{O o € {2, T}

else,

i 1 if i—1,4L% s
U'(w,2;) = {O ;stee {wi1, wira}

i 1 ifz= i+2
U'(2,2is1) = { 0 ;1:; i (202)
~ 1 ifzx=yeP(c),
Ve(z,y) = o=y P(e:) (203)
0 else,
i1 if x = Ti-1,
R CERORS DR (204)
-1 ifz= Ti-1,
(Ui)_l (Tis,2) =1 1 if &=z}, (205)
0 else,
1 ifz=ua,
(Ui)_l (x7mi—1) =4 -1 ifx= Ti-1, (206)
0 else,
i1 1 ifx= Titl,
(U") " (z,m442) = {0 olse ’ (207)
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We compute V. (Ui)_1 and denote its entries by (-,-):

1 ifx=x1,

(wi,2) = ;Vg(xi,l) (Ui)_l (l,x) = (Ui)_l (wi,7) = {

0 else,
(208)
(Tiv1,0) = S Velinn, 1) (U1) ™ (L) = 0, (209)
l

(a:,:ci_l) = ;‘7{5(1’,[) (Ui)_l (l,a:i_l) (210)
- ~ 1 ifx=u

=Vo(z,x;) - Ve(w,i41) = {0 olse , (211)

(2, 2i12) = ;175(90,1) (U (L zis2) (212)

= Vo(z,2i01) = 0. (213)

Applying (208)-(213), we compute V. = U'V. (U7)

1 ifz-= Ti-1,

0 else,

Ve(zio1,z) = zl:Ui(xi_l,l)(l,x) = (z,x) = {

1 ifxe{wii,zi2},

Ve(z,z4-1) = Zl:Ui(J:,l)(l,xi_l) = {

Vo(iso,x) = ; U'(is2,1) (1, %)

0 else,

1 ifz-= Ti-1,

= (x5,2) + (41, ) = {

%(Z’,LL’i.;_Q) = ZUZ($7Z)(Z7$Z+2) =0.
l

0 else,

We see that ¢ acts as follows on the basis element x;_1 of V;:
€
Ti-1 —> Tj—1 + Tj+2. (214)
We can rewrite (214) to
Ti—1 —> —Tj+2

which gives the statement.

Let now tz;) = -1 and (z;41) = 1. Proceeding analogously to the
first part, we obtain that

3
Tj—1 — —Tj+2
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(ii) The statement follows analogously to (i). For ¢s(z;) = 1 and ¢s(zi41) =
—1, the entries of interest in U’ and (U")71

U’ (xl 1,T) = {1

ifxe {.TZ',{L‘Hl},

are given as follows:

else,
) 1 ifzx= Ti+1,
(Tiv2,x
"2 0 else,
1 ifx= Ti-1,
Ul(z,x
( )= {O else,
l’ :L'+1) ifxe{xi_l,xi+2},
‘ else,
X -1 if x = x40,
(UZ)_ (zi,x) =13 1 ifx=a,
else,
1 ifx= .rHQ},
Ul Tisl, T
( ( o {0 else,
if x=ux;
(UZ (l' Ti 1 { I xr =,
else,
if =,
(UZ (95 Tis2) if © =241,
else.

Computing V. results in
£
Ti42 —> —Tj-1.
Similarly, we obtain in the case vs(z;) = —1, ¥ (wi41) = 1 that

g
Tit2 —> —Tj-1.

O

Remark 5.10. Note that the case s(x;) = =1, ¥s(xiv1) =1 only occurs for
L—chains g with two double ends when using the method described in Remark
4.58 in order to construct the X—representation Ug(g,p). We observe that we
either have Vg(x;) = =1, Ys(xiz1) = 1 or PYs(x;) = 1, Ys(xir1) = =1 for such
L—chains. This is due to the definition of the maps ¥} (g) for the £—chain
g: Yi(x]) = —s(xma1-i) (see Remark 4.49) where x} € g5, Tm+1-i € go, and
we have in particular that x} = Tpe1-; (see Definition 4.22).
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(i)

(i)

(iii)

(iv)

Lemma 5.11. Let g be an £—graph and denote by U(g) (U(g,V)) a
corresponding representation where V describes - in case of g being an
L—cycle - the vector space corresponding to some @ in the construction.
Let x; = basis of im(a) and x;.1 = basis of V; © ker(a) be two links in
go, where a:1— j € Q(frd,

Let x;,xi41 € €. Then any subchain of the form x;_1 — x; ~ Tix1 — Tizo
of g that, in case of a cycle, does not contain ex(g), results in the
following action in F(U(g)) (F(U(g,V))):

Ti 1 < Tiro if g is an £ — chain

Viaa < Vieo if g is an £ — cycle, Vi_1, Viro disjoint copies of V

Let x;,xi1 € R. Any subchain of the form x;_1 — X; ~ Tjs1 — Tir2 0f ¢
that, in case of a cycle, does not contain ea(g), results in the following
action in F(U(g)) (F(U(g,V))):

T < Tiv1 tf g s an £ — chain

Vi < Viq if g is an £ — cycle, Vi, Vi1 disjoint copies of V

Let x; € €, x;,1 € R. Any subchain of the form x;_1—X; ~ Xis1—Tiv2 0f g
that, in case of a cycle, does not contain ea(g), results in the following
action in F(U(g)) (F(U(g,V))):

Ti1 &£ Ti+1 if g s an £ — chain,

Vi < Vig if g is an £ — chain, V;_1, V11 disjoint copies of V'

Let x; € R, xi41 € €. Any subchain of the form x;_1—x; ~ ;41— %42 0f g
that, in case of a cycle, does not contain ex(g), results in the following
action in F(U(g)) (F(U(g,V))):

Ti o Tiro if g 1s an £ — chain,

Vi < Vo if g s an £ — cycle, Vi, Viio disjoint copies of V

Proof. We use the same notation as in the proof of Lemma 5.9. We show
the statement for g an £—chain. The proof for g an £-cycle is analogous.

(i)

Note that both links z;_; and z;.9 belong to row label sets. Thus,
Ti—1 * X and x40 # wie3. It follows that x; belongs to exactly
one elementary subchain which is of length 2 (z;-1 — z;) and x;41 also
belongs to exactly one elementary subchain which is of length 2 (z;41 -
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xir2). Recall that V, = Uiv, (Ui)_l. We obtain for the respective
matrix components:

. 1 ifx= i—1, ; 1 ifx= [2)
Ui, z) =1 7Y Ui,y =1 T T (215)
0 else, 0 else,
. 1 'f = i s . 1 f = i s
U'(z,zi1) = LT e U'(xis2,2) = LE T
0 else, 0 else,

(216)
~ 1 ifx=uz, ~ 1 if x =z,
Ve(z,wiv) = Ve(wi,x) =

(@,2is1) { 0 else, (@i,) {0 else.
(217)
We compute the relevant entries of the inverse of U*:

i\—1 1 ifzx= Ti+2,
U’ i+1, L) = 218
( ) (@iv1,) {O else, (218)

- 1 if z =21,
) @i =T (219)

0 else.

Denote by (-,-) the respective entries of the product V, (Ui)il. We
obtain the following from (215) - (219):

7 AN %% 1 ifx= 2
(2, xir2) = 3 Va(a, 1) (U") 1 (L, zir2) = Va2, mis1) = { e,
1

0 else,
(220)
1 ifx= Ti+2,

0 else.
(221)

(5,2) = ; V(i) (U (12) = (U) ™ (@i, 7) = {

We use the results from (220) and (221) to finish the computation of
Va:

i 1 ifx= i+2
Va(wi1,2) = YU (i1, 0) () = (21, 2) { v e
l

0 else,

| . .
Va<w7wz—+2>=ZUJ(m)(z,asm):w(x,m:{ i 7=
l 0 else.

We see that V, acts as follows on the respective basis elements:

il <— Tia (222)
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(i)

(iii)

Note that z;_1 and z;,2 belong to column label sets. Thus, we can have
that ;1 = xj_g = €.+ for some € € Sp with z;_5 ~ 2;_1. Similarly, we can
have that x;,2 = x;,3 = €+ for some 1 € Sp with Tir2 ~ Tiz3. Note that
we cannot have both cases at once by exluding k(n,e | n* = n,e2 = €)
(Remark 4.73). Depending on those cases, x; (x;1+1) can belong to one
or two elementary subchains.

Recall that V, = V,,. Thus, the number of elementary subchains which
contain x; (z;4+1) does not affect V, and it follows for all cases:

1 ifx=ux, 1 if x =241,

Va(x,le) = { Va(xi,x) = {

0 else, 0 else.

We obtain that V, acts as follows on the respective basis elements:

a
Ti <— Ti+1-

Note that z;_; belongs to a row label set and that z;,2 belongs to a
column label set. We can have that zj,9 = ;.3 with Z;42 ~ Zi+3. In this
case, x;+1 belongs to two elementary subchains. They affect the entries
of U'. Recall that V,, = U’V,. We see that the number of elementary
subchains containing ;.1 does not affect V.

The relevant entries of the matrices are given by

) 1 if;[;:,ri_l’ . 1 ifx':xi,
U’ (z,x;) = U’ (xi-1,7) =
(z,2:) {0 else, (@i-1,2) {0 else,
~ 1 ifx =y, ~ 1 if o =441,
Va(z,2541) = ’ Va(zi,x) = o
0 else, 0 else.

We obtain for V:

1 ifx= Ti+1,

Volxii1,x) = U’ i 1,1 Va I,z :Va T;,x) =
(21:1,2) = D0 @1, )Vala) = Vi ){Oelse’

ifx= Ti-1,

) - . 1
Vlz, zi1) =) Uz, D)Vo(l,2541) = U (2 x;) =
(2101) = SV, )Vall 2100 «){Oelse
Thus, V, acts as follows on the respective basis elements:

a
Ti—1 <— Tj41-

Note that x;-1 belongs to a column label set, and that x;.2 belongs to
a row label set. We can have that x; 1 = x;_9 with x;_ o ~ x;_1. In this
case, x; belongs to two elementary subchains. They affect the entries

of U7. Recall that V, =V, (Ui)_l. Thus, the number of elementary
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subchains containing z; does not affect the entries of V.

The relevant entries of the matrices U* and V, are given as follows:

, 1 fzx=u , 1 if &=z,

UZ(.’EI‘_;.Q,[IJ) _ I T =T+, Ul(l',xi_;.l) _ T =242
0 else, 0 else,

~ 1 if x =, ~ 1 if o =441,

Va(w,2is1) = s Va(wi,w) = L
0 else, 0 else.

Computing the inverse of U’ according to Section 5.3 results in

) G-
1
0

(Ui)_l (z,x442) = {

We compute the respective entries of V:

Vo(, Tis2) = ; Va(,1) (UF) ™ (L ivn) =

if v =0,
else,
if =241,
else.

1

Va(ﬂf7xi+1) = {0

else,

Vo(zi,z) = ; V(o 1) (U) ' (Lz) = (U) ™ (2ien, )

1
0

if =240,

else.

|

It follows that V, acts as follows on the respective basis elements:

a
Ti <— Tit2.

Remark 5.12. We obtain an analogous result to Lemma 5.11 if we switch the
that x; = basis of V; e ker(a),
The respective action in F(U(g)) (F(U(g,V))) is

roles of x; and x;1: in this case, we have that
x;+1 = basis of im(a).
then described by a™".

Lemma 5.13. Let g be an £—chain with one
corresponding representation (s € {1,2}).

(i) If x1 = €.+ is the double end for some ¢ € Sp, then the subchain x1 — x2

double end. Let Us(g) be a

results in the following action on xo in F(Us(g)):

0

T2

e(r2) = {

228

ifs=1,
if s=2.

if x = x;,



(i) If p, = €+ is the double end for some € € Sp, the subchain T, — Tm,
results in the following action on xy,_1 in F(Us(g)):

o ) 0 if s =2,
Ty-1) =
! Tm-1 fs=1.

Proof. (i) We proceed similar as in Lemma 5.9 and compute V.. We know
that z1 € €; for some 7 € Qg and zo € R;. It follows that z3 £ 9
(otherwise x3 = x9 € €;). We obtain the following entries:

. 1 ifx=ux9
Ux,21) = ’
(@,21) {O else,
. 1 ifz=xq
U'(xo,x) = ’
(@2,2) {O else,
1 ifz= ¢,
Vg =f LTV
0 else.

It follows that

(Ui)fl (21,2) = { 1 if x =,

0 else,
i1 1 ifx=x
U* T,x9) = ’
( ) (@,22) {0 else.

Denote by (-,-) the matrix given by the product V.U’ Recall that
1(x1) = -1 and 2(x1) = 1. Thus, z; belongs to €_. for s = 1, and to
¢7. for s =2. We obtain the following:

s=1:

(z1,7) = leva(m,l) (U) " (,x) =0, (223)

(2,22) = Y Vala, 1) (U) " (Lwg) = Ve(, 1) =0 for all @, (224)

s=2: |

(1) = S Velon, ) (0) ) = (07) (2,) = { b
(225)

(2, 2) = Zl:VE(x,l) (U (12) = Vi, ) = {; ZSZ: L (226)
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We use (223) - (226) to compute V.. Its relevant entries are given as

follows:
s=1:
Ve(zg, ) = ZUi(ﬂfQ,l)(l,x) = (z1,z) =0 for all =, (227)
1
Ve(z,x2) = ZUi(x,l)(l,xQ) =0 for all x, (228)
1
s=2:
i 1 if x = 2o,
‘/;(.1‘2,1') = ZU ($27l)(lax) = ((L‘l,.’IJ) = (229)
7 0 else,
%(xva):ZU ($7Z)(l7$2):U (fl?,xl): (230)
1 0 else.

We obtain from (227) - (228) that
e(zg)=0if s =1,
and
e(xg) =x9 if =2,
from (229) - (230).

(ii) Recall that ¢ (xy,) =1 and ¥2(zy) = —1. The proof is analogous to

().
O

Lemma 5.14. Let g be an £—chain with two double ends. Denote by Us(g,p)
a corresponding representation (p € N\{0}, se€{1,2,3,4}).

(i) Let x1 = €« for some € € Sp. The subchain (x1,1) — (x2,1) results in
the following action on (x2,1) in F(Us(g,p)):

0 ifse{l,3),

e(@2 1)) = { 1 ifse{2,4).

