Classification of the indecomposable finite dimensional modules of clannish algebras

Dissertation zur Erlangung des Doktorgrades
der Fakultät für Mathematik
der Universität Bielefeld

vorgelegt von

Ulrike Hansper

Dezember 2021
Abstract

In this thesis we classify all indecomposable finite dimensional modules of clannish algebras with idempotent relations on the special loops. To this end, we start with the introduction of the notion of asymmetric and symmetric strings and bands in terms of words. The classification will be given in terms of those. We first examine directions on special letters in these words of a clannish algebra. Then we reduce the case to skewed-gentle algebras and construct a bundle of semichains for such an algebra. Thus, we are able to reduce the classification problem for skewed-gentle algebras to the matrix problem of bundles of semichains studied by Bondarenko. From this problem, we extract one classification of the indecomposable finite dimensional modules of a skewed-gentle algebra. From this classification, we can deduce a classification for clannish algebras. Finally, we adjust this classification to obtain one similar to that obtained by Crawley-Boevey, in which the symmetric band modules are indexed by a vector space equipped with a pair of idempotent endomorphisms. In contrast to Crawley-Boevey’s classification, however, ours gives representations with better bases, not requiring the introduction of a fixed non-zero non-identity element of the field, and so working over the field with two elements. Applied to the algebra generated by an idempotent and a square zero element, it confirms a conjecture of Crawley-Boevey in 1988.
Acknowledgments

I would like to thank my supervisor Professor William Crawley-Boevey for his support and advice during my PhD studies. I also would like to thank Professor Henning Krause for his support and advice in many practical matters. My general thanks go to the BIREP group of Bielefeld.
I have been supported by the Alexander von Humboldt Foundation in the framework of an Alexander von Humboldt Professorship by the German Federal Ministry of Education and Research.

I would especially like to thank my family and my friends.
Contents

1 Introduction 8
 1.1 Outline ... 9
 1.2 Main Theorem ... 10
 1.2.1 Main Theorem for the algebra \(k(\varepsilon, a \mid \varepsilon^2 = \varepsilon, a^2 = 0) \) ... 10
 1.2.2 General formulation of the Main Theorem 14

2 Preliminaries 16
 2.1 Quivers and their representations 16
 2.2 Clannish algebras ... 18
 2.3 Words ... 21
 2.3.1 Properties of \(Z \)-words 28
 2.3.2 Coadmissible words ... 30
 2.3.3 Minimal words .. 33
 2.4 Modules obtained from directed words 36
 2.4.1 Modules from periodic words 39
 2.4.2 Modules from periodic words with \(\hat{w}_p = \varepsilon^p v \eta^\mu v^{-1} \) 41

3 Words of string and band type 45
 3.1 Types of directed words .. 45
 3.1.1 Weakly consistent words 46
 3.1.2 Consistent words .. 49
 3.2 Strings and bands ... 51
 3.2.1 Asymmetric strings .. 51
 3.2.2 Symmetric strings .. 52
 3.2.3 Asymmetric bands .. 53
 3.2.4 Symmetric bands ... 56
 3.2.5 Symmetries in symmetric bands 58
 3.3 Comparison of weakly consistent and consistent words 65
 3.3.1 Directed words from strings and asymmetric bands 66
 3.3.2 Directed words from symmetric bands 79
 3.4 Formulation of Main Theorem 84

4 Formulation of a matrix problem 87
 4.1 Matrix problem for bundles of semichains 87
 4.1.1 Bundles of semichains 88
 4.1.2 \(\mathfrak{L} \)-graphs ... 91
 4.1.3 Subchains via orientations 96
 4.1.4 Construction of representations 98
 4.1.5 Classification Theorem 115
 4.2 The category \(\text{Rep}(\mathfrak{X}) \) 116
 4.3 Reduction to skewed-gentle algebras 123
 4.4 Construction of a bundle of semichains 124
1 Introduction

Interesting problems from representation theory can be described by quivers with certain relations. One type of such problems are clannish algebras. They were introduced in 1989 by Crawley-Boevey [CB89] and are the main subject of this thesis. Crawley-Boevey classified the modules of clannish algebras in terms of strings and bands if the underlying field has at least three elements. This is a direct conclusion of the classification of the indecomposable representations of clans in [CB89], whose notion was motivated in particular in order to solve the Gel’fand problem [Gel71]. The method used to obtain the classification for clans is the so called functorial filtration. It was developed by Gel’fand and Ponomarev [GP68] and set by Gabriel into the functorial setting. Ringel also applied this method for the classification of the indecomposable representations of the Dihedral 2-Groups [Rin75]. This classification is also given in terms of strings and bands. Crawley-Boevey used the same approach for another of his papers prior to [CB89]: in [CB88], Crawley-Boevey gives a classification of the indecomposable modules of the clannish algebra \(k(\varepsilon, a \mid \varepsilon^2 = \varepsilon, a^2 = 0) \). Similar to the result in [CB89], this classification does not include algebras which have a base field with less than three elements. This is due to the introduction of \(t \), a non-linear combination of the letter \(\varepsilon \) and 1. However, Crawley-Boevey conjectured in the introduction of [CB88] (near the end of page 386) the existence of an analogous classification for arbitrary fields given in the original alphabet (replacing the letter \(t \) by \(\varepsilon \)) of the algebra.

The aim of this thesis is to give a classification of the indecomposable finite dimensional modules of a clannish algebra in terms of asymmetric and symmetric strings and bands independent of the cardinality of the base field. The algebra considered in [CB88] will serve as one of our standard examples. In order to fill the gap in the existing classification, we will use a different approach than the functorial filtration method. To this end, we will at first consider skewed-gentle algebras, give a classification for them and then deduce from that one the classification for clannish algebras. We can proceed in this way since the skewed-gentle algebras belong by definition to the class of (quasi-)clannish algebras. Skewed-gentle algebras were introduced by Geiß and de la Peña as a specification of quasi-clannish algebras [GdlPn99] which are a generalisation of clannish algebras.

Similar to [BMM03], we will exploit the connection between skewed-gentle algebras and a matrix problem. Here, we reduce the classification problem of indecomposable modules of a skewed-gentle algebra to the matrix problem in terms of bundles of semichains introduced by Bondarenko in 1988 [Bon88, Bon91]. This will enable us to obtain a first formulation of the indecomposable finite dimensional modules of a skewed-gentle algebra in terms of strings and bands and deduce a respective first formulation for clannish algebras. However, this first formulation does not confirm Crawley-Boevey’s
conjecture yet. In order to do so, we will refine the first classification result by applying results from [Bre74].

The same matrix problem which was studied by Bondarenko, was also studied by Deng in the context of bushes [Den00]. He found that his results can be applied to clannish algebras including base fields of cardinality two. However, the results by Deng cannot directly confirm the conjecture imposed by Crawley-Boevey in [CB88].

In this thesis, we draw clear parallels between chains and cycles as considered by Bondarenko and string and band modules of skewed-gentle algebras. We also include a detailed discussion of the relevant results of Bondarenko since they are pertinent to our approach. We include additional examples to shed some light on the results which are available in [Bon88] but not in the English translation [Bon91]. Additionally, they will help the reader to gain a better understanding of the technical construction given by Bondarenko.

1.1 Outline

This thesis is structured as follows:

In Chapter 2 we collect the preliminaries which are used in the later chapters. Those include the basics of representation theory as well as the notion of clannish algebras. Based on its definition, we define words. Here, we distinguish in particular between ordinary and special letters. This property is deduced from the definition of a clannish algebra. Furthermore, we introduce the properties coadmissibility and minimality for words and describe associated modules. For those, so called periodic words are of particular interest.

We proceed in Chapter 3 by defining asymmetric and symmetric strings and bands which are given by so called undirected words. The classification (Theorem 6.9, Theorem 6.10) will be given in terms of those. To any directed word, an undirected one can be associated. We introduce two types of directed words (weakly consistent and consistent words) and compare those types for directed words which have as associated undirected words asymmetric and symmetric strings and bands. The definition of the weakly consistent and consistent words depends on a linear ordering on certain words which we introduce in the previous chapter.

We start Chapter 4 by presenting the results of [Bon88, Bon91] and by giving detailed examples which we found to be missing in the existing literature. In doing so, we fix notation for this type of matrix problem. After introducing the basics on this topic, we give an explicit construction in order to show that for any skewed-gentle algebra \(\Lambda \) there exists a bundle of semichains \(\overline{X}_\Lambda \) (Theorem 4.70). From this construction on, we reduce ourselves to skewed-gentle algebras. The construction allows us to give an explicit description on how to obtain \(\mathcal{L} \)-graphs from undirected words. We show in Theorem 4.113 that any asymmetric and symmetric string and band results in an \(\mathcal{L} \)-graph which leads to a canonical \(\overline{X}_\Lambda \)-representation. We even find by Corollary
4.117 that there exists a 1-1-correspondence between their equivalence classes and the isomorphism classes of the \(\Sigma \)-chains which give canonical representations. We obtain similar results with respect to asymmetric and symmetric bands and simple \(\Sigma \)-cycles (Theorem 4.130, Corollary 4.142). We prove in Section 4.7 that the directions added on the constructed \(\Sigma \)-graphs coincide with those on letters of so called finite index in weakly consistent and consistent words.

The main results which are required in order to obtain the classification, are to be found in Chapter 5. We show that the category \(\text{mod}(\Lambda) \) of finite dimensional modules of a skewed-gentle algebra \(\Lambda \) and the category \(\text{Rep}(\overline{\Lambda}) \) of representations of the bundle of semichains \(\overline{\Lambda} \) are equivalent (Theorem 5.6). We present a classification of the finite dimensional modules of the skewed-gentle algebra \(\Lambda \) in terms of strings and bands (Theorem 5.49). From this, we deduce a respective classification for clannish algebras \(\overline{\Lambda} \) (Theorem 5.50).

In the final chapter, Chapter 6, we examine the symmetry axes of the symmetric bands more closely in the context of the four subspace problem. In order to do so, we apply results of [Bre74]. Finally, these results allow us to refine the classification result as formulated in Chapter 4 such that we will be able to confirm the conjecture stated by Crawley-Boevey in [CB88] (Theorem 6.10).

1.2 Main Theorem

1.2.1 Main Theorem for the algebra \(k\langle \varepsilon, a \mid \varepsilon^2 = \varepsilon, a^2 = 0 \rangle \)

We start this Subsection by first giving the respective result from [CB88].

To this end, let \(k \) be a field with at least three elements and let \(\Lambda = k\langle \varepsilon, a \mid \varepsilon^2 = \varepsilon, a^2 = 0 \rangle \). We consider the alphabet \(\Gamma = \{a, a^{-1}, t^*\} \), where \(t = \lambda \varepsilon - \mu 1 \) with \(0 \neq \lambda, \mu \in k \) and \(\lambda \neq \mu \). We call \(t^* \) a \textit{special} letter with formal inverse given by itself. We build words by considering sequences in the letters of \(\Gamma \), in which each \(t^* \) is either followed by \(a \) or \(a^{-1} \), and each \(a \) or \(a^{-1} \) is followed by \(t^* \).

For the classification, we want to consider only certain words. We distinguish between asymmetric and symmetric strings and bands. Strings are finite words in \(a, a^{-1} \) and \(t^* \), whose first and last letters are given by \(t^* \). A string is symmetric if it is equal to its inverse which is obtained by reversing the order of the letters, and exchanging \(a \) and \(a^{-1} \). An example for an asymmetric string is the following: \(t^*at^* \) since it is unequal to its inverse \(t^*a^{-1}t^* \).

An example for a symmetric string is given by \(t^*at^*a^{-1}t^* \). Important is that we have that the sequence left of the middle \(t^* \) is equal to the inverse of the sequence right of it. Thus, this letter \(t^* \) in the middle of the word gives a symmetry axis.

Bands are defined by infinite periodic words. To specify a band it suffices to give one period. An example for an asymmetric band can be described
by its periodic part, the finite subsequence t^*a. The whole band is then of the form $\ldots t^*at^*a^\times t^*a^\times a^\times \ldots$. Important is that when considering the whole word, it is not equal to its inverse shifted by any position. For a symmetric band, we want exactly the opposite. We want that it is equal to its inverse shifted by some position. An example for a symmetric band can be described by the finite subsequence $t^*at^*a^{-1}t^*a^{-1}$ which results in the word $\ldots t^*at^*a^{-1}t^*a^{-1}t^*at^*a^{-1}t^*a^{-1} \ldots$. We see - by comparing the left subsequence to the inverse of the right subsequence - that there are two symmetry axes per periodic part in the band, given by the first t^* and the one in fifth position.

We want to consider modules given by exactly those four types of words. For this we need to replace each letter t^* by either t or t^{-1}. We can consider t^* as a placeholder for one of the other two letters. The question is which of the two letters to use to replace t^*. Crawley-Boevey gives an answer by giving an ordering on the words. We consider in a word the inverse of the subsequence left of a letter t^* and compare it to the subsequence right of t^*. Comparing those two subsequences defines by which letter t^* is replaced. Here, we replace t^* by t if the inverse of the left subsequence is bigger than the right subsequence. Otherwise, we replace t^* by t^{-1}. There are some letters - those which we have called symmetry axes above - which do not obtain a unique replacement this way since the inverse of their left subsequence is equal to their right subsequence. But we will see in the presentation of the modules that we can omit this discussion.

Considering the words with t^* replaced as described above, they describe modules. Each string results in a string module, and each band in a band module. For the bands, their repeating structure allows to only consider one of their periodic parts. We will give examples for the words above. To this end, we display each letter of the form x by an arrow from the right to the left, and each letter of the form x^{-1} by an arrow from the left to the right. Now setting vector spaces from a certain module category at its vertices describes the respective module, consisting of a vector space given by the direct sum of the vector spaces at its vertices and the action of the algebra described by the displayed arrows. Note that all considered vector spaces are finite dimensional.

For the asymmetric string t^*at^* we replace each t^* such that we consider tat for the module. Let V be a k-module. The Λ-module $M(tat, V)$ with the V_i's being disjoint copies of V is described by

\[V_0 \xleftarrow{t} V_1 \xleftarrow{a} V_2 \xleftarrow{t} V_3. \] \hspace{1cm} (1)

This module gives an example in the image of the functor in [CB88, §1, p. 388], applied to mod k.

For the symmetric string $t^*at^*a^{-1}t^*$ we consider $tat^*a^{-1}t^{-1}$. Here, the letter t^* in the middle has not been replaced since it is a symmetry axis, but is
determined by the category of the vector space. Let V be in $\text{mod } k[s]/(q(s))$, where q describes the quadratic polynomial with $q(t) = 0$. The Λ–module $M(ta^{-1}t^{-1}, V)$ with the V_i’s being disjoint copies of V is given by:

$$V_0 \xleftarrow{t} V_1 \xleftarrow{a} V_2 \bigcirc t=s.$$ \hfill (2)

Since t is a linear combination of ε and 1, the module can also be displayed with V being a $k[f | f^2 = f]$–module and with $\varepsilon = f$ on the loop. This module then gives an example in the image of the functor in [CB88, §1, p. 388], applied to $\text{mod } k[f]$. For the asymmetric band given by $\ldots ta^*atat^*a\ldots$ we consider the subsequence ta. We consider V in $\text{mod } k[T, T^{-1}]$ where T acts as the shift between the repetitions. The Λ–module $M(\ldots tatata \ldots, V)$ with the V_i’s being disjoint copies of V is given by

$$V_0 \xleftarrow{t} V_1.$$ \hfill (3)

This module gives an example in the image of the functor in [CB88, §1, p. 388], applied to $\text{mod } k[T, T^{-1}]$. We consider for the symmetric band $\ldots ta^*atat^*a^{-1}tat^*a^{-1} \ldots$ the subsequence $tat^*a^{-1}tat^*a^{-1}$. Similar to the symmetric string case, the letters giving the symmetry axes are defined by the category of the vector space. Let V be in $\text{mod } k[f, g]/(q(f), q(g))$ with q the quadratic polynomial as above. The Λ–module $M(\ldots tat^*atat^*a^{-1}tat^*a^{-1} \ldots, V)$ with the V_i’s being disjoint copies of V is given by

$$t=f \bigcirc V_0 \xleftarrow{a} V_1 \xleftarrow{t} V_2 \xleftarrow{a} V_3 \bigcirc t=g.$$ \hfill (4)

This module gives an example in the image of the functor in [CB88, §1, p. 388], applied to $\text{mod } k[f, g]$. Crawley-Boevey states in [CB88] that the modules of this form give indecomposable finite dimensional modules of the algebra:

Theorem 1.1. [CB88, Main Theorem] Let k be a field with at least three elements, let $\Lambda = k(\varepsilon, a | \varepsilon^2 = \varepsilon, a^2 = 0)$. Let M be a list of modules obtained from all asymmetric and symmetric strings and bands as described above in examples (1)-(4), with the modules V running through a complete list of non-isomorphic indecomposable modules for each module category. Then M gives a complete list of non-isomorphic indecomposable Λ–modules.

As we have seen, this result does not operate on the original alphabet of the algebra but introduces the letter $t^*(t, t^{-1})$. Due to this introduction,
the field k is required to have at least three elements.

The main result of this thesis confirms Crawley-Boevey's conjecture from the same paper [CB88]. Here (near to the end of page 386), he conjectures that there is an analogous classification to the one given above in which the letter t^* (t, t^{-1}) is replaced by the letter ε^* ($\varepsilon, \varepsilon^{-1}$). This classification would hold for arbitrary fields.

In our setup, by replacing t^* by ε^*, the above given examples for strings and bands correspond to the following:

The word $\varepsilon^* a \varepsilon^*$ is an asymmetric string and $\varepsilon^* a \varepsilon^* a^{-1} \varepsilon^*$ describes a symmetric string. Repeating the sequence $\varepsilon^* a$ gives an asymmetric band, while repeating $\varepsilon^* a \varepsilon^* a^{-1} \varepsilon^* a^{-1}$ describes a symmetric band. We have replaced each t^* by ε^*. It follows that we need to replace each of these ε^* by either ε or ε^{-1}. In order to do so, we proceed analogously as above with the t's. Also for building the modules from those words, we proceed analogously as above. This leaves us with the following modules: For the asymmetric string we obtain from εa the Λ-module $M(\varepsilon a \varepsilon, V)$ with V a k-module, and the V_i's disjoint copies of V:

$$V_0 \xrightarrow{\varepsilon} V_1 \xleftarrow{a} V_2 \xrightarrow{\varepsilon} V_3.$$

(5)

For the symmetric string we consider $\varepsilon a \varepsilon^* a^{-1} \varepsilon^{-1}$. The Λ-module $M(\varepsilon a \varepsilon^* a^{-1} \varepsilon^{-1}, V)$ with V in mod $k[f \mid f^2 = f]$ and the V_i's disjoint copies of V, is given by:

$$V_0 \xrightarrow{\varepsilon} V_1 \xleftarrow{a} V_2 \xleftarrow{\varepsilon} V_3.$$

(6)

For the asymmetric band we consider εa. The Λ-module $M(\ldots \varepsilon a \varepsilon a \ldots, V)$ with V in mod $k[T, T^{-1}]$ and the V_i's being disjoint copies of V, is given by:

$$V_0 \xrightarrow{\varepsilon} V_1.$$

(7)

Finally, we consider the symmetric band. Here, we obtain the Λ-module $M(\ldots \varepsilon^* a \varepsilon a \varepsilon^* a^{-1} \varepsilon^{-1} a^{-1} \ldots, V)$ with V in mod $k(f, g \mid f^2 = f, g^2 = g)$, and all V_i's being disjoint copies of V:

$$\varepsilon = f \bigcap V_0 \xrightarrow{\varepsilon} V_1 \xrightarrow{a} V_2 \xrightarrow{\varepsilon} V_3 \xrightarrow{\varepsilon = g}.$$

(8)

Here, a depiction of the form $V_0 \xrightarrow{\varepsilon} V_1$ means that we have for $\varepsilon(v_1) = v_0$ that $\varepsilon(v_0) = v_0$, where $v_0 \in V_0$, $v_1 \in V_1$. This is due to the idempotent relation on ε.

Our main theorem applied to $k(\varepsilon, a \mid \varepsilon^2 = \varepsilon, a^2 = 0)$ reads:

Main Theorem. ($k(\varepsilon, a \mid \varepsilon^2 = \varepsilon, a^2 = 0)$) Let k be an arbitrary field, let $\Lambda = k(\varepsilon, a \mid \varepsilon^2 = \varepsilon, a^2 = 0)$. Let \mathcal{M} be a list of modules obtained from all asymmetric and symmetric strings and bands as described in examples (5)-(8), with the modules V running through a complete list of non-isomorphic indecomposable modules for each module category. Then \mathcal{M} gives a complete list of non-isomorphic indecomposable Λ-modules.
1.2.2 General formulation of the Main Theorem

Let k be a field. Let w be an asymmetric string and let V be a k–module. Then we denote by $M_1(w, V)$ the following module:

$$V_0 \xrightarrow{w_1} V_1 \xrightarrow{w_2} V_2 \xrightarrow{w_3} \cdots \xrightarrow{w_n} V_n$$

where $\kappa_i \in \{+1, -1\}$ and $w = w_1 \ldots w_n$, which we will discuss in detail in Section 2.4.

Let $w = u \varepsilon \ast u^{-1}$ be a symmetric string (with m being the length of u) and let V be a $k[f \mid f^2 = f]$–module. Then we denote by $M_2(w, V)$ the following module:

$$V_0 \xrightarrow{w_1} V_1 \xrightarrow{w_2} V_2 \xrightarrow{w_3} \cdots \xrightarrow{w_{m}} V_{m} \xrightarrow{\varepsilon = f} .$$

Let w_ε be an asymmetric band of period p, and let V be a $k[T, T^{-1}]$–module. Then we denote by $M_3(v, V)$ the module

$$V_0 \xrightarrow{w_1} V_1 \xrightarrow{w_2} V_2 \xrightarrow{w_3} \cdots \xrightarrow{w_{p-1}} V_{p-1} .$$

Let w_η be a symmetric band of period p with periodic part $\varepsilon^* u \eta^* u^{-1}$, $|u| = m$, and let V be a $k\langle f, g \mid f^2 = f, g^2 = g \rangle$–module. We denote by $M_4(v, V)$ the module

$$\varepsilon = f \bigcup V_0 \xrightarrow{w_2} V_1 \xrightarrow{w_3} V_2 \xrightarrow{w_4} \cdots \xrightarrow{w_{m+1}} V_{m} \xrightarrow{\eta = g} .$$

The V_j’s in the modules are disjoint copies of the given V. The κ_i’s are directed according to the linear ordering (cf. Definition 2.41) on the words for special letters w_i (cf. Section 2.3). Otherwise, κ_i is given by the ordinary letters (cf. Section 2.3) in w or w_ε, respectively.

Our final classification result reads as follows:

Main Theorem. Let Λ be a clanbish algebra. The modules of the form $M_i(w, V)$, $i = 1, 2, 3, 4$, with w running through the sets of asymmetric and symmetric strings and bands, respectively, and V running through a complete list of non-isomorphic indecomposable modules for each module category, give a complete list of pairwise non-isomorphic indecomposable modules of Λ.

14
2 Preliminaries

We start this chapter by revising the basics of representation theory in Section 2.1. Moreover, we introduce clannish and skewed-gentle algebras in Section 2.2 following [CB89] and [GdlPn99]. Section 2.3 deals with directed and undirected alphabets obtained from a clannish algebra and words built from any of the alphabets. In the next chapter, we define the notion of asymmetric and symmetric strings and bands which are given by equivalence classes of certain words. We examine in Subsection 2.3.1 the so called \(\mathbb{Z} \)–words more closely which lead to the notion of bands. In particular, we determine certain properties of words in Subsections 2.3.2 and 2.3.3. These properties are required in order to describe the words which lead to \(\mathcal{L} \)–graphs giving canonical \(\overline{\Lambda} \)–representations (compare Sections 4.5 and 4.6). We close the chapter with Section 2.4 which explains how directed words describe \(\Lambda \)–modules.

Throughout this thesis let \(k \) be a field. Note that \(k \) is not necessarily algebraically closed. Moreover, we denote by \(\mathbb{N} \) the natural numbers including 0.

2.1 Quivers and their representations

We follow [ARS97]. For \(k \) algebraically closed, see also [ASS06].

A quiver \(Q \) is given by a quadruple \((Q_0, Q_1, s, t) \) consisting of a finite set of vertices \(Q_0 \), a finite set of arrows \(Q_1 \) and two maps \(s, t : Q_1 \rightarrow Q_0 \), assigning to each arrow \(x \in Q_1 \) its source \(s(x) \) and its target \(t(x) \), giving \(x : s(x) \rightarrow t(x) \). A loop at vertex \(i \) is an arrow \(x \in Q_1 \) with \(s(x) = t(x) = i \). A path \(p \) in \(Q \) is given by a sequence \(p = p_n \ldots p_1 \) of arrows \(p_i \in Q_1 \), \(1 \leq i \leq n \), such that \(s(p_{i+1}) = t(p_i) \). The length of such a path \(p \) is \(n \). We denote by \(s(p) := s(p_1) \) the source of \(p \) and its target by \(t(p) := t(p_n) \). For each vertex \(i \in Q_0 \) we have the trivial path \(e_i \) of length 0 with \(s(e_i) = t(e_i) = i \).

The concatenation \(p \circ q \) of two paths \(p = p_n \ldots p_1 \) and \(q = q_m \ldots q_1 \) is given by

\[
\begin{align*}
p \circ q = \begin{cases}
p_n \ldots p_1 q_m \ldots q_1 & \text{if } s(p_1) = t(q_m), \\
p_n \ldots p_1 & \text{if } q = e_{s(p_1)}, \\
q_m \ldots q_1 & \text{if } p = e_{t(q_m)}, \\
0 & \text{otherwise.}
\end{cases}
\end{align*}
\]

In the following, we also write \(pq \) instead of \(p \circ q \) for short.

A \(k \)–linear representation of \(Q \) is given by a tuple \(V = (V_i, V_a)_{i \in Q_0, a \in Q_1} \) where \(V_i \) is a vector space for each \(i \in Q_0 \) and \(V_a : V_i \rightarrow V_j \) is a linear map for each \(a : i \rightarrow j \in Q_1 \). The representation \(V \) is called finite dimensional if all \(V_i \) are finite dimensional. Let \(V = (V_i, V_a)_{i,a} \) and \(W = (W_i, W_a)_{i,a} \) be two representations of a given

\[1\]
A morphism \(f : V \rightarrow W \) is given by a family \(f = (f_i)_{i \in Q_0} \) of \(k\)-linear maps \(f_i : V_i \rightarrow W_i \) such that \(f_j V_a = W_a f_i \) for \((a : i \rightarrow j) \in Q_1 \), i.e. the following diagram commutes:

\[
\begin{array}{ccc}
V_i & \xrightarrow{f_i} & W_i \\
\downarrow V_a & & \downarrow W_a \\
V_j & \xrightarrow{f_j} & W_j
\end{array}
\]

The composition of two morphisms of representations is given in the obvious way. The direct sum \(V \oplus W \) of \(V \) and \(W \) is given by

\[
(V_i \oplus W_i, V_a \oplus W_a = \left(\begin{array}{cc} V_a & 0 \\ 0 & W_a \end{array}\right)_{i,a}).
\]

A representation \(V = (V_i, V_a)_{i,a} \) is called indecomposable if it cannot be written as a direct sum \(V = W \oplus U \) of two non-zero representations \(W, U \).

We denote the category of representations of a quiver \(Q \) by \(\text{Rep}(Q) \). The full subcategory of finite dimensional representations is denoted by \(\text{rep}(Q) \).

If \(Q \) is finite, then both categories are abelian.

Moreover, one can associate to any quiver \(Q \) the path algebra \(k Q \). This is the \(k \)-algebra with underlying \(k \)-vector space with basis given by the paths in \(Q \). The product of two basis elements is given by the above concatenation.

The path algebra is associative. Furthermore, \(k Q \) is finite dimensional if and only if \(Q \) does not have oriented cycles, see [ARS97, III.1, Proposition 1.1]. It is unital with \(1 = \sum_{v \in Q_0} e_v \).

A relation \(r \) on a quiver \(Q \) is a \(k \)-linear combination of paths \(p_i \) which have lengths at least two. For \(R \) a set of relations on \(Q \), the pair \((Q, R)\) is called a quiver with relations. Its associated path algebra \(k(Q, R) \) is given by \(k Q/(R) \). Generally, we are going to consider for any algebra \(\Lambda \) left \(\Lambda \)-modules and denote by \(\text{Mod}(\Lambda) \) the category of all those modules.

We denote the full subcategory of finite dimensional modules by \(\text{mod}(\Lambda) \).

It is a well-known result, e.g. [ARS97, III.1, Theorem 1.5], that the categories \(\text{rep}(Q) \) and \(\text{mod}(k Q) \) are equivalent. This induces an equivalence between \(\text{rep}(Q, R) \) and \(\text{mod}(k Q/(R)) \) [ARS97, III.1, Proposition 1.7].

Furthermore, the following Krull-Remak-Schmidt-Theorem is well-known:

Theorem 2.1. [ARS97, Theorem 2.2 (b)] Let \(\Lambda \) be a \(k \)-algebra and let \(\{V_i\}_{i \in I} \) and \(\{W_j\}_{j \in J} \) be two finite families of finitely generated indecomposable \(\Lambda \)-modules. If

\[
\bigsqcup_{i \in I} V_i \cong \bigsqcup_{j \in J} W_j,
\]

then there exists a permutation \(\pi : I \rightarrow J \) such that \(V_i \cong W_{\pi(i)} \) for all \(i \in I \).
2.2 Clannish algebras

We consider clannish algebras in the sense of [CB18], with one minor restriction: we ask the relations on the special arrows to be idempotent relations.

Let \(Q \) be a quiver, \(Sp \) a subset of the loops of \(Q \). We call any \(\varepsilon \in Sp \) a special arrow, and in contrast to that any \(a \in Q_1 \setminus Sp \) an ordinary arrow. We denote the set of ordinary arrows by \(Q_1^{ord} \). Let \(R^{Sp} := \{ \varepsilon^2 - \varepsilon \mid \varepsilon \in Sp \} \) describe the idempotent relations on the special arrows, and let \(R \) be a set of monomial relations on \(Q \) which do not start or end in a special loop, nor involve the square of one.

Definition 2.2. Let \(\Lambda = kQ/(R \cup R^{Sp}) \). We call the algebra \(\Lambda \) clannish if the following conditions hold:

(i) at most two arrows start at any vertex: \(|\{ a \in Q_1 \mid s(a) = v \}| \leq 2 \) for all \(v \in Q_0 \),

(i)* at most two arrows terminate at any vertex: \(|\{ a \in Q_1 \mid t(a) = v \}| \leq 2 \) for all \(v \in Q_0 \),

(ii) for any \(a \in Q_1^{ord} \), there is at most one \(c \in Q_1 \) such that \(ca \notin R \),

(ii)* for any \(a \in Q_1^{ord} \), there is at most one \(b \in Q_1 \) such that \(ab \notin R \).

Example 2.3.

1. The algebra \(\Lambda = kQ/(R \cup R^{Sp}) \) with quiver \(Q \)

\[
\begin{array}{ccc}
\varepsilon & \circ & a \\
\end{array}
\]

\(Sp = \{ \varepsilon \} \) and \(R = \{ a^2 \} \) is a clannish algebra.

2. Let \(Q \) be given by

\[
\begin{array}{ccc}
\varepsilon & \circ & x \\
& y & \circ \\
\end{array}
\]

with \(Sp = \{ \varepsilon, \eta, \kappa \} \) and \(R = \{ yx \} \). Then \(kQ/(R \cup R^{Sp}) \) is a clannish algebra.

3. Consider the quiver \(Q \)

\[
\begin{array}{ccc}
1 & \xrightarrow{\kappa} & 2 \\
& \xrightarrow{y} & 3 \\
\end{array}
\]

with \(Sp = \{ \kappa \} \) and \(R = \emptyset \). The path algebra \(kQ/(R \cup R^{Sp}) \) is not clannish since \((i)^* \) does not hold for vertex 2.
4. The algebra $\Lambda = kQ/(R \cup R^{Sp})$ with quiver Q

$$
\begin{array}{ccc}
1 & \xleftarrow{x} & 2 \\
& \searrow & \\
& & 3 \\
& \swarrow & \\
& & 4
\end{array}
$$

with $Sp = \emptyset$, $R = \{yx, yz\}$ is clannish.

Similar to clannish is as the name already suggests – the notion of quasi-clannish which is a generalization of the former. To this end, let Q, Sp, Q_1^{ord} and R^{Sp} be as above. Denote by R a set of relations, by (R) the ideal in $kQ/(R^{Sp})$ generated by the classes of elements in R. Let J be the ideal in $kQ/(R^{Sp})$ generated by the ordinary arrows.

We denote by g the following automorphism of $kQ/(R^{Sp})$ of order 2:

$$
g(1_v) = 1_v \quad \text{for all} \quad v \in Q_0,$$

$$
g(a) = \begin{cases} a & \text{if} \quad t(a) \in Q_0^{ord}, \\
-a & \text{if} \quad t(a) \in Q_0^{Sp}, \end{cases} \quad \text{for all} \quad a \in Q_1^{ord},$$

$$
g(\varepsilon) = 1_{s(\varepsilon)} - \varepsilon \quad \text{for all} \quad \varepsilon \in Sp,$$

where $Q_0^{Sp} = \{ s(\varepsilon) \mid \varepsilon \in Sp \}$, $Q_0^{ord} = Q_1 \setminus Q_0^{Sp}$.

Definition 2.4. [GdlPn99, Definition (4.2)] Let $\Lambda = kQ/(R \cup R^{Sp})$. Then Λ is called quasi-clannish if the following conditions hold:

(i) $(R) \subseteq J^2$ is a (g)–ideal in $kQ/(R^{Sp})$,

(ii) at most two arrows start at any vertex: $|\{ a \in Q_1 \mid s(a) = v \}| \leq 2$ for all $v \in Q_0$,

(ii)* at most two arrows terminate at any vertex: $|\{ a \in Q_1 \mid t(a) = v \}| \leq 2$ for all $v \in Q_0$,

(iii) for any $a \in Q_1^{ord}$ there is at most one $b \in Q_1$ with $ab \notin R$,

(iii)* for any $a \in Q_1^{ord}$ there is at most one $c \in Q_1$ with $ca \notin R$.

Lemma 2.5. [GdlPn99] Any clannish algebra is quasi-clannish.

Example 2.6. By Lemma 2.5, Example 2.3.1., 2. and 4. also are quasi-clannish algebras.

The converse of Lemma 2.5 does not hold in general. But one can restrict the notion of quasi-clannish as follows:

Definition 2.7. Let $\Lambda = kQ/(R \cup R^{Sp})$ be quasi-clannish. We call Λ string-quasi-clannish if R consists of monomial relations only and no relation contains the square of a special loop.
Then we obtain the following result:

Lemma 2.8. Any string-quasi-clannish algebra is clannish.

Proof. It is enough to check that no relation starts or ends in a special loop. We give a proof by contradiction.

Let \(\varepsilon \in \text{Sp} \) and let \(p \) and \(q \) be paths in \(Q \) such that \(\varepsilon p \) and \(q\varepsilon \) are again paths. Assume for simplicity that \(p \) and \(q \) only consist of ordinary arrows that do not end in vertices incident to special loops. By Definition 2.7, \((R) \) is \(\langle g \rangle \)-invariant in \(kQ/(R^{\text{Sp}}) \). The action of \(g \) on \(\varepsilon p \) and \(q\varepsilon \) is given by the following:

\[
\begin{align*}
g(\varepsilon p) &= (1_{s(\varepsilon)} - \varepsilon)p = p - \varepsilon p, & (9) \\
g(q\varepsilon) &= q(1_{s(\varepsilon)} - \varepsilon) = q - q\varepsilon. & (10)
\end{align*}
\]

Now (9) and (10) do not lie in \((R) \) since \(R \) only consists of monomial relations. Thus, they give a contradiction. \(\square \)

Definition 2.9. [GdlPn99, Definition (4.2)] Let \(\Lambda = kQ/(R \cup R^{\text{Sp}}) \) be quasi-clannish. It is called skewed-gentle if it additionally satisfies the following conditions:

(iv) \(R \) consists of monomial relations of length 2,

(v) for any \(a \in Q_{\text{ord}}^{1} \) there is at most one \(b \in Q_{1} \) with \(ab \in R \),

(v)* for any \(a \in Q_{\text{ord}}^{1} \) there is at most one \(c \in Q_{1} \) with \(ca \in R \).

Example 2.10.

1. The algebras in Example 2.3.1. and Example 2.3.2. are skewed-gentle.

2. The algebras in Example 2.3.3. and 2.3.4. are not skewed-gentle.

3. The algebra given by the following data is not skewed-gentle:

\[
Q: \quad 1 \xrightarrow{a} 2 \xrightarrow{b} 3 \xrightarrow{c} 4 ,
\]

\(\text{Sp} = \emptyset \), \(R = \{ cba \} \).

Lemma 2.11. Any skewed-gentle algebra is clannish.

Proof. Since any relation is of length two, it does not contain the square of a special loop. Lemma 2.8 yields the result. \(\square \)

Remark 2.12. Any algebra which is Morita equivalent to a clannish (quasi-clannish, skewed-gentle, respectively) algebra is also called clannish (quasi-clannish, skewed-gentle, respectively).
2.3 Words

In order to give a description for words of the clannish algebra Λ, we consider the latter in terms of the quiver Q with relations $R \cup R^{Sp}$. We follow [CB18] for most definitions in this section.

Let $\Lambda = kQ/(R \cup R^{Sp})$ be a clannish algebra.

A letter is an arrow $x \in Q_1$, its formal inverse x^{-1}, or a symbol ε^* for any $\varepsilon \in Sp$. The formal inverse of a symbol ε^* is given by itself.

We call a letter a^\pm for $a \in Q^\text{ord}_1$ of ordinary type or simply ordinary, and a letter $\varepsilon^\pm, \varepsilon^*$ for $\varepsilon \in Sp$ of special type or simply special. We distinguish direct letters, which are of the form x for some $x \in Q_1$, from inverse letters, which are of the form x^{-1} for some $x \in Q_1$.

In the next step, we want to build words from certain sets of letters, so called alphabets. We are going to consider two types of words, coming from two types of alphabets.

We denote by

$$\Gamma_d(\Lambda) := \{a, a^{-1} \mid a \in Q^\text{ord}_1\} \cup \{\varepsilon, \varepsilon^{-1} \mid \varepsilon \in Sp\}$$

the directed alphabet of Λ, and by

$$\Gamma_{ud}(\Lambda) := \{a, a^{-1} \mid a \in Q^\text{ord}_1\} \cup \{\varepsilon^* \mid \varepsilon \in Sp\}$$

the undirected alphabet of Λ.

There exists the following forgetful map:

$$\phi^{ud}_d : \Gamma_d(\Lambda) \to \Gamma_{ud}(\Lambda) \quad x^\kappa \mapsto \begin{cases} x^\kappa & \text{if } x \in Q^\text{ord}_1, \\ x^* & \text{if } x \in Sp, \end{cases}$$

for $\kappa \in \{+1, -1\}$.

Example 2.13. Let Λ be as in Example 2.2.1. Then its directed and undirected alphabet are given by

$$\Gamma_{ud}(\Lambda) = \{a, a^{-1}, \varepsilon^*\},$$
$$\Gamma_d(\Lambda) = \{a, a^{-1}, \varepsilon, \varepsilon^{-1}\}.$$
with \(\text{Sp} = \{ \eta, \kappa, \varepsilon \} \), \(\text{R} = \{ ca, db, ec \} \). Its undirected and directed alphabets are

\[
\Gamma_{ud}(\Lambda) = \{ a, b, c, d, e, a^{-1}, b^{-1}, c^{-1}, d^{-1}, e^{-1}, \varepsilon^*, \kappa^*, \eta^* \}, \\
\Gamma_d(\Lambda) = \{ a, b, c, d, e, a^{-1}, b^{-1}, c^{-1}, d^{-1}, e^{-1}, \varepsilon, \kappa, \eta, \varepsilon^{-1}, \kappa^{-1}, \eta^{-1} \}.
\]

In the following, we might simply write \(\Gamma_{ud}, \Gamma_d \) if the given algebra is clear from the context.

Let \(\Gamma \) be either a directed or undirected alphabet for a clanish algebra \(\Lambda \).

Then a \(\Gamma^{-I} \)-word \(w \) is given by a sequence of letters from \(\Gamma \) of the following form:

\[
w = \begin{cases}
 w_1 \ldots w_n & \text{if } I = \{0, \ldots, n \}, (n > 0), \\
 w_1 w_2 \ldots & \text{if } I = \mathbb{N}, \\
 \ldots w_{-1} w_0 & \text{if } I = -\mathbb{N}, \\
 \ldots w_{-2} w_{-1} w_0 | w_1 w_2 \ldots & \text{if } I = \mathbb{Z},
\end{cases}
\]

such that

(i) for two consecutive letters \(w_i, w_{i+1} \): \(s(w_i) = t(w_{i+1}) \) in \(\mathbb{Q} \),

(ii) for two consecutive letters \(w_i, w_{i+1} \): \(w_i^{-1} \neq w_{i+1} \),

(iii) if \(r = r_1 \ldots r_k \in \text{R} \), then neither \(r \) nor its inverse \(r^{-1} = r_k^{-1} \ldots r_1^{-1} \) occur as a consecutive subsequence of \(w \).

(iv) for \(\varepsilon \in \text{Sp}, \varepsilon^* \varepsilon^* \) does not occur as a consecutive subsequence of \(w \) in \(\Gamma_{ud} \), nor do \(\varepsilon \varepsilon \) and \(\varepsilon^{-1} \varepsilon^{-1} \) occur as a consecutive subsequence of \(w \) in \(\Gamma_d \).

Note that the "|" in the definition of a \(\mathbb{Z} \)-word is necessary to indicate the position of the letter \(w_0 \) and \(w_1 \) within the word.

Example 2.15. Consider the algebra \(\Lambda \) from Example 2.2.1.

Then for \(I = \{0, 1, 2, 3\} \),

\[w = \varepsilon^{-1}a\varepsilon \]

is a \(\Gamma_d^{-1} \)-word. For \(I = \mathbb{Z} \),

\[w_\mathbb{Z} = \ldots a\varepsilon^*a\varepsilon^* | a^{-1}\varepsilon^* a^{-1}\varepsilon^* \ldots \]

is a \(\Gamma_{ud}^{-\mathbb{Z}} \)-word, where \(w_\mathbb{Z} \) consists of repetitions of the displayed subword to the left and to the right.

Example 2.16. Let \(\Lambda \) be as in Example 2.14. Then

\[w_\mathbb{N} = \varepsilon^* a^{-1}d^{-1}ek^*cb\eta^*b^{-1}a\varepsilon^* a^{-1}d^{-1}ek^*cb\eta^*b^{-1}a \ldots \]

is a \(\Gamma_{ud}^{-\mathbb{N}} \)-word and the following gives a \(\Gamma_d^{(-\mathbb{N})} \)-word:

\[w_{-\mathbb{N}} = \ldots d^{-1}ek e^{-1}da e^{-1}a^{-1}d^{-1}ek. \]

22
The length of a \(\Gamma - 1\)-word with \(I = \{0, \ldots, n\}\) is given by \(n\). For \(I = \{0\}\), a \(\Gamma - 1\)-word is given by a trivial word \(1_{v,\kappa}\) for some vertex \(v \in Q_0\) and \(\kappa \in \{+, -, 0\}\). We call a \(\Gamma - 1\)-word \(w_i\) directed if \(\Gamma = \Gamma_d\) and undirected if \(\Gamma = \Gamma_{ud}\). With this adjective to describe the words, we might also drop the \(\Gamma\)-notation and say for instance "directed \(\Gamma - 1\)-word" instead of "\(\Gamma_d - 1\)-word". We denote the set of all directed \(\Gamma\)-words by \(\mathcal{W}'(\Gamma_d(\Lambda))\), and the set of all undirected \(\Gamma\)-words by \(\mathcal{W}'(\Gamma_{ud}(\Lambda))\). If the given algebra is clear from the context, we write \(\mathcal{W}'_d\) instead of \(\mathcal{W}'(\Gamma_d(\Lambda))\) where \(\star \in \{ud, d\}\). We denote by \(\mathcal{W}(\Gamma, (\Lambda)) = \bigcup_{\star \in \{ud, d\}} \mathcal{W}'(\Gamma_\star(\Lambda))\) the set of all finite words of \(\Gamma_\star(\Lambda)\), \(\star \in \{ud, d\}\). We write \(\mathcal{W}_\star(\star \in \{ud, d\})\) for short. For any word in \(\mathcal{W}\), we drop the subscript in the notation when convenient and write \(w \in \mathcal{W}\), of length \(n\) instead of \(w_i \in \mathcal{W}_i\) with \(I = \{0, \ldots, n\}\).

Note that (11) induces the map
\[
\Phi^d_{ud}: \mathcal{W}(\Gamma_d(\Lambda)) \rightarrow \mathcal{W}(\Gamma_{ud}(\Lambda)).
\] (13)

For a directed \(\Gamma\)-word \(v\), we call an undirected \(\Gamma\)-word \(w_i \in \Phi^d_{ud}(v)\) an undirected version of \(v\). Vice versa, for some undirected \(\Gamma\)-word \(w_i\), we call any directed \(\Gamma\)-word \(v\) in the preimage \((\Phi^d_{ud})^{-1}(w)\) of \(w\) a directed version of \(w\).

For a given \(\Gamma - 1\)-word \(w\) there exists for every \(i \in I\) an associated vertex \(v_i(w)\) in \(Q_0\), given by
for \(I = \mathbb{Z}\):
\[v_i(w_i) = s(w_i) = t(w_{i+1}),\]
for \(I = \mathbb{N}\):
\[v_i(w_n) = \begin{cases} s(w_i) = t(w_{i+1}) & \text{if } i \geq 1, \\ t(w_1) & \text{if } i = 0, \end{cases}\]
for \(I = -\mathbb{N}\):
\[v_i(w_{-n}) = \begin{cases} s(w_i) = t(w_{i+1}) & \text{if } i \leq -1, \\ s(w_0) & \text{if } i = 0, \end{cases}\]
for \(I = \{0, \ldots, n\}\):
\[v_i(w) = \begin{cases} s(w_i) = t(w_{i+1}) & \text{if } 0 < i < n, \\ t(w_1) & \text{if } i = 0, & \text{if } w \neq 1_{v,\kappa} \text{ for all } v,\kappa, \\ s(w_n) & \text{if } i = n, \end{cases}\]
\[v & \text{if } w = 1_{v,\kappa}, \text{ some } v,\kappa.\]

Example 2.17. We consider the word \(w\) from Example 2.15. Then
\[v_i(w) = s(w_i) = 1 \text{ for all } i \in \{0, \ldots, 3\}.\]

Example 2.18. Let \(\Lambda\) and \(w_\Lambda\) be given as in Example 2.16. Then
\[v_5(w_0) = s(w_5) = s(\kappa^*) = 5, t(w_0) = t(c),\]
\[v_2(w_0) = s(w_2) = s(a^{-1}) = 2.\]
The inverse of a $\Gamma - I$–word w_t as in (12) is given by

$$w_t^{-1} = \begin{cases} w_n^{-1} \ldots w_1^{-1} & \text{if } I = \{0, \ldots, n\}, (n > 0), \\ \ldots w_2^{-1}w_1^{-1} & \text{if } I = \mathbb{N}, \\ w_0^{-1}w_1^{-1} & \text{if } I = -\mathbb{N}, \\ \ldots w_2^{-1}w_1^{-1}|w_0^{-1}w_2^{-1} & \text{if } I = \mathbb{Z}, \end{cases}$$

with $(x^{-1})^{-1} = x$ for any letter $x \in \Gamma$.

Note that the inverse of a Γ–word is given by a $\Gamma - (-\mathbb{N})$–word by definition, and, dually, the inverse of a $\Gamma - (-\mathbb{N})$–word is an $\Gamma - \mathbb{N}$–word.

We define the inverse of a trivial word by $(1_{v,\kappa})^{-1} = 1_{v,\kappa}$.

Example 2.19. The inverse of w from Example 2.15 is given by

$$w^{-1} = \varepsilon^{-1}a^{-1}\varepsilon.$$

For w_z from the same example, we obtain the inverse

$$w_z^{-1} = \ldots \alpha^\ast \alpha \ast | a^{-1} \ldots .$$

Example 2.20. The inverses of the words from Example 2.16 are given by

$$(w_n)^{-1} = \ldots a^{-1}b_\eta^* b^{-1} c^{-1} \kappa^* e^{-1} d \varepsilon^*,
(w_n)^{-1} = \kappa^{-1} e^{-1} d \alpha^* a^{-1} e^{-1} \kappa^{-1} c^{-1} d \ldots .$$

Now we choose for each letter $l \in \Gamma$ a sign $\text{sgn}(l) \in \{+, -\}$ such that two distinct letters l and l' with the same starting vertex in Q have the same sign if and only if $\{l, l'\} = \{x^{-1}, y\}$ and either $xy \in R$ or $x = y \in S_p$. Thus, if w_t and w_{t+1} are two consecutive letters in a $\Gamma - I$–word w_t, then $\text{sgn}(w_t^{-1}) = -\text{sgn}(w_{t+1})$.

The sign of a $\Gamma - I$–word w_i for $I = \{0, \ldots, n\}$ or $I = \mathbb{N}$ is given by $\text{sgn}(w_i)$, or, if $w_i = 1_{v,\kappa}$, by κ. Similarly, for $I = -\mathbb{N}$, it is given by $\text{sgn}(w_i)$. Additionally, we assume for a given algebra Λ that the sign on a letter is compatible with both alphabets Γ_d and Γ_{ud}, that is, for any two letters $x \in \Gamma_d$, $y \in \Gamma_{ud}$ with $\phi_d(x) = y$ we have $\text{sgn}(x) = \text{sgn}(y)$.

Example 2.21. Consider Λ as in Example 2.3.1 and $\Gamma_d(\Lambda)$, $\Gamma_{ud}(\Lambda)$ from Example 2.13. It follows from the relations on Λ that $\text{sgn}(a) = \text{sgn}(a^{-1})$ and $\text{sgn}(\varepsilon) = \text{sgn}(\varepsilon^{-1})$, but $\text{sgn}(a) \neq \text{sgn}(\varepsilon)$.

Example 2.22. Let Λ be as in Example 2.14 and consider its undirected alphabet Γ_{ud}. We obtain the following correspondences from the given relations:

$$\begin{align*}
\text{sgn}(c^{-1}) &= \text{sgn}(a) \neq \text{sgn}(d^{-1}), \\
\text{sgn}(d^{-1}) &= \text{sgn}(b) \neq \text{sgn}(c^{-1}), \\
\text{sgn}(e^{-1}) &= \text{sgn}(c) \neq \text{sgn}(\kappa^*), \\
\text{sgn}(b^{-1}) &= \text{sgn}(\eta^*), \\
\text{sgn}(a^{-1}) &= \text{sgn}(\varepsilon^*).
\end{align*}$$
Thus, we can choose the signs as follows:

\[\text{sgn}(c^{-1}) = \text{sgn}(d^{-1}) = \text{sgn}(d) = \text{sgn}(\kappa^*) = \text{sgn}(\eta^*) = \text{sgn}(e^*) = +, \]
\[\text{sgn}(e^{-1}) = \text{sgn}(a^{-1}) = \text{sgn}(b^{-1}) = \text{sgn}(a) = \text{sgn}(b) = \text{sgn}(c) = \text{sgn}(e) = -. \]

As for each letter \(x \in \Gamma \), the source and target vertices \(s(x) \) and \(t(x) \) are defined via the quiver \(Q \), we can extend this definition to some words. We define for \(w_I \) a \(\Gamma \)-\(I \)-word with \(I = \{0, \ldots, n\} \) or \(I = \mathbb{N} \), the source to be given by \(s(w_I) = v_0(w_I) \). For \(I = \{0, \ldots, n\} \), its target is given by \(t(w_I) = v_n(w_I) \), respectively for \(I = - \mathbb{N} \) by \(t(w_I) = v_0(w_I) \).

The composition \(vw \) of a \(\Gamma \)-\(I \)-word \(v \) and a \(\Gamma \)-\(J \)-word \(w \) is given by the concatenation of sequences of letters, provided \(s(v) = t(w) \), \(\text{sgn}(v^{-1}) = - \text{sgn}(w) \), and \(vw \) is again a \(\Gamma \)-\(I' \)-word for some \(I' \). Conventionally, we define \(1_{v,J}1_{v,J} = 1_{v,J} \). The composition of a \(\Gamma \)-\((-\mathbb{N}) \)-word \(v_{-\mathbb{N}} \) and a \(\Gamma \)-\(\mathbb{N} \)-word \(w_{\mathbb{N}} \) is indexed in a way such that

\[(vw)_{z} = \ldots v_{-1}v_0 | w_{1}w_{2} \ldots. \]

Example 2.23. Let \(\Lambda \) be as in Example 2.21.

1. Let \(w = \varepsilon^{-1}a\varepsilon \), \(v = a\varepsilon \). Then we know by Example 2.21 that \(\text{sgn}(\varepsilon) = - \text{sgn}(a) \) and thus

\[vw = \varepsilon^{-1}a\varepsilon a\varepsilon. \]

Note that \(vw \) is not a word, since the two words cannot be composed in this order.

2. Let \(w_{-\mathbb{N}} = \ldots a\varepsilon a^{-1} \) be an \((-\mathbb{N}) \)-word and let \(v_{\mathbb{N}} = \varepsilon a \ldots \) be an \(\mathbb{N} \)-word. Then the composition \((vw)_{z} \) is a \(\mathbb{Z} \)-word given by

\[(vw)_{z} = \ldots a\varepsilon a^{-1} | \varepsilon a \ldots. \]

Example 2.24. Consider \(\Lambda \) as in Example 2.3.1. and \(w_{-\mathbb{N}} \) and \(w_{\mathbb{N}} \) from Example 2.16. Then we cannot compose them since \(\text{sgn}(\kappa^*) = + = \text{sgn}(\eta^*) \) and also their concatenation does not result in a \(\Gamma \)-\(\mathbb{Z} \)-word.

Any word which is bounded from below or above (\(I \in \{\mathbb{N}, -\mathbb{N}, \{0, \ldots, n\}\} \)) can be composed with a suitable trivial word:

\[1_{v,J}w_{-1/J} \quad \text{if} \quad v = v_0(w), \quad \kappa = - \text{sgn}(w_1), \]
\[v = v_n(w), \quad \kappa = - \text{sgn}(w_n^{-1}). \]

\[w_{-\mathbb{N}}1_{v,J} \quad \text{if} \quad v = v_0(w_{-\mathbb{N}}), \quad \kappa = - \text{sgn}(w_1), \]
\[v = v_0(w_{-\mathbb{N}}), \quad \kappa = - \text{sgn}(w_0^{-1}). \]

A subword of a \(\Gamma \)-\(I \)-word \(w_I \) is a subsequence of consecutive letters of \(w_I \).

Example 2.25. Any \(\Gamma \)-\(\mathbb{Z} \)-word has an \(\mathbb{N} \)-word and an \((-\mathbb{N}) \)-word as subwords.
We fix some notation for certain subwords of a $\Gamma - I$-word w, where $i \in I$:

\[
\begin{align*}
 w_i[< i] & := \ldots w_{i-2}w_{i-1} , \\
 w_i[\leq i] & := \ldots w_{i-1}w_i , \\
 w_i[> i] & := w_{i+1}w_{i+2} \ldots , \\
 w_i[\geq i] & := w_{i}w_{i+1} \ldots .
\end{align*}
\]

Thus, $w_i = w_i[\leq i]w_i[> i] = w_i[< i]w_i[\geq i]$ for any $i \in I$.

For a finite Γ-word w of length n it follows

\[
\begin{align*}
 w[< 1] & = 1_{v,\kappa}, \text{ where } v = v_0(w), \kappa = \text{sgn}(w_1), \\
 w[\geq 1] & = w_1, \\
 w[> n] & = 1_{v',\kappa'}, \text{ where } v' = v_n(w), \kappa' = -\text{sgn}(w_n^{-1}), \\
 w[\leq n] & = w_1.
\end{align*}
\]

Example 2.26. 1. Let Λ be as in Example 2.3.1. Consider w as in Example 2.23.1. Then

\[
\begin{align*}
 w[< 3] & = \varepsilon^{-1}a, \\
 w[< 2] & = \varepsilon^{-1}, \\
 w[< 1] & = 1_{\varepsilon,\kappa}, \text{ where } \kappa = \text{sgn}(\varepsilon^{-1}), \\
 w[\leq 3] & = w, \\
 w[\leq 2] & = w[< 3], \\
 w[\leq 1] & = w[< 2],
\end{align*}
\]

2. Let $z = (wv)z$ from Example 2.23.2. Then

\[
\begin{align*}
 z[< 1] & = z[\leq 0] = w, \\
 z[> 0] & = z[\geq 1] = v.
\end{align*}
\]

Example 2.27. 1. Consider Λ from Example 2.3.1 and w_n as in Example 2.16. Then

\[
\begin{align*}
 w_n[> 3] & = w_n[\geq 4] = e\kappa ^ cb\eta ^ + \ldots , \\
 w_n[< 1] & = 1_{v,\kappa}, \text{ where } v = v_0(w_n), \kappa = \text{sgn}(w_1)
\end{align*}
\]

2. For w_{-n} from Example 2.16 one has

\[
\begin{align*}
 w_{-n}[< -2] & = \ldots a^{-1}d^{-1}, \\
 w_{-n}[\geq -1] & = e\kappa.
\end{align*}
\]
Example 2.28. 1.) Let \(\Lambda \) be as in Example 2.3.1. For \(w = \varepsilon^*a^{-1}\varepsilon^* \), \(v = \varepsilon^*a\varepsilon^* \) we obtain \(w \sim v \) since \(v = w^{-1} \).

2.) Consider \(\Lambda \) from Example 2.14. The words \(v = da\varepsilon^* \) and \(w = \varepsilon^*a^{-1}d^{-1} \) are equivalent.

For \(\Gamma - \mathbb{Z} \)-words we define the **shift** \(w_z[m] \) of \(w_z \) for some \(m \in \mathbb{Z} \) by

\[
w_z[m] := \ldots w_m | w_{m+1} \ldots
\]

(16)

If there exists \(p \in \mathbb{N} \setminus \{0\} \) minimal with the property \(w_z = w_z[p] \), then we call \(p \) the **period** of \(w_z \) and can write \(w_z \) in the following way:

\[
w_z = \ldots w_1 \ldots w_p | w_1 \ldots w_p \ldots
\]

We call the finite subword \(w_1 \ldots w_p \) of \(w_z \) **periodic part** and denote it by \(\hat{w}_p \). We say that any letter of the form \(w_{i+(k-1)p} \) for \(k > 0 \) is \(\varepsilon^*a \). Then

\[
\begin{align*}
& w_1 w_2 = \hat{w}_p(1) \quad w_3 w_4 = \hat{w}_p(2) \\
& w_{-1} w_0 = \hat{w}_p(0) \quad w_{-3} w_{-2} = \hat{w}_p(-1)
\end{align*}
\]

since \(p = 2 \) and

\[
\begin{align*}
& w_1 = w_1^{+1+(1-1)2}, \quad w_2 = w_2^{+1+(1-1)2}, \quad w_3 = w_1^{+1+(2-1)2}, \quad w_4 = w_2^{+1+(2-1)2}, \\
& w_0 = w_0^{+0+2}, \quad w_{-1} = w_{-1+0+2}, \quad w_{-2} = w_0^{+(-1)2}, \quad w_{-3} = w_{-1+(-1)2}
\end{align*}
\]

Remark 2.30. Let \(m \in \mathbb{Z} \) be positive. Then shifting by \(-m\) means moving the letters of \(w_z \) by \(m \) positions to the right. Shifting by \(m \) means moving the letters by \(m \) positions to the left.

Lemma 2.31. The **shift** is additive:

\[
w_z[m + n] = (w_z[m])[n].
\]

Proof. Consider the shifting map \(\tau_m : \mathbb{Z} \to \mathbb{Z} \), defined by \(\tau_m(i) = i + m \). With respect to the positions of the letters, the shift is exactly given by this map acting on their indices. One has \(\tau_{m+n}(i) = i + m + n = \tau_n(\tau_m(i)) \), giving the result.
We introduce an equivalence relation \(\sim \) on \(W^*_Z \) for \(\star \in \{ d, ud \} \) as follows:

\[
w_z \sim_z v_z \text{ if and only if } w_z = v_z[m] \text{ or } w_z = v_z^{-1}[m] \text{ for some } m \in \mathbb{Z}.
\]

Example 2.32. 1. Take \(\Lambda \) as in Example 2.3.1. and consider the two following words of period 4:

\[
w_z = \ldots \varepsilon a \varepsilon^{-1} a | \varepsilon a \varepsilon^{-1} a \ldots,
\]
\[
v_z = \ldots a^{-1} \varepsilon a^{-1} \varepsilon^{-1} | a^{-1} \varepsilon a^{-1} \varepsilon^{-1} \ldots.
\]

The inverse of \(w_z \) is given by

\[
w_z^{-1} = \ldots \varepsilon a^{-1} \varepsilon^{-1} a^{-1} | \varepsilon a^{-1} \varepsilon^{-1} a^{-1}.
\]

It follows \(v_z \sim_z w_z \) since \(v_z = w_z^{-1}[-1] \).

2. Let \(\Lambda \) be as in Example 2.28.2. and consider

\[
w_z = \ldots \kappa^* c \beta n^* b^{-1} c^{-1} | \kappa^* c \beta n^* b^{-1} c^{-1} \ldots,
\]
\[
v_z = \ldots b^{-1} c^{-1} \kappa^* c \beta n^* b^{-1} | c^{-1} \kappa^* c \beta n^* b^{-1} \ldots.
\]

Then \(v_z \sim w_z \) since \(v_z = w_z^{-1}[-2] \).

Lemma 2.33. The relations \(\sim \) and \(\sim_z \) are equivalence relations on \(W_*, W^*_Z \), respectively.

The proof is given in the next subsection.

Since one can clearly distinguish between the equivalence relations \(\sim \) and \(\sim_z \), we drop the index of the second equivalence relation and use \(\sim \) instead of \(\sim_z \) for easier reading in the following.

2.3.1 Properties of \(Z \)-words

In this subsection, we examine \(\Gamma - Z \)-words more closely. We obtain nice properties with respect to their shifts and inverses.

Lemma 2.34. Let \(w_z \in W^*_Z, \ \star \in \{ d, ud \}, \) and let \(k \in \mathbb{Z} \). Then

\[
w_z^{-1}[-k] = (w_z[k])^{-1}.
\]

Proof. The statement follows easily by comparing the two:

Write \(w_z = \ldots w_{-1} w_0 | w_1 w_2 \ldots \). Then the shift by \(k \in \mathbb{Z} \) is given by

\[
w_z[k] = \ldots w_{k-1} w_k | w_{k+1} w_{k+2} \ldots
\]

and its inverse by

\[
(w_z[k])^{-1} = \ldots w_{k+1}^{-1} w_k^{-1} | w_{k-1}^{-1} w_{k-2}^{-1} \ldots
\]
On the other hand, the inverse of \(w_z \) is
\[
 w_z^{-1} = \ldots w_1^{-1} w_0^{-1} | w_{-1}^{-1} w_{-2} \ldots .
\]

Shifting this by \(-k \) gives
\[
 w_z^{-1}[-k] = \ldots w_{k+1}^{-1} w_k^{-1} | w_{k-1}^{-1} w_{k-2} \ldots .
\]

It follows that \(w_z^{-1}[-k] = (w_z[k])^{-1} \).

Corollary 2.35. Let \(w_z \in W_z^z, \ast \in \{d, ud\} \), and let \(k \in \mathbb{Z} \). Then
\[
 w_z[k] = (w_z[k])^{-1} \text{ if and only if } w_z = (w_z[2k])^{-1}.
\]

Proof. By Lemma 2.34, we have that \((w_z[k])^{-1} = w_z^{-1}[-k] \). Applying this to \(w_z[k] = (w_z[k])^{-1} \) and then using a shift by \(-k \) on both sides of the newly obtained equation gives
\[
 w_z^{-1}[-2k] = w_z.
\]

Applying again Lemma 2.34 to the left hand term, it follows that
\[
 (w_z[2k])^{-1} = w_z.
\]

Example 2.36. Let \(\Lambda \) be as in Example 2.3.1. Let
\[
 w_z = \ldots \varepsilon^* a^{-1} \varepsilon^* a | \varepsilon^* a^{-1} \varepsilon^* a^{-1} \varepsilon^* a \ldots .
\]

Note that \(w_z \) is periodic with \(p = 4 \). Now consider the shift of \(w_z \) by 2. Then
\[
 w_z[2] = \ldots \varepsilon^* a^{-1} \varepsilon^* a^{-1} | \varepsilon^* a \varepsilon^* a^{-1} \varepsilon^* a \ldots ,
\]
\[
 (w_z[2])^{-1} = \ldots \varepsilon^* a^{-1} \varepsilon^* a | \varepsilon^* a^{-1} \varepsilon^* a^{-1} \varepsilon^* a \ldots
\]

and thus \(w_z = (w_z[2])^{-1} \). Similarly, we obtain that \(w_z[1] = (w_z[1])^{-1} \).

Example 2.37. Consider Example 2.32.2. Then \(v_z = w_z^{-1}[2] \). We have \(v_z = (w_z[2])^{-1} \) as well.

Proof of Lemma 2.33. We first show reflexivity, symmetry and transitivity for \(\sim \). Then we show the same for \(\sim_z \).

- Reflexivity of \(\sim \) obviously holds since \(w = w \) for any finite word \(w \).
- Similarly, if \(v = w^{-1} \), then also \(w = v^{-1} \) and hence symmetry is given.
- For transitivity, we use the same arguments: let \(v \sim w, w \sim u \). Without loss of generality, let \(v = w^{-1} \). Then either \(w = u \) and it follows \(v = u^{-1} \), hence \(v \sim u \); or \(w = u^{-1} \) and \(v = u \), hence \(v \sim u \).
• For the relation \sim_z, reflexivity is given by $w_z = w_z[0]$. To show symmetry, assume $w_z \sim v_z$. Assume at first $w_z = v_z[m]$ for some $m \in \mathbb{Z}$. Then $v_z = w_z[-m]$ and thus $v_z \sim w_z$. If, on the other hand, $w_z = v_z^{-1}[m]$ for some $m \in \mathbb{Z}$, then it follows that $v_z = (w_z[-m])^{-1} = w_z^{-1}[m]$ (Lemma 2.34). Hence, $v_z \sim w_z$. To show transitivity, let $w_z \sim v_z$ and $v_z \sim u_z$.

Assume at first $w_z = v_z[m]$ for some $m \in \mathbb{Z}$. If $v_z = u_z[k]$ for some $k \in \mathbb{Z}$, then $w_z = u_z[k][m] = u_z[k + m]$. Hence, $w_z \sim u_z$. Now assume that $v_z = u_z^{-1}[k]$ for some $k \in \mathbb{Z}$. Then we obtain that $w_z = u_z^{-1}[k + m]$ and thus $w_z \sim u_z$. Now assume that $w_z = v_z^{-1}[m]$ and $v_z = u_z^{-1}[k]$ for some $k \in \mathbb{Z}$. Applying Lemma 2.34 gives that $w_z = u_z[m - k]$ and thus $w_z \sim u_z$. If, on the other hand, $w_z = u_z[k]$, then, again by the same lemma, $w_z = u_z^{-1}[m - k]$. It follows that $w_z \sim u_z$. Hence transitivity also holds.

\[\square\]

2.3.2 Coadmissible words

In this subsection we introduce the notion of a coadmissible word. It is useful with respect to the context of matrix problems for clannish algebras (cf. Chapter 4). The connection becomes clear in Sections 4.5 and 4.6.

Definition 2.38. Let $w_1 \in \Gamma_\star$ for $\star \in \{d, ud\}$. Then w_1 is left coadmissible provided that either I is not bounded below, or $\text{sup}(I) = n \in \mathbb{N}$ and there does not exist a letter $l \in \Gamma$, such that lw_1 is again a word for $l = \varepsilon^{e_1}$ or $l = \varepsilon^*$ for some $\varepsilon \in \text{Sp}$.

Similarly, w_1 is right coadmissible provided that either I is not bounded above, or $\text{sup}(I) = n \in \mathbb{N}$ and there does not exist a letter $l \in \Gamma$, such that w_1l is again a word for $l = \varepsilon^{e_1}$ or $l = \varepsilon^*$ for some $\varepsilon \in \text{Sp}$.

We call w_1 coadmissible provided that w_1 is both left and right coadmissible.

Example 2.39. Consider Λ as in Example 2.3.1. Then

1. $w = \varepsilon a$ is left coadmissible, but not right coadmissible,
2. $w = ac^*$ is right coadmissible, but not left coadmissible,
3. $w = \varepsilon a \varepsilon^{-1}$ is coadmissible.

Example 2.40. Let Λ be as in Example 2.14.

1. The word w_1 from Example 2.16 is left coadmissible.
2. The word w_{-1} from Example 2.16 is right coadmissible.
3. Let w_2 be as in Example 2.32.2. It is coadmissible.
4. The word $w = ek^* c$ is also coadmissible.
5. The word \(w = e \) is left coadmissible but not right coadmissible.

Denote by
\[
\hat{W}(\Gamma_*, (\Lambda)) := \{ w_1 \in W(\Gamma_*, (\Lambda)) \mid w_1 \text{ right coadmissible} \}
\]
the set of all right coadmissible words in \(\Gamma_* \), with \(* \in \{ d, ud \} \). Now let
\[
W_*^{\text{pos}} := W_* \cup W_*^{N}
\]
with \(* \in \{ d, ud \} \) be the set of positive \(\Gamma_* \)-words, and let
\[
W_{*,i,\kappa}^{\text{pos}}(\Gamma_*(\Lambda)) := \{ w \in W_*^{\text{pos}} \mid t(w_1) = i, \text{sgn}(w_1) = \kappa \}.
\]
be a subset of \(W_*^{\text{pos}} \) consisting of words that have the same target vertex \(i \) and the same sign \(\kappa \). We also write \(W_{*,i,\kappa}^{\text{pos}} \) for short.

Define
\[
\hat{W}_*^{\text{pos}} := W_*^{\text{pos}} \cap \hat{W}(\Gamma_*, (\Lambda))
\]
to be the set of positive right coadmissible \(\Gamma_* \)-words. Let
\[
\hat{W}_{*,i,\kappa}^{\text{pos}} := W_{*,i,\kappa}^{\text{pos}} \cap \hat{W}(\Gamma_*, (\Lambda))
\]
be the respective subset.

Definition 2.41. We define for two words \(v, w \in \hat{W}_{*,i,\kappa}^{\text{pos}} \), \(* \in \{ d, ud \} \) that \(v < w \) if

1. \(v = waz \) for some suitable word \(z \in \hat{W}_*^{\text{pos}} \) and a direct letter \(a \), or
2. \(w = vb^{-1}z \) for some suitable word \(z \in \hat{W}_*^{\text{pos}} \) and an inverse letter \(b^{-1} \), or
3. \(v = uaz \) and \(w = ub^{-1}\tilde{z} \), for suitable words \(z, \tilde{z} \in \hat{W}_*^{\text{pos}} \), \(u \in W_* \), a direct letter \(a \) and an inverse letter \(b^{-1} \).

Theorem 2.42. The relation \(" < " \) defines a lexicographical linear ordering on \(\hat{W}_{*,i,\kappa}^{\text{pos}} \) for each \(* \in \{ d, ud \} \), respectively.

Proof. Let \(v, w \in \hat{W}_{*,i,\kappa}^{\text{pos}} \) for \(* \in \{ d, ud \} \), \(v \neq w \). We show that either \(v < w \) or \(w < v \) holds. Let \(n \in \mathbb{N} \) maximal such that \(v_n \cdots v_1 = w_1 \cdots w_n \). Then there are three different possibilities:

1. \(v_{n+1} \neq w_{n+1} \),
2. \(|v| = n, |w| > n \),
3. \(|w| = n, |v| > n \).
Let us first consider the case \(n = 0 \) separately. We obtain in case (i) by definition of \(\overline{W}^{\text{pos}}_{i,\kappa} \) that \(\text{sgn}(v_1) = \text{sgn}(w_1) \). Thus, by definition of \(\text{sgn} \), \(\{v_1, w_1\} = \{x, y^{-1}\} \) with either \(xy = 0 \) or \(x = y \in \text{Sp} \). Let us assume without loss of generality that \(v_1 = y^{-1} \) and \(w_1 = x \). Then we can write
\[
\begin{align*}
v &= y^{-1}u, & \text{where } u = v[\geq 2], \\
w &= xz, & \text{where } z = w[\geq 2].
\end{align*}
\]
Thus, by (3) of Definition 2.41, we obtain that \(v > w \). In case (ii) we have that \(v = 1_{i,\kappa} \). We can write \(w = 1_{i,\kappa}w \). Hence, \(w = vw_1u \) for \(u = w[\geq 2] \). If \(w_1 \) is an inverse letter, we obtain by (2) of Definition 2.41 that \(v < w \), otherwise by (1) of Definition 2.41 that \(w < v \). Case (iii) is analogous.

Let now \(n > 0 \). In case (i) we have \(\text{sgn}(v_n) = \text{sgn}(w_n) \). It follows that \(\text{sgn}(v_{n+1}) = -\text{sgn}(w_{n+1}) \). Thus, \(\{v_{n+1}, w_{n+1}\} = \{x, y^{-1}\} \) with either \(xy = 0 \) or \(x = y \in \text{Sp} \). Without loss of generality assume that \(v_{n+1} = y^{-1} \), \(w_{n+1} = x \). Then we can write for \(u = v \ldots v_n = w_1 \ldots w_n \) that
\[
\begin{align*}
w &= uxz, & \text{where } z = w[\geq n + 2], \\
v &= uy^{-1}s, & \text{where } s = v[\geq n + 2].
\end{align*}
\]
Condition (3) of Definition 2.41 gives that \(w < v \). In case (ii), \(\mu = \text{sgn}(w_{n+1}) = -\text{sgn}(w_n) = -\text{sgn}(v_n) \). Hence we can write \(v = v_1 \ldots v_n1_{s(w_n),\mu} \) and
\[
w = vw_{n+1}u \quad \text{with} \quad u = w[\geq n + 2].
\]
If \(w_{n+1} \) is now an inverse letter, it follows \(w > v \) by (2) of Definition 2.41.
Otherwise we obtain \(w < v \) by (3). Case (iii) is again analogous to (ii).