(i1) Let xy, = €+ for some n € Sp. If p is odd, the subchain (xp-1,p) -
Tm,P) Tesults in the following action on (xp-1,p) in s(g,p)):
Its in the followi ] m F (U,
0 ifse{l,2},

n((@m-1,)) = { 1 if se{3,4).

If p is even, the subchain (x1,p)— (x2,p) results in the following action
on (z2,p) in F(Us(g,p)):
0 ifse{2,4},

e((@2,p)) = { 1 if se{1,3).
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Proof. (i) We know that (z2,1) # (x3,1) since z2 € R. Thus, (x1,1) is
only contained in the elementary subchain (z1,1) - (22,1) of glP]. Re-
call that ¢1((21,1)) = ¥3((21,1)) = 1 and ¥2((21,1)) = Ya((21,1)) =
—1. Thus, the cases s = 1,3 follow analogously to Lemma 5.13, (i) with
s = 1. Similarly, the cases s = 2,4 are analogous to the case s = 2 of
Lemma 5.13, (i).

(ii) Let p be odd. We have that (z,,p) is only contained in the elementary
subchain (zm-1,p) = (Tm,p). Recall that ¥ ((xm,p)) = Ys(Tm). It
follows that 11 () = 2((zm,p)) = 1 and that s((zm,p)) =
Y4((zm,p)) = —1. The cases s = 1,2 follow analogously to Lemma 5.13
(ii) for s = 1. Similarly, the cases s = 3,4 follow analogously to Lemma
5.13 (ii) for s = 2.

Consider now p to be even. Recall that ¢} ((x1,p)) = —1s(z1). Hence,
we obtain that ¥1((z1,p)) = ¥3((z1,p)) = 1 and that ¥2((z1,p)) =
¥4((z1,p)) = 1. The cases s = 1,3 follow analogoulsy to Lemma 5.13
(ii) for s = 2. Similarly, the cases s = 2,4 follow analogously to Lemma
5.13 (ii) for s = 1.

O

Lemma 5.15. Let g be an £—cycle and let U(g, ) be a corresponding rep-
resentation. Let ea(g) = zi-1 — ;.

(i) Let xi_1 € R and x; € €. Then ea(g) results in the following action in
F(U(g,%))-

~

e for z; = basis of im(b) and x;1 = basis of Vj, © ker(b) for some
beQyd, s(b) = k:

_ b=F, —
‘/:L—l — ‘G7
o for x; = basis of Vi @ ker(b) and x;,1 = im(b) for some b € Q9,
s(b) = k:
_ b=Fpt _
‘/ifl S ‘/j7

o for x; =xi11 = € for some € € Sp, s(e) = k:

g=-F 1
‘/Z'fl - ijz

where

. 1+ 1 ’Zf.fi+1€m,
1+2 ifxi €€,

and V a k —vector space of dimension deg o with the V;’s disjoint copies
of V.
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(i1) Let xi—1 € € and x; € R. Then ea(g) results in the following action in
F(U(g,¢))-

e for x;_o= basis of im(a) and z;_; = basis of Vj, © ker(a) for some
a€Q9d, s(a) = k:
_ a=F;' _
v
e for x;_9= basis of V; © ker(a) and x;_1 = basis of im(a) for some
aeQ9d, s(a) = k:

_ a:F(P _

V}' - ‘/iv
o for x;_o =wxi1 =Co for some e €Sp, s(e) =k:

-1
_ e=—Fg " _
i I3

where

(231)

71— 2 ifxi_ge%,
1-3 ifﬁL’i_QEQ:,

and V a k —vector space of dimension deg o with the V;’s disjoint copies
of V.
Proof. Keep in mind that we consider £-cycles and thus, that each link
indicates a subband of size deg(y). We keep the computations in the proof
in terms of the links and will switch in the last step to the computations in
terms of vector spaces.

(i) We consider the subchain x;_9 ~ j_1 —2; ~ ;41— Ti+2 with x;_1 € R and
x; € €. Assume without loss of generality that x;_1 = basis of V;eker(a)
and x;_9= basis of im(a) for a : | — h € Q") Note that es(g)
determines the entries in the matrix U':

Ul(xi-1,2;) = F,. (232)

Moreover, V, is given independent of U': we have that V, = U hy, for
zi_9 €€, and V, = V, for z;_9 € R, where im(a) c V.

Assume that k =, that is z; = basis of V;eker(b), x;,.1 = basis of im(b)
for some b: 1 — m € Q(frd, and assume that z;,1 € €. We have that
Vi, = U™V, (Ul)_l. Denote by (-,-) the product ‘Z,(Ul)_l. We have

that
- F_1 if x = 13
(U 1(1’7a:,~_1)={ o BEETL (233)
0 else,
- F_l if x = -1,
O RS S (234)
0 else.
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Similar to the previous proofs, we obtain that
- . -1, -1
(xiJrl?x) :Z%(xiJrla]) (Ul) (]ax):(Ul) (I’Z,l')
J

_ F;l ifx:aci_l,
0 else,

(2,2i1) = ¥ Vi@, 1) (U) " (i) = Vi, ) B
J

_ F;l if ©=ux1,
0 else.

It follows that

V@, zi-1) = Y U™ (2, 5)(j, i-1) = Um(x,xm)Fg;l
J

_ F;l if ¢ =x;,9,
0 else,

Vo(ziso, ) = ZUm(l"HQ,j)(j,ﬂf) = (441, )

_ F;l if v=x;_1,
0 else.

_p-1
We obtain that V;_; bii Viio.

Consider now x;,1 € R. Then V, is given by V = %(UZ)_l. The
relevant entries of U' are given as in (233) and (234). We obtain for
V, the following:

Wo(x,w5-1) = ZVI;(JSJ) (Ul)il (Jyzie1) = ‘717(%%')17;1
j

_ F;l if ©=x1,
0 else,

Vi(is1, ) = 3 Vi(is, ) @ Goz) = (U (@i, 2)
J

_ FLEI if x=x;_1,
0 else.
-1

_ b= _
We obtain that V;_1 —5 Vii.

Assume that k # [, that is, x; = basis of im(b), ;41 = basis of Vi6ker(b)
where b: k —l ¢ Q(l’rd. Assume additionally that z;.1 € €. It follows
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that Vi = UV, (U%) ™" with

F, ife=,
Ulzig,z)=1"% "7°7 (235)
0 else,

Ul (2, 2;) = {F‘P if 2 =2,

236
0 else. (236)

. . ~ -1
Similar to the previous cases, we obtain for (,-) =V}, (Uk) that

(w5,2) = Y Vilwi, ) (UF) 7 Gow) = (UF) 7 (i, )
J

_ 1 ifx:$i+2,
0 else,

(2,1v2) = Y2 Vi) (UF) 7 (oziva) = Vi, i)
J

)1 itr=ay,
0 else.

It follows that
%(I’i_l,x) = ZUl(xi—hj)(j?x) = F@(th)
J

R if x=x,9,
0 else,

Vi(,2i42) = 2, U (2,§) (J, 2is2) = U' (2, 27)

_ F¢ ifx:xi_l,
o else.

) _ b=F, _
We obtain that V;_1 «— Vjo.

Assume that 2,1 € R. Then Vj, = U'V},. The entries of U' are given as
described in (235) and (236). We obtain for Vj, the following:

~ F, ifzx=x1,
‘/b(x7xi+1):ZUl(xaj)%(jaxi-%—l):Ul(xw,ri):{ v '
5 0 else,

0 else.

NYS (5 ~ F, lfl':.’El ,
‘/b(l‘i—l,-’ﬂ) = ZUl(xi—lvj)%(]’x) = FSD‘/b(IEz’x) B { ’ )
J

_ b=F, _
Thus, the computations result in V;_; Vi,
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Assume that z; = x;41 = €+ for some € € Sp with s(¢) = [. Then we
have that ;41 € €. By definition of ez(g), it follows that dir;;41(g) =
-1. Note that z; € €1, and z;4; € €_.. We want to compute V. =

U'v. (Ul)_l. Here, the relevant entries of U’ are given by

1 if x=x.9,
UZ(CCJ%‘): F, if v =x; 1, Ul(37,$i+1)={
0 else,

1 ifzx= Ti+2,
0 else,
1 if xe{mi, 2}, F, if x =,

0 else, 0 else.

Ul(l’”g,l') = { Ul(l'i,1,$) = {

Thus, we obtain according to Section 5.3 that the respective entries of
its inverse are the following:

“loify = Ti-1,

© o

else,

0 else,

FU o ifr=ay,

—F7l ifx= Ti+l,

—F;l if @ =21,
(Ul)_l (zi1,7) =11 if x = x40,

0 else.

We denote by (-,-) the entries of the product V. (Ul)_l. We obtain the
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following:
(w5,2) = Y Vel ) (UY) 7 Gow) = (UY) (@i, )
J

_ F;l if x=x;_1,
0 else,

~ . -1,
(zis1,2) = 2. Ve(@in1,3) (U') " (j,x) = 0 for any = € €,
J

(,2i-1) = Z‘;é(élfaj) (UZ)_1 (4, zi-1)

=Ve(w, ) F," + Ve(w, win1) (-F, ")
-1 . _ .
Fooo iz =,

:‘é(x’xi)Fsglz{() else

~ . -1, . ~
(.I,in+2) = Z‘/E(xv.]) (Ul) (]7Ii+2) = ‘/E(x)xi+l) =0 for any T € Q:l'
J

Multiplying the above from the left by U’ results in

1 ifl‘:l‘i_l,
Vo(z,zi1) = 3, U@, §)(j,wio1) = Ul (2, 2:) F, " = FUif o= 249,
J 0 else,

Ve(ziso, ) = ZUl($i+2,j)(j>$) = (x4, 2) + (Tis1,2)
j

F2l o ife=2
_ _ ® =1
=(x;,7) =
(@:,) {() else.

Hence, we obtain that e acts as follows on V;_q:

_ E:F;1 _

Vici — Vigo and
_ e -

Vier — Vi1

Considering Vz =1 -V, yields that

_ e=F; _
Vici — Vi

(ii) The proof is analogous to (i). Note that we have for x;_o = z;_1 = €.~
for some ¢ € Sp, that dir;_2,;-1(g) = 1 due to the definition of e2(g).

O

Remark 5.16. We see in the proof above that es(g) influences the map

corresponding to the incident link which belongs to a column label set.
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Remark 5.17. In case of a symmetric band w;, we assume that its periodic
part is of the form i, = e*un*u™' (cf. Subsection 3.2.4). We know by
construction that

62(ng) T ‘i‘h

where To = x1 = €+ and dirg 1(gw,) = 1. Thus, T1 € R and it follows that

_ sszggl _
Vo «— W

in F(U(Guy $))-

The above results show that we have for strings w that each link x; € gy 0
with x; € R corresponds to a basis element in F'(Ug(gy)). Similarly, we have
for bands w; that each link z; € gy, 0 with x; € R corresponds to a copy V;
of Vin F(U(guw,,¥))-

Recall from Chapter 4.7 that the direction on links of £—graphs coincides
with the directions on the respective special letter if the letter has finite
index. This information together with the Lemmas 5.9 - 5.15 enables us
to directly read the image of F' from the original string or band and its
corresponding £-graph. To this end, we introduce an alphabet fitting our
needs with respect to the image of F.

Definition 5.18. Let A be a skewed-gentle algebra. Let
Sa(A) = {e*, & 2*1 | e e Sp,x € Q¥™Y}
be an extension of Tq(A). We denote the respective set of directed words by
W (2q(A)) = {w | w; € q(A) for all i e1}.
There exists the following forgetful map:

U Za(A) — La(A) (237)

x”l—)
K

x® if x # € for any ¢ € Sp,
" else.

We consider the following subset of ¥4(A):

Sa(A) = {e,27 2* |2 € Sp,z e Q) (238)
and denote the respective set of words by W(f]d(A)). We denote the re-
striction of 1% to S4(A) by ¥,

Similarly as (11) induces the map (13) in Section 2.3, the map (237) induces
the following map:

U5 W (Ba(A)) — W (Ta(A))

We denote the respective restriction by \iff
Note that we can compose the map ¥% with ®¢,. We denote this composition
by ¥,
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Remark 5.19. The notation above can be also be applied to clannish algeb-
7S.

Example 5.20. Let A be given by the two-loop quiver in Fxample 2.3.1.

(i) Let w=ce*a"'e* be an asymmetric string. Let v e (@) (w) be glz'ven

by v=c"tate™t. Note that v is (weakly) conistent. Let t € (‘Iff)_ (v)
~ =1
be given by t =& 'a~'et. Thente (U%)  (w).

(ii) Let w, be a symmetric band with W, = e*ue*u™!, where u = ac*a. Let
vy € (P47 (wy) with d, = cacaca*era”t. Note that vy is (weakly)
conistent. Let t; € (\I/f)_l (vy) with t, = cacaca™ e a™t. Then t, €

= -1
(l:[lfd> (wz).
Having introduced this notation, we are able to compose the correspond-
ing statements.

Theorem 5.21. (i) Letw be an asymmetric string. Let gy, be the £—chain
corresponding to w with Xo—representation U1(gw). Then there exists

Ve (\iffdy1 (w) (weakly) consistent with
F(Ui(gw)) = M(v).

(i) Let w = ue*u be a symmetric string. Let g, be the £—chain cor-
responding to w with Xo-representation Us(gy). Then there ewists

€ (‘i’fd)_l (w) (weakly) consistent with
F(Us(gu)) = Mi(t)

where t € (U2)7" (u) with v =te"t™", k€ {+1,-1}, and

) 1 ifs=1,
Z:
0 ifs=2.

(113) Let wy, be an asymmetric band. Let g., be the £-cycle correspond-
ing to wy with Xo—representation U(gw,, ). Then there exists vy €

(\ijfd

)_1 (wy) (weakly) consistent with

F(U(guy,#)) = M(vz,V)
where V is a k[T, T~ ]-vector space with dim(V') = deg(y).

(iv) Let wy, be a symmetric band with periodic part Wy, = e*un*u™".
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(iv.i) Let gy, be the £—cycle corresponding to w, with Xo-representation
= -1
U(Guy,¢). Then there exists v, € (VZ) (w;) (weakly) consist-
ent with periodic parts @;Z) =cetnt™! for all i € Z and with

F(U(guz, ¢)) = M(vz,V)

where V is a k[T, T7L, (T + 1)7']~vector space if 6o(g) is even,
or V is a k[T, T7Y, (T - 1)~ ]-vector space if 5o(g) is odd, with
dim(V) = deg(p).