Remark 2.43. It follows from above that we have for \(a, b \in Q^\text{ord}_i \) with \(t(a) = s(b) \) in \(Q \) and \(\text{sgn}(a) = \text{sgn}(b^{-1}) = \kappa \) that
\[
a < 1_{t(a),\kappa} < b^{-1}.
\]

We call two \(\Gamma_i \)-words \(v_1 \) and \(w_1 \) comparable if \(v_1, w_1 \in \overline{W}^{\text{pos}}_{*,i,\kappa} \) for some \(i \in I \cap J, \kappa \in \{+, -, \}, * \in \{\text{d, ud}\} \), and if \(v_1 = w_1, v_1 < w_1 \) or \(w_1 < v_1 \). Otherwise we call them incomparable.

Example 2.44. Let \(\Lambda \) be as in Example 2.3.1. Then \(w = az^* \) and \(v = a^{-1}z^* \) are two undirected finite right coadmissible words. One has \(w = 1_{t(a),a}az, v = 1_{t(a^{-1}),\kappa}a^{-1}z \) with \(\kappa = -\text{sgn}(a) \) and \(z = u = e^* \). By (3) of Definition 2.41 it follows that \(w < v \).

Example 2.45. Consider \(\Lambda \) as in Example 2.14.

1. Let \(w_n = e^*a^{-1}d^{-1}e \kappa^*c b e^*b^{-1}a \ldots \) and \(v_n = e^*a^{-1}d^{-1}e \kappa^*e^{-1}d e^* \ldots \) be two undirected right coadmissible \(\mathbb{N} \)-words. Then \(w_n < v_n \) by (2) of Definition 2.41. We have used bold letters to indicate the positions of interest in \(v_n \) and \(w_n \).
2. Consider the following undirected finite right coadmissible words:

\[w = e\kappa^*c, \quad v = e\kappa^*cb, \quad u = e\kappa^*cd^{-1}, \quad x = cb. \]

Then \(w < v \) by (1), \(v < u \) by (2) of Definition 2.41, and \(x \) is incomparable to \(w, v, u \).

Note that \(\Phi^d_{ud} \) induces several other maps with the same assignment:

\[
\begin{align*}
\tilde{\Phi}^d_{ud} : \tilde{\mathcal{W}}(\Gamma_d(\Lambda)) & \rightarrow \tilde{\mathcal{W}}(\Gamma_{ud}(\Lambda)), \\
(\Phi^\text{pos})^d_{ud} : \mathcal{W}^\text{pos}_d & \rightarrow \mathcal{W}^\text{pos}_{ud}, \\
(\tilde{\Phi}^\text{pos})^d_{ud} : \tilde{\mathcal{W}}^\text{pos}_d & \rightarrow \tilde{\mathcal{W}}^\text{pos}_{ud}.
\end{align*}
\]

We also can use the notions of directed and undirected versions with respect to the maps \(\tilde{\Phi}^d_{ud} \), \((\Phi^\text{pos})^d_{ud} \) and \((\tilde{\Phi}^\text{pos})^d_{ud} \).

Example 2.46. Let \(\Lambda \) be as in Example 2.3.1.

Let \(v = \varepsilon a \varepsilon^{-1} \) be a directed word. Then \((\Phi^d_{ud})(v) = w = \varepsilon^* a \varepsilon^* \).

Now consider the undirected word \(w = \varepsilon^* a \varepsilon^* \). Then

\[
(\Phi^d_{ud})^{-1}(w) = \{\varepsilon a \varepsilon, \varepsilon a \varepsilon^{-1}, \varepsilon^{-1} a \varepsilon^{-1}, \varepsilon^{-1} a \varepsilon\},
\]

i.e. it contains \(v \) but there are also more directed versions of \(w \).

Example 2.47. Consider \(\Lambda \) from Example 2.3.1. and the words \(w, s \) and \(w_N \) from Example 2.45 . Then

\[
\begin{align*}
(\Phi^d_{ud})^{-1}(w) & = \{ e\kappa^*c, e\kappa^{-1}c \}, \\
(\Phi^d_{ud})^{-1}(s) & = \{ cb \}, \\
(\Phi^d_{ud})^{-1}(w_N) & = \{ \ldots \varepsilon a^{-1}d^{-1}e\kappa cb \varepsilon^{-1}a, \ldots \varepsilon^{-1}a^{-1}d^{-1}e\kappa cb \varepsilon^{-1}a, \\
& \ldots \varepsilon^{-1}a^{-1}d^{-1}e\kappa^{-1}cb \varepsilon^{-1}a, \ldots \}.
\end{align*}
\]

2.3.3 Minimal words

Let \(I \) be finite throughout this subsection. Let \(v \) be a \(\Gamma_{ud} - I \)-word of length \(m \) with \(t(v_1) = s(\mu) \) for some \(\mu \in \text{Sp} \) and \(s(v_m) = s(\eta) \), for some \(\eta \in \text{Sp} \).

Let \(k \in \mathbb{N} \). Then we define

\[
v^{[k]} = v^{(1)}_{K^{(1)}} \ldots v^{(k-1)}_{K^{(k-1)}} v^{(k)}
\]

with

\[
v^{(i)} = \begin{cases} v & \text{if } i \text{ odd,} \\ v^{-1} & \text{if } i \text{ even,} \end{cases} \quad \text{and} \quad K^{(i)} = \begin{cases} \eta^* & \text{if } i \text{ odd,} \\ \mu^* & \text{if } i \text{ even.} \end{cases}
\]

Then \(v^{[k]} \) is again undirected.
Definition 2.48. Let \(w \) be a \(\Gamma_{ud} \) word of length \(n \). We call \(w \) composite if \(w \) is of the form \(w = v^k \) for some word \(v \) of length \(m < n \) and some \(k > 0 \). Otherwise, we call \(w \) minimal.

Example 2.49. Let \(\Lambda \) be as in Example 2.3.1. and consider its undirected alphabet. Let
\[
 w = a^*a^{-1}a^*a^{-1}a^*a.
\]
Then \(w = v^5 \) for \(v = a \). Thus, \(w \) is composite and \(v \) is minimal.

Remark 2.50. We can also interpret the notion \(t^p \) for some periodic \(\Gamma_d \) \(\mathbb{Z} \) words \(v \) as follows: Let \(t_p(i) = \varepsilon t^n t^{-1} \) for all \(i \in \mathbb{Z} \). Then \(t^p \) describes the smallest subword of \(v \) which contains \(x \in \{t, t^{-1}\} \) \(p \) times. Consider for instance \(p = 3 \). Then
\[
t^3 = \varepsilon t^n t^{-1} t^n t.
\]

Lemma 2.51. Let \(w \) be a finite \(\Gamma_{ud} \) word of length \(n \) with \(w = w^{-1} \). Then \(w \) is composite.

Proof. Writing the equality \(w = w^{-1} \) in terms of letters gives
\[
 w_1 \ldots w_n = w_1^{-1} \ldots w_1^{-1}.
\]
It follows that
\[
w_i = w_{n+1-i}^{-1} \quad \forall i \in \{1, \ldots, n\}. \tag{17}
\]
If \(n \) is odd, then we can write \(n = 2k + 1 \) for some \(k \in \mathbb{N} \). In particular, we obtain that \(w_k = w_{n+1-k} \). It follows that \(w_k = \varepsilon^* \) for some \(\varepsilon \in \text{Sp} \). Moreover, we have that
\[
w_1 \ldots w_k = w_1^{-1} \ldots w_{k+1}^{-1}.
\]
Setting \(u = w_1 \ldots w_k \) we can write
\[
w = u \varepsilon^* u^{-1}.
\]
Hence, \(w \) is composite.
If \(n \) is even, then \(n = 2k \) for some \(k \in \mathbb{N} \). It follows by (17) that \(w_k = w_{k+1}^{-1} \) which contradicts the definition of a word.

The converse only holds conditionally:

Lemma 2.52. Let \(w \) be a composite finite \(\Gamma_{ud} \) word with \(w = v^k \) for some minimal \(v \) and some \(k \in \mathbb{N} \). If \(k \) is even, then \(w = w^{-1} \).

Proof. Since \(k \) is even, \(w \) is of the form
\[
v \varepsilon^* \ldots \varepsilon^* v^{-1}
\]
for a suitable \(\varepsilon \in \text{Sp} \). Its inverse is given by
\[
w^{-1} = v \varepsilon^* \ldots \varepsilon^* v^{-1}.
\]
It follows that \(w = w^{-1} \).}

34
Example 2.53. Let Λ be given as in Example 2.3.1. Recall that $\Gamma_{ud}(\Lambda) = \{a, a^{-1}, \varepsilon^*\}$. Let $w = a\varepsilon^*a^{-1}\varepsilon^*a = v[3]$ for $v = a$. Note that $k = 3$ is odd. The inverse of w is given by

$$w^{-1} = a^{-1}\varepsilon^*a\varepsilon^*a^{-1}.$$

We see that $w \neq w^{-1}$.

Consider in contrast to that $x = v[4] = a\varepsilon^*a^{-1}\varepsilon^*a\varepsilon^*a^{-1}$. Its inverse is

$$x^{-1} = a\varepsilon^*a^{-1}\varepsilon^*a\varepsilon^*a^{-1}$$

and thus $x = x^{-1}$.

Lemma 2.54. Let w be a finite Γ_{ud}-word with $w \neq w^{-1}$. If w is coadmissible, then w is not composite.

Proof. Assume towards a contradiction that w is coadmissible and composite. By Lemma 2.52 it follows that $w = v[k]$ for some minimal v with k odd. In particular, $k \neq 2$ and there exist $\varepsilon, \eta \in Sp$ such that $\varepsilon^*v\eta^*$ is again a word. It follows that $\varepsilon^*w\eta^*$ also is a word. Thus, w is not coadmissible which gives a contradiction.

Example 2.55. Let Λ be as in Example 2.14. Recall that

$$\Gamma_{ud}(\Lambda) = \{a, b, c, d, e, a^{-1}, b^{-1}, c^{-1}, d^{-1}, e^{-1}, \varepsilon^*, \kappa^*, \eta^*\}.$$

Let $w = c^{-1}\kappa^*e^{-1}d$. Then $w \neq w^{-1}$ and w is coadmissible. Furthermore, w is not composite.
2.4 Modules obtained from directed words

It is not possible to obtain modules from words in Γ_{ud} since the letters of special type ε^* for $\varepsilon \in \text{Sp}$ are not directed. In Section 3.1, techniques are introduced on how to give these letters a direction such that one obtains words in Γ_d. From these we can directly obtain Λ-modules and hence it is enough to consider only directed words in this section. The general theory on this topic can be found in [Rin75]. Here, we mostly follow [CB88] and [CB18].

Let $w_i \in W_d^I$. The Λ-module $M(w_i)$ is given by a k-vector space with basis $b_i, i \in I$, and with action of Λ in terms of the quiver Q as follows:

$$e_v b_i = \begin{cases} b_i & \text{if } v_i(w_i) = v, \\ 0 & \text{otherwise} \end{cases}$$

for e_v a trivial path in Λ associated to the vertex v in Q, and for $x \in Q_1$:

$$xb_i = \begin{cases} b_{i-1} & \text{if } i-1 \in I, w_i = x, \\ b_{i+1} & \text{if } i+1 \in I, w_{i+1} = x^{-1}, \\ b_i & \text{if } w_i = x^{-1} \text{ or } w_{i+1} = x, \text{ and } x \in Q_1^\text{Sp}, \\ 0 & \text{otherwise.} \end{cases}$$

Example 2.56. Let $\Lambda = k\langle \varepsilon, a \rangle / (\varepsilon^2 - \varepsilon, a^2)$, and thus $\Gamma_d = \{a, a^{-1}, \varepsilon, \varepsilon^{-1}\}$. Let $w = a^{-1}\varepsilon a \varepsilon a^{-1} \in W_d$ be a word of length 6. Then the corresponding module $M(w)$ has as a k-vector space basis b_0, \ldots, b_6 and can be depicted as follows:

![Diagram](image)

or easier, as in the rest of this thesis:

$$b_0 \xrightarrow{a} b_1 \leftrightarrow b_2 \leftrightarrow b_3 \leftrightarrow b_4 \leftrightarrow b_5 \xrightarrow{\varepsilon} b_6.$$

Remark 2.57. It is important to keep the relations in mind when reading modules as depicted above. This applies in particular to special letters. Due to their idempotent relations, a depiction of the form

$$b_{i-1} \xrightarrow{\varepsilon} b_i$$

for $\varepsilon \in \text{Sp}$, is read as follows:

$$\varepsilon(b_i) = b_{i-1},$$

$$\varepsilon(b_{i-1}) = b_{i-1}.$$
Example 2.58. Let Λ be given as in Example 2.14:

$$Q: \quad \begin{array}{c}
\xymatrix{
1 \ar[r]^a & 2 \ar[d]^b \ar[r]^c & 3 \ar[d]^d & 4 \\
 & 5 \ar[r]^\varepsilon & & \\
& & \kappa \ar[ul]^e & \\
& \eta \ar[ul]^\xi & &
} \end{array}$$

with $S_\varphi = \{\eta, \kappa, \varepsilon\}$, $R = \{ca, db, ec\}$. Consider $w = e\kappa^{-1}cb\eta b^{-1}a\varepsilon$. It is of length 8. The module $M(w)$ has basis b_0, \ldots, b_8 as k-vector space and is depicted as

or equivalently,

$$(b_0 \xrightarrow{\varepsilon} b_1 \xrightarrow{\kappa} b_2 \xrightarrow{\varepsilon} b_3 \xrightarrow{c} b_4 \xrightarrow{\eta} b_5 \xrightarrow{b} b_6 \xrightarrow{a} b_7 \xrightarrow{\varepsilon} b_8).$$

Example 2.59. Let $\Lambda = k[\varepsilon, a]/(\varepsilon^2 - \varepsilon, a^2)$ as in Example 2.3.1., and thus $\Gamma_d = \{a, a^{-1}, \varepsilon, \varepsilon^{-1}\}$.

Let $w_\varepsilon = \ldots a\varepsilon a^{-1} a\varepsilon a^{-1} \ldots \in W_d^\varepsilon$ of period 4. This gives a module $M(w_\varepsilon)$ that is infinite dimensional as a k-vector space and can be depicted as

or as follows:

$$\ldots \xrightarrow{\varepsilon} b_{-4} \leftarrow b_{-3} \leftarrow b_{-2} \leftarrow b_{-1} \xrightarrow{\varepsilon} b_0 \xrightarrow{a} b_1 \xrightarrow{\varepsilon} b_2 \xrightarrow{a} b_3 \xrightarrow{\varepsilon} b_4 \xrightarrow{a} \ldots$$
Example 2.60. Let Λ be as in Example 2.58 and let w_z be a directed \mathbb{Z}–word in the respective alphabet with periodic part given by $\hat{w}_6 = b^{-1}c^{-1}\kappa\theta\eta$. The underlying k–vector space of $M(w_z)$ is infinite-dimensional. We depict the module as

![Diagram](image)

One can see in all examples, that the action of the formal inverses is depicted by arrows going from left to right, while the one of direct letters is depicted by arrows from right to left.

There are two important Λ–module isomorphisms. For w_l any directed I–word, the morphism $i_w : M(w) \rightarrow M(w^{-1})$ is bijective by reversing the basis. For $w_z \in W_z^d$, there is a similar isomorphism $i_{w_z} : M(w_z) \rightarrow M(w_z^{-1})$ by reversing the basis according to taking the inverse. For w_z the map $t_{w_z,k} : M(w_z) \rightarrow M(w_z[k]), b_i \mapsto b_{i-k}, k \in \mathbb{Z}$ is also an isomorphism.

Example 2.61. We consider Example 2.59. Then $p = 4$ and $t_{z,4}$ acts as follows on the module $M(w_z)$:

![Diagram](image)

Example 2.62. Let Λ and w_z be as in Example 2.60. The period of w_z is 6
and t_{w_2} acts on $M(w_z)$ as depicted:

\[
\begin{array}{c}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\end{array}
\]

Hence, words in the same equivalence class give rise to modules in the same isomorphism class. Note also that each map t_{w_Z} gives rise to a periodic part and vice versa.

2.4.1 Modules from periodic words

Let $w_Z \in W_d^Z$ be of period p, i.e. $w_Z = w_Z[p]$. Then we can abbreviate the depiction of $M(w_Z)$ to the periodic part and obtain the picture of a classical band module (see [Rin75, CB88]).

Example 2.63. We consider Example 2.59 from the previous subsection. Using periodicity of w_Z, the depiction of $M(w_Z)$ can be reduced to

\[
\begin{array}{c}
\begin{array{...}
V is helpful to read the action of Λ which is given according to \(w_z \).

To describe the action of \(\Lambda \) on the vector space \(M(w_z, V) \) more detailed, we introduce a more formal way of describing the module \(M(w_z, V) \). To this end, let for \(i \in \{0, \ldots, p-1\} \)

\[
V_i = \{ \tilde{v} \mid \tilde{v}_i = v \in V, \tilde{v}_j = 0 \quad \forall j \neq i \},
\]

\(\varphi_i : V \ni v \mapsto \tilde{v} = (0, \ldots, 0, v, 0, \ldots, 0) \).

Then we have \(\text{im}(\varphi_i) = V_i \cong V \) for all \(i \in \{0, \ldots, p-1\} \) and

\[
M(w_z, V) = \bigoplus_{0 \leq i \leq p-1} V_i = \bigoplus_{0 \leq i \leq p-1} \text{im}(\varphi_i)
\]

as \(k \)-vector spaces. By the action of \(\Lambda \) on \(M(w_z, V) \), we have

\[
w_i \varphi_{i+1} = \varphi_i,
\]

that is, the following diagram commutes:

\[
\begin{array}{c}
\vdots \quad V_i \\ \varphi_i \downarrow \downarrow \varphi_i \downarrow \\
\varphi_{i+1} \downarrow \downarrow \varphi_{i+2} \downarrow \\
\vdots \\
V
\end{array}
\]

Let \((v_0, \ldots, v_{p-1}) \in \bigoplus \text{im}(\varphi_i) \). Then

\[
x(v_0, \ldots, v_{p-1}) = \bigoplus_{i=0}^{p-1} x((0, \ldots, 0, v_i, 0, \ldots, 0)) \quad \text{for all } x \in Q_1,
\]

where by (19) for all \(x \in Q_1^{\text{ord}} \):

\[
x((\delta_{ij}v)_i) = \begin{cases} (\delta_{ki}v)_i & \text{if } \exists \text{ arrow } x : V_j \rightarrow V_k, \\ 0 & \text{otherwise}, \end{cases}
\]

and for all \(\varepsilon \in \text{Sp} \):

\[
\varepsilon((\delta_{ij}v)_j) = \begin{cases} (\delta_{ij}v)_j & \text{if } \exists \text{ arrow } \varepsilon : V_i \rightarrow V_j, \\ (\delta_{ik}v)_k & \text{if } \exists \text{ arrow } \varepsilon : V_j \rightarrow V_k, \\ 0 & \text{otherwise}. \end{cases}
\]

Example 2.65. We consider again \(M(w_z) \) as in Example 2.63, and \(V \) a \(k[T, T^{-1}] \)-module. Then \(M(w_z, V) \) is of the form

\[
\begin{array}{c}
\varepsilon \quad V_0 \xleftarrow{a} V_1 \xleftarrow{\varepsilon} V_2 \xleftarrow{a} V_3
\end{array}
\]

40
where the V_i's are disjoint copies of V. Also in this depiction, the special letters ε and ε^{-1} are acting with respect to the vector spaces as described in Remark 2.57. The action of Λ on $M(w_z, V)$ is thus given as follows: let $(v_0, v_1, v_2, v_3) \in M(w_z, V)$. Then a and ε act according to the depiction:

$$
\begin{align*}
 a(v_0, v_1, v_2, v_3) &= (v_1, 0, v_3, 0) \\
 \varepsilon(v_0, v_1, v_2, v_3) &= (v_0 + v_3, v_1 + v_2, 0, 0)
\end{align*}
$$

Example 2.66. Consider again Example 2.62. Then we can depict for a given $k[T, T^{-1}]$-module V, the module $M(w_z, V)$ in the following short form:

$$
\begin{array}{ccc}
V_0 & \xrightarrow{b} & V_1 & \xrightarrow{c} & V_2 & \xrightarrow{\kappa} & V_3 & \xleftarrow{c} & V_4 & \xleftarrow{b} & V_5 \\
& \xleftarrow{\eta} & & & & & & & & & \\
\end{array}
$$

The action of Λ on the module is given by

$$
\begin{align*}
 (v_0, v_1, v_2, v_3, v_4, v_5) &\xrightarrow{b} (0, v_0, 0, 0, v_5, 0) \\
 &\xrightarrow{c} (0, v_0, v_1, v_4, 0, 0) \\
 &\xrightarrow{\kappa} (0, 0, v_2 + v_3, 0, 0, 0) \\
 &\xleftarrow{\eta} (0, 0, 0, 0, v_0 + v_5).
\end{align*}
$$

2.4.2 Modules from periodic words with $\hat w_p = \varepsilon^k v \eta^m v^{-1}$

In this subsection we consider directed \mathbb{Z}-words w_z of period $p = 2m + 2$ with periodic part w_p of the form $\varepsilon^k v \eta^m v^{-1}$, where $\kappa, \mu \in \{+1, -1\}$, v a subword of w_z with $|v| = m$, and $\varepsilon, \eta \in \text{Sp}$.

We examine words of this form also more detailed in Subsection 3.2.4. They will play an important role in the classification of indecomposable Λ-modules (cf. Chapter 6).

For V a $k[T, T^{-1}]$-module, we have seen in the previous subsection how to depict the module $M(w_z, V)$. Let $\mu = \kappa = 1$, and let the V_i’s be disjoint copies of V. Then

$$
M(w_z, V) : V_1 \xleftarrow{v_1} V_2 \xrightarrow{v_2} \cdots \xrightarrow{v_m} V_m \xleftarrow{\eta} V_{m+1} \xrightarrow{v_m} \cdots \xrightarrow{v_1} V_{2m+2}
$$

We can abbreviate this depiction using the symmetries in the two idempotents. To this end, let $W = V \oplus V$. Then W is a $k(f, e \mid f^2 = f, e^2 = e)$-module and we can depict $M(w_z, W)$ as follows:

$$
M(w_z, W) : \xleftarrow{\varepsilon e} W_0 \xrightarrow{v_1} W_1 \xrightarrow{v_2} \cdots \xrightarrow{v_m} W_m \xrightarrow{\eta f}
$$

where the W_i’s are disjoint copies of W and $M(w_z, W) = \bigoplus_{i=0}^m W_i$ as k-vector spaces. Note that one can consider the maps φ_i from the previous subsection.
also with respect to $M(w_z, W)$. To this end, consider $\varphi_i : W_i \rightarrow W$, where $W_i = \{ \bar{x} | \bar{x}_i = x \in W, \bar{x}_j = 0 \; \forall j \neq i \}, \; 0 \leq i \leq m$. One obtains as before $M(w_z, W) = \bigoplus_{i=0}^m W_i$ as vector spaces. The commutativity relations are now given by

$$v_i \varphi_i = \varphi_{i-1}, \quad 1 \leq i \leq m$$

$$\varphi_0 = f \varphi_0,$$

$$\varphi_m = e \varphi_m.$$ \hspace{1cm} (21)

Thus, Λ acts on $M(w_z, W)$ according to w_z, that is, with the notation from the previous subsection and $w \in W$:

$$x((\delta_{ij}w)_i) = \begin{cases} (\delta_{ik}w)_i & \text{if } \exists \text{ arrow } x : W_j \rightarrow W_k, \\ 0 & \text{otherwise}, \end{cases}$$

for all $x \in Q_1^\text{ord}$, and for all $\varepsilon \in \text{Sp}$

$$\varepsilon((\delta_{ij}w)_i) = \begin{cases} (\delta_{ij}w)_i & \text{if } \exists \text{ arrow } \varepsilon : W_l \rightarrow W_j \text{ for some } l, \\ (\delta_{ik}w)_i & \text{if } \exists \text{ arrow } \varepsilon : W_j \rightarrow W_k, \\ 0 & \text{otherwise}. \end{cases}$$

In particular, we have that

$$\varepsilon((\delta_{0i}w)_i) = (\delta_{0i}f(w))_i, \quad \text{and}$$

$$\eta((\delta_{im}w)_i) = (\delta_{im}e(w))_i.$$ \hspace{1cm} (23)

Example 2.67. Let W be a $k(f, e | f^2 = f, e^2 = e)$–module and let Λ be as in Example 2.3.1. Consider the periodic word w_z in $\Gamma_4(\Lambda)$ with periodic part $\hat{w}_p = \varepsilon^\kappa \alpha_1 \varepsilon^{-1} a \varepsilon^\mu a^{-1} \varepsilon^{-1} \alpha^{-1} \varepsilon^{-1} a^{-1}, \; \kappa, \mu \in \{ +1, -1 \}$. Then we depict $M(w_z, W)$ as

$$\varepsilon = \varepsilon \begin{array}{c}
W_0 \xleftarrow{a} W_1 \xrightarrow{\varepsilon} W_2 \xleftarrow{a} W_3 \xrightarrow{\varepsilon} W_4 \xleftarrow{a} W_5 \end{array} \xrightarrow{\varepsilon} f$$

with the W_i’s disjoint copies of W for all $i \in \{ 0, \ldots, 5 \}$ and ε, a acting according to the above descriptions:

$$a(v_0, v_1, v_2, v_3, v_4, v_5) = (v_1, 0, v_3, 0, v_5, 0),$$

$$\varepsilon(v_0, v_1, v_2, v_3, v_4, v_5) = (fv_0, v_1 + v_2, 0, v_3 + v_4, v_5).$$

Example 2.68. Let W be a $k(f, e | f^2 = f, e^2 = e)$–module and let Λ be as in Example 2.58. Consider the periodic word w_z with $\hat{w}_p = \eta^\kappa \beta^{-1} e^{-1} \kappa \beta e, \delta, \mu \in \{ +1, -1 \}$. Then $M(w_z, W)$ is depicted as follows:

$$\eta = \eta \begin{array}{c}
W_0 \xleftarrow{b} W_1 \xrightarrow{c} W_2 \xrightarrow{c} \end{array} \xrightarrow{\kappa} f$$

42
where the W_i’s are disjoint copies of $W, 0 \leq i \leq 2$, and Λ acts as follows:

\[
\begin{align*}
(v_0, v_1, v_2) & \xrightarrow{b} (0, v_0, 0) \\
& \xrightarrow{c} (0, 0, v_1) \\
& \xrightarrow{\eta} (fv_0, 0, 0) \\
& \xrightarrow{\kappa} (0, 0, ev_2).
\end{align*}
\]
3 Words of string and band type

As mentioned before (see Section 2.4) we would like to base the classification theorem on undirected words. Hence, we need to find a bridge from those to the Λ-modules in the classification statement. To do so, we are going to introduce two different types of directed words in Section 3.1. One type is given by weakly consistent words for which the direction of the special letters depends on the directions of the ordinary arrows in the word. Here, the direction refers to the exponent of the letter and thus to its type (inverse, direct). In contrast to the weakly consistent words, we have the consistent words that include the special letters in the data set for the directions of the special letters. In particular, we introduce the c^*-index for letters of weakly consistent words and the c-index for letters of consistent words. Those indices measure the distance from a directed special letter to the letters which give conclusion on the type of directed word.

In Section 3.2, we introduce the notion of asymmetric and symmetric strings and bands. Our goal is to give the classification of the indecomposable finite dimensional modules in terms of those strings and bands. In order to do so, we will see in Chapter 4 that they result in \mathfrak{L}-graphs from which the canonical \mathfrak{X}_Λ-representations are obtained. In preparation of these results, we take a closer look on the symmetries in symmetric bands in Subsection 3.2.5.

It is only natural to compare the weakly consistent and consistent directed versions of the strings and bands with the hope that one type of those will describe the finite dimensional indecomposable modules. This comparison is the content of Section 3.3. We will see that the directions coincide on letters of finite index, excluding one particular type of letter for symmetric strings (Theorems 3.53 and 3.61, Proposition 3.67).

3.1 Types of directed words

Throughout this subsection let Γ be either the directed or undirected alphabet of a clannish algebra Λ.

Definition 3.1. Let w_1 be a non-trivial $\Gamma - I$-word. Then the direction of the letter w_j, $j \in I$ is given by

$$
dir(w_j) = \text{dir}_j(w_1) = \begin{cases}
1 & \text{if } w_j = x \text{ for some } x \in Q_1, \\
-1 & \text{if } w_j = x^{-1} \text{ for some } x \in Q_1, \\
0 & \text{if } w_j = \varepsilon^* \text{ for some } \varepsilon \in \text{Sp}.
\end{cases}
$$

Note that for $\Gamma = \Gamma_4$ one has $\text{dir}_j(w_1) \neq 0$ for all $j \in I$.

We can use the direction of a letter to visualize it, respectively the word it belongs to:
If \(l \in \Gamma \) is a letter with \(\text{dir}(l) = 1 \), then we depict it by an arrow going from right to left:
\[
\leftarrow\,.
\]
If, on the other hand, \(h \in \Gamma \) is a letter with \(\text{dir}(h) = -1 \), then it is of the form \(h = l^{-1} \) for some \(l \in Q_1 \) and we depict it by an arrow going in opposite direction:
\[
\rightarrow\,.
\]
A letter \(l \in \Gamma \) of the form \(l = \varepsilon^* \) (i.e. \(l \in \Gamma_{ud} \)) is depicted by an edge:
\[
\varepsilon^*.
\]
This visualization is very helpful to the reader: we are going to see later (in Subsections 3.1.1 and 3.1.2) that the directions on the special letters for the two mentioned types of directed words are given in an intuitive way with respect to this visualization.

Example 3.2. Consider the finite directed word \(v = \varepsilon^{-1}a\varepsilon \) of length 3 with alphabet given by \(\Lambda \) as in Example 2.31. Then the directions of the single letters are given by
\[
\text{dir}(v_1) = -1, \quad \text{dir}(v_2) = 1, \quad \text{dir}(v_3) = 1.
\]
If we consider the undirected word \(w = a\varepsilon^*a^{-1}\varepsilon^* \) obtained from the undirected alphabet of the same \(\Lambda \), then the directions are given by
\[
\text{dir}(w_1) = 1, \quad \text{dir}(w_2) = \text{dir}(w_4) = 0, \quad \text{dir}(w_3) = -1.
\]
According to the above description, we can depict the two words as follows:
\[
v: \begin{array}{ccc}
\varepsilon & \rightarrow & a \\
\varepsilon & \leftarrow & a
\end{array},
\quad w: \begin{array}{ccc}
a & \varepsilon^* & a \\
\varepsilon^* & a & \varepsilon^*
\end{array}.
\]

3.1.1 Weakly consistent words
Throughout this section let \(w_1 \) be a coadmissible undirected \(I \)-word for either \(I = \{0, \ldots, n\} \ (n > 0) \) or \(I = \mathbb{Z} \).
We are now going to define weakly consistent words.

Definition 3.3. Let \(v_1 \in (\Phi_{ud}^d)^{-1}(w_1) \). We call \(v_1 \) weakly consistent provided that
\[
\text{dir}(v_j) = \text{dir}_j(v_1) = \begin{cases}
1 & \text{if } (w_1[j])^{-1} \geq w_1[j], \\
-1 & \text{if } (w_1[j])^{-1} \leq w_1[j],
\end{cases}
\]
for all \(j \in I \) with \(w_j \) a special letter.
In case of equality, the direction is not uniquely defined. This means we can either have \(\text{dir}_j(v_i) = 1 \) or \(\text{dir}_j(v_i) = -1 \) if \((w_i[j])^{-1} = w_i[j] \).

It is possible to construct a weakly consistent directed version from an undirected word by assigning exponents to the special letters in the undirected word as described in Definition 3.3.

Remark 3.4. It is clear from the definition that there does not always exist a unique weakly consistent directed version \(v_1 \) of \(w_i \), e.g. we will see in Section 3.2 that there is a unique weakly consistent directed version for words of so-called asymmetric types, but not for symmetric ones.

Remark 3.5. Note that the directions on letters of ordinary type are the same in the undirected word \(w_i \) as in its weakly consistent directed version \(v_1 \):

\[
\text{dir}_j(w_i) = \text{dir}_j(v_i) \quad \text{for all} \quad j \in I \quad \text{with} \quad w_j \quad \text{of ordinary type.}
\]

Example 3.6.

1. Consider the algebra \(\Lambda \) as in Example 2.3.1. Let \(w = \varepsilon^*a\varepsilon^* \). Let \(v \in (\Phi_{ud}^d)^{-1}(w) \) be weakly consistent. We have \(v = v_1av_3 \) with \(v_i \in \{\varepsilon, \varepsilon^{-1}\} \) for \(i = 1, 3 \). We have for the letter \(v_1 \) that \(w[<1]^{-1} = 1_{s(\varepsilon)a}, \kappa = -\text{sgn}(\varepsilon^*), \quad w[>1] = a\varepsilon^* \). Hence, \(w[>1] = w[<1]^{-1}a\varepsilon, \quad \text{for} \quad z = \varepsilon^*, \quad \text{and thus} \quad w[<1]^{-1} > w[>1] \) and \(\text{dir}(v_1) = 1 \). It follows similarly that \(\text{dir}(v_2) = 1 \). Hence, \(v \) is of the form \(\varepsilon a\varepsilon \).

2. Let \(\Lambda \) be as in Example 2.14. Consider \(w = adz^*d^{-1}a^{-1} \) and let \(v \in (\Phi_{ud}^d)^{-1}(w) \). Then \(v \) is given by \(v = adv_2d^{-1}a^{-1} \) with \(v_3 \in \{\varepsilon, \varepsilon^{-1}\} \). We have

\[
(v[<3])^{-1} = d^{-1}a^{-1} = v[>3].
\]

Thus, \(v \) is weakly consistent for any choice of \(v_3 \).

To measure at which point of \(w_i \) the relevant information for the direction of a letter \(v_j \) in a weakly consistent directed version \(v_1 \) is found, we introduce an index for each \(j \in I \) for which \(v_j \) is of special type:

Definition 3.7. Let \(v_1 \) be a weakly consistent directed version of the undirected 1-word \(w_i \). The \(c^* \)-index of a special letter \(v_j, j \in I \), is given by

\[
\text{ind}_j^c(v_1) := \sup\{|\text{length}(z_{v_j})| \mid (w_i[j])^{-1} = z_{v_j}u, w_i[j] = z_{v_j}x_{v_j}\}
\]

for some undirected subwords \(z_{v_j}, u, x_{v_j} \) of \(w_i \).

Note that we can also define this index on the undirected version \(w_i \) since the direction of special letters in \(v_1 \) only depends on \(w_i \). We define \(\text{ind}_j^c(w_i) = \text{ind}_j^c(v_1) \) for \(v_1 \) a weakly consistent directed version of \(w_i \).

We denote by \(J^* \) the interval \([j - \text{ind}_j^c(w_i), j + \text{ind}_j^c(w_i)] \) in \(\mathbb{Z} \), and its left and right hand side subintervals by \(J^*_+ = [j - \text{ind}_j^c(w_i), j], J^*_+ = [j, j + \text{ind}_j^c(w_i)] \),
respectively.
The letters left (resp. right) of \(J^* \) determine the direction on \(v_j \) for \(v_1 \) weakly consistent. We denote them by

\[
\begin{align*}
 j^*_+ &= j - \text{ind}_j^+(w_1) - 1, \\
 j^*_- &= j + \text{ind}_j^-(w_1) + 1.
\end{align*}
\]

For \(I = \{0, \ldots, n\} \), we set conventionally \(j^*_+ = 0 \) (\(j^*_- = n + 1 \)) if \(w_{j^*} = 1_{i, \kappa} \) \((w_{j^*} = 1_{i, \kappa})\) for \(i = t(w_1) \), \(\kappa = \text{sgn}(w_1) \) \((i = s(w_n), \ k = \text{sgn}(w_n))\), respectively.

Remark 3.8. By definition, \(w_{J^*+}, w_{J^*-} \) are of ordinary type. Hence,

\[
\text{dir}_{j^*}(w_1) = \text{dir}_{j^*}(w_1) = \text{dir}_j(v_1).
\]

Example 3.9. 1. Consider \(w \) (\(v \), respectively) as in Example 3.6.1. Then

\[
\begin{align*}
 \text{ind}_{1^*}(w) &= 0, \quad 1^* = [1, 1], \quad 1^- = 0, \quad 1^+ = 2, \\
 \text{ind}_{3^*}(w) &= 0, \quad 3^* = [3, 3], \quad 3^- = 2, \quad 3^+ = 4.
\end{align*}
\]

2. Let \(\Lambda \) be as in Example 2.3.1 and let \(w = \varepsilon^*\alpha^{-1}\varepsilon^*\alpha^{-1}\varepsilon^*\alpha\varepsilon^* \). Then

\[
\begin{align*}
 \text{ind}_{1^*}(w) &= 0, \quad 1^* = [1, 1], \quad 1^- = 0, \quad 1^+ = 2, \\
 \text{ind}_{3^*}(w) &= 0, \quad 3^* = [3, 3], \quad 3^- = 2, \quad 3^+ = 4, \\
 \text{ind}_{5^*}(w) &= 4, \quad 5^* = [1, 9], \quad 5^- = 0, \quad 5^+ = 10, \\
 \text{ind}_{7^*}(w) &= 0, \quad 7^* = [7, 7], \quad 7^- = 6, \quad 7^+ = 8, \\
 \text{ind}_{9^*}(w) &= 0, \quad 9^* = [9, 9], \quad 9^- = 8, \quad 9^+ = 10.
\end{align*}
\]

Example 3.10. 1. Consider \(w \) and \(v \) as in Example 3.6.1. Then

\[
\begin{align*}
 v_{1^*} &= 1_{t(v_1), \kappa} \text{ with } \kappa = \text{sgn}(v_1), \\
 v_{1^*} &= v_2, \\
 v_{3^*} &= v_2, \\
 v_{3^*} &= 1_{s(v_3), \mu} \text{ with } \mu = \text{sgn}(v_3), \\
 \text{and thus} \\
 \text{dir}(w_2) &= \text{dir}(v_2), \\
 \text{dir}(v_1) &= \text{dir}(1_{t(v_1), \kappa}) = \text{dir}(v_2), \\
 \text{dir}(v_3) &= \text{dir}(v_2) = \text{dir}(1_{s(v_3), \mu}).
\end{align*}
\]

2. Let \(w \) and \(v \) be as in Example 3.6.2. Then

\[
\begin{align*}
 v_{3^*} &= 1_{t(d), \kappa}, \quad \kappa = \text{sgn}(d), \\
 v_{3^*} &= 1_{t(d), \kappa}, \\
 \text{i.e. } v_{3^*} &= v_{3^*}. \text{ It follows that } \text{dir}(v_3) = 1 \text{ and } \text{dir}(v_3) = -1 \text{ is possible.}
\end{align*}
\]

48
3.1.2 Consistent words

Throughout this subsection let \(v_1 \) be a coadmissible directed I-word for either \(I = \{0, \ldots, n\} \) \((n > 0)\) or \(I = \mathbb{Z} \).

Definition 3.11. We call \(v_1 \) consistent provided that for any \(j \in I \) with \(v_j \) special, we have that

\[
\text{dir}_j(v_1) = \begin{cases}
1 & \text{if } (v_i[< j])^{-1} \geq v_i[> j], \\
-1 & \text{if } (v_i[< j])^{-1} \leq v_i[> j].
\end{cases}
\]

Again, in the case of equality, the direction is not uniquely defined, i.e. we can either have \(\text{dir}_j(v_1) = 1 \) or \(\text{dir}_j(v_1) = -1 \) if \((v_i[< j])^{-1} = v_i[> j] \).

Example 3.12. Consider the coadmissible directed word \(v = \varepsilon a \varepsilon \) from Example 3.6.1. Then we have that

\[
\begin{align*}
&v[< 1]^{-1} = 1_{i(v_1), \mu} \text{ with } \mu = \text{sgn}(v_1), \quad v[> 1] = a \varepsilon, \\
&v[< 3]^{-1} = a^{-1} \varepsilon^{-1}, \quad v[> 3] = 1_{a(v_3), \kappa} \text{ with } \kappa = \text{sgn}(v_3).
\end{align*}
\]

Then clearly, \(v[< 1]^{-1} > v[> 1] \) and \(v[< 3]^{-1} > v[> 3] \), so \(v \) is consistent. Thus, it is both weakly consistent and consistent.

Example 3.13. Let \(\Lambda \) be as in Example 3.6.2. Consider the directed word

\[
v = e \kappa c b \eta b^{-1} a \varepsilon^{-1} a^{-1} b \eta b^{-1} a \varepsilon^{-1} a^{-1} d^{-1} \varepsilon^{-1} \kappa,
\]

\[
v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8 v_9 v_{10} v_{11} v_{12} v_{13} v_{14} v_{15} v_{16} v_{17} v_{18}
\]

It is consistent with respect to the letters \(v_2, v_5, v_{11}, v_{14} \) and \(v_{18} \). The entire word is not consistent since it is not consistent with respect to \(v_8 \).

For each \(j \in I \) with \(v_j \) of special type, we define its \(c \)-index as follows:

Definition 3.14. Let \(v_1 \) be as above a directed version of some undirected word \(w_1 \). The \(c \)-index for \(j \in I \) with \(v_j \) special is given by

\[
\text{ind}_j^c(v_1) := \sup \{\text{length}(z_{jr}) \mid (v_i[< j])^{-1} = z_{jr}u_j, v_i[> j] = z_{jr}x_{jr}\}
\]

for some subwords \(z_{jr}, u_j, x_{jr} \) of \(v_1 \).

Note that it is not as easy as in the case of weakly consistent words to construct a consistent directed version from an undirected word. However, it can be done by proceeding inductively on the \(c \)-index of the special letters. We introduce some notation with respect to the \(c \)-index. We denote by \(J_j^c \) the interval \([j - \text{ind}_j^c(w_1), j + \text{ind}_j^c(w_1)]\) in \(\mathbb{Z} \), and its left and right hand side subintervals by \(J^c_- = [j - \text{ind}_j^c(w_1), j] \), \(J^c_+ = [j, j + \text{ind}_j^c(w_1)] \), respectively.
The letters left (resp. right) of J^c determine the direction on v_j where v_i is consistent. We denote them by

$$j^c_-= j - \text{ind}_j^c(w_1) - 1,$$

$$j^c_+ = j + \text{ind}_j^c(w_1) + 1.$$

For $I = \{0, \ldots, n\}$, we set conventionally $j^c_- = 0$ ($j^c_+ = n + 1$) if $w_j = 1_{i,\kappa}$ for $i = t(w_1)$, $\kappa = \text{sgn}(w_1)$ ($i = s(w_n)$, $\kappa = \text{sgn}(w_n)$). We proceed similarly with j^c_+.

Example 3.15. Consider the consistent directed word v in Example 3.12. Then, as mentioned above, we have $J^c_+ = J^*$, $J^c_- = J^*$ and $J^c_c = J^c_*$, hence given as in Example 3.9.

Remark 3.16. As in the previous subsection, we do not have any conditions concerning the direction on letters of ordinary type, i.e. if v_i is a consistent directed version of an undirected word w_i, then

$$\text{dir}_j(w_i) = \text{dir}_j(v_i) \text{ for all } j \in I \text{ with } w_j \text{ of ordinary type.}$$

But in contrast to a weakly consistent orientation, we can now also have v_j^+, v_j^- of special type. Still, we have by definition

$$\text{dir}_j^-(v_i) = \text{dir}_j^+(v_i) = \text{dir}_j(v_i).$$

Lemma 3.17. Let w_i be an undirected 1-word. Then

$$\text{ind}_j^c(w_2) \geq \text{ind}_j^c(v_2)$$

for any $j \in I$, any $v_i \in (\Phi^{\text{ind}}_{(w_2)})^{-1}(w_2)$.

Proof. The inequality follows directly from Definition 3.7 and Definition 3.14. \qed
3.2 Strings and bands

In this section, we classify certain types of undirected words. Our underlying goal is to use these types to give a classification of the indecomposable \(\Lambda\)-modules.

Let \(\Lambda\) be a clannish algebra throughout this section.

3.2.1 Asymmetric strings

Definition 3.18. Let \(w\) be a finite undirected word. It is said to be of asymmetric string type if \(w\) is coadmissible and \(w \neq w^{-1}\).

We denote by \(W_a\) the set of all \(w\) of asymmetric string type and by \(W_a/\sim\) with the equivalence relation \(\sim\) defined in Section 2.3. We call \(w \in W_a/\sim\) an asymmetric string.

Example 3.19. Let \(\Lambda\) be as in Example 2.3. The word \(w = \varepsilon a \varepsilon\) is of asymmetric string type while \(x = \varepsilon a \varepsilon a^{-1} \varepsilon\) is not since \(x = x^{-1}\).

Note that any asymmetric string \(w\) is minimal by Lemma 2.54.

We obtain for \(w\) of asymmetric string type, and for every directed version \(v \in (\Phi^d_w)^{-1}(w)\), a module \(M(v)\) that is depicted, for a \(k\)-basis \(b_0, \ldots, b_n\), as

\[
\begin{array}{c}
\ldots \xleftarrow{v_{n-1}} b_{n-1} \xleftarrow{v_n} b_n \\
\end{array}
\]

Definition 3.20. Let \(w\) be an asymmetric string and \(v \in (\Phi^d_w)^{-1}(w)\). Then the module \(M(v)\) is called \(w\)-asymmetric string module.

Proposition 3.21. Let \(w\) be an asymmetric string. Then \(v \in (\Phi^d_w)^{-1}(w)\) is weakly consistent if and only if the following holds for all \(j \in I\) with \(v_j\) of special type:

\[
\text{dir}(v_j) = \begin{cases}
1 & \text{if } (w<j)^{-1} > w[j] \\
-1 & \text{if } (w<j)^{-1} < w[j]
\end{cases}
\tag{24}
\]

Proof. It follows directly from Definition 3.3 that \(v\) is weakly consistent if (24) holds.

For the other implication, it is enough to show that \((w<j)^{-1} \neq w[j]\) for all \(j \in I\) with \(v_j\) of special type. Assume there exists \(j \in I\) with \((w<j)^{-1} = w[j]\). Let \(u = (w<j)^{-1} = w[j]\). With \(w_j = \varepsilon\), one can write \(w\) as follows:

\[
w = u^{-1} \varepsilon u.
\]

Then \(w = w^{-1}\), contradicting the definition of an asymmetric string.

Corollary 3.22. For each asymmetric string \(w\) there exists a unique \(v \in (\Phi^d_w)^{-1}(w)\) such that \(v\) is weakly consistent.
Proof. By Proposition 3.21, we know that any dir(v_j) with v_j of special type is uniquely determined by dir(w_{j^*}) and dir(w_{j^*}). Since both w_{j^*} and w_{j^*} are of ordinary type, their directions are known. Thus, one can construct a weakly consistent directed version for any asymmetric string. Uniqueness follows by Proposition 3.21.

3.2.2 Symmetric strings

Definition 3.23. Let w be a finite undirected word. It is said to be of symmetric string type if w is coadmissible and can be written as $w = u\varepsilon^*u^{-1}$ for u a minimal undirected word.

We denote by \hat{W} the set of all $w \in W_{ud}$ of symmetric string type and by $\hat{W}_\circ = \hat{W}/\sim$. We call $w \in \hat{W}_\circ$ a symmetric string.

By w being of the form $w = u\varepsilon^*u^{-1}$, the condition $w = w^{-1}$ is implied (cf. Lemma 2.52). Note that u is left coadmissible. Let u be in the following of length m.

Example 3.24. Let Λ be as in Example 2.14. Then $w = \kappa^*cb\eta^*b^{-1}c^{-1}\kappa^*$ is of symmetric string type with $u = \kappa^*cb$.

Similar to the case of asymmetric strings, we can obtain modules using the data of symmetric strings, or more precisely, using the data u. Namely, for every $t \in (\Phi_u^d)^{-1}(u)$, there are directed words of the form $v^\pm = t\varepsilon^*t^{-1}$ with $v^* \in (\Phi_u^d)^{-1}(w)$ and $\ast \in \{+, -\}$. Now for each v^*, $\ast \in \{+, -\}$ arising in this way, we obtain two modules $M_i(v^*)$, $i = 0, 1$. Note that for any i, we have $M_i(v^*) \cong M_i(v^-)$. Hence, it is enough to consider either v^+ or v^-. We call the one word out of the two that we consider v. Taking into account that any idempotent ε acting on a vector space V gives the decomposition $V = \text{im}(\varepsilon) \oplus \ker(\varepsilon)$, the module $M_i(v)$ is depicted as

$$b_0 \overset{t_1}{\rightarrow} b_1 \leftarrow t_2 \ldots \overset{t_{m-1}}{\rightarrow} b_{m-1} \overset{t_m}{\rightarrow} b_m \bigcup_{\varepsilon = i}$$

with ε acting as i.

Let V be a $k[f | f^2 = f]$-module. Then we can depict the above module also in the following way:

$$V_0 \overset{t_1}{\rightarrow} V_1 \leftarrow t_2 \ldots \overset{t_{m-1}}{\rightarrow} V_{m-1} \overset{t_m}{\rightarrow} V_m \bigcup_{\varepsilon = f}$$

where the V_i’s are disjoint copies of V.

Lemma 3.25. Let $w = u\varepsilon^*u^{-1}$ be a symmetric string. Then there exists a weakly consistent directed word $v \in (\Phi_u^d)^{-1}(u)$.

Proof. Since u is minimal, the direction of any v_j of special type with $j \in I$, $j \neq m + 1$ is uniquely determined by dir(w_{j^*}) and dir(w_{j^*}). For $j = m + 1$ we have that $\text{ind}_j[w] = m$. Thus, $(w[j])^{-1} = w[j] = u^{-1}$ and the direction of v_{m+1} is not uniquely determined. Thus, choosing any orientation on v_{m+1} gives a weakly consistent directed version. □
As one can see above, there are two options for a weakly consistent directed version v of an asymmetric string $w = u^* u^{-1}$:

\[v^+ = t \varepsilon t^{-1}, \text{ i.e. } v_{m+1} = \varepsilon, \text{ and } v^- = t \varepsilon^{-1} t^{-1}, \text{ i.e. } v_{m+1} = \varepsilon^{-1}, \]

where $t \in (\Phi_{ud}^d)^{-1}(u)$.

Example 3.26. Consider w from Example 3.24. Then

\[v^+ = \kappa c b \eta b^{-1} c^{-1} \kappa^{-1} \]
\[v^- = \kappa c b \eta^{-1} b^{-1} c^{-1} \kappa^{-1} \]

are both weakly consistent directed versions of w.

It is not obvious whether there exists a unique consistent word v with $(\Phi_{ud}^d)(v) = w$ for w a symmetric string.

3.2.3 Asymmetric bands

Definition 3.27. Let w_z be an undirected Z–word. It is said to be of asymmetric band type if $w_z = w_z[p]$ for some $p > 0$, and $w_z \neq w_z^{-1}[k]$ for all $k \in Z$. We denote by \mathcal{W}^a the set of all $w_z \in \mathcal{W}_{ud}$ of asymmetric band type and $\hat{\mathcal{W}}_z^a = \mathcal{W}^a / \sim$ with the equivalence relation \sim on Z–words from Section 2.3. We call $w \in \hat{\mathcal{W}}_z^a$ an asymmetric band.

Example 3.28.

1. Let Λ be as in Example 2.3. Consider

\[w_z = \ldots \varepsilon^* a c^* | a \varepsilon^* a \ldots \]

It is of asymmetric band type with $p = 2$ since

\[w_z^{-1} = \ldots \varepsilon^* a^{-1} \varepsilon^* | a^{-1} \varepsilon^* a^{-1} \]

yields that $w_z^{-1} \neq w_z$.

2. Consider Λ from Example 2.14 and let w_z with periodic part $\hat{w}_p = da \varepsilon^* a^{-1} b \eta^{-1} b^{-1} c^{-1} \kappa e^{-1}$. It is of asymmetric band type with $p = 10$.

We obtain for every directed version $v_z \in (\Phi_{ud}^d)^{-1}(w_z)$ of the same period as w_z, and for V a $k[T, T^{-1}]$–module, a module $M(v_z, V)$.

Similar as for w_z, we denote the periodic part of v_z by $\hat{v}_p = v_1 \ldots v_p$. We depict $M(v_z, V)$ in the following way:

\[V_0 \longleftrightarrow V_1 \overset{v_2}{\leadsto} \ldots \overset{v_{p-1}}{\leadsto} V_{p-1} \]

It is not as straightforward as in the string cases to make statements on the uniqueness of weakly consistent and consistent directed versions of asymmetric bands (compare Section 3.3).
Lemma 3.29. Let w_z be an asymmetric band of period p. Let $v_z \in (\Phi_{ud})^{-1}(w_z)$ be of period p and weakly consistent. Then

$$\text{dir}(v_j) = \begin{cases} 1 & \iff (w_{j-\frac{p}{2}} \ldots w_{j-1})^{-1} > w_{j+1} \ldots w_{j+\frac{p}{2}}, \\ -1 & \iff (w_{j-\frac{p}{2}} \ldots w_{j-1})^{-1} < w_{j+1} \ldots w_{j+\frac{p}{2}}, \end{cases}$$

for all $j \in \mathbb{Z}$ with v_j a special letter, where

$$\hat{p} = \begin{cases} p & \text{if } p \text{ even}, \\ p + 1 & \text{if } p \text{ odd}. \end{cases}$$

Proof. Let v_z be weakly consistent. Let $j \in I$ with v_j special. If

$$(w_{j-\frac{p}{2}} \ldots w_{j-1})^{-1} > w_{j+1} \ldots w_{j+\frac{p}{2}},$$

it follows that $(w_z[j])^{-1} < w_z[j]$. Then we have by Definition 3.3 that $\text{dir}(v_j) = 1$. It follows similarly that $(w_{j-\frac{p}{2}} \ldots w_{j-1})^{-1} < w_{j+1} \ldots w_{j+\frac{p}{2}}$ implies $\text{dir}(v_j) = -1$.

For the other implication, it is enough to show that

$$(w_{j-\frac{p}{2}} \ldots w_{j-1})^{-1} \neq w_{j+1} \ldots w_{j+\frac{p}{2}}. \tag{25}$$

Assume towards a contradiction that we have equality in (25). Consider p to be even. Then we have that $\hat{p} = p$. We have in particular that

$$w_{j-\frac{p}{2}}^{-1} = w_{j+\frac{p}{2}}. \tag{26}$$

The length of the subword $w_{j-\frac{p}{2}} \ldots w_{j-1}w_jw_{j+1} \ldots w_{j+\frac{p}{2}}$ is $p + 1$. It follows by periodicity that $w_{j-\frac{p}{2}} = w_{j+\frac{p}{2}}$. Combining this equality with (26) results in $w_{j+\frac{p}{2}} = \varepsilon^*$ for some $\varepsilon \in \text{Sp}$. Let w_j be given by $\eta^*, \eta \in \text{Sp}$ and denote by u the subword $u = w_{j-\frac{p}{2}+1} \ldots w_{j-1}$. We can thus write

$$w_{j-\frac{p}{2}+1} \ldots w_{j-1}w_jw_{j+1} \ldots w_{j+\frac{p}{2}} = w_{j-\frac{p}{2}}^{-1} \varepsilon^*. \tag{27}$$

Consider now $w_z[j - \frac{p}{2} + 1]$. It has periodic parts of form (27). Thus,

$$w_z[j - \frac{p}{2} + 1] = (w_z[j - \frac{p}{2} + 1])^{-1}. \tag{28}$$

It follows (Corollary 2.35 and Lemma 2.34) that

$$w_z = (w_z[2j - p])^{-1} = w_z^{-1}[-2j + p].$$

This contradicts w_z being an asymmetric band.

Let now p be odd. It follows that $\hat{p} = p + 1$. The length of the subword
We have equality in (25) that
\[(w_j - \frac{p+1}{2} + \frac{1}{2})^{-1} = w_{j + \frac{p+1}{2} - 1}. \]
(30)

Combining (29) and (30) gives that
\[w_{j + \frac{p+1}{2}} = (w_{j + \frac{p+1}{2} - 1})^{-1} \]
(31)
which contradicts the definition of a word.

Corollary 3.30. Let \(w_z \) be an asymmetric band. Then there exists a unique directed version \(v \in (\Phi_{ud}) \) that is weakly consistent.

Proof. By Lemma 3.29, one can always construct a unique weakly consistent directed version for an asymmetric band analogously to the asymmetric string case in Corollary 3.22.

Corollary 3.31. Let \(w_z \) be an asymmetric band. Let \(v_z \in (\Phi_{ud})^{-1}(w_z) \) be a directed version. Then \(v_z \) is consistent if and only if we have
\[
\text{dir}(v_j) = \begin{cases}
1 & \text{if } (v_{j-\frac{p}{2}} \ldots v_{j-1})^{-1} > v_{j+1} \ldots v_{j+\frac{p}{2}}, \\
-1 & \text{if } (v_{j-\frac{p}{2}} \ldots v_{j-1})^{-1} < v_{j+1} \ldots v_{j+\frac{p}{2}},
\end{cases}
\]
(32)
for all \(j \in \mathbb{Z} \) with \(v_j \) of special type, where \(\hat{p} \) as in Lemma 3.29.

Proof. Let \(v_z \) be consistent. Then (32) holds by the same line of argument as in the proof of Lemma 3.29.

The converse implication follows from Lemma 3.29, since \(\text{ind}^*_j(v_z) \leq \text{ind}^*_j(v_z) \) (see Lemma 3.17) for all \(j \in \mathbb{Z} \).

Remark 3.32. It follows from Lemma 3.29 and Corollary 3.31 that every \(j \in \mathbb{Z} \) giving a letter \(w_j \) of special type in an asymmetric band \(w_z \) has finite \(c^* \)-index. In particular, \(\text{ind}^*_j(w_z) < \frac{p}{2} \), and thus any \(j \in \mathbb{Z} \) with \(w_j \) of special type also has finite \(c \)-index.

Proposition 3.33. Let \(w_z \) be an asymmetric band of period \(p \). Then there exists a unique weakly consistent \(\tilde{v}_z \in (\Phi_{ud})^{-1}(w_z) \) of period \(p \).

Furthermore, if there exists a consistent directed version \(v_z \in (\Phi_{ud})^{-1}(w_z) \), it is unique.

Proof. Existence and uniqueness of a weakly consistent directed version is given by Corollary 3.30. Uniqueness of a consistent word follows from Corollary 3.31.
3.2.4 Symmetric bands

Definition 3.34. Let w_z be an undirected \mathbb{Z}-word. It is said to be of symmetric band type if $w_z = w_z[p]$ for some $p > 0$ and $w_z = w_z^{-1}[k]$ for some $k \in \mathbb{Z}$.

We denote by \mathcal{W}_s the set of all $w_z \in \mathcal{W}_z$ of symmetric band type and by $\mathcal{W}_s^n = \mathcal{W}_s / \sim$. We call $w \in \mathcal{W}_s^n$ a symmetric band.

Example 3.35. Let Λ be as in Example 3.28.1. Then

\[w_z = \ldots \varepsilon^* a \varepsilon a^{-1} \varepsilon^* | a \varepsilon a^{-1} \ldots \]

is of symmetric band type with $\hat{w}_p = a \varepsilon a^{-1} \varepsilon^*$ since $w_z^{-1} = w_z$.

Lemma 3.36. Let w_z be of symmetric band type. Then there exists $l \in \mathbb{Z}$ such that the periodic part of $w_z[l]$ is of the form $\varepsilon^* \eta^* u^{-1}$ for a suitable undirected finite word u, and $\varepsilon, \eta \in \text{Sp}$.

Proof. First consider the case where $|\hat{w}_p| = 2$. By definition of clannish algebra, this is only possible for the algebra given by the quiver consisting of two special loops ε, η. Then it follows directly that $p = 2$ and $\hat{w}_p = \varepsilon^* \eta^*$ or $\hat{w}_p = \eta^* \varepsilon^*$. Hence the result follows with u a trivial word.

Now let $|\hat{w}_p| > 2$. By definition of symmetric band type, there exists $k' > 0$ such that $w_z = w_z^{-1}[k']$.

If k' is even, we can write $k' = 2k$ for some $k \in \mathbb{Z}$. Applying Corollary 2.35 gives

\[w_z = (w_z[-2k])^{-1} \text{ if and only if } w_z[-k] = (w_z[-k])^{-1}. \]

The second equation implies

\[w_{p-k} = w_{p-k}^{-1}, \]

\[w_{p-(k+i)} = w_{p-(k+i)}^{-1}, \quad \text{for all } i \in \mathbb{Z}. \]

Hence, w_{p-k} is a letter of special type.

We obtain two finite undirected words $v = w_{p-k+1} \ldots w_p$ and $x = w_1 \ldots w_{p-k-1}$ such that the periodic part is of the form $\hat{w}_p = x w_{p-k} v$. Without loss of generality assume $|x| < |v|$. Then there exists $1 \leq j \leq p$ such that $y = w_j \ldots w_p$ gives

\[(yx)^{-1} = v. \quad (33) \]

Let $|v| = l$, $|x| = g$ and $|y| = h$ (i.e. $l = h + g$).

By (33), we have that

\[y_1 \ldots y_h x_1 \ldots x_g = v_l^{-1} \ldots v_1^{-1}, \]
so \(y \) is a subword of \(v^{-1} \), i.e., \(y_1 \ldots y_h = v_{t}^{-1} \ldots v_{l-(h-1)}^{-1} \). But by periodicity, \(y \) is also a subword of \(v \), i.e., \(y_1 \ldots y_h = v_{l-(h-1)} \ldots v_l \). Combining the last two equalities results in

\[
v_{l}^{-1} \ldots v_{l-(h-1)}^{-1} = y_1 \ldots y_h = v_{l-(h-1)} \ldots v_l.
\]

Hence, \(y \) is self-inverse, i.e., of the form \(y = z \mu^* z^{-1} \), for some undirected (finite) word \(z \) and some special letter \(\mu \). Furthermore, \(w_z \) is of the form

\[
\ldots z \mu^* z^{-1} | x w_{p-k} x^{-1} z \mu^* z^{-1} x w_{p-k} x^{-1} \ldots
\]

Now the periodic part of \(w_z \) is of the form \(\hat{w}_p = x w_{p-k} x^{-1} z \mu^* z^{-1} \). For \(m = |x| \) we obtain \(w_z[m] \) with periodic part \(w_{p-k} x^{-1} z \mu^* z^{-1} x \). Then for \(u = z^{-1} x \), \(\epsilon^* := \mu^* \) and \(\eta^* := w_{p-k} \), we obtain \(\hat{w}_p \) of the desired form.

Now consider \(k' \) to be odd. Then we can write \(k' = 2k + 1 \) for some \(k \in \mathbb{Z} \). We obtain, analogously to the previous part (compare structure of proof of Lemma 2.34) that

\[
w_z[-(k+1)] = (w_z[-k])^{-1}.
\]

This property results in

\[
w_{p-k}^{-1} = w_{p-(k+1)},
\]

a contradiction to the definition of a word. Hence, \(k' \) cannot be odd.

If \(k' = 0 \), it follows that \(w_p = w_p^{-1} \) and thus \(w_p \) is of special type. Moreover, \(w_{p-1} \ldots w_{1}^{-1} = w_1 \ldots w_{p-1} \), i.e., \(w_1 \ldots w_{p-1} = u \epsilon^* u^{-1} \) for some undirected finite word \(u \) and some \(\epsilon \in \text{Sp} \). With \(\eta^* := \eta w_p \), it follows that \(\hat{w}_p = u \epsilon^* u^{-1} \eta^* \). Then \(w_z[-1] \) has periodic part \(\epsilon^* \eta^* u^{-1} \).

Corollary 3.37. We can assume for a symmetric band \(w_z \) of period \(p \) that \(\hat{w}_p = \epsilon^* \eta^* u^{-1} \).

Proof. By Lemma 3.36 there exists \(k \in \mathbb{Z} \) such that \(w_z[k] \) has periodic part of the form \(\epsilon^* \eta^* u^{-1} \). Now \(w_z[k] \sim w_z \), i.e., they lie in the same equivalence class in \(\mathcal{V}_n^z \). Hence we can choose \(w_z[k] \) as representative of \([w_z] \) and thus assume the periodic part to be of the form above.

Assume from now on for \(w_z \) a symmetric band of period \(p \) that its periodic part is of the form \(\hat{w}_p = \epsilon^* \eta^* u^{-1} \) with \(|u| = m, \epsilon, \eta \in \text{Sp} \). Note that \(u \) is minimal due to the minimality of the period \(p \).

According to Subsection 2.4.2, we obtain for every \(v_z \in (\Phi_{\text{ua}}^d)^{-1}(w_z) \) of period \(p \), with \(\tilde{v}_p = \epsilon^* \eta^* t^{-1} \), and for \(V \) a \(k(e, f)/(e^2 - e, f^2 - f) \)-module, a \(\Lambda \)-module \(M(v_z, V) \) (where \(\mu, \kappa \in \{+1, -1\}, \epsilon, \eta \in \text{Sp}, t \in (\Phi_{\text{ua}}^d)^{-1}(u) \)). We depict \(M(v_z, V) \) as described in Subsection 2.4.2 as

\[
\varepsilon \rightarrow V_0 \xrightarrow{t_1} V_1 \xrightarrow{t_2} \ldots \xrightarrow{t_{m-1}} V_{m-1} \xrightarrow{t_m} V_m \xrightarrow{\eta = f}
\]
Assuming \(\tilde{w}_p = \varepsilon^* u_\eta^* u^{-1} \), we can now determine the integer(s) \(k \) for which we have \(w_z = w_z^{-1}[k] \) (compare next subsection).

3.2.5 Symmetries in symmetric bands

We have seen in the previous subsection that the periodic part of a symmetric band is of a certain form. Now we want to show that those words admit exactly two types of reflection symmetries and one type of translation symmetry.

In order to do so, we consider the infinite dihedral group and its properties.

It is well known that the group of isometries on \(\mathbb{Z} \), that is, the group of bijective maps \(f : \mathbb{Z} \rightarrow \mathbb{Z} \) that are distance preserving with respect to the norm \(d(x, y) = |x-y| \) on \(\mathbb{Z} \), is given by the infinite dihedral group \(D_\infty \) ([Coh89, p. 20]).

Consider the following two kinds of isometries for \(k \in \mathbb{Z} \):

- \(r_k : \mathbb{Z} \rightarrow \mathbb{Z}, i \mapsto 2k - i \)
- \(\tau_k : \mathbb{Z} \rightarrow \mathbb{Z}, i \mapsto i - k \).

Definition 3.38. An isometry of the form \(r_k \) is called reflection (symmetry) and one of the form \(\tau_k \) translation (symmetry).

Clearly, \(r_k^2 = \text{id} \) holds for every \(k \in \mathbb{Z} \), i.e., \(r_k \) is self-inverse, and \(\tau_l^{-1} = \tau_{-l} \) for any \(l \in \mathbb{Z} \). It follows for \(i \in \mathbb{Z} \) that

\[
r_k \tau_l r_k(i) = i + l = \tau_l^{-1}(i) := \tau_{-l}(i).
\]

In particular, this holds for \(r = \tau_0 \) and \(\tau = \tau_1 \) which generate \(D_\infty \) ([Coh89, p. 20]):

\[
D_\infty = \langle r, \tau \mid r^2 = \text{id}, r\tau r = \tau^{-1} \rangle.
\]

Note that reflections reverse the order. For \(i < j \) in \(\mathbb{Z} \) we have \(r(j) < r(i) \).

Definition 3.39. We define the action of \(D_\infty \) on \(\mathcal{W}_z \) for \(w_z = (w_i)_{i \in \mathbb{Z}} \) as follows:

\[
\begin{align*}
r(w_z) &:= (w_{r(i)}^{-1})_{i \in \mathbb{Z}}, \\
\tau(w_z) &:= (w_{\tau(i)})_{i \in \mathbb{Z}}.
\end{align*}
\]

Lemma 3.40. The operations in (34a) and (34b) give a (left) group action of \(D_\infty \) on \(\mathcal{W}_z \).

Proof. Since we have defined the action on the generators of \(D_\infty \), it is enough to show well-definedness:

\[
\begin{align*}
r^2(w_z) &= r(r(w_z)) = r((w_{r(i)})_{i \in \mathbb{Z}}) = (w_i)_{i \in \mathbb{Z}}, \\
r\tau r(w_z) &= r(\tau(r(w_z))) = r(\tau((w_{r(i)})_{i \in \mathbb{Z}})) = r((w_{\tau r(i)})_{i \in \mathbb{Z}}) = (w_{r^{-1}(i)})_{i \in \mathbb{Z}} = \tau^{-1}(w_z).
\end{align*}
\]

\(\square \)
Lemma 3.41. The following holds for any \(k \in \mathbb{Z} \) and any \(\mathbb{Z} \)-word \(w_z \):

\[
\tau_k(w_z) = w_z[-k].
\]

Proof. The equation follows by definition of \(\tau \) and the shift on words. \(\square \)

Denote by \(\text{Sym}(W_Z) \) the set of permutations on \(W_Z \). Then by the action of \(D_\infty \) on \(W_Z \), we obtain \(r, \tau \in \text{Sym}(W_Z) \) and an injective map

\[
\langle r, \tau \mid r^2 = \text{id}, r\tau r = \tau^{-1} \rangle \hookrightarrow \text{Sym}(W_Z).
\]

Let from now on be \(w_z \) a symmetric band of period \(p \) with periodic part \(\hat{w}_p = \varepsilon^* u \eta^* u^{-1} \). We denote the stabilizer group of \(w_z \) under \(D_\infty \) by \(\text{Stab}_{D_\infty}(w_z) \).

Lemma 3.42. For any \(a \in \mathbb{Z} \), the composition \(r \tau_a \) is a reflection of the form \(r_a^2 \) on \(W_Z \).

Proof. We have that

\[
r \tau_a(w_z) = (w_{r \tau_a(i)})_{i \in \mathbb{Z}} = (w_{\tau^{-1}(a-i)})_{i \in \mathbb{Z}} = (w_{a-i})_{i \in \mathbb{Z}},
\]

\[
r_a^2(w_z) = (w_{r_a^2(i)})_{i \in \mathbb{Z}} = (w_{-1})_{i \in \mathbb{Z}} = (w_{a-i})_{i \in \mathbb{Z}}.
\]

Hence, they both act in the same way on \(W_Z \). \(\square \)

Lemma 3.43. Let \(S_{n,a} := \langle \tau_n, r \tau_a \rangle \) for \(n, a \in \mathbb{Z} \). Then

\[
S_{n,a} = \{ \tau_{kn}, r \tau_{a+kn} \}_{k \in \mathbb{Z}}.
\]

Proof. We first show that \(S_{n,a} \supseteq \{ \tau_{kn}, r \tau_{a+kn} \}_{k \in \mathbb{Z}} \). Clearly, \(\{ \tau_n \} = \{ \tau_{kn} \}_{k \in \mathbb{Z}} \).

Furthermore,

\[
(r \tau_a)(\tau_{kn}) = r(\tau_a \tau_{kn}) = r \tau_{a+kn}
\]

and the inclusion follows.

In order to show \(S_{n,a} \subseteq \{ \tau_{kn}, r \tau_{a+kn} \}_{k \in \mathbb{Z}} \), we assume for contradiction that this inclusion does not hold: Assume \(r \tau_b \in S_{n,a} \) with \(b \neq a + kn \) for any \(k \in \mathbb{Z} \).

Then the following composition is also in \(S_{n,a} \):

\[
(r \tau_a)(r \tau_b) = (r \tau_a r) \tau_b = \tau_{a} \tau_b = \tau_{b-a}.
\]

Here, we have used that \(r \tau_l = \tau_{-l} \) for any \(l \in \mathbb{Z} \) which follows inductively from \(r \tau r = \tau^{-1} \). Now \(\tau_{b-a} \in S_{n,a} \) if and only if \(b - a = ln \) for some \(l \in \mathbb{Z} \). This results in \(b = a + ln \) which contradicts the assumption on \(b \). \(\square \)

Proposition 3.44. Let \(w_z \) be a symmetric band of period \(p \), \(\hat{w}_p = \varepsilon^* u \eta^* u^{-1} \). Then

\[
\text{Stab}_{D_\infty}(w_z) = S_{p,2}.
\]
Proof. We first show the inclusion $S_{p,2} \subseteq \text{Stab}_{D_{\infty}}(w_z)$. By Lemma 3.43 we have $S_{p,2} = \{ \tau_{kp}, r\tau_{2+kp} \}_{k \in \mathbb{Z}}$. Let us examine the elements of $S_{p,2}$.

By Lemma 3.41 and periodicity we know that $\tau_{kp}(w_z) = w_z[0] = w_z$ for any $k \in \mathbb{Z}$. Thus, $\tau_{kp} \in \text{Stab}_{D_{\infty}}(w_z)$.

Let us consider now elements of the form $r\tau_{2+kp}$. If k is even, we can write $k = 2l$ for some $l \in \mathbb{Z}$. Then $r\tau_{2+kp}$ is a reflection of the form $r\tau_{l+k}$ by Lemma 3.42. For $l \geq 0$ this describes the reflection in the first position of the positive copy $\hat{w}_p^{(l+1)}$. For $l < 0$, we rewrite $1 + lp$ as follows:

$$1 + lp = 1 + (l-1)p + p = -p + 1 + (l+1)p.$$ Thus, it describes for $l < 0$ the reflection in the first position of the negative copy $\hat{w}_p^{(l+1)}$.

Now consider k to be odd. Then $k + 1$ is even and $r\tau_{2+kp}$ is a reflection of the form $r\tau_{1+k}$. Using $p = 2m + 2$, we can rewrite the subscript:

$$1 + \frac{kp}{2} = \frac{2 + (k+1)p - 2m - 2}{2} = \frac{k + 1}{2}p - m.$$ (35)

For $\frac{k+1}{2} \leq l$, $r\tau_{1+k}$ describes the reflection in position $m + 2$ of the negative copy $\hat{w}_p^{(k+1)}$. For $\frac{k+1}{2} > 0$, we rewrite (35) to

$$\frac{k + 1}{2}p - m = \left(\frac{k + 1}{2} - 1\right)p + m + 2 = \left(\frac{k + 1}{2} - 1\right)p + m + 1.$$ Hence, $r\tau_{1+k}$ describes the reflection in position $m + 2$ in the positive copy $\hat{w}_p^{(k+1)}$.

It follows that $r\tau_{2+kp}(w_z) = w_z$ for any $k \in \mathbb{Z}$. Thus, any element of $S_{p,2}$ stabilizes w_z, so $S_{p,2} \subseteq \text{Stab}_{D_{\infty}}(w_z)$.

It remains to show equality. By definition, $\text{Stab}_{D_{\infty}}(w_z)$ is a subgroup of D_{∞}. The non-trivial subgroups of D_{∞} are given by ([$\text{Sp}\,56$, §1.2.4, Example 2])

$$G_n = \{ r\tau_n \}, \text{ for some } n \in \mathbb{Z}, \quad (36)$$

$$G_{0,n} = \{ \tau_n \}, \text{ for some } n \geq 0, \quad (37)$$

$$G_{n,a} = \{ r_n, r\tau_n \} \text{ for some } n \geq 1, 0 \leq a < n. \quad (38)$$

Lemma 3.43 shows that $S_{n,a} = G_{n,a}$ which is the largest subgroup of D_{∞}. Hence, it is enough to show that $\text{Stab}_{D_{\infty}}(w_z) \neq D_{\infty}$. To this end, assume towards a contradiction that we have equality. Then $\tau_l(w_z) = w_z$ for any $l \in \mathbb{Z}$. In particular, this holds for $l = p - 1$. It follows by Lemma 3.41 that

$$w_z[p - 1] = \tau_{p-1}(w_z) = w_z,$$ contradicting minimality of the period p. Hence, $\text{Stab}_{D_{\infty}}(w_z) \neq D_{\infty}$ and $S_{p,2} = \text{Stab}_{D_{\infty}}(w_z)$ follows. □
Corollary 3.45. Let \(w_z \) be a symmetric band of period \(p > 0 \) with periodic part \(\tilde{w}_p = \varepsilon^* w_\eta^* u^{-1} \).
Then \(w_z = w_z^{-1}[k] \) if and only if
\[
\begin{align*}
k &\equiv -2 \pmod{p}, \quad k \equiv 2m \pmod{p}, \quad (39) \\
&\equiv -2(m+2) \pmod{p} \text{ or } k \equiv 2(2m+1) \pmod{p}. \quad (40)
\end{align*}
\]

Proof. Consider the equalities
\[
\begin{align*}
w_z[1] &= (w_z[1])^{-1}, \\
w_z[m+2] &= (w_z[m+2])^{-1}, \\
w_z[-(2m+1)] &= (w_z[-(2m+1)])^{-1}, \\
w_z[-m] &= (w_z[-m])^{-1},
\end{align*}
\]
which result from the symmetries in the periodic parts. By Proposition 3.44 we know that these are all reflection symmetries of \(w_z \). Applying Lemma 2.34 and Corollary 2.35 to the above equations yields the result.

The previous Lemma and Proposition illustrate that the symmetry points are given by the letters with index \(j \equiv 1, -m, -(2m+1), m+2 \pmod{p} \) which are exactly the symmetry points in the positive and negative copies of the periodic part. Hence, there does not exist a unique weakly consistent directed version for symmetric bands. The next lemma shows that we can use a simplified criterion to check on weak consistency for directed versions.

Lemma 3.46. Let \(w_z \) be a symmetric band with period \(p \) and periodic part \(\tilde{w}_p = \varepsilon^* w_\eta^* u^{-1} \). Let \(v_j \in (\Phi_{w_\eta})^{-1}(w_z) \) be a directed version. Then \(v_z \) is weakly consistent if and only if for all \(j \in \mathbb{Z} \) with \(j \equiv 1, -m, -(2m+1), m+2 \pmod{p} \) and \(v_j \) of special type we have that
\[
\text{dir}(v_j) = \begin{cases} 1 & \text{if } (w_{j-(m+1)}w_{j-m} \ldots w_{j-1})^{-1} > w_{j+1} \ldots w_{j+m}w_{j+m+1}, \\
-1 & \text{if } (w_{j-(m+1)}w_{j-m} \ldots w_{j-1})^{-1} < w_{j+1} \ldots w_{j+m}w_{j+m+1}. \end{cases}
\]

Proof. By Corollary 3.45 we have for any \(j \equiv 1, -m, -(2m+1), m+2 \pmod{p} \) that \((w_z[j])^{-1} = w_z[j] \). Hence, any letter \(v_j \) indexed by such a \(j \) can have direction \(1 \) or \(-1 \) in a weakly consistent directed version.

Thus, it is enough to show that for \(j \equiv 1, -m, -(2m+1), m+2 \pmod{p} \) we have that
\[
(w_{j-(m+1)}w_{j-m} \ldots w_{j-1})^{-1} \neq w_{j+1} \ldots w_{j+m}w_{j+m+1}.
\]

Assume towards a contradiction that the two terms are equal for the index
Proposition 3.49. Let $w_j = w_{j-(m+1)}w_{j-m} \cdots w_{j-1},$ $z_1 = w_{j-(m+1)}w_{j-m} \cdots w_{j-1},$

$z_2 = w_{j+1} \cdots w_{j+m},$

$z = z_1w_z2 = w_{j-(m+1)}w_{j-m} \cdots w_{j-1}w_jw_{j+1} \cdots w_{j+m},$

$x_1 = w_{j-m} \cdots w_{j-1},$

$x_2 = w_{j+1} \cdots w_{j+m}w_{j+m+1},$

$x = x_1w_jx_2 = w_{j-m} \cdots w_{j-1}w_jw_{j+1} \cdots w_{j+m}w_{j+m+1}.$

By assumption $z_1^{-1} = x_2.$ Hence,

$w_j^{-1} = w_{j+i} \quad \forall i \in \{1, \ldots, m+1\}.$

In particular, $w_j^{-1} = w_j^{-(m+1)}.$ Furthermore, $|z| = |x| = p.$ It follows by periodicity that $w_j^{-(m+1)} = w_j^{-(m+1)}.$ Then $w_j^{-(m+1)}$ is given by a special letter, say $\kappa.$ Let $w_j = \mu^*.$ Then we can write

$w_j^{-(m+1)} = w_{j-m} \cdots w_{j-1}w_jw_{j+1} \cdots w_{j+m} = \kappa y_\mu^* y^{-1}$

where $y = w_{j-m} \cdots w_{j-1}.$ By periodicity, it follows that

$w_z[j] = (w_z[j])^{-1}.$

This can be rewritten to

$w_z = w_z^{-1}[-2j].$ \quad (41)

By choice of $j \neq 1, -m, -(2m+1), m + 2 \pmod{p}$, equation (41) gives a contradiction to Corollary 3.45.

Corollary 3.47. Let w_z be a symmetric band of period p and with periodic part $\hat{w}_p = \varepsilon^* u_\mu^* u^{-1}.$ Then we have for all $j \in \mathbb{Z}$ with $j \neq 1, -m, -(2m+1), m + 2 \pmod{p}$ that $\text{ind}^j_z(w_z) < \infty,$ in particular, $\text{ind}^j_z(w_z) < \frac{p}{2}.$

Proof. This result follows directly from Lemma 3.46.

Remark 3.48. Let w_z be a symmetric band as in Corollary 3.47 and let $v_z \in (\Phi^{ul}_w)^{-1}(w_z).$ By Definition 3.37 and Definition 3.14, we have that $\text{ind}^j_z(v_z) \leq \text{ind}^j_z(v_z)$ for all $j \in \mathbb{Z}.$ Thus it follows by the above Corollary that $\text{ind}^j_z(v_z) < \frac{p}{2} < \infty$ for all $j \in \mathbb{Z}$ with $j \neq 1, -m, -(2m+1), m + 2 \pmod{p}.$

Proposition 3.49. Let w_z be a symmetric band of period p with periodic part $\hat{w}_p = \varepsilon^* u_\mu^* u^{-1}.$ Then there exists a weakly consistent directed version $v_z \in (\Phi^{ul}_w)^{-1}(w_z).$
Proof. By Lemma 3.46 we know that for \(j \neq 1, -m, -(2m+1), m+2 \pmod{p} \) we have \(\text{ind}^*_j(w_z) < \frac{p}{2} \). Thus, we can simply set \(\text{dir}(v_j) = \text{dir}(w_{j^*}) = \text{dir}(w_{j^*}) \). For any \(j \equiv 1, -m, -(2m+1), m+2 \pmod{p} \), we know by Corollary 3.45 that \((w_z[<j])^{-1} = w_z[>_j] \). Hence, setting \(\text{dir}(v_j) \) to be 1 or -1 gives a weakly consistent word. \(\Box \)

Lemma 3.50. Let \(w_z \) be a symmetric band with period \(p > 0 \) and periodic part \(\hat{w}_p = \varepsilon \omega^* u^* u^{-1} \). Let \(\nu_z \in (\Phi^{n_1}_{\text{dir}})^{-1}(w_z) \) be a weakly consistent directed word as in Lemma 3.46. Let \(j \in \mathbb{Z} \) with \(w_j \) a special letter and \(\text{ind}^*_j(v_z) = d < \infty \). Then there do not exist \(k, l \in \mathbb{Z} \) with \(w_{k, w_{l}} \) special letters and \(\text{ind}^*_k(v_z) = \text{ind}^*_l(v_z) = \infty \) and \(|j-k| = |j-l| \leq d \).

Proof. Assume towards a contradiction that such indices \(k, l \in \mathbb{Z} \) exist. Then, by Corollary 3.47, \(w_{k, w_{l}} \) describe symmetry axes. By assumption, \(w_j \) lies exactly in the middle between \(w_k \) and \(w_{l} \). Let \(x \) describe the subword between \(w_k \) and \(w_j \), hence \(x^{-1} \) describes the subword between \(w_j \) and \(w_{l} \). By definition of \(w_{k, w_{l}} \) as symmetry axes, we have

\[
(w_z[>_j])^{-1} = (w_z[<j])^{-1}
\]

and

\[
(w_z[>_j])^{-1} = (w_z[<j])^{-1}
\]

By the symmetries in \(j, k \) and \(l \) we obtain

\[
(w_z[>_j])^{-1} = (w_z[<j])^{-1}
\]

Now we can write \(w_z[<j] = x^{-1}w_jw_z[>_j] \) and \((w_z[<_j])^{-1} = x^{-1}w_kw_z[<_j]^{-1} \). Thus \(\text{ind}^*_j(v_z) = \infty \), a contradiction to the assumption. \(\Box \)

We can also determine the stabilizer \(\text{Stab}_{D_{\infty}}(w_z) \) for \(w_z \) an asymmetric band of period \(p \).

Proposition 3.51. Let \(w_z \) be an asymmetric band of period \(p \). Then

\[
\text{Stab}_{D_{\infty}}(w_z) = \{ \tau_{kp} \}_{k \in \mathbb{Z}}.
\]

Proof. We know by Lemma 3.41 that

\[
\tau_{kp}(w_z) = w_z[-kp].
\]

Thus, \(\tau_{kp} \in \text{Stab}_{D_{\infty}}(w_z) \) for any \(k \in \mathbb{Z} \). Assume that \(\{ \tau_{kp} \}_{k \in \mathbb{Z}} \neq \text{Stab}_{D_{\infty}}(w_z) \). We know that \(\text{Stab}_{D_{\infty}}(w_z) \) is a subgroup of \(D_{\infty} \). They are given by (36) - (38). Thus, \(\text{Stab}_{D_{\infty}} \) contains a reflection of the form \(\tau_{k} = \frac{r_{k}}{7} \) with \(k \in \{0, \ldots, p-1\} \). Then

\[
\tau_{k}(w_z) = (w_{z,-k})_{i \in \mathbb{Z}} = (w_{i})_{i \in \mathbb{Z}}.
\]

63
Denote by \hat{u}_p the periodic part of $r\tau_k(w_z)$. It is given by

$$\hat{u}_p = w_{k-1}^{-1} \ldots w_1^{-1} w_p^{-1} \ldots w_k^{-1}.$$

Since $r\tau_k \in \text{Stab}_{D_\infty}(w_z)$ it follows that $\hat{w}_p = \hat{u}_p$:

$$w_1 \ldots w_p = w_{k-1}^{-1} \ldots w_1^{-1} w_p^{-1} \ldots w_k^{-1}.$$

This equality yields that

$$w_1 \ldots w_{k-1} = w_{k-1}^{-1} \ldots w_1^{-1} \quad (42)$$

$$w_k \ldots w_p = w_p^{-1} \ldots w_k^{-1}. \quad (43)$$

We obtain that

$$w_z = w_z^{-1}[k-1]$$

which contradicts w_z being asymmetric. \qed
3.3 Comparison of weakly consistent and consistent words

In this section we examine correspondences of the two types of directed words introduced in Section 3.1. To this end, we can consider the asymmetric and symmetric strings and the asymmetric band as one case. The approach on symmetric bands is more complicated and thus is considered separately.

We see that for the asymmetric cases there exists a unique directed version that is both consistent and weakly consistent. In the case of symmetric string, there exist two possible directed versions which are also both consistent and weakly consistent.

The symmetric band is the most complicated case. Here, we know what the consistent directed versions look like with respect to the symmetry axes. Moreover, any consistent directed version is also weakly consistent. But the converse does not hold: only any weakly consistent directed version with symmetry axes oriented in the way of types 1) - 4) in Proposition 3.70 is also consistent.

Recall with the following example some notation from the Subsections 3.1.1 and 3.1.2:

Example 3.52. Let \(\Lambda \) be as in Example 2.14. Consider

\[
\begin{align*}
 w &= w_1w_2w_3w_4w_5w_6w_7w_8w_9 \quad (44) \\
 &= \varepsilon^*a^{-1}b\eta^*b^{-1}a\varepsilon^*a^{-1}d^{-1}. \quad (45)
\end{align*}
\]

The word \(v = \varepsilon^{-1}a^{-1}b\eta^{-1}b^{-1}a\varepsilon^{-1}a^{-1}d^{-1} \) is a weakly consistent and consistent directed version of \(w \). The special letters in \(v \) are indexed by 1, 4 and 7. For \(j = 1 \) and \(j = 7 \) we have \(\text{ind}^*_j(w) = \text{ind}^*_j(v) \) and thus most of the following data coincides:

\[
\begin{align*}
 j &= 1: \quad & \text{ind}^*_1(w) &= \text{ind}^*_1(v) = 0, \\
 & & 1^* &= [1 - \text{ind}^*_1(w), 1 + \text{ind}^*_1(w)] = [1, 1], \\
 & & 1^c &= [1 - \text{ind}^*_1(w), 1 + \text{ind}^*_1(v)] = [1, 1], \\
 & & w_{1^+}^* &= 1 + \text{ind}^*_1(w) - 1 = w_2, \\
 & & v_{1^+}^c &= 1 + \text{ind}^*_1(v) - 1 = w_2, \\
 & & w_{1^-}^* &= 1 - \text{ind}^*_1(w) + 1 = 1_{s(\varepsilon),s}, \\
 & & v_{1^-}^c &= 1 - \text{ind}^*_1(v) + 1 = 1_{s(\varepsilon),s}, \\
 j &= 7: \quad & \text{ind}^*_7(w) &= \text{ind}^*_7(v) = 1, \\
 & & 7^* &= [6, 8] = 7^c, \\
 & & w_{7^+}^* &= v_{7^+}^c = w_9, \\
 & & w_{7^-}^* &= v_{7^-}^c = w_5.
\end{align*}
\]
For $j = 4$ we obtain different values:

$$\text{ind}^j_4(w) = 3,$$
$$4^* = [1, 7],$$
$$w_4 = w_1,$$
$$w_4 = w_8,$$
$$\text{ind}^j_4(v) = 2,$$
$$4^c = [2, 6],$$
$$v_4 = w_1,$$
$$v_4 = w_7.$$

3.3.1 Directed words from strings and asymmetric bands

Let us first show that a weakly consistent orientation on asymmetric and symmetric strings and asymmetric bands is also consistent.

Theorem 3.53. Let w be a string, either asymmetric or symmetric, and let w_z be an asymmetric band. Let $v \in (\Phi_{w_z}^d)^{-1}(w)$ ($v_z \in (\Phi_{w_z}^d)^{-1}(w_z)$) be weakly consistent. If w is a symmetric string of the form w^*v, assume additionally that $v = t\varepsilon t^{-1}$ for $t \in (\Phi_{w_z}^d)^{-1}(w)$ and $\kappa \in \{+1, -1\}$. Then v (v_z, respectively) is consistent.

Remark 3.54. Recall that any weakly consistent directed version is uniquely given in both asymmetric cases. Only for the symmetric ones do we obtain more than one possible weakly consistent directed version (compare Section 3.2).

Proof of Theorem 3.53. We show the statement for w an asymmetric string. The other two cases are analogous.

Let $v \in (\Phi_{w_z}^d)^{-1}(w)$ be weakly consistent and assume towards a contradiction that v is not consistent. Then there exists $1 \leq j \leq n$ with w_j a special letter and $\text{dir}(v_j) \neq \text{dir}(v_{j^c})$ and $\text{dir}(v_{j^c}) = \text{dir}(v_{j^c})$. Thus, $\text{ind}^j_4(w) > \text{ind}^j_4(v)$ and $v_{j^c} = v_{j^c}$ are special letters. Let x^{-1} denote the undirected subword between w_{j^c} and w_j in w; hence, x is the undirected subword between w_j and w_{j^c}. Set $y = w[j^c]$, $z = w[j^c]$. Then w is of the form

$$yw_{j^c}x^{-1}w_jxw_{j^c}z.$$

Assume without loss of generality that $\text{dir}(v_j) = 1$. Hence, $\text{dir}(v_{j^c}) = \text{dir}(v_{j^c}) = -1$. The weakly consistent orientation with respect to the positions j^c, j^c and j gives the following inequalities:

1) $y^{-1} < x^{-1}w_jxw_{j^c}z,$
2) $xw_{j^c}z < xw_{j^c}y^{-1},$ i.e. $z < y^{-1},$
3) $x^{-1}w_jxw_{j^c}y^{-1} < z.$

Thus, we get

$$x^{-1}w_jxw_{j^c}y^{-1} < z < y^{-1} < x^{-1}w_jxw_{j^c}z.$$ Comparing the first and last word in this chain of inequalities gives $y^{-1} < z,$ a contradiction to inequality 2). \qed

66
The next step is to show that a consistent word is also weakly consistent. This is more complicated to show than the previous statement. Let us therefore first introduce some auxiliary lemmas.

Lemma 3.55. Let \(w \) be a string, either asymmetric or symmetric, and let \(w_z \) be an asymmetric band. Let \(j \in I \) (for \(I = \{0, \ldots, n\} \) or \(I = \mathbb{Z} \), respectively) with \(w_j \) of special type and \(\text{ind}_j^a(w) = d < \infty \) (\(\text{ind}_j^a(w_z) = d < \infty \), respectively). Then there do not exist \(k, l \in I \) with \(k < j < l \), \(w_k, w_l \) both of special type, and \(|j - k| = |j - l| \leq d \) such that \(\text{ind}_k^a(w) \geq d \) and \(\text{ind}_l^a(w) \geq d \) (\(\text{ind}_k^a(w_z) \geq d \) and \(\text{ind}_l^a(w_z) \geq d \), respectively).

Proof. We first show the statement for \(w \) an asymmetric string. For symmetric strings, the proof is analogous.

Assume towards a contradiction that such indices \(k, l \in \mathbb{Z} \) exist with the above properties. Denote by \(x \) the subword of \(w \) between \(w_j \) and \(w_l \) (hence \(x^{-1} \) gives the subword of \(w \) between \(w_k \) and \(w_j \)). Since \(|j - k| = |j - l| \leq d \), we have \(|x| < d \). Denote by \(y \) the subword of \(w \) between \(w_{j+} \) and \(w_k \) (hence \(y^{-1} \) describes the word between \(w_l \) and \(w_{j+} \) and we have \(|y| + |x| + 1 = d|\). Also, \(k^* < j^* \) and \(j^* < l^* \), so let \(z \) (respectively \(u \)) be the subword between \(w_{k^*} \) and \(w_{j^*} \) (\(w_{j^*} \) and \(w_{l^*} \), respectively). Thus, \(w \) is of the form

\[
\ldots w_k z w_{j^*} y w_k x^{-1} w_j x w_l y^{-1} w_{j^*}^{-1} w_{l^*}^{-1} \ldots \quad (46)
\]

Assume without loss of generality that \(|y| \leq |x|\). Then by symmetry in \(w_k \) and \(w_l \), \(y \) is a finite subword of a word of the form

\[
(\eta^* x^{-1} \varepsilon^* x)^h,
\]

for some \(h \in \mathbb{N} \), where \(s^h = s \ldots s \) is a word given by \(h \) copies of \(s \) and \(\eta^* = w_l \), \(\varepsilon^* = w_j \). One has \(|y| + |z| + 1 = \text{ind}_k^a(w) \), \(|y| + |u| + 1 = \text{ind}_l^a(w) \).

For \(x = x_1 \ldots x_f \) we know that \(x_f \) is ordinary. By symmetry in position \(l \) we obtain

\[
x_f = (w_{j^*})^{-1}.
\]

Similarly, symmetry in position \(k \) results in

\[
x_f^{-1} = (w_{j^*})^{-1}. \quad (48)
\]

Combining (47) and (48) gives

\[
w_{j^*} = (w_{j^*})^{-1}.
\]

Thus, \(\text{ind}_j^a(w) \geq d + 1 \), contradicting the assumption on its \(\varepsilon^* \)-index.

Now let \(w_z \) be an asymmetric band. Assume again towards a contradiction that the indices \(k, l \in \mathbb{Z} \) as above exist. By Lemma 3.29, \(\text{ind}_j^a(w_z) \) is finite and
it is enough to consider for \(j \equiv j \pmod{p} \) the subword \(t := \hat{w}_p[>j]w_p\hat{w}_p[<j] \) of \(w_z \) to determine the weakly consistent orientation in position \(j \). The letters \(w_k \) and \(w_l \) are by assumption in \(t \). Also, it follows from \(\text{ind}_{k^*} \) and \(\text{ind}_{l^*} \) that both \(w_k \) and \(w_l \) are not contained in \(t \). We extend \(t \) to the left up to and including \(w_k \), and to the right up to and including \(w_l \). We denote the resulting word by \(\hat{t} \).

Now \(\hat{t} \) is a finite subword of \(w_z \) which is of the same form as the subword in (46). Using the same arguments as in the asymmetric string case on \(\hat{t} \), the proof for an asymmetric band follows analogously. □

Lemma 3.56. Let \(w \) be a string of length \(n \), either asymmetric or symmetric, for some \(n \in \mathbb{N} \), and let \(w_z \) be an asymmetric band. Let \(v \in (\Phi_{\omega_d}^{-1}(w)) \) \((v_z \in (\Phi_{\omega_d}^{-1}(w_z))) \) be weakly consistent. If \(w \) is a symmetric string of the form \(w = \varepsilon^n \varepsilon^{-1} \), assume additionally that \(v = \varepsilon^n v^{-1} \) for \(t \in (\Phi_{\omega_d}^{-1}(w)) \) and \(\varepsilon \in \{1, -1\} \). Moreover, let \(j \in I \) \((I = \{0, \ldots, n\} \) or \(I = \mathbb{Z} \) \) with \(w_j \) special and \(\text{ind}_{j^*}^l(v) = d \) \((\text{ind}_{j^*}^r(v) = d, \) respectively). Let \(k, l \in I \) and \(k < j < l \) with \(|j - k| = |j - l| \leq d \), \(w_k \) and \(w_l \) special letters, and \(\text{ind}_{j^*}^l(v) < d \), \(\text{ind}_{j^*}^r(v) < d \) \((\text{ind}_{j^*}^l(v_z) < d, \text{ind}_{j^*}^r(v_z) < d, \) respectively). Then either \(\text{dir}(v_k) = -\text{dir}(v_l) \) or \(\text{dir}(v_k) = \text{dir}(v_l) = \text{dir}(v_j) \).

Proof. We show the statement for \(w \) an asymmetric string. For symmetric strings and asymmetric bands, the proof is analogous by the same arguments as in Lemma 3.55 (for symmetric bands first consider \(j \neq m + 1 \) which is analogous to the proof for asymmetric strings. For \(j = m + 1 \) it follows by symmetry of \(w \) that \(\text{ind}_{j^*}^l(w) = \text{ind}_{j^*}^r(w) \) and thus that \(\text{dir}(v_k) = -\text{dir}(v_l) \)). Assume without loss of generality that \(\text{dir}(v_j) = -1 \) and \(\text{ind}_{j^*}^l(w) \geq \text{ind}_{j^*}^r(w) \).

For \(\text{dir}(v_l) = 1 \) we consider the following cases regarding the positions of \(j^* \) and \(l^* \):

- \(l^*_z < j^*_z \). Then \(L^* \in J^* \) and we need to distinguish

 1) \(j < l^*_z \) and

 2) \(l^*_z < j \).

- \(j^*_z < l^*_z \). Similarly to the above, we distinguish

 3) \(j < l^*_z \) and

 4) \(l^*_z < j \).

- \(j^*_z = l^*_z \). This case is given by 5) below and does not need further distinction.

We prove now for each of the five above cases that the statement holds.

1) \(l^*_z < j^*_z \) and \(j < l^*_z \): Since \(l^*_z \in J^* \), we obtain by symmetry in position \(j \) that \(k^* \in J^* \), too. We obtain from the same symmetry that \(\text{ind}_{j^*}^l(w) = \text{ind}_{j^*}^r(w) \). Then, again by symmetry in position \(j \), \(\text{dir}(v_{l^*_z}) = -\text{dir}(v_{k^*_z}) \) and \(\text{dir}(v_{j^*_z}) = -\text{dir}(v_{k^*_z}) \). Hence, \(\text{dir}(v_j) = -\text{dir}(v_k) \).
2) \(l^*_\uparrow < j^*_\uparrow \) and \(l^*_\downarrow < j \): For two suitable undirected words \(x_1, x_2 \) with ind\(j(w) = |x_1| + |x_2| + 1 \), \(w \) can be written within the interval \(L^* \) as:

\[
... w_{l+1} x_{l}^{-1} w_j x_1^{-1} w_l x_1 \eta \ast x_2 w_{l+1} ...
\]

with \(w_j = \eta \).

To determine position \(k \), we use symmetry in \(j \) and distinguish the following cases:

a) \(|x_1| = |x_2| + 1 \):

We have \(x_1 = a x_2^{-1} \) for \(a = w_{l+1} \in Q^\text{ord} \), and we can rewrite \(w \) from (50) to:

\[
... c^{-1} x_2^{-1} \eta \ast x_2 a^{-1} w_k w_{l+1} x_2^{-1} w_j x_2^{-1} w_l a x_2^{-1} \eta \ast x_2 w_{l+1} ...
\]

where \(w_{l+1} = c \). Thus, ind\(k\)(\(w \)) = 2\(|x_2| + 2 = \text{ind}\(j\)(\(w \)). Hence, by symmetry in \(j \), \(w_k \ast = w_{l+1} \ast \) and thus \(\text{dir}(w_k) = -\text{dir}(w_{l+1}) \). It follows directly that \(\text{dir}(v_k) = -\text{dir}(v_l) \).

b) \(|x_1| > |x_2| + 1 \):

We have \(x_1 = x_3 a x_2^{-1} \) for some suitable undirected word \(x_3 \) and \(a = w_{l+1} \). Using the symmetries in positions \(l \) and \(k \), we can deduce from (50) the following form of \(w \):

\[
... c^{-1} x_2^{-1} \eta \ast x_2 a^{-1} x_3^{-1} w_k x_3 w_{l+1} x_2^{-1} w_j x_2^{-1} x_3^{-1} w_l x_3 a x_2^{-1} \eta \ast x_2 w_{l+1} ...
\]

where \(w_{l+1} = c b, \eta, \varepsilon \in \text{Sp} \). Then \(\text{ind}\(k\)(\(w \)) = 2\(|x_2| + |x_3| + 2 = \text{ind}\(j\)(\(w \)) \) and it follows by the same line of argument as in 2)a) that \(\text{dir}(v_k) = -\text{dir}(v_l) \).

c) \(|x_1| < |x_2| + 1 \):

If \(|x_1| = |x_2| \), then \(w_l \) is of ordinary type which is a contradiction. Hence \(|x_1| < |x_2| \) and we can write \(x_2 = x_1^{-1} \varepsilon \ast x_3 \) for a suitable undirected word \(x_3 \) and \(\varepsilon \ast = w_l \) a special letter. For \(|x_3| = 0 \) one has \(x_2 = x_1^{-1} \varepsilon^- \) and \(w \) is given by

\[
... w_{l+1} \varepsilon^- x_1 x_2^{-1} w_l x_1 \eta \ast x_1^{-1} \varepsilon^- w_{l+1} ...
\]

It follows by symmetry in \(j \) that \(x_1 = a^{-1} \tilde{x}_1 \) for \(a = w_{l+1} \) and some suitable word \(\tilde{x}_1 \). Refining \(w \) by this gives

\[
... a^{-1} \varepsilon^- a^{-1} x_1 \eta \ast x_1^{-1} aw_k a^{-1} \tilde{x}_1 w_j \tilde{x}_1^{-1} aw_l a^{-1} \tilde{x}_1 \eta \ast \tilde{x}_1^{-1} a \varepsilon^- w_{l+1} ...
\]

with \(w_j = \eta \ast, w_k = \varepsilon^- \).

It follows from the above that \(\text{ind}\(j\)(\(w \)) = 2\(|x_1| + 4 = \text{ind}\(j\)(\(w \)) \) and as above that \(\text{dir}(v_k) = -\text{dir}(v_l) \).

Now let \(|x_3| \geq 1 \). Then \(x_2 = x_1^{-1} \varepsilon^- x_3 \). Assume for contradiction that \(\text{dir}(v_k) = \text{dir}(v_l) = -\text{dir}(v_j) \). Recall that we assume without
loss of generality that \(\text{dir}(v_j) = -1 \). Hence, \(\text{dir}(v_k) = \text{dir}(v_l) = 1 \).

We obtain from (50) by symmetry in position \(l \) the following form for \(w \):

\[
\ldots w_l \cdot x_3^{-1} w_k x_1 w_j x_1^{-1} w_l x_1 \eta^* x_1^{-1} \varepsilon^* x_3 w_l^* \ldots
\]

with \(w_l = a \), \(w_k^* = c \), \(w_j = \eta^* \), \(w_k = \varepsilon^* \). The weakly consistent orientation gives the following inequalities:

(i) from position \(j \) (after eliminating \(x_1^{-1} \varepsilon^* \) on both sides from the left):

\[
x_3 a^{-1} \ldots < x_1 \eta^* x_1^{-1} \varepsilon^* x_3 c \ldots,
\]

(ii) from position \(k \): \(x_1 \eta^* x_1^{-1} \varepsilon^* x_1 \eta^* x_1^{-1} \varepsilon^* x_3 c \ldots < x_3 a^{-1} \ldots \)

Extending (i) by \(x_1 \eta^* x_1^{-1} \varepsilon^* \) from the left on both sides and applying (ii) and again (i) gives:

\[
x_1 \eta^* x_1^{-1} \varepsilon^* x_3 a^{-1} \ldots < x_1 \eta^* x_1^{-1} \varepsilon^* x_1 \eta^* x_1^{-1} \varepsilon^* x_3 c \ldots
\]

\[
< x_3 a^{-1} \ldots < x_1 \eta^* x_1^{-1} \varepsilon^* x_3 c \ldots.
\]

Thus, comparing the first and last element of the inequality-chain and reducing by the same word as added before, we obtain

\[
x_3 a^{-1} \ldots < x_3 c \ldots,
\]

a contradiction to the definition of the linear order introduced in Section 2.3.

3) \(j^* < l^*_+ \) and \(j < l^*_+ \): Let \(x_1, x_3 \) be two undirected suitable words with \(|x_1| + |x_3| + 1 = \text{ind}_l^*(w) \), such that (by symmetries in \(j \) and \(l \)) \(w \) is of the form:

\[
\ldots w_j x_1^{-1} w_k x_1 b^{-1} x_3 a^{-1} x_2^{-1} w_j x_2 w_l c x_3^{-1} b x_1^{-1} w_l x_1 x_j^* x_3 w_l^* \ldots
\]

with \(w_{jl^*} = b^{-1} \) and \(w_l = a \).

Since \(\text{dir}(w_{jl^*}) = -1 \) by assumption, it follows directly \(\text{ind}_{l^*_+}^*(w) = |x_1| \)

and thus \(w_{k^*} = w_{jl^*} \). Hence, \(\text{dir}(w_k^*) = \text{dir}(v_j) = - \text{dir}(v_l) \).

4) \(j^*_+ < l^*_+ \) and \(l^*_+ < j \): Let \(x_1, x_2 \) and \(x_3 \) be three words such that \(|x_1| + |x_2| + |x_3| + 2 = \text{ind}_l^*(w) \) and \(w \) is of the form:

\[
\ldots w_l x_3^{-1} b x_2^{-1} w_j x_1 \eta^* x_2 w_l^* x_3 w_l^* \ldots \quad (51)
\]

where \(w_j = \eta^* \), \(w_{jl^*} = b^{-1} \).

Similar to case 2), we distinguish the following subcases:

a) \(|x_1| = |x_2| \):

By symmetry in \(j \), we obtain \(w_l = b \) an ordinary letter. This contradicts the assumption on \(w_l \).

70
b) $|x_1| = |x_2| + 1$:

We can write $x_1 = bx_2^{-1}$ and w as follows:

$$\ldots w_{l_1} x_3 b x_2^{-1} w_j x_2 b^{-1} w_l b x_2^{-1} \eta^* x_2 w_{j^*} x_3 w_{l^*} \ldots$$

We have $|x_3| > 0$ (otherwise it follows $w_l = w_{j^*}$, a contradiction to the different types of the two letters).

If $|x_3| = 1$, then $x_3 = \varepsilon^* = w_k$ and $w_{j^*} = w_{l^*}$. Thus, $\text{dir}(v_l) = \text{dir}(v_j)$, contradicting the assumption. Hence, $|x_3| > 1$.

We can write $x_3 = \varepsilon^* b x_4$. Assume towards a contradiction that $\text{dir}(v_k) = \text{dir}(v_l) (= -\text{dir}(v_j))$. We consider w of the following form:

$$\ldots w_{l^*} x_4^{-1} b^{-1} w_k b x_2^{-1} w_j x_2 b^{-1} w_l b x_2^{-1} \eta^* x_2 w_{j^*} \varepsilon^* b x_4 w_{l^*} \ldots$$

with $w_k = w_l = \varepsilon^*$, $w_j = \eta^*$, $w_{j^*} = b^{-1}$.

Since v is weakly consistent, the following inequalities hold:

(i) for position l: $w_{l^*} \ldots < w_{l^*_1} \ldots$,

(ii) for position k: $b x_4 w_{l^*_1} \ldots > b x_2^{-1} \eta^* x_2 b^{-1} \varepsilon^* b x_2^{-1} \eta^* x_2 b^{-1} \varepsilon^* b x_4 w_{l^*_1} \ldots$,

(iii) for position j: $x_2 b^{-1} \varepsilon^* b x_4 w_{l^*_1} \ldots < x_2 b^{-1} \varepsilon^* b x_2^{-1} \eta^* x_2 b^{-1} \varepsilon^* b x_4 w_{l^*_1} \ldots$.

We extend (iii) from the left by $x_2 b^{-1} \varepsilon^* b x_2^{-1} \eta^*$ and obtain the following chain of inequalities, using (iii), (ii) and then (iii) again.

$$x_2 b^{-1} \varepsilon^* b x_2^{-1} \eta^* x_2 b^{-1} \varepsilon^* b x_4 w_{l^*_1} \ldots$$

$$< x_2 b^{-1} \varepsilon^* b x_2^{-1} \eta^* x_2 b^{-1} \varepsilon^* b x_2^{-1} \eta^* x_2 b^{-1} \varepsilon^* b x_4 w_{l^*_1} \ldots$$

$$< x_2 b^{-1} \varepsilon^* b x_4 w_{l^*_1} \ldots$$

$$< x_2 b^{-1} \varepsilon^* b x_2^{-1} \eta^* x_2 b^{-1} \varepsilon^* b x_4 w_{l^*_1} \ldots$$

Comparing the first and last term gives

$$w_{l^*_1} \ldots < w_{l^*_1} \ldots,$$

a contradiction to (i).

c) $|x_1| > |x_2| + 1$:

We can write $x_1 = x_4 b x_2^{-1}$ for a suitable undirected word x_4 and obtain for w:

$$\ldots w_{l^*_1} \ldots x_4 b x_2^{-1} w_j x_2 b^{-1} x_4^{-1} w_l x_4 b x_2^{-1} \eta^* x_2 w_{j^*} x_3 w_{l^*} \ldots$$

with $w_j = \eta^*$, $w_l = \varepsilon^*$ and $w_{j^*} = b^{-1}$.

Let us first consider the case $|x_4| = |x_3|$. It follows $x_4 = x_3^{-1}$ and thus by symmetry in position j that $w_l = w_{l^*_1}^{-1}$. But w_l is of special type while $w_{l^*_1}$ of ordinary type, giving a contradiction.
Now assume $|x_4| < |x_3|$. We obtain by symmetry in position j that x_3 is of the form $x_3 = x_4^{-1}e^*x_5$ for a suitable (possibly trivial) undirected word x_5. By symmetry in position l, we can write w as follows:

$$\ldots w_1 x_5^{-1} w_k x_4 b x_2^{-1} w_j x_2 b^{-1} x_4^{-1} w_1 x_4 b x_2^{-1} \eta^* x_2 b^{-1} x_4^{-1} e^* x_5 w_1^* \ldots$$

with $w_j = \eta^*$, $w_k = w_l = e^*$.

Assume for contradiction that $\text{dir}(v_i) = \text{dir}(v_k) = -\text{dir}(v_j)$. The directed version v of w is weakly consistent, giving:

(i) from position k:

$$x_5 w_l^{-1} \ldots > x_4 b x_2^{-1} \eta^* x_2 b^{-1} x_4^{-1} e^* x_5 w_1^* \ldots,$$

(ii) from position j:

$$x_5 w_l^{-1} \ldots < x_4 b x_2^{-1} \eta^* x_2 b^{-1} x_4^{-1} e^* x_5 w_1^* \ldots,$$

(iii) from position l:

$$w_l^{-1} \ldots > w_l^* \ldots$$

(Note that in (ii) we have reduced both sides from the left by $x_2 b^{-1} x_4^{-1} e^*$).

Extending (ii) from the left by $v = x_4 b x_2^{-1} \eta^* x_2 b^{-1} x_4^{-1} e^*$ and applying (i) and (ii) afterwards gives

$$v x_5 w_l^{-1} \ldots < v x_4 b x_2^{-1} \eta^* x_2 b^{-1} x_4^{-1} e^* x_5 w_1^* \ldots$$

$$< x_5 w_l^{-1} \ldots < v x_5 w_1^* \ldots$$

Comparing the first and last term of this chain of inequalities gives

$$w_l^{-1} \ldots < w_l^* \ldots,$$

a contradiction to (iii).

Now consider the last case $|x_4| > |x_3|$. We can write $x_4 = x_5 w_1 x_3^{-1}$ for some suitable x_5. We can deduce the following form for w:

$$\ldots w_j x_2^{-1} \eta^* x_2 b^{-1} x_3 c^{-1} x_5 w_k x_5 w_1 x_3^{-1} b x_2^{-1} w_j x_2 b^{-1} x_3$$

$$c^{-1} x_5^{-1} w_1 x_5 c x_3^{-1} b x_2^{-1} \eta^* x_2 w_j x_3 w_1^* \ldots$$

with $w_l = c$, $w_j = \eta^*$, $w_k = w_l = e^*$ and $w_{j^*} = b^{-1}$.

Assume for contradiction $\text{dir}(v_i) = \text{dir}(v_k) = -\text{dir}(v_j)$. We obtain from the weakly consistent orientation on v:

(i) from position l:

$$w_l^{-1} \ldots > w_l^* \ldots,$$

(ii) from position k:

$$w_j^{-1} \ldots > b^{-1} x_3 c^{-1} x_5^{-1} e^* x_5 c x_3^{-1} b x_2^{-1} \eta^* x_2 b^{-1} x_3 w_1^* \ldots,$$

(iii) from position j:

$$x_2 b^{-1} x_3 c^{-1} x_5^{-1} e^* x_5 c x_3^{-1} b x_2^{-1} \eta^* x_2 b^{-1} x_3 w_1^* \ldots$$

$$> x_2 b^{-1} x_3 w_l^{-1} x_5^{-1} e^* x_5 c x_3^{-1} b x_2^{-1} \eta^* x_2 w_j^* \ldots$$
(Note that we have reduced in case (ii) both words from the left by \(x_5 \varepsilon x_3^{-1} b_2^{-1} \eta^* x_2\). Applying (iii), (ii) and again (iii) gives (after reducing in the last step by \(x_2 b^{-1} x_3 c^{-1} x_5^{-1} \varepsilon^* x_5 c x_3^{-1} b x_2^{-1} \eta^*\) from the left):

\[
x_2 b^{-1} x_3 w_i^{-1} x_5^{-1} \varepsilon^* x_5 c x_3^{-1} b x_2^{-1} \eta^* x_2 w_j^{-1} \ldots \]

\[
< x_2 b^{-1} x_3 c^{-1} x_5^{-1} \varepsilon^* x_5 c x_3^{-1} b x_2^{-1} \eta^* x_2 b^{-1} x_3 w_i^{-1} \ldots
\]

\[
< x_2 w_j^{-1} \ldots
\]

\[
< x_2 b^{-1} x_3 w_i^{-1} \ldots
\]

Comparing the first and last term gives

\[
w_i^{-1} \ldots < w_l^* \ldots,
\]

contradicting (i).

d) \(|x_1| < |x_2|\):

In this case we can write \(x_2 = x_1^{-1} \varepsilon^* x_4\) for some suitable word \(x_4\) and consider \(w\) in the following way:

\[
\ldots w_i^{-1} x_3^{-1} b x_4^{-1} w_k x_1 w_j x_1^{-1} w_l x_1 \eta^* x_1^{-1} \varepsilon^* x_4 w_j x_3 w_l^* \ldots
\]

with \(w_j = b^{-1}, w_j = \eta^*, w_k = w_l = \varepsilon^*\).

Assume for contradiction that \(\text{dir}(v_k) = \text{dir}(v_l) = -\text{dir}(v_j)\). The following inequalities hold:

(i) from position \(k\): \(x_1^{-1} x_3 w_i^{-1} \ldots > x_1 \eta^* x_1^{-1} \varepsilon^* x_1 \eta^* x_1^{-1} \varepsilon^* x_4 b^{-1} x_3 w_i^* \ldots\),

(ii) from position \(j\): \(x_1 \eta^* x_1^{-1} \varepsilon^* x_4 b^{-1} x_3 w_i^* \ldots > x_4 b^{-1} x_3 w_i^{-1} \ldots\),

(iii) from position \(l\): \(w_i^{-1} \ldots < w_l^* \ldots\)

We extend (ii) from the left by \(x_1 \eta^* x_1^{-1} \varepsilon^*\) and obtain the following chain of inequalities, applying (ii), (i) and (ii) again:

\[
x_1 \eta^* x_1^{-1} \varepsilon^* x_4 b^{-1} x_3 w_i^{-1} \ldots
\]

\[
< x_1 \eta^* x_1^{-1} \varepsilon^* x_1 \eta^* x_1^{-1} \varepsilon^* x_4 b^{-1} x_3 w_i^* \ldots
\]

\[
< x_4 b^{-1} x_3 w_i^{-1} \ldots
\]

\[
< x_1 \eta^* x_1^{-1} \varepsilon^* x_4 b^{-1} x_3 w_l^* \ldots
\]

Comparing the first and last term gives

\[
w_i^{-1} \ldots < w_l^* \ldots,
\]

a contradiction to (iii).
4) In contrast to \(w \) of the form as in (51), one can also have \(w \) given by

\[
\ldots w_{l}^{-1} w_{j} y^{-1} b x^{-1} w_{i} x w_{j}^{-1} y \eta^{*} z w_{l}^{-1} \ldots
\]

(52)

with \(w_{j} = \eta^{*}, \ w_{j} = b^{-1} \). To analyse (52), we distinguish the following cases:

a*) \(|z| = |y|\):
By symmetry in position \(j \), we have \(w_{l} = b^{-1} \). This contradicts \(\text{dir}(v_{l}) = 1 \).

b*) \(|z| < |y|\):
We can write \(y = \bar{y} a z^{-1} \) for a suitable subword \(\bar{y} \) and \(w_{l} = a \). It follows that (52) can be refined to

\[
\ldots w_{j}^{-1} w_{k} x b^{-1} \bar{y} w_{l} y^{-1} b x^{-1} w_{i} x w_{j}^{-1} \bar{y} a z^{-1} \eta^{*} z w_{l}^{-1} \ldots
\]

Note that we have also used symmetry in \(j \) to extend to the left. One has \(\text{ind}_{k}^{j}(w) = |x| \) and \(w_{k} = w_{j} \). Hence, \(\text{dir}(v_{k}) = \text{dir}(v_{j}) = - \text{dir}(v_{l}) \).

c*) \(|y| < |z|\):
We can write \(z = y^{-1} \bar{z} \) with \(w_{j} = b^{-1} \) and \(\bar{z} \) a suitable subword. Refining (52) results in

\[
\ldots w_{l} z^{-1} b^{-1} y w_{j} y^{-1} b x^{-1} w_{i} x w_{j}^{-1} y \eta^{*} y^{-1} b \bar{z} \bar{w}_{l}^{-1} \ldots
\]

(53)

Now \(|\bar{z}| \neq |x| \) (otherwise \(w_{l} = w_{l}^{*} \)). Consider \(|\bar{z}| > |x| \). Then \(\bar{z} = x^{-1} \epsilon^{*} \hat{z} \) with \(w_{l} = \epsilon^{*} \) and \(\hat{z} \) a suitable subword. Thus, (53) can be refined to

\[
\ldots w_{l} z^{-1} \epsilon^{*} x b^{-1} y w_{j} y^{-1} b x^{-1} w_{i} x w_{j}^{-1} y \eta^{*} y^{-1} b \epsilon^{*} \hat{z} \bar{w}_{l}^{-1} \ldots
\]

If \(|\bar{z}| = 0 \), we can write \(x = a^{-1} \bar{x} \) with \(w_{l} = a \) and \(\bar{x} \) a suitable subword. By symmetry in position \(j \), we obtain \(\text{ind}_{k}^{j}(w) = |\bar{x}| + 1 \) and thus \(w_{k} = w_{j} \). It follows that \(\text{dir}(v_{k}) = \text{dir}(v_{j}) = - \text{dir}(v_{l}) \). Now assume \(|\hat{z}| > 0 \) and for contradiction \(\text{dir}(v_{k}) = \text{dir}(v_{l}) \). The following inequalities hold:

(i) position \(k \): \(\hat{z} a^{-1} \ldots > x b^{-1} y \eta^{*} y^{-1} b x^{-1} \epsilon^{*} x b^{-1} y \eta^{*} y^{-1} b x^{-1} \epsilon^{*} \hat{z} c \ldots \)

(ii) position \(l \): \(a^{-1} \ldots > c \ldots \)

(iii) position \(j \): \(y^{-1} b x^{-1} \epsilon^{*} x b^{-1} y \eta^{*} y^{-1} b x^{-1} \epsilon^{*} \hat{z} c \ldots > y^{-1} b x^{-1} \epsilon^{*} \hat{z} a^{-1} \ldots \)

Reducing inequality (iii) from the left by \(y^{-1} b x^{-1} \epsilon^{*} \) and applying (i) afterwards, we obtain

\[
x b^{-1} y \eta^{*} y^{-1} b x^{-1} \epsilon^{*} \hat{z} c \ldots > \hat{z} a^{-1} \ldots
\]

\[
> x b^{-1} y \eta^{*} y^{-1} b x^{-1} \epsilon^{*} x b^{-1} y \eta^{*} y^{-1} b x^{-1} \epsilon^{*} \hat{z} c \ldots
\]

74
We reduce the first and last term on the left by \(xb^{-1}y\eta^*y^{-1}bx^{-1}\varepsilon^* \).
Applying then (ii) results in
\[
\hat{z}c \cdots > xb^{-1}y\eta^*y^{-1}bx^{-1}\varepsilon^*\hat{z} \cdots > \hat{z}a^{-1} \cdots
\]
Comparing the first and last term of this chain of inequalities contradicts the linear ordering on \(\mathcal{W}_{i,i',\kappa}^{pos} \).
Finally, consider \(|\bar{z}| < |x|\). Then write \(x = \bar{x}a^{-1}z\) where \(w_k = a\) and \(\bar{x} \) a suitable subword. The word \(w \) as in (53) can be refined to
\[
\cdots w_j^+ \bar{x}^{-1}w_k \bar{x}w_l \varepsilon^{-1}b^{-1}yw_jy^{-1}b\bar{x}^{-1}z^{-1}w_l x w_l^+ \cdots
\]
It follows that \(\text{ind}^*_j(w) = |x| \) and thus \(w_k^* = w_j^* \). It follows that \(\text{dir}(v_k) = \text{dir}(v_l) = -\text{dir}(v_l) \).

5) \(j_k^* = l_k^* \).
It follows that \(\text{dir}(v_l) = \text{dir}(w_k^*) = \text{dir}(w_j^*) = \text{dir}(v_j) \). By assumption \(\text{dir}(v_l) = -\text{dir}(v_j) \) giving a contradiction.

For \(\text{dir}(v_j) = \text{dir}(v_l) \), we automatically obtain the statement, since we either have \(\text{dir}(v_k) = -\text{dir}(v_l) \) or \(\text{dir}(v_k) = \text{dir}(v_l) \).

\textbf{Example 3.57.} Consider \(\Lambda \), \(w \) and \(v \) from Example 3.52. Recall that \(v \) is weakly consistent. Note that \(w \) is an asymmetric string. For \(j = 4, k = 1 \) and \(l = 7 \) we have
\[
|j - k| = |j - l| = 3, \\
\text{ind}^*_j(w) = 3, \\
\text{ind}^*_k(w) = 0 < \text{ind}^*_j(w), \\
\text{ind}^*_l(w) = 1 < \text{ind}^*_j(w).
\]
The assumptions of Lemma 3.56 are satisfied. We see that
\[
\text{dir}(v_k) = \text{dir}(v_l) = \text{dir}(v_j).
\]

\textbf{Example 3.58.} Consider \(\Lambda \) from Example 2.3.1. Let
\[
w: \quad \varepsilon^*a^{-1}\varepsilon a^*a\varepsilon^*\varepsilon^*
\]
be an asymmetric string. Then
\[
v: \quad \varepsilon^{-1}a^{-1}\varepsilon a\varepsilon a\varepsilon
\]
is a weakly consistent directed version of \(w \). Take \(j = 3, k = 2, l = 5 \). Then we have
\[
|j - k| = |j - l| = 2, \\
\text{ind}^*_j(w) = 2, \\
\text{ind}^*_k(w) = 0 < \text{ind}^*_j(w), \\
\text{ind}^*_l(w) = 0 < \text{ind}^*_j(w).
\]
Furthermore, we see that
\[\text{dir}(v_k) = -\text{dir}(v_l). \]

Lemma 3.59. Let \(w \) be a string of length \(n \), either asymmetric or symmetric, for some \(n \in \mathbb{N} \), and let \(w \) be an asymmetric band. Let \(v \in (\Phi_{ut}^{-1})^{-1}(w) \) (\(v_z \in (\Phi_{ut}^{-1})^{-1}(w_z) \), respectively) be weakly consistent. If \(w \) is a symmetric string of the form \(w'w^{-1} \), assume additionally that \(v = \varepsilon'\varepsilon^{-1} \) for \(\varepsilon \in (\Phi_{ut}^{-1})^{-1}(w) \) and \(\kappa \in \{+1,-1\} \). Let \(j \in I \) (\(I = \{1, \ldots, n\} \) or \(I = \mathbb{Z} \)) and \(\text{ind}^*_\kappa(v) = d < \infty \) (\(\text{ind}^*_\kappa(v_z) = d < \infty \), respectively). Let \(k, l \in I \) with \(k < j < l \), \(|j - k| = |j - l| \leq d \), \(w_k \) and \(w_l \) special letters, and \(\text{ind}^*_\kappa(v) \geq d, \text{ind}^*_\kappa(v) < d \) (\(\text{ind}^*_\kappa(v_z) \geq d, \text{ind}^*_\kappa(v_z) < d \), respectively). Then \(\text{dir}(v_j) = \text{dir}(v_l) \).

Proof. We show the statement for \(w \) an asymmetric string. For symmetric strings and asymmetric bands, the proof is analogous by the same arguments as in Lemma 3.55.

Observe that \(j + \text{ind}^*_\kappa(w) \leq l + \text{ind}^*_\kappa(w) \) (otherwise \(\text{ind}^*_\kappa(w) \leq d \) by symmetry in position \(j \)).

Consider at first the case \(j + \text{ind}^*_\kappa(w) = l + \text{ind}^*_\kappa(w) \). Then \(j^* = l^* \) and thus \(\text{dir}(w_{j^*}) = \text{dir}(w_{l^*}) \). It follows directly that \(\text{dir}(v_j) = -\text{dir}(v_l) \).

Now let \(j + \text{ind}^*_\kappa(w) < l + \text{ind}^*_\kappa(w) \). Then \(j^* < l^* \) also. Assume \(j \notin L^* \). Denote by \(x \) the subword between \(w_l \) and \(w_{j^*} \) and by \(y \) the subword between \(w_{l^*} \) and \(w_{j^*} \).

Assume for contradiction that \(\text{dir}(v_j) = \text{dir}(v_l) \) and without loss of generality that \(\text{dir}(v_j) = -1 \). By symmetry in the positions \(l \) and \(j \), \(w \) is then of the form
\[
\ldots w_{j^*}x^{-1}w_kxb^{-1}yf^{-1}\ldots w_j\ldots w_{l^*}y^{-1}b^{-1}x^{-1}w_jz_{\kappa}y w_{l^*}y \ldots,
\]
where \(w_{j^*} = b^{-1}, w_{l^*} = c^{-1}, w_{l^*} = a \) and \(w_{l^*} = f \). It follows that \(\text{ind}^*_\kappa(w) = |x| < d \) which is a contradiction.

Now consider \(j \in L^* \). Denote by \(y \) the subword of \(w \) between the letters \(w_l \) and \(w_{j^*} \), by \(x \) the one between \(w_j \) and \(w_l \), and by \(z \) the subword of \(w \) between \(w_{j^*} \) and \(w_{l^*} \):
\[
\ldots w_{j^*}y^{-1}w_kx^{-1}w_jy w_{j^*}y w_{l^*}z_{\kappa} \ldots
\]
Then \(\text{ind}^*_\kappa(w) = |x| + |y| + 1 \geq |y| + |z| + 1 = \text{ind}^*_\kappa(w) \) and thus \(|x| > |z| \).

Assume towards a contradiction that \(\text{dir}(v_j) = -\text{dir}(v_l) \) and without loss of generality that \(\text{dir}(v_j) = -1 \). Let \(w_{j^*} = c^{-1} \) and \(w_{l^*} = b^{-1} \).

Assume at first \(\text{dir}(v_k) = 1 \). We obtain the following inequalities from \(v \) being weakly consistent:

(i) from position \(k \): \(yw_{j^*}^{-1} \ldots > x^{-1}w_jxw_lwyw_{j^*}z_{\kappa} \ldots \),

(ii) from position \(j \): \(w_{j^*}z_{\kappa}w_{l^*} \ldots > w_{l^*}^{-1} \ldots \),

76
(iii) from position l: $x^{-1}w_jxw_kyw_j^{-1} \ldots > yw_j^*zw_l^* \ldots$

We extend (ii) from the left by the word y. Applying now the above inequalities in order starting with (i) gives

$$x^{-1}w_jxw_lyw_j^*zw_l^* \ldots < yw_j^{-1} \ldots < yw_j^*zw_l^* \ldots < x^{-1}w_jxw_kyw_j^{-1} \ldots$$

Since $w_k = w_l$, we can reduce the above chain to

$$w_j^*zw_l^* \ldots < w_j^{-1} \ldots$$

By assumption on $\text{dir}(v_j)$, both letters w_j^* and w_j are inverse. Hence, (55) is contradicting the definition of the linear order "$<$" defined in Section 2.3.

Let now $\text{dir}(v_k) = -1$. Observe at first that $|x| > |y|$ in (54) (otherwise, by symmetry in l, $w_j = w_j^*$ giving a contradiction to them being, respectively, of special and ordinary type). We distinguish the different possibilities:

(i) Assume $|x| > |y|$. By symmetry in position l, we can write

$$x = \bar{y}by^{-1}.$$

Thus, (54) can be refined to

$$\ldots w_j^*\bar{y}^{-1}w_kyb^{-1}\bar{y}^{-1}w_j\bar{y}by^{-1}w_lyw_j^*zw_l^* \ldots$$

It follows that $w_{kl} = w_j^*$. Thus, $\text{ind}_j^+(w) = |y| < d$, giving a contradiction to the assumption on the c^*-index of w_k.

(ii) Assume $|x| < |y|$ in (54). By symmetry in position l, we can write

$$y = x^{-1}\eta^*\bar{y}$$

for a suitable subword \bar{y} and $w_j = \eta^*$. Refining (54) by this results in

$$\ldots w_j^*\bar{y}^{-1}\eta^*xw_kx^{-1}w_jxw_lx^{-1}\eta^*\bar{y}w_j^*zw_l^* \ldots$$

(56)

It follows that $|\bar{y}| > |x|$ (otherwise $w_j = w_k$). Hence, let at first $|\bar{y}| > |x|$. Then $x = \bar{y}c\bar{x}$ for a suitable subword \bar{x} and $w_{j^*} = c^{-1}$. The refined version of (56) is given by

$$\ldots w_j^*\bar{y}^{-1}\eta^*\bar{y}c\bar{x}w_k\bar{x}^{-1}c^{-1}\bar{y}^{-1}w_j\bar{y}c\bar{x}w_l\bar{x}^{-1}c^{-1}\bar{y}^{-1}\eta^*\bar{y}w_j^*zw_l^* \ldots$$

(57)

It follows that $w_{j^*} = w_l^*$ and thus $\text{dir}(v_l) = -1$, a contradiction to the assumption on the direction of v_l.

Consider now the case $|\bar{y}| > |x|$. Then $\bar{y} = x\varepsilon^n\bar{y}$ for a suitable subword \bar{y} and $w_l = \varepsilon^n$:

$$\ldots w_j^*\bar{y}^{-1}\varepsilon^n x^{-1}\eta^*xw_kx^{-1}w_jxw_lx^{-1}\eta^*\varepsilon^n\bar{y}w_j^*zw_l^* \ldots$$

(57)

Refining \bar{y} analogously as y and \bar{y} above results in contradictions in the cases $|\bar{y}| > |x|$ and $|\bar{y}| < |x|$ (analogously to the above).
For $|y| > |x|$ we can write $\bar{y} = x^{-1}y^*s$ for a suitable subword s. Thus, we consider now

$$\ldots w_j s^{-1}y^*x^\epsilon x^{-1}y^*xw_k x^{-1}w_j xw_l x^{-1}y^*x^\epsilon x^{-1}y^*sw_j z w_l \ldots$$ (58)

Now, comparing (56) - (58), we see that instead of refining further, we can consider $|s| \to 0$ instead. Assume without loss of generality that $|s| = 0$. This results in $x = \hat{c}x$ for some suitable subword \hat{c}. It follows that $\hat{w}_l = \hat{w}_j$ and thus $\text{dir}(v_l) = -1$. This contradicts our assumption on the direction of v_l.

Example 3.60. Let Λ be as in Example 2.3.1. Let

$$w: \epsilon^*a \epsilon^*a$$

be an asymmetric string. The following word is a weakly consistent directed version of it:

$$v: \epsilon a \epsilon a$$

$i \in \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17\}$

Consider now $j = 11$, $k = 9$ and $l = 13$. We have

$$|j - k| = |j - l| = 2,$$
$$\text{ind}_j^* (w) = 2,$$
$$\text{ind}_k^* (w) = 6 > \text{ind}_j^* (w),$$
$$\text{ind}_l^* (w) = 0 < \text{ind}_j^* (w).$$

We see that

$$\text{dir}(v_j) = \text{dir}(v_l).$$

With these auxiliary lemmas, we are able to prove the following theorem:

Theorem 3.61. Let w be an asymmetric or symmetric string and let w_z be an asymmetric band. Let $v \in (\Phi^w_{\text{asym}})^{-1} (w)$ $(v_z \in (\Phi^w_{\text{asym}})^{-1} (w_z)$, respectively) be a directed version of w (w_z, respectively). Then v (v_z, respectively) is weakly consistent if and only if it is consistent.

Proof. We show the statement for w an asymmetric string. For symmetric strings and asymmetric bands, the proof is analogous by the same arguments as in Lemma 3.55.

Let w be an asymmetric string. Let $v \in (\Phi^w_{\text{asym}})^{-1} (w)$ be consistent and $z \in (\Phi^w_{\text{asym}})^{-1} (w)$ weakly consistent. We show the statement by induction on $\text{ind}_j^* (w)$ for $j \in I = \{1, \ldots, n\}$.

For $\text{ind}_j^* (w) = 0$ it follows that $\text{ind}_j^* (w) = \text{ind}_j^* (w)$. Hence $\hat{w}_l = \hat{w}_j$ and
\(w_j^* = w_j^c \) are of ordinary type. So \(\text{dir}(v_j) = \text{dir}(z_j) \).

Now let \(\text{ind}_j^*(w) = d > 0 \). Again, the statement is clear for \(\text{ind}_j^*(w) = \text{ind}_j^c(w) \), so assume \(\text{ind}_j^c(w) > \text{ind}_j^*(w) \). Let \(k, l \in I \) such that \(k = j^w, l = j^c \). Then

\[
\text{dir}(v_k) = \text{dir}(v_l) = \text{dir}(v_j) \quad (59)
\]

and \(|j - k| = |j - l| \leq d \). Thus we can apply Lemma 3.55 and either have

a) \(\text{ind}_k^*(w) < d \) and \(\text{ind}_l^*(w) < d \), or

b) \(\text{ind}_k^*(w) \geq d \) and \(\text{ind}_l^*(w) < d \).

Let us first consider case a): by induction we obtain

\[
\text{dir}(v_k) = \text{dir}(z_k) \quad \text{and} \quad \text{dir}(v_l) = \text{dir}(z_l).
\]

By Lemma 3.56 we either have \(\text{dir}(z_k) = \text{dir}(z_l) = \text{dir}(z_j) \) and we obtain by (59) the result. Alternatively, we have \(-\text{dir}(z_k) = \text{dir}(z_l) \). Then it follows by induction that \(\text{dir}(v_k) = -\text{dir}(v_l) \), a contradiction to (59), so this case does not occur.

In case b) it follows by induction that \(\text{dir}(v_l) = \text{dir}(z_l) \). By Lemma 3.59 we obtain \(\text{dir}(z_j) = \text{dir}(z_l) \) and using induction on \(l \) and (59) results in \(\text{dir}(v_j) = \text{dir}(v_l) \).

Corollary 3.62. Let \(w = uευ^{-1}u \) be a symmetric string and \(v \in (Φ_{ud}^d)^{-1}(w) \) be (weakly) consistent. Then \(v = tεt^{-1} \) for \(t \in (Φ_{ud}^d)^{-1}(u) \), \(κ \in \{+1, -1\} \).

Corollary 3.63. For any asymmetric string (band, respectively), there exists a unique consistent directed version.

Proof. By Corollary 3.22 we know that there exists a unique weakly consistent directed version for any asymmetric string. Corollary 3.30 gives the same for asymmetric bands. Theorem 3.61 states that any consistent directed version of an asymmetric string or band is also weakly consistent. Thus, uniqueness of a consistent directed version is inherited from the uniqueness of a weakly consistent directed version in both cases.

3.3.2 Directed words from symmetric bands

For symmetric bands, the relation between consistent and weakly consistent orientations is not as intuitive as in the other cases. The two sets of types of directed versions are not equal, but there is merely an embedding of the consistent directed versions in the set of all weakly consistent directed versions.

As in the previous subsection, we will need some auxiliary lemmas in order to describe this embedding.
Lemma 3.64. Let \(w_z \) be a symmetric band of period \(p > 0 \), with periodic part \(\hat{w}_p = \varepsilon^s u \eta^s u^{-1} \). Let \(j \in \mathbb{Z} \) with \(w_j \) a special letter and \(\text{ind}_j^*(w_z) = d < \infty \). Then there do not exist \(k \neq l \in \mathbb{Z} \) with \(w_k, w_l \) special letters, \(|j - k| = |j - l| \leq d \) and \(\text{ind}_k^*(w_z) \geq d, \text{ind}_l^*(w_z) \geq d \).

Proof. Let us first make two observations: by assumption on \(\text{ind}_j^*(w_z) \), we have that \(j \neq 1, -m, -(2m + 1), m + 2 \pmod{p} \). Assume without loss of generality that \(k < j < l \). It follows by Lemma 3.64 that \(\text{ind}_k^*(w_z) < \infty \) and \(\text{ind}_l^*(w_z) < \infty \).

Assume for contradiction that \(k, l \in \mathbb{Z} \) as in the statement exist. By the second observation we know that neither \(k \) nor \(l \) gives the position of one of the symmetry axes. By Lemma 3.64 we only need to consider a finite subword of \(w_z \) to determine the direction on \(w_j \). Hence, the statement follows analogously to the proof of Lemma 3.55 in the previous subsection.

Lemma 3.65. Let \(w_z \) be a symmetric band of period \(p > 0 \) with periodic part \(\hat{w}_p = \varepsilon^s u \eta^s u^{-1} \). Let \(w_z \in (\Phi_{wa}^d)^{-1}(w_z) \) be weakly consistent with periodic copies \(\hat{v}_p^{(i)} = \varepsilon^s u \eta^s t^{-1} \) for \(t \in (\Phi_{wa}^d)^{-1}(u) \) and \(\mu, \kappa \in \{+1, -1\} \). Let \(j \in \mathbb{Z} \) with \(w_j \) a special letter and \(\text{ind}_j^*(w_z) = d < \infty \). Let \(k, l \in \mathbb{Z} \) with \(|j - k| = |j - l| \leq d, w_k, w_l \) both special letters and \(\text{ind}_k^*(w_z) < d, \text{ind}_l^*(w_z) < d \).

Then either \(\text{dir}(v_j) = \text{dir}(v_k) = \text{dir}(v_l) \) or \(\text{dir}(v_k) = -\text{dir}(v_l) \).

Proof. By Lemma 3.46 we consider for \(k, l, j \) each only finite subwords, so also in sum a finite subword of \(w_z \). Thus, the proof is analogous to the proof of Lemma 3.56 of the previous subsection.

Lemma 3.66. Let \(w_z \) be a symmetric band of period \(p > 0 \) with periodic part \(\hat{w}_p = \varepsilon^s u \eta^s u^{-1} \). Let \(w_z \in (\Phi_{wa}^d)^{-1}(w_z) \) be weakly consistent with periodic copies \(\hat{v}_p^{(i)} = \varepsilon^s u \eta^s t^{-1} \) for \(t \in (\Phi_{wa}^d)^{-1}(u) \) and \(\mu, \kappa \in \{+1, -1\} \). Let \(j \in \mathbb{Z} \) with \(w_j \) a special letter and \(\text{ind}_j^*(w_z) = d < \infty \). Let \(k, l \in \mathbb{Z} \) with \(|j - k| = |j - l| \leq d, w_k, w_l \) both special letters and \(\text{ind}_k^*(w_z) \geq d, \text{ind}_l^*(w_z) < d \).

Then \(\text{dir}(v_j) = \text{dir}(v_l) \).

Proof. By the same arguments as in the previous proofs, this proof is analogous to the proof of Lemma 3.59 of the previous subsection.

Now we are able to relate consistent directed versions to weakly consistent ones of symmetric bands.

Proposition 3.67. Let \(w_z \) be a symmetric band of period \(p \) with periodic part \(\hat{w}_p = \varepsilon^s u \eta^s u^{-1} \). Let \(x_z \in (\Phi_{wa}^d)^{-1}(w_z) \) be weakly consistent with periodic copies \(\hat{x}_p^{(i)} = \varepsilon^s u \eta^s t^{-1} \), where \(s \in (\Phi_{wa}^d)^{-1}(u) \) and \(\sigma, \delta \in \{+1, -1\} \). Furthermore, let \(x_z \in (\Phi_{wa}^d)^{-1}(w_z) \) be consistent with periodic copies \(\hat{v}_p^{(i)} = \varepsilon^s u \eta^s t^{-1} \) for \(t \in (\Phi_{wa}^d)^{-1}(u) \) and \(\mu, \kappa \in \{+1, -1\} \).

Then one has for all \(j \in \mathbb{Z} \) with \(w_j \) a special letter and \(\text{ind}_j^*(w_z) < \infty \) that \(\text{dir}(v_j) = \text{dir}(x_j) \)
Proof. By Lemma 3.46, we only need to consider a finite subword for j in order to check on consistency and weak consistency. Thus, the proof is analogous to the proof of Theorem 3.61, using Lemmas 3.64, 3.65 and 3.66.

Corollary 3.68. Let w_z be a symmetric band of period p with periodic part $\hat{w}_p = \varepsilon^* u \eta^* u^{-1}$. Then any consistent $v_z \in (\Phi_{w_z}^d)^{-1}(w_z)$ preserves the symmetry axes of w_z with respect to u.

Proof. The statement follows directly from Proposition 3.67.

Example 3.69. Let Λ be as in Example 2.3.1 and let w_z be a symmetric band of period 8 with

$$\hat{w}_p = \varepsilon^* a \varepsilon^* a \varepsilon^* a^{-1} \varepsilon^* a^{-1},$$
$$u = a \varepsilon^* a.$$

Let v_z be a consistent directed version of w_z. Then

$$\hat{v}_p^{(i)} = \varepsilon^{\mu_i} a \varepsilon^i \varepsilon^\kappa_i a^{-1} \varepsilon^{-1} a^{-1},$$
$$t = a \varepsilon^a,$$

for all $i \in \mathbb{Z}$, where $\mu_i, \kappa_i \in \{+1, -1\}$ and t is a directed version of u.

Proposition 3.70. Let w_z be a symmetric band of period p with periodic part $\hat{w}_p = \varepsilon^* u \eta^* u^{-1}$. Let $v_z \in (\Phi_{w_z}^d)^{-1}(w_z)$ be a directed version of w_z with periodic copies $\hat{v}_p^{(i)} = \varepsilon^{\mu_i} \eta \varepsilon^i \varepsilon^{-1} a^{-1}$ for $t \in (\Phi_{w_z}^d)^{-1}(u)$ and $\mu_i, \kappa_i \in \{+1, -1\}$. Then v_z is consistent if and only if it is of one of the following four types:

1) $\mu_i = \kappa_i = -1$ for all $i \in \mathbb{Z}$,

2) $\mu_i = \kappa_i = 1$ for all $i \in \mathbb{Z}$,

3) (unique sink) there exists a unique $j \in \mathbb{Z}$ such that:

$$\mu_i = \kappa_i = \begin{cases} -1 & \forall i \leq j, \\ 1 & \forall i > j, \end{cases}$$

4) (unique source) there exists a unique $j \in \mathbb{Z}$ such that:

$$\mu_i = \kappa_i = \begin{cases} 1 & \forall i \leq j, \\ -1 & \forall i > j. \end{cases}$$

Proof. By Corollary 3.68 we know that the symmetry axes of w_z are preserved by consistency, i.e. any consistent $x_z \in (\Phi_{w_z}^d)^{-1}(w_z)$ has periodic copies of the form $\hat{x}_p^{(i)} = \varepsilon^{\mu_i} s \eta s^{-1}$, for $\mu_i, \kappa_i \in \{+1, -1\}$, $s \in (\Phi_{w_z}^d)^{-1}(u)$.

...
we can reduce each subword \(u \) and \(u^{-1} \) to a vertex and only consider the symmetry axes to show consistency. Thus, any periodic part \(w_p^{(i)} = \varepsilon^{\mu_i} \eta^{\nu_i} u^{\kappa_i} u^{-1} \) is being reduced to \(\varepsilon^{\mu_i} \eta^{\nu_i} \). To do so, we use a new indexing of the letters, only referring to those giving symmetry axes. We denote by \(\tilde{v}_z \) the thus reduced version of \(v_z \). Then, \(v_z \) is consistent if and only if \(\tilde{v}_z \) is consistent. We can picture \(\tilde{v}_z \) with respect to 1) - 4) as follows:

1) \(\ldots \rightarrow \rightarrow \rightarrow \rightarrow \ldots \),
2) \(\ldots \leftarrow \leftarrow \leftarrow \leftarrow \ldots \),
3) \(\ldots \rightarrow j \leftarrow \leftarrow \leftarrow \ldots \),
4) \(\ldots \leftarrow j \rightarrow \rightarrow \rightarrow \ldots \).

Let us first show that \(\tilde{v}_z \) given by 1) - 4) is consistent:

1) As we can see, we have \(\text{ind}_j^c(\tilde{v}_z) = 0 \) for all \(j \in \mathbb{Z} \). Hence, \(\text{dir}(\tilde{v}_j) \) is uniquely determined and we have

\[
\tilde{v}_{j-1} = \tilde{v}_j \quad \text{and} \quad \tilde{v}_{j+1} = \tilde{v}_j
\]

for any \(j \in \mathbb{Z} \). Now \(\tilde{v}_j^{-1} \leq \tilde{v}_{j+1} \) and thus

\[
(\tilde{v}_z[< j])^{-1} < \tilde{v}_z[> j].
\]

Thus, any \(\tilde{v}_z \) of form 1) is consistent.

2) This case is analogous to 1) with reversed inequalities.

3) For all \(j \in \mathbb{Z} \) with \(\text{ind}_j^c(\tilde{v}_z) = 0 \), the result is clear by the same arguments as given in case 1).

Let us now consider \(\tilde{v}_j, \tilde{v}_{j+1} \) for \(j \in \mathbb{Z} \) with \(\text{ind}_j^c(\tilde{v}_z), \text{ind}_{j+1}^c(\tilde{v}_z) > 0 \). By the form of 3), there exists only one pair of indices with this property, namely the two neighbouring letters with opposite directions: \(\text{dir}(\tilde{v}_j) = - \text{dir}(\tilde{v}_{j+1}) \). We have

\[
\text{for all } i \leq j: \quad \text{dir}(\tilde{v}_i) = \text{dir}(\tilde{v}_j),
\]

\[
\text{for all } k \geq j + 1: \quad \text{dir}(\tilde{v}_k) = \text{dir}(\tilde{v}_{j+1}).
\]

It follows \(\text{dir}(\tilde{v}_i) = - \text{dir}(\tilde{v}_k) \) for all \(i \leq j, k \geq j + 1 \). Thus,

\[
(\tilde{v}_z[< j])^{-1} = \tilde{v}_z[> j],
\]

\[
(\tilde{v}_z[< (j-1)])^{-1} = \tilde{v}_z[> (j+1)]
\]

giving \(\text{ind}_j^c(\tilde{v}_z) = \infty = \text{ind}_{j+1}^c(\tilde{v}_z) \). Hence, any \(v_z \) of type 3) is consistent.