(iv.i) Let g, be the £—chain corresponding to w;, with Xo—representations
Us(gu,p), p € N. Then there exist words vy € (0=) ™" (w;) (weakly)
consistent with periodic parts f)z(f) =atyt™ for allieZ, x,y € Sp,
xe{e &}, ye{n,n}, with

{F(Us(guP)) bresea = {Mo1,25 P acte 2y wetnm

where tlP) is given as defined in Subsection 2.3.3, Remark 2.50,

e ifs=1,3,
€T =

g if s=2,4,

n ifs=12,
Y= _

n s=3.4,

and with the module M; ;. ,(tP1) of the form

x:iQ ¢ Y t ad QF]‘ if p is even,
x:iQ ! Y ! Z Q?Fj if p is odd,

with the k—th copy of t* acting on a respective copy of the basis
elements (bg,...,bm).

Proof. The proof follows from the Lemmas 5.9 - 5.15. O

Remark 5.22. We obtain in (iv.ii) of the above lemma a direct assignment
between the two sets. It is of the following form:

F(U1(gu;p)) = MO,l,am(t[p]
F(Us(gu:p)) = Mo,1,2. (!
F(Us(gu:p)) = Mo,1,¢.7 (")
F(Us(gu:p)) = Mo,z ()

~— ' —

We consider tP) as subword of v, with periodic parts @g) =etnt™! for s=1.
Similarly, for s =2, we consider it as a subword of v, with @ISZ) =étnt™t, and
for s =3 we consider v, with 271(,1) =etnt™t, for s =4 we have ﬁ,ﬁ” = ettt
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Note that we explicitely know the form of the words v, v;, respectively,
in W(X4(A)) in the above theorem, according to the respective lemmas. We
examine in the next section whether we can restrict the statement to words

from W(T'q(A)).
Example 5.23. Let A be as in Example 2.1}. Recall that it is given by the

quiver
Q: 6@1\ /53/@
2 e
N
UCS 4
with Sp = {e,n,k} and R = ca,ec,db}.

(i) Let w = d"tex*c be an asymmetric string. Its corresponding £—chain

is given by
-
guw:  Cog - NRaog ~ Ry1 - €41 ~ Rz - Cor ~ Cor - Ry ~ o3 - Rao
i) I xIo I3 T4 Is i xT7 I8 T9

We obtain that F(U1(g)) is given by

d e k=—1 c
T1 —> T <— Ty <— T7 <— X9g.

(ii) Letw = e*a™tbn*b~tac* be a symmetric string. Its corresponding £—chain

is given by
_
Gui Rip - Cor ~ € — Ry ~ Co1 - Rig ~ Rz - G
i) I ) T3 T4 xT5 L6 xT7

where u = e*a™'b. This gives the following for F(Us(g)):

g=-1 a b
o T3 I 1‘63 n

1 dfs=2,
Vo ifs-1.
Example 5.24. Let A be as in Ezample 2.3.1: A =kQ/(RURSP) where

EC;1;)Q

with

with R = {a®} and Sp = {&}.
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(i) Let w; be a symmetric band with v, = ¢*ac*a™.

L—-cycle 15 given by

The corresponding

Juwg * Cex ~ Cox = Ry ~ Rz - v ~ Cox - Ryz ~ Ry
| |

Take o #t,t =1 (50(guwy) = 1) and let V be a k —vector space of dimen-
sion deg(y). Then F(U(guw,,¥)) is given by

where the V;’s are disjoint copies of V.

1) Note that there is also a corresponding £—chain g,,, for the symmetric
(i) ponding Gus, y
band given in (i). It is given by

Jw, @ Cer—R11 ~ Riz—Ces.

In order to construct Us(gu,,2), we consider

To X1 Ty ®3 T4 Ty Te Ty

h: Cor =Ry ~ Rz - Cox ~ o - Rz ~ Ryp - Cx
L 1 -1 1
o1 1 -1 -1
Pr: -1 11 1
'R 11 -1

Applying Lemma 5.14 to h results in F(Us(guw,,2)) being given by
s=1: e=0 C bo = b1 e=-1 bgl) = bél) Ds=1
s=2: a0 bo=tmb <) - pf) e
s=3: e=0 C bo = b1 =1 b%l) = b(()l) Dezl

s=4: E=DCb0 aa— % =1 bgl) - bél)Dézl

and bgl) a copy of b;. We can also display the modules in o different
way. For example, for s =1, this reads:

90— )

for V. a k—vector space of dimension two, and with Vi and Vo being
disjoint copies of V.
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1

(ii1) Let wy be an asymmetric band with w, = a” e*a~le*. Its corresponding

L—cycle is given by

Gz * Riz ~ R - Cex ~ Cax - Ryz ~ Ryp - v ~ Cx
| |

Take @o # t. We obtain that F(U(guw,,¢)) is given by

g=-F;! _ _ = _

17 R 7 N 74
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5.5 The image of F' in terms of W(T'4(A))

We have seen in the previous section that the image of the functor F' can
be desribed in terms of words in the alphabet ¥Xq(A). By definition, we
have that W(Tq(A)) c W(Z4(A)) ¢ W(E4(A)). In this section, we examine
whether we can also express the image of F' in terms of W(I'q(A)). We will
see that the answer is affirmative for the image of canonical representations
arising from £-cycles and from £-chains without two double ends. Recall
that we consider A to be a skewed-gentle algebra.

To this end, we show first that two words v, v/ in W(2q(A)) which dif-
fer only in one special letter by v; = 17;- for some j €1, give rise to isomorphic
modules.

Let I={0,...,n}. We denote by p; the map

i W(Xa(A)) —W(Za(A))
(. ey Vo1, U5, Ujaly e ) l—>( e V=1, U5, Vsl e - )
sending the special letter v; of a word v; to 05, where j e {1,...,n}.

Let I =7 and let v; be a Z —word of period p. Assume that @](,i) = @}gk) for all

i,k € Z. We denote then by p; the map
ni: W(Ea(A)) —W(Za(A))
(Ul, cee s Uy ,’Up)(i) »—»(vl, . ,’l_)j, . ,’Up)(i)

for all i € Z, sending the special letter v; of any periodic part of the word v;
to Uj, where je{1,...,p}.
For example, p; sends v; to vy and vice versa, since pu; is self-inverse.

Remark 5.25. Due to the definition of pj(vr), we have that
dir(v;) = dir((pj(vr))s) Vi€l and for any jel.
Furthermore, we have that
s = (g (00)): Vi #
vj = (pj(vr);

Proposition 5.26. Let w be an asymmetric string in Tyq(A). Let v,0v" €
W(24a(A)) such that p;(v) =v" for some j eI, Ui(v) = UY(v') is (weakly)
consistent and V> (v) =2 (v') =w. Then M(v) = M(v").

Proof. We show the statement by induction on ind}(v). Let I ={0,...,n}.
Assume that dir(v;) = -1 and vj = e7! for some ¢ € Sp (the other cases follow
analogously). Denote the basis of the k—vector space M (v) by (bo,...,by)
where v;(b;) = b;—1 for all 1 <4 <n. Similarly, denote by (co, ..., ¢,) the basis
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of M(v").
Let ind}(w) = 0. Let f: M(v) — M(v") be given by

¢ Vi<jg-1, o
bi ’ ' . ] VZ:/:],
-c¢; Vix2j+1,

bj > Cj-1 — Cy.

Then f is injective. It follows that f is bijective. It remains to show that f is
a morphism of A-modules. To this end, note that ind}(v") = ind} (v). Thus,
we have that dir(v}_;) = dir(v},;) = dir(v}f) = =1, and vj_; = 27", v, =y !
where x and y are ordinary letters. In particular, we have that v;_; = U}—1
and vj+1 =vj,;. For j €I, we have that v; = e and v} = 1. We obtain by

definition of f:
ef(bj-1) =e(cj1) = (1) —€)(¢j-1) = ¢j1 = ¢,
fe(bj-1) = f(bj) = ¢j1 — ¢y,

where s(e) denotes the start vertex of € in the quiver. Similarly, we have
that

fy(b;) = f(bj+1) = —cje1,

yf(bj) =y(cj-1-¢j) = —cjn. (239)
Recall that yz = 0 since A is skewed-gentle. This implies that y(cj-1) =0
which gives (239).
For all other indices, we have that b; = ¢; and v; = vZ{ . Thus, f gives a module
isomorphism between M (v) and M (v").

Let now ind} (w) =d > 0. Let wj» =y and w;; = x. Let k,l € J* such that
wy and w; are of special type and |j — k| = |7 — 1] < d. Assume for now that
this is the only pair in J* with those properties. Let wy = w; = n* for some
n € Sp. We either have dir(vy) = —dir(v;) or dir(vg) = dir(v;). In both cases,
by Lemma 3.55, we either have that indy *(w) < d and ind} (w) < d, or that
ind;,(w) < d and ind} (w) > d.

Let us first consider dir(vy) = —dir(v;) with ind;(w) < d, ind](w) < d.
Assume without loss of generality that dir(vy) = dir(v;) = -1 and thus
dir(v;) = 1. By induction, we have that

M(pu(v)) = M(v) 2 M(ue(0)). (240)
It follows that M (v) = M(upur(v)). Thus, we can assume v and v; to

be such that vy = v;'. Recall that we also have by definition of u; that

vy, = (Ul,)_l- Let f: M(v) — M(v") be given by

¢ Vi<j-1, . . .
bl'—>{ ' L % VZ¢{]7'-')J+_1})
—C V12J+7

bjvi —> Cj_i—1 — Cjui for all ¢ €I such that j+ie{j,...,j5 -1}
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This map is injective and by M (v) and M (v") having same dimension, f is
bijective. It remains to show that f is a morphism of A—modules.

Since f:b; = ¢; and v; = v] for all i < j — 1, it remains to check the commut-
ativity relation for all + > j. Consider ¢ = j. We have v; = et and v;» =g!
and the commutativity relation to be checked is given by fe =¢ef. We have
that &(c¢j-1) = ¢; which yields that e(cj_1) = ¢j-1 — ¢ = f(b;j). Consider now
i € Isuch that j+ie{j+1,...,55 —1}. By symmetry in v; we have that
Vj4i = (vj_i)_l. Assume without loss of generality that dir(v;.;) = 1 and
dir(v;-;) = 1. Furthermore, by definition of y;, we have that vj,; = v;-H- and
that Vj—i = ’Ujl»_i. Thus, it follows for Uj_i(bj_i) = bj_z‘_l that ’Uj+i(bj_i_1) = bj_i.
The commutativity relation thus follows from the following;:

JUji(bjei) = f(bjri-1) = Cjmi = Cjri-1,

Vi f(Djei) = vjvi(Cjmiot = Cjai) = Cjoi = Cjvic1

The commutativity relation follows for all other indices j+i € {j+2,...,j5i-1}
analogously, in particular, since we have that v = (v;) L.

The next in line is to show that fz = zf for the index j7. We have that
x(b;+_1) = bjx. Moreover, we have by symmetry in position j that x(b;+) = 0:
otherwise, we have that vjs,; = z~! and symmetry yields that vjx_1 =« which
contradicts the definition of a word. Thus, we obtain that

fa(bjs_1) = f(bjx) = —¢jx,

rf(bjr_1) = w(cjr —cjrq) = —cje.

For all i > j; we have that f:b; » ¢; and v; = v]. Hence, the commutativity
follows for all ¢ > j;. The existence of the commutativity relations shows
that f: M(v) — M(v") is a A—module isomorphism.

The case dir(vg) = —dir(v;) with indj(w) < d and ind; *(w) > d follows
analogously (by Lemma 3.59: dir(v) = dir(v;)).

Consider now the case where dir(vy) = dir(v;). It follows by Lemma 3.56 and
3.59 that dir(vy) = dir(v;) = dir(v;) in both cases (indj(w) < d, ind; (w) < d,
or indj,(w) < d, ind; (w) > d). By induction, we can use again the bijections
given in (240). Thus, we can assume v and v; to be such that vy = v;.
Letf : M(v) — M (v') be given by

C; V’iﬁj—l, . .
b; —> Vi see, L= 1},
' {—cz- Vi1, FAd /

bjs1 — Cjoic1 — Cjui for all ¢ €I such that j+ie{j,...,1-1}.
It follows analogously to the previous case that f is a module isomorphism.

The key step in this case is given for the index . Assume that v, = 77!
for some 7 € Sp. Then v;(b;) = b;_1 yields that n(b;_1) = b;. It follows that
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v =7 with 7(bp_1) = bg. In particular, it follows that n(by) = 0. We obtain
for the index [ that

nf(bi-1) = n(br = bi-1) = ¢y,
In(bi1) = f(by) = -

O

Finally, let {k;}i<i<n and {li}1<i<n, be in J* such that all wy, and wy,
are of special type and |j — k;| = |j — ;| < d for all i € {1,...,n}. Assume
additionally that all pairs of this form in J* are described by the above sets.
For all pairs (k;, ;) with dir(wy,) = — dir(w;,) we proceed as described above,
starting with the pair (k;, ;) with smallest |j—A;|. This is the pair (wg;,w;;)
which is closest to w;. From this one, we continue towards the margin of J*.
We proceed with all pairs of this form, until we either reach a pair (kp,l,)
with dir(wy, ) = dir(wy, ), or we reach the margin of J*. In the first case, we
also proceed with the pair (k,,,) as described above. The result follows.

Example 5.27. Let A be given by the two-loop quiver with relations as de-
scribed in Example 2.3.1. Let w = ac*ac*a"'e*a be an asymmetric string in
Tuwa(A). Let v = acaca™ ea be a directed version of w and let v’ = py(v) =
acaga lca.

In order to see that M(v) = M(v'), consider first v" = agagaca. Let the
bases as k—vector spaces be given by (by,...,b7) for M(v), by (co,...,c7)
for M(v") and by (dy,...,d7) for M(v"). In the proof of Proposition 5.26,
it is actually shown that M (v") = M (v) and that M (v"") 2 M (v"). In detail,
the module isomorphism f: M (v) - M (v") is given by

b; —> —d; Vi<,
b3—i —> d31iv1 — d3—; Vie{0,1},
b; —> d; Vi > 4.