4) The proof of this case is analogous to case 3).
Conversely, assume that \(\hat{v}_z \) is consistent.

If all letters of \(\hat{v}_z \) have the same direction, i.e. \(\text{ind}^c_j(\hat{v}_z) = 0 \) for all \(j \in \mathbb{Z} \), then \(\hat{v}_z \) is of type 1) or 2).

Assume now that there exists \(j \in \mathbb{Z} \) with \(\text{ind}^c_j(\hat{v}_z) > 0 \), i.e., one has for its direct neighbours \(\hat{v}_{j-1}, \hat{v}_{j+1} \) that \(\text{dir}(\hat{v}_{j-1}) = - \text{dir}(\hat{v}_{j+1}) \). Assume without loss of generality that \(\text{dir}(\hat{v}_j) = \text{dir}(\hat{v}_{j-1}) \). Then the vertex between \(\hat{v}_j \) and \(\hat{v}_{j+1} \) is either a source or a sink. Let \(x = x_1 \ldots x_k \) be a finite subword of \(\hat{v}_z \) with \(x_1 = \hat{v}_{j+1} \) and \(\text{dir}(x_i) = \text{dir}(\hat{v}_j) \) for all \(1 \leq i \leq k \). Similarly let \(z = z_1 \ldots z_l \) be a finite subword of \(\hat{v}_z \) with \(z_1 = \hat{v}_j \) and \(\text{dir}(z_i) = \text{dir}(\hat{v}_j) \) for all \(1 \leq i \leq l \).

Assume without loss of generality that \(|x| < |z| \). Denote by \(y \) the \(\mathbb{N} \)-subword of \(\hat{v}_z \) starting on the right hand side of \(x \) and assume \(\text{dir}(y_1) = - \text{dir}(x_k) \).

Thus, we assume that \(\hat{v}_z \) is none of the above types, in particular it is neither of type 3) nor of type 4). We obtain that

\[
\text{ind}^c_{j+1}(\hat{v}) = |x| - 1, \quad \text{and}
\begin{align*}
(j + 1)^c &= (j + 1) - (|x| - 1) - 1 = j + 1 - |x|, \\
(j + 1)^e &= (j + 1) + (|x| - 1) + 1 = j + 1 + |x|.
\end{align*}
\]

It follows that \(\text{dir}(\hat{v}_{j+1}) = \text{dir}(\hat{v}_j) \) giving a contradiction. \(\square \)

Corollary 3.71. Let \(w_z \) be a symmetric band of period \(p \) with periodic part \(\hat{w}_p = \varepsilon^tr\eta^ru^{-1} \). Let \(v_z \in (\Phi_{\omega_1}^{-1}\omega_2) \) be weakly consistent, given by one of the types 1) - 4) of Proposition 3.70 and with periodic copies \(\hat{v}_p^{(i)} = \varepsilon^{\mu_i}t\eta^{\kappa_i}t^{-1} \) where \(t \in (\Phi_{\omega_1}^{-1}\omega_2) \) and \(\mu_i, \kappa_i \in \{+1, -1\} \). Then \(v_z \) is consistent.

Proof. The result follows from Proposition 3.67 and 3.70: by Proposition 3.67 we know that weakly consistent and consistent orientations coincide on those \(j \in \mathbb{Z} \) with \(\text{ind}^c_j(w_z) < \infty \). Proposition 3.70 gives that letters \(v_j \) with \(\text{ind}^c_j(w_z) = \infty \) are consistent for the types 1) - 4). \(\square \)
3.4 Formulation of Main Theorem

We have now considered all components which are necessary to state the main theorem of this thesis. The proof of it will be given later (Chapter 6, Theorem 6.10).

For an easier formulation, we denote by W_i the following set of words, and by C_i the following category ($i = 1, 2, 3, 4$):

<table>
<thead>
<tr>
<th>i</th>
<th>W_i</th>
<th>C_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>asymmetric strings</td>
<td>mod k</td>
</tr>
<tr>
<td>2</td>
<td>symmetric strings</td>
<td>mod $k[f</td>
</tr>
<tr>
<td>3</td>
<td>asymmetric bands</td>
<td>mod $k[T, T^{-1}]$</td>
</tr>
<tr>
<td>4</td>
<td>symmetric bands</td>
<td>mod $k(e, f</td>
</tr>
</tbody>
</table>

Furthermore, we denote by V_i a complete set of all finite dimensional, pairwise non-isomorphic indecomposable modules of C_i, $i = 1, 2, 3, 4$.

Let $w \in W_1$, V be a C_1-module. Then we denote by $M_1(w, V)$ the following module:

$$V_0 \xrightarrow{w_1} V_1 \xrightarrow{w_2} V_2 \xrightarrow{w_3} \cdots \xrightarrow{w_n} V_n,$$

where

$$\nu_i = \begin{cases} 1 & \text{if } (w[i])^{-1} > w[i], \\ -1 & \text{else} \end{cases}$$

for all $i \in I$ with w_i a special letter, and where the V_i's are disjoint copies of V.

Let $w = uw_1u^{-1} \in W_2$ and let V be a C_2-module. Then we denote by $M_2(w, V)$ the following module:

$$V_0 \xrightarrow{w_1} V_1 \xrightarrow{w_2} V_2 \xrightarrow{w_3} \cdots \xrightarrow{w_m} V_m,$$

where

$$\nu_i = \begin{cases} 1 & \text{if } (w[i])^{-1} > w[i], \\ -1 & \text{else} \end{cases}$$

for all $1 \leq i \leq m$, with w_i a special letter, and where the V_i's are disjoint copies of V.

Let $w_2 \in W_3$ be of period p, and let V be a C_3-module. We denote by $M_3(w, V)$ the module

$$V_0 \xrightarrow{w_1} V_1 \xrightarrow{w_2} V_2 \xrightarrow{w_3} \cdots \xrightarrow{w_{p-1}} V_{p-1},$$

where

$$\nu_i = \begin{cases} 1 & \text{if } (w[i])^{-1} > w[i], \\ -1 & \text{else} \end{cases}$$

for all $1 \leq i \leq m$, with w_i a special letter, and where the V_i's are disjoint copies of V.
where

\[\kappa_i = \begin{cases}
1 & \text{if } (w_{z[i]}^{-1})^{-1} > w_{z[i+1]}, \\
-1 & \text{else},
\end{cases} \]

for \(i \in \mathbb{Z} \) with \(w_i \) a special letter, and where the \(V_i \)'s are disjoint copies of \(V \).

Let \(w_z \in W_4 \) be of period \(p \) with periodic part \(\bar{w}_p = \epsilon^* \eta \epsilon \), and let \(V \) be a \(C_4 \)-module. We denote by \(M_i(v, V) \) the module

\[\epsilon \psi e \bigcup V_0 \xrightarrow{w_2} V_1 \xrightarrow{w_4} V_2 \xrightarrow{w_{m+1}} V_m \psi f, \]

where

\[\kappa_i = \begin{cases}
1 & \text{if } (w_{z[i]}^{-1})^{-1} > w_{z[i+1]}, \\
-1 & \text{else},
\end{cases} \]

for all \(2 \leq i \leq m + 1 \) with \(w_i \) a special letter, and where the \(V_i \)'s are disjoint copies of \(V \).

The exponents \(\kappa_i \) with \(i \in I \) such that \(w_i \) is an ordinary letter, are given by the respective exponents in \(w \) or \(w_z \), respectively, in the above descriptions of \(M_i(w, V) \), \(M_i(w_z, V) \), respectively. Our final classification result reads as follows:

Main Theorem: Let \(\Lambda \) be a clannish algebra. The modules of the form \(M_i(w, V) \), \(i = 1, 2, 3, 4 \), with \(w \) running through \(W_i \) and \(V \) running through \(V_i \), give a complete list of finite dimensional, pairwise non-isomorphic indecomposable modules of \(\Lambda \).

Remark 3.72. We can see by the definition of \(M_i(w, V) \) and \(M_i(w_z, V) \) that we actually consider modules arising from weakly consistent directed versions of \(w \) for the asymmetric cases. Recall that they coincide with consistent directed versions for those two cases.

Similarly, we know by Theorem 3.61 that the set of weakly consistent and consistent directed versions of symmetric strings coincide. We consider those versions here, too.

The case of a symmetric band is - as before - the most complicated one and requires further investigation. On first sight it might seem to behave similar to the other cases with respect to its directed versions, but we need to be careful here: the directions chosen on the symmetry axes are hidden in the action of \(e \) and \(f \) on the vector space.
4 Formulation of a matrix problem

In this chapter, we reduce the setting to skewed-gentle algebras (see Section 4.3) and give an explicit construction of a bundle of semichains for a given skewed-gentle algebra. In order to do so, we first present in Section 4.1 the results and constructions on representations of bundles of semichains \overline{X} from [Bon88, Bon91]. We introduce in particular the sets $\mathcal{S}(L)$ of so-called simple, admissible L-chains, and the set of so-called simple L-cycles $\mathcal{S}(L)$. Starting from those sets, [Bon91] gives a nice construction of the canonical \overline{X}-representations which finally lead to a classification of those. By transforming our classification problem into the classification problem presented in those papers, we are able to use their classification results for our purposes. Before doing so, we give an explicit description of the category $\text{Rep}(\overline{X})$ of representations of the bundle of semichains \overline{X} (cf. Section 4.2).

We proceed in Section 4.4 with the above mentioned construction of a bundle of semichains \overline{X}_{Λ} for a given skewed-gentle algebra Λ and thus prove that such a bundle always exists for a skewed gentle algebra (Theorem 4.70). Furthermore, our method describes a unique way of constructing the bundle. In Section 4.5 and 4.6, we describe how to obtain L-graphs from words in $\Gamma_{\text{ad}}(\Lambda)$. We find in particular that words given by asymmetric and symmetric strings result in simple, admissible L-chains (Theorem 4.113). Similarly, we can obtain such L-chains from symmetric bands (Theorem 4.113). We also see that asymmetric and symmetric bands result in simple L-cycles (Theorem 4.130). To this end, the notion of minimal and coadmissible words becomes important (cf. Chapter 2). Finally, we are able to show that there exists a 1-1-correspondence between strings and symmetric bands and the isomorphism classes of simple, admissible L-chains (Corollary 4.117). Similarly, we see that there exists a 1-1-correspondence between asymmetric and symmetric bands and the isomorphism classes of simple L-cycles (Corollary 4.142).

Another advantage of our construction is described in Section 4.7: we show here that the directions on L-graphs coincide with the directions on special letters of finite index due to the way we construct the bundle. Chapter 5 will show in which way this result helps us for the classification of the indecomposable modules.

4.1 Matrix problem for bundles of semichains

We introduce in this section the notion of a bundle of semichains and their representations after [Bon91]. Therefore, we stay close to the structure of [Bon91]. Furthermore, we outline the strategy for the classification of the indecomposable representations of bundles of semichains given in [Bon91] and proven in [Bon88]. We also cite useful properties with respect to this classification from [Bon88].
We start with some definitions and notation.

4.1.1 Bundles of semichains

Definition 4.1. Let \(\Pi \) be a finite partially ordered set. Then \(\Pi \) is a semichain if it can be written as a disjoint union

\[
\Pi = \bigsqcup_{i=1}^{k} \Pi_i,
\]

such that each \(\Pi_i \) consists of either one element or two incomparable elements and such that for all \(x \in \Pi_i \) and \(y \in \Pi_j \) with \(i < j \) one has \(x < y \).

The sets \(\Pi_i \) are called links of \(\Pi \).

We denote the elements of a two-point link \(\Pi_i \) by \(x^+, x^- \), respectively, and write \(x^+ \not\leq x^- \) to denote their incomparability.

Remark 4.2. If each \(\Pi_i \) consists of one point, then \(\Pi \) is called a chain.

Example 4.3. The semichain \(\Pi = \Pi_1 \cup \Pi_2 \) with \(\Pi_1 = \{1\} \), \(\Pi_2 = \{2^+, 2^-\} \) can be depicted in a Hasse diagram in the following way:

\[
\begin{array}{c}
2^+ \\
\downarrow \\
1 \\
\uparrow \\
2^-
\end{array}
\]

Denote by \(\mathcal{X} = \{ \mathcal{C}_1, \ldots, \mathcal{C}_N, \mathcal{R}_1, \ldots, \mathcal{R}_N \} \) a family of pairwise disjoint semichains, that is,

\[
\begin{align*}
\mathcal{C}_i \cap \mathcal{C}_j &= \emptyset \quad \forall i \neq j, \\
\mathcal{R}_i \cap \mathcal{R}_j &= \emptyset \quad \forall i \neq j, \\
\mathcal{C}_i \cap \mathcal{R}_j &= \emptyset \quad \forall i, j.
\end{align*}
\]

Moreover, denote by

\[
\mathcal{C} = \bigcup_{i=1}^{N} \mathcal{C}_i, \quad \mathcal{R} = \bigcup_{i=1}^{N} \mathcal{R}_i
\]

the union of the respective semichains.

Definition 4.4. We call elements of \(\mathcal{C} \) column labels and those of \(\mathcal{R} \) row labels. Accordingly, any \(\mathcal{C}_i \) and \(\mathcal{C} \) itself, any \(\mathcal{R}_i \), \(\mathcal{R} \) itself is called a column label set and row label set, respectively.

Denote by \(\mathcal{L}(\mathcal{C}_i) \) or \(\mathcal{L}(\mathcal{R}_i) \) the set of links of the semichain \(\mathcal{C}_i \) or \(\mathcal{R}_i \), respectively. The union of the sets \(\mathcal{L}(\mathcal{C}_1), \ldots, \mathcal{L}(\mathcal{C}_n) \) is denoted by \(\mathcal{L}(\mathcal{C}) \), and the union of \(\mathcal{L}(\mathcal{R}_1), \ldots, \mathcal{L}(\mathcal{R}_n) \) similarly by \(\mathcal{L}(\mathcal{R}) \). Moreover, we set \(\mathcal{L} = \mathcal{L}(\mathcal{X}) = \mathcal{L}(\mathcal{C}) \cup \mathcal{L}(\mathcal{R}) \). Denote by \(\mathcal{X}_0 = \mathcal{C} \cup \mathcal{R} \) the set of elements of \(\mathcal{C} \) and \(\mathcal{R} \). Let \(\sigma \) be an involution (that is, \(\sigma^2 = \text{id} \)) on \(\mathcal{X}_0 \) such that \(\sigma(X) = X \) for all elements \(X \) belonging to a two-point link.
Definition 4.5. A bundle of semichains is a pair $\overline{X} = (X, \sigma)$ where $X = \{C_1, \ldots, C_N, R_1, \ldots, R_N\}$ is a family of pairwise disjoint semichains and σ an involution on the set X_0 of elements of the semichains.

Example 4.6. Let $N = 2$, $X = \{C_1, C_2, R_1, R_2\}$, where $C_1 = \{C_1^+, \ldots, C_1^{+}\}$, $C_2 = \{C_2^1\}$, $R_1 = \{R_1^11 > R_1^12\}$, $R_2 = \{R_2^1\}$. Let σ be given by
\[
\sigma : R_1^11 \mapsto C_2^1, \quad R_1^12 \mapsto R_2^1, \quad C_1^1 \mapsto C_1^1, \quad \zeta \in \{+, -\}.
\]
Then $\overline{X} = (X, \sigma)$ is a bundle of semichains.

Example 4.7. Let $N = 1$, $C_1 = \{C_1^+, C_1^-\}$, $R_1 = \{R_1^11 > R_1^12 > R_1^13\}$ and σ acts as follows:
\[
C_1^\zeta \mapsto C_1^\zeta, \quad \zeta \in \{+, -\},
\]
\[
R_1^12 \mapsto R_1^12,
\]
\[
R_1^13 \mapsto R_1^13.
\]
This gives for $X = \{C_1, R_1\}$ the bundle $\overline{X} = (X, \sigma)$.

Definition 4.8. A representation of the bundle $\overline{X} = (X, \sigma)$ over k is given by a collection of the form $U = (U_X, U^i)_{X \in X_0, 1 \leq i \leq N}$ such that
- U_X is a finite dimensional k–vector space of the form k^{n_X} where $n_X = \dim(U_X)$ and such that $\dim(U_X) = \dim(U_{\sigma(X)})$.
- $U^i : \bigoplus_{C \in C_i} U_C \to \bigoplus_{R \in R_i} U_R$ is a k–linear map for each $1 \leq i \leq N$. Equivalently, U^i can be expressed as a finite matrix with band structure given as follows:
 - horizontal bands are indexed by the elements $R \in R_i$,
 - vertical bands are indexed by the elements $C \in C_i$.

We denote by $P(X)$ the band indexed by $X \in X_0$. Then
- the band $P(X)$ has $\dim(U_X)$ rows (columns) if $X \in R$ ($X \in C$).

Remark 4.9. Note that for some elements $X \in X_0$ the corresponding band $P(X)$ may be empty.

We are going to see examples for \overline{X}-representations in Subsection 4.1.4.

Definition 4.10. Let $U = (U_X, U^i)_{X,i}$ and $V = (V_X, V^i)_{X,i}$ be two representations of \overline{X}. Then U and V are said to be equivalent if for any $i \in \{1, \ldots, N\}$ the matrices U^i and V^i can be obtained one from the other by a sequence of transformations of the following types:
1. Perform an arbitrary elementary transformation of the rows (respectively columns) within the band $P(X)$ in U^i, $X \in \mathcal{R}_i$ ($X \in \mathcal{C}_i$), for any $1 \leq i \leq N$, but

1a. if $\sigma(X) = Y$ with $X \in \mathcal{R}_i$, $Y \in \mathcal{R}_j$ ($X \in \mathcal{C}_i$, $Y \in \mathcal{C}_j$), for some $1 \leq j \leq N$, then perform the same transformation on the band $P(Y)$ in U^j.

1b. if $\sigma(X) = Y$ with $X \in \mathcal{R}_i$, $Y \in \mathcal{C}_j$ ($X \in \mathcal{C}_i$, $Y \in \mathcal{R}_j$), for some $1 \leq j \leq N$, then perform the inverse transformation on the band $P(Y)$ in U^j.

2. For $X < Y$ in \mathcal{R}_i (\mathcal{C}_j) for some $1 \leq i \leq N$, add a multiple of the band $P(X)$ to the band $P(Y)$ within the matrix U^i.

Transformations of the types 1,1a,1b and 2 are called admissible.

Remark 4.11. We will make use of admissible transformations in particular in Section 4.2 in order to define the category of representations of a bundle of semichains.

Definition 4.12. Let U and W be two representations of the bundle \overline{X}. Then the direct sum $U \oplus W$ of the two representations is defined as follows:

- The vector space $(U \oplus W)_X$ for $X \in \mathcal{X}_0$ is given by $U_X \oplus W_X$.

- The matrix $(U \oplus W)^i$ for $i \in \{1, \ldots, N\}$ is given by

$$U^i \oplus W^i : \left(\bigoplus_{C \in \mathcal{C}_i} U_C \right) \oplus \left(\bigoplus_{C \in \mathcal{C}_i} W_C \right) \xrightarrow{(U^i \ 0 \ \ W^i)} \left(\bigoplus_{R \in \mathcal{R}_i} U_R \right) \oplus \left(\bigoplus_{R \in \mathcal{R}_i} W_R \right).$$

Remark 4.13. Note that the intuitive definition of a direct sum of two representations would be to define $U^i \oplus W^i$ as maps

$$\bigoplus_{C \in \mathcal{C}_i} (U_C \oplus W_C) \rightarrow \bigoplus_{R \in \mathcal{R}_i} (U_R \oplus W_R).$$

We use the natural isomorphism between these direct sums and the respective ones given in Definition 4.12 in order to define them as we did.

Definition 4.14. Let U be a representation of the bundle \overline{X}. Then U is indecomposable if it is not equivalent to the direct sum of two non-trivial representations of \overline{X}. 90
4.1.2 \(L \)-graphs

The aim of this subsection is to define \(L \)-graphs. From those we construct in the next subsection certain representations of \(\mathcal{X} \).

Recall that \(L = L(\mathcal{X}) \) denotes the set of links arising from the semichains in \(\mathcal{X} \). In the following we identify links consisting of one point with the corresponding point itself. The number of points of a link \(X \) is denoted by \(r(X) \).

We are going to consider the following two symmetric binary relations on \(L \):

Definition 4.15.

a) The relation \(\alpha \subseteq L \times L \) is given by the tuples \((X,Y)\) such that

- either \(X \neq Y, \ r(X) = r(Y) = 1, \ \sigma(X) = Y, \)
- or \(X = Y, \ r(X) = 2. \)

If \((X,Y) \in \alpha\), we write \(X \alpha Y \).

b) The relation \(\beta \subseteq L \times L \) is given by the tuples \((X,Y)\) such that

- either \(X \in L(C_i), \ Y \in L(R_i), \)
- or \(X \in L(R_i), \ Y \in L(C_i), \) for some \(1 \leq i \leq N. \)

For \(\gamma \in \{\alpha, \beta\} \), we say that two links \(X,Y \in L \) are in \(\gamma \)-relation, if \(X \gamma Y \) holds. We write \(X \bar{\gamma} Y \) if \(X \) and \(Y \) are not in \(\gamma \)-relation.

Remark 4.16. Let \(X \in L \). It follows by definition:

- \(X \alpha X \) if and only if \(X \) is a two-point link,
- \(X \bar{\alpha} X \) if and only if \(X \) is a one-point link.

Example 4.17. Consider the bundle of semichains given in Example 4.7.
Let \(C_{11} \) denote the link containing the two points \(C_1^+ \) and \(C_2^- \). We identify the other links only consisting of one point with the points themselves. Then we obtain the following relations:

- \(R_{1j} \beta C_{11} \) for any \(1 \leq j \leq 3, \)
- \(C_{11} \alpha C_{11}, \)
- \(R_{11} \alpha R_{13}, \)
- \(R_{12} \bar{\alpha} X \) for any \(X \in C_4 \cup R_1. \)

Next, we define an \(L \)-graph. To this end, let \(\Omega \) be the set of finite non-oriented graphs consisting of chains and cycles of the form

\[
\bullet \stackrel{\rho_1}{\longrightarrow} \bullet \quad \cdots \quad \bullet \stackrel{\rho_{m-1}}{\longrightarrow} \bullet \stackrel{\rho_m}{\longrightarrow} \bullet \quad m \geq 1
\]
Denote in the following by
\[\tilde{m} = \begin{cases}
 m - 1 & \text{if } C \text{ is a chain of length } m, \\
 m & \text{if } C \text{ is a cycle of length } m.
\end{cases} \]
the number of edges in the graph \(C \). For cycles, we consider in the following indices \(i > m \) modulo \(m \).

Definition 4.18. Let \(C = (c_i, \rho_j)_{1 \leq i \leq m-1, 1 \leq j \leq \tilde{m}} \in \Omega \). An \(\Sigma \)-graph on \(C \) is a function \(g: C \rightarrow \Sigma \cup \{\alpha, \beta\} \) with
\[g(c_i) \in \Sigma, \quad \text{for all } 1 \leq i \leq m, \]
\[g(\rho_j) \in \{\alpha, \beta\}, \quad \text{for all } 1 \leq j \leq \tilde{m}, \]
such that the following holds:
\begin{itemize}
 \item[a)] If \(\rho_i \) connects the nodes \(c_i \) and \(c_{i+1} \) in \(C \), then \(g(c_i)g(\rho_i)g(c_{i+1}) \).
 \item[b)] For \(\rho_i \) and \(\rho_{i+1} \) neighbouring edges in \(C \), then \(g(\rho_i) \neq g(\rho_{i+1}) \).
 \item[c)] If \(C \) is a cycle, and \(g(c_m), g(c_1) \) are one-point links, then \(g(\rho_m) \neq \alpha \).
\end{itemize}
The length of an \(\Sigma \)-graph \(g \) is denoted by \(|g| \) and given by the number \(m \) of nodes in \(C \).

Remark 4.19. Note that we have added condition c) in Definition 4.18 in contrast to the original [Bon91]. This condition has to be given in order to guarantee a correct notion of equivalence.

Definition 4.20. We call an \(\Sigma \)-graph \(g \) on a chain \(C \) an \(\Sigma \)-chain and an \(\Sigma \)-graph \(g \) on a cycle \(C \) an \(\Sigma \)-cycle.

We denote in the following \(x_i = g(c_i) \) and \(\lambda_{i,i+1} = g(\rho_i) \). Thus, we can describe an \(\Sigma \)-graph \(g \) uniquely by the sequences \(g_0 = \{x_0, \ldots, x_m\} \) and \(g_1 = \{\lambda_{12}, \ldots, \lambda_{m-1,m}\} \) \((g_0 = \{\lambda_{12}, \ldots, \lambda_{m,1}\}, \text{ respectively}) \). Using for an \(\alpha \)-relation the symbol \(\sim \), and for a \(\beta \)-relation the symbol \(\sim \), we can depict an \(\Sigma \)-cycle as
\[x_1 \sim x_2 \sim \cdots \sim x_{m-1} \sim x_m \]
\[\text{or} \quad x_1 \sim x_2 \sim \cdots \sim x_{m-1} \sim x_m \]
depending on \(g_1 \). Recall that the second kind of depiction only is given if \(x_1 \) and \(x_m \) are not one-point links. We depict an \(\Sigma \)-chain in a similar way.

Example 4.21. Let \(\overline{X} \) be given as in Example 4.7 with relations as in Example 4.17. Then
1. \(g : R_{12} - C_{11} \sim C_{11} - R_{13} \sim R_{11} - C_{11} \) is an \(\mathcal{L} \)-chain, and

2. the following is an \(\mathcal{L} \)-cycle:

\[
\begin{align*}
\rightarrow \quad & R_{12} - C_{11} \sim C_{11} - R_{13} \sim R_{11} - C_{11} - R_{13} - C_{11} - R_{11} - C_{11} - R_{12} - C_{11}.
\end{align*}
\]

Using the description of an \(\mathcal{L} \)-graph \(g \) via the two sequences \(g_0 \) and \(g_1 \), it is easy to define the corresponding reversed graph \(g^* \), or to compare \(g \) to a second graph:

Definition 4.22. Let \(g \) be an \(\mathcal{L} \)-graph with sequence of links \(g_0 = \{x_1, \ldots, x_m\} \) and sequence of relations \(g_1 = \{\lambda_{12}, \ldots, \lambda_{m-1,m}\} \) (\(g_0 = \{\lambda_{12}, \ldots, \lambda_{m,1}\} \), respectively). Its reversed \(\mathcal{L} \)-graph \(g^* \) is given by

\[
\begin{align*}
g_0^* &= \{x_m, \ldots, x_1\}, \\
g_1^* &= \begin{cases}
\{\lambda_{m-1,m}, \ldots, \lambda_{12}\} & \text{if } g \text{ an } \mathcal{L} \text{-chain}, \\
\{\lambda_{m-1,m}, \ldots, \lambda_{12}, \lambda_{m,1}\} & \text{if } g \text{ an } \mathcal{L} \text{-cycle}.
\end{cases}
\end{align*}
\]

Definition 4.23. Let \(g \) and \(h \) be two \(\mathcal{L} \)-graphs given by \(g_0 = \{x_1, \ldots, x_m\} \), \(g_1 = \{\lambda_{12}, \ldots, \lambda_{i,j}\} \) and \(h_0 = \{y_1, \ldots, y_{m'}\} \), \(h_1 = \{\mu_{12}, \ldots, \mu_{i',j'}\} \) where \((i, j) = (m-1, m)\) if \(g \) is an \(\mathcal{L} \)-chain and \((i, j) = (m, 1)\) otherwise, \((i', j') = (m' - 1, m')\) if \(h \) is an \(\mathcal{L} \)-chain and \((i', j') = (m', 1)\) otherwise. Then \(g = h \) if

(i) \(m = m' \),

(ii) \(x_i = y_i \) for all \(1 \leq i \leq m \),

(iii) \(\lambda_{ij} = \mu_{ij} \) for all \(1 \leq i \leq m, \ 2 \leq j \leq m \) \((1 \leq j \leq m)\)

Example 4.24. Consider the \(\mathcal{L} \)-graphs from Example 4.21. Then we obtain the following reversed graphs:

1. \(g^* = C_{11} - R_{11} \sim R_{13} - C_{11} \sim C_{11} - R_{12} \),

2. \(g^* = g \).

We define next two properties of \(\mathcal{L} \)-graphs. They are called \textit{admissibility} and \textit{simplicity}. Later, those properties will be useful in order to define so called canonical representations and in order to describe their constructions.

Definition 4.25. An \(\mathcal{L} \)-chain \(g \) is called admissible if the following holds: if there exist \(X, Y \in \mathcal{L} \), \(X \neq Y \) with \(X \alpha Y \), and \(c_i \in C \) with \(g(c_i) = X \), then there exists an edge \(\rho \in C \) containing \(c_i \) (i.e., \(\rho = \rho_i \) or \(\rho = \rho_{i-1} \)) with \(g(\rho) = \alpha \).

Remark 4.26. This condition holds for any \(\mathcal{L} \)-cycle.
Example 4.27. Both L-graphs from Example 4.21 are admissible. For the same bundle \overline{X}, the following L-chain is not admissible:

$$g': R_{12} \sim C_{11} \sim C_{11} \sim R_{13}. $$

This is due to $x_4 = R_{13}$ being a one-point link which is in α-relation with the one-point link R_{11}.

Remark 4.28. As we see in the above example, admissible L-chains are allowed to have two-point links as end points without any restriction (see Example 4.21.1). The critical one-point links are those being in α-relation with other one-point links. Hence, one-point links which are not in any α-relation can also be end points in an admissible L-chain.

The notion of simplicity is given in terms of isomorphisms.

Definition 4.29. A homomorphism $\tau: C \to C'$ of graphs is given by a map on the nodes c_i which preserves adjacency. That is, two neighbours c_i, c_{i+1} in C are sent to neighbours $c'_j = \tau(c_i), c'_{j+1} = \tau(c_{i+1})$ in C'.

If the homomorphism τ is bijective, it is called isomorphism.

Definition 4.30. Let $\tau: C \to C'$ be an isomorphism of graphs and let g, g' be two L-graphs defined on C, C', respectively. Then τ is an isomorphism of L-graphs if $g = g'\tau$.

We denote the group of automorphisms on an L-graph g by $\text{Aut}(g)$.

A rotation for an L-cycle g is given by an automorphism τ for which there exists $k \in \mathbb{Z}$ such that $\tau(c_i) = c_{i+k}$ for all $1 \leq i \leq m$. The group of rotations on g is denoted by $\text{Rot}(g)$.

Definition 4.31. We call an L-chain g symmetric if $\text{Aut}(g)$ is not trivial. An L-cycle g is called symmetric if the quotient group $\text{Aut}(g)/\text{Rot}(g)$ is not trivial.

Definition 4.32. We call an L-cycle g simple if $\text{Rot}(g) = \{\text{id}\}$.

Example 4.33. 1. Consider the L-cycle from Example 4.21.2. Then its underlying graph C_g is of the form

$$c_1 \overset{\text{c_2}}{-\text{c_3}} \overset{\text{c_4}}{-\text{c_5}} \overset{\text{c_6}}{-\text{c_7}} \overset{\text{c_8}}{\text{c_9}}.$$

The automorphism group of g is given by $\text{Aut}(g) = \{\text{id}, \tau\}$ where τ is an isomorphism on C_g, with the action

$$c_4 \leftrightarrow c_5, \ c_3 \leftrightarrow c_6, \ c_2 \leftrightarrow c_7, \ c_1 \leftrightarrow c_8.$$

The morphism τ is clearly not a rotation, so $\text{Rot}(g) = \{\text{id}\}$. Thus, g is symmetric and simple.
2. Consider for the same bundle as before the cycle

\[
g : \ C_{11} \sim R_{11} \sim C_{11} \sim R_{13} \sim R_{11} \sim C_{11}
\]

It has the same underlying graph as given in 1. For \(\tau_{\pm 3} : c_i \leftrightarrow c_{i \pm 3} \) we have \(\text{Aut}(g) = \text{Rot}(g) = \{ \tau_{\pm 3}, \text{id} \} \). Thus, \(g \) is neither symmetric nor simple.

3. Consider again the same bundle as before. Let

\[
g = C_{11} \sim R_{11} \sim C_{11} \sim R_{13} \sim R_{11} \sim C_{11}
\]

be an \(\Sigma \)-chain. It is symmetric since

\[
\tau : c_i \leftrightarrow c_{9-i}, \quad 1 \leq i \leq 4
\]

gives a non-trivial automorphism on \(g \) for the underlying graph

\[
C_g : c_1 \sim c_2 \sim c_3 \sim c_4 \sim c_5 \sim c_6 \sim c_7 \sim c_8.
\]

Remark 4.34. It is easy to see ([Bon88, §2]) that for a simple \(\Sigma \)-cycle \(g \) one has \(|\text{Aut}(g)| \leq 2 \).
If \(g \) is additionally symmetric, then \(|\text{Aut}(g)| = 2 \).

The notion of simplicity for \(\Sigma \)-chains is given in different terms. In order to give this definition, we first introduce so called double ends for \(\Sigma \)-chains.

Definition 4.35. Let \(g \) be an \(\Sigma \)-chain of length \(m > 1 \). The left end \(x_1 \) of \(g \) is called double if \(\lambda_{12} = \beta \) and \(x_1 \alpha x_1 \). Analogously, the right end \(x_m \) of \(g \) is called double if \(\lambda_{m-1,m} = \beta \) and \(x_m \alpha x_m \). We denote the number of double ends of \(g \) by \(d(g) \).

Remark 4.36. Note that in the case of \(m = 1 \), we define \(d(g) = 1 \) if \(x_1 \alpha x_1 \).

Let \(h \) be an \(\Sigma \)-chain with \(d(h) = 2 \). Then the \(\Sigma \)-chain \(h^{[k]} \) for \(k > 0 \) is given by

\[
h^{(1)} \sim h^{(2)} \sim \ldots \sim h^{(k)},
\]

where

\[
h^{(i)} = \begin{cases} h & \text{if } i \text{ odd}, \\ h^* & \text{if } i \text{ even}. \end{cases}
\]

Note that we can also construct \(h^{[2]} \) if only the right end of \(h \) is double.

Definition 4.37. Let \(g \) be an \(\Sigma \)-chain. Then \(g \) is called composite if there exists an \(\Sigma \)-chain \(h \) and some \(k > 1 \) such that \(g = h^{[k]} \).
Otherwise, \(g \) is called simple.
Example 4.38. The \mathcal{L}--chain g from Example 4.33. is composite with $k = 2$ and

$$h = \mathcal{C}_{11} - \mathcal{R}_{13} - \mathcal{R}_{11} - \mathcal{C}_{11}.$$

The \mathcal{L}--chain h is simple.

Lemma 4.39. An \mathcal{L}--chain g is symmetric if and only if it is composite of the form $g = h^{[k]}$ with h simple and k even.

Proof. Let $g = h^{[k]}$ be composite with h simple and k even. Let h be of length n and its underlying graph C_h be given by:

$$C_h : c_1 - c_2 - \cdots - c_n.$$

The \mathcal{L}--chain g is thus of length $n' = kn$. The map $\tau : C_g \to C_g$, $c_i \mapsto c_{n'+1-i}$ gives a non-trivial isomorphism of g. Hence, g is symmetric. Conversely, assume g to be symmetric. Let $\tau \in \text{Aut}(g)$ be non-trivial. By definition, the images of neighbouring nodes under τ are again neighbours. Thus, τ is either be given by a translation or a reflection. Since g is not a cycle, τ cannot be given by a translation. Thus, it is given by a reflection. This implies g being composite of form $g = h^{[k]}$, where k is even for h simple.

Lemma 4.40. An \mathcal{L}--chain g is simple (admissible) if and only if its reversed \mathcal{L}--chain g^* is simple (admissible).

Proof. Follows from the definition of the reversed \mathcal{L}--chain.

Definition 4.41. Let C be an Ω--graph and g be an \mathcal{L}--graph on C. A subchain of g is given by restriction of g to a connected subgraph of C.

Example 4.42. If g is composite, say $g = h^{[k]}$ for some h, some k, then each $h^{(i)}$, $1 \leq i \leq k$, is a subchain of g.

Finally we are able to denote the sets of \mathcal{L}--chains and \mathcal{L}--cycles which are used to construct the canonical representations of the bundle.

Definition 4.43. We denote by $\mathcal{S}(\mathcal{L})$ the set of simple admissible \mathcal{L}--chains and by $\mathcal{S}(\mathcal{L})$ the set of simple \mathcal{L}--cycles.

4.1.3 Subchains via orientations

We set in this subsection the prerequisites for the construction of a representation of the bundle from each \mathcal{L}--graph. To this end, we introduce four types of subchains which determine the maps of the representations. Subchains of these types will be called elementary subchains.
From now on consider an Σ-chain $g \in \hat{\mathcal{S}}(\Sigma)$ with $g_0 = \{x_1, \ldots, x_m\}$. We embed g into another Σ-chain denoted by \tilde{g} as follows:

$$\tilde{g} = \begin{cases}
 g & \text{if } d(g) = 0, \\
 g^* \sim g & \text{if } d(g) = 1, x_1 \text{ double end}, \\
 g \sim g^* & \text{if } d(g) = 1, x_m \text{ double end}, \\
 g^* \sim g \sim g^* & \text{if } d(g) = 2.
\end{cases}$$

Consider in the next step $x_i = x_{i+1}$ for some $i \in \{1, \ldots, m\}$. Then, clearly, $x_i \alpha x_{i+1}$, i.e. $\lambda_{i,i+1} = \alpha$. Starting from that relation in \tilde{g}, we construct a maximal symmetric subchain $\tilde{g}^{(i)} = w \sim w^\ast$, that is, the right end of w is given by x_i and the left end of w^\ast by x_{i+1}. Now we consider the neighbours of that subchain in \tilde{g}: if $\tilde{g}^{(i)}$ does not contain the left (respectively, right) end of \tilde{g}, we denote by y_i (respectively, z_i) the element in \tilde{g}_0 such that $y_i \beta w$ (respectively, $w^\ast \beta z_i$) extends w (respectively, w^\ast) to another subchain of \tilde{g}. Otherwise, we set $y_i = \infty$ (respectively, $z_i = \infty$).

Remark 4.44. Note that by construction of $\tilde{g}^{(i)}$, we have that $y_i \neq z_i$ (otherwise one obtains a contradiction to the simplicity of g) and either $y_i, z_i \in \Sigma(\mathcal{C}_k) \cup \infty$, or $y_i, z_i \in \Sigma(\mathcal{R}_k) \cup \infty$ for some $k \in \{1, \ldots, N\}$. We assume $X < \infty$ for all $X \in \Sigma$, and thus obtain either $y_i < z_i$, or $z_i < y_i$.

Some types of the elementary subchains depend on an orientation on the already mentioned subchain $x_i \sim x_{i+1}$ where $x_i = x_{i+1}$. We define this orientation.

Definition 4.45. Let $x_i = x_{i+1} \in g_0$ as above. We write $\underline{x_i \sim x_{i+1}}$ if one of the following conditions holds:

a) $y_i < z_i$ and $x_i \in \Sigma(\mathcal{Y})$, $y_i \in \Sigma(\mathcal{Y}) \cup \infty$, $\mathcal{Y} \in \{\mathcal{C}, \mathcal{R}\}$,

b) $y_i > z_i$ and $x_i \in \Sigma(\mathcal{Y})$, $y_i \in \Sigma(\mathcal{Y}) \cup \infty$, $\mathcal{Y} \neq \overline{\mathcal{Y}} \in \{\mathcal{C}, \mathcal{R}\}$.

We write $\overline{x_i \sim x_{i+1}}$ if one of the following conditions holds:

a) $y_i > z_i$ and $x_i \in \Sigma(\mathcal{Y})$, $y_i \in \Sigma(\mathcal{Y}) \cup \infty$, $\mathcal{Y} \in \{\mathcal{C}, \mathcal{R}\}$,

b) $y_i < z_i$ and $x_i \in \Sigma(\mathcal{Y})$, $y_i \in \Sigma(\mathcal{Y}) \cup \infty$, $\mathcal{Y} \neq \overline{\mathcal{Y}} \in \{\mathcal{C}, \mathcal{R}\}$.

Remark 4.46. Note that in case a) we always orient towards the larger link. In case b) we orient the other way around.

We are now able to finally define the notion of an elementary subchain for Σ-chains.

Definition 4.47. Let $g \in \hat{\mathcal{S}}(\Sigma)$. An elementary subchain of g is given by any of its subchains that is of one of the following forms:
1) \(x_{i-1} - x_i \),
2) \(x_{i-1} \sim x'_i - x_{i+1} \),
3) \(x_{i-1} - x'_i \sim x_{i+1} \),
4) \(x_{i-1} \sim x'_i - x_{i+1} \sim x_{i+2} \).

Elementary subchains for \(\mathcal{L} \)-cycles are defined similarly. Here, we set \(\breve{g} = g \) and obtain elementary subchains as defined above. But we need to take care in the case that \(g \) is symmetric: if there exists an automorphism \(\tau \neq \text{id} \) with \(\tau(c_i) = c_{i+1} \), then the elements \(y_i \) and \(z_i \) belong to \(w \sim w^* \) and coincide. Hence, we cannot use the above construction. In this case, we assume

\[
\breve{x}_i \sim x_{i+1} \quad \text{if} \quad x_i \in \mathcal{L}(\mathbb{R}) \tag{60}
\]

and

\[
\breve{x}_i \sim x_{i+1} \quad \text{if} \quad x_i \in \mathcal{L}(\mathbb{C}) \tag{61}
\]

We denote by \(e_{i,j}(g) = e_{j,i}(g) \) an elementary subchain of \(g \) with ends given by \(x_i \) and \(x_j \). Note that we read the type of elementary subchain from left to right within the \(\mathcal{L} \)-graphs, meaning that \(i < j \) (in cycles considered modulo \(m \) if necessary).

Remark 4.48 ([Bon88, Lemma 2]). An \(\mathcal{L} \)-cycle \(g \) always contains a maximal elementary subchain of length 2. That is a subchain \(x_{i-1} - x_{i} \) which does not belong to any elementary subchain of greater length. We denote by \(e_2(g) \) such a subchain with least \(i \in \{1, \ldots, m\} \).

4.1.4 Construction of representations

In this subsection, we describe the canonical representations which we can construct from \(\mathcal{L} \)-graphs in \(\mathcal{S}(\mathcal{L}) \cup \hat{\mathcal{S}}(\mathcal{L}) \). We restrict ourselves to the construction of the matrices of the respective representation, since we can conclude any information on the vector spaces from them. The constructions require a lot of notation and description such that we first give an overview on the representations and a very rough idea on how we can obtain them, before going into a detail.

Overview on canonical representations.

where

\[
\varphi = \varphi_0^\circ, \quad \varphi_0 \text{ a monic, irreducible polynomial over } k,
\]

\[
\delta_0(g) = \delta(g)/2,
\]

\[
\delta(g) = \# \{ i \in \{1, \ldots, m\} \mid x_i \neq x_{i+1}, x_i, x_{i+1} \in \mathcal{L}(X), X \in \{\mathbb{C}, \mathbb{R}\} \}
\]

98
\[
\begin{array}{|c|c|c|}
\hline
\text{\(\Sigma\)-graph } g & \text{representation } U \\
\hline
\text{\(\Sigma\)-chain} & d(g) = 0 & U_1(g) \\
& d(g) = 1 & U_s(g), s = 1, 2 \\
& d(g) = 2 & U_s(g,p), s = 1, 2, 3, 4, p \in \mathbb{N} \\
\hline
\text{\(\Sigma\)-cycle} & \text{symmetric, } \delta_0(g) \text{ even} & \begin{array}{c}
U(g, \varphi), \varphi_0 \neq t, t + 1 \\
U(g, \varphi), \varphi_0 \neq t, t - 1 \\
U(g, \varphi), \varphi_0 \neq t
\end{array} \\
& \text{symmetric, } \delta_0(g) \text{ odd} & \begin{array}{c}
U(g, \varphi), \varphi_0 \neq t, t + 1 \\
U(g, \varphi), \varphi_0 \neq t, t - 1 \\
U(g, \varphi), \varphi_0 \neq t
\end{array} \\
& \text{non-symmetric} & \begin{array}{c}
U(g, \varphi), \varphi_0 \neq t, t + 1 \\
U(g, \varphi), \varphi_0 \neq t, t - 1 \\
U(g, \varphi), \varphi_0 \neq t
\end{array} \\
\hline
\end{array}
\]

Overview on constructions.

The general idea for constructing a matrix \(U^i\), \(1 \leq i \leq N\), of a representation \(U\) for an \(\Sigma\)-graph \(g \in \bar{\mathcal{S}}(\Sigma) \cup \mathcal{S}(\Sigma)\) is the following:

The rows and columns of \(U^i\) are divided into bands which are indexed by the elements of \(R_i\) and \(C_i\), respectively. Each \(x_i \in g_0\) being equal to such an element indexes a row/column (or subband in case of a cycle) in the respective band. The entry in the intersection of a row (subband) \(x_i\) and a column (subband) \(x_j\) is 1 (identity block) if \(x_i\) and \(x_j\) are the ends of an elementary subchain. Otherwise, the entry is 0.

In detail, the construction is more complicated (e.g. in case of a cycle, there can also exist non-zero entries not given by an identity block) and requires a lot of descriptive notation.

First, we set some general notation:

Let \(g \in \bar{\mathcal{S}}(\Sigma) \cup \mathcal{S}(\Sigma), g_0 = \{x_1, \ldots, x_m\}\). Denote

\[
g_0^\alpha = \{x_i \in g_0 \mid x_i \alpha x_i\}
\]

and denote by \(\Psi(g)\) the set of maps of the form

\[
\psi : g_0^\alpha \to \{+1, -1\}
\]

such that \(\psi(x_i) = \pm 1\) whenever \(x_i = x_{i+1}\).

Remark 4.49. [Bon88, §3.2.] Let \(g \in \bar{\mathcal{S}}(\Sigma) \cup \mathcal{S}(\Sigma)\) and let \(\psi \in \Psi(g)\). Then for the reversed graph \(g^*\) there exists a similar set \(\Psi(g^*)\) with maps \(\psi^*\) given by opposite sign:

\[
\psi^*(x_i) = -\psi(x_i), \quad x_i \in g_0.
\]

Since \(\psi \in \Psi(g)\) is not always uniquely defined (in particular, on double ends), we have the following options and conventionally assume the following for an \(\Sigma\)-chain \(g\):

Remark 4.50. Note that any \(x_i \in g_0^\alpha\) is given by a two-point link \(X \in \Sigma\). The elements \(X^+\) and \(X^-\) of \(X\) each describe a band in the respective matrix. From the data given by \(g\), we do not know to which band any \(x_i \in g_0^\alpha\) with \(x_i = X\) is assigned. This is fixed by the maps in \(\Psi\).
| d(g) | |Ψ(g)| | convention on $\psi_s \in |Ψ(g)|, s \in \{1, \ldots, |Ψ(g)|\} |
|------|------|----------------|
| 0 | 1 | ψ_1 uniquely defined |
| 1 | 2 | $\psi_1(x_1) = -1 \quad \psi_2(x_1) = 1$ if x_1 is the double end |
| | | $\psi_1(x_m) = 1 \quad \psi_2(x_m) = -1$ if x_m is the double end |
| 2 | 4 | $\psi_1(x_1) = -1 \quad \psi_2(x_1) = 1 \quad \psi_3(x_1) = -1 \quad \psi_4(x_1) = 1$ |
| | | $\psi_1(x_m) = 1 \quad \psi_2(x_m) = 1 \quad \psi_3(x_m) = -1 \quad \psi_4(x_m) = -1$ |

Let $X, Y \in \mathcal{L}$ with $X \alpha X$, $Y \alpha Y$, $Z \in \mathcal{X}_{0s}$, $x_j \in g_0$ and $1 \leq s \leq 4$. We denote

$$g_0(X) = \{x_i \in g_0 \mid x_i = X\},$$
$$g_{0,s}(Y) = \{x_i \in g_0 \mid x_i = Y, \psi_s(x_i) = \pm 1\},$$
$$n(Z, g, s) = \begin{cases} |g_0(Z)| & \text{if } Z = X \\ |g_{0,s}(Y)| & \text{if } Z = Y^{-\zeta} \end{cases},$$
$$n(x_j) = \#\{x_i \in g_0 \mid x_i = x_j, 0 \leq i < j\}.$$

Remark 4.51. The sets $g^\pm_{0,s}(Y)$ are built in case of Y being a two-point link. For one-point links X, we consider the set $g_0(X)$.

To some extent, we can—with respect to the construction—group together representations of the types $U_1(g)$ and $U_s(g)$ for $s = 1, 2$. The representations $U(g, \varphi)$ and $U_s(g, p)$, $s = 1, 2, 3, 4$, $p \in \mathbb{N}$, are each similar to the construction of the first two, but will be treated separately. Thus, we start with the construction of $U(g)$ and deduce from it the constructions of the other representations.

**Construction of $U_1(g)$, $U_s(g)$.

Let $g \in \mathcal{S}(\mathcal{L})$ with $d(g) = 1$. We start with the matrices U^1, \ldots, U^N of $U_1(g)$. Let $i \in \{1, \ldots, N\}$ and let $X, Y, Z^+, Z^- \in \mathcal{C}_i \cup \mathcal{R}_i$. Then the structure of U^i is given as follows:

- The bands of U^i:
 - The row bands are indexed by the elements of \mathcal{R}_i.
 - The column bands are indexed by the elements of \mathcal{C}_i.

- Order of bands:
 - The column/row band $P(X)$ is situated left/above of the column/row band $P(Y)$ if $X < Y$.
 - Additionally, if Z^+ and Z^- are two incomparable elements, $P(Z^+)$ is situated left/above of $P(Z^-)$.

- Sizes of bands:
 - $\dim P(X) = n(X, g, 1), \ldots$
If $\sigma(X) = Y$, then $n(X, g, 1) = n(Y, g, 1)$.

- Within the bands:
 - The rows (columns) of $P(Z)$ are indexed by the elements in

 \begin{align*}
 g_0(Z), & \text{ if } Z \text{ is an element of a one-point link,} \\
 g_{0,1}(Z), & \text{ if } Z = Z^\zeta \text{ is an element of a two-point link, } \zeta \in \{+, -\}.
 \end{align*}

 - The j-th row (column) within $P(Z)$ is indexed by the element $x_k \in g_0(Z)$ ($g_{0,1}(Z)$) such that $n(x_k) = j$.

 - If $x_k \sim x_{k+1}$ in g with $x_k \neq x_{k+1}$, then $n(x_k) = n(x_{k+1})$.

To describe the entries of the matrix U^i, we denote by $x_k \cap x_j$ the entry in row x_k and column x_j of U^i. Then

\[
x_k \cap x_j = \begin{cases}
1 & \text{if there exists } e_{k,j}(g), \\
0 & \text{otherwise.}
\end{cases}
\]

The matrices $U_s(g)$ are constructed for each $s \in \{1, 2\}$ as described above, using the respective map ψ_s to determine the sets $g_{0,s}^\pm$ and using these sets to determine the elements indexing the respective bands. We obtain two representations from one L-chain.

Example 4.52. on $U_1(g)$.

1. Let $N = 1$ and $\mathcal{R}_1 = \{ \mathcal{R}_{11} > \mathcal{R}_{12} > \mathcal{R}_{13} \}$, $\mathcal{C}_1 = \{ \mathcal{C}_{11} < \mathcal{C}_{11}^{-} \}$ with $\sigma(\mathcal{R}_{11}) = \mathcal{R}_{13}$ and otherwise σ acts as identity. Let

\[
g : \begin{array}{cccccc}
\mathcal{R}_{12} & \mathcal{C}_{11} & \mathcal{C}_{11}^{-} & \mathcal{R}_{13} & \mathcal{R}_{11} & \mathcal{R}_{12} \\
x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\
\end{array}
\]

\[
\psi_1 : \begin{array}{cccc}
+1 & -1 & +1 & -1 \\
\end{array}
\]

The elementary subchains of g are:

- **Type 1)** $e_{1,2}(g) = x_1 - x_2$,
 $e_{3,4}(g) = x_3 - x_4$,
 $e_{5,6}(g) = x_5 - x_6$,
 $e_{7,8}(g) = x_7 - x_8$.

- **Type 3)** $e_{1,3}(g) = x_1 - x_3$,
 $e_{5,7}(g) = x_5 - x_7$.
Following the above instructions, we thus obtain for the representation $U_1(g) = (U_R_{11}, U_R_{12}, U_R_{13}, U_C_{\pm 11}, U_C_{\pm 11}, U^1)$ that U^1 is of the form

\[
U^1 = \begin{bmatrix}
R_{13} & R_{12} & R_{11} \\
x_4 & x_1 & x_8 \\
0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{bmatrix}
\]

The vector spaces have the following dimensions:

\[
\dim(U_R_{11}) = \dim(U_R_{13}) = 1, \\
\dim(U_C^+) = \dim(U_C^-) = \dim(U_R_{12}) = 2.
\]

2. Let $N = 5$ and let the bundle $\mathcal{X} = (X, \sigma)$ be given by the semichains

\[
\begin{align*}
C_1 &= \{ C_{11}^+, C_{11}^- \}, & R_1 &= \{ R_{11} > R_{12} \}, \\
C_2 &= \{ C_{21} < C_{22} < C_{23} \}, & R_2 &= \{ R_{21} > R_{22} > R_{23} \}, \\
C_3 &= \{ C_{31}^+, C_{31}^- \}, & R_3 &= \{ R_{31} > R_{32} \}, \\
C_4 &= \{ C_{41} < C_{41} \}, & R_4 &= \{ R_{41} > R_{42} \}, \\
C_5 &= \{ C_{51}^+, C_{51}^- \}, & R_5 &= \{ R_{51} > R_{52} > R_{53} \},
\end{align*}
\]

and let σ be acting as follows (and as identity otherwise):

\[
\begin{align*}
C_{21} &\leftrightarrow R_{12}, & R_{21} &\leftrightarrow R_{32}, \\
C_{23} &\leftrightarrow R_{51}, & R_{41} &\leftrightarrow R_{53}, \\
C_{41} &\leftrightarrow R_{23}.
\end{align*}
\]

Consider the g–chain

\[
g: \quad \begin{array}{cccccccc}
R_{42} & C_{41} & R_{23} & C_{21} & R_{12} & C_{11}^- & R_{11}^- \\
x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8
\end{array}
\]

\[
\psi_1: \quad +1 - 1
\]

The elementary subchains of g are given by

Type 1): $x_i - x_{i+1} \quad \forall 1 \leq i \leq 8 \text{ odd},$
Type 3): $x_5 - x_6 - x_7.$
The representation $U_1(g)$ is given by the matrices

$$
U^1 = \begin{pmatrix}
R_{12} & x_5 \\
R_{11} & x_8
\end{pmatrix}
\begin{bmatrix}
0 & 1 \\
1 & 1
\end{bmatrix} \quad U^2 = \begin{pmatrix}
R_{23} & x_3
\end{pmatrix}
\begin{bmatrix}
1
\end{bmatrix},
$$

$$
U^4 = \begin{pmatrix}
R_{42} & x_1
\end{pmatrix}
\begin{bmatrix}
0
\end{bmatrix}
$$

and U^3 and U^5 are empty. The vector spaces of $U_1(g)$ have dimensions

$$
dim(U_{C_{11}}) = dim(U_{R_{11}}) = dim(U_{R_{12}}) = 1, \quad \zeta \in \{+, -\},
$$

$$
dim(U_{C_{11}}) = dim(U_{R_{11}}) = 1, \quad i \in \{2, 4\}
$$

and all other vector spaces have dimension 0.

Example 4.53. on $U_s(g)$.

1. Consider the same setting as in Example 4.52.1. and let

$$
g : \begin{pmatrix}
R_{12} - C_{11} - R_{11} - C_{11} \\
x_1 & x_2 & x_3 & x_4 & x_5 & x_6
\end{pmatrix}
$$

$$
\psi_1 : +1 & -1 & +1
$$

$$
\psi_2 : +1 & -1 & -1
$$

The elementary subchains are

Type 1): $e_{1,2}(g) = x_1 - x_2$, Type 3): $e_{1,3}(g) = x_1 - \frac{x_2}{2} \sim x_3$.

e_{3,4}(g) = x_3 - x_4,$

e_{5,6}(g) = x_5 - x_6.$

We obtain the following two matrices U_s^1 for the representations $U_s(g)$, $s = 1, 2$:

$$
U^1_1 = \begin{pmatrix}
R_{13} & x_4 \\
R_{12} & x_1 \\
R_{11} & x_5
\end{pmatrix}
\begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix} \quad U^1_2 = \begin{pmatrix}
R_{13} & x_4 \\
R_{12} & x_1 \\
R_{11} & x_5
\end{pmatrix}
\begin{bmatrix}
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
$$

The dimensions of the respective vector spaces are given by:

$s = 1$:

$$
dim(U_{R_{1i}}) = dim(U_{C_{11}}) = 1, \quad 1 \leq i \leq 3
$$

$$
dim(U_{C_{11}}) = 2
$$

$s = 2$:

$$
dim(U_{R_{1i}}) = dim(U_{C_{11}}) = 1, \quad 1 \leq i \leq 3
$$

$$
dim(U_{C_{11}}) = 2
$$
2. Let $X = (X, \sigma)$ be as in Example 4.52.2. Consider the following L-chain with two double ends:

- $g : R_{52} \rightarrow C_{51} \rightarrow R_{51} \rightarrow C_{23} \rightarrow R_{21} \rightarrow R_{32} \rightarrow C_{31}$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
<th>x_7</th>
<th>x_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ_1</td>
<td>+1</td>
<td>-1</td>
<td>+1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ψ_2</td>
<td>+1</td>
<td>-1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The matrices U^1_1 and U^1_4 of the representation $U_1(g)$ are empty. The others are given by

$$U^2_1 = R_{21} \begin{bmatrix} x_6 & \mathcal{C}_{23} & \mathcal{C}^*_5 & \mathcal{C}_{51} \\ x_1 & x_2 & x_3 & 1 & 1 & 0 & 1 \end{bmatrix}$$

$$U^3_1 = R_{32} \begin{bmatrix} x_7 & \mathcal{C}_{31} \\ 1 \end{bmatrix}$$

$$U^5_5 = R_{52} \begin{bmatrix} x_1 & \mathcal{C}^*_5 & \mathcal{C}_{51} \\ x_2 & x_3 & 1 & 1 & 0 \end{bmatrix}$$

The corresponding vector spaces $U_{R_{21}}, U_{C_{23}}, U_{R_{32}}, U_{C^*_5}, U_{C_{51}}$ have dimension 1. The other vector spaces have dimension 0.

Let us now consider $s = 2$. The matrices U^3_1 and U^3_2 are also empty. The other matrices of the representation $U_2(g)$ are given by

$$U^2_2 = U^2_1,$$

$$U^5_5 = U^5_1,$$

$$U^3_2 = R_{32} \begin{bmatrix} x_7 & \mathcal{C}_{31} \\ 1 \end{bmatrix}$$

The following vector spaces have dimension 1: $U_{R_{21}}, U_{C_{23}}, U_{R_{32}}, U_{C^*_5}, U_{C_{51}}$. The rest of them has dimension 0.

Note that we can obtain the entries of U^3_2 from those of U^1_1 in Example 4.53.1 by switching the columns. That is due to the following statement:

Lemma 4.54 ([Bon88, §6, Statement 3.2.]). Let $g \in \tilde{S}(L)$ with $d(g) = 1$. Switching the positions of the bands indexed by two incomparable elements X^+sX^- gives an equivalent set of representations.

Construction of $U(g, \varphi)$.

The case $U(g, \varphi)$ for $g \in S(L)$ is similar to the previous one, but a bit more
complicated. Recall that \(\varphi_0 \) is a monic polynomial in \(k[t] \) which is irreducible over \(k \). Note at first that the choice of \(\varphi_0 \) depends on the given \(L \)-cycle \(g \): if \(g \) is non-symmetric, then \(\varphi_0 \neq t \). For \(g \) symmetric, we distinguish between \(\delta_0(g) \) being odd or even: in the first case, we assume that \(\varphi_0 \neq t, t-1 \), in the second case that \(\varphi_0 \neq t, t+1 \). Moreover, we consider \(-\) as in the case of \(U_1(g) \) \(-\) the sets \(g_0(Z) \) and \(g_0^0(Z) \) as indices within the bands. But in contrast to the case of \(L \)-chains, the elements of the respective sets do not index rows and columns, but subbands within the bigger bands. The size of each such subband is given by \(\ell = \deg(\varphi) \) where \(\varphi = \varphi_0^k \). Let \(x_k \cap x_j \) denote the intersection of the two respective subbands. Then for \(g \) not being of length four and symmetric, the entries of \(U^i \) are:

\[
x_k \cap x_j = \begin{cases}
1_{\ell \times \ell} & \text{if there exists } e_{k,j}(g) \neq e_2(g) \\
F_\varphi & \text{if there exists } e_{k,j}(g) = e_2(g) \\
0 & \text{otherwise}
\end{cases}
\]

where \(F_\varphi \) denotes the Frobenius block of \(\varphi \). Recall that for the polynomial \(\varphi = t^n + a_{n-1}t^{n-1} + \cdots + a_0 \) its Frobenius block is given by the \((n \times n)\)-matrix

\[
F_\varphi = \begin{pmatrix}
0 & -a_0 \\
1 & -a_1 \\
& \ddots & \ddots \\
& & 1 & -a_{n-2} \\
& & & 0 & -a_{n-1}
\end{pmatrix}
\]

In the special case that \(g \) is symmetric and \(|g| = 4\), there exist two elements \(x_l, x_{l+1} \) such that there are two elementary subchains \(e^1_{l,l+1}(g) \) of length 2 and \(e^2_{l,l+1}(g) \) of length 4. Then we combine the above instructions and set:

\[x_l \cap x_{l+1} = 1_{\ell \times \ell} + F_\varphi \]

Remark 4.55. In the special case where \(g \) is symmetric and \(|g| = 4\), we have that \(e_2(g) = e^1_{l,l+1}(g) \):

\[
\begin{array}{c}
x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \\
\end{array} \quad \begin{array}{c}
x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \\
\end{array}
\]

Remark 4.56 ([Bon88, §6]). Admissible transformations of type 1 allow us to consider subchains of the form \(\tilde{e}_2(g) = x_{i-1} \rightarrow x_i \) with \(i \) not being the least in \(\{1, \ldots, m\} \) instead of \(e_2(g) \). In this case, the block in \(x_{i-1} \cap x_i \) is given by \(F_\varphi \) or \(F_\varphi^{-1} \).

Example 4.57. on \(U(\varphi, g) \).
Consider the same setting as in Example 4.52, 1. and let

\[
g_0 : \ x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ x_8
\]
\[
g : \ C_{11} - R_{13} \sim R_{11} - C_{11} \sim C_{11} - R_{13} - C_{11}
\]
\[
\psi_1 : \ -1 \quad +1 \quad -1 \quad +1
\]
\[
\psi_2 : \ +1 \quad +1 \quad -1 \quad +1
\]
\[
\psi_3 : \ -1 \quad +1 \quad -1 \quad -1
\]
\[
\psi_4 : \ +1 \quad +1 \quad -1 \quad -1
\]

The \(L \)-cycle \(g \) is symmetric, \(\delta(g) = \#\{2, 6\} = 2 \) and \(\delta_0(g) = 1 \) is odd.
Thus, \(\varphi_0 \neq t, t - 1 \). We choose \(\varphi_0 = t + 1, \deg(\varphi) = 2 \):

\[
\varphi = (t + 1)^2 = t^2 + 2t + 1.
\]

The corresponding Frobenius matrix is given by

\[
F_\varphi = \begin{pmatrix} 0 & -1 \\ 1 & -2 \end{pmatrix}.
\]

We obtain the following matrices \(U^s_1 \) of \(U_s(g, \varphi), \ s = 1, 2, 3, 4 \) (recall that each \(x_i \in g_0 \) indexes a subband of size 2):

\[
R_{13} x_3 \quad x_4 \quad x_5 \quad x_1 \quad x_8
\]
\[
U^1_1 =
\begin{array}{cccccc}
R_{13} & x_2 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
& 0 & 0 & 0 & 0 & 1 & -2 & 0 & 0 \\
& 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
& 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}
\]

\[
R_{11} x_2 \quad 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
& 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
& 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\]

with vector spaces of the following dimensions for \(s = 1 \):

\[
\dim(R_{11}) = \dim(R_{13}) = \dim(C^+_{11}) = \dim(C^-_{11}) = 4.
\]

In the following, we are going to neglect the subband structure within the matrices. In this example, it means that each entry denotes from now on a respective block matrix of size 2 \(\times \) 2, that is, any 1 is going to denote a 2 \(\times \) 2-identity matrix. In this version, the matrices \(U^s_1 \) are given by

106
The dimensions of the vector spaces are given by

\[\dim(\mathcal{R}_{11}) = \dim(\mathcal{R}_{13}) = 4 \quad \text{for all } s = 1, 2, 3, 4, \]

and

\[s = 1, 4 : \dim(\mathcal{E}^+_1) = 4, \quad \dim(\mathcal{E}^-_1) = 4, \]
\[s = 2 : \dim(\mathcal{E}^+_1) = 6, \quad \dim(\mathcal{E}^-_1) = 2, \]
\[s = 3 : \dim(\mathcal{E}^+_1) = 2, \quad \dim(\mathcal{E}^-_1) = 6. \]

2. Consider the bundle of semichains as in Example 4.52.2. Consider the following \mathcal{L}-cycle

\[U^1_{i} = \begin{cases} \mathcal{R}_{13} & x_2 \begin{bmatrix} 0 & 0 & F_{x} & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \\ \mathcal{R}_{11} & x_3 \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{cases} \]

\[U^2_{i} = \begin{cases} \mathcal{R}_{13} & x_2 \begin{bmatrix} 0 & F_{x} & 0 & 0 \\ 1 & 0 & 1 & 0 \end{bmatrix} \\ \mathcal{R}_{11} & x_3 \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{cases} \]

\[U^3_{i} = \begin{cases} \mathcal{R}_{13} & x_2 \begin{bmatrix} 0 & F_{x} & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \\ \mathcal{R}_{11} & x_3 \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \end{cases} \]

\[U^4_{i} = \begin{cases} \mathcal{R}_{13} & x_2 \begin{bmatrix} 0 & F_{x} & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \\ \mathcal{R}_{11} & x_3 \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \end{cases} \]
\[g_0 : \begin{array}{cccccccc}
 x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 \\
 \end{array} \]
\[g : \begin{array}{cccccccc}
 E_{23} \sim R_{51} - E_{51} - R_{53} \sim R_{41} - E_{41} \sim R_{23} \\
 \end{array} \]
\[\psi_1 : \begin{array}{cc}
 +1 & -1 \\
 \end{array} \]

It is non-symmetric, so we can choose \(\varphi = (t - 1)^3 = t^3 - 3t^2 + 3t - 1 \).
Its Frobenious block is thus given by

\[
 F_\varphi = \begin{pmatrix}
 0 & 0 & 3 \\
 1 & 0 & -3 \\
 0 & 1 & 1 \\
 \end{pmatrix}
\]

Its elementary subchains are:

- **Type 1):** \(x_i - x_{i+1} \quad \forall 1 \leq i \leq 8, \text{ even,} \)
- **Type 2):** \(\rightarrow x_3 \sim x_4 - x_5. \)

The representation \(U(g, \varphi) \) consists of the two empty matrices \(U^1, U^3 \) and additionally the following ones:

\[
 U^2 = \begin{array}{c}
 R_{23} \\
 x_8 \\
 \hline
 F_\varphi \\
 \hline
 E_{23} \\
 \end{array} \quad U^4 = \begin{array}{c}
 R_{41} \\
 x_6 \\
 \hline
 \begin{array}{c}
 1 \\
 \end{array} \\
 \hline
 E_{41} \\
 \end{array} \\
 U^5 = \begin{array}{c}
 R_{53} \\
 x_5 \\
 \hline
 \begin{array}{c}
 1 \\
 1 \\
 \end{array} \\
 \hline
 E_{51}^+ \\
 \hline
 R_{51} \\
 x_2 \\
 \hline
 \begin{array}{c}
 1 \\
 0 \\
 \end{array} \\
 \hline
 E_{51}^- \\
 \end{array}
\]

The following vector spaces of the representation have dimension given by \(\deg(\varphi) = 3: U_{R_{23}}, U_{E_{23}}, U_{R_{41}}, U_{E_{41}}, U_{R_{51}}, U_{R_{53}}, U_{E_{51}^+}, U_{E_{51}^{-}} \), where \(\zeta \in \{+, -\} \). All the other vector spaces of \(U(g, \varphi) \) have dimension 0.

Construction of \(U_s(g, p) \).
Recall that \(g \in \hat{G}(\Omega), s = 1, 2, 3, 4 \) and \(p \in \mathbb{N} \) is fixed. To describe the matrices in \(U_s(g, p) \), we need a slightly adjusted notation: Let \(X, Y \in \mathcal{L} \) with \(X\hat{\alpha}X \),
Y \circ Y and let $Z \in \mathfrak{X}_0$. Denote

$$g_0(p) = \{(x_i, q) \mid x_i \in g_0 \land 1 \leq q \leq p\},$$
$$g_0(X, p) = \{(x_i, q) \in g_0(p) \mid x_i = X\},$$
$$g_{0,s}^+(Y, p) = \{(x_i, q) \in g_0(p) \mid x_i = Y, \psi_s(x_i) = \pm(-1)^{q+1}\},$$

$$n(Z, g, s, p) = \begin{cases} |g_0(X, p)| & \text{if } Z = X \\ |g_{0,s}^-(Y, p)| & \text{if } Z = Y^\zeta, \zeta \in \{+, -\} \end{cases},$$

$$n(x_j) = p \cdot \#\{x_k \in g_0 \mid x_j = x_k, 1 \leq k < j\},$$

$$n((x_j, q)) = (n(x_j) - 1)p + q.$$ Now let $i \in \{1, \ldots, N\}$, $X, Y, Z, Z^+, Z^- \in \mathcal{C}_i \cup \mathfrak{R}_i$. Then the matrix U_i is structured as follows:

- **The bands of** U_i:
 - The row and column bands are indexed by the elements of \mathfrak{R}_i, \mathcal{C}_i, respectively.

- **Order of bands**:
 - The bands are ordered as in the previous cases.

- **Size of bands**:
 - $\dim P(X) = n(X, g, s, p)$,
 - If $\sigma(X) = Y$, then $n(X, g, s, p) = n(Y, g, s, p)$.

- **Structure in bands**:
 - The rows/columns of $P(Z)$ are indexed by elements in $g_0(Z, p)$ if Z is an element in a one-point link, $g_{0,s}^+(Z, p)$ if $Z = Z^\zeta$ is an element in a two-point link.
 - The row/column (x_i, q_1) is situated above/left of the row/column (x_j, q_2) if $i < j$ or $i = j$, $q_1 < q_2$.
 - The j-th row (column) within $P(Z)$ is indexed by $(x_k, q) \in g_0(Z, p)$ ($g_{0,s}^+(Z, p)$) such that $n(x_k, q) = j$.
 - If $x_k \sim x_{k+1}$ in g with $x_k \neq x_{k+1}$, then $n(x_k) = n(x_{k+1})$.

109
In order to describe the entries in U^i, we denote by $(x_k, q_1) \cap (x_j, q_2)$ the entry in row (x_k, q_1) and column (x_j, q_2). Then

$$(x_k, q_1) \cap (x_j, q_2) = \begin{cases} 1 & \text{if there exists } e_{k,j}(g) \text{ and (a), (b) or (c) holds,} \\ 0 & \text{otherwise} \end{cases} \quad (62)$$

where

(a) $q_1 = q_2$,

(b) $q_1 = q_2 - 1$, q_2 odd and either k or j is equal to 1,

(c) $q_1 = q_2 - 1$, q_2 even and either k or j is equal to m.

Remark 4.58. The construction of $U_s(g, p)$ seems to be – in comparison to the other representations – chosen arbitrarily. The background is the following [Bon88, §3.2]:

When constructing $U_s(g, p)$, we actually consider $U_s(h, 1)$ where $h = g^{[p]}$. For the latter, we consider

$$\Psi(h) = \{ \bar{\psi}_s : \psi_s \in \Psi(g) \}, \quad \bar{\psi}_s : h_0^\alpha \to \{+1, -1\},$$

such that

$$\bar{\psi}_s|_{g^{(j)}} = \begin{cases} \psi_s(g) & \text{if } g^{(j)} = g, \\ \psi_s^*(g) & \text{if } g^{(j)} = g^*. \end{cases}$$

Note that $h_0^\alpha = \bigcup_{j=1}^p (g_0^{(j)})^\alpha$.

Denote in the following by (x_k, q_j) the copy of x_k in the subchain $g^{(q_j)}$ of g.

The information on how to put an orientation in h on its "joints" is vital to understand the connection to the earlier given construction:

$$\begin{array}{l}(x_i, q_k) \sim (x_i, q_{k+1}) \quad \text{if } i \in \{1, m\}, x_i \in \mathcal{R}, \quad (63) \\
(x_i, q_k) \sim (x_i, q_{k+1}) \quad \text{if } i \in \{1, m\}, x_i \in \mathcal{C}. \quad (64)\end{array}$$

Interpreting (a) - (c) in this context gives a clear idea on what is happening:

(a) We consider in each copy $g^{(q_j)}$ of g the elementary subchains. If $e_{k,j}(g)$ exists, then (a) ensures that we take the respective elementary subchain $e_{k,j}(g^{(q_j)})$ in each copy $g^{(q_j)}$ into account, that is, we put 1 as entry in each copy q_j of $x_k \cap x_j$.