The module isomorphism g: M (v") — M (v") is given by

d; — ¢; Vi>2,
dy —> ca —cq,

dop —> —cg.
Thus, the module 1somorphism M (v) = M (v") is given by go f.

Proposition 5.28. Let w = ue*u™! be a symmetric string in Tyq(A) for
A a skewed-gentle algebra, € € Sp, |u| = m. Let v = te"t™", v = t'e" (¢') ! e
W(E4(A)) with k, k" € {+1,-1}, such that p;(t) =t' for some je{1,...,m},
U (v) = UY(v') is (weakly) consistent and U, (v) = U» (v") = w. Then
MZ(’U) = Mi(v’) fOT’ 1= 0, 1.
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Proof. Assume that dir(v;) = -1, v; = n°. The other cases follow analog-
ously. Recall that the A—module M;(v) can be written as follows:

U1

bo by <2<y S meeq‘ (241)

Thus, the proof is analogous to the proof of Proposition 5.26, apart from the
case Upmy1 € J* in the induction step.

Let j # m+1 such that vy,.1 € J*. We have that ind}, ; > d. Let k € J* such
that [j—k| = [j—(m+1)|. By Lemma 3.55 we know that ind;,(w) < d. Lemma
3.59 yields that dir(vg) = dir(v;). Hence, vy € {e7!,&7'} since vy41 = €. Let
the basis of M;(v) be as described above be given by (bo,...,bay) and the
one of M;(v") be given by (co,...,com). Let f: M;(v) - M;(v") with i =1
be given by

by — ¢; Vi<jg—1,
bg+i > Cj_g—+1 = Cjiq Vq eI such that j+qe€{j,...,m},
by — —¢; Yi>m+1.

Then f is an injective and thus bijective map between the vector spaces
M;(v) and M;(v"). In order to show that f is a A—module morphism, we
examine the commutativity relations of the form fA = Af, A € A. We have
that f : by = ¢4 and vy = v; for all ¢ < j — 1. Thus, the above relation
directly follows for those indices. A similar argument yields the relations
for any ¢ > m + 1. The cases j < ¢ < m follow analogously to the case of
an asymmetric string using symmetry in j and definition of ;. The special
case to consider here is ¢ = m. Recall that f: b, » c; — cn. By induction,
we know that M (ug(v')) @ M(v") and similarly, that M (ug(v)) = M(v).
By induction, we can also assume that vy = 1. Thus, ¢ € im(¢). It follows
that

fe(bm) = f(bm) = cx = cm,

ef(bm) =e(cr —cm) = ¢k — Cm,

yielding the commutativity relation. Note that we write here £(b,,) = b,
according to the depiction (241). Consider now the case ¢ = 0. By induction,
we can consider vy = & 1. Thus, ¢, € im(€) = ker(¢). We obtain that
e(cg — ¢m) =0. The commutativity relation follows. O

Example 5.29. Let A be given by the two-loop quiver with relations as de-
scribed in Ezample 2.5.1. Let w = ue*u™" be a symmetric string in Tyq(A)

withu = *a 1 -1.-1__k,-1 1 -1 laé.fia—l

“le*a. Considerv =cetale lacta teae andv' = e ta~le
in X4q(T). Note that pz(e*a e a) = e ta~'e ta. The word v is in partic-
ular given in terms of the alphabet T'q(A) and (weakly) consistent. Con-
sider additionally v" = & ta e tac®a  eas. We have that pi (6 ta e ta) =
eta7teta. Denote by (bo,...,bs,bs,...,by) the basis of the k —vector space

247



M;(v), by (co,-..,C4,C5,...,¢9) the basis of M;(v") and by (do, ... ,ds,ds,...,dg)
the basis of M;(v'").
Let i =1. We obtain that My(v) = Mi(v") as modules by sending

b; — ¢; Vi<2,
b3 — c2 — c3,

/

b4 > C1 — (4,

b; — —¢; Vi > 5.

Now let i =0 and consider the module homomorphism [ : My(v) - Mgy(v'")
which is given by

by — do,

by — do - da,

by — da,

by —> —da - d3,

by —> —dy — dy,

b; —> d; Vi > 0.

It follows that f is a module isomorphism. Consider next the module homo-
morphism g : Mo(v") = My(v") given by

co — do,

c1 —> dp —dy,

¢; —> —d; V2 <i<4,
ci—d; Vi > 5.

It follows that g is an isomorphism. The module isomorphism My(v) =
My(v'") is given by g~L o f.

Let v; be a T'q - Z-word, V be a k[T, T }]-module with 7" acting as
A € End(V). We encode this information in the following additionally and
may write M (v, (V, A)) instead of M (vy, V'), if convenient.

Proposition 5.30. Let w; be an asymmetric band of period p with periodic
part Wy,. Let vy, v, € W (X4(A)) with @](DZ) = @ék), vA’I(,Z) = ﬁ’;k) for all i,k €
Z and such that pj(vs) = vy for some j € {1,...,p}, ¥i(vz) = Ui(vy) is
(weakly) consistent and V=, (v,) = U2 (v]) = w,. Then

M (v, (V, A) = M(vz, (V,-A))
for V a k[T, T~ ']-module, A € End(V) invertible.
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Proof. We show the statement by induction on the c¢*~index of w;. Recall
that ind}(w;) < £ (cf. Corollary 3.31, Remark 3.32)). Thus, it follows that
|J*] < p—2 and we can assume for simplicity that J* ¢ [2,p - 1] (otherwise,
the proof follows analogously with a respective shift on the indices).

Let ind;(wz) =0. We have that v;_; = v;+ and that vj1 = vjr, and similarly
in vj. Thus, dir(vj_1) = dir(vj+1) = dir(vj), and similarly in v;. Assume
that v; = ¢!, The case v; = ¢ follows analogusly. We have that v} =&l
Let vj_1 = 271 and vj41 = y~'. Recall that Vj_1 = v; Let
Ul(b,) = b,‘_l for all 7 € Z.

Consider the ring isomorphism g : k[T, T7'] — k[T, T7!], T = -T. As
first step, we show that h: A M (vz)ir 1] —> aM(v7), is an isomorphism
of bimodules. Here, M(v}), denotes the right k[T, 7 ']-module M (v})
restricted to g. Recall that M(v;) ecomes a A — k[T, T~ }]-modules by T
acting as t,, ,. Hence, we have that b;T = t,, ,(b;) for any b; € M (v;), with
ty,p the shift by —p on v,. We denote the respective operation of M (v;),
by b; » T == b;(-T).

Let g € Z be the index of the periodic parts of v, v}, respectively. We choose
for ¢ even:

_ A
_; and vy = Vjg1-

Civgp ,1<i<]—1,

h: bi+qp [ . .
_Ci+qp 7J+1SZSP7

bj+qp > Cj-1+qp ~ Cj+qp>
and for ¢ odd:

_Ci+qp ,1SZS]_1,

h: bi+qp > B .
Civgp »J+1<0<p,

bj+qp > —Cj-1+qp + Cj+qp-

By definition, A is a bijective map between k —vector spaces. Let us show
next that it is a morphism of left A—modules. To this end, we observe that

the key points are given at v; and vj;1 in @z()k). Let k£ be even. We obtain
that

he(bj-1+qp) = h(bjiqp) = Cj-14p — Cjirqp;
eh(bj-1+qp) = €(Cjm14gp) = (1 = E)(Cjm14gp) = Cjmtrgp — E(Cj14gp);

= Cj-1+gp ~ Cj+qp>

and that

hy(bj+qp) = h(bj+1+qp) = ~Cj+1+qp>

Yh(bjrqp) = Y(Cj-14gp = Cjap) = Y(—=Cjrqp) = —Cj+14gp-
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Here, we have used in the last equation that yz = 0 by definition of A being
skewed-gentle. This gives that y(cj—1+gp) = 0.
For ¢ odd, we have that

he(bj-14gp) = M(bjiqp) = —Cj-14qp + Cjrgp,
eh(bj-14gp) = €(=Cj-14gp) = (1 = &) (=Cj-14gp) = —Cj-1+gp = E(=Cj-14gp);

= =Cj-1+gp T Cj+qp>

and that

hy(bj+qp) = h(bj+1+qp) = Cj+1+qp>

Yh(bjrgp) = Y(—Cj1+gp + Cirgp) = Y(Cjrgp) = Cisl4gp-

These equations give commutativity relations at the positions 57 and 7+ 1 in
each periodic part. The other commutativity relations follow by definition
of h. Hence, h is a morphism of left A—modules.
Finally, we show that h is a morphism between the modules M (vz)y[77-1]
and M (v}),. Let ¢ be even. Then we have that

_Ci+(q—1)pa 1<i< ] - 1,
h(bisgpT') = h(bi+(q—1)p) = Ci+(g-1)p> J+1<i<p,
~Cj-1+(g-1)p + Cj(g-1)py =T,
Civgp * T’ 1<e<j -1,
(h(bi+qp)) *T' = ~Cit+gp * T J+l<i<p,

(Cj-14qp = Cjugp) * T i =],
_Ci+(q—1)p 1 < 7 S‘] — 1,

= Ci+(g-1)p J+l<i<p,

~Cj-1+qp t Cj+qp =]

The above yields that h(bjigpT) = h(bisgp) x T for g even. Similarly, we
obtain for ¢ odd the respective commutativity relations.
The above yields that

M (vz, (V,A)) = M(vz) ®pr17 (V, A) = M (vz)g ®rr-1] (V, A).
Note that we can write
M(v})g @17 (Vo A) 2 (M(v}) -1 KT, T g) ®pr 1) (V, A).

Recall that T acts as A on the vector space V. We consider for v € V the
element 1 ® v e k[T, T7!], ®rr-1 (V, A):

T(lev)=Tev=(-1+xT)®ov=-10Tv=-1® Av.
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Thus, it follows that
M(v)g ®yr,r1] (V. A) = M(v) ®yr,r-1] (Vi —A).
Summarising, we obtain that
M (vz, (V, A)) = M(vz, (V,-A)).

Let now ind; (w) = d > 0.

Assume that dir(v;) = =1 and that v; = ™! (the cases v; = £ ! and dir(v;) = 1
follow analogously). Let k,l € J* such that |k—j| = |l-j| and wy = w; = k* for
some K € Sp. Assume without loss of generality that k < j < and that (k,1)
is the pair in J* with |k - j| = |l - j| minimal. Let w;+ = 27" and w;x =y
Let dir(vg) = dir(v;). We observe that we have in this case that their dir-
ections are equal to dir(v;) (compare Lemmas 3.56, 3.59). We have by
Lemma 3.55 that at least one of ind;(w;) and ind; (w;) is smaller than d.
Assume without loss of generality that indj(w;) < d. We can assume by
induction that M (ux(vy,), (V,-A)) =2 M (v, (V,A)). We can also assume by
induction that vy = 7y, say, v = 77! and v; = n~!. Similarly we have that
M (pr(vz), (V,=A)) = M(vs, (V, A)). Thus, we can also assume that v} = 7!
and v) =", Let h: AM (vz) g7, p-1] —> aAM(vz)4 be given as follows for ¢
even (with ¢ as in the induction basis):

bi+qp'_’ci+qp I<i<y-1,
bjvirgp = Cj—i—1+qp — Cj+i+qp Vi such that j+ie{j,...,1-1},
bi+qp > —Ci+qp [<i<p,

and for ¢ odd:

bi+qp > —Ci+qp 1<i<y-1,
bj+i+qp > —Cj—i-1+gp t Cj+i+qp V17 such that j +1€ {j, e ,l - 1},
bi+qp > Ci+qp l S Z S p

By definition, h is a bijective map between the two vector spaces. We show
next that h is a morphism of A—modules. Here, the key points are given by
the indices j and [. Let ¢ be even. We obtain that

he(bj-1+gp) = M(bjrgp) = Cj-1+gp = Cjraps
eh(bj-1+gp) = €(¢j-144p) = (Ls(e) = E)(Cj-14gp) = Cj-14ap = Cjrap:
hn(bl—1+qp) = h(bl+qp) = ~Cligp>

nh(bl—1+qp) = n(ck+qp - Cl—1+qp) = —Cl+gp>
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where s(e) denotes the starting vertex of € in the quiver. We have used in
the last equation that cyiqp € im(77) = ker(n). Now let ¢ be odd:

he(bj-1+gp) = h(bjgp) = —Cj-14gp + Cjrqp,

eh(bj-1+gp) = £(=Cj-14qp) = (Ls(€) =€) (Cj-14gp) = —Cj-14gp + Cjrgp,

P (bi-1+gp) = M(birgp) = Cligp,

Nh(bi-1+gp) = N(Chrgp = Ci-14gp) = Clagp-

It follows that h is morphism between A—modules. Finally, we examine the
interaction of T and h. Again, let ¢ be even:

Cirkp(=T') l1<i<j-1,
h(bivgp) * T = (cj*f*1+qp - Cj+f+qp)(_T) i=j+fe{s....l-1},

~Civgp(=T) l<i<p,
~Cir(a-1)p 1<i<j-1,

=\ “Ci—f-1+(q-Dp + Cirfrg-p E=J+ e g =1,
Cit(g-1)p l<i<p,

h(bi+qu) = h(biJr(qfl)p)

—Cis(g-1)p 1<i<j-1,
—Cjf-1e(g-Vp * Cjaf(g-typ E=J+fedd -1},
Cis(g-1)p I<i<p.

Proceeding analogously for ¢ being odd yields that h(bjigp) * T = h(birqpT)
for all 1 <i<p, q€Z. It follows that h is a bimodule morphism between the
modules A M (ux(vz) )xpr,r-1] and A M (px(v7) ). By the same argumentation
as in the induction basis, we obtain additionally that M (ug(vz), (V,-A)) =
M (p(vh), (V, A)). Tt follows that

M (vz, (V, A)) = M(vz, (V,-4)).
Let now dir(vg) = —dir(v;). Similar to the previous case, we can assume
by induction that vy = vl_l, say vr =1, vy = 0~ by induction we have that
M (i (02), (V,~A)) = M(v,, (V, A)) and M(ue(v2), (V,—A)) 2 M (oL, (V, A)).
Consider the map h: A M (pug (v2))xr,r-1] — AM (p1x(v7))4 given as follows:
for ¢ even:

bi+qp = Ci+qp
bjtitgp = Cj—i—1+qp — Cj+itqp
bi+qp > _Ci+qp

and for ¢ odd:

bi+qp > —Citqp
bjtitgp = Cj—i—1+qp T Cj+itqp

bi+qp = Ci+qp

1<i<j-1,

Vi such that j+ie€ {j,...,j5 -1},
Jjy Si<p,

1<i<j-1,

Vi such that j+ie€ {j,...,j5 -1},

Ji<i<p.
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Proceeding analogously to the previous case, it follows that h is a morphism
of left A—modules. Here, the key points are given by the indices j and j; and
we use that yz = 0 by definition of A being skewed-gentle. Hence, we obtain
that y(bjx,4p) = 0 for any ¢ € Z. We obtain analogously to the previous
case that h is an isomorphism between the modules A M (uy(v2) )i, r-17 and
AM (pr(vz))g- Thus, we have that M (uy(vz), (V, A)) = M (pg(vz), (V,-A)).
It follows that
M (s, (V, 4)) = M0, (V,-A)).

O]

Example 5.31. Let A be given as in Example 2.5.1. We consider the
asymmetric band wy, in W(Tua(A)) with periodic part W, = e*ac*a e*a™!.
Let vy, v}, € W(Sq(A)) with periodic parts given by 0, = e tae ta e ta™!
and (U;’)) = e tagta e ta™t. We observe at first that ind}(v;) = 2 and
ind; (v;) = 0.

Since v1 = 8_1, we use induction on vs which yields that us(v,) has periodic
part (M)p =ectaela e a™ and ps(vl) has periodic part (M)p =
etag ta e a7t Additionally, we have by induction that M (v, (V,A)) =
M (us(vz), (V,-A)) and M(us(vh),(V,A)) = M(v,,(V,-A)). The induc-
tion step yields that M (us(vs), (V,-A)) 2 M (us(vz), (V, A)). With this, we

obtain the wanted isomorphism.

Proposition 5.32. Let w; be an asymmetric or symmetric band of period
p. Let v, e W(Sq(A)) such that ®4,(v,) = w;, and ﬁl()i) = “ék) for all i,k e Z.
Denote by M(v;) the bimodule in which any special letter v; of ﬁz(,i) sends
b;j to bj_1. Denote by M'(v;) the bimodule in which v; sends b; to —=b;_1 for
some je{1,...,p} with vj special. Then

M' (v, (V, A)) 2 M (v, (V,-A)).

Proof. The proof follows analogously to the induction step of the proof of
Proposition 5.30. ]

Proposition 5.33. Let w; be a symmetric band of period p with periodic
part W, = e un*u~! where e,m € Sp, |u| = m. Let vy, v, € W(Zq(A)) such
that

o dir(vikp) = dir(vms24kp) = dir(v],y,) = dir(vy,,9,4,) = 1 for all k € Z,

(@)

o$) = o) and ')

~ (k
= v’; ) forallikeZ,
o j(vy) = v} for some je{l,...,p} with j+1,m+2,
o U¥(v,) =W (v)) is (weakly) consistent ,

o Wii(vz) = Wiy (vz) = w.
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Then
M (v, (V,A)) 2 M (v}, (V,-A)) (242)

where V is a k[T, T, (T-1)"']- k[T, T, (T+1)"']-)module, A ¢ End(V)
invertible with 1 (=1) not an eigenvalue.

Proof. The periodic part of wy is of the form w, = e un*u~t. By assumption,
we can assume without loss of generality that 0, = etnt™' with U3(¢) = w.
The proof follows analogously to the proof of Propositon 5.30. In order to
apply the induction, we need to take into consideration that indj,,(wz) =

oo = indy, g, (wz) for all g € Z. O

Proposition 5.34. Let w; be a symmetric band of period p with periodic
part given by Wy, = un*u™t, n,e € Sp, [u| =m. Let vy, vl e W(Sq(A)) such
that

(@)

. @z(ai)gtnt_l, 1;'p =ct'n(t')~! for allicZ,

dir(viskp) = dir(vms2+kp) = dir(vy,y,) = dir(vy,,0,,) = 1 for all k€ Z

pi(t) =t for some je{l,...,m},

U (v,) = W2 (v)) is (weakly) consistent ,

‘Ilfd(vz) = \Ilfd(vé) = Wz.
Let pe N. Then
M jeq(HP1) = M j e (9P (243)

where 4,5 € {0,1}, tPL (t)P] are defined as in Subsection 2.3.3 and with
modules M; j.n(=) defined as in Theorem 5.21.

Proof. We consider t?] and (t )[p] as subwords of v, v}, respectively, and
thus will use the c¢*—indices of v;, v, for the induction. Recall that this
is conform with the way of orientation in £-chains with two double ends.
Note that any 7 (any ) in [Pl which is given between t and t™! (¢! and
t) has infinite ¢*—index. The proof is analogous to the proof of Proposition
5.28. O

Remark 5.35. The above statement also holds if the periodic parts are given
by

. f);(f) =étnt™! and f);',(i) =&t'n(t")7!, or

. @ff) = ettt and @;(i) =et'n(t")7!, or

o o) =ztnt™! and 0, = st'f(¢') ",
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for all i € Z.

We are able to refine Theorem 5.21 by the above results as follows with
respect to the alphabets:

Theorem 5.36. Let A be a skewed-gentle algebra as above.

(i)

(i)

(iii)

(i)

Let w € T'ywg(A) be an asymmetric string. Let v € (@ﬂd)_l (w) be

(weakly) consistent. Let v’ € Bq(A) such that F(U(gw)) = M (V).
Then

M) = M(v).

Let w € Tyq(A) be a symmetric string of the form w = ue*u™'. Let

v € (@3(1)_1 (w) be (weakly) consistent. Let v’ € Bq(A) be such that
F(Ugs(gu)) = M;(v") where

] 1 ifs=1,
7=
0 ifs=2.

Then M;(v") = M;(v) forie{0,1}.

Let wy € T'yq(A) be an asymmetric band. Let v, € (@ﬂd)_l (wy) be
(weakly) consistent with periodic parts @pi) = ﬁz(,k) for all i,k € Z. Let
vy, € ¥q(A) such that F(U(gu,,)) = M(v;, (V, A)) where A=01FJ? €
End(V), 01,00 € {+1,-1} and V a k[T,T~']-module of dimension
deg(yp). Then

M (vz, (V, A)) = M(vz, (V. (-1)“4))

where w denotes the number of all special letters which do not act as

A in @I(,i), plus the number of inverse special letters in @I(,i).

Let wy € Tyq(A) be a symmetric band with periodic part v, = e*un*u™t.

Let vy € (\1112161)71 (wy) be (weakly) consistent with periodic parts 01(71‘) =
etntifs=1, 50 ettt ifs=2, 0§) =etqt™! if s =3, 05 = ant!
if s =4, forallieZ,te (@ﬂd)_l (u). Let v € q(A) such that
{F(Us(gu;p))}s = {Mi,j,%y((t,)[p])}x,y; where @zlv(i) =et'n(t")" for s =
1, Oé(i) =ét'n(t')7! fors=2, ﬁ];(i) =et'n(t")7! fors=3, @;,(i) =ét'p(t')!
for s=4, for all i € Z. Then

Moﬂlmy(t[p]) = MO,lw,y((t/)[p])a
where x € {e,&}, y e {n,n}.
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(v) Let wy € Tyq(A) be a symmetric band with periodic part w, = e*un*u™'.

Let vy € (<I>f}d)71 (wy) be weakly consistent with periodic parts @éi) =

etnt™ forallieZ,t e (<I>ﬂd)71 (u). Let v} € Bq(A) such that F(U(gu,,¢)) =
M (v}, (V,A)) where pe N, A = —F;l e End(V), V a k[T, T}, (T +
1) -module (k[T,T7,(T - 1)~ -module) if 50(guw,) is odd (even).
Then

M (v, (V,A)) = M (v, (V, (-1)A))

where w denotes the number of inverse special letters which do not act

(4) (i)
D -

as A in 0y, plus the number of all special letters in ¥

Proof. We observe that vy = pj, 0 -0 puj, (’UEZ)) where v} ,...,v; denote
the inverse special letters of UEZ) with j1,...,7k ¢ {1,m + 2} in case (iv).

The results follow by applying the following Propositions on the respective
special letters:

(i) Proposition 5.26

(ii) Proposition 5.28
(iii) Proposition 5.30 and Proposition 5.32
(iv) Proposition 5.34

(v) Proposition 5.33 and Proposition 5.32.

Remark 5.37. In case of part (v) of the above theorem, we can write
w=3w+1

where W describes the number of special letters in t: by symmetry in @}(,Z) we
have that the number of all special letters in this subword is equal to 2@ + 2.
Also, the number of inverse special letters in ﬁ,(f) 15 given by w by symmelry
and since the symmetry azes v1 and Vmio are given by direct letters. Hence,
we consider 3w+2. We know by construction that vy acts as —F;l. It follows
that w = 3w + 1.

Thus, it is enough to consider w+1 instead of w in calculations for this case.

We can examine the value of w in part (v) of the above theorem more
closely. To this end, we first revisit parts of the construction of £-graphs
coming from words.

Lemma 5.38. Let w; be a I'yq(A)—word and denote by gy, its corresponding
L—graph. Let xj = €5« and xy, = €y for some 6,k € Sp, j,k € {1,...,|gu}
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with j < k. Assume that there does not exist l € {j,... k} with x; = Ce+ for
any ¢ € Sp. Then

#{ie{j,...,k} | x; # 2441, either x4,z € £(C) or zj,xi41 € £(R)}
18 odd.

Proof. Subchains of the form x;—x;.1 do not contribute to the above set
since we have by definition of the relation 8 that x; € £(€), z;41 € £(R),
or vice versa. We observe also that subchains of the form z; ~ x;41 only
contribute to the mentioned set if the links are not of the form €+ for any
¢ € Sp. By definition, we can neglect subchains of the form x; ~ x;11 with x;
and ;41 not belonging to the same set of links with respect to columns and
rows. Hence, the statement follows by a combinatorial argument. To this
end, we mark links of £(€) by a black bullet, and those of £(fR) by a white
bullet. With z; we start in a black one, and obtain the following picture:

where the final bullet corresponds to xj. It follows that between z; and x
there can be a series of relations of the form x; ~ x;,1 of the wanted form.
This series starts and ends in such a relation with z;, x;11 € £(R). It follows
by definition of g, that the above set has odd cardinality. O

Lemma 5.39. Let w;, be a symmetric band with W, = e*un*u~t. Let gy, be
its corresponding £—cycle. Then

(1) 90(Guw,) is even if and only if the number of special letters in u is odd,
(11) 90(Gu,) is odd if and only if the number of special letters in w is even.

Proof. Recall that d0(gw,) = 0(gw,)/2. Denote by k; the number of indices
contributing to §(g, ) between two links of the form €+, €+ for some §, k € Sp
(without any links of the form €+ lying between them). Keep in mind that
gu is a subchain of g,,. Lemma 5.38 yields that each k; is odd. Moreover,

we have that
5(gs) = 2(2 k)
i=1

and thus it follows

M=

~
Il
—_

60(Guwy) = ) ki.

We obtain that do(gw,) is even if and only if n is even, and that do(gw,) is
odd if and only if n is odd.

The subchain g, starts in the link €.+ and ends in &,«. It follows that n is
even if and only if the number of special letters in v is odd. It is odd if and
only if the number of special letters in u is even. This observation yields the
statement. 0
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Lemma 5.40. We have
(~1)*! = (-1yfuloms)
in Theorem 5.36,(v) where & denotes the number of special letters in t.

Proof. Assume that do(gw,) is odd. We know by Lemma 5.39 that the
number of special letters in ¢ is even. Thus, @ is even and it follows that
w + 1 is odd. Analogously, it follows for dp(gu, ) even that w+1is odd. [

Corollary 5.41. Let w; be a symmetric band with periodic part W, = *un*u~!

for some e,m € Sp. Let vy € (‘Pﬂd)_l (wy) be (weakly) consistent with @](,i) =

etnt™t for alli € 7, with t € (CI)ﬂd)_l (u). LetV be a k[T, T, (T-1)"t]-module.
Then

F(U(gu ) = M (v, (V, (-1)%00@w2) 171y (244)

Proof. The isomorphy above follows from Theorem 5.36, (v) and Lemma
5.40. Note that we have to additionally take the letter v,,+2 = 1 into account.
It is sending by+2 t0 —bms1 in F(U(Gw,), ). It remains to show that 1 is
not an eigenvalue of (—1)50(91“2)”}7;1. Let d9(gw,) be odd. We obtain that
(-1)%(9wz)+1 = 1 By construction, we have that g # t,t — 1. It follows that
1 is not an eigenvalue of F; L

Let 6(guy, ) be even. Then we have that (~1)%wz)*1 = _1_ By construction,
¢o # ¢,t + 1 which yields that -1 is not an eigenvalue of F ! This implies
that 1 is not an eigenvalue of —F L O

We want to give the classification Theorem 4.61 in terms of the image
of F'. In order to exclude isomorphic modules, we first recall some general
results which have already been alluded to in Section 2.4.

Lemma 5.42. Let w be an asymmetric string and let v € (<I>ﬁd)71 (w) be
weakly consistent. Then

M(v) = M(v")
for any v' € [v].
Proof. We have for v' € [v] that v/ ~ v. It follows that either v’ = v or
v" = v7L. The isomorphism between the modules is given by the identity in

the first case, and by 4,, in the second case. Recall that i,, reverses the basis
(cf. Section 2.4). O

Lemma 5.43. Let w be a symmetric string and let v € (<I>ﬂd)71 (w) be weakly
consistent. Then

MZ(U) = Mi(v')
for any v" € [v], i€{0,1}.
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Proof. Let w = ue*u~" and v = tet™!. By definition, v' = v or v/ = v7! =

te~1t71. The result follows due to the same symmetry in both words. O

Recall that two Z —words v, and v}, are said to be equivalent if v} = v,[m]
or v, = v;1[m] for some m € Z. For bands, we will consider equivalences given
by shift and by inverses separately.