(b) Here, we consider two neighbouring copies $g^{(q_1)} \sim g^{(q_2)}$ of g. Since q_2 is odd, q_1 is even and we know that they are of the form

$$g^{(q_1)} = g^*, \quad g^{(q_2)} = g.$$
Thus, \(g^{(q_1)} \) ends with the respective copy of \(x_1 \in g_0 \), and \(g^{(q_2)} \) starts with the respective copy of \(x_1 \in g_0 \). The middle of \(g^{(q_1)} \sim g^{(q_2)} \) is given by

\[
\cdots - x_1 \sim x_1 - \cdots
\]

(65)

with some direction given on \(x_1 \sim x_1 \). If \(k = 1 \) in (62) and (b) holds, then \((x_1, q_1) \in g^{(q_1)}\) is the end point of an elementary subchain, otherwise \((j = 1)\), an end point is given by \((x_1, q_2) \in g^{(q_2)}\). It follows for (65):

\[
\cdots - x_1 \sim x_1 - \cdots \quad \text{if } k = 1, \\
\cdots - x_1 \sim x_1 - \cdots \quad \text{if } j = 1.
\]

Hence, (b) ensures that we take all elementary subchains including the "joints" of the form \(x_1 \sim x_1 \) into account.

(c) It ensures — similar to (b) — that all elementary subchains including the "joints" of the form \(x_m \sim x_m \) are taken into account.

We can conclude that we still follow the simple rule to put a 1 in the entry of a row and column if the elements indexing those are the ends of some elementary subchain in \(g^{[p]} \), and we put 0 otherwise. The notation used in the construction is required since we consider different copies of \(g \).

In the following we work on \(h = g^{[p]} \) to construct \(U_s(g, p) \) but might still use the notation from the formal construction given above.

Remark 4.59. [Bon88, §6, Statement 4.3.] Choosing the orientations at all joints in the opposite way than described in (63) and (64), gives an equivalent representation for each \(s = 1, 2, 3, 4 \).

Example 4.60. on \(U_s(g, p) \).

1. Consider the same setting as in Example 4.52.1. and let

\[
g : \quad \mathcal{C}_{11} - \mathcal{R}_{13} - \mathcal{R}_{11} - \mathcal{C}_{11} \\
x_1 \quad x_2 \quad x_3 \quad x_4 \\
\psi_1 \quad \psi_2 \quad \psi_3 \quad \psi_4
\]

\[
\begin{array}{cccc}
\psi_1 & -1 & +1 & \\
\psi_2 & +1 & +1 & \\
\psi_3 & -1 & -1 & \\
\psi_4 & +1 & -1 & \\
\end{array}
\]
We choose \(p = 3 \). Thus, we consider

\[
h = g[p] = g^{(1)} \sim g^{(2)} \sim g^{(3)} = g \sim g^* \sim g
\]

\[
= \mathcal{E}_{11} - \mathcal{R}_{13} \sim \mathcal{R}_{11} - \mathcal{E}_{11} \sim \mathcal{E}_{11} - \mathcal{R}_{11} \sim \mathcal{R}_{11} \sim \mathcal{E}_{11}
\]

\[
\begin{array}{cccccc}
1 & 2 & 3 \\
\hline
x_1 & x_2 & x_3 & x_4 & x_2 & x_3 & x_4 & x_1 & x_2 & x_3 & x_4 \\
\end{array}
\]

\[
\begin{array}{ccccccc}
\tilde{\psi}_1 & -1 & +1 & +1 & -1 & -1 & +1 \\
\tilde{\psi}_2 & +1 & +1 & +1 & +1 & +1 & +1 \\
\tilde{\psi}_3 & -1 & -1 & -1 & -1 & -1 & -1 \\
\tilde{\psi}_4 & +1 & -1 & -1 & +1 & +1 & -1 \\
\end{array}
\]

The elementary subchains of \(h \) are:

\begin{enumerate}
\item Type 1) \(e(x_1,k),(x_2,k)(h), \ k = 1, 2, 3, \)
\item Type 2) \(e(x_1,2),(x_2,3)(h), \)
\item Type 3) \(e(x_3,1),(x_4,2)(h). \)
\end{enumerate}

The matrices \(U^1_s \) in \(U_s(g,3), s = 1, 2, 3, 4 \), are given by

\[
U^1_1 = \mathcal{R}_{13} \sim \mathcal{R}_{11} = \begin{bmatrix}
(x_2,1) & 1 \\
(x_2,2) & 0 \\
(x_2,3) & 0 \\
(x_3,1) & 0 \\
(x_3,2) & 0 \\
(x_3,3) & 0 \\
\end{bmatrix}
\]

\[
U^1_2 = \mathcal{R}_{13} \sim \mathcal{R}_{11} = \begin{bmatrix}
(x_2,1) & 0 \\
(x_2,2) & 0 \\
(x_2,3) & 0 \\
(x_3,1) & 0 \\
(x_3,2) & 0 \\
(x_3,3) & 0 \\
\end{bmatrix}
\]

\[
\begin{array}{cccccccc}
\mathcal{E}_{11}^+ & (x_1,1) & (x_2,1) & (x_3,1) & (x_4,1) & (x_1,2) & (x_2,2) & (x_3,2) & (x_4,2) & (x_1,3) & (x_2,3) & (x_3,3) & (x_4,3) \\
\end{array}
\]
The dimensions of the vector spaces are given by the respective band sizes, and \(\dim(\mathcal{R}_{12}) = 0 \).

2. Consider the bundle of semichains from Example 4.5.2.2, and the following \(L \)-chain with two double ends:

\[
g : \quad \mathcal{C}_{11} - \mathcal{R}_{12} \sim \mathcal{C}_{21} - \mathcal{R}_{21} \sim \mathcal{R}_{32} - \mathcal{C}_{31}
\]

\[
x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6
\]

\[
\psi_1 : \quad -1 \quad 1
\]

\[
\psi_2 : \quad 1 \quad 1
\]

\[
\psi_3 : \quad -1 \quad -1
\]

\[
\psi_4 : \quad 1 \quad 1
\]

Let \(p = 2 \). Then we consider for the construction of the representations \(U_s(g, 2) \) the \(L \)-chain \(h = g^{[2]} \):

\[
h : \quad \mathcal{C}_{11} - \mathcal{R}_{12} \sim \mathcal{C}_{21} - \mathcal{R}_{21} - \mathcal{R}_{32} - \mathcal{C}_{31} - \mathcal{R}_{31} - \mathcal{R}_{21} - \mathcal{C}_{21} - \mathcal{R}_{12} - \mathcal{C}_{11}
\]

\[
x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_6 \quad x_5 \quad x_4 \quad x_3 \quad x_2 \quad x_1
\]

\[
\tilde{\psi}_1 : \quad -1 \quad 1 \quad -1 \quad 1
\]

\[
\tilde{\psi}_2 : \quad 1 \quad 1 \quad -1 \quad 1
\]

\[
\tilde{\psi}_3 : \quad -1 \quad -1 \quad 1 \quad 1
\]

\[
\tilde{\psi}_4 : \quad 1 \quad -1 \quad 1 \quad -1
\]

113
For any s, the matrices U_s^4 and U_s^5 are empty. Thus, the vector spaces U_{Xj} for $X \in \{\mathbb{C}, \mathbb{R}\}$, $j \in \{1,2\}$, U_{ζ} for $\zeta \in \{+, -\}$ and $U_{\zeta_{11}}$ for $1 \leq j \leq 3$ have dimension 0. Moreover, the vector spaces U_{311}, $U_{\zeta_{23}}$, $U_{\zeta_{22}}$, $U_{\zeta_{32}}$, $U_{\zeta_{23}}$ and $U_{\zeta_{31}}$ also have dimension 0. The dimensions of the other vector spaces are for any $s \in \{1, 2, 3, 4\}$ given by

$$\dim(U_{\zeta_{11}}) = \dim(U_{\zeta_{32}}) = \dim(U_{\zeta_{21}}) = 2,$$

$$\dim(U_{\zeta_{31}}) = \dim(U_{\zeta_{33}}) = 1, \quad \zeta \in \{+, -\}.$$

The other matrices are given as follows:

$s = 1$:

$U_1^1 = \mathfrak{R}_{12} \begin{pmatrix} (x_2, 1) & (x_2, 2) \\ (x_2, 1) & (x_2, 2) \end{pmatrix}$

$U_1^2 = \mathfrak{R}_{21} \begin{pmatrix} (x_4, 1) & (x_4, 2) \\ (x_4, 1) & (x_4, 2) \end{pmatrix}$

$s = 2$:

$U_2^1 = \mathfrak{R}_{12} \begin{pmatrix} (x_1, 1) & (x_1, 2) \\ (x_1, 1) & (x_1, 2) \end{pmatrix}$

$U_2^2 = \mathfrak{R}_{32} \begin{pmatrix} (x_5, 1) & (x_5, 2) \\ (x_5, 1) & (x_5, 2) \end{pmatrix}$

$s = 3$:

$U_3^1 = U_1^1$, $U_3^2 = U_2^2$, $U_3^3 = \mathfrak{R}_{32} \begin{pmatrix} (x_5, 1) & (x_5, 2) \\ (x_5, 1) & (x_5, 2) \end{pmatrix}$

$s = 4$:

$U_4^1 = U_1^1$, $U_4^2 = U_2^2$, $U_4^3 = U_3^3$.

114
4.1.5 Classification Theorem

Theorem 4.61. [Bon91, Main Theorem] Choosing one representative in each isomorphism class of \mathcal{L}-chains and \mathcal{L}-cycles of $\mathcal{E}(\mathcal{L}) \cup \mathcal{F}(\mathcal{L})$ gives the following classification:

The set of representations of the form $U_s(g)$, $U_s(g,p)$ and $U(g,\varphi)$ associated to the representative \mathcal{L}-graphs is a complete set of pairwise nonequivalent indecomposable representations of the bundle $\mathcal{F} = (\mathcal{F}, \sigma)$.
4.2 The category $\text{Rep}(\overline{X})$

Let $\mathfrak{X} = (\mathcal{C}_1, \ldots, \mathcal{C}_N, \mathfrak{R}_1, \ldots, \mathfrak{R}_N)$ be as in Section 4.1, and let $\overline{\mathfrak{X}} = (\mathfrak{X}, \sigma)$ be a bundle of semichains with involution σ.

Let $U = (U_X, U^i)_{X \in \mathfrak{X}_0, 1 \leq i \leq N}$ be a representation of $\overline{\mathfrak{X}}$. For $S \subseteq \mathfrak{X}_0$ a subset, denote by U_S the k-vector space

$$U_S = \bigoplus_{Y \in S} U_Y.$$

Then $U^i : U_{\mathcal{C}_i} \to U_{\mathfrak{R}_i}$ can be written in terms of an $(n^U_{\mathcal{C}_i} \times n^U_{\mathfrak{R}_i})$-matrix, where $n^U_{\mathcal{C}_i} = \dim(U_{\mathcal{C}_i})$, $n^U_{\mathfrak{R}_i} = \dim(U_{\mathfrak{R}_i})$.

Similarly, we denote by n^U_X the dimension of the vector space U_X, $X \in \mathfrak{X}_0$.

We write $U^i_{XY} : U_X \to U_Y$ to denote the respective restriction (block matrix in) of U^i, $X \in \mathcal{C}_i$, $Y \in \mathfrak{R}_i$.

Let $W = (W_X, W^i)_{X \in \mathfrak{X}_0, 1 \leq i \leq N}$ be a different representation of $\overline{\mathfrak{X}}$. Its map $W^i : W_{\mathcal{C}_i} \to W_{\mathfrak{R}_i}$ is given by an $(n^W_{\mathcal{C}_i} \times n^W_{\mathfrak{R}_i})$-matrix.

Remark 4.62. Note that the bands in U^i and W^i are indexed by the same elements, but are of possibly different sizes.

Definition 4.63. Let $\overline{\mathfrak{X}} = (\mathfrak{X}, \sigma)$ be a bundle of semichains as described above. Then the category $\text{Rep}(\overline{\mathfrak{X}})$ of representations of $\overline{\mathfrak{X}}$ is given by the following data:

- **The objects** of $\text{Rep}(\overline{\mathfrak{X}})$ are given by representations of $\overline{\mathfrak{X}}$, that is, tuples of the form $U = (U_X, U^i)_{X \in \mathfrak{X}_0, 1 \leq i \leq N}$.

- **A morphism** $\theta : U \to W$ between two representations $U = (U_X, U^i)_{X \in \mathfrak{X}_0}$ and $W = (W_X, W^i)_{X \in \mathfrak{X}_0}$ is given by a tuple $\theta = (P, Q)$. Each entry of this tuple consists of N k-linear maps P^1, \ldots, P^N, Q^1, \ldots, Q^N, respectively, such that the conditions (i) - (iv) below are satisfied. As in the definition of a $\overline{\mathfrak{X}}$-representation, one can also equivalently consider the P^is and Q^is as finite matrices with band structure given by the semichains of the bundle.

 (i) $P^i : U_{\mathcal{C}_i} \to W_{\mathcal{C}_i}$ and $Q^i : U_{\mathfrak{R}_i} \to W_{\mathfrak{R}_i}$, $\forall 1 \leq i \leq N$,

 (ii) $Q^i U^i = W^i P^i$, $\forall 1 \leq i \leq N$,

 (iii) for $X, Y \in \mathfrak{X}_0$, $X \neq Y$ and $\sigma(X) = Y$:

 (a) if $X \in \mathfrak{R}_i$, $Y \in \mathfrak{R}_j$ for some $1 \leq i, j \leq N$, then

 $$Q^i_{XX} = Q^j_{YY},$$

 (b) if $X \in \mathcal{C}_i$, $Y \in \mathcal{C}_j$ for some $1 \leq i, j \leq N$, then

 $$P^i_{XX} = P^j_{YY},$$

116
(c) if \(X \in \mathcal{R}_i \) and \(Y \in \mathcal{C}_j \), or \(X \in \mathcal{C}_i \) and \(Y \in \mathcal{R}_j \), for some \(1 \leq i, j \leq N \), then
\[
Q^i_{X,Y} = P^j_{Y,Y} \quad (P^i_{X,X} = Q^j_{Y,Y}, \text{ respectively})
\]

(iv) for \(X, Y \in \mathcal{X}_0 \) and a block of the respective size with arbitrary (possibly zero) entries from \(k \):
(a) if \(X, Y \in \mathcal{C}_i \), for some \(i \in \{1, \ldots, N\} \), then
\[
P^i_{X,Y} = \begin{cases}
0 & \text{if } X < Y \text{ or } X \neq Y \\
* & \text{if } X \geq Y
\end{cases}
\]
(b) if \(X, Y \in \mathcal{R}_i \) for some \(i \in \{1, \ldots, N\} \), then
\[
Q^i_{X,Y} = \begin{cases}
0 & \text{if } X > Y \text{ or } X \neq Y \\
* & \text{if } X \leq Y
\end{cases}
\]

- The identity morphism on a representation \(U \) is given by \(1_U = (P, Q) \) where \(P^i = 1_{c_i \times c_i}, Q^i = 1_{r_i \times r_i} \), where \(r_i = n_{\mathcal{R}_i}, c_i = n_{\mathcal{C}_i} \).
- Let \(\theta = (P, Q) : U \rightarrow V \), \(\varphi = (R, S) : V \rightarrow W \) be two morphisms. Then their composition is given componentwise: \(\varphi \circ \theta = (RP, SQ) \) such that
\[
S^i Q^i U^i = W^i R^i P^i \quad \forall 1 \leq i \leq N.
\]

Note that \(P^i \) and \(Q^i \) inherit their band structures from \(U^i, W^i \), respectively:
- \(P^i_{X,Y} \) is of size \(n^W_X \times n^U_Y \) with \(X, Y \in \mathcal{C}_i \).
- \(Q^i_{X,Y} \) is of size \(n^W_X \times n^U_Y \) with \(X, Y \in \mathcal{R}_i \).

It is a well-known fact that the Krull-Schmidt Theorem holds for \(\text{Rep}(\mathcal{X}) \) (see [Bon91, KR77]) and that \(\text{Rep}(\mathcal{X}) \) is additive.

Example 4.64. Let \(N = 1 \), \(\mathcal{X} = \{\mathcal{C}_1, \mathcal{R}_1\} \) with
\[
\mathcal{C}_1 = \{\mathcal{C}_{11}, \mathcal{C}_{12}\}, \\
\mathcal{R}_1 = \{\mathcal{R}_{11} > \mathcal{R}_{12} > \mathcal{R}_{13}\}.
\]

Let \(\sigma \) act as identity on the elements with the following exception:
\[
\sigma(\mathcal{R}_{11}) = \mathcal{R}_{13}.
\]

We know from the previous section that its representations of \(\mathcal{X} = (\mathcal{X}, \sigma) \) have the following band structure with \(n_{\mathcal{R}_{11}} = n_{\mathcal{R}_{13}} \):

\[
\begin{array}{c|c|c}
\mathcal{R}_{13} & & \\
\hline
\mathcal{R}_{12} & & \\
\hline
\mathcal{R}_{11} & & \\
\end{array}
\]

\[
\mathcal{C}_{11}^+ \quad \mathcal{C}_{11}^+
\]

(66)
Let U and W be two representations of \mathbb{K} and $\theta = (P, Q) : U \to W$ be a morphism between them. Then the components of θ are of the following forms with respect to their bands:

$$P^1 = \begin{pmatrix} C_{11}^+ & C_{11}^- \\ \ast & 0 \\ 0 & \ast \end{pmatrix}, \quad Q^1 = \begin{pmatrix} R_{13} & R_{12} & R_{11} \\ A & 0 & 0 \\ \ast & \ast & 0 \\ \ast & \ast & A \end{pmatrix}. $$

Here, both A and $*$ denote a block of the respective size with arbitrary entries from k. The two A-blocks are equal.

Example 4.65. Let $N = 1$ and $X = \{C_1, R_1\}$ with

$$C_1 = \{C_{11} < C_{12} < C_{13}^+ \leq C_{13}^- < C_{14}\}, \quad R_1 = \{R_{11} > R_{13}^+ \leq R_{13}^- > R_{13}\}. $$

The involution σ acts as follows:

$$\sigma : \quad C_{11} \mapsto R_{11}, \quad C_{12} \mapsto C_{14}, $$

and as identity on the other elements. Thus, any representation of \mathbb{K} is of the following form with $n_{C_{11}} = n_{R_{11}}$ and $n_{C_{12}} = n_{C_{14}}$:

$$C_{11} \quad C_{12} \quad C_{13}^+ \quad C_{13}^- \quad C_{14} $$

Here, A and B denote blocks of the respective sizes with arbitrary entries from k.

We now prove the well-definedness of compositions in $\text{Rep}(\mathbb{K})$.

118
Lemma 4.66. Let $\theta = (P, Q) : U \to V$ and $\varphi = (R, S) : V \to W$ be morphisms in $\text{Rep}(\mathbb{X})$. Then $\varphi \circ \theta \in \text{Rep}(\mathbb{X})$.

Proof. It is enough to check (iii) and (iv) of Definition 4.63. In order to do so, we denote in the following the ordering of the bands in the matrices by $<_\mathcal{X}$. Let $X, Y \in \mathbb{X}_0$. We write $X <_\mathcal{X} Y$ if $X < Y$, or if $X = Z^+ + Z$ and $Y = Z^-$. In particular, it follows that

$$P^i_{XY} = 0 \quad \text{and} \quad R^i_{XY} = 0 \quad \text{for } X <_\mathcal{X} Y,$$

$$Q^i_{XY} = 0 \quad \text{and} \quad S^i_{XY} = 0 \quad \text{for } X >_\mathcal{X} Y.$$

Since we use (iv) to prove (iii), we start with the former.

(iv) Let X and Y be in \mathbb{X}_0. It is enough to consider the zero blocks in the composition.

(a) Let $X, Y \in C_i$ for some $i \in \{1, \ldots, N\}$. Let $X < Y$. We obtain

$$\begin{align*}
(R^i P^i)_{XY} &= \sum_{Z \in \mathfrak{C}_i} R^i_{XZ} P^i_{ZY} \\
&= \sum_{Z <_\mathcal{C} X} R^i_{XZ} P^i_{ZY} + \sum_{X <_\mathcal{C} Z <_\mathcal{C} Y} R^i_{XZ} P^i_{ZY} + \sum_{Y < Z} R^i_{XZ} P^i_{ZY} \\
&\quad + R^i_{XX} P^i_{XY} + R^i_{XY} P^i_{YY} \\
&= 0. \quad (70)
\end{align*}$$

Finally, let X and Y be incomparable, say $X <_\mathcal{X} Y$. Then

$$\begin{align*}
(R^i P^i)_{XY} &= \sum_{Z <_\mathcal{C} X} R^i_{XZ} P^i_{ZY} + \sum_{Y <_\mathcal{C} Z} R^i_{XZ} P^i_{ZY} + R^i_{XX} P^i_{XY} \\
&\quad + R^i_{XY} P^i_{YY} \\
&= 0, \quad (71)
\end{align*}$$

and

$$\begin{align*}
(R^i P^i)_{YX} &= \sum_{Z <_\mathcal{C} X} R^i_{YZ} P^i_{ZX} + \sum_{Y <_\mathcal{C} Z} R^i_{YZ} P^i_{ZX} + R^i_{YX} P^i_{XX} \\
&\quad + R^i_{YY} P^i_{YX} \\
&= 0. \quad (72)
\end{align*}$$

Combining (70) - (72) gives

$$\begin{align*}
(R^i P^i)_{XY} &= 0 \quad \text{if } X < Y \text{ or } X \not\prec Y \\
(S^i Q^i)_{XY} &= 0 \quad \text{if } X > Y \text{ or } X \not\prec Y.
\end{align*}$$

(b) Proceeding analogously to (a) results in

$$(S^i Q^i)_{XY} = 0 \quad \text{if } X > Y \text{ or } X \not\prec Y.$$
(iii) Let $X \neq Y \in \mathcal{X}_0$ with $\sigma(X) = Y$. Note that X and Y are comparable.

(a) Let $X \in \mathcal{R}_i$ and $Y \in \mathcal{R}_j$ for some $i, j \in \{1, \ldots, N\}$. We have that

$$Q^i_{XX} = Q^j_{YY} \quad \text{and} \quad S^i_{XX} = S^j_{YY}. \quad (73)$$

We obtain that

$$(S^i Q^i)_{XX} = \sum_{Z < X} S^i_{XZ} Q^i_{ZX} + \sum_{X < Z} S^i_{ZX} Q^i_{ZX} + S^i_{XX} Q^i_{XX}$$

and analogously, that

$$(S^j Q^j)_{YY} = S^j_{YY} Q^j_{YY} \quad (75)$$

Combining (73), (74) and (75) gives the desired result:

$$(S^i Q^i)_{XX} = (S^j Q^j)_{YY}. \quad (76)$$

(b) Consider $X \in \mathcal{C}_i$ and $Y \in \mathcal{C}_j$ for some $i \in \{1, \ldots, N\}$. It follows analogously to (a) that

$$(R^i P^j)_{XX} = (R^j P^i)_{YY}. \quad (77)$$

(c) Let $X \in \mathcal{C}_i$ and $Y \in \mathcal{R}_j$ for some $i, j \in \{1, \ldots, N\}$ ($X \in \mathcal{R}_i$ and $Y \in \mathcal{C}_j$). It follows analogously to (a) that

$$(R^i P^j)_{XX} = (S^i Q^j)_{YY} \quad ((R^j P^i)_{YY} = (S^i Q^j)_{XX}) \quad (78)$$

We know already from (a) and (b) that

$$(R^i P^j)_{XX} = R^i_{XX} P^j_{XX}, \quad (S^j Q^j)_{YY} = S^j_{YY} Q^j_{YY}. \quad (79)$$

This results with (76) in

$$(S^j Q^j)_{YY} = S^j_{YY} Q^j_{YY} = R^i_{XX} P^j_{XX} = (R^i P^j)_{XX} \quad (80)$$

The case $X \in \mathcal{R}_i, Y \in \mathcal{C}_j$ for some $i, j \in \{1, \ldots, N\}$ results analogously to the above in

$$(S^i Q^j)_{XX} = (R^j P^i)_{YY}. \quad \square$$
Remark 4.67. In terms of matrices, a morphism \(\theta = (P, Q) \) is an isomorphism provided that any of its components \(P^i \) and \(Q^i \) has full rank. Any admissible transformation has full rank and respects the conditions (i) - (iv) of a morphism in \(\text{Rep}(\mathcal{X}) \) by definition. Thus, any admissible transformation gives an isomorphism in \(\text{Rep}(\mathcal{X}) \).

The converse of the previous remark is not trivial but we obtain the following:

Lemma 4.68. Any isomorphism in \(\text{Rep}(\mathcal{X}) \) is given by a finite product of admissible transformations.

Proof. Let \(\theta = (P, Q) \) be an isomorphism in \(\text{Rep}(\mathcal{X}) \). Then, in terms of matrices, \(P^i \) is an upper and \(Q^i \) is a lower triangular matrix for any \(1 \leq i \leq N \).

We first consider \(Q^i \). We apply Gauss elimination to the block rows of \(Q^i \). Note that for incomparable elements \(X^+; X^- \) the block \(Q^i_{X^+ X^-} \) which is situated below the diagonal block \(Q^i_{X^+ X^+} \) is already 0 and does not need to be eliminated.

Together with \(Q^i \) having upper triangular form, Gauss elimination thus only requires admissible transformations of type 2. We denote the obtained matrix by \(\tilde{Q}^i \):

\[
\tilde{Q}^i = \left(\prod_{k, l, \lambda} G(k, l, \lambda) \right) Q^i, \tag{77}
\]

where \(G(k, l, \lambda) \) describes the operation on the row blocks \(k \) and \(l \) with \(\lambda \in k^\times \) (e.g. adding block row \(k \) multiplied by \(\lambda \) to block row \(l \)). Now \(\tilde{Q}^i \) is of diagonal block form: \((X, Y \in \mathcal{C}) \)

\[
\tilde{Q}^i_{XY} = \begin{cases}
0, & \text{if } X \neq Y, \\
\star, & \text{if } X = Y.
\end{cases}
\]

Thus, we can write it as follows:

\[
\tilde{Q}^i = \prod_{X \in \mathcal{C}} D^i_X, \tag{78}
\]

where \(D^i_X \) denotes the square matrix of same size as \(\tilde{Q}^i \), with an arbitrary block \((D^i_X)_{XX} \), identity blocks in all other diagonal blocks \((D^i_X)_{YY}, Y \neq X \), and 0–entries in all off-diagonal blocks:

\[
(D^i_X)_{ZY} = \begin{cases}
A^i_X & \text{if } Z = Y = X \\
1 & \text{if } Z = Y \neq X \\
0 & \text{else}
\end{cases}
\]

121
Any such D_X^i is an admissible transformation of type 1a or 1b. Thus, combining (77) and (78), we can write Q^i as a product of admissible transformations of type 2 and of type 1:

$$Q^i = \left(\prod_{k,l,\lambda} G(k,l,\lambda) \right) \left(\prod_{X \in \mathcal{C}_i} D_X^i \right).$$

Now consider P^i. Proceeding analogously as for Q^i with respect to P^i being of upper triangular form and with respect to its block columns, we obtain

$$P^i = \left(\prod_{X \in \mathcal{C}_i} \bar{D}_X^i \right) \left(\prod_{k,l,\lambda} \bar{G}^{-1}(k,l,\lambda) \right),$$

with similar notation as above. In particular, we denote by \bar{A}_X^i its non-arbitrary block of \bar{D}_X^i in position XX. Thus, P^i can be written as a product of admissible transformations of type 1 and of type 2.

Note that the assumptions on certain matrices with respect to admissible transformations of type 1a and 1b are satisfied. This is due to \tilde{Q}^i and \tilde{P}^i being for any $1 \leq i \leq N$ of diagonal block form. Thus, for $X \neq Y \in \mathcal{X}_0$ and $\sigma(X) = Y$, we have

- for $X \in \mathcal{R}_i$, $Y \in \mathcal{R}_j$ (or $X \in \mathcal{C}_i$, $Y \in \mathcal{C}_j$) for some $i, j \in \{1, \ldots, N\}$ that
 $$A_X^i = A_Y^j \quad (\bar{A}_X^i = \bar{A}_Y^j),$$

- for $X \in \mathcal{R}_i$, $Y \in \mathcal{C}_j$ (or $X \in \mathcal{C}_i$, $Y \in \mathcal{R}_j$) for some $i, j \in \{1, \ldots, N\}$ that
 $$A_X^i = \bar{A}_Y^j \quad (\bar{A}_X^i = A_Y^j).$$

Finiteness of the products follows in both cases from the finiteness of Q^i, P^i, respectively.

Remark 4.69. By Lemma 4.68, isomorphic representations in $\text{Rep}(\mathcal{X})$ are given by equivalent ones (cf. Definition 4.10). In particular, the commutativity relation $Q^i U^i = W^i P^i$ implies for the isomorphism $\theta = (P, Q) : U \rightarrow W$ that

$$U^i = (Q^i)^{-1} W^i P^i.$$

Thus, condition (iii) on morphisms ensures that any arbitrary elementary transformation on the band $P(X)$ implies the same or, respectively, inverse transformation on the band $P(Y)$, where X and Y are two links with $\sigma(X) = Y$.

122
4.3 Reduction to skewed-gentle algebras

In the following subsections, we take the next step in order to obtain a classification of the indecomposable finite dimensional modules of a clannish algebra.

We can deduce from any clannish algebra \(\Lambda \) a skewed-gentle algebra \(\Lambda \), by neglecting some of the zero relations of \(\Lambda \) such that all necessary conditions for \(\Lambda \) are fulfilled (compare Definition 2.9, conditions (v) and (v)*).

In the following, we will restrict ourselves to skewed-gentle algebras \(\Lambda \). Recall that any skewed-gentle algebra is clannish by Lemma 2.11. Hence, the previous results on clannish algebras also hold for skewed-gentle algebras.

Starting in the next subsection, we describe how to transform the setup of a skewed-gentle algebra \(\Lambda \) into the setup of a bundle of semichains \(\overline{X}_\Lambda \) as described in [Bon91]. The construction of \(\overline{X}_\Lambda \) will be given in such a way that it is compatible with the directions on special letters of finite index for strings and bands (Proposition 4.145). Eventually, our construction will lead to an equivalence between the categories \(\text{Rep}(\overline{X}_\Lambda) \) and \(\text{mod}(\Lambda) \) (Theorem 5.6). Moreover, we obtain a classification of the indecomposable finite dimensional modules of a skewed-gentle algebra in terms of strings and bands (Theorem 5.49). This classification derives from the former mentioned equivalence. Finally, we will be able to give a reformulation of this classification which will lead to the classification for clannish algebras as conjectured in [CB88] (Theorem 6.10). Starting from the classification on skewed-gentle algebras, we will deduce a classification on clannish algebras as follows:

Let \(\Lambda = kQ/(R \cup R^{Sp}) \) be a skewed-gentle algebra and let \(\overline{\Lambda} = kQ/(\overline{R} \cup \overline{R}^{Sp}) \) be a clannish algebra. Assume that we obtain \(\overline{\Lambda} \) from \(\Lambda \) by adding the set of relations \(\{r_1 \ldots r_{k_i}\}_{i \in I} \) to \(\overline{R} \). Denote by \((V_i, V_x)_{i \in Q_0, x \in Q_1} \) a \(\Lambda \)-representation. Take the list of indecomposable finite dimensional modules of \(\Lambda \) given by its classification and dismiss all those modules \(V \) which do not fulfill the relations \(r \in \{r_1 \ldots r_{k_i}\}_{i \in I} \): \(V_{r_1} \ldots V_{r_{k_i}} \neq 0 \) for all \(i \in I \). The remaining ones give a classification of the indecomposable finite dimensional modules of \(\overline{\Lambda} \).
4.4 Construction of a bundle of semichains

In this section we want to give a description on how to transform the setup of a skewed-gentle algebra Λ into the setup of a bundle of semichains \mathfrak{X}_Λ as described in [Bon91]. The construction of \mathfrak{X}_Λ will be given in such a way that it is compatible with the directions on special letters of finite index for strings and bands (Proposition 4.145). The construction given here coincides to some extend to the one of a bush given in [Den00] (see Remark 4.77). Eventually, our construction will lead to an equivalence between the categories $\text{Rep}(\mathfrak{X}_\Lambda)$ and $\text{mod}(\Lambda)$ (Theorem 5.6).

For the rest of the chapter, let Λ be a skewed-gentle algebra (unless stated otherwise) given by a quiver Q with set of special loops given by Sp and a set of relations R. Let $V = (V_i, V_a)_{i \in Q_0, a \in Q_1}$ be an arbitrary representation of Λ.

Let $r = r_1 r_2 \in R$ be a relation and let $a \in Q_1$ be an arrow. Then we write $a \in r$ if $r_1 = a$ or $r_2 = a$. Note that in this case we have that $a \in Q_1^{\text{ord}}$.

The goal of this section is to prove the following statement:

Theorem 4.70. Let $\Lambda = kQ/(R^\text{Sp} \cup R)$ be a skewed-gentle algebra with R as described above. Then there exists for Λ a bundle of semichains \mathfrak{X}_Λ.

We give the explicit construction of \mathfrak{X}_Λ in the Subsections 4.4.1 - 4.4.5 and the proof of the above theorem. Examples for the complete construction will be given in Subsection 4.4.7.

4.4.1 Filtrations from relations

In this subsection we describe how we obtain filtrations from the relations in $R \cup R^\text{Sp}$. We need the filtrations in the following subsections in order to create semichains and assign them to the bundles.

We obtain five different types of filtrations. The types (1) - (3) are obtained from relations in R, while the filtrations of type (4) are obtained from R^Sp. Filtrations of type (5) will be called standard filtration. They do not arise from a relation.

First we describe the filtrations we obtain from R.

Let $i \in Q_0$ and $a \in Q_1^{\text{ord}}$ with $s(a) = i$. If there does not exist $r \in R$ with $a \in r$, then a filtration on i is given by

\[(1) \quad F_i : 0 < \ker(a) \subset V_i,\]

where $\ker(a)$ describes the subspace generated by the kernel of a. We call any filtration of this form a filtration of type (1).

If there exists $r \in R$ with $a \in r$, then there exists $b \in Q_1^{\text{ord}}$ with $t(b) = i$ and $r = ab$. We consider

\[(2) \quad F_i : 0 < \text{im}(b) \subset \ker(a) \subset V_i,\]

124
where \(\text{im}(b) \) denotes the subspace given by the image of \(b \). This gives a
\textit{filtration of type (2)}. Assume now that \(t(a) = i \). We distinguish as before: if there does not exist \(r \in \mathbb{R} \) with \(a \in r \), then
\[
(3) \quad F_i : 0 \subset \text{im}(a) \subset V_i.
\]
gives a \textit{filtration of type (3)}. If there exists a relation \(r \) with \(a \in r \), then we obtain again a filtration of type (2).

Let us now consider filtrations which we obtain from \(R^{Sp} \).
Let \(\varepsilon \in \text{Sp} \) with \(s(\varepsilon) = i \). Then we have the idempotent relation \(\varepsilon^2 = \varepsilon \) on \(\varepsilon \) and thus we can decompose \(V_i \) into \(V_i = \text{im}(\varepsilon) \oplus \text{ker}(\varepsilon) \). We obtain a filtration
\[
(4) \quad F_i : \begin{array}{c}
\text{im}(\varepsilon) \\
0 \\
\text{ker}(\varepsilon)
\end{array} \rightarrow V_i
\]
which we call a \textit{filtration of type (4)}. Instead of (79) we write:
\[
0 \subset \text{im}(\varepsilon) \oplus \text{ker}(\varepsilon) = V_i
\]
for this type of filtration.

At last, we consider a filtration that is not arising from a relation. We call this filtration \textit{standard} or a \textit{filtration of type (5)} and it is of the form
\[
(5) \quad F_i : 0 \subset V_i.
\]
This filtration arises at vertices \(i \in Q_0 \) which have at most one incident arrow.

Thus, if \(i \in Q_0 \) is not an isolated vertex (where isolated means that no arrows start and no arrows end in \(i \)), then we obtain two filtrations \(F_i^{(1)} \), \(F_i^{(2)} \) for \(i \), of which at least one is of type (1) - (4), and the other is of type (1) - (5).
If, on the other hand, \(i \in Q_0 \) is an isolated vertex, then both \(F_i^{(1)} \) and \(F_i^{(2)} \) are filtrations of type (5).

4.4.2 Semichains from filtrations

In this subsection we describe how to construct several semichains from filtrations of type (1) - (5). Here, we are going to distinguish between the types
(1) - (3), (5) and type (4). This is due to the fact that (1) - (3), (5) have the form of a chain, while (4) is of diamond form. The goal is to obtain for each \(F_i \) of the above types a semichain \(S_i \) with elements corresponding in some way to the bases of the subspaces.

Let

\[
F_i : 0 = V_{i0} \subset V_{i1} \subset \cdots \subset V_{in} = V_i
\]

be a filtration of \(V_i \) of type (1) - (3) or (5), \(i \in Q_0 \). Note that \(n \leq 3 \).

In the first step, we determine the bases of the respective subspaces and set

\[
B_{i0} = 0,
B_{i1} \text{ is a basis of } V_{i1},
B_{i2} \text{ is } B_{i1} \text{ extended to a basis of } V_{i2},
\vdots
\]

giving iteratively

\[
B_{ik} \text{ is } B_{i,k-1} \text{ extended to a basis of } V_{ik}.
\] (80)

Additionally, we assume the following with respect to the bases \(\{B_{ik}\}_k \):

Let \(a : i \rightarrow j \in Q_1 \) and let

\[
F_j : 0 = V_{j0} \subset V_{j1} \subset \cdots \subset V_{jm} = V_j
\]

be a filtration on \(V_j \). Note, that in case of \(a \) being a loop, we have \(i = j \) and thus \(V_i = V_j \).

Let \(k \in \{0, \ldots, m\} \) such that \(V_{jk} \) gives the subspace generated by the image of \(a \), and let \(l \in \{0, \ldots, n\} \) such that \(V_{il} \) is the subspace generated by the kernel of \(a \), say

\[
V_{jk} = \langle w_1, \ldots, w_k \rangle,
V_{il} = \langle v_1, \ldots, v_l \rangle \quad \text{and}
V_i / V_{il} = \langle x_1 + V_{il}, \ldots, x_n + V_{il} \rangle,
\]

where the elements \(w_1, \ldots, w_k \) are linearly independent and same holds for \(v_1, \ldots, v_l \), and \(x_1, \ldots, x_n \). To simplify notation, in what follows, we will call \((x_1, \ldots, x_n) \) a basis of \(V_i \oplus V_{il} \) and write \(V_i \oplus V_{il} \) short for \(\langle x_1, \ldots, x_n \rangle \).

We assume that there exists for any \(w_h \in \{w_1, \ldots, w_k\} \) a unique \(x_g \in \{x_1, \ldots, x_n\} \) such that \(a(x_g) = w_h \).

By definition of \(\{B_{ik}\} \) in (80), it follows that

\[
B_{ik} \supset B_{il} \quad \forall l < k.
\] (81)
Hence,
\[B_{i,k-1}^i := B_{i,k} \cap B_{i,k-1} \quad \forall k \in \{1, \ldots, n\} \] (82)
is well-defined. Using (82), we can now define the elements \(S_{ik} \) of the semichain \(S_i \) corresponding to \(F_i \).
For \(k \in \{1, \ldots, n\} \), the element \(S_{ik} \) corresponds to \(B_{i,k-1}^i \). We write
\[S_{ik} \mapsto B_{i,k-1}^i \quad \forall k \in \{1, \ldots, n\}. \] (83)
Every element \(S_{ik} \) belongs to a one-point link of the semichain. This one-point link will also be denoted by \(S_{ik} \). It will be clear from the context, whether we refer to \(S_{ik} \) as an element or as a link of the semichain \(S_i \).
It remains to settle an ordering within the elements \(\{S_{ik}\}_k \) of \(S_i \). There are two possible ways to do that and we will use both in the following:

(i) We order the elements of \(S_i \) with respect to the subspace inclusions in \(F_i \), meaning
\[S_{i,k} > S_{i,k-1} \quad \forall k \in \{2, \ldots, n\}. \] (84)
We denote the resulting semichain by \(S_i^{(c)} \) where the superscript stands for compatible with respect to the subspace inclusion:
\[S_i^{(c)} : \{S_{i,1} < S_{i,2} < \cdots < S_{i,n-1} < S_{i,n}\}. \] (85)

(ii) We order the elements of \(S_i \) in reversed order with respect to the subspace inclusions in \(F_i \), giving
\[S_{i,k} < S_{i,k-1} \quad \forall k \in \{2, \ldots, n\}. \] (86)
We denote the resulting semichain by \(S_i^{(r)} \), where the superscript stands for reversed:
\[S_i^{(r)} : \{S_{i,n} < S_{i,n-1} < \cdots < S_{i,2} < S_{i,1}\}. \] (87)

Remark 4.71. In case of \(i \) being an isolated vertex, we obtain two standard filtrations. Each of them gives a semichain consisting of a single one-point link. We call this kind of semichain standard.
Since there is no ordering given on those semichains, we have
\[S_i^{(c)} = S_i^{(r)} \] (88)
for any standard semichain \(S_i \). Yet, for notational reasons, we will distinguish between those two copies of \(S_i \) in the following.
Thus, we have to choose \(S_i \) from the set \(\{ S_i^{(c)}, S_i^{(r)} \} \). How to do so, we discuss in Subsection 4.4.4.

Let us now come to the semichains arising from filtrations of type (4). Hence, let

\[F_i : 0 = V_{i0} \subset (V_{i1} \oplus V_{i2}) = V_{i3} \] (89)

with \(V_{i3} = V_i \). Let \(\varepsilon \in \text{Sp} \) with \(s(\varepsilon) = i \), and let \(V_{i1} = \text{im}(\varepsilon), V_{i2} = \ker(\varepsilon) \).

Let \(B_{ik} \) be the basis of \(V_{ik} \) for \(k = 1, 2 \). Then we have the following properties:

(i) \(B_{i1} \) is the basis of \(\text{im}(\varepsilon) \),

(ii) \(B_{i2} \) is the basis of \(\ker(\varepsilon) \),

(iii) \(B_{i1} \cap B_{i2} = 0 \),

(iv) \(V_i = \langle B_{i1} \rangle \oplus \langle B_{i2} \rangle \).

Again, we want to denote the elements of \(S_i \) in terms of the bases of the respective subspaces of \(F_i \). By (89) and (iv), there are only two bases to consider, namely \(B_{i1} \) and \(B_{i2} \).

Thus, the element \(S_{ik} \) of \(S_i \) corresponds to \(B_{ik} \), \(k = 1, 2 \). We write

\[S_{ik} = B_{ik} \quad k = 1, 2. \]

By (iii), neither \(B_{i1} \subset B_{i2} \), nor \(B_{i2} \subset B_{i1} \). Hence, it is reasonable to consider \(S_{i1} \) and \(S_{i2} \) to be incomparable elements of \(S_i \). We write

\[S_{i1} \uplus S_{i2} \]

to express the incomparability.

Together, these two elements form a link, denoted by \(S_{i\varepsilon} \), or simply by \(S_{\varepsilon} \) (since \(s(\varepsilon) = i \) by \(\varepsilon \) being a loop), giving

\[S_i = \{ S_{i1} \uplus S_{i2} \}. \] (90)

We might by abuse of notation also denote the semichain \(S_i \) by \(S_{\varepsilon} \) if it is clear from the context, and refer to it as \textit{special} semichain.

Hence, we obtain for each \(i \in Q_0 \) two semichains that we denote by \(S_{i}^{(1)} \) and \(S_{i}^{(2)} \). Each of them is of the form \(S_i^{(r)}, S_i^{(c)} \) or \(S_{\varepsilon} \).

Subsection 4.4.4 will give more information about the detailed choice of the semichains as one of the just mentioned forms.

First we want to extend the definition of signs from letters to filtrations and semichains in the next section. Thus, the assignment of semichains to bundles in Subsection 4.4.4 can be given in a unique way.
4.4.3 Signs for filtrations and semichains

To describe the assignment of the semichains to the bundles \mathcal{R} and \mathcal{C}, we will draw back on the notation of signs (compare Section 2.3).

Recall that we assign to each letter $x \in \Gamma, *, \epsilon \in \{ud, d\}$, a sign $\text{sgn}(x) \in \{+, -\}$. Two letters l, l' have the same sign if and only if $\{l, l'\} = \{x^{-1}, y\}$ for two arrows x, y, and either $xy \in \mathcal{R}$ or $x = y \in \mathcal{Sp}$.

Assume from now on that we have chosen the same sign for every $\epsilon \in \mathcal{Sp}$:

$$\text{sgn}(\epsilon) = \kappa, \text{ for all } \epsilon \in \mathcal{Sp}, \text{ some } \kappa \in \{+, -\}.$$ We want to use the signs of the letters appearing in a filtration to give their filtration a sign. To this end, let $F_i^{(j)}$, $j \in \{1, 2\}$, be a filtration for some $i \in Q_0$. Depending on the type of $F_i^{(j)}$, we choose its sign as follows:

- **type (1):** We choose the sign of $F_i^{(j)}$ with respect to the ordinary arrow determining it:

 $$\text{sgn}(F_i^{(j)}) = \text{sgn}(a^{-1}). \tag{91}$$

- **type (2):** We have for the two ordinary arrows determining $F_i^{(j)}$ that $\text{sgn}(a^{-1}) = \text{sgn}(b)$, and we choose the sign of the filtration according to this property:

 $$\text{sgn}(F_i^{(j)}) = \text{sgn}(a^{-1}) = \text{sgn}(b). \tag{92}$$

- **type (3):** We proceed similar as in the case of type (1) which yields that

 $$\text{sgn}(F_i^{(j)}) = \text{sgn}(a). \tag{93}$$

- **type (4):** As in the cases of type (1) and (3), there is only one arrow determining subspaces within the filtration, and thus we set

 $$\text{sgn}(F_i^{(j)}) = \text{sgn}(\epsilon). \tag{94}$$

- **type (5):** In this case we need to distinguish between i being isolated or not. Let $F_i^{(j)}$ be the second filtration on the vector space V_i, hence, $j \neq \bar{j} \in \{1, 2\}$. If i is not isolated, then $F_i^{(j)}$ is not of type (5) and we can choose its sign according to the above description. Then we set

 $$\text{sgn}(F_i^{(j)}) = -\text{sgn}(F_i^{(\bar{j})}). \tag{95}$$

 Otherwise i is isolated. Then we set conventionally

 $$\text{sgn}(F_i^{(1)}) = +, \quad \text{sgn}(F_i^{(2)}) = -. \tag{96}$$

129
Lemma 4.72. By choosing the signs as in (91) - (96), we have

\[\text{sgn}(F_i^{(1)}) \neq \text{sgn}(F_i^{(2)}) \text{ for all } i \in Q_0. \]

Proof. Assume without loss of generality that \(F_i^{(1)} \) is a filtration of type (5). It follows by construction above that \(\text{sgn}(F_i^{(1)}) \neq \text{sgn}(F_i^{(2)}) \) for \(F_i^{(2)} \) a filtration of type (1)-(5).

Assume towards a contradiction that \(\text{sgn}(F_i^{(1)}) = \text{sgn}(F_i^{(2)}) \). Let \(F_i^{(1)} \) be a filtration of type (2). We consider the different possibilities for \(F_i^{(2)} \): If it is of type (1), then we have locally at vertex \(i \) the situation

\[b \rightarrow \bullet \rightarrow c \rightarrow a \]

with \(ab = 0 \). Hence, \(\text{sgn}(a^{-1}) = \text{sgn}(b) = \text{sgn}(F_i^{(1)}) \) and \(\text{sgn}(F_i^{(2)}) = \text{sgn}(c^{-1}) \).

Thus, by assumption \(\text{sgn}(c^{-1}) = \text{sgn}(b) \). It follows \(cb = 0 \) as well, giving a contradiction to the assumption on the type of \(F_i^{(2)} \) (since the relation \(cb = 0 \) would imply that \(F_i^{(2)} \) is of type (2)). For \(F_i^{(2)} \) of type (3) we obtain similarly a contradiction.

For \(F_i^{(2)} \) of type (2), we locally have

\[d \rightarrow b \rightarrow \bullet \rightarrow c \rightarrow a \]

with \(ab = 0 \) and \(dc = 0 \). Hence, since we assume the filtrations have the same sign. It follows that \(\text{sgn}(a^{-1}) = \text{sgn}(b) = \text{sgn}(d^{-1}) = \text{sgn}(c) \). This implies that \(ad = 0 \) and \(cb = 0 \), a contradiction to \(\Lambda \) being skewed-gentle.

Let \(F_i^{(2)} \) now be of type (4). Then we have at vertex \(i \):

\[b \overset{\varepsilon^*}{\rightarrow} \bullet \overset{\varepsilon}{\leftarrow} a \]

with \(ab = 0 \), \(\varepsilon \in \text{Sp} \). For the filtrations to have the same sign, the relation \(a\varepsilon = 0 \) or the relation \(\varepsilon b = 0 \) must be satisfied. By definition of skewed-gentle, the relations may not start or end in a special loop. Hence, we obtain a contradiction.

It remains to consider cases where one of the filtrations is of type (4) and the other is not of type (2), not of type (5). Without loss of generality let \(F_i^{(1)} \)
be of type (1). If $F^{(2)}_i$ is of type (3), we consider at vertex i the following situation:

\[
\begin{array}{c}
\varepsilon^* \\
\downarrow \\
\bullet
\end{array}
\]

Since $\text{sgn}(F^{(1)}_i) = \text{sgn}(F^{(2)}_i)$, it follows that $\text{sgn}(\varepsilon^*) = \text{sgn}(b)$. This implies that $\varepsilon b = 0$ which gives a contradiction. We obtain a similar contradiction for $F^{(2)}_i$ being of type (1).

Thus, we know how to obtain a sign for each of the two filtrations $F^{(1)}_i, F^{(2)}_i$ on a vertex $i \in Q_0$. By the previous lemma, it is clear that there does not exist $i \in Q_0$ such that its two filtrations have same sign.

We want to use this data in order to choose for each filtration $F^{(j)}_i$, $j = 1, 2$, a corresponding semichain $S^{(j)}_i$ in a unique way. In Subsection 4.4.2, we have already discussed what kind of possibilities we have for this choice.

For a filtration of type (4) there is no choice given since the corresponding semichain is given by (90).

Hence, let $F^{(j)}_i$ for $j \in \{1, 2\}$ be a filtration of type (1) - (3) or (5) with $\text{sgn}(F^{(j)}_i) = \mu$ and $\mu \in \{+,-\}$.

The corresponding semichain $S^{(j)}_i$ can either be compatible with the subspace inclusions of $F^{(j)}_i$ as described in (85), or we use a reversed ordering in the semichain with respect to the subspace inclusions (cf. (86)). In the first case, we denote the semichain of the respective form by $S^{(j,c)}_i$, in the second case by $S^{(j,r)}_i$.

Recall that $\text{sgn}(\varepsilon) = \kappa$ for all $\varepsilon \in \text{Sp}$. We choose $S^{(j)}_i$ according to the sign of $F^{(j)}_i$ as follows:

\[
\begin{align*}
\text{if } \mu = \kappa, & \quad \text{set } S^{(j)}_i = S^{(j,c)}_i, \quad (97) \\
\text{otherwise, } & \quad \text{set } S^{(j)}_i = S^{(j,r)}_i, \quad (98)
\end{align*}
\]

and in any case set $\text{sgn}(S^{(j)}_i) = \mu$.

This choice will help us in the next subsection to assign the semichains in a unique way to the different bundles. In addition, we obtain an "orientation" on the \mathcal{E}-graphs which matches the directions on letters of finite index. Additionally, we will see that the letter v_{m+1} which gives the symmetry axis in a symmetric string, is excluded from this result.

4.4.4 Assignment of semichains to bundles

When assigning the semichains to the bundles \mathcal{R} and \mathcal{C}, we need to take the definition of admissible transformations into account. Here, the trans-
formations of type 2 are of importance since the allowed row and column operations in the matrices of the representations should coincide with those operations on the vector space which do not change the chosen (sub-)bases with respect to the filtrations. We have already done some of the work for this in the previous subsection.

As mentioned before, we would like to obtain a basis change matrix on each vector space V_i, $i \in Q_0$, in terms of the matrix problem. To this end, it is clear that the two filtrations at each vertex $i \in Q_0$ are assigned each to different bundles.

Keeping the goal in mind that the orientation Bondarenko gives on L^{-} chains and L^{-}-cycles coincides with the one we have described on bands and strings (compare Chapter 3.3), we give the description of a certain assignment. We claim that the orientations then coincide with the directions on the respective letters of finite index, if the letter is not given by the symmetry axis of a symmetric string. (Proposition 4.145, Subsection 4.7).

Let $j \in \{1, 2\}$ and let \bar{j} be its complement with respect to $\{1, 2\}$. Then, as described in the previous section, we obtain for each $i \in Q_0$ two semichains S^j_i, $S^{\bar{j}}_i$. Each of them has a sign, say for a fixed $i \in Q_0$:

$$\operatorname{sgn}(S^j_i) = \kappa, \quad \operatorname{sgn}(S^{\bar{j}}_i) = -\kappa,$$

where κ is still chosen in such a way that $\operatorname{sgn}(\varepsilon) = \kappa$ for all $\varepsilon \in \text{Sp}$. We set

$$\mathcal{R}_i = S^{\bar{j}}_i, \quad \mathcal{C}_i = S^j_i.$$

Proceeding like this for any $i \in Q_0$, we obtain two bundles $\mathcal{R} = \bigcup_{i=1}^n \mathcal{R}_i$ and $\mathcal{C} = \bigcup_{i=1}^n \mathcal{C}_i$, where $|Q_0| = n$ and for any semichain $\mathcal{R}_i \in \mathcal{C}$ we have that $\operatorname{sgn}(\mathcal{R}_i) = -\kappa$, for any $\mathcal{C}_i \in \mathcal{C}$ we have that $\operatorname{sgn}(\mathcal{C}_i) = \kappa$. Thus, all semichains in \mathcal{C} are of special or compatible type, while \mathcal{R} consists of semichains of reversed type.

Remark 4.73. Note that there exists one exception for which the above construction does not work. For $\Lambda = k Q/(R \cup R^{\text{Sp}})$ given by

$$Q: \quad \varepsilon \underbrace{1 \bigcirc \ldots \bigcirc 1}_{a} \eta$$

with $R = \emptyset$ and $\text{Sp} = \{\eta, \varepsilon\}$, we cannot use the construction given in this and the previous subsections. Instead, we consider $\Lambda' = k Q'/(R' \cup R'^{\text{Sp}'})$ with

$$Q': \quad \varepsilon \underbrace{1 \bigcirc \ldots \bigcirc 1}_{a} \rightarrow 2 \bigcirc \eta,$$

$R' = \emptyset$ and $\text{Sp}' = \{\eta, \varepsilon\}$. Considering representations V' of $(Q', R' \cup R'^{\text{Sp}'})$ with V'_i bijective is equivalent to considering representations V of $(Q, R \cup R^{\text{Sp}})$ with $V_1 \cong V'_1 \cong V'_2$ and $V_\varepsilon = V'_\varepsilon$, $V_\eta = V'_\eta$.

Hence, we replace Λ in the following by Λ' and use the mentioned identification of their respective representations.
Remark 4.74. Note that generally any assignment of the semichains to the row and column label sets gives a bundle of semichains. We can for example also assign semichains of the types $S_{j,c}^{i}$ to the row label set and similarly those of type $S_{i,r}^{j}$ to the column label set. We have chosen this particular assignment in order to obtain a compatibility with respect to directions (cf. Proposition 4.145).

4.4.5 The involution σ

While the ordering within the semichains relates to admissible transformations of type 2, the involution σ_{A} relates to the definition of admissible transformations of type 1 (compare Section 4.1 and [Bon91]). Hence, we need to take the admissible transformations of type 1 into account in order to define σ_{A}.

In Subsection 4.4.2, we have chosen some bases depending on each other; the basis of the image of an ordinary arrow is chosen with respect to its preimage without kernel. We choose σ_{A} such that the admissible transformations reflect this correspondence.

By [Bon91], the involution is clearly defined on elements of two-point links. By construction, the two-point links are of the form S_{ε} for $\varepsilon \in Sp$. Recall that we denote its elements by $S_{\varepsilon}^{+} \triangleq \text{basis of } \text{im}(\varepsilon)$ and $S_{\varepsilon}^{-} \triangleq \text{basis of } \ker(\varepsilon)$. Then σ_{A} acts as the identity on those two elements:

$$\sigma_{A}:\begin{array}{l}
S_{\varepsilon}^{+}\mapsto S_{\varepsilon}^{+} \\
S_{\varepsilon}^{-}\mapsto S_{\varepsilon}^{-}
\end{array}$$

Any other link in our construction is given by a one-point link. We now describe how σ_{A} acts on those. To this end, let S_{i}^{j}, S_{k}^{l} be two elements of the form

$$S_{i}^{j} \triangleq \text{basis of } V_{i} \ominus \ker(a), \quad S_{k}^{l} \triangleq \text{basis of } \text{im}(a)$$

for some $a : i \rightarrow k \in Q_{\text{ord}}$. Recall that we have chosen the basis of $\text{im}(a)$ depending on basis of $V_{i} \ominus \ker(a)$ in Subsection 4.4.2. Then σ_{A} acts as follows:

$$S_{i}^{j} \xrightarrow{\sigma_{A}} S_{k}^{l}.$$

On any other element S_{p}^{q} which belongs to a one-point link, and which is not of the form (99)-(100), σ acts as identity:

$$\sigma_{A}: S_{p}^{q} \mapsto S_{p}^{q}.$$
Definition 4.75. Let \(\Lambda \) be a skewed-gentle algebra. We define its associated bundle of semichains by \(\overline{X}_\Lambda = (X_\Lambda, \sigma_\Lambda) \), where \(X_\Lambda \) and \(\sigma_\Lambda \) are defined as in the construction above.

Remark 4.76. By the above definition of the involution \(\sigma_\Lambda \), the basis of \(V_i \oplus \ker(a) \) and basis of \(\im(a) \) for any \(a \in Q_1^{\text{ord}} \) are connected in \(\overline{X}_\Lambda \). By definition of admissible transformations of type 2, we need to change one of those bases whenever we change the other. Hence, \(\overline{X}_\Lambda \) is compatible with this kind of dependences.

Remark 4.77. We find in [Den00, Example 3] a construction of a bush for a clannish algebra. This construction is similar to our construction for the following reasons. First, a bush is defined as a bundle of semichains. Second, Deng imposes additional conditions on the clannish algebra which coincide with our restriction to skewed-gentle algebras. Thus, Deng also considers skewed-gentle algebras. The semichains constructed in [Den00] correspond in the following way to the filtrations given in Subsection 4.4.1: the semichain given by \(\{i^e \sigma e\} \) corresponds to a filtration of type (4). The semichains \(\{a^e < i^e\} \) and \(\{i^e < b^e\} \) correspond to filtrations of type (1) and (3), respectively. A filtration of type (2) corresponds to the semichain \(\{a^e < i^e < b^e\} \).

But there are also some differences. First of all, Deng’s construction does not determine a bush in a unique way. After having chosen signs on the letters, our construction is uniquely determined. Second, all semichains are chosen in a compatible order with respect to the subspace inclusions of the respective filtrations. In contrast to that, we include semichains with reversed order to obtain compatibility between the directions of special letters in words and relations of the form \(x_i \alpha x_{i+1} \) in the \(\Sigma \)-graphs.

4.4.6 The relations \(\alpha \) and \(\beta \)

This subsection describes the \(\alpha \)-- and \(\beta \)--relations for our setup according to their definitions in Section 4.1. These relations follow naturally from our construction.

Note at first that these relations are defined between links of the semichains (in contrast to \(\sigma_\Lambda \) which is defined between elements).

Let us first describe the \(\beta \)--relations. Recall that we assign for any vertex \(i \in Q_0 \) one of its semichains to \(R_i \) and the other to \(C_i \). Recall also that the vertices of \(Q \) index the semichains in the bundles. We obtain

\[
S_j^i \beta S_j^j \quad \text{for any } i \in Q_0, j \in \{1, 2\}, j \neq j \in \{1, 2\}.
\]

Thus, \(\beta \) indicates whether there is a switch between the two bases of \(V_i \).

Remark 4.78. Any link is in exactly one \(\beta \)--relation, up to symmetry.
The \(\alpha \)-relations are formed in a more complicated manner since they depend on \(\sigma \) and the number of elements in the links. Our setup results in the following \(\alpha \)-relations: Links of type \(S_{\varepsilon}, \varepsilon \in \text{Sp} \), are always in \(\alpha \)-relation with themselves, since any special loop gives a two-point link. Hence,

\[
S_{\varepsilon} \alpha S_{\varepsilon} \quad \forall \varepsilon \in \text{Sp}.
\]

Now let \(S^j_i \) describe a one-point link. Then, whenever \(\sigma_\Lambda \) does not act as identity on such a link, we have

\[
S^j_i \alpha (\sigma_\Lambda(S^j_i)).
\]

Remark 4.79. Any one-point link \(S^q_p \) with \(\sigma(S^q_p) = S^q_p \) is not in any \(\alpha \)-relation. Thus, those links do not have to be considered for admissibility. Links of the form \(S_{\varepsilon^*} \) are also not of interest for admissibility since they are two-point links.

Remark 4.80. Note that only links of the form \(S_{\varepsilon^*} \) for some \(\varepsilon \in \text{Sp} \) give candidates for double ends; they are the only links in \(\alpha \)-relation with themselves.

We see later (compare Sections 4.5 and 4.6) that any \(\alpha \)-relation in an \(\mathcal{L} \)-graph \(g_w \) coming from a word \(w \) represents a letter \(w_i \) of \(w \).

After giving the construction, we can formulate the proof of Theorem 4.70:

Proof of Theorem 4.70. The statement follows by the construction above. \(\Box \)

4.4.7 Examples

We give examples on how to construct a bundle of semichains for two skewed-gentle algebras.

Example 4.81. Let \(\Lambda \) be given as in Example 2.3.1. We choose the signs of the letters of \(\Gamma_{ud} = \{\varepsilon^*, a, a^{-1}\} \) as follows:

\[
\begin{align*}
\text{sgn} \varepsilon^* &= 1, \\
\text{sgn} a &= \text{sgn}(a^{-1}) = -1.
\end{align*}
\]

The filtrations are of type (4) and type (2), respectively:

\[
\begin{align*}
F_1^{(1)} : & \quad 0 \subset \text{im}(\varepsilon) \oplus \ker(\varepsilon) = V_1, \\
F_1^{(2)} : & \quad 0 \subset \text{im}(a) \subset \ker(a) \subset V_1
\end{align*}
\]

135
and give the following semichains:

\[S_1^{(1)} = \{ S_+^e, S_-^e \}, \]
\[S_1^{(2,r)} = \{ S_{11} > S_{12} > S_{13} \}, \]
\[S_1^{(2,c)} = \{ S_{11} < S_{12} < S_{13} \}. \]

The elements correspond in the following way to the bases of the subspaces:

\[S_+^e = \text{basis of } \text{im}(e), \]
\[S_-^e = \text{basis of } \text{ker}(e), \]
\[S_{11} = \text{basis of } \text{im}(a), \]
\[S_{12} = \text{basis of } \text{ker}(a) \ominus \text{im}(a), \]
\[S_{13} = \text{basis of } V_1 \ominus \text{ker}(a). \]

The filtrations and semichains inherit their signs from (101) and (102) in the following way:

\[\text{sgn}(F_1^{(1)}) = 1, \quad \text{sgn}(S_1^{(1)}) = 1, \]
\[\text{sgn}(F_1^{(2)}) = -1, \quad \text{sgn}(S_1^{(2,r)}) = \text{sgn}(S_1^{(2,c)}) = -1. \]

Hence, we choose \(S_1^{(2)} = S_1^{(2,r)} \) and obtain

\[\mathcal{R}_1 = S_1^{(2)} \quad \text{and} \]
\[\mathcal{C}_1 = S_1^{(1)}. \]

We set \(\mathcal{C}_+^e = S_+^e, \mathcal{C}_-^e = S_-^e, \mathcal{R}_{11} = S_{11}, \) wherever \(i = 1, 2, 3. \) The involution acts as identity on the elements, except for the pair \(\sigma_\Lambda(\mathcal{R}_{11}) = \mathcal{R}_{13}. \) Hence, \(\overline{\mathcal{X}}_\Lambda = (\overline{\mathcal{X}}_\Lambda, \sigma_\Lambda) \) is given with \(\sigma_\Lambda \) as defined above, and with \(\overline{\mathcal{X}}_\Lambda = (\mathcal{C}_1, \mathcal{R}_1). \)

We denote the two-point link containing \(\mathcal{C}_+^e, \) and \(\mathcal{C}_-^e, \) by \(\mathcal{C}_e^+. \) The following relations are given on the links:

\[\alpha - \text{relations: } \mathcal{R}_{11} \circ \mathcal{R}_{13} \]
\[\mathcal{C}_-^e \circ \mathcal{C}_+^e, \]
\[\beta - \text{relations: } \mathcal{R}_{1i} \beta \mathcal{C}_e^+, \quad i = 1, 2, 3. \]

Remark 4.82. The above algebra has motivated the Examples 4.7 and 4.17, where \(\mathcal{C}_1 \) is to be identified with \(\mathcal{C}_e^+. \)

Example 4.83. Consider \(\Lambda \) from Example 2.14. Recall that its undirected alphabet is given by

\[\Gamma_{ud} = \{ a, a^{-1}, b, b^{-1}, c, c^{-1}, d, d^{-1}, e, e^{-1}, \varepsilon^+, \kappa^+, \eta^+ \} \]
and that the following zero relations hold: \(ca = 0\), \(db = 0\), \(ec = 0\).

We choose the following signs according to those relations:

\[
\begin{align*}
\text{sgn}(e^*) &= \text{sgn}(\eta^*) = \text{sgn}(\kappa^*) = -1, \\
\text{sgn}(c^{-1}) &= \text{sgn}(a) = -1, \\
\text{sgn}(e^{-1}) &= \text{sgn}(c) = 1, \\
\text{sgn}(d^{-1}) &= \text{sgn}(b) = 1, \\
\text{sgn}(a^{-1}) &= 1, \\
\text{sgn}(e) &= -1, \\
\text{sgn}(b^{-1}) &= 1, \\
\text{sgn}(d) &= 1.
\end{align*}
\]

We consider the following filtrations:

\[
\begin{align*}
F_1^{(1)} &: 0 \subset \ker(\varepsilon) \subset \ker(\varepsilon) = V_1, \\
F_2^{(1)} &: 0 \subset \ker(a) \subset \ker(\varepsilon) = V_1, \\
F_3^{(1)} &: 0 \subset \ker(b) \subset \ker(\varepsilon) = V_1, \\
F_4^{(1)} &: 0 \subset \ker(c) \subset \ker(\varepsilon) = V_1, \\
F_5^{(1)} &: 0 \subset \ker(d) \subset \ker(\varepsilon) = V_1.
\end{align*}
\]

From those we derive these semichains:

\[
\begin{align*}
S_1^{(1)} &: \{S_1^+ \subset S_1^-\}, \\
S_2^{(2,1)} &: \{S_{21} < S_{22} < S_{23}\}, \\
S_2^{(2,2)} &: \{S_{21} < S_{22} < S_{23}\}, \\
S_2^{(2,3)} &: \{S_{21} < S_{22} < S_{23}\}, \\
S_3^{(1)} &: \{S_3^+ \subset S_3^-\}, \\
S_3^{(2,1)} &: \{S_{31} < S_{32}\}, \\
S_3^{(2,2)} &: \{S_{31} < S_{32}\}, \\
S_4^{(1,1)} &: \{S_{41} < S_{42}\}, \\
S_4^{(2,1)} &: \{S_{41} < S_{42}\}, \\
S_5^{(1)} &: \{S_5^+ \subset S_5^-\}, \\
S_5^{(2,1)} &: \{S_{51} < S_{52} < S_{53}\}, \\
S_5^{(2,2)} &: \{S_{51} < S_{52} < S_{53}\}.
\end{align*}
\]
where the elements correspond to the following bases:

\[
\begin{align*}
S_{11}^+ & \in \text{basis of } \text{im}(\varepsilon), & S_{12}^- & \in \text{basis of } \text{ker}(\varepsilon), \\
S_{21}^+ & \in \text{basis of } \text{im}(a), & S_{22}^- & \in \text{basis of } V_1 \oplus \text{ker}(a), \\
S_{21}^+ & \in \text{basis of } \text{im}(b), & S_{22}^- & \in \text{basis of } V_2 \oplus \text{ker}(c), \\
S_{31}^+ & \in \text{basis of } \text{im}(\eta), & S_{32}^- & \in \text{basis of } V_3 \oplus \text{ker}(b), \\
S_{41}^+ & \in \text{basis of } \text{im}(\kappa), & S_{42}^- & \in \text{basis of } V_4 \oplus \text{im}(d), \\
S_{51}^+ & \in \text{basis of } \text{im}(c), & S_{52}^- & \in \text{basis of } V_5 \oplus \text{ker}(e).
\end{align*}
\]

The semichains in (111) inherit their signs from (103) - (110):

\[
\begin{align*}
\text{sgn}(S_{11}^{(1)}) &= -1, & \text{sgn}(S_1^{(2,c)}) &= \text{sgn}(S_{12}^{(2,c)}) = 1, \\
\text{sgn}(S_2^{(1,c)}) &= \text{sgn}(S_2^{(1,r)}) = -1, & \text{sgn}(S_2^{(2,c)}) &= \text{sgn}(S_2^{(2,r)}) = 1, \\
\text{sgn}(S_3^{(1)}) &= -1, & \text{sgn}(S_3^{(2,c)}) &= \text{sgn}(S_3^{(2,r)}) = 1, \\
\text{sgn}(S_4^{(1,c)}) &= \text{sgn}(S_4^{(1,r)}) = 1, & \text{sgn}(S_4^{(2,c)}) &= \text{sgn}(S_4^{(2,r)}) = -1, \\
\text{sgn}(S_5^{(1)}) &= -1, & \text{sgn}(S_5^{(2,c)}) &= \text{sgn}(S_5^{(2,r)}) = 1.
\end{align*}
\]

Assigning the semichains to the row and column sets according to their signs results in:

\[
\begin{align*}
\mathcal{C}_1 &= S_1^{(1)} & \mathcal{R}_1 &= S_1^{(2,r)} \\
\mathcal{C}_2 &= S_2^{(1,c)} & \mathcal{R}_2 &= S_2^{(2,r)} \\
\mathcal{C}_3 &= S_3^{(1)} & \mathcal{R}_3 &= S_3^{(2,r)} \\
\mathcal{C}_4 &= S_4^{(2,c)} & \mathcal{R}_4 &= S_4^{(1,r)} \\
\mathcal{C}_5 &= S_5^{(1)} & \mathcal{R}_5 &= S_5^{(2,r)}
\end{align*}
\]

Renaming the elements in the semichains regarded as elements of row or
column sets gives $X_A = \{C_1, \ldots, C_5, R_1, \ldots R_5\}$ where

\[
\begin{align*}
C_1 &: \{C_1^+ \vartriangleleft C_1^{-}\} & R_1 &: \{R_{11} > R_{12}\}, \\
C_2 &: \{C_21 < C_22 < C_23\} & R_2 &: \{R_{21} > R_{22} > R_{23}\}, \\
C_3 &: \{C_3^+ \vartriangleleft C_3^{-}\} & R_3 &: \{R_{31} > R_{32}\}, \\
C_4 &: \{C_41 < C_42\} & R_4 &: \{R_{41} > R_{42}\}, \\
C_5 &: \{C_5^+ \vartriangleleft C_5^{-}\} & R_5 &: \{R_{51} > R_{52} > R_{53}\}.
\end{align*}
\]

(112)

The involution σ_Λ acts on the elements of the semichains in (112) in the following way:

\[
\begin{align*}
\sigma_\Lambda : R_{12} &\leftrightarrow C_{21} & C_{23} &\leftrightarrow R_{51} \\
R_{21} &\leftrightarrow R_{32} & R_{23} &\leftrightarrow R_{41} \\
C_{41} &\leftrightarrow R_{53} \\
\end{align*}
\]

On any other element, σ_Λ acts as identity.

We obtain the following α-relations:

\[
\begin{align*}
C_{21} \alpha &R_{21} & C_{23} \alpha &R_{51} \\
R_{21} \alpha &R_{32} & R_{23} \alpha &R_{41} \\
C_{41} \alpha &R_{53} \\
C_\eta \alpha &C_\eta \\
\end{align*}
\]

and the following β-relations:

\[
\begin{align*}
C_i \beta &R_{1i} & i = 1, 2 \\
C_{2i} \beta &R_{2j} & i, j = 1, 2 \\
C_\eta \beta &R_{3i} & i = 1, 2 \\
C_{4i} \beta &R_{4j} & i, j = 1, 2 \\
C_\kappa \beta &R_{5i} & i = 1, 2, 3.
\end{align*}
\]

Remark 4.84. The above example gives algebra of Example 4.52.2.

We have seen how to construct a bundle of semichains for a given skewed-gentle algebra. In the next step, we examine how to construct \mathcal{L}-chains and \mathcal{L}-cycles in \overline{X}_A from words in $\Gamma_{ud}(A)$.
4.5 \mathcal{L}-chains from finite words

Recall that we consider a skewed-gentle algebra Λ. We consider finite $\Gamma_{ud}(\Lambda)$-words w. Starting from this data, we construct an \mathcal{L}-chain g_w in \overline{X}_Λ. The idea is to obtain for each letter w_i of w an α-relation in g_w, and for each node between two letters we get two links in g_w which are connected by a β-relation.

We see at the end of this section that asymmetric and symmetric strings, as well as the subword u of the periodic part of a symmetric band give simple admissible \mathcal{L}-chains (Theorem 4.113) and that any such \mathcal{L}-chain can be constructed from those words (Theorem 4.116). These results yield the existence of a 1-1-correspondence between certain equivalence classes of words and certain isomorphism classes of \mathcal{L}-chains (Corollary 4.117).

Before we get to this and related results, we give the construction of an \mathcal{L}-chain g_w for an arbitrary finite $\Gamma_{ud}(\Lambda)$-word w and discuss its well-definedness and uniqueness.

Within the construction, we are going to refer to the start and target of a letter w_i of w. When depicting w in terms of arrows as described in Section 3.1, the start (target) of w_i is always assigned to its right (left) hand side with respect to the depiction.

Construction of g_w. Let w be an undirected finite word of length n. We construct the corresponding \mathcal{L}-chain g_w as follows:

1. Depict w as $D_w : v_0 \leftarrow v_1 \leftarrow \cdots \leftarrow v_n$.

2. Associate to each v_i the values $v_i(s)$ and $v_i(t)$ - start and target of the letters w_i and w_{i+1}, respectively.

Note that the vertices $v_i(s)$ and $v_i(t)$ describing the start and target of the letters in w are to be distinguished from the associated vertices $v_i(Q) = v_i(w)$ in the quiver (cf. Section 2.3).

Extending w by trivial words to $1_{v_0(Q), \kappa} w 1_{v_n(Q), \mu}$, for appropriate κ, μ, gives again a word. We consider $v_0(s) (v_n(t))$ as start (target) of the respective trivial word.

3. We associate to each $v_i(s)$ a node c_i in the graph C_w, and to each $v_i(t)$ a node \bar{c}_i. Thus, C_{g_w} is a linear graph of form:

$$C_{g_w} : c_0 - \bar{c}_0 - c_1 - \bar{c}_1 - \cdots - c_n - \bar{c}_n.$$

4. Consider each letter w_i as a map sending the element $v_i(s)$ to $v_{i-1}(t)$:

$$w_i : v_i(s) \mapsto v_{i-1}(t).$$

Assign to each of those a vector space X, \bar{X}, where X, \bar{X} belong to one of the filtrations $F_{v_i(Q)}^{(1)}$, $F_{v_{i-1}(Q)}^{(2)}$, respectively. For some $i \in Q_0$ we have
that

\[X \text{ in } F_{v_i(q)}^{(j)} \text{ is assigned to } v_i(s) \text{ if } sgn(w_i^{-1}) = sgn(F_{v_i(q)}^{(j)}), \]

\[v_i(s) \in X \text{ and } v_i(s) \notin V_{v_i(q)} \oplus X, \]

\[\tilde{X} \text{ in } F_{v_i(q)}^{(j)} \text{ is assigned to } v_i(t) \text{ if } sgn(w_{i+1}) = sgn(F_{v_i(q)}^{(j)}), \]

\[v_i(t) \in \tilde{X} \text{ and } v_i(t) \notin V_{v_i(q)} \oplus \tilde{X}, \]

where \(j, j' \in \{1, 2\}, j \neq j' \).

Note that we treat 1_{v_0(q),\nu} as \(w_0 \), and 1_{v_n(q),\nu} as \(w_{n+1} \), in order to determine corresponding subspaces for \(v_0(s) \) and \(v_n(t) \), respectively.

In a filtration of linear form, there exists a maximal subspace as needed in step 4. In a filtration of diamond form, this maximal subspace is also defined since there only exist two proper subspaces which are complementary to each other.

5. Assign to each \(v_i(s) \), \(v_i(t) \) a link, using the associated subspaces according to Section 4.4.2:

if \(v_i(s) \) is assigned to \(X \), then the link \(L_i \) basis of \(X \) is assigned to \(v_i(s) \),

if \(v_i(t) \) is assigned to \(\tilde{X} \), then the link \(\tilde{L}_i \) basis of \(\tilde{X} \) is assigned to \(v_i(t) \),

for \(0 \leq i \leq n \), \(L_i = \tilde{L}_i \in \mathfrak{L}(\mathfrak{C}_{v_i(q)} \cup \mathfrak{R}_{v_i(q)}) \).

Since \(v_i(s) \) and \(v_i(t) \) belong to uniquely determined subspaces \(X, \tilde{X} \) as described in step 4, the links \(L_i \) and \(\tilde{L}_i \) are each uniquely given. Moreover, one of the two links belongs to the column label set \(\mathfrak{L}(\mathfrak{C}_{v_i(q)}) \), and the other to the row label set \(\mathfrak{L}(\mathfrak{R}_{v_i(q)}) \).

6. Order the links according to the ordering of their corresponding vertices in \(w \):

\[
\begin{array}{c|c|c|c|c|c}
& \bar{v}_0 & \bar{v}_1 & \ldots & \bar{v}_n \\
\hline
v_0(s) & v_0(t) & v_1(s) & v_1(t) & \ldots & v_n(s) \quad v_n(t) \\
\hline
L_0 & \bar{L}_0 & L_1 & \bar{L}_1 & \ldots & L_n \quad \bar{L}_n
\end{array}
\]

7. Set \(g_w : C_{g_w} \to \mathfrak{L} \cup \{\alpha, \beta\} \) with

\[
\begin{cases}
 c_i \mapsto x_i, \\
 \bar{c}_i \mapsto \bar{x}_i,
\end{cases} \quad \delta \mapsto \begin{cases}
 \lambda_{i,\bar{i}} \quad \text{if } c_i \mapsto \bar{c}_i \text{ in } C_{g_w}, \\
 \lambda_{i,i+1} \quad \text{if } \bar{c}_i \mapsto c_{i+1} \text{ in } C_{g_w},
\end{cases}
\]

where

\[
\begin{align*}
x_i &= L_i, & \bar{x}_i &= \bar{L}_i, & \forall 0 \leq i \leq n, \\
\lambda_{i,\bar{i}} &= \beta, & \forall 0 \leq i \leq n, \\
\lambda_{i,i+1} &= \alpha, & \forall 0 \leq i < n.
\end{align*}
\]
This construction gives g_w with

\[
g_{w,0} = \{x_0, \bar{x}_0, \ldots, x_n, \bar{x}_n\},
\]
\[
g_{w,1} = \{\lambda_0, \bar{\lambda}_0, \ldots, \lambda_n, \bar{\lambda}_n\}
\]

which can be depicted as

\[
g_w : x_0 - \bar{x}_0 \sim x_1 - \bar{x}_1 \sim \cdots \sim x_n - \bar{x}_n.
\]

Recall that we work with undirected words, i.e., for any special letter $w_i = \varepsilon^*$ its direction is not defined. Thus, we are not able to determine for its start $v_i(s)$ and target $v_{i-1}(t)$ a subspace: they either belong to the kernel or the image of ε. But recall also that we only use the subspaces in order to determine a link for each start and target. The two-point link $\mathcal{C}_{\varepsilon^*}$ is associated to both subspaces ker(ε) and im(ε). Thus, we can still uniquely assign the link $\mathcal{C}_{\varepsilon^*}$ to $v_i(s)$ and $v_{i-1}(t)$ without knowing the direction of w_i. We write in abuse of notation $v_i(s) \in \varepsilon^*$ and basis of $\varepsilon^* = \mathcal{C}_{\varepsilon^*}$.

There are two other important properties of the construction worth mentioning:

Remark 4.85. By step 7, we have that $L_i - \bar{L}_i$ and $\bar{L}_i \sim L_{i+1}$. This confirms that a β-relation indicates a change between the two bases of a vector space given by the respective filtrations, and that an α-relation is given for each letter. Moreover, if we consider a subchain consisting of two links connected by an α-relation, we can read from the arrangement of the links whether the corresponding letter is inverse or direct.

Remark 4.86. As mentioned above, the subspaces X and \bar{X} for $v_i(s)$ and $v_i(t)$, respectively, belong to two different filtrations. Thus, we obtain for $v_i(s)$ and $v_i(t)$ two links coming from different semichains. It follows that we obtain for each $i \in \{0, \ldots, n\}$ one link from the column, and one link from the row label set.

Before we start examining the well-definedness of the above construction, we give explicit examples:

Example 4.87. Let Λ be given as in Example 2.3.1. Recall that Q is given by

\[
\varepsilon \bigcirc \begin{array}{c}
1 \\
a
\end{array}
\]

with $\text{Sp} = \{\varepsilon\}$ and $R = \{a^2\}$. We choose the signs $\text{sgn}(\varepsilon^*) = \kappa$ and $\text{sgn}(a) = \text{sgn}(a^{-1}) = -\kappa$. Recall from Example 4.81 that the semichains in $\bar{\mathcal{X}}_\Lambda$ are of the following form:

\[
\mathcal{C}_1 = \{\mathcal{C}_{\varepsilon^*}, \varepsilon \mathcal{C}_{\varepsilon^*}\}
\]
\[
\mathcal{R}_i = \{\mathcal{R}_{i1} > \mathcal{R}_{i2} > \mathcal{R}_{i3}\},
\]

142
where

\[\mathcal{R}_{11} \doteq \text{basis of } \text{im}(a), \]
\[\mathcal{R}_{12} \doteq \text{basis of } \ker(a) \oplus \text{im}(a), \]
\[\mathcal{R}_{13} \doteq \text{basis of } V_1 \oplus \ker(a). \]

Recall that \(\sigma_\Lambda \) acts as identity, apart from \(\sigma_\Lambda(\mathcal{R}_{11}) = \mathcal{R}_{13} \). The signs of the semichains are given by

\[\text{sgn}(\mathcal{E}_1) = \kappa, \]
\[\text{sgn}(\mathcal{R}_1) = -\kappa. \]

Let \(w = \varepsilon^* a \varepsilon^* a^{-1} \varepsilon^* \). Then \(g_w \) is constructed by the following steps:

1. \(D_w : \begin{align*}
 v_0 &\rightarrow v_1 & a &\rightarrow v_2 & a &\rightarrow v_3 & a &\rightarrow v_4 & a &\rightarrow v_5
 \end{align*} \)

2. \[
\begin{align*}
 v_0 &\rightarrow v_1 & v_1 &\rightarrow v_2 & v_2 &\rightarrow v_3 & v_3 &\rightarrow v_4 & v_4 &\rightarrow v_5 & v_5 &\rightarrow v_0
\end{align*}
\]

3. \(C_w : \begin{align*}
 c_0 &\longrightarrow c_1 &\longrightarrow c_2 &\longrightarrow c_3 &\longrightarrow c_4 &\longrightarrow c_5 &\longrightarrow c_6
 \end{align*} \)

<table>
<thead>
<tr>
<th>(v_i)</th>
<th>(v_i(s), v_i(t))</th>
<th>(\text{sgn}(w_i^{-1}) / \text{sgn}(w_{i+1}))</th>
<th>(\text{subspace})</th>
<th>(\text{link})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_0)</td>
<td>(v_0(s))</td>
<td>(\varepsilon^*)</td>
<td>(\ker(a))</td>
<td>(\mathcal{R}_{12} = L_0)</td>
</tr>
<tr>
<td>(v_0(t))</td>
<td>(\kappa)</td>
<td>(\varepsilon^*)</td>
<td>(\mathcal{E}_{\varepsilon^*} = L_0)</td>
<td></td>
</tr>
<tr>
<td>(v_1)</td>
<td>(v_1(s))</td>
<td>(\kappa)</td>
<td>(\varepsilon^*)</td>
<td>(\mathcal{E}_{\varepsilon^*} = L_1)</td>
</tr>
<tr>
<td>(v_1(t))</td>
<td>(\kappa)</td>
<td>(\varepsilon^*)</td>
<td>(\mathcal{E}_{\varepsilon^*} = L_2)</td>
<td></td>
</tr>
<tr>
<td>(v_2)</td>
<td>(v_2(s))</td>
<td>(\varepsilon^*)</td>
<td>(V_1 \oplus \ker(a))</td>
<td>(\mathcal{R}_{12} = L_1)</td>
</tr>
<tr>
<td>(v_2(t))</td>
<td>(\kappa)</td>
<td>(\varepsilon^*)</td>
<td>(\mathcal{E}_{\varepsilon^*} = L_2)</td>
<td></td>
</tr>
<tr>
<td>(v_3)</td>
<td>(v_3(s))</td>
<td>(\varepsilon^*)</td>
<td>(V_1 \oplus \ker(a))</td>
<td>(\mathcal{R}_{12} = L_1)</td>
</tr>
<tr>
<td>(v_3(t))</td>
<td>(\kappa)</td>
<td>(\varepsilon^*)</td>
<td>(\mathcal{E}_{\varepsilon^*} = L_3)</td>
<td></td>
</tr>
<tr>
<td>(v_4)</td>
<td>(v_4(s))</td>
<td>(\varepsilon^*)</td>
<td>(\ker(a))</td>
<td>(\mathcal{R}_{12} = L_1)</td>
</tr>
<tr>
<td>(v_4(t))</td>
<td>(\kappa)</td>
<td>(\varepsilon^*)</td>
<td>(\mathcal{E}_{\varepsilon^*} = L_3)</td>
<td></td>
</tr>
<tr>
<td>(v_5)</td>
<td>(v_5(s))</td>
<td>(\varepsilon^*)</td>
<td>(\ker(a))</td>
<td>(\mathcal{R}_{12} = L_5)</td>
</tr>
<tr>
<td>(v_5(t))</td>
<td>(\kappa)</td>
<td>(\varepsilon^*)</td>
<td>(\mathcal{E}_{\varepsilon^*} = L_4)</td>
<td></td>
</tr>
</tbody>
</table>

6. + 7.

<table>
<thead>
<tr>
<th>(\text{g}_w)</th>
<th>(L_0 - L_0 - L_1 - L_2 - L_2 - L_3 - L_4 - L_4 - L_5 - L_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathcal{R}{12} - \mathcal{E}{\varepsilon^} - \mathcal{E}_{\varepsilon^} - \mathcal{R}{11} - \mathcal{E}{\varepsilon^} - \mathcal{E}_{\varepsilon^} - \mathcal{R}{13} - \mathcal{E}{\varepsilon^} - \mathcal{E}_{\varepsilon^} - \mathcal{R}_{12})</td>
<td></td>
</tr>
</tbody>
</table>

143
Example 4.88. Let \(\Lambda \) be given as in Example 2.14. Recall that \(Q \) is given by

\[
\begin{array}{c}
1 \\
2 \\
3 \\
\end{array}
\quad
\begin{array}{c}
\alpha \\
\beta \\
\gamma \\
\end{array}
\quad
\begin{array}{c}
4 \\
5 \\
\end{array}
\]

\(\mathcal{S}_p = \{ \eta, \varepsilon, \kappa \} \) and \(\mathcal{R} = \{ ea, db, ec \} \). We choose the signs of the letters as in Example 4.83. We recall the semichains from (112):

\[
\begin{align*}
\mathcal{C}_1 & : \{ \mathcal{C}_1^* \mathcal{C}_1^- \} \\
\mathcal{C}_2 & : \{ \mathcal{C}_{21} < \mathcal{C}_{22} < \mathcal{C}_{23} \} \\
\mathcal{C}_3 & : \{ \mathcal{C}_3^* \mathcal{C}_3^- \} \\
\mathcal{C}_4 & : \{ \mathcal{C}_{41} < \mathcal{C}_{42} \} \\
\mathcal{C}_5 & : \{ \mathcal{C}_5^* \mathcal{C}_5^- \} \\
\mathcal{R}_1 & : \{ \mathcal{R}_{11} > \mathcal{R}_{12} \} \\
\mathcal{R}_2 & : \{ \mathcal{R}_{21} > \mathcal{R}_{22} > \mathcal{R}_{23} \} \\
\mathcal{R}_3 & : \{ \mathcal{R}_{31} > \mathcal{R}_{32} \} \\
\mathcal{R}_4 & : \{ \mathcal{R}_{41} > \mathcal{R}_{42} \} \\
\mathcal{R}_5 & : \{ \mathcal{R}_{51} > \mathcal{R}_{52} > \mathcal{R}_{53} \}
\end{align*}
\]

where

\[
\begin{align*}
\mathcal{C}_{21} & \doteq \text{basis of } \ker(a), \\
\mathcal{C}_{22} & \doteq \text{basis of } \im(a), \\
\mathcal{C}_{23} & \doteq \text{basis of } V_2 \ominus \ker(c), \\
\mathcal{R}_{21} & \doteq \text{basis of } \im(b), \\
\mathcal{R}_{22} & \doteq \text{basis of } \ker(d) \ominus \im(b), \\
\mathcal{R}_{31} & \doteq \text{basis of } \ker(b), \\
\mathcal{R}_{32} & \doteq \text{basis of } V_3 \ominus \ker(b), \\
\mathcal{C}_{41} & \doteq \text{basis of } \im(e), \\
\mathcal{C}_{42} & \doteq \text{basis of } V_4 \ominus \im(e), \\
\mathcal{R}_{41} & \doteq \text{basis of } \im(d), \\
\mathcal{R}_{42} & \doteq \text{basis of } V_4 \ominus \im(d), \\
\mathcal{R}_{51} & \doteq \text{basis of } \im(c), \\
\mathcal{R}_{52} & \doteq \text{basis of } \ker(e) \ominus \im(c), \\
\mathcal{R}_{53} & \doteq \text{basis of } V_5 \ominus \ker(e).
\end{align*}
\]

Let \(w = \eta^* b^{-1} c^{-1} \kappa^* e^{-1} \). Its corresponding \(\Sigma \)-chain \(g_w \) is constructed as follows:

1. \(D_w : v_0 \overset{\eta^*}{\longrightarrow} v_1 \overset{b}{\longrightarrow} v_2 \overset{c}{\longrightarrow} v_3 \overset{\kappa^*}{\longrightarrow} v_4 \overset{e}{\longrightarrow} v_5 \)

2.

3. \(C_w : c_0 \overset{\bar{c}_0}{\longrightarrow} c_1 \overset{\bar{c}_1}{\longrightarrow} c_2 \overset{\bar{c}_2}{\longrightarrow} c_3 \overset{\bar{c}_3}{\longrightarrow} c_4 \overset{\bar{c}_4}{\longrightarrow} c_5 \overset{\bar{c}_5}{\longrightarrow} \)

144
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
\hline
v_i & $v_i(s), v_i(t)$ & $\text{sgn}(w_i^{-1}) / \text{sgn}(w_{i+1})$ & subspace & link \\
\hline
v_0 & $v_0(s)$ & 1 & $\text{ker}(b)$ & $\mathcal{R}_{31} = L_0$ \\
 & $v_0(t)$ & $-$1 & η^* & $\mathcal{C}_{\eta^*} = \hat{L}_0$ \\
\hline
v_1 & $v_1(s)$ & $-$1 & η^* & $\mathcal{C}_{\eta^*} = L_1$ \\
 & $v_1(t)$ & 1 & $V_3 \oplus \text{ker}(b)$ & $\mathcal{R}_{32} = L_1$ \\
\hline
v_2 & $v_2(s)$ & 1 & $\text{im}(b)$ & $\mathcal{R}_{21} = L_2$ \\
 & $v_2(t)$ & $-$1 & $V_2 \oplus \text{ker}(c)$ & $\mathcal{C}_{23} = \hat{L}_2$ \\
\hline
v_3 & $v_3(s)$ & 1 & $\text{im}(c)$ & $\mathcal{R}_{51} = L_3$ \\
 & $v_3(t)$ & $-$1 & κ^* & $\mathcal{C}_{\kappa^*} = \hat{L}_3$ \\
\hline
v_4 & $v_4(s)$ & $-$1 & κ^* & $\mathcal{C}_{\kappa^*} = L_4$ \\
 & $v_4(t)$ & 1 & $V_5 \oplus \text{ker}(e)$ & $\mathcal{R}_{53} = \hat{L}_4$ \\
\hline
v_5 & $v_5(s)$ & $-$1 & $\text{im}(d)$ & $\mathcal{R}_{41} = L_5$ \\
 & $v_5(t)$ & 1 & $V_4 \oplus \text{im}(e)$ & $\mathcal{R}_{42} = \hat{L}_5$ \\
\hline
\end{tabular}
\end{center}

6. + 7.

$g_w : \mathcal{R}_{31} - \mathcal{C}_{\eta^*} - \mathcal{R}_{32} - \mathcal{R}_{21} - \mathcal{C}_{23} - \mathcal{R}_{51} - \mathcal{C}_{\kappa^*} - \mathcal{R}_{53} - \mathcal{C}_{41} - \mathcal{R}_{42}$

Next we show the well-definedness of g_w. This includes several statements. In particular, we show that equivalent words result in isomorphic Σ-chains. We consider these results at first separately and then sum them up in the context of well-definedness.

Lemma 4.89. The above construction results in an Σ-chain g_w for any finite $\Gamma_{ud}(A^*)$-word w. This Σ-chain is unique for any word w.

Proof. Observe at first that C_{g_w} is always given by a chain. Also, by step 7, condition (b) of the definition of an Σ-graph is satisfied. It remains to show condition (a) of an Σ-graph.

First we show that $L_i \beta L_i$ holds for all $i \in \{0, \ldots, n\}$. We have by step 4 and step 5 that $v_i(s) \in X$, $v_i(t) \in X$ and basis of $X \oplus L_i$, basis of $X \oplus L_i$.

Since $\text{sgn}(w_i^{-1}) = \text{sgn}(w_{i+1})$ (cf. Section 2.3), L_i and \hat{L}_i do not belong to the same label set by construction. For i fixed, assume without loss of generality that

\[
L_i \in \mathcal{L}(\mathcal{C}), \\
\hat{L}_i \in \mathcal{L}(\mathcal{R}).
\]

It follows by definition of the β-relation that $L_i \beta \hat{L}_i$ for any $i \in \{0, \ldots, n\}$.

It remains to show that $L_i \beta L_i$ as well. Recall that for an ordinary arrow $(x : j \rightarrow k) \in Q_{1}^{\text{ord}}$, the links corresponding to the bases of the subspaces $\text{im}(x)$ and $V_j \oplus \text{ker}(x)$ are connected by σ_A and thus satisfy the α-relation. For any special loop $e \in \text{Sp}$ we have $\mathcal{C}_{\epsilon} \alpha \mathcal{C}_{\epsilon^*}$.

We have for $w_i \in \{x, x^{-1}\}$ for some $(x : j \rightarrow k) \in Q_1^{\text{ord}}$ the following depiction:

\[
\begin{align*}
& v_{i-1}(t) \xrightarrow{x} v_i(s) & \text{if } w_i = x, \\
& v_{i-1}(t) \xrightarrow{x^{-1}} v_i(s) & \text{if } w_i = x^{-1}.
\end{align*}
\]
Hence, $x^{-1} : v_i(s) \mapsto v_{i-1}(t)$ can be interpreted as $x : v_{i-1}(t) \mapsto v_i(s)$. Thus,

$$\begin{align*}
v_{i-1}(t) &\in \begin{cases}
\text{im}(x) & \text{if } w_i = x, \\
V_j \ominus \ker(x) & \text{if } w_i = x^{-1},
\end{cases} \\
v_i(s) &\in \begin{cases}
V_j \ominus \ker(x) & \text{if } w_i = x, \\
\text{im}(x) & \text{if } w_i = x^{-1}.
\end{cases}
\end{align*}$$

It follows that the corresponding links \tilde{L}_{i-1} and L_i of $v_{i-1}(t)$ and $v_i(s)$ are one-point links and that $\sigma_{\Lambda}(\tilde{L}_{i-1}) = L_i$ by the above. Hence, $\tilde{L}_{i-1} \alpha L_i$ holds.

If, on the other hand, $w_i = \varepsilon^*$ for some $\varepsilon \in \text{Sp}$, then we depict the letter as

$$v_{i-1}(t) \xrightarrow{\varepsilon^*} v_i(s).$$

As described above, we obtain as corresponding link both for $v_{i-1}(t)$ and $v_i(s)$ the two-point link $\mathcal{L}_{\varepsilon^*} = \tilde{L}_{i-1} = L_i$. It follows directly $\tilde{L}_{i-1} \alpha L_i$.

Finally, we show that the resulting \mathcal{L}–chain g_w is unique for any w. The subspaces X and \tilde{X} are uniquely given for each $v_i(s)$ with w_i, and each $v_i(t)$ with w_{i+1} ordinary, respectively: each arrow $x \in Q_{i+1}^{\text{ord}}$ gives rise to exactly one filtration at its starting and one at its terminating vertex in Q, due to the construction from Section 4.4. We assign $v_i(s)$ ($v_i(t)$) to a subspace X (\tilde{X}) according to the sign of the letter w_i^{-1} (w_{i+1}). Hence, we consider for $v_i(s)$ ($v_i(t)$) a uniquely given filtration. It follows from $w_i \neq w_{i+1}$ that X and \tilde{X} come from different filtrations. By the construction of semichains in Section 4.4.2, it follows that also the links assigned to $v_i(s)$ and $v_i(t)$ are uniquely determined for each of them.

In contrast to ordinary letters, special letters do not give rise to uniquely determined subspaces: since they are not oriented, it is not determined whether for $w_i = \varepsilon^*$ special its associated values $v_i(s)$ and $v_{i-1}(t)$ belong to $\ker(\varepsilon)$ or $\text{im}(\varepsilon)$. But both subspaces correspond to one link $\mathcal{L}_{\varepsilon^*}$. Thus – though the subspace assignment is not unique – the assignment to a link is uniquely given.

\begin{remark}
Note that the \mathcal{L}–chain construction is in particular unique for trivial words. To this end, consider Λ as in Example 2.14 and let $w = 1_{2,+}$. We have that

$$D_w : v_0.$$

We can extend w to $w_{1,+}$ and regard $w_0 = w_1 = 1_{2,+}$. Recall that the signs at vertex 2 are given by $\text{sgn}(a) = \text{sgn}(c^{-1}) = -$ and $\text{sgn}(b) = \text{sgn}(d^{-1}) = +$. We consider for the construction the signs

$$\begin{align*}
\text{sgn}(w_0^{-1}) &= -, \\
\text{sgn}(w_1) &= +,
\end{align*}$$

146
and thus assign

\[v_0(s) \in V_2 \ominus \ker(c), \]
\[v_0(t) \in V_2 \ominus \ker(d). \]

Hence, we obtain two uniquely determined links to represent \(v_0(s) \) and \(v_0(t) \) in \(g_w \). Since they are by signs in different label sets, they are in \(\beta \)-relation with each other:

\[g_w : \ C_{23} - R_{23}. \]

Before we come to well-definedness of the construction, we examine the following properties of isomorphisms between the constructed \(\Sigma \)-chains.

Lemma 4.91. Let \(v \) be a finite undirected word with \(g_v = g_v^* \). Then \(g_v \) is composite.

Proof. Let \(g_{v,0} = \{x_1, \ldots, x_n\} \), \(g_{v,0}^* = \{x_n, \ldots, x_1\} \) and \(g_{v,1} = \{\lambda_1, \ldots, \lambda_{n-1}\} \), \(g_{v,1}^* = \{\lambda_{n-1}, \ldots, \lambda_1\} \). Then \(x_{n-i} = x_{i+1} \) for all \(i \in \{0, \ldots, n-1\} \), and \(\lambda_i = \lambda_{n-i} \) for all \(i \in \{1, \ldots, n-1\} \). Thus, we can write \(g_v \) of the following form, knowing it is of even length by construction:

\[g_v : x_1 \lambda_1 x_2 \ldots x_{n/2} \lambda_{n/2} x_{n/2} \ldots x_2 \lambda_1 x_1. \]

By construction, \(\lambda_{n/2} \) is given by an \(\alpha \)-relation, so with \(h \triangleright x_1 \lambda_1 x_2 \ldots x_{n/2} \), we can write

\[g_v : h \sim h^*, \]

which shows that \(g_v \) is composite. \(\square \)

Example 4.92. 1. Let \(\Lambda \) be given by

\[Q : \begin{array}{c}
\epsilon \quad \circ \quad \bullet \quad \circ \quad a \\
\end{array} \]

with \(Sp = \{\varepsilon\} \) and \(R = \{a^2\} \). Let \(v = \varepsilon^* \) and thus

\[g_v : R_{12} - C_{\varepsilon^*} \sim C_{\varepsilon^*} - R_{12} = g_v^* = h \sim h^* \]

with \(h = R_{12} - C_{\varepsilon^*} \).

2. Let \(\Lambda \) be given by

\[Q : \begin{array}{c}
\epsilon \quad \circ \quad 1 \quad \xrightarrow{a} \quad \circ \quad 2 \quad \eta \\
\end{array} \]

with \(Sp = \{\varepsilon, \eta\} \) and \(R = \emptyset \). The semichains of \(X_\Lambda \) are given by

\[C_1 = \{C_\varepsilon^*, \circ C_{\varepsilon^*}\}, \quad R_1 = \{R_{11} \succ R_{12}\}, \]
\[C_2 = \{C_\eta^*, \circ C_{\eta^*}\}, \quad R_2 = \{R_{21} \succ R_{22}\}, \]
where

\[R_{11} = \text{basis of } \ker(a), \]
\[R_{12} = \text{basis of } V_1 \oplus \ker(a), \]
\[R_{21} = \text{basis of } \text{im}(a), \]
\[R_{22} = \text{basis of } V_2 \oplus \text{im}(a). \]

The involution \(\sigma \Lambda \) sends \(R_{12} \leftrightarrow R_{21} \) and acts as identity otherwise.

Let \(v = \varepsilon^* a^{-1} \eta^* a \varepsilon^* \) and

\[h: R_{11} - C\varepsilon^* \sim C\varepsilon^* - R_{12} \sim R_{21} - C\eta^*. \]

Then \(v^{-1} = v \) and

\[(g_v: h \sim h^*) = g_v^* = g_{v^{-1}}. \]

Lemma 4.93. Let \(v \) and \(w \) be two finite \(\Gamma_{ud}(\Lambda) \)-words. Let \(\tau: g_v \rightarrow g_w \) be an isomorphism. Then

a) \(\tau = \text{id} \) if \(g_v \) and \(g_w \) are simple,

b) \(\tau \in \{ \text{id}, \text{rev} \} \) if \(g_v \) and \(g_w \) are composite,

where \(\text{rev}(c_i) = c_{n+1-i} \) for any \(i \in \{1, \ldots, n\} \), and \(n \) is the length of the underlying graph.

Proof.

a) Let the underlying graphs of \(g_v \) and \(g_w \) be given by

\[C_{g_v} : c_1 - \ldots - c_n \]
\[C_{g_w} : c'_1 - \ldots - c'_n, \]

respectively. Recall that the image of two incident nodes under \(\tau \) is again given by two incident nodes, i.e. if \(c_i - c_{i+1} \), then \(\tau(c_i) - \tau(c_{i+1}) \).

Let \(g_v = g_w \). Then \(\tau = \text{id} \in \text{Aut}(g_v) \). It remains to show, that \(\tau \) cannot be of any other form. Assume towards a contradiction that there exists \(\tau \in \text{Aut}(g_v) \) with \(\tau \neq \text{id} \). Then there exist \(i \neq j \in \{1, \ldots, n\} \) with \(\tau(c_i) = c'_j \). It follows that \(\tau(c_{i+1}) \in \{c'_{j+1}, c'_{j-1}\} \), say without loss of generality \(\tau(c_{i+1}) = c'_{j-1} \). Thus,

\[\tau(c_{i+k}) = c'_{j-k} \text{ for } k \in \{i + 1, \ldots, \min\{n - i, j - 1\}\}, \]
\[\tau(c_{i-k}) = c'_{j+k} \text{ for } k \in \{1, \ldots, \min\{n - j, i - 1\}\}. \]

For reasons of well-definedness of the indices, it follows \(i = j - 1 = \frac{n}{2} \) for \(n \) even, and \(i = j = \frac{n+1}{2} \) for \(n \) odd. Hence, \(\tau = \text{rev} \) and \(g_v = g_w^* \). By Lemma 4.91, \(g_v \) is composite.
Let now $g_v \neq g_w$. We want to show that there does not exist an isomorphism between the two \mathfrak{L}-chains. Assume towards a contradiction otherwise. Then $\tau \neq \text{id}$ and there exist $i \neq j \in \{1, \ldots, n\}$ with $\tau(c_i) = c'_j$.

Analogously to the above, we obtain that g_v is composite which gives a contradiction.

b) Let $g_v = h^{[k]}$ and $g_w = m^{[l]}$ composite. If $g_v = g_w$, then $\tau = \text{id} \in \text{Aut}(g_v)$.

If additionally $g_v = g_w^*$, then by same line of argument as in a), $\tau = \text{rev} \in \text{Aut}(g_v)$.

Consider now $g_v \neq g_w$. Then $\tau \neq \text{id}$. By same line of argument as in a), it follows that $g_v = g_w^*$ and thus $\tau = \text{rev}$.

\begin{remark}
It follows that we have in Lemma 4.93, a) that $g_v = g_w$ and in Lemma 4.93, b) that $g_v = g_w$ or $g_v = g_w^*$.
\end{remark}

\begin{lemma}
Let v and w be two finite $\Gamma_{ud}(\Lambda)$-words with $v = w^{-1}$. Then $g_w = g_v$.
\end{lemma}

\begin{proof}
Let $w = w_1 \ldots w_n$ be an undirected finite word. Then we have that $v = w^{-1} = w_n^{-1} \ldots w_1^{-1}$. We obtain the following correspondences on the associated values of the nodes v_i of w and v_i' of w^{-1}, $0 \leq i \leq n$:

\begin{align*}
v_i'(t) &\leftrightarrow v_{n-i}(s), \quad (115) \\
v_i'(s) &\leftrightarrow v_{n-i}(t). \quad (116)
\end{align*}

As maps, the letters act similar on the corresponding pairs. Thus, the links of corresponding associated values coincide for all $i \in \{0, \ldots, n\}$ and we obtain by (115) and (116) that

\begin{align*}
L_i &= L_{n-i}, \\
L_i' &= L_{n-i}'.
\end{align*}

Using those equalities, we obtain as \mathfrak{L}-chains:

\begin{align*}
g_w : L_0 \sim L_1 \sim \cdots \sim L_{n-1} \sim L_n - L_0 \\
g_w^{-1} : L_n \sim L_{n-1} \sim \cdots \sim L_1 \sim L_0 - L_0.
\end{align*}

It follows that $g_v^* = g_w^{-1}$.

\begin{lemma}
Let v and w be two finite $\Gamma_{ud}(\Lambda)$-words. Then we have

(i) $g_v = g_w$ if and only if $v = w$,

(ii) $g_v \cong g_w$ if and only if $v \sim w$,
\end{lemma}

149
Proof. (i) Let \(v = w \). Denote by \(v_i(\cdot) \) the associated values of the nodes of \(w \) and by \(v'_i(\cdot) \) those of \(v \). Then we have for any \(i \in \{0, \ldots, n\} \) that \(v_i(s) = v'_i(s) \) and \(v_i(t) = v'_i(t) \) correspond to the same subspace, respectively. Hence

\[
L^w_i = L^v_i, \quad \text{and} \quad \bar{L}^w_i = \bar{L}^v_i, \quad \text{for all } 0 \leq i \leq n.
\]

It follows \(g_v = g_w \). Conversely, let \(g_v = g_w \). Then

\[
x^v_i = x^w_i, \quad \text{and} \quad \bar{x}^v_i = \bar{x}^w_i, \quad \text{for all } 0 \leq i \leq n,
\]

\[
\lambda^v_{i,i} = \lambda^w_{i,i}, \quad \text{for all } 0 \leq i \leq n,
\]

\[
\lambda^v_{i,i+1} = \lambda^w_{i,i+1}, \quad \text{for all } 0 \leq i \leq n - 1.
\]

We have \(v_i(s), v'_i(s) \in X_i \) and \(v_i(t), v'_i(t) \in \bar{X}_i \) for all \(0 \leq i \leq n \). It follows that \(v_i = w_i \) for all \(0 \leq i \leq n \) and thus \(w = v \).

(ii) By definition, \(v \sim w \) if and only if \(v = w \) or \(v = w^{-1} \). The case \(v = w \) follows from (i) with \(\tau : g_v \to g_w \) given by the identity.

Let now \(v = w^{-1} \) and let

\[
g_{v,0} = \{y_0, \bar{y}_0, \ldots, y_n, \bar{y}_n\}, \quad g_{v,1} = \{\lambda_{00}, \lambda_{01}, \ldots, \lambda_{nn}\},
\]

\[
g_{w,0} = \{x_0, \bar{x}_0, \ldots, x_n, \bar{x}_n\}, \quad g_{w,1} = \{\rho_{00}, \rho_{01}, \ldots, \rho_{nn}\}.
\]

We know by the previous lemma that \(g_v = g_w^* \). Hence,

\[
g_{v,0} = \{\bar{x}_n, x_n, \ldots, \bar{x}_0, x_0\}, \quad g_{v,1} = \{\rho_{nn}, \ldots, \rho_{00}\}.
\]

Denote by \(C_{g_v}, C_{g_w} \) the respective underlying graphs of \(g_v \) and \(g_w \), consisting each of 2n nodes \(c_{v,i}, c_{w,i} \), respectively (\(n = |w| = |v| \)). Then \(\tau : C_{g_v} \to C_{g_w} \) gives an isomorphism between \(g_v \) and \(g_w \) by

\[
\tau : c_{v,i} \mapsto c_{w,2n-i}.
\]

This can be seen by renumbering \(g_{v,0} = \{y_0, \ldots, y_{2n}\} \) and the sets \(g_{w,0}, g_{v,1}, g_{w,1} \) similarly. With these renumbered sets, we obtain that

\[
y_{i} = x_{2n-i}, \quad \lambda_{ij} = \rho_{2n-i,2n-j}.
\]

We conclude that \(g_v \cong g_w \).

Conversely, let \(g_v \cong g_w \) with \(g_v \neq g_w \). Then the isomorphism \(\tau : g_v \to g_w \) is given by the map rev (Lemma 4.93). Thus, \(g_w = g_v = g_{v^{-1}} \). Uniqueness of the construction yields that \(w = v^{-1} \) and thus \(w \sim v \).\(\square \)
Example 4.97. Let Λ be as in Example 2.3.1. We have determined its corresponding bundle of semichains in Example 4.81. Let $w = \varepsilon^* a \varepsilon^*$ and $v = \varepsilon^* a^{-1} \varepsilon^*$. Then $v = w^{-1}$ and it follows that $v \sim w$.

We obtain the following corresponding \mathcal{L}-chains:

$$
\begin{align*}
g_v : & \mathcal{R}_{12} - \mathcal{C}_{e^*} \sim \mathcal{R}_{13} \sim \mathcal{R}_{11} - \mathcal{C}_{e^*} - \mathcal{R}_{12}, \\
g_w : & \mathcal{R}_{12} - \mathcal{C}_{e^*} \sim \mathcal{R}_{11} - \mathcal{R}_{13} \sim \mathcal{C}_{e^*} - \mathcal{R}_{12}.
\end{align*}
$$

Let the underlying graphs be given by

$$
\begin{align*}
C_{g_v} : & c_1 - c_2 - c_3 - c_4 - c_5 - c_6 - c_7 - c_8, \\
C_{g_w} : & c'_1 - c'_2 - c'_3 - c'_4 - c'_5 - c'_6 - c'_7 - c'_8.
\end{align*}
$$

Then $\tau : C_{g_w} \rightarrow C_{g_v}$ gives an isomorphism between g_w and g_v by

$$
c_i \mapsto c_{9-i} \quad 1 \leq i \leq 8.
$$

Lemma 4.98. Let w be a finite $\Gamma_{ud}(\Lambda)$-word with corresponding \mathcal{L}-chain g_w. Then g_w is composite if and only if w is composite. In particular, $g_w = g_v^k$ if and only if $w = v^k$.

Proof. Let $g_w = h^k$ be composite for some \mathcal{L}-chain h and some $k \geq 2$. Assume without loss of generality that $d(h) = 2$. Let h start in the link \mathcal{C}_{e^*} and end in \mathcal{C}_{η^*} for $\eta, \varepsilon \in \operatorname{Sp}$. The key argument is that links of the form \mathcal{C}_{μ^*} for $\mu \in \operatorname{Sp}$ correspond to both basis of $\operatorname{im}(\mu)$ and basis of $\operatorname{ker}(\mu)$. Thus, h corresponds to some non-coadmissible word v such that $\varepsilon^* \mu^*$ is again a word. Set $g_v = h$. Any \mathcal{L}-chain of the form

$$
h \sim h^*
$$

translates to $v \mu^* v^{-1}$ since $g_v^* = g_v v^{-1}$. Similarly, any \mathcal{L}-chain

$$
h^* \sim h
$$

translates to $v^{-1} \varepsilon^* v$. Since $g_w = g_v^k$, it follows by uniqueness of the construction that $w = v^k = v \eta^* v^{-1} \varepsilon^* \ldots$. Conversely, let $w = v^k$ for some $k \geq 2$ and with v such that $\varepsilon^* \eta^*$ is again a word. Thus, g_v starts in \mathcal{C}_{e^*} and ends in \mathcal{C}_{η^*}. We know that any special letter μ^* is translated to

$$
\mathcal{C}_{\mu^*} \sim \mathcal{C}_{\mu^*}
$$

in a corresponding \mathcal{L}-chain. Extending v to $\varepsilon \eta^*$ yields the \mathcal{L}-chain

$$
g_v \sim \mathcal{C}_{\eta^*}.
$$
Extending further to \(vη^*v^{-1} \) yields

\[g_v \sim g_v^* . \]

Thus, the corresponding \(\mathfrak{L} \)-chain of \(v[k] = vη^*v^{-1} η^* \ldots \) is given by

\[g_v[k] = g_v \sim g_v^* \sim \ldots . \]

It follows by uniqueness of the construction that

\[g_w = g_v[k] . \]

\[\square \]

Example 4.99. Let \(Λ \) be as in Example 2.14 and \(\overline{Λ} \) as in Example 4.83. Let \(w = a^{-1}bη^*b^{-1}a \). Then

\[g_w : \ C_ε^* \sim R_{12} \sim C_{21} \sim R_{21} \sim R_{32} \sim C_η^* \sim R_{32} \sim R_{21} \sim R_{12} \sim C_ε^* \]

and \(g_w = h^{[2]} \) is composite for

\[h : \ C_ε^* \sim R_{12} \sim C_{21} \sim R_{21} \sim R_{32} \sim C_η^* . \]

It follows that \(h = g_v \) for the subword \(v = a^{-1}b \) of \(w \). Moreover, we have that \(w = v^{[2]} \).

Statement (ii) Lemma 4.96 is of importance for our theory about strings and bands. It shows that equivalent words give isomorphic \(\mathfrak{L} \)-chains. We are especially interested in constructing \(\mathfrak{L} \)-graphs for symmetric and asymmetric strings and bands which are representatives of equivalence classes. Our hope is to get simple (admissible) \(\mathfrak{L} \)-graphs such that we obtain canonical representations from those.

To this end, we examine now the properties of \(g_w \) for \(w \) a (non-)coadmissible word. Write \(\tilde{L}^i \) for a link given by \(L_i \) or \(\overline{L}_i \). We consider – with notation from the construction – the following sets:

\[\mathfrak{L}^i_w = \{ L_i, \overline{L}_i \}_{i=1}^n , \]

(117)

\[\tilde{\mathfrak{L}}^α_w = \{ P = (\tilde{L}_i, \overline{L}_j) \mid \tilde{L}_i ο \overline{L}_j , j \in \{ i-1, i+1 \} \} . \]

(118)

Let \(P, P' \) be two pairs from \(\tilde{\mathfrak{L}}^α_w \). We write \(P \equiv P' \) if \(P = (\tilde{L}_i, \overline{L}_j) \) and \(P' = (\overline{L}_j, \tilde{L}_i) \). We denote the respective set of pairs up to symmetry by

\[\mathfrak{L}^α_w = \mathfrak{L}^α_w / \equiv , \text{ and furthermore,} \]

(119)

\[\mathfrak{L}_w^\alpha = \{ \tilde{L}_i \in L_w \mid \exists P \in \mathfrak{L}_w^\alpha \text{ with } \tilde{L}_i \in P \} , \]

(120)

\[L_w^\beta = \{ (L_i, \overline{L}_i)^n_{i=1} \} . \]

(121)

Properties of these sets will lead to properties of \(g_w \) with respect to coadmissibility.
Lemma 4.100. Let \(w \) be a finite \(\Gamma_{w_0}(\Lambda) \)-word which is not left coadmissible or not right coadmissible. Then \(L_0 = \mathcal{C}_e^* \) or \(\bar{L}_n = \mathcal{C}_e^* \), respectively, for \(\varepsilon \in \text{Sp} \) such that \(\varepsilon^* w \) or \(w \varepsilon^* \) is again a word.

Proof. Assume \(w \) is not left coadmissible. Then there exists \(\varepsilon \in \text{Sp} \) such that \(\varepsilon^* w \) is again a word. Note that \(\varepsilon \) is unique by Remark 4.73 and Definition 2.9. We have \(v_0(s) \in \ker(\varepsilon) \) and hence \(L_0 = \mathcal{C}_e^* \).

The statement follows similarly for \(w \) not right coadmissible and \(\bar{L}_n \). \(\square \)

Lemma 4.101. Let \(w \) be a finite \(\Gamma_{w_0}(\Lambda) \)-word. Assume that there exist \(i \in \{ 0, \ldots, n \} \) with \(\bar{L}_i = \mathcal{C}_e^* \) for some \(\varepsilon \in \text{Sp} \), and with \(\bar{L}_i \in \mathfrak{L}^{\alpha}_w \). Then either \(\bar{L}_i = L_0 \), or \(\bar{L}_i = \bar{L}_n \). In this case, \(\bar{L}_i \) gives a double end.

Proof. Let \(\bar{L}_i = \mathcal{C}_e^* \in \mathfrak{L}^{\alpha}_w \) for some \(i \). Then \(\bar{L}_i \alpha \bar{L}_i \) holds. By assumption, the pre- and successor links are not given by \(\mathcal{C}_e^* \). Hence, \(\bar{L}_i \) can only be connected by \(\beta \)-relations to other links in \(\mathfrak{L}_w \). By definition of an \(\mathfrak{L} \)-graph, \(\alpha \)- and \(\beta \)-relations take turns in \(g_{w,i} \), i.e., \(L_i \) must be the first or last link of the \(\mathfrak{L} \)-chain \(g_w \) (otherwise there would be two \(\beta \)-relations in a row). It follows \(\bar{L}_i = L_0 \) or \(\bar{L}_i = \bar{L}_n \).

In any of these cases, \(\bar{L}_i \alpha \bar{L}_i \) holds and \(\bar{L}_i \) is connected by a \(\beta \)-relation to the rest of \(g_w \), hence it gives a double end. \(\square \)

Example 4.102. Let \(\Lambda \) be as in Example 2.14 with \(\overline{\mathcal{X}}_\Lambda \) as in Example 4.83. Let \(w = a^{-1} d^{-1} \). Its corresponding \(\mathfrak{L} \)-chain is given by

\[g_w : \mathcal{C}_e^* \rightarrow \mathcal{R}_{12} \rightarrow \mathcal{C}_{21} \rightarrow \mathcal{R}_{23} \rightarrow \mathcal{R}_{14} \rightarrow \mathcal{C}_{42} \]

Then \(\mathfrak{L}^{\alpha}_w = \{ \mathcal{C}_e^*, \mathcal{C}_{42} \} \). We have \(L_0 = \mathcal{C}_e^* \) and \(\mathcal{C}_e^* \alpha \mathcal{C}_e^* \). Hence, \(\mathcal{C}_e^* \) gives a double end. The link \(\mathcal{C}_{12} \) is not of the form \(\mathcal{C}_{\mu^*} \) for any \(\mu \in \text{Sp} \). It does not give a double end since \(\mathcal{C}_{42} \alpha \mathcal{C}_{42} \).

Lemma 4.103. Let \(w \) be a finite coadmissible \(\Gamma_{w_0}(\Lambda) \)-word. Then there does not exist \(\bar{L}_i \in \mathfrak{L}^{\alpha}_w \) with \(\bar{L}_i = \mathcal{C}_e^* \) for any \(\varepsilon \in \text{Sp} \), \(0 \leq i \leq n \).

Proof. Assume towards a contradiction that there exist \(i \) as above with \(\bar{L}_i = \mathcal{C}_e^* \in \mathfrak{L}^{\alpha}_w \) for some \(\varepsilon \in \text{Sp} \). It follows by construction that \(\bar{L}_i = L_0 \) or \(\bar{L}_i = \bar{L}_n \). Assume without loss of generality the first case. Then \(v_0(s) \in \ker(\varepsilon) \) and thus basis of \(\ker(\varepsilon) \) \& \(\mathcal{C}_{e^*} = L_0 \). Thus, \(v_0(Q) = s(\varepsilon) \). It follows that \(\varepsilon^* w \) is again a word. This contradicts \(w \) being coadmissible. \(\square \)

Corollary 4.104. a) Let \(w \) be a left coadmissible finite \(\Gamma_{w_0}(\Lambda) \)-word. Then \(L_0 \in \mathfrak{L}^{\alpha}_w \) with \(L_0 \neq \mathcal{C}_e^* \) for any \(\varepsilon \in \text{Sp} \). Moreover, \(L_0 \) corresponds to the basis of one of the following subspaces: \(\ker(a) \) for some \(a \in Q'^{\text{ord}}_1 \), \(V_{v_0(Q)} \ominus \text{im}(b) \) for some \(b \in Q'^{\text{ord}}_1 \), or \(V_{v_0(Q)} \).

b) Let \(w \) be a right coadmissible finite \(\Gamma_{w_0}(\Lambda) \)-word. Then \(\bar{L}_n \in \mathfrak{L}^{\alpha}_w \) with \(\bar{L}_n \neq \mathcal{C}_e^* \) for any \(\varepsilon \in \text{Sp} \). Moreover, \(\bar{L}_n \) corresponds to the basis of one of the following subspaces: \(\ker(a) \) for some \(a \in Q'^{\text{ord}}_1 \), \(V_{v_0(Q)} \ominus \text{im}(b) \) for some \(b \in Q'^{\text{ord}}_1 \), or \(V_{v_0(Q)} \).

153
Proof. a) By the same line of argument as in Lemma 4.103, it follows that $L_0 \neq \mathcal{C}_\varepsilon^*$ for any special loop ε, and that $L_0 \in \bar{\mathcal{L}}_{\alpha w}$. Assume towards a contradiction that L_0 does not correspond to any of the bases of the subspaces. We already know that it also does not correspond to basis of $\ker(\varepsilon)$ nor to basis of $\text{im}(\varepsilon)$ for any $\varepsilon \in \text{Sp}$. Thus, by construction, L_0 either corresponds to basis of $\text{im}(b)$ for some $b \in Q_{1\text{ord}}$, or to basis of $V_{\text{vol}}(Q) \ominus \ker(a)$ for some $a \in Q_{1\text{ord}}$. The first case would require an additional letter $w_0 = b^{-1}$, the second an additional letter $w_0 = a$. Both cases give a contradiction to w starting in w_1, i.e., to the length of w.

b) The result follows similar to a).

Example 4.105. Let Λ be as in Example 2.14 and let $w = \varepsilon^* a^{-1} d^{-1}$. Then w is coadmissible and g_w is given by

$$g_w : \mathcal{R}_{11} - \mathcal{C}_\varepsilon^* \sim \mathcal{C}_\varepsilon^* - \mathcal{R}_{12} \sim \mathcal{C}_{21} - \mathcal{R}_{23} \sim \mathcal{R}_{41} - \mathcal{C}_{42}.$$

We have

$$\mathcal{L}_{w}^\alpha = \{\mathcal{R}_{11}, \mathcal{C}_{12}\}.$$

Both links are not of the form \mathcal{C}_μ^* for any $\mu \in \text{Sp}$.

Remark 4.106. The word w from Example 4.102 is not left coadmissible and the link $\mathcal{C}_\varepsilon^*$ belongs to the set \mathcal{L}_{w}^α. Thus, we could assume that the converse of Lemma 4.103 holds. But that is not the case: For instance, let Λ be as in Example 2.3.1. and let $w = a$. Then w is neither left coadmissible nor right coadmissible. Its corresponding \mathcal{L}-chain is given by

$$g_w : \mathcal{C}_\varepsilon^* - \mathcal{R}_{11} \sim \mathcal{R}_{13} - \mathcal{C}_\varepsilon^*.$$

We have $(\mathcal{R}_{11}, \mathcal{R}_{13}), (\mathcal{C}_\varepsilon^*, \mathcal{C}_\varepsilon^*) \in \mathcal{L}_{w}^\alpha$. It follows that $\mathcal{L}_{w}^\alpha = \emptyset$. Hence, \mathcal{L}_{w}^α does not contain any link of the form \mathcal{C}_μ^*, but w is not coadmissible.

The example given in the previous remark can be generalised:

Lemma 4.107. Let Λ be given by

$$Q : \begin{array}{c} \varepsilon \ \bigcirc \bigcirc \bigcirc \bigcirc \ a \end{array}$$

with $\text{Sp} = \{\varepsilon\}$ and $R = \{a^2\}$. Let w be a finite $\Gamma_{\text{vol}}(\Lambda)$-word with $w \neq 1_{i,\kappa}$ for any $i \in Q_0$, any $\kappa \in \{+, -\}$. Furthermore, let w be neither left coadmissible nor right coadmissible. Then $\mathcal{L}_{w}^\alpha = \emptyset$.

154
Proof. Since w is neither left-coadmissible nor right-coadmissible, we know that $w_1 = x$ for $x \in \{a, a^{-1}\}$. Then $w_2 = \varepsilon^*$. Assume without loss of generality that $w_1 = a$. It follows that
\[
 v_0(s) \in \ker(\varepsilon), \quad \text{basis of } \ker(\varepsilon) \supseteq C_{\varepsilon^*} = L_0,
\]
\[
 v_0(t) \in \im(a),
\]
\[
 v_1(s) \in V_{v_1(Q)} \ominus \ker(a),
\]
\[
 v_1(t) \in \varepsilon^*, \quad \text{basis of } \varepsilon^* \supseteq C_{\varepsilon^*} = L_1,
\]
\[
 v_2(s) \in \varepsilon^* \quad \text{basis of } \varepsilon^* \supseteq C_{\varepsilon^*} = L_2.
\]
Hence, we have that
\[
 L_0 \alpha \bar{L}_1 \alpha L_2
\]
and thus $L_0 \notin \Sigma_0^\alpha$. Similarly, we obtain that $\bar{L}_n \notin \Sigma_0^\alpha$. By construction, any other link in g_w is in α–relation with one of its neighbouring links and thus belongs to Σ_0^α.

If we exclude the algebra from Lemma 4.107, the converse of Lemma 4.103 and its Corollary 4.104 do hold:

Lemma 4.108. Let Λ be different from Lemma 4.107. Let w be a finite $\Gamma_{ud}(\Lambda)$–word which is not coadmissible. Then $\Sigma_0^\alpha \neq \emptyset$.

Proof. Since w is not coadmissible, it is not left coadmissible or not right coadmissible or both. Assume without loss of generality that it is neither left coadmissible nor right coadmissible. Then there exist $\varepsilon, \mu \in \Sp$ such that $\varepsilon^* w \mu^*$ is again a word. Thus, when considering g_w, we have that
\[
 v_0(s) \in \ker(\varepsilon), \quad \text{basis of } \ker(\varepsilon) \supseteq C_{\varepsilon^*} = L_0,
\]
\[
 v_0(t) \in \ker(\mu), \quad \text{basis of } \ker(\mu) \supseteq C_{\mu^*} = \bar{L}_n.
\]
By form of Λ, we know that L_1 and \bar{L}_1 are not in α–relation with L_0. Similarly, we have that $L_n \alpha \bar{L}_{n-1}$ and $\bar{L}_n \alpha \bar{L}_{n-1}$. It follows that
\[
 L_0, L_n \in \Sigma_0^\alpha.
\]

Corollary 4.109. Let Λ be different from the algebra in Lemma 4.107.

a) If w is a left coadmissible finite $\Gamma_{ud}(\Lambda)$–word, then $\Sigma_0^\alpha \neq \emptyset$.

b) If w is a right coadmissible finite $\Gamma_{ud}(\Lambda)$–word, then $\Sigma_0^\alpha \neq \emptyset$.

Proof. Both statements follow from Lemma 4.108.

We have seen that the property of Σ_0^α being empty or not does not give any hint about w being coadmissible or not. But the types of links contained in Σ_0^α do.
Remark 4.110. The above statements give a hint about the connection between the terms of admissibility and coadmissibility. We have chosen the term coadmissibility for the respecting property since we do not only require admissibility on our \mathcal{L}-chains. Recall, that admissibility states that for $X, Y \in \mathcal{L}$ with $X \neq Y$, there exists an edge ρ containing c_i with $g(c_i) = \alpha$.

Thus, admissibility does not include two-point links. Coadmissibility on words gives admissibility on their corresponding \mathcal{L}-graphs extended to two-point links:

for $X, Y \in \mathcal{L}$ with $X = Y$ and $g(c_i) = X$ for some i, there exists an edge ρ containing c_i with $g(c_i) = \alpha$.

Finally, we see that the chains arising from asymmetric and symmetric strings or symmetric bands have certain properties:

Proposition 4.111. a) Let w be an asymmetric string. Then $d(g_w) = 0$.

b) Let $w = w^*u^{-1}$ be a symmetric string. Then $d(g_u) = 1$.

c) Let w_z be a symmetric band with $w_x = \varepsilon^*u_\eta^*u^{-1}$. Then $d(g_u) = 2$.

Proof. a) By definition, w is coadmissible. Thus we have by Lemma 4.103 that $L_0 \neq \mathcal{C}_x^* \neq \bar{L}_n$ for any $\varepsilon \in \mathrm{Sp}$. By construction, only links of type C_x^* give double ends. Hence, it follows that $d(g_w) = 0$.

b) The word u is left coadmissible, but not right coadmissible. Applying Lemma 4.108 yields that $L_n = \mathcal{C}_x^* \in \mathcal{L}_w^\alpha$. Lemma 4.101 gives that \bar{L}_n is a double end. Since u is left coadmissible, we have that $L_0 \neq \mathcal{C}_x^\mu$ for any $\mu \in \mathrm{Sp}$. Thus, L_0 does not give a double end. It follows that $d(g_u) = 1$.

c) Since $\varepsilon^*u_\eta^*$ gives a word, u is neither left coadmissible nor right coadmissible. As in b), it follows that $L_0 = \mathcal{C}_x^*$ and $\bar{L}_n = \mathcal{C}_\eta^\mu$. Hence, we obtain that $d(g_u) = 2$.

Example 4.112. Let Λ be as in Example 2.3.1. with $\bar{\Lambda}$ as in Example 4.81.

a) Let $w = \varepsilon^*a\varepsilon^*$ be an asymmetric string in $\Gamma_{ad}(\Lambda)$. Then

\[g_w: \quad R_{12} - C_x^* \sim C_x^* - R_{11} \sim R_{13} - C_x^* \sim C_x^* - R_{12} \]

has no double end.

b) Let $w = \varepsilon^*$ be a symmetric string in $\Gamma_{ad}(\Lambda)$ with $u = 1_{1,\mu}$, where $\mu = \mathrm{sgn}(\varepsilon^*)$. Then

\[g_u: \quad R_{12} - C_x^* \]

and $d(g_u) = 1$, since its right end is double.
c) Let \(w \) be a symmetric band in \(\Gamma_{ud}(\Lambda) \) with \(\hat{w}_p = \varepsilon^* a \varepsilon^* a^{-1} \). It is of period 4 with \(u = a \). We obtain

\[
g_u : \mathcal{C}_{e^*} - \mathcal{R}_{11} \sim \mathcal{R}_{13} - \mathcal{C}_{e^*}
\]

with \(d(g_u) = 2 \).

The final and most important result of this section ensures that we obtain for asymmetric and symmetric strings or symmetric bands \(\mathcal{L} \)-chains which are simple and admissible. Thus, we make sure that a representative of an equivalence class of certain words gives a representative of a certain equivalence class of \(\mathcal{L} \)-chains. Hence, the constructed \(\mathcal{L} \)-chains give canonical \(\mathcal{X}_A \)-representations.

Theorem 4.113.

a) Let \(w \) be an asymmetric string. Then \(g_w \in \tilde{\mathcal{S}}(\mathcal{L}) \).

b) Let \(w = u \varepsilon^* u^{-1} \) be a symmetric string. Then \(g_u \in \tilde{\mathcal{S}}(\mathcal{L}) \).

c) Let \(w \) be a symmetric band with \(\hat{w}_p = \varepsilon^* \eta u^* u^{-1} \). Then \(g_u \in \tilde{\mathcal{S}}(\mathcal{L}) \).

Proof. We know by Lemma 4.89 that the construction gives an \(\mathcal{L} \)-chain for the respective words in a) - c). It remains to prove simplicity and admissibility.

a) For \(w \) an asymmetric string, we have that \(d(g_w) = 0 \), i.e., neither \(L_0 \) nor \(L_n \) are of the form \(\mathcal{C}_{e^*} \) for any \(\varepsilon \in \mathcal{S}p \). By Lemma 4.104 we know that \(L_0 \) and \(L_n \) correspond each to a one-point link that is not in an \(\alpha \)-relation. Thus, admissibility at the beginning and end of \(g_w \) is given (cf. Remark 4.79). By construction, we also have admissibility for the rest of the chain.

By Lemma 2.54 we know that \(w \) is not composite. Lemma 4.98 yields that \(g_w \) is also not composite.

b) The same line of argument as in a) gives admissibility for any link but the double end. Here, admissibility follows since the link is of the form \(\mathcal{C}_{e^*} \) which is in \(\alpha \)-relation with itself and thus does not need to be considered for admissibility (cf. Remark 4.79).

Simplicity of \(g_u \) follows as in a) by minimality of \(u \).

c) Both admissibility and simplicity follow analogously to b) for both ends.

\[\square \]

Example 4.114. Consider again Example 4.112. Recall that by construction, we only have to check on admissibility at the start and end of the respective \(\mathcal{L} \)-chain. We show that all three examples give \(\mathcal{L} \)-chains in \(\tilde{\mathcal{S}}(\mathcal{L}) \):
a) Both ends are given by \mathcal{R}_{12}. Now σ_Λ acts as identity on \mathcal{R}_{12}. By Remark 4.79, this link is in no α-relation and thus admissibility at both ends is given. Furthermore, simplicity follows since $\mathcal{R}_{11} \neq \mathcal{R}_{13}$.

b) The link \mathcal{R}_{12} does not prevent admissibility by same line of argument as in a). The link \mathcal{C}_ϵ^* is a two-point link and does not need to be considered for admissibility. Hence, g_u is admissible. It is simple since it does not contain any α-relation.

c) Both ends are given by two-point links. Thus, g_u is admissible. Since $\mathcal{R}_{11} \neq \mathcal{R}_{13}$, it is also simple.

Example 4.115. Let Λ be as in Example 2.14.

a) Let $w = da\epsilon^*$ be an asymmetric string. Then

$$g_w : \mathcal{C}_{42} - \mathcal{R}_{41} \sim \mathcal{R}_{23} - \mathcal{C}_{21} \sim \mathcal{R}_{12} - \mathcal{C}_\epsilon^* \sim \mathcal{C}_\epsilon^* - \mathcal{R}_{11}.$$

The only links serving as double ends of a subchain are given by \mathcal{C}_ϵ^*. It follows that $d(g_w) = 0$. The form of g_w yields that it is simple. Furthermore, both \mathcal{C}_{42} and \mathcal{R}_{11} are in no α-relation. Thus, g_w is also admissible. Hence, $g_w \in \bar{\mathcal{S}}(\mathcal{L})$.

b) Let $w = da\epsilon^*a^{-1}d^{-1}$ be a symmetric string. Its corresponding \mathcal{L}-chain is given with $u = da$ by

$$g_u : \mathcal{C}_{42} - \mathcal{R}_{41} \sim \mathcal{R}_{23} - \mathcal{C}_{21} \sim \mathcal{R}_{12} - \mathcal{C}_\epsilon^*.$$

The link \mathcal{C}_ϵ^* gives a double end. Analogous to a), \mathcal{C}_{42} does not give a double end. Thus, $d(g_u) = 1$. Apart from the double end, we do not have another link in $g_u,0$ which is of the form \mathcal{C}_μ^* for some $\mu \in \text{Sp}$. Thus, g_u is simple. Furthermore, g_u is admissible since \mathcal{C}_{42} is not in any α-relation. It follows that $g_u \in \bar{\mathcal{S}}(\mathcal{L})$.

c) Let w_z be a symmetric band with $\hat{w}_p = \epsilon^*a^{-1}bn\eta^*b^{-1}a$. Then $u = a^{-1}b$ and

$$g_u : \mathcal{C}_\epsilon^* - \mathcal{R}_{12} \sim \mathcal{C}_{21} - \mathcal{R}_{21} \sim \mathcal{R}_{32} - \mathcal{C}_\eta^*.$$

Both \mathcal{C}_ϵ^* and \mathcal{C}_η^* give double ends: $d(g_u) = 2$. It follows also that g_u is admissible. Moreover, there are no other links of the form \mathcal{C}_μ^* for some $\mu \in \text{Sp}$ contained in $g_u,0$. Hence, g_u is simple and $g_u \in \bar{\mathcal{S}}(\mathcal{L})$.

Theorem 4.116. Let $g \in \bar{\mathcal{S}}(\mathcal{L})$ with

a) $d(g) = 0$. Then there exists a word w of asymmetric string type with $g_w = g$.

b) $d(g) = 1$. Then there exists a word w of symmetric string type with $w = w^*a^{-1}$ and $g_u = g$.

158
a) \(d(g) = 2 \). Then there exists a word \(w_z \) of symmetric band type with periodic part \(\hat{w}_p = \varepsilon^* u \eta^* u^{-1} \) for some \(\varepsilon, \eta \in \text{Sp} \), and \(g_u = g \).

Proof. Let \(g_0 = \{x_0, \ldots, x_m\} \).

a) Applying the construction backwards on \(g \) results in an undirected word \(w \) with \(g_w = g \). It remains to show that \(w \) is of asymmetric string type. We know that \(g \) is simple which yields by Lemma 4.98 that \(w \) is not composite. It follows that \(w \neq w^{-1} \). Now assume towards a contradiction that \(w \) is not left coadmissible. Then there exists \(\varepsilon \in \text{Sp} \) such that \(\varepsilon^* w \) is again a word. It follows that \(x_0 = \mathcal{C}_\varepsilon \), which gives a double link.

b) By construction, we obtain a word \(u \) with \(g_u = g \) and with \(u \) not left but right coadmissible if \(x_0 \) is a double end, and with \(u \) not right but left coadmissible if \(x_m \) is a double end. Assume without loss of generality that \(x_m = \mathcal{C}_\varepsilon \), for some \(\varepsilon \in \text{Sp} \), is a double end. Then \(u \varepsilon^* \) is again a word and we can set \(w = u \varepsilon^* u^{-1} \). It follows by definition of \(u \) that \(w \) is coadmissible. Analogously to a) we have that \(u \) is simple. Hence, \(w \) is of symmetric string type.

c) Similarly to b), we obtain by applying the construction backwards a word \(u \) which is neither left nor right coadmissible with \(g_u = g \). Since \(g \) has two double ends, we know that \(x_0 = \mathcal{C}_\varepsilon \) for some \(\varepsilon \in \text{Sp} \) and that \(x_m = \mathcal{C}_\eta \) for some \(\eta \in \text{Sp} \). Thus, \(\varepsilon^* u \eta^* \) is again a word. We set \(\hat{w}_p = \varepsilon^* u \eta^* u^{-1} \) and consider \(w_z \) with this periodic part. We know that \(w_z = w_z^{-1}[1] \) and that \(w_z = w_z[p] \) by the form of \(\hat{w}_p \). It remains to show that its period \(p \) is given by \(2|u| + 2 \). We know by Lemma 4.98 that \(u \) is simple. Thus, there does not exist any \(p' < p \) with \(w_z = w_z[p'] \).

Thus, we clearly obtain by Theorem 4.113 and 4.116 a 1-1-correspondence between words of asymmetric string type and \(\mathcal{L} \)-chains with no double ends, and a similar correspondence between words of symmetric string type and \(\mathcal{L} \)-chains with one double end. We also obtain a 1-1-correspondence between words of symmetric band type and \(\mathcal{L} \)-chains with two double ends. But we also get the following 1-1-correspondence:

Corollary 4.117. There exists a 1-1-correspondence between the equivalence classes of asymmetric and symmetric strings, symmetric bands, and the isomorphism classes of \(\mathcal{L} \)-chains in \(\mathcal{S}(\mathcal{L}) \).

Proof. Theorem 4.113 and Theorem 4.116 give a 1-1-correspondence between the set of words of asymmetric string, symmetric string and symmetric band type and the set of simple, admissible \(\mathcal{L} \)-chains. By Lemma 4.96 we obtain
a 1-1-correspondence between the equivalence classes on the words of asymmetric and symmetric string type and the isomorphism classes of the chains. We observe for words of symmetric band type that a corresponding \(L\)-chain constructed from its inverse, shift or inverse shift is also based on either \(u\) or \(u^{-1}\). Thus, we also obtain a 1-1-correspondence between the equivalence classes of words of symmetric band type and the isomorphism classes of \(L\)-chains with two double ends. \(\square\)
4.6 \(\mathcal{L}\)-cycles from periodic words

Throughout this section, let \(\Lambda\) be as Section 4.4. We consider \(\mathbb{Z}\)-words \(w_z\) in \(\Gamma_{ud}(\Lambda)\) of period \(p\). For any such \(w_z\) we want to obtain a corresponding \(\mathcal{L}\)-cycle \(g_{w_z}\). To this end, we give a construction. The idea is similar to the one of the previous section and we find similarities between the construction of \(\mathcal{L}\)-cycles and the one of \(\mathcal{L}\)-chains.

At the end of this section we see in Theorem 4.130 that asymmetric and symmetric bands result in simple \(\mathcal{L}\)-cycles. Theorem 4.141 shows that there exists a correspondence between the set of words of band type and the set of \(\mathcal{L}\)-cycles. In addition, we show that there exists a 1-1-correspondence between the equivalence classes of bands and the isomorphism classes of \(\mathcal{L}\)-chains in \(\hat{\mathcal{L}}\) (Corollary 4.142).

We use the same notation for the construction as in Section 4.5 for the construction of \(\mathcal{L}\)-chains.

Construction of \(g_{w_z}\). Let \(w_z\) be an undirected \(\mathbb{Z}\)-word of period \(p\) and with \(\hat{w}_p = w_1 \ldots w_p\). We construct its corresponding \(\mathcal{L}\)-cycle \(g_{w_z}\) as follows:

1. Depict \(\hat{w}_p\) as \(D_{w_z}: v_0 \leftarrow v_1 \leftarrow v_2 \ldots \leftarrow v_p\).

2. Set \(v_p = v_0\).

3. Associate to each \(v_i\) the values \(v_i(s)\) and \(v_i(t)\), for all \(0 \leq i \leq p - 1\), which give the start and target of the letters \(w_i\) and \(w_{i+1}\), respectively.

4. Associate to each \(v_i(s)\) a node \(c_i\) in the graph \(C_{g_{w_z}}\), and to each \(v_i(t)\), \(0 \leq i \leq p - 1\) a node \(\bar{c}_i\) in \(C_{g_{w_z}}, 0 \leq i \leq p - 1\). The graph \(C_{g_{w_z}}\) is cyclic and of the form

\[
C_{g_{w_z}}: \bar{c}_0 \rightleftharpoons c_1 \rightleftharpoons \bar{c}_1 \rightleftharpoons \cdots \rightleftharpoons c_{p-1} \rightleftharpoons \bar{c}_{p-1} \rightleftharpoons c_0
\]

5. Consider each letter \(w_i\) as a map sending \(v_i(s)\) to \(v_{i-1}(t)\), where \(i \in \{1, \ldots, p\}\). Assign to each of those a unique subspace \(X, \bar{X}\) in one of the filtrations \(F_{v_i(Q)}^{(j)}\), \(F_{v_i(Q)}^{(k)}\), respectively, \(j, k \in \{1, 2\}\). For some \(i \in Q_0\) we have that

\[
\begin{align*}
X \text{ in } F_{v_i(Q)}^{(j)} & \text{ is assigned to } v_i(s) \text{ if } \text{sgn}(w_i^{-1}) = \text{sgn}(F_{v_i(Q)}^{(j)}), \\
v_i(s) & \in X \text{ and } v_i(s) \notin V_{v_i(Q)} \Theta X, \\
\bar{X} \text{ in } F_{v_i(Q)}^{(j)} & \text{ is assigned to } v_i(t) \text{ if } \text{sgn}(w_{i+1}) = \text{sgn}(F_{v_i(Q)}^{(j)}), \\
v_i(t) & \in \bar{X} \text{ and } v_i(t) \notin V_{v_i(Q)} \Theta \bar{X},
\end{align*}
\]

for all \(i \in \{0, \ldots, p - 1\}, j \neq j, j, \bar{j} \in \{1, 2\}\). Note that we identify \(w_p\) with \(w_0\) according to periodicity.
6. Using these subspaces, assign to each $v_i(s)$ and $v_i(t)$ the link corresponding to the basis of its subspace:

 if $v_i(s)$ is assigned to X, then the link L_i basis of X is assigned to $v_i(s)$,
 if $v_i(t)$ is assigned to \bar{X}, then the link \bar{L}_i basis of \bar{X} is assigned to $v_i(t)$,

 for $0 \leq i \leq p - 1$, $L_i \neq \bar{L}_i \in \mathcal{E} \cup \mathcal{R}$.

7. Order the links according to their corresponding values $v_i(s)$ and $v_i(t)$:

 \[
 \begin{array}{ccccccc}
 v_0 & v_1 & \ldots & v_{p-1} & v_0 \\
 v_0(t) & v_1(s) & v_1(t) & \ldots & v_{p-1}(s) & v_{p-1}(t) & v_0(s) \\
 \bar{L}_0 & L_1 & \bar{L}_1 & \ldots & L_{p-1} & \bar{L}_{p-1} & L_0 \\
 \end{array}
 \]

8. Set $g_{w_z} : C_{g_{w_z}} \to \mathcal{E} \cup \{\alpha, \beta\}$,

 \[
 \begin{cases}
 c_i \mapsto x_i & \text{if } c_i - \bar{c}_i \\
 \bar{c}_i \mapsto \bar{x}_i & \text{if } \bar{c}_i + 1 - c_i
 \end{cases}
 \]

 with

 \[
 x_i = L_i, \quad \bar{x}_i = \bar{L}_i,
 \lambda_{i,i+1} = \alpha,
 \lambda_{i,i+1} = \beta,
 \]

 for all $0 \leq i \leq p - 1$, with the indices considered modulo p.

 We obtain the \mathcal{E}-cycle g_{w_z} with

 \[
 g_{w_z,0} = \{\bar{x}_0, x_1, \bar{x}_1, \ldots, x_{p-1}, \bar{x}_{p-1}, x_0\},
 g_{w_z,1} = \{\alpha, \beta, \alpha, \ldots, \alpha, \beta\}.
 \]

Remark 4.118. Note that one can also construct an \mathcal{E}-cycle using \hat{w}_{kp} given by k copies of \hat{w}_p. These \mathcal{E}-cycles are not simple. We denote in the following by g_{w_z} the \mathcal{E}-cycles constructed from \hat{w}_p.