Lemma 5.44. Let wy be an asymmetric or symmetric band and let vy €
(CI>3d)71 (wy) be weakly consistent with @pz) = f),()k) for all i,k eZ. Then

M (v;") 2 M(vz)g

as k[T, T~']-modules, where g : k[T, T~'] - k[T, T7'] sending T ~ T*.
We have in particular that

M (vz, (V, A)) = M (v, (VA7)
as A — k[T, T~1]-bimodules.

Proof. The isomorphism h : M (v;) — M(v;!) between the vector spaces is
given by reversing the basis. Recall that T" acts as the shift ¢, , on M (vy).
It follows that bigpT = b (g-1)p in M (vz). We have in M (v;") that bi.qpT =
bi+(g+1)p by reverse of the basis. Hence, b;1qpg(T) = bivgpT ! = bit(g-1)p-

It follows from h that

M (v, V) = M(v2) @1V 2 M(v;")g @1V
as bimodules. We obtain for m € M (v;!), v eV that
mg(T)®v=me g (T)v.
This yields the following isomorphism of bimodules:
M(v;Y)g @1V 2 M(v;") @17 gV

which results in
M (vg, (V, A)) = M(v;', (V,A™)).

Note that T acts as A~! on the right hand side. O

Lemma 5.45. Let wy, be an asymmetric or symmetric band and let v, €
(@ﬁd)_l (wy) be weakly consistent with @pz) = ff)}()k) for all i,k eZ. Then

M(vz[m]) = M(vy) for any m € Z,
as k[T, T~']-modules. We have in particular that
M(ua[m], (V, A)) = M(vs, (V, 4))
as A — k[T, T~ ]-bimodules.
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Proof. The isomorphy between the k[T, 7~!]-modules M (v;[m]) and M (v;)
is given by the respective shift on the basis. Thus, the second isomorphy
between the two A — k[T, 7~ ']-modules follows directly. O

Remark 5.46. We see by Lemma 5.44 and Lemma 5.45 that equivalent
words do not necessarily give isomorphic modules with the same A € End(V').
However, we can also see by the above results that running through the list of
A € End(V) acting as T for one representative of an equivalence class will
give a complete set of modules for this class.

Lemma 5.47. Let w;, be a symmetric band with periodic part wy, = *un*u~t.

Let v, € (\Illzld)_1 (wy) be weakly consistent with periodic parts of one of the
following forms:

(i) ﬁéi) =etnt™!
(ii) 359 = etit™!
(iii) 05 = tnt™!
(iv) 85 = et
forallieZ, te (fbﬁd)_l (u), pe N\{0}. Then
{Mijay ()} gay 2 {Mi oy () i oy (245)
as A—modules for any vl € [v,] with ' a subword of vy, t' ~ t, and where
i+je{0,1}, i 5 €{0,1}, x e {e,&}, ye {n, 7} and 2’ € {e,&}, y' € {n, 7},
orx' e {eL, &1}, o e {n7t, 771}, or with the roles of x' and y' switched.
Proof. Let v!, € [v;]. Then v’ = v,[m] or v, = v;'[m] for some m € Z. Let
p be even. Let at first v] = vy[m] with ¢ = ¢ (i.e. m = kp for some k € Z).
We have that 2’ € {¢,&} and ¢’ € {n,7}. The isomorphism of sets (245) is
given by the identity. Let v/ = v;1[m] with ¢’ = ¢t. Then 2’ € {¢7!,&1} and
y' € {n71,771}. By reversing the basis elements, we see that (245) is given
by
M g (tP)) 2 M 1 (8P)) (246)
Similarly, we obtain an isomorphism of the form

M jy (P 2 M 0 (1)) (247)

This refers to modules given by v,[m'] with ¢’ = ¢t™! and v; '[m] with ¢/ = ¢7L.
Let v} = vy[m] with ¢’ = 7 (i.e. m # kp for any k € Z). Exploiting the
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properties im(e) = ker(¢), ker(e) = im(€), and similar properties for n, we
find that (245) is given by

M jay(tP)) 2 My o0 20 (D (248)

Combining (246)-(248) gives the isomorphism in (245) for any v, as described
above.

Now consider p to be odd. Let v, = v;'[m]. Then 2z’ € {e7},&71}, ¢/ €
{n7t,771}. Let t' = t7!. Reversing the basis elements yields that the iso-
morphism in (245) is given by

Moy (1) 2 My 1 o (671 IPD), (249)

Now consider ¢' = t. We obtain a similar isomorphism as in (249) where the
second module refers to v,[m].

Finally, we consider modules given by v, and v/, = v;[m]. For those modules
we obtain that the isomorphism in (245) is given by

Mgy (71) = My 5.2 ((07H)). (250)
Here, we use the properties im(¢) = ker(€), ker(e) = im(&), and same for 7.
Combining the isomorphisms (249) and (250)in both cases, yields the iso-

morphism in (245) for any v} with v}, ~ v,. O

Example 5.48. Let w; be a symmetric band of period p with periodic part

Wy = e un*u~t. Let vy be as in Lemma 5.47. We consider p = 4. Assume

without loss of generality that |t| = 1. We obtain for the periodic parts of v,
as in Lemma 5.47 (i) - () the following modules:

(i) Mo,1en(tP): e0( by Lo Loy Lbh < by L)L by ng:)gﬂ
7 Molgft[p] ;s e=0 bl-téb,ibQ—Lb,ibgéb,ibzl—gbl e=1
L 1 2 3 4
i) Mo en(tP)): a0 by <0 Loy by S by L0 L by S0, ) e
LEm 1 2 3 4
i) Moy en(tP)): e0( by L) Loy Lty S by Lt Loy v )emt
LET 1 2 3 4
Consider in contrast to those the following modules arising from v;'[m]:
(i) Myge1 (tlPly: e Ccl Lottt s Lete :) =0
(1) Mg e 51 (tlP]y: e Ccl S c’l Lot ch =3 A 4 Lot cy :) =0
(i4) My gz 1 (tlPly: e Ccl Lot St cy Letd :) £=0
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. o t o0 t ;€ t o407 t o _
(1v) M1707571,,—]71(t[p]). e=1 Ccl<—cl—>CQ—>02—>03<—C3—>C4—>C4:>a:0

We obtain an isomorphism Mo 4, (tP1) — Mlvojmfqu(t[p]), with © € {e,&},
ye{n,n}, by sending b; » cy1_;, b = ¢l q_; for all 1 <i<A4.

In addition, we consider the following modules arising from v,[m], m + kp
for any k:

(1) Mo ((EDF): ne0 (Cy Sy < dy < dy <y = dfy = da < dy )1
ﬁUMWMWNMWMCQLﬂi@i%l@i%imiﬂjw

Wﬂ%mAwNMwHCm$¢£@£%£@£%£@£@Qm

(iv) Mo z2((tHP): 70 C dy L dy < dy < df LdgL dy < dy < d D n=1

The isomorphism g = Mi,0,5., (7)) = Moy g1 ga (P, with w e {7,713,
ye{n 771}, is given as follows:

d2 = —C3 + CZL,
dh = —ch + ¢y,
d3 = Co — Cg,
dy = ch - c3,
d4 = C1 + 6,2,

dy =} +co.

We are now able to reformulate Theorem 4.61 in terms of the image of
F:

Theorem 5.49. Choose for each asymmetric and symmetric band and string
one representative in the equivalence class of its directed version which is
given by v, vy, respectively, as in Theorem 5.36. Then the set of represent-
ations of the form M(v), M;(v), Mo 4, (tP)), M(v,, (V,A)) associated to
the representatives gives a complete set of pairwise non-isomorphic indecom-
posable represenations of the skewed-gentle algebra A.

Proof. Both indecomposability and completeness follow from Theorem 5.6
and Theorem 5.36. The Lemmas 5.42 - 5.47 yield that the modules are
pairwise non-isomorphic. O

Theorem 5.50. Choose for each asymmetric and symmetric string and band
one representative as in Theorem 5.49. Then the set of representations of
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the form M(v), M;(v), M; (tP)), M(v,, (V,A)) associated to the repres-
entatives gives a complete set of pairwise non-isomorphic indecomposable
represenations of the clannish algebra A.

Proof. The statement follows from Theorem 5.49 as explained in Section
4.3. O

Theorem 5.50 gives a classification of the finite dimensional modules of
clannish algebras. However, it cannot yet confirm the classification given by
Crawley-Boevey given in [CB89] and his conjecture from [CB88|. In order to
confirm both of them, we need to refine the above statement further. This
is the goal of the next chapter.
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6 Symmetric bands in the context of the 4-subspace-
problem

The directions put on the subchains corresponding to the symmetry axes
in symmetric bands may seem to be arbitrary on first sight (cf. Chapter
4). The case of directions on the joints of the composite £—chain arising
from one with two double ends behaves similarly. In order to gain a better
understanding on why those directions are chosen in this way, we examine the
symmetry axes and their roles in the modules more closely in this chapter.
To this end, we reduce the case of a symmetric band module to the four-
subspace problem. This allows us to apply results from [Bre74| and find
answers here (cf. Theorem 6.5, Theorem 6.7). The results of this chapter
explain the choices taken on the directions in [Bon88, Bon91|. Finally, they
allow us to reformulate Theorem 5.49 and thus confirm the conjecture made
by Crawley-Boevey for an arbitrary field in [CB88| (Theorem 6.10).

6.1 Reduction to the 4-subspace-problem

The 4-subspace-problem describes the problem of classifying all indecompos-
able modules of a quiver of type

where V5, V3,V and V5 are subspaces of V; for any representation V' (see
[SS07, Chapter XIIL.3.]).

Gelfand an Ponomarev gave a solution to the problem in 1970 for the base
field being algebraically closed (|[GP72]). It was followed by a classification
by Brenner for an arbitrary skew field in 1974 ([Bre74]).

We want to use this classification in order to describe the modules arising
from symmetric bands in more detail. This new knowledge allows us to ana-
lyze the indecomposables resulting from the matrix problem X, in this setup.

Let w;, be a symmetric band of period p with @, = e*un*u™!, |u| = m,

p=2m+2 and ¢, € Sp. According to its periodic part, we can also depict
wy in the following form:

wy o (o= (251)

265



Let vy € (@ﬂd)_l (wy) with @]E,Z') = eftpt te (q)ﬁd)_l (u), kyp e {+1,-1}
for all i € Z. The band module M (v;, V') can be depicted as follows:

V<V
| 7]
V<V
Similar to (251), it can be rewritten to
‘(VeV<—VeV)n
Let W =V @ V. It follows that W is a k(e, f | €% = e, f? = f)—module:

e=f CWD n=e (252)

Consider next modules of the form Mi7j7m7y(t[p]):

b ! b v (253)
b(()l’—l) t bgg—l)
(2) (2)
b b
|
eei (05—

Now let W be a k —vector space of dimension p. We can rewrite (253) with
the respective choices of x and y as follows:

sCW<t—WDn

As above, we see that W is a k{e, f | €2 = e, f2 = f)—module:

= (W Jn=e (254)

By this way of depicting, it is easy to see that ¢ acts as f and n as e on W.
Since both are idempotents, they each give a vector space decomposition of
W of the form im(f) @ ker(f) = W = im(e) @ ker(e). Hence, each of the
two maps e and f is characterised by its decomposing property and one can
equivalently to (254) consider

W (255)

// \
ker(f) ) ker(e)

im(e

im(f)
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It naturally follows that we can consider the classification of modules as in
(254) in terms of a 4-subspace-problem.

In this section, we use the same notation as in [Bre74]. Hence, the 4-
subspace-problem to be considered is given by (U; K), K = (K1, K2, K3, K4):

Due to (255), we are interested in the modules of defect 0, that is, (cf. [Bre74,

§1])

p(U;K) = idim(Ki) -2dim(U) =0.
i=1

Moreover, we want one type of those modules to satisfy
KioKy=U=K3® Ky, (256)

and have unique non-trivial intersection between two of the subspaces. The
second type of them should satisfy any direct sum decomposition:

U-K oK, Vi#]j. (257)

Thus, the cases of interest from [Bre74| are case (i) (second type of modules)
and cases (ii) and (iii) (first type of modules) of [Bre74, §5]. Note that case
(i) corresponds to the homogeneous tubes of the AR-quiver of Dy, and the
cases (ii) and (iii) correspond to two of the 2-tubes of the AR-quiver.

To examine the different cases, we recall the following result from [Bre74,

§2|:

Lemma 6.1 (Gelfand and Ponomarev). If (U; K) is indecomposable, and
p(U,K) =0, then either

(a) Foralli+j, 1<i,j<4, K;@K;=U, or

(b) There exist i',7" € {1,2,3,4}, i' # j' such that Ky n Ky # 0 and, if
ief{t',j'} and j¢{i,j'}, then K; @ K; = U.

6.1.1 Case (i)

We consider the following setting:

U=00 oo,
Ki1=0Q, Ky=0Q, K3=(O+()Q, Ki=((+GGA)Q,
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where (; € Homy (Q,U) injective, and A € Endy(Q) invertible, indecompos-
able and for which 0 and 1 are not eigenvalues. Here, A indecomposable
means that if we consider @ as k[x]-module, @ will be indecomposable.
This results in

Q=k",

U=k ={(p,q) | p,gek™},
Ky ={(p,0) |pek™},

K2 {(0,q) |qek™},

K3 ={(p,p) |pek™},
Kq=2{(p,A(p)) | pek}.

We examine the intersections of two subspaces: it is easy to see from the
above notation of the subspaces that the following intersections are trivial:

p
p

KlﬁKQZO, Klﬂngo, KQﬂKgZO.

We obtain the following for the other intersections:

Let (p,q) € K1 n K4. Then g = A(z) =0 for some z € k", and p = z. Since 0
is not an eigenvalue of A, it follows z =0 and thus p=0=gq.

Let (p,q) € Kon K4. Then p=0 and ¢ = A(p) = A(0) =0 (A non-singular).
Finally, let (p,q) € K3sn Ky4. Then p = ¢ = A(z) for some z € k™, and p = z.
Thus, A(z) = z holds. Now 1 is not an eigenvalue of A, so z = 0, giving also
p=¢q=0. Thus, we obtain

K10K4=0, K20K4:0, K3ﬁK4=0,

which shows that there do not exist ¢ # j € {1,2,3,4} with K; n K, # 0.
Lemma 6.1 gives
KioK;=U Vitjl<ij<d

It follows that this case gives modules of the second type (cf. 257).

Remark 6.2. Recall that for A € End(Q), we can consider Q as k[x]-module
by defining ([Jac85, §3.2])

(ap +arx + -+ amx™)x = agr + a1 (Azx) + -+ an (A" 2)

6.1.2 Case (ii)

We examine the case for the identity permutation ¢ and then conclude from
this the respective results for the other permutations. Hence, we consider
the following setting:

U=00 oA,
Ki1=0Q, Ky=0Q, K3=(Q+()Q, Ki=(G+J)Q

268



where (; € Homy(Q,U) injective, i = 1,2, and J € Endy(Q), nilpotent and
indecomposable.
To make notation within the following computations easier, we use

Q=k",

U=k ={(p,q) | p,gek™},
Ky ={(p,0) [pek™},

K= {(0,q) | gek™},

Kz ={(p,p) |pek™},
Ky={(p,J(p)) |pek™}.

We find that K1 n K4 % 0:

Let (p,q) € K1 n K4. Then there exists z € K™ with J(z) = ¢ and p = q.
We know that ker(J) # 0 since J is nilpotent. Thus, there exists ¢ € ker(J)
such that (¢’,0) € K1 n K.

Having found a non-trivial intersection, we can apply Lemma 6.1 which yields
that

KieK;=U V{i,j}+{1,4},i#7,

and, in particular,
KioKy=U=Ks® Kjy.

Thus, the following permutations of the subspaces (only denoting the indices)
give a decomposition of the wanted form:

(1,2,3,4),
(3,4,1,2),
(1,3,2,4),
(2,4,1,3),

2,1,3,4),(1,2,4,3),(2,1,4,3),
3,4,2,1),(4,3,1,2),(4,3,2,1),
1,3,4,2),(3,1,2,4),(3,1,4,2),
4,2,1,3),(2,4,3,1),(4,2,3,1).

~ o~~~

Note that of the given permutations in [Bre74]|, the permutation ¢ corres-
ponds to (1,2,3,4), (12) to (2,1,3,4), (13) to (3,2,1,4), (24) to (1,4,3,2),
(34) to (1,2,4,3) and (12)(34) to (2,1,4,3). Hence, it follows that the per-
mutations ¢, (12), (34) and (12)(34) give indecomposable modules of the
wanted first type (cf. 256). The permutations (13) and (24) do not.

6.1.3 Case (iii)

We proceed similar to case (ii). The setting is the following:

U=00 Qe usX,
Ki=GQoeusX, Ky=Q@QeousX, K;=(C+0)Q,
K4 = (Cl +C2(J+ 1) +M3b)Q
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where ¢; and J are as in case (ii), and u3 € Homy(X,U), b € Homy(Q,U)
and satisfies b(ker(J)) = X.
We simplify notation (as in case (ii)) in the following way:

Q=Kk",

Xk,

U=k ={(p,q,z) | p,qe k™, z ek},
Ki2{(p,0,z) |pek™, x ek},

Ko 2 {(0,q,2) | qe k™, x ek},

Kz ={(p,p,0) |pek™},
Ky={(p,(J+1)(p), u3b(p)) [p e k™}

It is easy to see that (0,0,z) € K1 n Ko for any x €k, i.e. K3 n Ky #0. By
Lemma 6.1, it follows that

KioK;=U V{i,j}+{1,2},i+3].

Hence, the following permutations of the subspaces give modules of the form
(256):

(1,3,2,4),(3,1,2,4),(1,3,4,2),(3,1,4,2),
(2,4,1,3),(2,4,3,1),(4,2,1,3),(4,2,3,1),
(1,4,2,3),(1,4,3,2),(4,1,2,3),(4,1,3,2),
(2,3,1,4),(3,2,1,4),(2,3,4,1),(3,2,4,1).

Comparing those to the list of permutations given in [Bre74|, we observe
that ¢ corresponds to (1,2,3,4), (23) to (1,3,2,4), (24) to (1,4,3,2), (13)
to (3,2,1,4), (14) to (4,2,3,1) and (13)(24) corresponds to (3,4,1,2). It
follows that (23), (24), (13) and (14) give indecomposable modules of the
wanted first type. The permutations ¢ and (13)(24) do not.

6.2 Interpretation of the cases (ii) and (iii) in terms of strings

In this subsection, we use the results on the cases (ii) and (iii) of the previous
subsection in order to find indecomposable k{e, f)/(e* — e, f? — f)—modules
corresponding to the modules of the form F'(U(gy,p)) from Section 5.4.
Before we state the respective result, we consider the following auxiliary
lemma:

Lemma 6.3. Let © be a lower triangular matriz of size n x n with
L4 @“ = @jj fO’I‘ all i,j,

b @i,i—(i—l) = @i+1,i+1—(i—1) = @i+2,i+2—(i—1) == @n,n—(i—l) for all i >3
odd,
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® 0 (i-1) = Oir1441-(i-1) = Onsiva-(i-1) = * = Oppni-1) = 0 for all
1> 2 even,

or an upper triangular matriz with

° (“)” = ®jj fOT all ’i,j,

® O, (i-1);i = Osr1-(i-1),i+1 = Oiva—(i-1),i+2 = = On_(i—1)n for all i 23
odd,

b 917(1'71),1' = @i+1—(i—1),i+1 = 91427(1‘71),”2 == an(i—l),n =0 for all
1> 2 even,

and with ©% = © in any case. Then ©i; =0 foralli#j.

Proof. Assume without loss of generality that © is lower triangular. Assume
towards a contradiction that ©;; # 0 for some 4 # j. Denote by J the set of
indices of non-zero minor diagonals of ©. Let D be the diagonal given by
the smallest index in J with entries 0 # [ € k. Let the entries of the main
diagonal be denoted by a. By the idempotent property on © we get that
a? =a and [ = al +la. Thus, a € {0,1}. For a = 0 it follows that [ = 0. If
a =1, we obtain 2/ =1 and thus, [ = 0. Hence, D is given by a zero diagonal
and its index is not the smallest element in J. It follows inductively that J
does not contain a smallest element, yielding that J = @. O

Theorem 6.4. Let A =k(e, f)/(¢* —e,f?>~f). Denotee=1-e, f=1-f.
Then the following A—modules are pairwise non-isomorphic and indecompos-
able:

1) of dimension 2n, n > 1:

a) f=0 C Py S AR Sy L D f=1
b) f=0 C by < by L ban—1 <— ban D f=1
c) f=0 C by < by L bon-1 <=— ban D f=1
d) f=0 C by <= by L ban-1 <= bay, D f=1
2) of dimension 2n+1, n>0:
a) f=0 C by << by L bon-1 <— bay, 4 ban+1 >e=1
b) f-0 C by <— by L bon-1 <— ban 4 ban+1 >e=1
c) f=0 C by < by B | bon-1 <= bay, ! bon+1 )é=1
d) f=0 C by < by B | bon-1 <= bay, ! bon+1 )é=l
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Proof. First, we show indecomposability. To this end, we compute the en-
domorphism ring of each module. If its only idempotents are given by 1 and
0, it is local and thus the module is indecomposable.

1) We show the statement for the case la). The cases 1b), ¢) and d)
follow analogously.
Denote the respective module in 1a) by Msy,. The actions of e and f
on the vector space k?" in terms of matrices are the following:

O =
O =
O =
O =

O =
S =

1 1
0 0

i.e.,

I 1 ifi>1evenand je{i,i+1}, ori=j=2n,
" 0 otherwise
_J1 ifj#1,jevenandi=j, or joddandi=j-1,
0 otherwise

1 ifiodd and je {i,i+1},
0 otherwise
if jodd and i=j4, or j even and i =5 -1,

1
0 otherwise.

Let 6 = (0); ; € Enda(Ma,). To examplify the general method, we first
consider relations arising from the commutativity relations in positions
(i,7) with |i - j| < L.

We obtain (258) - (262) from the commutativity relation ef = fe, and
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fO=0f gives (263) - (267):

O2n+1,2n-1 = O2n+1,20 + O2n+2,21, 1<h<n-1, (258)
O2n+1,20+1 = O2n+1,20+1 + O2h42 2841, 0<h<n-1, (259)
O2n+1,20+1 = O2n+1,20+2 + O2h42 2142, 0<h<n-1, (260)
O2n,2n-1 = 0, 1<h<n, (261)
Oon,2n+1 =0, 1<h<n-1, (262)
Oon,2n-2 = Oon 201 + O2n11,2h-1, 2<h<n, (263)
O2n,2h = O2n,20 + O2n+1,2h, 1<h<n, (264)
Oan.2n = O2n 241 + O2n+1 2041, 1<h<n-1, (265)
O2h+1,2n+2 = 0, O0<h<n-1, (266)
Oon+1,2n = 0, 1<h<n-1, (267)

We first analyse the entries being equal to zero:

Note that (259) and (261) give the same zero entries. Furthermore,
(264) gives Oaps19p = 0 for 1 < h < n. This is identical with (267).
Equation (261) results in the diagonal below the main one being zero
with respect to the even rows. The entries in the diagonal above the
main one are zero by (262) (even rows) and (266) (odd rows). Equation
(267) results in the entries being zero in odd rows in the diagonal below
the main one.

Moreover, these entries simplify some of the other equations. After
inserting (261), equation (263) reads

Oonon-2 = O2ns1,2n-1, 2<h<nm, (268)

which results in pairwise equal entries between even rows ¢ and odd
rows ¢ + 1 on the second diagonal below the main one. On the other
hand, (258) simplifies to

Oon+1,2n-1 = bonsoon, 1<h<n-—1 (269)

by (267). It follows that we have pairwise same entries on the second
diagonal below the main one between odd rows ¢ and even rows ¢ +
1. Thus, we obtain by (268) and (269) that all entries of the second
diagonal below the main one are equal to each other.

Similarly, by (266), we can consider

Ooni1,2h41 = Ooni22ne2, O0<h<n-1 (270)

instead of (260). Hence, we obtain pairwise equal entries on the main
diagonal between odd rows i and even rows i + 1. Equation (261)
simplifies (265) to

Oonon = Oons1,2n41, 1<h<n-—1. (271)

273



It follows that there are pairwise equal entries on the main diagonal
between even rows ¢ and odd rows i+ 1. Hence, (270) and (271) result
in the main diagonal consisting of equal entries.

Let us now consider entries (i,5) with |i — j| > 2. The commutativ-
ity relation f0 =6f results in (272) - (279), ef = e in (280) - (287):

0;iv1 =0, i odd,l>2 odd, (272)
0;i1-1 =0, i odd,l > 2 even, (273)
0;i-1=0, iodd,l>2o0dd,i-1+#1 (274)
0iji-1-1 =0, iodd,l>2even,i—1#1 (275)
Oiiv1 = i i1 + 041,640, i even,l>2 even, (276)
Oiivi—1 = 0; st + Ois1i41 i even,l > 2 odd, (277)
i1 = 0i i1 + 01,1, 1 even,l>2even,i—1 %1 (278)
Oiic1-1 = 0; i1 + Ois1,i-1, 7 even,l>2odd,i-1+1 (279)
;i1 =0, i even,l>2 odd, (280)
0;i+1-1 =0, i even,l > 2 even, (281)
Oii1=0, i even,l>2 odd, (282)
0;i-1-1 =0, i even,l > 2 even, (283)
Oiiv1 = Y i1 + Oiv1i41, 7 odd,l > 2 even, (284)
O iv1-1 = Oi st + Ois1i41 i odd,l>2 odd, (285)
Oi i1 =0ii-1 +0iv1,i-1, 1 odd,l > 2 even, (286)
Orioi1 = Orgt + 01, iodd,l>20dd,.  (287)

Note at first that (274) and (275) give the same zero entries, as well
as (282) and (283) do. Moreover, (280) is covered by (281), and (272)
is covered by (273).

It follows by (274) and (282) that the entries of the minor diagonals
which start in even rows with index greater than 2, are zero. That is,
(274) yields that all enries ) 5, with k odd, h even, in the mentioned
diagonals in the lower triangular part of § are zero. On the other hand,
(282) yields the same for the respective entries 6y, with k even and
h odd. We obtain a similar result for the upper triangular part of 0:
(273) and (281) imply that the entries in the minor diagonals which
start in even columns, are zero. We have by (273) that the entries 6, j,
with k odd, h even in the respective diagonals, are zero. Similarly,
(281) shows that the entries 6, with k even, h odd in the respective
diagonals are zero.

Some of the above equations also simplify to some additional zero re-
lations: (276), (278), (284), (286) can be rewritten in the same order
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as follows:

Oi+1,i+1 =0, 1 even,l > 2 even, (288)
0i+1,i-1 =0, ieven,l>2even,i—1#1 (289)
0i+1,i+1=0 1 odd,l > 2 even, (290)
0i+1,i-1=0 7 0odd,l > 2 even. (291)

Relation (289) gives the same zero entries as (274), and (290) the same
as (281). Similarly, (291) coincides with (283), and (288) gives a subset
of (273).

Equation (277) simplifies to the following by (284):

91'7“_1_1 = 9i+17i+l> 7 even,l > 2 odd. (292)

Thus, it implies that in the upper triangular part there exist pairwise
equal entries between odd rows 7 and even rows i + 1 in the diagonals,
counting from the third diagonal above the main diagonal on.
Equation (285) is simplified by (273) to

em‘_,_l_l = 91‘4_171‘_,_[, 1 odd,l > 2 odd. (293)

It follows from (293) that from the second diagonal on, in the upper tri-
angular part, there are pairwise equal entries in the diagonals between
odd rows i and even rows i+ 1. Hence, by (292) and (293), the entries
of any diagonal starting in an odd column in the upper triangular part
of 6 are all equal to each other, counting from the third diagonal on.
We obtain similar results for the lower triangular part: equation (286)
simplifies (279) to

ez‘?i_l_l = (91'_,_171‘_5, i even,l>2 odd,i -1 +1. (294:)

This relation gives pairwise equal entries in the diagonals in the lower
triangular part between even rows ¢ and odd rows ¢ + 1, counting from
the third diagonal on. Also, (274) inserted into (287) results in

Gi,i—l—l = 9i+17i—l7 ) Odd,l >2 Odd, (295)

giving pairwise equal entries in the diagonals in the lower triangular
part, from the fourth diagonal on, between odd rows ¢ and even rows
i+1. Thus, together with (294), we obtain that on any diagonal in the
lower triangular part any entry is equal to another.