Example 4.119. Let Λ be as in Example 2.3.1. with \overline{X}_Λ as in Example 4.81. Let w_z be a periodic \mathbb{Z}-word with $\hat{w}_p = \epsilon^*a$. Its \mathcal{E}-cycle is constructed as follows:

1. $D_{w_z} : v_0 \xrightarrow{\epsilon^*} v_1 \xleftarrow{a} v_2$.
2. $v_0(t) \xrightarrow{\epsilon^*} v_1(s) \xleftarrow{a} v_0(s)$
Example 4.120. Let Λ be as in Example 2.14 and let $\overline{\Lambda}$ be as in Example 4.83. Let w_2 be a periodic \mathbb{Z}-word with $\hat{w}_p = \eta^* b^{-1} a \varepsilon^* a^{-1} b$. Its corresponding Σ-cycle g_{w_2} is constructed by the following steps:

1. D_{w_2}: $v_0 \xrightarrow{\eta^*} v_1 b v_2 a v_3 \varepsilon^* a v_4 b v_5 a v_6$

2. $v_0(t) \xrightarrow{\eta^*} v_1(s) v_2(t) \xleftarrow{b} v_2(s) v_2(t) \xleftarrow{\varepsilon^*} v_3(s) v_3(t) \xleftarrow{\varepsilon^*} v_4(s) v_4(t) \xrightarrow{a} v_5(s) v_5(t) \xleftarrow{\eta^*} v_0(s)$

4. $C_{g_{w_2}} : \overline{c}_0 \xrightarrow{-\varepsilon} \overline{c}_1 \xrightarrow{-\varepsilon} \overline{c}_2 \xrightarrow{-\varepsilon} \overline{c}_3 \xrightarrow{-\varepsilon} \overline{c}_4 \xrightarrow{-\varepsilon} \overline{c}_5 \xrightarrow{-\varepsilon} \overline{c}_0$

5. + 6.

<table>
<thead>
<tr>
<th>v_1</th>
<th>$v_1(s)$, $v_1(t)$</th>
<th>sgn(w_1^{-1}), sgn(w_{i+1})</th>
<th>subspace</th>
<th>link</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_0</td>
<td>$v_0(s)$</td>
<td>$v_0(t)$</td>
<td>-1</td>
<td>$V_1 \oplus \ker(a)$</td>
</tr>
<tr>
<td>v_1</td>
<td>$v_1(s)$</td>
<td>$v_1(t)$</td>
<td>1</td>
<td>ε^*</td>
</tr>
<tr>
<td>v_1</td>
<td>$v_1(s)$</td>
<td>$v_1(t)$</td>
<td>-1</td>
<td>$\im(a)$</td>
</tr>
</tbody>
</table>

5. + 6.

<table>
<thead>
<tr>
<th>v_1</th>
<th>$v_1(s)$, $v_1(t)$</th>
<th>sgn(w_1^{-1}), sgn(w_{i+1})</th>
<th>subspace</th>
<th>link</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_0</td>
<td>$v_0(s)$</td>
<td>$v_0(t)$</td>
<td>1</td>
<td>$V_3 \oplus \ker(b)$</td>
</tr>
<tr>
<td>v_1</td>
<td>$v_1(s)$</td>
<td>$v_1(t)$</td>
<td>-1</td>
<td>η^*</td>
</tr>
<tr>
<td>v_2</td>
<td>$v_2(s)$</td>
<td>$v_2(t)$</td>
<td>1</td>
<td>η^*</td>
</tr>
<tr>
<td>v_2</td>
<td>$v_2(s)$</td>
<td>$v_2(t)$</td>
<td>-1</td>
<td>$\im(b)$</td>
</tr>
<tr>
<td>v_3</td>
<td>$v_3(s)$</td>
<td>$v_3(t)$</td>
<td>1</td>
<td>$\im(a)$</td>
</tr>
<tr>
<td>v_3</td>
<td>$v_3(s)$</td>
<td>$v_3(t)$</td>
<td>-1</td>
<td>$V_1 \oplus \ker(a)$</td>
</tr>
<tr>
<td>v_4</td>
<td>$v_4(s)$</td>
<td>$v_4(t)$</td>
<td>1</td>
<td>ε^*</td>
</tr>
<tr>
<td>v_4</td>
<td>$v_4(s)$</td>
<td>$v_4(t)$</td>
<td>-1</td>
<td>$V_1 \oplus \ker(a)$</td>
</tr>
<tr>
<td>v_5</td>
<td>$v_5(s)$</td>
<td>$v_5(t)$</td>
<td>1</td>
<td>$\im(a)$</td>
</tr>
</tbody>
</table>

163
\[g_{w_2} : \]
\[\varepsilon_{s^+ \sim \varepsilon_{s^+} - \varepsilon_{s^+} \sim \varepsilon_{s^+} - \varepsilon_{s^+} \sim \varepsilon_{s^+} - \varepsilon_{s^+} \sim \varepsilon_{s^+} - \varepsilon_{s^+} - \varepsilon_{s^+} - \varepsilon_{s^+} \sim \varepsilon_{s^+} \]

We denote the sets \(\mathcal{L}_{w_2} \) and \(\mathcal{L}^\alpha_{w_2} \) analogously to (117) and (119). Let \(\bar{L}_i \in \{ L_i, \bar{L}_i \} \).

Remark 4.121. For any \(w_2 \) of period \(p \), we consider an \(\mathcal{L} \)-cycle \(g_{w_2} \) of even length such that
\[\# \{ \alpha \in g_{w_2,1} \} = \# \{ \beta \in g_{w_2,1} \}. \]
This means that each link \(\bar{L}_i \in \mathcal{L}_{w_2} \) is in at least one \(\alpha \)-relation. Note that in particular \(\mathcal{L}^0_{w_2} = \emptyset \), i.e., none of the links \(\bar{L}_i \in \mathcal{L}_{w_2} \) corresponds to bases of subspaces of the types \(\ker(a) \) (resp. \(\ker(a) \ominus \im(b) \) if \(ab = 0 \)), \(V \ominus \im(a) \) or \(V \), for any \(a \in Q^{\text{ord}}_1 \).

Theorem 4.122. The above construction gives for any undirected periodic word \(w_2 \) a unique \(\mathcal{L} \)-cycle \(g_{w_2} \):
\[w_2 = u_z \quad \text{if and only if} \quad g_{w_2} = g_{u_z}. \]

Proof. We first show that the construction results in an \(\mathcal{L} \)-cycle: By the same line of argument as in Lemma 4.89, the construction gives an \(\mathcal{L} \)-graph. Since the underlying graph is given by a cycle, the \(\mathcal{L} \)-graph is an \(\mathcal{L} \)-cycle. Let \(w_2 = u_z \), i.e., \(w_i = u_i \) for all \(i \in \mathbb{Z} \). In particular, it follows \(\hat{u}_p = \hat{u}_p \). By construction, we have \(v_{i}^w(x) = v_{i}^w(x) \), for all \(i \in \{ 0, \ldots, p - 1 \} \) and \(x \in \{ s, t \} \). Here, we denote by \(v_{i}^w \) the respective vertex in \(D_{w_2} \), and by \(v_{i}^w \) the respective vertex in \(D_{w_2} \). We proceed similarly with the corresponding links and mark their correspondence by an appropriate superscript. The previous equalities yield that \(L_i^w = L_i^u \) and \(\bar{L}_i^w = \bar{L}_i^u \) for all \(i \in \{ 0, \ldots, p - 1 \} \). The order of the relations \(\alpha \) and \(\beta \) in \(g_{w_2,1} \) and \(g_{w_2,1} \) is fixed by construction. It follows that \(g_{w_2} = g_{w_2} \).

Conversely, let \(g_{w_2} = g_{w_2} \). Then \(g_{w,0} = g_{u,0} \) and \(g_{w,1} = g_{u,1} \). We have, in particular, that \(L_i^w = L_i^u \) and \(\bar{L}_i^w = \bar{L}_i^u \) for any \(i \in \{ 0, \ldots, p - 1 \} \). This implies that \(v_{i}^w(x) = v_{i}^w(x) \) for any \(i \in \{ 0, \ldots, p - 1 \} \) and any \(x \in \{ s, t \} \). It follows that \(w_i = u_i \) for all \(i \in \{ 1, \ldots, p \} \), i.e., \(\hat{w}_p = \hat{u}_p \). Periodicity yields that \(w_2 = u_z \). \(\square \)

Proposition 4.123. Let \(w_z \) and \(u_z \) be two undirected \(\mathbb{Z} \)-words, both of period \(p \) and with \(u_z = w_z^{-1} \). Then \(g_{w_z} = g_{u_z} \).

Proof. Let \(\hat{w}_p = w_1 \ldots w_p \). Then we have that \(\hat{u}_p = w_p^{-1} \ldots w_1^{-1} \). We obtain that
\[
D_{w_z} : v_0^w \xleftarrow{w_1} v_1^w \xleftarrow{w_2} \cdots \xleftarrow{w_{p-1}} v_{p-1}^w
\]
We can rewrite D_{uz} in the following way:

$$D_{uz}: v_0^u \xrightarrow{w_p^{-1}} v_1^u \xrightarrow{w_p^{-2}} \ldots \xrightarrow{w_p^{-1}} v_p^u$$

Comparing D_{uz} with the rewritten D_{uz} yields that

$$v_i^u(s) = v_n^w(t), \quad \forall i \in \{0, \ldots, n-1\}.$$

This results in the following correspondence between the links:

$$L_i^u = \tilde{L}_i^w, \quad \forall i \in \{0, \ldots, n-1\}.$$

By construction, the order of the relations in any \mathbb{L}-cycle g_{xz} is the same for any \mathbb{Z}-word x_z. Thus – by equality on the links – it follows that $g_{xz}^* = g_{uz}$.

We can enhance the statement of Theorem 4.122:

Theorem 4.124. Let w_z and u_z be two undirected \mathbb{Z}-words of period p. Then

$$w_z \sim u_z \iff g_{uw} \cong g_{uz}. $$

Proof. By definition, $w_z \sim u_z$ if and only if $w_z = u_z[m]$ or $w_z = u_z^{-1}[m]$ for some $m \in \mathbb{Z}$.

Let $w_z = u_z[m]$ for some $m \in \mathbb{Z}$. It follows that

$$\bar{u}_p = u_m \ldots u_1 u_1 \ldots u_{m-1}. \quad (122)$$

Denote the underlying graphs by $C_{uw} = \{c_i, \delta_j\}_{1 \leq i \leq 2p}$, $C_{uw} = \{c_i, \delta_j\}_{1 \leq i \leq 2p}$. We have that

$$g_{uw,0} = \{x_0, x_0, \ldots, x_{p-1}, \bar{x}_{p-1}\},$$

$$g_{uw,0} = \{x_m, \bar{x}_m, \ldots, x_{p-1}, \bar{x}_{p-1}, \ldots, x_{m-1}, \bar{x}_{m-1}\}.$$

It follows that $\tau: C_{uw} \to C_{uw}$ which acts as the shift by $-m$ ($c_i \mapsto c_{i-m}$) gives an isomorphism between the two \mathbb{L}-graphs g_{uw} and g_{uw}.

Let $w_z = u_z^{-1}[m]$. We assume without loss of generality that $m \in \mathbb{Z}/p\mathbb{Z}$ and $m > 0$. Let $\bar{u}_p = u_1 \ldots u_p$. It follows that

$$\bar{u}_p = u_{p-m}^{-1} \ldots u_{p-1}^{-1} u_1^{-1} \ldots u_{p-m}^{-1}. \quad (123)$$
Denote the underlying graphs of g_w and g_z by
\[
C_{wz} = \{c, \delta_j\}_{1 \leq j \leq 2p}, \quad \text{and} \quad C_{wz} = \{c', \delta'_j\}_{1 \leq j \leq 2p}.
\]
Furthermore, let
\[
g_{wz,0} = \{\bar{x}_0, \ldots, \bar{x}_{p-1}, \bar{x}_0\},
\]
\[
g_{wz,0} = \{\bar{y}_0, \ldots, \bar{y}_{p-1}, \bar{y}_0\}.
\]
By (123), we can express $g_{wz,0}$ in terms of the links in Σ_{wz}:
\[
g_{wz,0} = \{x_{p-(m+1)}, \ldots, \bar{x}_1, \bar{x}_0, \ldots, \bar{x}_{p-m}, \bar{x}_{p-m}, \bar{x}_{p-(m+1)}\}.
\]
Consider the isomorphism $\pi : C_{g_{wz}} \to C_{g_{wz}}$ given by $\tau_{2m-1} \circ \text{rev}$. We want to show that π gives an isomorphism between g_{wz} and g_{wz}. To this end, we show that $g_{wz} = g_{wz} \circ \pi$. We renumber at first the sets $g_{wz,0}$ and $g_{wz,0}$ as follows:
\[
g_{wz,0} = \{x_0, x_1, \ldots, x_{2p-3}, x_{2p-2}\},
\]
\[
g_{wz,0} = \{y_0, y_1, \ldots, y_{2p-3}, y_{2p-2}\}
\]
\[
= \{x_{2(p-(m+1))}, x_2(p-(m+1)), \ldots, x_2(p-m+1), x_{2(p-m)}\}
\]
\[
= \{x_{2p-2m-1}, x_{2p-2m-2}, \ldots, x_{2p-2m+1}, x_{2p-2m}\}. \tag{124}
\]
Note that we consider all indices modulo p. The map π acts as follows on $C_{g_{wz}}$:
\[
\begin{align*}
\{c_0, \ldots, c_{2p-2}\} & \xrightarrow{\text{rev}} \{c_{2p-2}, c_0\} \\
\tau_{2m-1} & \xrightarrow{\{c_{2p-2m-1}, c_{2p-2m}, \ldots, c_{2p-2m+1}, c_{2p-2m+2}\}} \\
& = \{c_{2p-2m-1}, c_{2p-2m}, \ldots, c_{2p-2m+1}, c_{2p-2m}\}. \tag{125}
\end{align*}
\]
Comparing (124) and (125) yields that
\[
g_{wz} \pi = g_{wz}.
\]
It follows that $g_{wz} \equiv g_{wz}$. Conversely, let $g_{wz} \equiv g_{wz}$ with $w_z \neq u_z$. We know by Lemma 4.126 that $\pi : C_{g_{wz}} \to C_{g_{wz}}$ is given by a translation, a reflection or a composition of those. Any translation on $C_{g_{wz}}$ by some $m \in \mathbb{Z}$ results in a shift by $2m$ on w_z. Similarly, any reflection on $C_{g_{wz}}$ results in a shift composed with taking the inverse on w_z. Thus, π implies that
\[
w_z = u_z^\mu[m] \quad \text{for some } m \in \mathbb{Z} \text{ and } \mu \in \{+1, -1\}.
\]
We obtain that $w_z = u_z[m]$ or $w_z = u_z^{-1}[m]$. In both cases, we obtain that $w_z \sim u_z$. □
Example 4.125. 1. Let \(\Lambda \) be given as in Example 2.14. We consider \(\overline{\Lambda} \) as in Example 4.83.

Let \(w_z \) and \(u_z \) be two undirected periodic \(\mathbb{Z} \)-words with \(\hat{w}_p = \varepsilon^{a^{-1}}b\eta^{b^{-1}}a \) and \(\hat{u}_p = \eta^{b^{-1}}a\varepsilon^{a^{-1}}b \). Then \(w_z = u_z^{-1}[1] \). We obtain as corresponding \(\mathcal{L} \)-cycles:

\[
g_{w_z} : \quad \varepsilon_{s^+} \sim \varepsilon_{s^+} - \mathcal{R}_{12} - \mathcal{R}_{21} - \mathcal{R}_{32} - \varepsilon_{s^+} - \mathcal{R}_{32} - \mathcal{R}_{21} - \varepsilon_{21} - \mathcal{R}_{12} \]

and

\[
g_{u_z} : \quad \varepsilon_{s^+} \sim \varepsilon_{s^+} - \mathcal{R}_{32} - \mathcal{R}_{21} - \varepsilon_{12} - \varepsilon_{s^+} - \varepsilon_{s^+} - \mathcal{R}_{21} - \varepsilon_{21} - \mathcal{R}_{32} \]

Denote the nodes of \(C_{g_{w_z}} \) by \(\{c_i\}_{1 \leq i \leq 12} \) and those of \(C_{g_{u_z}} \) by \(\{c'_i\}_{1 \leq i \leq 12} \). Then \(\pi : C_{g_{w_z}} \to C_{g_{u_z}} \) given by \(\pi(c'_i) = c_{i+6} \) yields that

\[g_{w_z} \not\cong g_{u_z} \].

2. Let \(\Lambda \) be as in Example 2.3.1. with \(\overline{\Lambda} \) as in Example 4.81. Let \(w_z \) and \(u_z \) be periodic with \(\hat{w}_p = \varepsilon^{a}a\varepsilon^{s} \) and \(\hat{u}_p = a^{-1}\varepsilon^{s}a\varepsilon^{s} \). Then

\[
g_{w_z} : \quad \mathcal{R}_{13} - \mathcal{R}_{11} - \varepsilon_{s^+} - \varepsilon_{s^+} - \mathcal{R}_{11} - \mathcal{R}_{13} - \varepsilon_{s^+} - \varepsilon_{s^+} \]

and

\[
g_{u_z} : \quad \mathcal{R}_{11} - \mathcal{R}_{13} - \varepsilon_{s^+} - \varepsilon_{s^+} - \mathcal{R}_{11} - \mathcal{R}_{13} - \varepsilon_{s^+} - \varepsilon_{s^+} \]

We see that \(g_{w_z} \not\cong g_{u_z} \) and that \(u_z \) and \(w_z \) are not equivalent as well.

Theorem 4.124 shows that equivalence classes of words match by construction equivalence classes of \(\mathcal{L} \)-cycles. We will enhance this theorem and show that symmetric and asymmetric bands match simple \(\mathcal{L} \)-cycles (Theorem 4.130).

In order to do so, we examine the automorphism and rotation groups of \(\mathcal{L} \)-cycles \(g_{w_z} \) constructed from asymmetric or symmetric bands \(w_z \) (Proposition 4.127).
We denote similarly as in D_{w_Z} (see step 1 of the construction) by $\{v_i\}_{i \in \mathbb{Z}}$ the vertices of w_Z:

$$\ldots \xleftarrow{w_i} v_i \xrightarrow{w_{i+1}} \ldots$$

meaning that $v_i = t(w_{i+1}) = s(w_i)$. Note that we use $t(-)$ and $s(-)$ as start and target of the letters within w_Z—regardless of their use in Section 2.3. Note that each vertex v_i gives two nodes in $C_{g_{w_Z}} = \{c_i, \delta_i\}_{0 \leq i < 2p-1}$:

$$v_i \hat{=} \{c_{2i-1}, c_{2i}\} \tag{126}$$

meaning that $c_{2i-1} \hat{=} v_i(s) = s(w_i)$ and $c_{2i} \hat{=} v_i(t) = t(w_{i+1})$. It follows that $w_i \hat{=} c_{2i-2} \sim c_{2i-1}$.

Lemma 4.126. Let C be a cyclic graph of even length and let π be an automorphism on C. Then π is given by a reflection of by a translation.

Proof. This follows since the image of two neighbouring nodes under π gives again two neighbours. \hfill \square

Proposition 4.127. We have that

$$\text{Aut}(g_{w_Z}) = \begin{cases} \{\text{id}\} & \text{if } w_Z \text{ is an asymmetric band}, \\ \{\text{id}, r_{\frac{1}{2}}\} & \text{if } w_Z \text{ is a symmetric band}. \end{cases}$$

Proof. Let w_Z be an asymmetric band. Then $\text{id} \in \text{Aut}(g_{w_Z})$. We know by Lemma 4.126 that any $\pi \in \text{Aut}(g_{w_Z})$ is given by a translation or by a reflection. Assume there exists some $\pi \neq \text{id}$ in $\text{Aut}(g_{w_Z})$. If π is given by a translation, then it is of the form π_{2k} for some $k \in \{1, \ldots, p - \frac{1}{2}\}$. This is due to taking the α- and β-relations into account. Since they take turns, we need to shift every node by a multiple of 2. By Definition, we have that $g_{w_Z} = g_{w_Z} \tau_{2k}$. This equality yields that

$$x_i = x_{i-2k} \quad \forall \ i \in \{0, \ldots, 2p-1\} \tag{127}$$

where $g_{w_Z,0} = \{x_0, x_1, \ldots, x_{2p-2}, x_{2p-1}\}$. We know that any α-relation matches one letter in \tilde{w}_p as follows:

$$c_{2i-2} \sim c_{2i-1} \iff v_{i-1}(t) \xleftarrow{w_i} v_i(s) \tag{128}$$

Thus, π_{2k} matches the translation τ_k on w_Z. We know by Lemma 3.41 that

$$\tau_1(w_Z) = w_Z[-1].$$

This yields together with (127) that

$$w_Z = w_Z[-l].$$

168
for \(l < p \). This contradicts minimality of \(p \).

Assume now that \(\pi \) is given by a reflection. The construction gives that \(x_{2i} \neq x_{2i-1} \) for all \(i \in \{0, \ldots, 2p-1\} \) since those links are connected by a \(\beta \)-relation. Hence, any reflection is given by a symmetry on an \(\alpha \)-relation. It follows that \(\pi \) is of the form \(\pi_{2k-\frac{3}{2}} \) for some \(k \in \{0, \ldots, 2p-1\} \). Thus, its symmetry axis is given on the following \(\alpha \)-relation:

\[
\pi_{2k-\frac{3}{2}} \sim c_{2k-1}.
\]

It follows that

\[
x_{2k-2} = x_{2k-1} = C_{\varepsilon^*} \quad \text{for some} \; \varepsilon \in \text{Sp}.
\]

Furthermore, we have by (128) that

\[
w_k = \varepsilon^*
\]

in \(\hat{w}_p \). Using (128) on the image of \(\pi_{2k-\frac{3}{2}} \) results in

\[
w_{k-1} = w_{k+1}^{-1} \quad \forall i \in \mathbb{Z}.
\]

It follows that \(\pi_{2k-\frac{3}{2}} \) matches the reflection \(r_k \) on \(w_z \). We obtain that

\[
w_z = w_z^{-1}[k]
\]

which contradicts \(w_z \) being asymmetric.

Let now \(w_z \) be symmetric. Then id \(\in \text{Aut}(g_{w_z}) \). We know that \(\hat{w}_p = \varepsilon^* u \eta^* u^{-1} \) for some \(\eta, \varepsilon \in \text{Sp} \). It follows by construction that

\[
g_{w_z}(c_0) = C_{\varepsilon^*},
g_{w_z}(c_1) = C_{\varepsilon^*},
g_{w_z}(c_{2m+2}) = C_{\eta^*},
g_{w_z}(c_{2m+3}) = C_{\eta^*},
g_{u,0} = \{g_{w_z}(c_1), \ldots, g_{w_z}(c_{2m+2})\},
g_{u^{-1},0} = \{g_{w_z}(c_{2m+3}), \ldots, g_{w_z}(c_{4m+4})\}.
\]

In order to have \(r_{\frac{1}{2}} \in \text{Aut}(g_{w_z}) \), we need to show that it acts as follows:

\[
c_0 \leftrightarrow c_1
\]

\[
c_{2m+2} \leftrightarrow c_{2m+3}
\]

\[
c_{2+i} \leftrightarrow c_{4m+3-i} \quad \forall i \in \{0, \ldots, 2m-1\}.
\]
We obtain the following:

\[r_{\frac{1}{2}}(c_0) = c_{1-0} = c_1 \]
\[r_{\frac{1}{2}}(c_1) = c_{1-1} = c_0 \]
\[r_{\frac{1}{2}}(c_{2m+3}) = c_{1-2m-3} = c_{-2m-2} = c_{2m+2} \]
\[r_{\frac{1}{2}}(c_{2m+2}) = c_{1-2m-2} = c_{-2m-1} = c_{2m+3} \]
\[r_{\frac{1}{2}}(c_{2+i}) = c_{1-2-i} = c_{1-1-i} = c_{4m+3-i} \]
\[r_{\frac{1}{2}}(c_{4m+3-i}) = c_{1-4m-3+i} = c_{-4m-2+i} = c_{2+i}. \]

Note that we have used that \(-i \equiv 4m + 2 - i \mod (4m + 3)\) for any \(i \in \{0, \ldots, 4m + 3\}\). Hence, \(r_1 \in \text{Aut}(g_{w_z})\). Note that the reflection \(r_{2m+2} \cdot \frac{1}{2}\) coincides with \(r_1\) (see also Remark 4.128).

Assume now that \(\pi \in \text{Aut}(g_{w_z})\) with \(\pi \notin \{\text{id}, r_{\frac{1}{2}}\}\). Assume \(\pi\) is given by a translation. Then \(\pi = \pi_{2k-\frac{1}{2}}\) as described in the case of an asymmetric band (with \(k \neq 1, m + 2\)). We obtain analogously to that case a contradiction. Assume that \(\pi\) is given by a reflection. As explained above, \(\pi\) is then of the form \(r_{2k-\frac{1}{2}}\) for \(k \in \{0, \ldots, 2p-1\}\) with \(k \neq 1, 2m+2\). Recall that it matches the reflection \(r_k\) on \(w_z\). It follows that \(w_k = \varepsilon^*\) gives a symmetry point in \(w_z\). This gives a contradiction to Corollary 3.45.

Remark 4.128. Note that the maps \(r_{\frac{1}{2}}\) and \(r_{2m+2} \cdot \frac{1}{2}\) coincide on \(C_{g_{w_z}}\) for any symmetric band \(w_z\):

\[r_{\frac{1}{2}}((c_i)_{i\in I}) = (c_{1-i})_{i\in I}, \]
\[r_{2m+2} \cdot \frac{1}{2}((c_i)_{i\in I}) = (c_{4m+4+1-i})_{i\in I} = (c_{1-i})_{i\in I}. \]

This follows from \(2p = 4m + 4\) and

\[4m + 6 + 1 - i \equiv 2 + 1 - i \equiv 3 - i \mod 2p. \]

Corollary 4.129.

a) Let \(w_z\) be an asymmetric band. Then

\[|\text{Aut}(g_{w_z})| = |\text{Rot}(g_{w_z})| = 1. \]

b) Let \(w_z\) be a symmetric band. Then

\[|\text{Aut}(g_{w_z})| = 2 \]
\[|\text{Rot}(g_{w_z})| = 1. \]

Proof. The statements follow from Proposition 4.127.

The following theorem shows that asymmetric and symmetric bands induce canonical representations of \(\overline{X}_A\).
Theorem 4.130.
a) Let w_z be an asymmetric band. Then $g_{w_z} \in \mathcal{S}(L)$ and g_{w_z} is non-symmetric.

b) Let w_z be a symmetric band. Then $g_{w_z} \in \mathcal{S}(L)$ and g_{w_z} is symmetric.

Proof.
a) Let w_z be an asymmetric band. By Corollary 4.129, we know that $|\text{Rot}(g_{w_z})| = 1$. Hence, $\text{Rot}(g_{w_z})$ is trivial and g_{w_z} is simple. By Theorem 4.122, g_{w_z} is an L-cycle. It follows that $g_{w_z} \in \mathcal{S}(L)$.

By Corollary 4.129, it follows that $\text{Aut}(g_{w_z})$ is trivial. Thus, g_{w_z} is non-symmetric.

b) Let w_z be a symmetric band. By Corollary 4.129, we know that $\text{Rot}(g_{w_z})$ is trivial and thus g_{w_z} is simple. It follows by Theorem 4.122 that $g_{w_z} \in \mathcal{S}(L)$.

Corollary 4.129 yields that $|\text{Aut}(g_{w_z})| = 2$. Thus, $\text{Aut}(g_{w_z})$ is not trivial and g_{w_z} is symmetric.

Example 4.131.
1. Let Λ be given as in Example 2.3.1. with \bar{X}_Λ as constructed in Example 4.81. Let w_z be a symmetric band with $\hat{w}_p = \epsilon^* a^* a^{-1}$. Then $u = a$ and $|u| = 1$.

The corresponding L-cycle is given by

$$g_{w_z} : \begin{array}{ccccccc} x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\ \epsilon & \sim & \epsilon & \sim & R_{11} & \sim & R_{13} & \sim & \epsilon & \sim & R_{13} & \sim & R_{11} \end{array}$$

We have

$$\text{Aut}(g_{w_z}) = \{\text{id}, r_{\frac{1}{2}} = r_{\frac{3}{2}}\}.$$

Note that especially reflections can be deduced from the form of the L-graph. It follows that g_{w_z} is simple and symmetric.

2. Let Λ be as in Example 2.14 with \bar{X}_Λ as in Example 4.83. Let w_z be an asymmetric band with $\hat{w}_p = \kappa^* c d^{-1} e$. Then

$$g_{w_z} : \begin{array}{ccccccc} x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 \\ \epsilon & \sim & \epsilon & \sim & R_{51} & \sim & R_{22} & \sim & R_{23} & \sim & R_{41} & \sim & R_{41} & \sim & R_{53} \end{array}$$

It follows that $\text{Aut}(g_{w_z}) = \{\text{id}\}$. The only possible reflection would send $x_1 \leftrightarrow x_0$. It would follow $x_2 = x_7$ which does not hold. It follows that g_{w_z} is simple and non-symmetric.

Remark 4.132. Note that simplicity of g_{w_z} and minimality of the period p are linked. The following example illustrates this.
Example 4.133. Let \(\Lambda \) be as in Example 2.3.1. with \(\overline{X}_\Lambda \) as in Example 4.81. Let \(\Lambda \) be as in Example 4.81. Construct an \(\mathcal{L} \)-cycle not from \(\hat{w}_p \), but from \(u = \varepsilon^* a \) by applying the above construction to it. We obtain

\[
g_u : \mathcal{C}_{x^*} \sim \mathcal{C}_{x^*} - \mathcal{R}_{11} \sim \mathcal{R}_{11} - \mathcal{C}_{x^*} \sim \mathcal{C}_{x^*} - \mathcal{R}_{11} - \mathcal{R}_{13}
\]

Then \(\text{Aut}(g_u) = \{ \text{id}, \tau_{-4} \} = \text{Rot}(g_u) \). It follows that \(g_u \) is not simple.

We want to formalise the correspondence between translations and reflections on a word \(w_z \) and those on the underlying graph of \(g_{w_z} \) as used in the proof of Proposition 4.127.

This enables us to examine the relation between the stabilizer group \(\text{Stab}_{D_\infty}(w_z) \) of \(w_z \) and the automorphism group \(\text{Aut}(g_{w_z}) \) of its corresponding \(\mathcal{L} \)-cycle \(g_{w_z} \). We will see that there exists a 1-1-correspondence (Theorem 4.140).

Let \(\varepsilon \in D_\infty \). Recall that \(\varepsilon \) acts as follows on an undirected \(\mathcal{Z} \)-word \(w_z \):

\[
\varepsilon(w_z) = \begin{cases}
(w_{\varepsilon(i)-1})_{i \in \mathbb{Z}}, & \text{if } \varepsilon = \tau_k \text{ for some } k \in \mathbb{Z}, \\
(w_{\varepsilon(i)})_{i \in \mathbb{Z}}, & \text{if } \varepsilon = \tau_k \text{ for some } k \in \mathbb{Z}.
\end{cases}
\]

where the translation \(\tau_k \) acts as \(i \mapsto i - k \) and the reflection \(\tau_k \) as \(i \mapsto 2k - i \). Any \(\varepsilon \in D_\infty \) induces a map \(\varepsilon \) on the vertices \(v_i \) of \(w_z \). To this end, we consider the vertices as tuple \((v_i)_{i \in \mathbb{Z}}\). We define \(\varepsilon \) as follows:

\[
\varepsilon((v_i)_{i \in \mathbb{Z}}) = \begin{cases}
(v_{\varepsilon(i)})_{i \in \mathbb{Z}}, & \text{if } \varepsilon = \tau_k \text{ for some } k \in \mathbb{Z}, \\
(v_{\varepsilon(i)-1})_{i \in \mathbb{Z}}, & \text{if } \varepsilon = \tau_k \text{ for some } k \in \mathbb{Z}.
\end{cases}
\]

Lemma 4.134. The induced map \(\varepsilon \) is well-defined.

Proof. We need to show that

\[
v_{\varepsilon(i)} = s(w_{\varepsilon(i)}^\mu_{\varepsilon}) = t(w_{\varepsilon(i+1)}^\mu_{\varepsilon})
\]

with

\[
\mu_{\varepsilon} = \begin{cases}
-1 & \text{if } \varepsilon \text{ is a reflection}, \\
1 & \text{if } \varepsilon \text{ is a translation}.
\end{cases}
\]

We show at first that \(129 \) holds for any \(\varepsilon = \tau_k \in D_\infty \) for some \(k \in \mathbb{Z} \). We have that

\[
\varepsilon((v_i)_{i \in \mathbb{Z}}) = (v_{i-k})_{i \in \mathbb{Z}}, \\
\varepsilon(w_z) = (w_{i-k})_{i \in \mathbb{Z}}.
\]
For an arbitrary $i \in \mathbb{Z}$, we have that v_{i-k} is in position $i-k$ in $\varphi((v_i)_{i \in \mathbb{Z}})$. In $\varphi(w_z)$ we have w_{i-k} in position $i-k$ and w_{i+1-k} in position $i+1-k$. We obtain that

\[
v_{i-k} = s(w_{i-k}) = s(w_{\varphi(i)}) = t(w_{i+1-k}) = t(w_{\varphi(i+1)}).
\]

Let now $\varphi = r_k$ for some $k \in \mathbb{Z}$. Note that the order of indices reverses in a reflected word: if we have $v_i = s(w_i) = t(w_{i+1})$ in w_z, then we obtain after reflecting in i that $v_i = s(w_{i-1}) = t(w_{i}^{-1})$. Any start (target) of an inverse letter x^{-1} is given by the target (start) of x. We obtain that

\[
\varphi((v_i)_{i \in \mathbb{Z}}) = (v_{2k-i-1})_{i \in \mathbb{Z}},
\]

\[
\varphi(w_z) = (w_{2k-i}^{-1})_{i \in \mathbb{Z}}.
\]

We know that

\[
v_{2k-i-1} = s(w_{2k-i-1}) = t(w_{2k-i})
\]

in w_z. We obtain that

\[
w_{\varphi(i+1)}^{-1} = w_{2k-i-1},
\]

\[
w_{\varphi(i)}^{-1} = w_{2k-i}.
\]

It follows that

\[
v_{2k-i-1} = t(w_{\varphi(i)}) = s(w_{\varphi(i+1)}^{-1}).
\]

Any $\varphi \in D_\infty$ induces also a map φ_c on the nodes of the underlying graph $C_{g_{wz}}$ of the corresponding Z-cycle g_{wz}. To this end, we denote also the nodes of the underlying graph as tuple $(c_i)_{i \in I}$ with $I = \{0, \ldots, 2p-1\}$:

\[
\varphi_c((c_i)_{i \in I}) = \begin{cases}
(2\varphi((i)-i)_{i \in I})_{i \in I} & \text{if } \varphi = \tau_k \text{ for some } k \in \mathbb{Z}, \\
(2\varphi((i)+i-3)_{i \in I})_{i \in I} & \text{if } \varphi = r_k \text{ for some } k \in \mathbb{Z},
\end{cases}
\]

where $\bar{x} \equiv x \mod (2p)$.

Lemma 4.1.35. The induced map φ_c is well-defined.

Proof. First, we need to show that the images of neighbouring nodes are again neighbours. To this end, let $i \in \{0, \ldots, 2p-1\}$. Consider the neighbours c_{i-1}, c_i and c_{i+1} in $C_{g_{wz}}$. Let $\varphi_c = \tau_k$ for some $k \in \mathbb{Z}$. In $\varphi_c(C_{g_{wz}})$ we obtain

- in position $i-1$:
 \[c_{2(i-1)-i} = c_{i-1-2k};\]
- in position i:
 \[c_{2(i)-i} = c_{i-2k};\]
- in position $i+1$:
 \[c_{2(i+1)-i} = c_{i+1-2k}.\]
We see from the indices that those are indeed neighbouring nodes. Consider now \(\varphi_c = r_k \) for some \(k \in \mathbb{Z} \). We obtain

\[
\begin{align*}
\text{in position } i - 1: & \quad c_{2(2k-(i-1))+(i-1)-3} = c_{4k-i-2}, \\
\text{in position } i: & \quad c_{2(2k-i)+i-3} = c_{4k-i-3} \\
\text{in position } i + 1: & \quad c_{2(2k-(i+1))+(i+1)-3} = c_{4k-i-4}.
\end{align*}
\]

and see that those are also neighbours. Secondly, we show that the correspondence between the nodes and the associated values of each \(v_i \) is preserved under \(\varphi_v \) and \(\varphi_c \). To this end, we neglect to consider the indices modulo 2p. We have that

\[v_i \equiv \{c_{2i-1}, c_{2i}\} \quad (130) \]

by construction (recall that \(v_i(s) \equiv c_{2i-1} \) and \(v_i(t) \equiv c_{2i} \)). Let \(\varphi_c = r_k \). We show that

\[v_{\varphi(i)} \equiv \{c_{2\varphi(2i-1)-(2i-1)}, c_{2\varphi(2i)-2i}\} \quad (131) \]

We have that \(v_{\varphi(i)} = v_{i-k} \). This vertex corresponds to the nodes \(\{c_{2i-2k-1}, c_{2i-2k}\} \). We have that

\[
\begin{align*}
c_{2\varphi(2i)-2i} &= c_{2(2i-k)-2i} = c_{2i-2k}, \\
c_{2\varphi(2i-1)-(2i-1)} &= c_{2(2i-1-k)-(2i-1)} = c_{2i-1-2k}
\end{align*}
\]

and (131) follows.

Let \(\varphi = r_k \) for some \(k \in \mathbb{Z} \). We want to show that

\[v_{\varphi(i)-1} \equiv \{c_{2\varphi(2i-1)+(2i-1)-3}, c_{2\varphi(2i)+2i-3}\} \quad (132) \]

We have \(v_{\varphi(i)-1} = v_{2k-i-1} \). This corresponds by (130) to \(\{c_{4k-2i-3}, c_{4k-2i-2}\} \).

We have

\[
\begin{align*}
c_{2\varphi(2i-1)+(2i-1)-3} &= c_{2(2k-(2i-1))+(2i-1)-3} = c_{4k-2i-2}, \\
c_{2\varphi(2i)+2i-3} &= c_{2(2k-2i)+2i-3} = c_{4k-2i-3}.
\end{align*}
\]

(133) and (134)

We see that the set in (132) coincides with the values in (133) and (134). □

Conversely, any \(\pi \) acting on \(C_{g_{\mathbb{Z}}^*} \) induces a map \(\pi_w \in D_{\infty} \). To define the induced map, we use again the correspondence

\[v_i \equiv \{c_{2i-1}, c_{2i}\} \]

by \(v_i(s) \equiv c_{2i-1} \) and \(v_i(t) \equiv c_{2i} \) for all \(i \in \{0, \ldots, 2p - 1\} \). We define \(\pi_w \) as follows:

\[
\pi_w(w_z) = \begin{cases}
\left(\frac{w_{\pi(2i)}}{\tau_2} \right)_{i \in \mathbb{Z}} & \text{if } \pi = \tau_2k \text{ for some } k \in \mathbb{Z}/p\mathbb{Z}, \\
\left(\frac{w_{\pi(2i-1)}}{\tau_2} \right)_{i \in \mathbb{Z}} & \text{if } \pi = r_{2k+\frac{3}{2}} \text{ for some } k \in \{0, \ldots, 2p-1\}.
\end{cases}
\]

Recall that any translation is given by an even shift, and that any reflection is given by a symmetry on an \(\alpha \)-relation.

174
Lemma 4.136. The induced map π_w is well-defined.

Proof. Each vertex v_i of \hat{w}_z corresponds to two nodes $\{c_{2i-1}, c_{2i}\}$ with $v_i(s) = c_{2i-1}$ and $v_i(t) = c_{2i}$. Each letter w_i starts in $v_i(s)$ and ends in $v_{i-1}(t)$. Thus, each w_i corresponds to the nodes $\{c_{2i-2}, c_{2i-1}\}$. We need to show that

$$(\pi_w(w_z))_i = \{c_{\pi(2i-2)}, c_{\pi(2i-1)}\}. \quad (135)$$

Let $\pi = \tau_{2k}$ for some $k \in \mathbb{Z}$. We have that

$$\pi_w(w_z) = \left(w_{\pi(2i)}\right)_{i \in \mathbb{Z}} = (w_{i-k})_{i \in \mathbb{Z}},$$

$$c_{\pi(2i-2)} = c_{4k-2i+2} = c_{4k-2i-1}, \quad (136)$$

$$c_{\pi(2i-1)} = c_{4k-2i+1} = c_{4k-2i-2}. \quad (137)$$

We know that $(\pi_w(w_z))_i = w_{i-k}$ starts in $v_{i-k}(s)$ and ends in $v_{i-k-1}(t)$. Thus, w_{i-k} corresponds to the nodes

$$\{c_{2(i-k)-2}, c_{2(i-k)-1}\} = \{c_{2i-2k-2}, c_{2i-2k-1}\}.$$

The correspondence in (135) follows together with (136) and (137).

Let $\pi = \tau_{2k-2}$ for some $k \in \mathbb{Z}$. Then we have

$$c_{\pi(2i-2)} = c_{4k-2i+2} = c_{4k-2i-1}, \quad (138)$$

$$c_{\pi(2i-1)} = c_{4k-2i+1} = c_{4k-2i-2} \quad (139)$$

and

$$\pi_w(w_z) = \left(w_{\pi(2i)}\right)_{i \in \mathbb{Z}} = (w_{2k-2})_{i \in \mathbb{Z}}.$$

The letter $(\pi_w(w_z))_i = w_{2k-2}^{-1}$ starts in $v_{2k-2}(s)$ and ends in $v_{2k-3}(t)$ (note that the order is reversed due to the reflection). It follows with (138) and (139) that

$$w_{2k-2}^{-1} = \{c_{4k-2i-2}, c_{4k-2i-1}\} = \{c_{\pi(2i-1)}, c_{\pi(2i-2)}\}.$$

\square

Lemma 4.137. Let w_z be an undirected \mathbb{Z}-word of period p. Let π be a morphism on C_{gwz}. Then

$$(\pi_w)_c = \pi.$$

Proof. Let $\pi = \tau_{2k}$ be a morphism on C_{gwz} which is given by a translation. Then

$$\pi_w(w_z) = \left(w_{\pi(2i)}\right)_{i \in \mathbb{Z}} = (w_{i-k})_{i \in \mathbb{Z}} = \pi_k(w_z),$$

$$\pi((c_i)_{i \in I}) = \left(c_{\pi(2i-1)}\right)_{i \in I} = (c_{i-2k})_{i \in I} = \pi((c_i)_{i \in I}).$$

175
Consider now $\pi = r_{2k-\frac{3}{2}}$. Then

$$
\pi_w(w_z) = \left(w_{\frac{k+1}{2}}^{-1} \right)_{i \in \mathbb{Z}} = \left(w_{2k-\frac{3}{2}}^{-1} \right)_{i \in \mathbb{Z}} = r_k(w_z),
$$

$$(\pi_w)_{c}((c_i)_{i \in I}) = \left(c_{\frac{2k(i)+i-3}{2}}^{-1} \right)_{i \in I} = \left(c_{3k-\frac{1}{2}}^{-1} \right)_{i \in I} = \pi((c_i)_{i \in I}).$$

Remark 4.138. Note that $(\varphi_{c})_{w} = \varphi$ does not hold generally for $\varphi \in D_{\infty}$. Let w_z be a symmetric band of period p. Consider $r_1, r_{m+2} \in D_{\infty}$. It follows that

$$(r_1)_{c}((c_i)_{i \in I}) = \left(c_{\frac{2(2i-1)}{2}}^{-1} \right)_{i \in I} = \left(c_{4i-1}^{-1} \right)_{i \in I} = r_{\frac{1}{2}}((c_i)_{i \in I})$$

$$(r_{m+2})_{c}((c_i)_{i \in I}) = \left(c_{\frac{2(2m+1-3)}{2}}^{-1} \right)_{i \in I} = \left(c_{4m+8-2i+3}^{-1} \right)_{i \in I} = \left(c_{4i-1}^{-1} \right)_{i \in I}$$

(140)

$$= r_{\frac{1}{2}}((c_i)_{i \in I}) = (r_1)_{c}((c_i)_{i \in I}).$$

(141)

Hence, it holds that $(r_1)_{c} = r_1$. But we obtain for r_{m+2} the following:

$$(r_{m+2})_{c}((c_i)_{i \in I}) = \left(c_{\frac{2(2m+1-3)}{2}}^{-1} \right)_{i \in I} = \left(c_{4m+8-2i+3}^{-1} \right)_{i \in I} = \left(c_{4i-1}^{-1} \right)_{i \in I}$$

(140)

$$= r_{\frac{1}{2}}((c_i)_{i \in I}) = (r_1)_{c}((c_i)_{i \in I}).$$

(141)

It follows that $(r_1)_{c} = ((r_{m+2})_{c})_{w}$ and thus, $(r_{m+2})_{c} = r_1$.

Let w_z be in the following an asymmetric or symmetric band of period p. We define

$$\text{Stab}_{D_{\infty}}^{p}(w_z) := \text{Stab}_{D_{\infty}}(w_z)/\approx$$

where $\varphi_k \approx \psi_l$ if and only if both are either of translation or reflection type, and $k - l \equiv 0 \pmod{p}$.

Lemma 4.139. We have that

$$\text{Stab}_{D_{\infty}}^{p}(w_z) = \begin{cases}
\{[id]\} & \text{if } w_z \text{ is an asymmetric band}, \\
\{[id],[r],[r_{m+2}]\} & \text{if } w_z \text{ is a symmetric band},
\end{cases}$$

with $r = r_0$.

Proof. Recall that $\tau_0 = \text{id}$. The statement follows from Proposition 3.51 for w_z an asymmetric band: for any $k, l \in \mathbb{Z}$ we have that

$$\tau_{kp} \approx \tau_{lp}$$

since $(k - l)p \equiv 0 \pmod{p}$.

For w_z a symmetric band, recall that

$$\text{Stab}_{D_{\infty}}(w_z) = \{\tau_{kp}, r\tau_{2+kp}\}_{k \in \mathbb{Z}}$$
by Proposition 3.44 and Lemma 3.43. It follows similar to the case of an asymmetric band that \(\tau_{kp} \approx \tau_p \) for all \(l, k \in \mathbb{Z} \). Let now \(k, l \in \mathbb{Z} \). We examine when \(r_2 \tau_{2+kp} \) and \(r_{2+lp} \) are equivalent. We know that \(r_2 \tau_{2+ip} = r_{1+i} \) for any \(i \in \mathbb{Z} \). Thus, we know that both \(r_2 \tau_{2+kp} \) and \(r_{2+lp} \) are reflections. We calculate

\[
1 + \frac{kp}{2} - \left(1 + \frac{lp}{2}\right) = \left(\frac{k-l}{2}\right)p. \tag{142}
\]

We want (142) to be divisible by \(p \). This is the case for \(\frac{k-l}{2} \in \mathbb{N} \). Hence, either both \(k \) and \(l \) are even, or they are both odd. Assume they are both even. Then we can write \(k = 2k' \) and \(l = 2l' \) for some \(k', l' \in \mathbb{Z} \). Thus, (142) turns into

\[
\left(\frac{2k' - 2l'}{2}\right)p = (k' - l')p \equiv 0 \mod p.
\]

It follows that \(r_2 \tau_{2+kp} \approx r_{2+lp} \) for any \(k, l \in \mathbb{Z} \) which are even. We claim that \(r_2 \tau_{2+kp} \approx r_1 \) for any \(k \in \mathbb{Z} \) even: we can write

\[
r_2 \tau_{2+kp} = r_2 \tau_{2+2k'}p = r_1 k'p.
\]

We obtain that

\[
1 - (1 + k'p) = -k'p \equiv 0 \mod p
\]

which proves the claim.

Let now \(k \) and \(l \) in \(\mathbb{Z} \) be odd. Then we can write \(k = 2k' + 1 \) and \(l = 2l' + 1 \) for some \(k', l' \in \mathbb{Z} \). It follows with \(p = 2m + 2 \) that

\[
r_2 \tau_{2+kp} = r_2 \tau_{2+(2k'+1)p} = r_{1+(k'+\frac{1}{2})}p = r_{1+(m+1)+k'p} = r_{m+2+k'p}.
\]

Similarly, we obtain that \(r_2 \tau_{2+lp} = r_{m+2+l'p} \). Hence, we have that \(r_2 \tau_{2+kp} \approx r_2 \tau_{2+lp} \) if \(r_{m+2+k'p} \approx r_{m+2+l'p} \). The latter equivalence is given since

\[
m + 2 + k'p - (m + 2 + l'p) = (k' - l')p \equiv 0 \mod p.
\]

Moreover, we claim that \(r_{m+2} \approx r_{2+kp} \) for any \(k \in \mathbb{Z} \) odd. This follows from

\[
m + 2 - (m + 2 + k'p) = k'p \equiv 0 \mod p.
\]

\[\square\]

Theorem 4.140. The map

\[
\theta : \text{Stab}_D(w_z) \longrightarrow \text{Aut}(g_{w_z})
\]

\[
\varphi \mapsto \varphi_c
\]

is surjective. For \(w_z \) an asymmetric band, it is also injective. For \(w_z \) a symmetric band, it is not injective.

177
Proof. Let \(w_z \) be a symmetric band.

Let us first show that \(\theta \) is well-defined. This means that any two equivalent maps in \(\text{Stab}_{\pi}(w_z) \) are sent to the same element in \(\text{Aut}(w_z) \).

To this end, let \(k \neq l \in \mathbb{Z} \). Consider \(\tau_{kp}, \tau_{lp} \in [\text{id}] \). We have that

\[
(\tau_{kp})_{c}((c_{i})_{i \in I}) = \left(c_{\frac{2r_{kp}(i)-1}{2}}\right)_{i \in I} = \left(c_{\frac{1}{2} - 2kp}\right)_{i \in I} = (c_{\bar{r}})_{i \in I},
\]

and similarly \((\tau_{lp})_{c}((c_{i})_{i \in I}) = (c_{\bar{r}})_{i \in I}. \)

We consider next \(r_{1+kp}, r_{1+lp} \in [r] \). We obtain that

\[
(r_{1+kp})_{c}((c_{i})_{i \in I}) = \left(c_{\frac{2r_{1+ kp}(i) + 3}{2}}\right)_{i \in I} = \left(c_{1 - 2kp}\right)_{i \in I} = (c_{\bar{r}})_{i \in I},
\]

and similarly that \((r_{1+lp})_{c}((c_{i})_{i \in I}) = (c_{\bar{r}})_{i \in I}. \)

Let \(r_{m+2+kp} \) and \(r_{m+2+lp} \) be in \([r_{m+2}] \). We obtain that

\[
(r_{m+2+kp})_{c}((c_{i})_{i \in I}) = \left(c_{\frac{2r_{m+2+ kp}(i) + 3}{2}}\right)_{i \in I} = \left(c_{1 - 2kp}\right)_{i \in I} = (c_{\bar{r}})_{i \in I},
\]

and similarly that \((r_{m+2+lp})_{c}((c_{i})_{i \in I}) = (c_{\bar{r}})_{i \in I}. \)

We show that \(\theta \) is surjective.

Let \(\pi = \text{id} \in \text{Aut}(w_z) \). Then \(\theta^{-1}(\pi) = \pi_w \) by Lemma 4.137. It is given by

\[
\pi_w(w_z) = \left(w_{\text{id}(2)}\right)_{i \in \mathbb{Z}} = (w_{\bar{r}})_{i \in \mathbb{Z}} = \text{id}(w_z).
\]

Consider now \(\pi = r_{1} \in \text{Aut}(w_z) \). Then \(\theta^{-1}(\pi) = \pi_w \) which is given by

\[
\pi_w(w_z) = \left(w_{r_{1}(i) - 1}\right)_{i \in \mathbb{Z}} = \left(w_{\frac{1}{2} - 2i}\right)_{i \in \mathbb{Z}} = (w_{\bar{r}})_{i \in \mathbb{Z}} = r(w_z).
\]

The map \(\theta \) is not injective by Remark 4.128.

Let \(w_z \) be an asymmetric band. Apart from injectivity, the statement follows analogously to the case of a symmetric band. Injectivity follows from \(\theta: [\text{id}] \rightarrow \text{id}. \) \(\square \)

Theorem 4.140 shows that the symmetries in \(w_z \) and \(g_{w_z} \) match each other. We can use this knowledge to show the following:

Theorem 4.141. Let \(g \in \tilde{\mathcal{G}}(\mathcal{L}) \).

a) If \(g \) is non-symmetric, then there exists a word \(w_z \) of asymmetric band type with \(g_{w_z} = g \).

a) If \(g \) is symmetric, then there exists a word \(w_z \) of symmetric band type with \(g_{w_z} = g \).
Proof. a) Applying the construction backwards yields the existence of a Z–word w_z with $w_z = w_z[p]$ for $p = |g|/2$ and with $g_{w_z} = g$. It remains to show that $w_z \neq w_z^{-1}[m]$ for all $m \in Z$. We know that $\text{Aut}(g) = \{\text{id}\}$ since g is non-symmetric. Theorem 4.140 and Theorem 4.139 yield that $\text{Stab}_{D_{\infty}}^p(w_z) = \{[\text{id}]\}$. It follows that $w_z \neq w_z^{-1}[m]$ for all $m \in Z$ and that w_z is of asymmetric band type.

b) Applying the construction backwards yields the existence of a Z–word w_z with $w_z = w_z[p]$ for $p = |g|/2$ and with $g_{w_z} = g$. It remains to show that $w_z = w_z^{-1}[m]$ for some $m \in Z$. We know by Proposition 4.127 that $\text{Aut}(g) = \{\text{id}, r_{\frac{1}{2}}\}$. We know by Theorem 4.139 that $\text{Stab}_{D_{\infty}}^p(w_z) = \{[\text{id}], [r], [r_{m+2}]\}$. Thus, it follows by Theorem 4.140 that $\theta(r) = r_{\frac{1}{2}}$ with θ the map from Theorem 4.140. We have that $r(w_z) = w_z$ which corresponds to saying that $w_z = (w_z[1])^{-1}$. We can rewrite this equality by Lemma 2.34 to $w_z = w_z^{-1}[-1]$. This shows that w_z is of symmetric band type.

Theorem 4.130 and Theorem 4.141 show that there is a 1-1-correspondence between words of band type and simple \mathcal{L}–cycles. Similar as for \mathcal{L}–chains (Corollary 4.117), we find another correspondence:

Corollary 4.142. There exists a 1-1-correspondence between the equivalence classes of symmetric and asymmetric bands, and the isomorphism classes of \mathcal{L}–cycles in $\mathcal{S}(\mathcal{L})$.

Proof. The proof follows from Theorem 4.130, Theorem 4.141 and Theorem 4.124.

\[\square \]
4.7 Directions in the \mathcal{L}-graphs

Recall that we assigned the constructed semichains to the bundles in a certain way in Section 4.4: any semichain in a row label set has a reversed ordering with respect to the subspace inclusions of the filtration it is built from. The orderings of the semichains in the column label set, on the other hand, preserve the subspace inclusions of the respective filtrations. We have claimed in Section 4.4 that the way we construct \mathcal{F}_Λ ensures that the \mathcal{L}-graphs g_{w_1} are compatible with (weakly) consistent versions v_i of w_i. This means that the directions assigned to links in g_{w_1} of the forms

$$x_i \sim x_{i+1} \quad \text{and} \quad x_i \sim x_{i+1}^\perp$$

match the directions on the corresponding special letters in any (weakly) consistent version v_i. We show this correspondence in Proposition 4.145 for asymmetric and symmetric strings and bands. Note that in particular the reversed ordering of the links in the row label sets contributes to this result. Furthermore, this correspondence does not depend on the signs of the letters chosen beforehand (as long as the conditions of the construction of \mathcal{F}_Λ are respected). Finally, we should mention that the correspondence is only given for those letters of finite index, or $-$ in case of a symmetric string $-$ for letters with index unequal to $\frac{|w|+1}{2}$.

Let Λ be as in Section 4.4 with corresponding bundle of semichains \mathcal{F}_Λ. Let w_1 be a $\Gamma_\text{ud}(\Lambda) - 1$-word with $I = \{0, \ldots, n\}$ ($n > 0$) or $I = \mathbb{Z}$. For $I = \mathbb{Z}$, assume additionally that w_1 is of period p. Denote its corresponding \mathcal{L}-graph by g_{w_1}. Let $g_{w_1,0} = \{x_0, \ldots, x_n\}$ where n' is given by $2n + 1$ if g_{w_1} is an \mathcal{L}-chain, and by $2p - 1$ if g_{w_1} is an \mathcal{L}-cycle.

Definition 4.143. Let w_1 be a $\Gamma_\text{ud}(\Lambda) - 1$-word as above with \mathcal{L}-graph g_{w_1}. For any $x_i \in g_{w_1,0}$ with $x_i = x_{i+1}$ and $\lambda_{i,i+1} = \alpha$, we define the direction of $\lambda_{i,i+1}$ by

$$\text{dir}_{i,i+1}(g_{w_1}) = \begin{cases} 1 & \text{if } x_i \sim x_{i+1} \\ -1 & \text{if } x_i \sim x_{i+1}^\perp \end{cases}.$$

Remark 4.144. Note that $\text{dir}_{i,i+1}(g_{w_1})$ gives the negative of the orientation function ε_0 defined in [Bon88]:

$$\varepsilon_0(x_i, x_{i+1}) = 1 \text{ if } x_i \sim x_{i+1},$$

$$\varepsilon_0(x_i, x_{i+1}) = -1 \text{ if } x_i \sim x_{i+1}^\perp.$$

The following proposition shows the compatibility between the directions of special letters w_i of finite index in strings and bands (or index unequal to $\frac{|w|+1}{2}$ if w is a symmetric string) and the direction on the respective subchain $x_k \sim x_{k+1}$ of the corresponding \mathcal{L}-graph.

180
Proposition 4.145. (i) Let \(w \) be an asymmetric string of length \(n \). Let \(v \in (\Phi^d_{\text{ua}})^{-1}(w) \) be (weakly) consistent. Then

\[
\text{dir}_{2j-1,2j}(g_w) = \text{dir}_j(v)
\]

for all \(j \in \{1, \ldots, n\} \) with \(w_j \) special.

(ii) Let \(w = u\varepsilon^*u^{-1} \) be a symmetric string with \(|u| = m \). Let \(v \in (\Phi^d_{\text{ua}})^{-1}(w) \) be (weakly) consistent (\(v = t\varepsilon^*t^{-1} \) with \(t \in (\Phi^d_{\text{ua}})^{-1}(u) \) and \(\kappa = \{+1, -1\} \)). Then

\[
\text{dir}_{2j-1,2j}(g_u) = \text{dir}_j(v) \tag{144}
\]

for all \(j \in \{1, \ldots, m\} \) with \(w_j \) special.

(iii) Let \(w_z \) be an asymmetric band of period \(p \). Let \(v_z \in (\Phi^d_{\text{ua}})^{-1}(w_z) \) be (weakly) consistent. Then

\[
\text{dir}_{2j-2,2j-1}(g_{w_z}) = \text{dir}_{j+k}(v_z)
\]

for all \(j \in \{1, \ldots, p\} \) with \(w_j \) special, and for all \(k \in \mathbb{Z} \).

(iv) Let \(w_z \) be a symmetric band of period \(p \) with \(\hat{w}_p = \varepsilon^*u\varepsilon^*u^{-1} \), \(|u| = m \).

Let \(v_z \in (\Phi^d_{\text{ua}})^{-1}(w_z) \) be (weakly) consistent with periodic parts of the form \(\hat{v}_p^{(i)} = \varepsilon^*v^p v^p t^{-1} \), where \(t \in (\Phi^d_{\text{ua}})^{-1}(u) \) and \(\mu_i, \kappa_i = \{+1, -1\} \). Then

(\(iv.1\)) \(\text{dir}_{2j-2,2j-1}(g_{w_z}) = \text{dir}_{j+k}(v_z) \) for all \(j \in \{1, \ldots, p\} \) with \(w_j \) special,

\[
\text{ind}_j^*(w_z) < \infty, \text{ and for all } k \in \mathbb{Z}.
\]

(\(iv.2\)) \(\text{dir}_{2j-1,2j}(g_u) = \text{dir}_{j+1+k}(v_z) = -\text{dir}_{j+2,k}(v_z) \), for all \(j \in \{1, \ldots, m\} \)

with \(w_j \) special, and for all \(k \in \mathbb{Z} \).

Proof. Note that we consider letters \(w_j \) of special type with \(\text{ind}_j^*(w) \in \{w_j|+1\} \)

for \(w \) a symmetric string, or with \(\text{ind}_j^*(w_z) < \infty \) for \(w_z \) a band. We distinguish for the proof between the cases a) and b) of Definition 4.45. Recall that we put in case a) the direction towards the bigger link of \(y_i \) and \(z_i \). In case b), we direct towards the smaller link. We have by construction that \(x_i \in \mathcal{L}(\mathcal{C}) \).

Thus, we have \(y_i, z_i \in \mathcal{L}(\mathcal{C}) \cup \{\infty\} \) in case a), and \(y_i, z_i \in \mathcal{L}(\mathcal{R}) \cup \{\infty\} \) in case b).

Recall that a letter \(w_i \) matches in the \(\mathcal{L} \)-chain \(g_w \) the subchain \(x_{2i-1} \sim x_{2i} \). In an \(\mathcal{L} \)-cycle, the letter \(w_k \in \hat{w}_p \) matches the subchain \(x_{2i-2} \sim x_{2i-1} \). We first consider the cases (i), (ii) and (iv.2) of the proposition since they concern \(\mathcal{L} \)-chains. Afterwards we deal with (iii) and (iv.1) which refer to \(\mathcal{L} \)-cycles.

(i) We obtain for \(w \) an asymmetric string the \(\mathcal{L} \)-chain \(g_w \) which is simple, admissible and has no double ends. We consider \(\tilde{g}_w \) (\(w \)) in order to determine the directions. Let \(i \in \{1, \ldots, n\} \), where \(n = |w| \). Set \(k = 2i - 1 \). Then \(x_k \sim x_{k+1} \) matches \(w_i \). Let \(g_{i,0} = \{y_{k+1}, \ldots, x_{k-1}\} \) and
Let us now examine the directions given in Definition 4.45.

a) Assume without loss of generality that \(y_k, z_k \in \mathcal{E}(\mathcal{C}_j) \) for some \(j \in \{1, \ldots, |Q_0|\} \), where

\[\mathcal{C}_j = \{ \mathcal{C}_{j1} < \mathcal{C}_{j2} < \mathcal{C}_{j3} \} \]

with

\[\mathcal{C}_{j1} = \text{basis of } \text{im}(a), \]
\[\mathcal{C}_{j2} = \text{basis of } \text{ker}(b) \oplus \text{im}(a), \]
\[\mathcal{C}_{j3} = \text{basis of } V_j \oplus \text{ker}(b) \]

for \(a, b \in Q_1^{\text{ord}}, \ ba = 0 \). Note that we do not have \(z_k = \mathcal{C}_{x*} \) and \(y_k = \mathcal{C}_{\eta*} \) for \(\eta, \xi \in \text{Sp} \) by Definition 2.2. It follows by the previous discussion that \(\mathcal{C}_j \) is not given by two incomparable elements.

Let \(y_k = \mathcal{C}_{j2} \) and \(z_k = \mathcal{C}_{j1} \). We have \(\text{dir}_{k,k+1}(g_w) = 1 \). Moreover, it follows that \(y_k = x_0 \) and that

\[w_2 = a : t(a) \leftarrow s(a) \Rightarrow z_k \sim z_{k+1}. \]

For \(g_{l_k} : x_1 \sim \cdots \sim x_{k-1} \) we obtain that \(x_0 - g_{l_k} - x_k \) corresponds to the subword \(l_k \) of \(w \). Similarly for \(g_{r_k} : x_{k+1} \sim \cdots \sim z_{k-1} \), the subword \(r_k \) of \(w \) corresponds to \(x_{k+1} - g_{r_k} - x \) with \(x = \mathcal{C}_{j2} \).

It follows that \(l_k = w_1 \cdots w_{i-1}, \ r_k = w_{i+1} \cdots w_{z-1} \) and \(r_k = l_k^{-1} \).

Denote \(z = w_{z+1} \cdots w_n \). We obtain that

\[(w[< i])^{-1} = l_k^{-1}, \]
\[w[> i] = r_k w_z z = l_k^{-1} a z. \]

This yields \((w[< i])^{-1} > w[> i] \) and it follows that \(\text{dir}_i(w) = 1 \). Let now \(z_k = \mathcal{C}_{j3} \) and \(y_k \) as above. Then \(\text{dir}_{k,k+1}(g_w) = -1 \). Pro-
ceeding as above, we obtain \(w_z = b^{-1} \) and
\[
(w[i])^{-1} = l_k^{-1},
\]
\[
w[> i] = r_kw_z = l_k^{-1}b^{-1}z.
\]

Thus, \((w[i])^{-1} < w[> i]\) and it follows that \(\text{dir}_i(w) = -1 \).
Let now \(y_k = C_{j1} \) and \(z_k = C_{j2} \). Then \(\text{dir}_{k,k+1}(g_w) = -1 \) and \(z_k = x_{2n+1} \). We obtain that
\[
w_y = a^{-1}; s(a) \rightarrow t(a) \sim y_{k-1} \sim y_k.
\]
Let \(l_k \) and \(r_k \) be given as above. Let \(y = w_1, \ldots, w_{y-1} \). We obtain
\[
w[> i] = r_k = l_k^{-1},
\]
\[
(w[> i])^{-1} = (yw_yl_k)^{-1} = l_k^{-1}ay^{-1}.
\]

It follows that \(w>[i] > (w[i])^{-1} \). Thus, we have \(\text{dir}_i(w) = -1 \).
Let now \(y_k = C_{j3} \) and keep \(z_k = C_{j2} \). We have that \(\text{dir}_{k,k+1}(g_w) = 1 \).
We obtain for \(w_y \) as above that \(w_y = b \). It follows with \(l_k, r_k \) and \(y \) as above that
\[
w[> i] = r_k = l_k^{-1},
\]
\[
(w[> i])^{-1} = (yw_yl_k)^{-1} = l_k^{-1}b^{-1}y^{-1}.
\]

It follows that \(w[> i] < (w[i])^{-1} \). Thus, we have \(\text{dir}_i(w) = 1 \).
Consider now \(y_k = C_{j1} \) and \(z_k = C_{j3} \). We know that \(y_k \neq x_0 \) and \(z_k \neq x_{2n+1} \). It follows that \(\text{dir}_{k,k+1}(g_w) = -1 \). We obtain that
\[
w_z = b^{-1}; s(b) \rightarrow t(b) \sim z_k \sim z_{k+1},
\]
\[
w_y = a^{-1}; s(a) \rightarrow t(a) \sim y_{k-1} \sim y_k.
\]

Let the subwords \(y, z, l_k \) and \(r_k \) of \(w \) be given as follows:
\[
y = w_1 \ldots w_{y-1},
\]
\[
z = w_{z+1} \ldots w_n,
\]
\[
l_k = w_{y+1} \ldots w_{y-1},
\]
\[
r_k = w_{y+1} \ldots w_{z-1}.
\]

Recall that \(l_k \) and \(r_k \) correspond up to the first and last link to \(g_l \) and \(g_r \). Moreover, we have that \(r_k = l_k^{-1} \). We obtain that
\[
(w[i])^{-1} = (yw_yl_k)^{-1} = l_k^{-1}ay^{-1},
\]
\[
w[> i] = r_kw_z = l_k^{-1}b^{-1}z.
\]

It follows that \((w[i])^{-1} < w[> i] \). Thus, we have \(\text{dir}_i(w) = -1 \).
Let now \(y_k = C_{j3} \) and \(z_k = C_{j1} \). This means that we have switched
the roles of y_k and z_k in the previous part. Thus, we obtain that $w_z = a$ and $w_y = b$. Furthermore, we get
\[
(w[< i])^{-1} = (yw_y^{-1}l_k)^{-1} = l_k^{-1}b^{-1}y^{-1},
\]
\[
w[> i] = r_kw_zz = l_k^{-1}az,
\]
where y, z, l_k and r_k as given as above. Hence, we have that $w[> i] < (w[< i])^{-1}$ and it follows that $\text{dir}_i(w) = 1$.

b) Assume without loss of generality that $y_k, z_k \in \Sigma(\mathcal{R}_j)$ for some $1 \leq j \leq |Q_0|$, where
\[
\mathcal{R}_j = \{\mathcal{R}_{j1} > \mathcal{R}_{j2} > \mathcal{R}_{j3}\}.
\]
We have that \mathcal{R}_{j1} basis of $\text{im}(a)$, \mathcal{R}_{j2} basis of $\text{ker}(b) \oplus \text{im}(a)$, \mathcal{R}_{j3} basis of $V_j \oplus \text{ker}(a)$ for some $a, b \in Q_1^{\text{out}}$ with $ba = 0$.
Let $y_k = \mathcal{R}_{j1}$ and $z_k = \mathcal{R}_{j2}$. Then $\text{dir}_{k,k+1}(g_w) = -1$. We obtain that
\[
w_n = z_{k-2} \sim z_{k-1},
\]
\[
w_y = a^{-1} : s(a) \longrightarrow t(a) \ni y_{k-1} \sim y_k.
\]
Note that $x-g_{ik}-x_k$ with $x = \mathcal{R}_{12}$ matches a subword l_k of w which is given between w_y and w_y. Similarly, denote by r_k the subword $w_{i+1} \ldots w_n$. Note that $r_k = l_k^{-1}$ since $g_{ik} = g_{r_k}$. Let $y = w_1 \ldots w_{y-1}$.
It follows that
\[
(w[< i])^{-1} = (ya^{-1}l_k)^{-1} = l_k^{-1}y = r_kay^{-1},
\]
\[
w[> i] = r_k.
\]
We obtain that $w[> i] > (w[< i])^{-1}$. It follows that $\text{dir}_i(w) = -1$.
For $y_k = \mathcal{R}_{j2}$ and $z_k = \mathcal{R}_{j1}$ we have that $\text{dir}_{k,k+1}(g_w) = 1$. We have
\[
w_1 \ni y_{k+1} \sim y_{k+2},
\]
\[
w_z = a : t(a) \ni s(a) \ni z_k \sim z_{k+1}.
\]
It follows with $l_k = w_1 \ldots w_{y-1}$, $l_k^{-1} = r_k = w_{i+1} \ldots w_{z-1}$ and $z = w_{z+1} \ldots w_n$ that
\[
(w[< i])^{-1} = l_k^{-1},
\]
\[
w[> i] = l_k^{-1}az.
\]
Note that l_k corresponds as before to the chain $y_j - g_{ik} - x_k$ where $x_k \ni \text{ker}(\varepsilon)$. We obtain that $\text{dir}_i(w) = 1$.

184
Consider $y_k = \mathcal{R}_{j3}$ and $z_k = \mathcal{R}_{j2}$. Then \(\text{dir}_{k,k+1}(g_w) = 1 \). We obtain

\[
\begin{align*}
w_n \triangleq z_{k-2} & \sim z_{k-1}, \\
w_y = b : t(b) & \longleftarrow s(b) \triangleq y_{k-1} \sim y_k.
\end{align*}
\]

Proceeding similar as above, we obtain that \(\text{dir}_i(w) = 1 \).

Let $y_k = \mathcal{R}_{j2}$ and $z_k = \mathcal{R}_{j3}$. Then we have that \(\text{dir}_{k,k+1}(g_w) = -1 \).

We obtain the correspondences

\[
\begin{align*}
w_x = b^{-1} : s(b) & \longmapsto t(b) \triangleq z_k \sim z_{k+1}, \\
w_1 \triangleq y_{k+1} & \sim y_{k+1}.
\end{align*}
\]

It follows as before that \(\text{dir}_i(w) = -1 \).

Consider $y_k = \mathcal{R}_{j1}$ and $z_k = \mathcal{R}_{j3}$ resulting in \(\text{dir}_{k,k+1}(g_w) = -1 \).

We have

\[
\begin{align*}
w_z = b^{-1} : s(b) & \longmapsto t(b) \triangleq z_k \sim z_{k+1}, \\
w_y = a^{-1} : s(a) & \longmapsto t(a) \triangleq y_{k-1} \sim y_k.
\end{align*}
\]

We obtain as before two subwords l_k and r_k with $r_k = l_k^{-1}$:

\[
l_k = w_{y+1} \ldots w_1, \\
r_k = w_{i+1} \ldots w_{z-1}.
\]

Denote by $y = w_1 \ldots w_{y-1}$, $z = w_{z+1} \ldots w_n$. We obtain that

\[
\begin{align*}
(w[i])^{-1} &= (yw_{y+1})^{-1} = l_k^{-1} a y^{-1}, \\
w[i] &= r_k w_z z = l_k^{-1} b z.
\end{align*}
\]

It follows that \(\text{dir}_i(w) = -1 \).

Finally, let $y_k = \mathcal{R}_{j3}$ and $z_k = \mathcal{R}_{j1}$ which give that \(\text{dir}_{k,k+1}(g_w) = 1 \).

We obtain with the notation from the previous case that \(w_y = b \) and \(w_z = a \). Thus, we obtain that \((w[i])^{-1} > w[i] \). It follows that \(\text{dir}_i(w) = 1 \).

(ii) We construct for $w = u \epsilon^* u^{-1}$ the simple admissible Σ-chain g_u which has one double end given by x_{2m+1}. In order to determine the directions, we consider $\tilde{g}_u = g_u \sim g_u^*$. Let $i \in \{1, \ldots, m\}$ and set $k = 2i - 1$. We have that $x_k \sim x_{k+1}$ matches w_i. Let as before $g_{k,0} = \{y_{k+1}, \ldots, x_{k-1}\}$ and $g_{r_k,0} = \{x_k, x_{k+2}, \ldots, z_{k-1}\}$. We show that $y_k \neq \infty$ and $z_k \neq \infty$. We know that $x_0 \triangleq \text{basis of ker}(b) \oplus \text{im}(a)$ and that $x_{2m+1} = \mathbb{C}_*$.

Assume that $y_k \neq \infty$ and $z_k = \infty$. It follows by the form of \tilde{g}_u that $|g_{rk}| > |g_u^*|$. Since $g_{rk} = g_{rk}^*$, we obtain that

\[
|g_{rk}| + |g_{rk}| > 2|g_u^*| = |\tilde{g}_u|.
\]
This gives a contradiction since \(g_k \) and \(g_r \) are two non-intersecting subchains of \(\tilde{g}_u \).

Let \(y_k = \infty \) and \(z_k \neq \infty \). Then we have that \(y_{k+1} = x_0 \) is basis of \(\ker(b) \odot \im(a) \). Symmetry in \(x_k \sim x_{k+1} \) yields that \(z_{k-1} \) is basis of \(\ker(b) \odot \im(a) \). Thus, \(z_{k-1} = x_r \) with \(r \neq 0 \), \(2m+1 \) denotes the last link in \(g_{u,0} \).

It follows that \(|u| < 2m+1 \) which gives a contradiction.

Finally, assume that \(y_k = \infty \) and \(z_k = \infty \). Then \(x_k = x_{2m+1} \). But there does not exist a link \(x_{k+1} \) in \(g_{u,0} \). Hence, \(x_k = x_{2m+1} \) is not considered for directions.