Finally, we consider the special entry (2n,j). We have so far that

0 if 7 odd,
O = { A (296)
ony  if J even.

275



where 6, ; is possibly non-zero for j even. Recall also, that any di-
agonal ending in an entry 6, ; for j even consists of entries which
are equal to each other. We now analyse the commutativity relation
f0 =0f for the index (2n, j) separately. We obtain that

2n
(f)2nj = . fon bk = fon2002n,5 = Oonj, (297)
=1
2n O2n.ifii = O ;i if j even
(ef)Qn,' = f2n,k0k,' = R 7 e 7
! ;;1 7 G2ngo1fj1) = Oonjo1 if 5 odd,j# 1.
(298)

Summarising, we obtain that

92 o Ggm ifj even, (299)
" 9271,]'_1 ifj Odd7j +1.

It follows that any minor diagonal in the lower triangular part of 6 is
zero. In particular, we have that 6 is an upper triangular matrix with
every second diagonal, starting to count from the main one on, is zero.
Any 0 € End g (M) is thus of the form of an upper triangular matrix
as in Lemma 6.3. It follows by the same lemma that the only idem-
potents in End4(My,) are given by 0 and 1. Hence, it is local and
indecomposability of M follows.

For case a), we consider e and f in terms of the following matrices:

0

1 1
0 0

O =
O =

O =
O =

O =
S =
—

Exploiting again commutativity of f and e with 6 € Enda(May,41), in
particular (ef)2,,; = (6e)2n; gives that 6 is of upper triangular form
as described in Lemma 6.3. Indecomposability of May,.1 follows.

The cases b) - d) follow analogously.

Finally, we show that the modules are pairwise non-isomorphic. To this end,
we show that they coincide with modules from [Bre74], case (ii) (dimension
2n) or case (iii) (dimension 2n + 1). We already know that the modules
in the statement are indecomposable, hence, it is enough to show that the
dimensions of the subspaces coincide and that the intersections of them do.
Therefore, we assume an ordering as in (255).
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la) My, corresponds to case (ii), (12)(34):

im(f) = (b2, ba,...,b2), |im(f)| = n,
ker(e) = (b1,ba — b3, by — bs, ..., bap—2 — bap_1), |ker(f)| =n,
im(e) = (by,bs,...,ban-1), |im(e)| = n,
ker(e) = (by — ba, b3 — by, ..., bap-1 — ban), |ker(e)| = n,

im(e) nker(f) =(b1) #0

1b) Moy, corresponds to case (ii), (34). We use that ker(f) = im(f) and
im(f) = ker(f) with f given as in a). We also have e given as in a). It
follows that

im(e) nker(f) = (b1) # 0.

1c) My, corresponds to case (ii), (12): We have f acting as in a), and €
acting as 1 — e with e given as in a). Thus, we obtain that

ker(e) nker(f) = (b1) #0.
1d) Moy, corresponds to case (ii), 1 We have f=1-f and é=1-e with e

and f asin a). Applying ker(f) = im(f) and im(f) = ker(f) as before,
and same for e, we obtain that

im(f) nker(e) = (by) # 0.

2a) Moy corresponds to case (iii), (13):

im(f) = (b, ba, ..., ban), lim(f)| = n,
ker(f) = (b1,ba — b3, bs —bs, ..., b — bops1), |ker(f)|=n+1,
im(e) = (b1,b3,...,ban+1), |[im(e)| =n+1,
ker(e) = (by — b2, b3 — ba, ..., bop-1 — bay), |ker(e)| = n,

im(e) nker(f) = (by) # 0.

2b) Moy corresponds to case (iii), (23): We have e given as in a), and
f=1-f with f asin a). It follows that

im(f) nim(e) # 0.

2¢) Mapq corresponds to case (iii), (14): apply that € =1-e with e as in
a). Moreover, we have that f is given as in a). Hence, we obtain that

ker(f) nker(e) 0
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2d) Map41 corresponds to case (iii), (24): As before, we use f,: 1-f and
€ = 1 — e giving the correspondence ker(f) = im(f), im(f) = ker(f),
and similar for e,e. This yields that

ker(e) nim(f) # 0.
O

Proposition 6.5. The modules in Theorem 6.4, 1a) - d) correspond to the
modules F(Us(g,p)), s =1,2,3,4, for pe N\{0} even, considered as k{e, f |
e? = e, f? = f)-modules. Similarly, the modules in 2a)-d) correspond to
the modules F(Us(g,p)), s = 1,2,3,4, for p € N\{0} odd, considered as
kie, f | €2 =e, f? = f)—modules.

Proof. Let w; be a symmetric band with periodic part w, = e*un*ut. De-

note by g, the corresponding £—-chain with two double ends. Then we have

that z1 ~ z12¢* and x,,, ~ £,,=n". We consider the composite £—chain gt[bp]

reduced to its joints and its start and end link:

Tl — s — Ty~ — v+ — L] ~T] — oo —XTfg ~Tfp — -+ — Tf,
where
b o 1 if p odd,
m if p even,

i 1 if p even,
m if p odd.

In particular, we have that k = {1,m}\{k}. We add the action of 15 € ¥(g,)
on the joints for p odd:

— — —

] — o — Ty ~Lyyy — ++» — L] ~TL] — v+ — L] ~T] — +-+ — Ty,

s=1: -1 1 -1 1 -1 1 -1 1
s=2: 1 1 -1 -1 1 -1 1 1
s=3: -1 -1 1 1 -1 1 -1 -1
s=4: 1 -1 1 -1 1 -1 1 -1

Applying Lemma 5.14 and Lemma 5.9 results in the following for F(Us(gqu] )
in terms of strings:

=-1 = =
s=1: e o +— &L )

_ n=-1 z=—1 g=—1
5:2: =0 - < u-h@ﬂ:l
n=-1 g=— e=— _
s=3: e=0 -~ < ...<_Qn=1
_ n=-1 z=—1 g=-1 _
s=4: =0 -~ < -~~h©n:1



s | peven | podd
1] 1a) 2a)
2 1b) 2b)
3| Ilc) 2¢)
4 1d) 2d)

Table 3: Cases 1 and 2 with respect to s

With f = ¢ and e = n and a small adjustment on the signs of the basis
elements, we obtain the wanted correspondence to the modules described in
Theorem 6.4, 2a)-d). Similarly, we obtain the correspondence for p even and
la)-d). In detail, the correspondence is given as in Table 3. O
Remark 6.6. Let w;, be a symmetric band with periodic part W, = e*un*ul.
Applying Proposition 6.5 to g, yields by Theorem 5.21 (iv.i1) that the modules
from Theorem 6.4 correspond to modules of the form M0717x7y(t[p]), x € {e, &},

ye{nm}, te (@) (u).

6.3 Interpretation of case (i) in terms of bands

Let w; be a symmetric band with periodic part w, = e*un*u~t. Denote

by gw, the corresponding £—cycle and by U(gw,,¢) its representation. Let
vl € (ﬁlfd)_l (wz) be weakly consistent such that F'(U(guw,,¢)) = M (v, V).

We denote its periodic parts by ﬁ’l(j) = etnt~! for all i € Z. We know by
Lemma 5.9, 5.11 and 5.15 that M (v}, V) is of the following form:

Va (300)

where any inverse special letter v; in ¢ and t™! is of the form &' sending
bj_1 to —b;, and any direct special letter v; is of the form e sending b; to
~bj_1. Changing any &' to ¢! will change v; to acting as (—1)‘_”J’1F<;1
- (i)
Up

with @ describing the number of inverse special letters in . Denote by

vy € (@ﬂd)_l (wz) the word obtained from v} after this action. For now, set
B = (—1)w+1F;1. We can rewrite (300) as follows (cf. Section 6.1):

Vhols<—Vi el (301)

U ()
Y o

279



We have that the above V;’s are disjoint copies of V. Assume that V is of

dimension n. For V@V we consider its standard basis eq, ..., es,. We obtain
for (301):
im(n) = (e, ..., €n),
ker(n) = (€1 + eps1y...,En + €2p),
im(e) = (e1,...,en),
)=(B

ker(e 1(el) nil,--» B (en) —eam) = (e1 = B(ens1), ..., en — Bleaw)).

With those details, we can rewrite (301) in terms of the four subspace prob-

ANt
g 0

im(n) im(e) ker(n) ker(e)

(302)

Theorem 6.7. Let w, be a symmetric band and let v, € (<I>(uid)_1 (wy) be

weakly consistent with v( D= =etnt™! for alli € Z and such that F(U(gu,,p)) =
M (v, V). Then V & V with e = ¢ and f = n described as in (302) is an
indecomposable k{e, f | €2 = e, f = f)—module.

Proof. We show that (302) fulfills the conditions of case (i) in |Bre74, §5].
Lemma 5.40 yields that if 39 (gw, ) is odd, @ is even and, vice versa, if 5o(guw, )
is even, w is odd. Thus, we obtain that

1 -F;1  if @ is even,
| F' ifois odd,

_ —F;l if 00(guw,) is odd,
F1 if 60(guwy) is even.

Recall the meaning of dp(gu, ) in the context of X-represenations (cf. Chapter
4): if 60(guw, ) is odd, then ¢ # t,t -1, and if 09(gu, ) is even, then ¢ # ¢, +1.
This implies for F 1 that 0 and 1 are not its eigenvalues for dp(gu,) odd.
Similary, 0 and -1 are not its eigenvalues for do(gy,) even. It follows that
—B does not have eigenvalue 0 or 1 in both cases.

It remains to see that (302) is part of the list given by Brenner. To this
end, we observe that (302) can be obtained from the module with 7 = ¢ in
Brenner’s list by applying the permutations (14)(12)(34) from right to left.
Note that (34)(14)(14) = (34).

Recall that we can consider V as k[z]-module for —-B € End(V') (Remark
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6.2). By definition of —-B in terms of ¢ = ¢, it follows that V = k[z]/(yf) as
k[xz]-modules. The Fundamental Structure Theorem for finitely generated
modules over a principal ideal domain yields that V is indecomposable as

k[z]-module ([Jac85, §3.8]). O

Corollary 6.8. The modules of the form M (v,, V') for v, weakly consistent
with dir(visgp) = dir(Vms2ikp) = 1 and V2 (v2) = wy for wy a symmetric
band, V&V an indecomposable k{e, f | €% = e, f? = f)—module, give a complete
list of pairwise non-isomorphic indecomposable modules as described in case

(1)-

Theorem 6.7 and Theorem 6.5 enable us to reformulate Theorem 5.49
and finally give a classification of the finite dimensional modules of a clan-
nish algebras in terms of Crawley-Boevey’s conjecture from [CB88|. To this
end, we recall the notation for the modules of concern as described in Section
3.4:

We denote by V; a complete set of all finite dimensional, pairwise non-
isomorphic indecomposable mod C;—modules, where

k ifi=1,
C - K[f]f*=f] ifi=2,
" k[T, T if i = 3,

kie,f|e?=e,f?=f) ifi=4.

For easier notation, we denote by W the set of asymmetric strings, by Ws
the set of symmetric strings, by W5 the set of asymmetric bands and by Wy
the set of symmetric bands.

Let w e Wy, V be a Ci-module. Then we denote by My (w, V') the following
module:

where

1 if (w[<i]) ™t > w[>1i],

Ki =
-1 else,

for all 7 € I with w; a special letter, and where the V;’s are disjoint copies of

V. The direction k; on any ordinary letter w; is given as in w.

Let w = ue*u™! € Wy and let V be a Cy—module. Then we denote by

Ma(w, V') the following module:

K1 K2

~3 K
Wy Wy Wg Wy
‘/0 Vl V2 Vm D e=f ,
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where

o { 1 (w[<i])™ > wl> ],

1 else,

for all 1 < ¢ < m, with w; a special letter, and where the V;’s are disjoint
copies of V. The direction k; on any ordinary letter w; is given as in w.
Let wy, € Ws be of period p, an let V be a C3—module. We denote by
Ms(wz, V') the module

wy Wy wWwgy p-1
Vo u/ Vp-1,
wyP

where

K':{ 1 if (wo[<i])™" > wa[> 1],

1 else,

for i € Z with w; a special letter, and where the V;’s are disjoint copies of V.
The direction k; on any ordinary letter w; is given as in wy.

Let w; € Wy be of period p with periodic part w, = e*un*ut, and let V be
a Cy—module. We denote by My(w;, V') the module

K2 K3 Rq Km+1

E:eCVb Wy Vi Ws Vo Wa o Umi VmDn:fv

where

ﬁ:{ 1 if (wy<i])™ > wo[> 1],

1 else,

for all 2 <i <m+ 1 with w; a special letter, and where the V;’s are disjoint
copies of V. The direction k; on any ordinary letter w; is given as in wy.
Our final classification result reads as follows:

Theorem 6.9 (Main Theorem - skewed-gentle algebras). Let A be a skewed-
gentle algebra. The modules of the form M;(w,V), i = 1,2,3,4, with w
running through Wi and V' running through V;, give a complete list of finite
dimensional, pairwise non-isomorphic indecomposable modules of A.

Proof. The result follows from Theorem 5.49, Theorem 6.7, Theorem 6.5. [

Theorem 6.10 (Main Theorem - clannish algebras). Let A be a clannish
algebra. The modules of the form M;(w,V), i = 1,2,3,4, with w running
through W; and V' running through V;, give a complete list of finite dimen-
sional, pairwise non-isomorphic indecomposable modules of A.
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Proof. The proof follows from Theorem 6.9 by Section 4.3. O

Remark 6.11. It follows from the proofs, that the letters in Ma(w, V') and
My(wz, V') are described by ui', ..., ulm, with k; as described above.

Furthermore, we see that the modules M;(w,V') and M;(w;, V') correspond
to modules which are described by weakly consistent words in the alphabet
Tq(A). One exception is given by the modules My(w;, V') of which some

correspond to words in Xq(A).

We see that Theorem 6.10 gives a classification of the finite dimensional

modules for a clannish algebra over an arbitrary field. Thus, we can confirm
Crawley-Boevey’s conjecture made in [CB88|.
Furthermore, we are able to describe the indecomposable modules explicitely
in terms of strings and bands by creating directed words from the asymmetric
and symmetric strings and bands, either by using our conventions on the
symmetry axes or by involving the categories C;.
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