We continue with the examination of the directions.

a) Assume without loss of generality that \(y_k, z_k \in \mathcal{L}(\mathcal{E}_j) \) for some \(j \in \{1, \ldots, |Q_0|\} \). Note that \(\mathcal{E}_j \) is by the previous discussion not given by two incomparable elements. Assume that

\[
\mathcal{E}_j = \{ \mathcal{E}_{j1} < \mathcal{E}_{j2} < \mathcal{E}_{j3} \},
\]

where we have \(\mathcal{E}_{j1} = \text{basis of } \im(a) \), \(\mathcal{E}_{j2} = \text{basis of } \ker(b) \odot \im(a) \) and \(\mathcal{E}_{j3} = \text{basis of } V_j \odot \ker(a) \) for \(a, b \in Q_1^{\text{ord}} \) with \(ba = 0 \).

Note that \(x_0 \) is basis of \(\ker(x) \) for \(x \in Q_1^{\text{ord}} \). \(y \in Q_1^{\text{ord}} \) with \(xy = 0 \), and \(x_{2m+1} = \mathcal{E}_e \). Thus, we have that \(z_k \not\in \mathcal{E}_{j2} \). If \(y_k = \mathcal{E}_{j2} \), then \(y_k = x_0 \). We consider the cases \(y_k = \mathcal{E}_{j2} \) and \(z_k = \mathcal{E}_{j1} \), \(y_k = \mathcal{E}_{j2} \) and \(z_k = \mathcal{E}_{j3} \), \(y_k = \mathcal{E}_{j1} \) and \(z_k = \mathcal{E}_{j3} \), \(y_k = \mathcal{E}_{j3} \) and \(z_k = \mathcal{E}_{j1} \). They follow analogously to the respective cases in (i), a).

b) Assume without loss of generality that \(y_k, z_k \in \mathcal{L}(\mathcal{R}_j) \) for some \(1 \leq j \leq |Q_0| \), where

\[
\mathcal{R}_j = \{ \mathcal{R}_{j1} > \mathcal{R}_{j2} > \mathcal{R}_{j3} \}.
\]

We have that \(\mathcal{R}_{j1} = \text{basis of } \im(a) \), \(\mathcal{R}_{j2} = \text{basis of } \ker(b) \odot \im(a) \), \(\mathcal{R}_{j3} = \text{basis of } V_j \odot \ker(a) \) for some \(a, b \in Q_1^{\text{ord}} \) with \(ba = 0 \).

The proof follows analogously to (i), b) with the following restriction: \(z_k \not\in \mathcal{R}_{j2} \). Thus, we only consider the cases \(y_k = \mathcal{R}_{j2} \) and \(z_k = \mathcal{R}_{j1} \), \(y_k = \mathcal{R}_{j2} \) and \(z_k = \mathcal{R}_{j3} \), \(y_k = \mathcal{R}_{j1} \) and \(z_k = \mathcal{R}_{j3} \) and \(z_k = \mathcal{R}_{j3} \). Note that it follows for \(y_k = \mathcal{R}_{j2} \) that \(y_k = x_0 \).

(iv.2) We obtain the simple admissible \(\mathcal{L} \)-chain \(g_u \) with \(d(g_u) = 0 \), \(x_0 = \mathcal{E}_e \) and \(x_{2m+1} = \mathcal{E}_e \). We consider \(\tilde{g}_u = g_u^* \sim g_u \sim g_u^* \). Let \(i \in \{1, \ldots, m\} \) and set \(k = 2i - 1 \). Then \(w_i \sim x_k \sim x_{k+1} \). Let \(g_{k} \) and \(g_{rk} \) as in the previous parts. We show that \(y_k \neq \infty \) and \(z_k \neq \infty \). To this end, assume that \(z_k = \infty \) and \(y_k = \infty \). Then we have that \(g_k = \{ x_{2m+1}, \ldots, x_0, x_0, \ldots, x_{k-1} \} \) and \(g_{rk} = \{ x_{k+2}, \ldots, x_{2m+1}, x_{2m+1}, \ldots, x_0 \} \). In particular, it follows that \(x_0 - \cdots - x_k = x_{k+1} - \cdots - x_{2m+1} \). Thus, we can write \(g_u = h \sim h^* \) for \(h = x_0 - \cdots - x_k \). Hence, \(g_u \) is composite which gives a contradiction.
Assume now that $y_k = \infty$ and $z_k \neq \infty$. This means that $z_k = \mathcal{C}_\eta^*$. Note that $g^* \sim g \sim g^*$ matches the subword $u^{-1} \epsilon^* u \eta^* u^{-1} =: s$ of w_z.

Recall that we have for $g_{i_k} - x_k$ with $g_{i_k,0} = \{x_{2m+1}, \ldots, x_0, x_0, \ldots, x_{k-1}\}$ a matching subword l_k of s. Similarly, we have for $x_{k+1} - g_{r_k}$ with $g_{r_k,0} = \{x_{k+2}, \ldots, x_{2m+1}, x_{2m+1}, \ldots, x_0\}$ the matching subword r_k with $r_k = l_k^{-1}$. Note that

$$|l_k| = \frac{1}{2}(|g_{i_k}| + 1) > \frac{1}{2}|g_{z_0}| = m + 1.$$

It follows that $\text{ind}^*_{\eta}(w_z) > m+1$. This gives a contradiction to Corollary 3.47 since $i \in \{1, \ldots, m\}$.

Assume now $y_k \neq \infty$ and $z_k = \infty$. We obtain analogously as in the previous case a contradiction.

a) Let y_k and z_k be without loss of generality in \mathcal{C}_j for some $j \in \{1, \ldots, |Q_0|\}$. Note that $\mathcal{C}_j \neq \{\mathcal{C}_\mu^r \ltimes \mathcal{C}_\mu^r\}$ for any $\mu \in \text{Sp}$ by Definition 2.2 and since both y_k and z_k are unequal to ∞. Thus, let $\mathcal{C}_j = \{\mathcal{C}_{j1} < \mathcal{C}_{j2} < \mathcal{C}_{j3}\}$ as in (i),a). Note that $y_k \neq \mathcal{C}_{j2}$ and $z_k \neq \mathcal{C}_{j2}$ since u is a subword of a periodic word. Thus, we consider the cases $y_k = \mathcal{C}_{j1}$ and $z_k = \mathcal{C}_{j3}$, $y_k = \mathcal{C}_{j3}$ and $z_k = \mathcal{C}_{j1}$. They follow analogously to the respective cases in (i),a).

b) Let y_k and z_k be without loss of generality in \mathcal{R}_j for some $j \in \{1, \ldots, |Q_0|\}$ where $\mathcal{R}_j = \{\mathcal{R}_{j1} > \mathcal{R}_{j2} > \mathcal{R}_{j3}\}$ as in (i),b). Note that $y_k \neq \mathcal{R}_{j2}$ and $z_k \neq \mathcal{R}_{j2}$ similar as in a). Thus, we consider the cases $y_k = \mathcal{R}_{j1}$ and $z_k = \mathcal{R}_{j3}$, $y_k = \mathcal{R}_{j3}$ and $z_k = \mathcal{R}_{j1}$. They follow analogously to the respective cases in (i),b).

We have dealt with the Σ-chains and consider next the Σ-cycles in the proposition.

(iii) We obtain the non-symmetric simple Σ-cycle g_{w_z} of length $2p$. Let $i \in \{1, \ldots, p\}$ and set $k = 2i - 2$. Then $x_k \sim x_{k+1}$ matches w_i, and, in particular, w_{i+k} for all $k \in \mathbb{Z}$. Denote again by $g_{i_k,0} = \{y_{k+1}, \ldots, x_{k-1}\}$ the subchain between y_k and x_k, and by $g_{r_k,0} = \{x_{k+2}, \ldots, z_{k-1}\}$ the subchain between x_{k+1} and z_k. Recall that we can have $y_k = z_k$ in a symmetric Σ-cycle (see Subsection 4.1.3). Since g_{w_z} is non-symmetric, this case does not occur.

a) Let y_k and z_k be without loss of generality in \mathcal{C}_j for some $j \in \{1, \ldots, |Q_0|\}$. We have $\mathcal{C}_j \neq \{\mathcal{C}_\mu^r \ltimes \mathcal{C}_\mu^r\}$ for all $\mu \in \text{Sp}$ by $y_k \neq z_k$ and Definition 2.2. Thus, Let $\mathcal{C}_j = \{\mathcal{C}_{j1} < \mathcal{C}_{j2} < \mathcal{C}_{j3}\}$ be as in (i),a). Since w_z is periodic, we have that $y_k \neq \mathcal{C}_{j2}$ and $z_k \neq \mathcal{C}_{j2}$. It remains to consider the cases $y_k = \mathcal{C}_{j1}$ and $z_k = \mathcal{C}_{j3}$, $y_k = \mathcal{C}_{j3}$ and $z_k = \mathcal{C}_{j1}$. They follow analogously as in (i),a).
We obtain a symmetric, simple L-cycle g_{w_z} of length $2p = 4m + 4$. Let $i \in \{1, \ldots, 2m + 2\}$ with $\text{ind}_i^J(w_z) < \infty$. Recall that $i \neq 1, m + 2$ in this case. Set $k = 2i - 2$. Then w_i matches $x_k \sim x_{k+1}$. Note that it follows by choice of i that $k \neq 0, 2m + 2$. Since g_{w_z} is symmetric, we might have $z_k = y_k$. We show that this is not the case. To this end, assume otherwise: $z_k = y_k$. Then there exists and automorphism $\pi \in \text{Aut}(g_{w_z})$ with $\pi = \text{id}$ and $\pi(c_k) = c_{k+1}$. Since g_{w_z} is simple, π is not given by a translation, but by the reflection $r_{k+\frac{1}{2}}$. Recall that $(r_{k+\frac{1}{2}})_w$ describes the induced map on w_z. We obtain with $k = 2i - 2$ that

$$(r_{k+\frac{1}{2}})_w(w_z) = \left(w_{2k+1-j-3}\right)_{j\in \mathbb{Z}} = (w_{k-j+2})_{j\in \mathbb{Z}} = (w_{2i-j})_{j\in \mathbb{Z}} = r_i(w_z).$$

We know by Lemma 4.136 that $(r_i)_e = r_{k+\frac{1}{2}}$. It follows by Theorem 4.140 that $r_i \in \text{Stab}^P_{D^m}(w_z)$. Lemma 4.139 yields that $r_i = r_1$ or $r_i = r_{m+2}$. This contradicts the choice of $i \neq 1, m + 2$.

a) Follows analogously to (iii), a).

b) Follows analogously to (iii), b).

\[\square \]

Remark 4.146. Let w_j be a special letter as considered in Proposition 4.145 (i)-(iv). Recall that $w_j \hat{=} x_k \sim x_{k+1}$, where $k = 2j - 1$ if we consider an L-chain, and $k = 2j - 2$ if we consider an L-cycle. The proof of the proposition implies the following correspondences with the notation from the proof:

\[z_k \sim z_{k+1} \hat{=} w_{j+e}^* = w_{j+e}, \]
\[y_{k-1} \sim y_k \hat{=} w_{j+e}^* = w_{j+e}. \]

Remark 4.147. We obtain by the symmetries in the respective words the following:

(i) In the same setting as in Proposition 4.145 (ii), we obtain that

$$\text{dir}_{2j-1, 2j}(g_a) = -\text{dir}_{|v|-j+1}(v) \quad (145)$$

for all $j \in \{1, \ldots, m\}$ with w_j special.

(ii) In the same setting as in Proposition 4.145 (iv.2), we obtain that

$$\text{dir}_{2j-1, 2j}(g_a) = -\text{dir}_{-j+1+(k+1)p}(v)$$

for all $j \in \{1, \ldots, m\}$ with w_j special.
Example 4.148. Let Λ be as in Example 2.3.1, meaning it is given by the quiver

$$Q: \varepsilon \xrightarrow{\bullet} \varepsilon a$$

and relations $R = \{a^2\}$, $R^p = \{\varepsilon^2 - \varepsilon\}$, with \overline{F}_Λ as in Example 4.83. Recall that its semichains are given by

$$C_1 = \{C_x^* \varepsilon C_x^*\},$$
$$R_1 = \{R_{11} > R_{12} > R_{13}\}$$

with $\sigma_\Lambda(R_{11}) = R_{13}$ and otherwise σ_Λ acts as identity.

1. Let $w = \varepsilon^* a \varepsilon^* a \varepsilon^*$ be an asymmetric string. Let $v \in (\Phi_{\text{red}})^{-1}(w)$ be (weakly) consistent. It is uniquely given by $v = \varepsilon \varepsilon \varepsilon a \varepsilon$, i.e., $\text{dir}(v_1) = \text{dir}(v_3) = \text{dir}(v_5) = 1$ (recall that $\text{dir}(v) = \text{dir}(v_j)$).
 The Σ-chain g_w is given by:

 $$R_{12} \xrightarrow{\varepsilon x} \varepsilon \xrightarrow{\varepsilon \varepsilon} R_{13} \sim R_{11} \sim R_{13} \sim R_{12} \sim R_{11} \sim R_{13} \sim R_{13}$$

 $x_0 \ x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ x_8 \ x_9 \ x_{10} \ x_{11}$

 It follows that $\text{dir}_{1,2}(g_w) = \text{dir}_{5,6}(g_w) = \text{dir}_{9,10}(g_w) = 1$.

b) Let $w = \varepsilon^* a \varepsilon^* a \varepsilon^* a^{-1} \varepsilon^* a^{-1} \varepsilon^*$ be a symmetric band of length 9. Then $u = \varepsilon^* a \varepsilon^* a, \ u^{-1} = a^{-1} \varepsilon^* a^{-1} \varepsilon^*$. Let $v \in (\Phi_{\text{red}})^{-1}(w)$ be (weakly) consistent. Then

 $$\text{dir}(v_1) = \text{dir}(v_3) = 1,$$
 $$\text{dir}(v_7) = \text{dir}(v_9) = -1,$$

 i.e., $v = \varepsilon \varepsilon a \varepsilon a^{-1} \varepsilon^{-1} a^{-1} \varepsilon^{-1}$ for $\kappa \in \{+, -1\}$. The Σ-chain g_u is given by

 $$g_u : R_{12} \xrightarrow{\varepsilon x} \varepsilon \xrightarrow{\varepsilon \varepsilon} R_{13} \sim R_{11} \sim R_{13}$$

 $x_0 \ x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ x_8 \ x_9$.

 Thus, we have that

 $$\text{dir}_{1,2}(g_u) = \text{dir}_{5,6}(g_u) = 1.$$}

193

1. Let w_z be an asymmetric band with periodic part $w_p = \varepsilon^* a$. Let $v_z \in (\Phi_{\text{red}})^{-1}(w_z)$ be (weakly) consistent. Then

 $$\text{dir}(v_{1+kp}) = 1 \ \forall k \in \mathbb{Z}.$$
It follows that \(\text{dir}_{0,1} = 1 \).

d) Let \(w_z \) be a symmetric band with \(\hat{w}_p = \varepsilon^* a \varepsilon^* a^{-1} \varepsilon^* a^{-1} \), \(u = a \varepsilon^* a \). Let \(v_z \in (\Phi^d_{\mu u})^{-1} (w_z) \) be (weakly) consistent \((i_p^{(i)}) = \varepsilon^* t^* t^{-1} \) with \(t \in (\Phi^d_{\mu u})^{-1} (u) \) and \(\kappa_i, \mu_i \in \{+1, -1\} \). We have

\[
\begin{align*}
\text{dir}(v_{3+k_p}) &= 1, \\
\text{dir}(v_{6+k_p}) &= -1
\end{align*}
\]

for all \(k \in \mathbb{Z} \). We consider for \(w_z \)

(i) the \(\Sigma \)-chain \(g_u \):

\[
g_u : C_{\varepsilon^*} \sim R_{13} \sim R_{11} \sim C_{\varepsilon^*} \sim R_{13} \sim R_{11} \sim C_{\varepsilon^*}
\]

Then we have that \(\text{dir}_{3,4}(g_u) = 1 \).

(ii) the \(\Sigma \)-cycle \(g_{w_z} \):

\[
\begin{align*}
\text{dir}_{4,5}(g_{w_z}) &= 1, \\
\text{dir}_{12,13}(g_{w_z}) &= -1.
\end{align*}
\]
5 The categories $\text{mod}(\Lambda)$ and $\text{Rep}(\overline{X}_\Lambda)$

We present the most important results in order to prove the main theorem in this chapter. We start by describing the functor $F : \text{Rep}(\overline{X}_\Lambda) \rightarrow \text{mod}(\Lambda)$ where Λ is a skewed-gentle algebra. We show by the Propositions 5.3, 5.4 and 5.5 that the functor F gives an equivalence of categories. Due to its length, the proof of Proposition 5.5 is moved to Section 5.2.

The nature of the functor allows us to analyse its image explicitly in terms of strings and bands. We find that we need to slightly adjust the directed alphabet of Λ chosen in Chapter 2. For instance, we need to replace the letter ε^{-1} by the letter $\overline{\varepsilon}^{-1}$ in order to describe the modules in the image of F properly. This description is found in Section 5.4. However, we would like to be able to give a description of the indecomposable modules in terms of the original alphabet $\Gamma_\Lambda(\Lambda)$. We examine this issue in Section 5.5 and summarise the results in Theorem 5.36. Finally, we are able to give a classification of the finite dimensional indecomposable modules of a skewed-gentle algebra in terms of strings and bands (Theorem 5.49). From this result, we can, according to Section 4.3, deduce a respective classification result for clannish algebras (Theorem 5.50). We use these results to state the classification in such terms that it proves the conjecture made by Crawley-Boevey in [CB88] (see Chapter 6).

5.1 Equivalence of categories

Let Λ be as in Section 4.1 with bundle of semichains \overline{X}_Λ. We show in this section that there exists an equivalence between the category of representations of the bundle of semichains \overline{X}_Λ and the category of finite dimensional Λ–modules. To this end, we first describe the action of the functor and prove that it is faithful, full and dense (see [ASS06, Theorem 2.5., Appendix]).

Let us first recall the two categories $\text{Rep}(\overline{X}_\Lambda)$ and $\text{mod}(\Lambda)$. The objects of $\text{Rep}(\overline{X}_\Lambda)$ are given by representations of the form $U = (U_X, U^i)_{X \in \overline{X}_\Lambda, 1 \leq i \leq n}$, where U_X is a k–vector space of dimension $\text{dim} P(X)$, $U^i : U_{e_i} \rightarrow U_{e_{i+1}}$ is a k–linear map and $n = |Q_0|$. Recall that any matrix U^i is invertible by construction. A morphism $\theta : U \rightarrow W$ between two representations is given by a tuple (P, Q) where each entry consists of n maps giving $\theta = (P^1, \ldots, P^n, Q^1, \ldots, Q^n)$. Each of the maps P^n and Q^i is given by a square matrix. For any $i \in \{1, \ldots, n\}$ we have that $W^i P^i = Q^i U^i$.

Recall that $\Lambda = kQ/(R \cup R^{\text{op}})$ and that the objects of $\text{mod}(\Lambda)$ can be regarded as representations of the form $V = (V_i, V_a)_{i \in Q_0, a \in Q_1}$. Here, V_i denotes a k–vector space and $V_a : V_i \rightarrow V_j$ is a k–linear map for the arrow $a : i \rightarrow j$. A morphism $f : V \rightarrow X$ between two representations is given by a tuple $f = (f_i)_{i \in Q_0}$ such that $f_i : V_i \rightarrow X_i$ is a k–linear map for any $i \in Q_0$ and
such that $W_{af_i} = f_j V_a$ for any $a : i \rightarrow j \in Q_1$.
Recall also that we have chosen $\text{sgn}(\varepsilon) = \kappa$ for all $\varepsilon \in \text{Sp}$.

Let

$$F : \text{Rep}(X_A) \rightarrow \text{mod}(\Lambda)$$

be given by the following:

(I) Let $U = (U_X, U^i)_{X,i} \in \text{Ob}(\text{Rep}(X_A))$. Then $F(U) = V$ with $V = (V_i, V_a)_{i,a}$, $V_i = \bigoplus_{X \in \mathfrak{R}_i} U_X =: U_{\mathfrak{R}_i}$ and $V_a : V_i \rightarrow V_j$ is given as follows:

(i) Let $a = \varepsilon \in \text{Sp}$. We obtain for V_ε:

$$V_\varepsilon = U^i \tilde{V}_\varepsilon (U^i)^{-1},$$

where

$$\tilde{V}_\varepsilon = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},$$

$\varepsilon = s(\varepsilon)$, and the block $(\tilde{V}_\varepsilon)_{k,l}$ has size

$$\begin{cases} \dim(\text{im}(\varepsilon)) \times \dim(\text{im}(\varepsilon)) & \text{if } k = l = 1 \\ \dim(\text{im}(\varepsilon)) \times \dim(\ker(\varepsilon)) & \text{if } k = 1, l = 2 \\ \dim(\ker(\varepsilon)) \times \dim(\text{im}(\varepsilon)) & \text{if } k = 2, l = 1 \\ \dim(\ker(\varepsilon)) \times \dim(\ker(\varepsilon)) & \text{if } k = l = 2 \end{cases}.$$

(ii) Let $a \in Q_1^{\text{ord}}$, $\text{sgn}(a^{-1}) = -\kappa$, $\text{sgn}(a) = -\kappa$. The basis of $V_i \ominus \ker(a)$ and the basis of $\text{im}(a)$ correspond to links in the row label sets \mathfrak{R}_i and \mathfrak{R}_j, respectively. Denote by $|\mathfrak{R}_i|$ the number of links in the semichain \mathfrak{R}_i. We obtain for $V_a : U_{\mathfrak{R}_i} \rightarrow U_{\mathfrak{R}_j}$ a block matrix with rows corresponding to the links of \mathfrak{R}_j and columns corresponding to the links of \mathfrak{R}_i:

$$(V_a)_{k,l} = \begin{cases} 1, & \text{if } k = |\mathfrak{R}_j|, l = 1, \\ 0, & \text{otherwise}, \end{cases}$$

where $1 \leq k \leq |\mathfrak{R}_j|$, $1 \leq l \leq |\mathfrak{R}_i|$, and the block $(V_a)_{k,l}$ is of size

$$\dim P(\mathfrak{R}_j, |\mathfrak{R}_j| + 1 - k) \times \dim P(\mathfrak{R}_i, |\mathfrak{R}_i| + 1 - l).$$

(iii) Let $a \in Q_1^{\text{ord}}$, $\text{sgn}(a^{-1}) = \kappa$, $\text{sgn}(a) = -\kappa$. The basis of $V_i \ominus \ker(a)$ corresponds to a link in \mathfrak{C}_i, and the basis of $\text{im}(a)$ corresponds to a link in \mathfrak{R}_j. We obtain

$$V_a = \tilde{V}_a (U^i)^{-1}.$$
where

\[(\tilde{V}_a)_{k,l} = \begin{cases}
1, & \text{if } k = |R_j|, l = 3, \\
0, & \text{otherwise},
\end{cases}\]

\[1 \leq k \leq |R_j|, \quad 1 \leq l \leq |C_i|, \quad \text{and} \quad (\tilde{V}_a)_{k,l} \text{ is of size }
\dim P(R_j, |R_j| + 1 - k) \times
\dim P(C_i, |C_i| + 1 - l).
\]

(iv) Let \(a \in Q_1^{\text{ord}} \) with \(\text{sgn}(a^{-1}) = -\kappa \) and \(\text{sgn}(a) = \kappa \). The basis of \(V_i \ominus \ker(a) \) corresponds to a link in \(R_i \), and the basis of \(\text{im}(a) \) to a link in \(C_j \). The map \(V_a \) is given by

\[V_a = U^j \tilde{V}_a\]

where

\[(\tilde{V}_a)_{k,l} = \begin{cases}
1 & \text{if } k = 1, l = 1 \\
0 & \text{otherwise}
\end{cases},
\]

\[1 \leq k \leq |C_j|, \quad 1 \leq l \leq |R_i|, \quad \text{and} \quad (\tilde{V}_a)_{k,l} \text{ is of size }
\dim P(C_j, |C_j| + 1 - k) \times
\dim P(R_i, |R_i| + 1 - l).
\]

(v) Let \(a \in Q_1^{\text{ord}} \) with \(\text{sgn}(a^{-1}) = \kappa \) and \(\text{sgn}(a) = \kappa \). We obtain that the basis of \(V_i \ominus \ker(a) \) corresponds to a link in \(C_i \). The basis of \(\text{im}(a) \) corresponds to a link in \(C_j \). It follows that \(V_a \) is given by

\[V_a = U^j \tilde{V}_a \left(U_i^{-1}\right)^{-1}\]

where

\[(\tilde{V}_a)_{k,l} = \begin{cases}
1 & \text{if } k = 1, l = |C_i| \\
0 & \text{otherwise}
\end{cases},
\]

\[1 \leq k \leq |C_j|, \quad 1 \leq l \leq |C_i|, \quad \text{and} \quad (\tilde{V}_a)_{k,l} \text{ is of size }
\dim P(C_j, |C_j| + 1 - k) \times
\dim P(C_i, |C_i| + 1 - l).
\]

(II) Let \(\theta = (P, Q) \) be a morphism in \(\text{Rep}(\overline{X}_\Lambda) \) with components \(P^1, \ldots, P^n \) and \(Q^1, \ldots, Q^n \). Then

\[F(\theta) = (Q^i)_{1 \leq i \leq n}.
\]

Recall that the arrow \(a : i \rightarrow j \in Q_1^{\text{ord}} \) gives rise to one filtration in \(V_i \) and to one in \(V_j \). The matrix \(\tilde{V}_a \) describes the action of \(a \) with respect to those two filtrations. The filtration of \(V_i \) can be of the form

\[0 \subset \ker(a) \subset V_i \quad \text{(148)}\]

or \[0 \subset \text{im}(a) \subset \ker(a) \subset V_i \quad \text{(149)}\]

193
if there exists \(c \in \mathbb{Q}^{\text{ord}}_1 \) with \(ac = 0 \). Similarly, the filtration of \(V_j \) can be given by

\[
0 \subset \text{im}(a) \subset V_j \\
\text{or} \quad 0 \subset \text{im}(a) \subset \ker(x) \subset V_j
\]

if there exists \(x \in \mathbb{Q}^{\text{ord}}_1 \) with \(xa = 0 \).

The corresponding semichains consist of two or three links, respectively. Thus, \(\tilde{V}_a \) has one of the following sizes with respect to its bands:

\[
(3 \times 3), (3 \times 2), (2 \times 3), (2 \times 2).
\]

The way we have constructed the semichains in Section 4.4.2 allows us to describe \(\tilde{V}_a \) more detailed with respect to its block form. The Tables 1 and 2 give an overview on the details of (I) (ii) - (iv).

Example 5.1. 1. Let \(\Lambda \) be given as in Example 2.3.1. Consider the \(\overline{X}_\Lambda \)-representation \(U = (U^1, U_{\epsilon_{11}}, U_{\epsilon_{12}}, U_{g_{11}}, U_{g_{12}}, U_{g_{13}}) \) with

\[
U^1 = \begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{pmatrix}.
\]

The respective vector spaces have the following dimensions:

\[
\dim(U_{\epsilon_{11}}) = 2, \quad \dim(U_{\epsilon_{12}}) = 2, \\
\dim(U_{g_{11}}) = 1, \quad \dim(U_{g_{12}}) = 2, \\
\dim(U_{g_{13}}) = 1.
\]

We have by construction that

\[
\tilde{V}_a = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{pmatrix}, \quad \tilde{V}_\epsilon = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}.
\]

Since \(\tilde{V}_a : U_{g_{11}} \to U_{g_{11}} \), we obtain that \(V_a = \tilde{V}_a \). Moreover, we get that

\[
V_\epsilon = U^1 \tilde{V}_\epsilon (U^1)^{-1} = \begin{pmatrix}
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}.
\]

Thus, \(F(U) \) is given by \(V = (U_{g_{11}}, V_a, V_\epsilon) \).
<table>
<thead>
<tr>
<th>(I)</th>
<th>V_a</th>
<th>semichains</th>
<th>$V_a \ker(a)$</th>
<th>im(a)</th>
<th>V_a as block matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ii)</td>
<td>$U_{\mathfrak{R}i} \to U{\mathfrak{R}_j}$</td>
<td>$\mathfrak{R}i = {\mathfrak{R}{i1} > \mathfrak{R}{i2} > \mathfrak{R}{i3}}$</td>
<td>$\mathfrak{R}j = {\mathfrak{R}{j1} > \mathfrak{R}{j2} > \mathfrak{R}{j3}}$</td>
<td>\mathfrak{R}_i</td>
<td>\mathfrak{R}_j</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iii)</td>
<td>$U_{\mathfrak{E}i} \to U{\mathfrak{R}_j}$</td>
<td>$\mathfrak{E}i = {\mathfrak{E}{i1} < \mathfrak{E}{i2} < \mathfrak{E}{i3}}$</td>
<td>$\mathfrak{E}j = {\mathfrak{E}{j1} > \mathfrak{E}{j2} > \mathfrak{E}{j3}}$</td>
<td>\mathfrak{E}_i</td>
<td>\mathfrak{E}_j</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Details on \tilde{V}_a I
<table>
<thead>
<tr>
<th></th>
<th>$U_{\mathcal{G}i} \rightarrow U{\mathcal{E}_j}$</th>
<th>$\mathcal{G}i = { \mathcal{G}{i1} > \mathcal{G}{i2} > \mathcal{G}{i3} }$</th>
<th>$\mathcal{E}j = { \mathcal{E}{j1} < \mathcal{E}{j2} < \mathcal{E}{j3} }$</th>
<th>\mathcal{C}_{j1}</th>
<th>\mathcal{C}_{j2}</th>
<th>\mathcal{C}_{j3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(iv)</td>
<td></td>
<td>$\mathcal{G}i = { \mathcal{G}{i1} > \mathcal{G}{i2} > \mathcal{G}{i3} }$</td>
<td>$\mathcal{E}j = { \mathcal{E}{j1} < \mathcal{E}_{j2} }$</td>
<td>\mathcal{E}_{j1}</td>
<td>\mathcal{E}_{j2}</td>
<td>\mathcal{E}_{j3}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\mathcal{G}i = { \mathcal{G}{i1} > \mathcal{G}{i2} > \mathcal{G}{i3} }$</td>
<td>$\mathcal{E}j = { \mathcal{E}{j1} < \mathcal{E}{j2} < \mathcal{E}{j3} }$</td>
<td>\mathcal{E}_{j1}</td>
<td>\mathcal{E}_{j2}</td>
<td>\mathcal{E}_{j3}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\mathcal{G}i = { \mathcal{G}{i1} > \mathcal{G}_{i2} }$</td>
<td>$\mathcal{E}j = { \mathcal{E}{j1} < \mathcal{E}{j2} < \mathcal{E}{j3} }$</td>
<td>\mathcal{E}_{j1}</td>
<td>\mathcal{E}_{j2}</td>
<td>\mathcal{E}_{j3}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\mathcal{G}i = { \mathcal{G}{i1} > \mathcal{G}_{i2} }$</td>
<td>$\mathcal{E}j = { \mathcal{E}{j1} < \mathcal{E}_{j2} }$</td>
<td>\mathcal{E}_{j1}</td>
<td>\mathcal{E}_{j2}</td>
<td>\mathcal{E}_{j3}</td>
</tr>
<tr>
<td>(v)</td>
<td></td>
<td>$\mathcal{E}i = { \mathcal{E}{i1} < \mathcal{E}{i2} < \mathcal{E}{i3} }$</td>
<td>$\mathcal{E}j = { \mathcal{E}{j1} < \mathcal{E}{j2} < \mathcal{E}{j3} }$</td>
<td>\mathcal{E}_{j1}</td>
<td>\mathcal{E}_{j2}</td>
<td>\mathcal{E}_{j3}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\mathcal{E}i = { \mathcal{E}{i1} < \mathcal{E}{i2} < \mathcal{E}{i3} }$</td>
<td>$\mathcal{E}j = { \mathcal{E}{j1} < \math{E}_{j2} }$</td>
<td>\mathcal{E}_{j1}</td>
<td>\mathcal{E}_{j2}</td>
<td>\mathcal{E}_{j3}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\mathcal{E}i = { \mathcal{E}{i1} < \mathcal{E}_{i2} }$</td>
<td>$\mathcal{E}j = { \mathcal{E}{j1} < \mathcal{E}{j2} < \mathcal{E}{j3} }$</td>
<td>\mathcal{E}_{j1}</td>
<td>\mathcal{E}_{j2}</td>
<td>\mathcal{E}_{j3}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\mathcal{E}i = { \mathcal{E}{i1} < \mathcal{E}_{i2} }$</td>
<td>$\mathcal{E}j = { \mathcal{E}{j1} < \mathcal{E}_{j2} }$</td>
<td>\mathcal{E}_{j1}</td>
<td>\mathcal{E}_{j2}</td>
<td>\mathcal{E}_{j3}</td>
</tr>
</tbody>
</table>

Table 2: Details on \tilde{V}_0 II
2. Let \(\Lambda \) be as in Example 2.14. Let \(U \) be a \(\overline{\Lambda} \)-representation given by
\[
U^1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad U^2 = \begin{pmatrix} 1 \end{pmatrix}, \quad U^3 = 0 \\
U^4 = \begin{pmatrix} 1 \end{pmatrix}, \quad U^5 = 0
\]
and the non-trivial vector spaces of dimension
\[
\dim(U_{\epsilon_{11}^1}) = 1, \quad \dim(U_{\epsilon_{11}^2}) = 1, \\
\dim(U_{\epsilon_{11}^3}) = 1, \quad \dim(U_{\epsilon_{11}^4}) = 1, \\
\dim(U_{\epsilon_{11}^5}) = 1, \quad \dim(U_{\epsilon_{11}^6}) = 1.
\]

We consider the following maps:
\[
\tilde{V}_a : U_{\mathfrak{g}_1} \longrightarrow U_{\mathfrak{c}_2}, \quad \tilde{V}_b : U_{\mathfrak{g}_3} \longrightarrow U_{\mathfrak{g}_4}, \\
\tilde{V}_c : U_{\mathfrak{g}_5} \longrightarrow U_{\mathfrak{c}_6}, \quad \tilde{V}_d : U_{\mathfrak{g}_7} \longrightarrow U_{\mathfrak{g}_8}, \\
\tilde{V}_e : U_{\mathfrak{c}_9} \longrightarrow U_{\mathfrak{c}_{10}}, \quad \tilde{V}_\eta : U_{\mathfrak{c}_1} \longrightarrow U_{\mathfrak{c}_2}, \\
\tilde{V}_\kappa : U_{\mathfrak{c}_3} \longrightarrow U_{\mathfrak{c}_{11}}.
\]

Note that \(\tilde{V}_b, \tilde{V}_c, \tilde{V}_e, \tilde{V}_\eta \) and \(\tilde{V}_\kappa \) are zero maps. Thus, \(V_b, V_c, V_e, V_\eta \) and \(V_\kappa \) are also zero maps according to (I),(i)-(v). We obtain that
\[
V_a = U^2 \tilde{V}_a = \begin{pmatrix} 1 & 0 \end{pmatrix}, \\
V_d = \tilde{V}_d = \begin{pmatrix} 1 \end{pmatrix}, \\
V_e = U^1 \tilde{V}_e (U^1)^{-1} = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}.
\]

Setting \(V_i = U_{\mathfrak{g}_i} \) yields \(F(U) = V \).

Proposition 5.2. The map \(F \) as defined above is a functor.

Proof. Let \(\psi, \theta \in \text{Morph} (\text{Rep}(\overline{\Lambda})) \) with \(\psi = (R,S) : V \longrightarrow W \) and \(\theta = (P,Q) : U \longrightarrow V \). We show first that
\[
F(\psi \theta) = F(\psi)F(\theta).
\] (152)
Recall that the composition \(\psi \theta \) is given by \((RP, SQ) \). We have by definition of \(F \) that
\[
F(\psi) = (S^i)_{1 \leq i \leq n}, \quad F(\theta) = (Q^i)_{1 \leq i \leq n}, \quad \text{and} \quad F(\psi \theta) = (S^i Q^i)_{1 \leq i \leq n}.
\]

197
Thus, (152) holds. Let $U \in \text{Ob}(\text{Rep}(\Lambda))$ be an arbitrary representation. Then 1_U is given by the tuple (P, Q) with $P^i = 1_{c_i \times c_i}$ and $Q^i = 1_{r_i \times r_i}$ for all $1 \leq i \leq n$, where $c_i = \dim(U_{c_i})$ and $r_i = \dim(U_{R_i})$. We obtain that

$$F(1_U) = (1_{r_i \times r_i})_{1 \leq i \leq n} = (1_{U_{R_i}})_{1 \leq i \leq n}. $$

Moreover, we have that $F(U) = V = (V_i, V_a)_{i \in Q_0, a \in Q_1} \in \text{Ob}(\text{mod}(\Lambda))$ where $V_i = U_{R_i}$. By definition, $1_V = (1_{V_i})_{1 \leq i \leq n} = (1_{U_{R_i}})_{1 \leq i \leq n}$. It follows that

$$F(1_U) = 1_{F(U)}. $$

Finally, we show that F is well-defined. Let T and U be two arbitrary Λ-representations. Let $V = F(U)$ and $W = F(T)$. By definition, V and W are $(Q, R \cup R^{SP})$-representations. Let $\theta = (P, Q) : U \rightarrow T \in \text{Morph}(\text{Rep}(\Lambda))$. It remains to show that

$$Q^j V_a = W_a Q^i \quad (153)$$

for all $a : i \rightarrow j \in Q_1$. To this end, recall that the commutativity relation

$$Q^i U^j = W^j P^i \quad (154)$$

is given for all $1 \leq i \leq n$. Furthermore, we know that Q^i is of lower triangular block form, and that P^i is of upper triangular block form. Let us examine (153) for $a : i \rightarrow j \in Q_1^{\text{ord}}$. Then V_a and W_a are given by one of (I) (ii) - (v). Depending on the relations, V_a and W_a can be of block size (3×3), (2×3), (3×2) or (2×2). Note that V_a and W_a are of the same block form, though the sizes of the blocks can differ.

(ii) Let $V_a = \tilde{V}_a$, $W_a = \tilde{W}_a$. Then (153) is equivalent to $Q^j \tilde{V}_a = \tilde{W}_a Q^i$. Consider the (3×3)-block form

$$\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}$$

for \tilde{V}_a and \tilde{W}_a. Both Q^i and Q^j are also of (3×3)-block form. Denote their entries by q^i_{kl}, q^j_{kl}, respectively, $1 \leq k, l \leq 3$. It follows that (153) is given if the following conditions hold:

$$q^j_{12} = q^j_{13} = 0, \quad (155)$$

$$q^j_{13} = q^j_{23} = 0, \quad (156)$$

$$q^j_{33} = q^j_{11}. \quad (157)$$
The conditions (155) and (156) follow from the triangular block forms of Q^i and Q^j. We have by construction that

\begin{align*}
\mathcal{R}_{j1} & \doteq \text{basis of } \text{im}(a), \\
\mathcal{R}_{i3} & \doteq \text{basis of } V_i \oplus \ker(a).
\end{align*}

(158) \hspace{1cm} (159)

It follows that

\begin{equation}
Q^i_{\mathcal{R}_{i3},\mathcal{R}_{i3}} = Q^j_{\mathcal{R}_{j1},\mathcal{R}_{j1}}.
\end{equation}

(160)

Recall the order of the links in \mathcal{R}_i and \mathcal{R}_j: $\mathcal{R}_{i1} > \mathcal{R}_{i2} > \mathcal{R}_{i3}$ and $\mathcal{R}_{j1} > \mathcal{R}_{j2} > \mathcal{R}_{j3}$. We obtain that $q^i_{13} = Q^i_{\mathcal{R}_{i1},\mathcal{R}_{i1}}$ and that $q^i_{11} = Q^i_{\mathcal{R}_{i3},\mathcal{R}_{i3}}$. It follows that (157) is equivalent to (160).

Consider the (2×3)--block form

\begin{equation*}
\begin{pmatrix}
0 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}.
\end{equation*}

The block matrix Q^j is of size (2×2); Q^i is given by a (3×3)--block matrix. We denote their entries again by q^i_{kl} and q^j_{kl}. We obtain that (153) holds if

\begin{align*}
q^i_{12} &= q^i_{13} = 0, \quad (161) \\
q^j_{12} &= 0, \quad (162) \\
q^j_{22} &= q^i_{11}. \quad (163)
\end{align*}

By the triangular block forms of Q^i and Q^j we know that (161) and (162) hold. The semichains \mathcal{R}_i and \mathcal{R}_j have length 3 and 2, respectively. Condition (163) follows as above from $\mathcal{R}_{i3} \doteq \text{basis of } V_i \oplus \ker(a)$ and $\mathcal{R}_{j1} \doteq \text{basis of } \text{im}(a)$.

Consider the (3×2)--block form

\begin{equation*}
\begin{pmatrix}
0 & 0 \\
0 & 0 \\
1 & 0
\end{pmatrix}.
\end{equation*}

Then Q^j is given by a (2×2)--block matrix, and Q^i by a (3×3)--block matrix. If the following conditions are satisfied, then (153) holds:

\begin{align*}
q^j_{13} &= q^j_{23} = 0, \quad (164) \\
q^j_{12} &= 0, \quad (165) \\
q^j_{11} &= q^j_{33}. \quad (166)
\end{align*}

We have $\mathcal{R}_i = \{\mathcal{R}_{i1} > \mathcal{R}_{i2}\}$ and $\mathcal{R}_j = \{\mathcal{R}_{j1} > \mathcal{R}_{j2} > \mathcal{R}_{j3}\}$, where $\mathcal{R}_{i2} \doteq \text{basis of } V_i \oplus \ker(a)$ and $\mathcal{R}_{j1} \doteq \text{basis of } \text{im}(a)$. Thus, (166) follows from $Q^j_{\mathcal{R}_{i2},\mathcal{R}_{i2}} = q^j_{11}$ and $Q^j_{\mathcal{R}_{j1},\mathcal{R}_{j1}} = q^j_{33}$. The lower triangular block
form of Q^i and Q^j implies (164) and (165).

Consider the (2×2)-block matrix

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

for \tilde{V}_a and \tilde{W}_a. Both Q^i and Q^j are of block form (2×2). We obtain that (153) is given under the following conditions:

$$q_{12}^i = 0, \quad (167)$$
$$q_{12}^j = 0, \quad (168)$$
$$q_{11}^i = q_{22}^j. \quad (169)$$

Similarly to the previous cases, (167) and (168) follow from the triangular block forms of Q^i and Q^j. Both R_i and R_j consist of two links. In particular, we have that \mathcal{R}_{i2} is basis of $V_i \ominus \text{ker}(a)$ and \mathcal{R}_{j1} is basis of $\text{im}(a)$. This implies that $Q_{\mathcal{R}_{i2},\mathcal{R}_{i2}} = Q_{\mathcal{R}_{j1},\mathcal{R}_{j1}}$. By $Q_{\mathcal{R}_{i2},\mathcal{R}_{i2}} = q_{11}^i$ and $Q_{\mathcal{R}_{j1},\mathcal{R}_{j1}} = q_{22}^j$, (169) follows.

(iii) Let $V_a = \tilde{V}_a (U^i)^{-1}$ and $W_a = \tilde{W}_a (T^i)^{-1}$. Applying (154) to (153), the latter is equivalent to

$$Q^i \tilde{V}_a = \tilde{W}_a P^i.$$

This equality implies similar conditions to the ones in (ii). These conditions are satisfied due to the block forms of Q^i and P^i and the block correspondences given by $\sigma_\Lambda(\mathcal{R}_{j1}) = \mathcal{C}_{i3}$ ($\sigma_\Lambda(\mathcal{R}_{j1}) = \mathcal{C}_{i2}$, respectively).

(iv) Let $V_a = U^j \tilde{V}_a$ and $W_a = T^j \tilde{W}_a$. Due to (154), (153) is equivalent to

$$P^j \tilde{V}_a = \tilde{W}_a Q^i.$$

It follows analogously to the previous cases that (153) holds under similar conditions as in (iii). They are implied by the block form of Q^i and P^j and the block correspondence given by the connection of \mathcal{C}_{j1} and \mathcal{R}_{i3} (\mathcal{R}_{i2}, respectively) under σ_Λ.

(v) Let $V_a = U^j \tilde{V}_a U^i$ and $W_a = T^j \tilde{W}_a T^i$. We obtain that (153) is equivalent to

$$P^j \tilde{V}_a = \tilde{W}_a P^i$$

by (154). We obtain that (153) holds if similar conditions as in (ii) with respect to P^i and P^j are satisfied. Due to the triangular block forms of P^i and P^j, we know that certain entries are zero. Furthermore, we know that two blocks coincide since \mathcal{C}_{j1} and \mathcal{C}_{i3} (\mathcal{C}_{i2} respectively) are connected by σ_Λ. This data confirms that the conditions in doubt are fulfilled.
Proposition 5.3. The functor F is dense.

Proof. Let $V = (V_i, V_a)_{i \in Q_0, a \in Q_1} \in \text{Ob}(\text{mod}(\Lambda))$. By construction of \overline{X}_Λ, we have a correspondence between filtrations on V_i arising from the arrows $a \in Q_1$ and semichains in \overline{X}_Λ. Thus, we can deduce from V a naturally partitioned matrix

$$U^i : V^c_i \rightarrow V^r_i$$

for each $i \in Q_0$, where $V^c_i \cong V^r_i \cong V_i$. In particular, V^c_i is given in the basis determined by the filtration $F_i^{(j)}$ that corresponds to $S_i^{(c)}$. Similarly, V^r_i is given in the basis determined by the filtration $F_i^{(\bar{j})}$ which corresponds to $S_i^{(r)}$, where $j \neq \bar{j}$.

It follows that U^i is a basis change matrix for all $i \in Q_0$, partitioned according to the filtrations $F_i^{(j)}$ and $F_i^{(\bar{j})}$ with bands indexed by the elements of the corresponding semichains.

Set $U_{R_i} = V^r_i$ and $U_{C_i} = V^c_i$ for all $i \in Q_0$. Furthermore, take U_X to be for any $X \in X_0$ the subspace given by the basis corresponding to X by the filtration associated to $\mathcal{R}_i (\mathcal{C}_i)$.

By construction, we obtain for $U = (U^i, U_X)_{i, X}$ that $F(U) \cong V$. \hfill \square

Proposition 5.4. The functor F is faithful.

Proof. Let $\theta = (P, Q) : U \rightarrow T \in \text{Morph}(\text{Rep}(\overline{X}_\Lambda))$ with $F(\theta) = 0$. We have by definition of F that $F(\theta) = (Q^i)_{1 \leq i \leq n}$. It follows that the Q-component of θ is zero. Recall that $Q^i U^i = W^i P^i$ for all $1 \leq i \leq n$, and that every U^i and every W^i is invertible by construction. It follows that

$$P^i = (W^i)^{-1} Q^i U^i = 0$$

for all $1 \leq i \leq n$. Thus, the P-component of θ is zero. We obtain that $\theta = 0$. \hfill \square

Proposition 5.5. The functor F is full.

Proof. Due to its technicality, we refer to Subsection 5.2 for the proof. \hfill \square

Theorem 5.6. The functor $F : \text{Rep}(\overline{X}_\Lambda) \rightarrow \text{mod}(\Lambda)$ gives and equivalence of categories.

Proof. The proof follows from the Propositions 5.4, 5.3 and 5.5. \hfill \square
5.2 Proof of Proposition 5.5

Let \(V \) and \(W \) be two \((Q, R \cup R^{op})\)-representations and let \(f : V \to W \) be a morphism. We want to show that there exists \(\theta \in \text{Morph}(\text{Rep}(\overline{\Lambda})) \) such that \(F(\theta) = f \).

By Proposition 5.3, we know that there exist two \(\overline{\Lambda} \)-representations \(U \) and \(X \) with \(F(U) = V \) and \(F(W) = X \). Set

\[
Q^i = f_i, \\
P^i = (X^i)^{-1} Q^i U^i,
\]

for all \(1 \leq i \leq n \). Recall that the matrices in \(U \) and \(X \) are invertible by construction. We claim that \(F(\theta) = f \) for \(\theta = (P, Q) \) with components as described in (170) and (171).

Let \(i \in \{1, \ldots, n\} \). Assume without loss of generality that \(i \in Q_0 \) is not isolated. It follows by (171) that \(X^i P^i = Q^i U^i \). We show that the respective other conditions of Definition 4.63 are satisfied for \(Q^i \) and \(P^i \). We have the following possibilities in \(Q \) on the vertex \(i \):

1. \(i \xleftarrow{e} i \)
2. \(i \xrightarrow{a} j \)
3. \(k \xrightarrow{b} i \)
4. \(\varepsilon \xrightarrow{a} j \)
5. \(k \xrightarrow{b} i \varepsilon \)
6. \(k \xrightarrow{b} i \xrightarrow{a} j \) with \(ab \neq 0 \)
7. \(k \xrightarrow{b} i \xrightarrow{a} j \) with \(ab = 0 \)
8. \(k \xrightarrow{b} i \xleftarrow{e} j \) with \(ab = 0 \)
9. \(l \xleftarrow{c} k \xrightarrow{b} i \xrightarrow{a} j \) with \(ab \neq 0, ca = 0 \)
10. \(k \xrightarrow{b} i \xrightarrow{d} j \xrightarrow{p} \) with \(ab \neq 0, db = 0 \)
Thus, we regard commutativity relations with respect to the ordinary arrows a, b, c and d, and with respect to the special arrow ε. We first compute those commutativity relations. In order to do so, we distinguish the different possible semichain assignments according to (I), (ii) - (v) in the definition of the functor F.

(\Sigma) Commutativity relations on vertex i with respect to $\varepsilon : i \to i \in \text{Sp.}$

By definition of f, the commutativity relation $Q^i V_{\varepsilon} = W_{\varepsilon} Q^i$ holds. Furthermore, we have that $V_{\varepsilon} = U^i V_{\varepsilon} (U^i)^{-1}$ with

$$V_{\varepsilon} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}. \quad \text{(172)}$$

The maps W_{ε} and W_{ε} are of similar (block) form. Recall that the equality $X^i P^i = Q^i U^i$ holds for all i. Thus, we can rewrite the commutativity relation $Q^i V_{\varepsilon} = W_{\varepsilon} Q^i$ to

$$P^i V_{\varepsilon} = W_{\varepsilon} P^i. \quad \text{(173)}$$

Denote the entries of P^i by p^i_{kl} for $1 \leq k, l \leq 2$. Inserting (172) and the respective block form of W_{ε} into (173) gives

$$\begin{pmatrix} p^j_{11} & 0 \\ p^j_{21} & 0 \end{pmatrix} = \begin{pmatrix} p^i_{11} & p^i_{12} \\ 0 & 0 \end{pmatrix}. \quad \text{(174)}$$

We obtain that P^i is given by the following block form:

$$P^i = \begin{pmatrix} p^i_{11} & 0 \\ 0 & p^i_{22} \end{pmatrix}. \quad \text{(174)}$$

(A) Commutativity relations on vertex i with respect to $a : i \to j$. By definition of f we have that

$$Q^j V_a = W_a Q^i. \quad \text{(175)}$$

Recall that $V_a (W_a)$ is given in terms of $\tilde{V}_a (\tilde{W}_a)$. We distinguish the following possibilities according to Table 1 and Table 2:

(ii) We consider $V_a = \tilde{V}_a : U_{2i} \to U_{2j}$, $W_a = \tilde{W}_a : X_{2i} \to X_{2j}$.

Hence, we can rewrite (175) to

$$Q^j V_a = \tilde{W}_a Q^i. \quad \text{(176)}$$

203
Let \tilde{V}_a and \tilde{W}_a be given by (3×3)–matrices. They are both of the block form
\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}
\]
and give maps between filtrations of the form (149) and (151). Denote the entries of Q^j by q_{ij}^j and those of Q^i by q_{kl}^i, $1 \leq k, l \leq 3$.

Equation (176) results in
\[
\begin{pmatrix}
q_{13}^j & 0 & 0 \\
q_{23}^j & 0 & 0 \\
q_{33}^j & 0 & 0
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
q_{11}^i & q_{12}^i & q_{13}^i
\end{pmatrix}.
\]

Thus, the matrix Q^i is of form
\[
Q^i =
\begin{pmatrix}
q_{11}^i & 0 & 0 \\
q_{21}^i & q_{22}^i & q_{23}^i \\
q_{31}^i & q_{32}^i & q_{33}^i
\end{pmatrix}.
\] (177)

Furthermore, we have that $q_{11}^i = q_{33}^j$.

Let \tilde{V}_a and \tilde{W}_a be given by (2×3)–matrices. They describe maps between filtrations of the forms (149) and (150) and are of the following block form:
\[
\begin{pmatrix}
0 & 0 & 0 \\
1 & 0 & 0
\end{pmatrix}.
\]

The commutativity relation in (176) results in
\[
\begin{pmatrix}
q_{12}^j & 0 & 0 \\
q_{22}^j & 0 & 0
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & 0 \\
q_{11}^i & q_{12}^i & q_{13}^i
\end{pmatrix}.
\]

We obtain that Q^i is of form (177) and that $q_{22}^j = q_{11}^i$.

Let \tilde{V}_a and \tilde{W}_a be given by (3×2)–matrices. Thus, they give maps between filtrations of the forms (148) and (151) and are of the block form
\[
\begin{pmatrix}
0 & 0 \\
0 & 0 \\
1 & 0
\end{pmatrix}.
\]

We obtain by (176) that
\[
\begin{pmatrix}
q_{13}^j & 0 \\
q_{23}^j & 0 \\
q_{33}^j & 0
\end{pmatrix} =
\begin{pmatrix}
0 & 0 \\
0 & 0 \\
q_{11}^i & q_{12}^i
\end{pmatrix}.
\]
The blocks q_{33}^j and q_{11}^i are equal to each other. It also follows that Q^j is of the following block form:

$$Q^j = \begin{pmatrix} q_{11}^i & 0 \\ q_{21}^i & q_{22}^j \end{pmatrix}.$$ \hfill (178)

Finally, let \tilde{V}_a and \tilde{W}_a be given by (2×2)–matrices which describe maps between filtrations of the forms (148) and (150). Their block form is given by

$$\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

The commutativity relation (176) gives

$$\begin{pmatrix} q_{12}^j & 0 \\ q_{22}^j & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ q_{11}^i & q_{12}^i \end{pmatrix}.$$

It follows that $q_{22}^j = q_{11}^i$. We obtain that Q^j is of same block form as in (178).

(iii) We consider $V_a = \tilde{V}_a \left(U^i \right)^{-1}$, $W_a = \tilde{W}_a \left(X^i \right)^{-1}$. Thus, \tilde{V}_a is a map between the vector spaces $U\xi_i$ and $U\eta_j$, and similarly $\tilde{W}_a : X\xi_i \rightarrow X\eta_j$. We can rewrite (175) as follows:

$$Q^j \tilde{V}_a \left(U^i \right)^{-1} = \tilde{W}_a \left(X^i \right)^{-1} Q^i.$$

Applying the commutativity relation $Q^j U^i = P^i X^i$ gives

$$Q^j \tilde{V}_a \left(U^i \right)^{-1} = \tilde{W}_a P^i \left(U^i \right)^{-1}.$$

Hence, it is enough to consider the commutativity relation

$$Q^j \tilde{V}_a = \tilde{W}_a P^i.$$ \hfill (179)

Denote the entries of P^i by p_{kl}^i with k, l in the respective range.

We proceed similarly to case (ii). Let \tilde{V}_a and \tilde{W}_a be (3×3)–matrices. Their block form is given by

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

We obtain from (179) that

$$\begin{pmatrix} 0 & 0 & q_{13}^j \\ 0 & 0 & q_{23}^j \\ 0 & 0 & q_{33}^j \end{pmatrix} \begin{pmatrix} p_{31}^i \\ p_{32}^i \\ p_{33}^i \end{pmatrix}.$$
It follows that \(q_{33}^j = p_{33}^j \) and that \(P^i \) is of form

\[
P^i = \begin{pmatrix}
p_{11}^i & p_{12}^i & p_{13}^i \\
p_{21}^i & p_{22}^i & p_{23}^i \\
0 & 0 & p_{33}^i
\end{pmatrix}.
\]

Let \(\tilde{V}_a \) and \(\tilde{W}_a \) be given by \((2 \times 3)\)-matrices. They are of block form

\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

The equality (179) results in

\[
\begin{pmatrix}
0 & 0 & q_{12}^j \\
0 & 0 & q_{22}^j
\end{pmatrix} = \begin{pmatrix}
p_{31}^j & p_{32}^j & 0 \\
p_{31}^j & p_{32}^j & p_{33}^j
\end{pmatrix}.
\]

This equality yields that \(q_{22}^j = p_{33}^j \) and that \(P^i \) is of same block form as in (180).

Let \(\tilde{V}_a \) and \(\tilde{W}_a \) be given by \((3 \times 2)\)-matrices. Then they have the following block form:

\[
\begin{pmatrix}
0 & 0 \\
0 & 0 \\
0 & 1
\end{pmatrix}.
\]

We obtain by (179) that

\[
\begin{pmatrix}
0 & q_{13}^j \\
0 & q_{23}^j \\
0 & q_{33}^j
\end{pmatrix} = \begin{pmatrix}
0 & 0 \\
0 & 0 \\
p_{21}^j & p_{22}^j
\end{pmatrix}.
\]

It follows that \(q_{33}^j = p_{33}^j \) and that \(P^i \) is given by

\[
P^i = \begin{pmatrix}
p_{11}^i & p_{12}^i \\
0 & p_{22}^i
\end{pmatrix}.
\]

Let \(\tilde{V}_a \) and \(\tilde{W}_a \) be given by a \((2 \times 2)\)-block matrix of the form

\[
\begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix}.
\]

The equality in (179) results in

\[
\begin{pmatrix}
0 & q_{12}^j \\
0 & q_{22}^j
\end{pmatrix} = \begin{pmatrix}
0 & 0 \\
p_{21}^j & p_{22}^j
\end{pmatrix}.
\]

Thus, we have that \(q_{22}^j = p_{22}^j \) and \(P^i \) has block form as in (181).
(iv) Let $V_a = U^j \tilde{V}_a$, $W_a = X^j \tilde{W}_a$. We have that $\tilde{V}_a : U_{\gamma_i} \to U_{\xi_j}$ and $\tilde{W}_a : X_{\gamma_i} \to X_{\xi_j}$. We rewrite (175) to $Q^j U^j \tilde{V}_a = X^j \tilde{W}_a Q^i$. Applying the relation $Q^j U^j = X^j P^j$ to the left hand side, yields that (175) is equivalent to

$$P^j \tilde{V}_a = \tilde{W}_a Q^i. \quad (182)$$

Let \tilde{V}_a and \tilde{W}_a be given by (3×3)–block matrices. They are of the form

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}.$$

The commutativity relation (182) results in

$$\begin{pmatrix}
p_{j11} & 0 & 0 \\
p_{j21} & 0 & 0 \\
p_{j31} & 0 & 0
\end{pmatrix} = \begin{pmatrix}
q_{i11} & q_{i12} & q_{i13} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}.$$

We obtain that $q_{i11} = p_{j11}$. Moreover, Q^i is of the block form

$$Q^i = \begin{pmatrix}
q_{i11} & 0 & 0 \\
q_{i21} & q_{i22} & q_{i23} \\
q_{i31} & q_{i32} & q_{i33}
\end{pmatrix}. \quad (183)$$

Let now \tilde{V}_a and \tilde{W}_a be given by (2×3)–block matrices. Their block form is given by

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix}.$$

We obtain by (182) the equality

$$\begin{pmatrix}
p_{j11} & 0 & 0 \\
p_{j21} & 0 & 0
\end{pmatrix} = \begin{pmatrix}
q_{i11} & q_{i12} & q_{i13} \\
0 & 0 & 0
\end{pmatrix}.$$

It follows that $p_{j11} = q_{i11}$ and that Q^i is of the same block form as in (183).

Let \tilde{V}_a and \tilde{W}_a be given by the (3×2)–block matrices

$$\begin{pmatrix}
1 & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix}.$$

207
We obtain by the commutativity relation (182) that

\[
\begin{pmatrix}
 p_{11}^i & 0 \\
p_{21}^i & 0 \\
p_{31}^i & 0
\end{pmatrix} =
\begin{pmatrix}
 q_{11}^i & q_{12}^i \\
 0 & 0 \\
 0 & 0
\end{pmatrix}.
\]

Thus, the blocks \(q_{11}^i \) and \(p_{11}^i \) coincide. We obtain also that \(Q^i \) has block form

\[
Q^i = \begin{pmatrix}
 q_{11}^i & 0 \\
 q_{21}^i & q_{22}^i
\end{pmatrix}.
\] \hspace{1cm} (184)

Finally, let \(\tilde{V}_a \) and \(\tilde{W}_a \) be given by \((2 \times 2)\)-block matrices of the form

\[
\begin{pmatrix}
 1 & 0 \\
 0 & 0
\end{pmatrix}.
\]

Then (182) results in

\[
\begin{pmatrix}
 p_{11}^i & 0 \\
p_{21}^i & 0
\end{pmatrix} = \begin{pmatrix}
 q_{11}^i & q_{12}^i \\
 0 & 0
\end{pmatrix}.
\]

We obtain that \(q_{11}^i = p_{11}^i \) and that \(Q^i \) has block form as in (184).

(v) Let \(V_a = U^j \tilde{V}_a (U^i)^{-1} \), \(W_a = X^j \tilde{W}_a (X^i)^{-1} \). We obtain that \(\tilde{V}_a : U_{\xi_i} \rightarrow U_{\xi_j} \) and \(\tilde{W}_a : X_{\xi_i} \rightarrow X_{\xi_j} \). Furthermore, (175) can be rewritten to \(Q^i U^j \tilde{V}_a (U^i)^{-1} = X^j \tilde{W}_a (X^i)^{-1} Q^i \). Applying the commutativity relation \(Q^i U^j = X^j P^i \) to the left hand side, and \(Q^i U^j = X^i P^i \) to the right hand side, yields that (175) is equivalent to

\[
P^j \tilde{V}_a = \tilde{W}_a P^i.
\] \hspace{1cm} (185)

Let \(\tilde{V}_a \) and \(\tilde{W}_a \) be given by \((3 \times 3)\)-block matrices. They are of the form

\[
\begin{pmatrix}
 0 & 0 & 1 \\
 0 & 0 & 0 \\
 0 & 0 & 0
\end{pmatrix}.
\]

Inserting this matrix in the respective positions in (185) gives

\[
\begin{pmatrix}
 0 & 0 & p_{11}^i \\
 0 & 0 & p_{21}^i \\
 0 & 0 & p_{31}^i
\end{pmatrix} = \begin{pmatrix}
 p_{31}^i & p_{32}^i & p_{33}^i \\
 0 & 0 & 0 \\
 0 & 0 & 0
\end{pmatrix}.
\]
We obtain that $p_{11}^i = p_{33}^i$ and that

$$P^i = \begin{pmatrix} p_{11}^i & p_{12}^i & p_{13}^i \\ p_{21}^i & p_{22}^i & p_{23}^i \\ 0 & 0 & p_{33}^i \end{pmatrix}.$$ \hfill (186)

Let \tilde{V}_a and \tilde{W}_a be given by (2×3)–block matrices. They are of the form

$$
\begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 0 \\
\end{pmatrix}.
$$

Thus, (185) results in

$$
\begin{pmatrix}
0 & 0 & p_{11}^j \\
0 & 0 & p_{21}^j \\
\end{pmatrix} =
\begin{pmatrix}
p_{31}^j & p_{32}^j & p_{33}^j \\
0 & 0 & 0 \\
\end{pmatrix}.
$$

We obtain that $p_{11}^j = p_{32}^j$ and that P^i is given by a block form as in (186).

Let \tilde{V}_a and \tilde{W}_a be given by (3×2)–block matrices:

$$
\begin{pmatrix}
0 & 1 \\
0 & 0 \\
0 & 0 \\
\end{pmatrix}.
$$

We obtain by (185) the equality

$$
\begin{pmatrix}
0 & p_{11}^j \\
0 & p_{21}^j \\
0 & p_{31}^j \\
\end{pmatrix} =
\begin{pmatrix}
p_{21}^j & p_{22}^j \\
0 & 0 \\
0 & 0 \\
\end{pmatrix}.
$$

It follows that $p_{11}^j = p_{22}^j$ and that the block form of P^i is given by

$$P^i = \begin{pmatrix} p_{11}^i & p_{12}^i \\ 0 & p_{22}^i \end{pmatrix}.$$ \hfill (187)

Let \tilde{V}_a and \tilde{W}_a be given by block matrices of block sizes 2×2:

$$
\begin{pmatrix}
0 & 1 \\
0 & 0 \\
\end{pmatrix}.
$$

The equality (185) results in

$$
\begin{pmatrix}
0 & p_{11}^j \\
0 & p_{21}^j \\
\end{pmatrix} =
\begin{pmatrix}
p_{21}^j & p_{22}^j \\
0 & 0 \\
\end{pmatrix}.
$$

We obtain that $p_{11}^j = p_{22}^j$ and that P^i is of block form as in (187).
(B) Commutativity relations on vertex i with respect to $b: k \rightarrow i \in Q^\text{ord}_1$.

This case is analogous to case (A). Note in particular that \tilde{V}_b is given by the same block forms as \tilde{V}_a in case (A). Due to the analogy, we only give the results of the calculations:

(ii) We consider $V_b = \tilde{V}_b$, $W_b = \tilde{W}_b$. We obtain for \tilde{V}_b and \tilde{W}_b both given by a (3×3)- or (3×2)-block matrix, that Q^i is of the following block form:

$$Q^i = \begin{pmatrix} q^i_{11} & q^i_{12} & 0 \\ q^i_{21} & q^i_{22} & 0 \\ q^i_{31} & q^i_{32} & q^i_{33} \end{pmatrix}.$$

Furthermore, we get in both cases that $q^i_{33} = q^i_{11}$. Let \tilde{V}_b and \tilde{W}_b be both given by a (2×3)- or (2×2)-block matrix. Then we obtain that

$$Q^i = \begin{pmatrix} q^i_{11} \\ q^i_{21} \\ q^i_{22} \end{pmatrix},$$

and the equality $q^i_{22} = q^i_{11}$.

(iii) Let $V_b = \tilde{V}_b \left(U^k\right)^{-1}$, $W_b = \tilde{W}_b \left(X^k\right)^{-1}$. Let \tilde{V}_b and \tilde{W}_b be both given by a (3×3)- or (3×2)-block matrix. We obtain the following block form of Q^i:

$$Q^i = \begin{pmatrix} q^i_{11} & q^i_{12} & 0 \\ q^i_{21} & q^i_{22} & 0 \\ q^i_{31} & q^i_{32} & q^i_{33} \end{pmatrix}.$$

If \tilde{V}_b and \tilde{W}_b are both given by (3×3)-block matrices, we have that $q^i_{33} = p^k_{33}$. If \tilde{V}_b and \tilde{W}_b are of size 3×2, we get that $q^i_{33} = p^k_{32}$. If \tilde{V}_b and \tilde{W}_b are both given by a (2×3)- or (2×2)-block matrix, then Q^i is of the following block form:

$$Q^i = \begin{pmatrix} q^i_{11} \\ q^i_{21} \\ q^i_{22} \end{pmatrix}. $$

Moreover, we obtain that $q^i_{22} = p^k_{33}$ if \tilde{V}_b and \tilde{W}_b are (2×3)-block matrices, and that $q^i_{22} = p^k_{32}$ if \tilde{V}_b and \tilde{W}_b are (2×2)-matrices.

(iv) We consider $V_b = U^i \tilde{V}_b$ and $W_b = X^i \tilde{W}_b$. Let \tilde{V}_b, \tilde{W}_b be both given by a (3×3)- or (3×2)-matrix. Then P^i is given by

$$P^i = \begin{pmatrix} p^i_{11} & p^i_{12} & p^i_{13} \\ 0 & p^i_{22} & p^i_{23} \\ 0 & p^i_{32} & p^i_{33} \end{pmatrix}.$$
We obtain also that $p_{i1}^i = q_{i1}^k$ in both cases.

Let now \tilde{V}_b and \tilde{W}_b both be given by a (2×3)- or (2×2)-block matrix. Then we obtain the following block form of P^i:

$$P^i = \begin{pmatrix} p_{i1}^i & p_{i2}^i & 0 \\ 0 & p_{i2}^i & p_{i3}^i \end{pmatrix}.$$

Furthermore, we get again the equality $p_{i1}^i = q_{i1}^k$ in both cases.

(v) Let $V_b = U^i \tilde{V}_b (U^k)^{-1}$, $W_b = X^i \tilde{W}_b (X^k)^{-1}$. We obtain for \tilde{V}_b, \tilde{W}_b both given by (3×3)- or (3×2)-block matrices that

$$P^i = \begin{pmatrix} p_{i1}^i & p_{i2}^i & p_{i3}^i \\ 0 & p_{i2}^i & p_{i3}^i \\ 0 & p_{i3}^i & p_{i3}^i \end{pmatrix}.$$

Additionally, we obtain the equality $p_{i1}^i = p_{i2}^k$ in the (3×3)-case, and $p_{i1}^i = p_{i3}^k$ in the (3×2)-case.

Let \tilde{V}_b, \tilde{W}_b be given by (2×3)- or (2×2)-block matrices. Then the block form of P^i is given by

$$P^i = \begin{pmatrix} p_{i1}^i & p_{i2}^i \\ 0 & p_{i2}^i \end{pmatrix}.$$

Moreover, we obtain that $p_{i1}^i = p_{i3}^k$ if \tilde{V}_b, \tilde{W}_b are of size (2×3), and $p_{i1}^i = p_{i3}^k$ if \tilde{V}_b, \tilde{W}_b are of size (2×2).

(C) Commutativity relations on vertex i with respect to $c : l \rightarrow i \in Q_{1 ord}$. We only consider V_c, W_c in the cases (7) and (9). Thus, we know that \tilde{V}_c terminates in V_i with basis given according to the filtration $0 \subset \text{im}(c) \subset \ker(a) \subset V_i$. Thus, the terminating vector space of \tilde{V}_c coincides with the starting vector space of V_c. It follows that \tilde{V}_c is given by a (3×3)- or (3×2)-block matrix. The same follows analogously for \tilde{W}_c. Proceeding analogously to (A) results in the following forms of Q^i and P^i (for both choices of \tilde{V}_c and \tilde{W}_c):

(ii) Let $V_c = \tilde{V}_c$, $W_c = \tilde{W}_c$. We obtain

$$Q^i = \begin{pmatrix} q_{i1}^i & q_{i2}^i & 0 \\ q_{i2}^i & q_{i2}^i & 0 \\ q_{i3}^i & q_{i3}^i & q_{i3}^i \end{pmatrix}$$

and the equality $q_{i33}^i = q_{i11}^i$.

(iii) Let $V_c = \tilde{V}_c (U^i)^{-1}$, $W_c = \tilde{W}_c (X^i)^{-1}$. Then Q^i is of the block form given in (188). Moreover, we obtain that $q_{i33}^i = p_{i33}^i$ for the (3×3)-block matrix \tilde{V}_b, and $q_{i33}^i = p_{i22}^i$ for the (3×2)-block matrix.
We want the following properties:

With the information gathered in \(\Sigma \), (A) - (D), we are now able to analyse the shape and correspondences within blocks of \(Q^i \) and \(P^i \) in all ten cases. We want the following properties:

\(\text{(iv)} \) Let \(V_c = U^i \tilde{V}_c, W_c = X^i \tilde{W}_c \). Then we have that

\[
P^i = \begin{pmatrix}
p_{11}^i & p_{12}^i & p_{13}^i \\
0 & p_{22}^i & p_{23}^i \\
0 & p_{32}^i & p_{33}^i
\end{pmatrix}.
\]

\((189) \)

It also follows that \(p_{11}^i = q_{11}^i \).

\(\text{(v)} \) Let \(V_c = U^i \tilde{V}_c (U^i)^{-1}, W_c = X^i \tilde{W}_c (X^i)^{-1} \). We obtain that \(P^i \) is of the block form (189). If \(\tilde{V}_b, \tilde{W}_b \) are given by a \((3 \times 3) \)-matrix, we have that \(p_{11}^i = p_{33}^i \). In the other case we get that \(p_{11}^i = p_{22}^i \).

\(\text{(D)} \) Commutativity relations on vertex \(i \) with respect to \(d : i \rightarrow p \in Q^\text{ord} \).

We consider \(V_d \) and \(W_d \) in the cases (8) and (9). Thus, \(\tilde{V}_d \) starts in \(V_i \) with basis according to the filtration \(0 \subset \text{im}(d) \subset \ker(d) \subset V_i \). It follows that \(\tilde{V}_b \) terminates in the same vector space in which \(\tilde{V}_d \) starts.

Because of this, \(\tilde{V}_d \) is given by a \((2 \times 3) \)- or \((3 \times 3) \)-block matrix. We obtain similar results for \(\tilde{W}_d \). Proceeding analogously to (A) results in the following block matrices for \(Q^i \) and \(P^i \) (for both choices of \(\tilde{V}_d, \tilde{W}_d \) in each case):

\(\text{(ii)} \) We consider \(V_d = \tilde{V}_d, W_d = \tilde{W}_d \). Then \(Q^i \) is given by

\[
Q^i = \begin{pmatrix}
q_{11}^i & 0 & 0 \\
q_{21}^i & q_{22}^i & q_{23}^i \\
q_{31}^i & q_{32}^i & q_{33}^i
\end{pmatrix}.
\]

\((190) \)

We obtain that \(q_{11}^i = q_{33}^p \) if \(\tilde{V}_b, \tilde{W}_b \) are of size \((3 \times 3) \). If \(\tilde{V}_b, \tilde{W}_b \) are \((2 \times 3) \)-matrices, the respective equality is given by \(q_{11}^i = q_{22}^p \).

\(\text{(iii)} \) Let \(V_d = \tilde{V}_d (U^i)^{-1}, W_d = \tilde{W}_d (X^i)^{-1} \). We obtain

\[
P^i = \begin{pmatrix}
q_{11}^i & q_{12}^i & q_{13}^i \\
q_{21}^i & q_{22}^i & q_{23}^i \\
0 & 0 & q_{33}^i
\end{pmatrix}.
\]

\((191) \)

and the equality \(p_{11}^i = p_{33}^p \) if \(\tilde{V}_b, \tilde{W}_b \) are given by square matrices, and \(p_{11}^i = q_{22}^p \) if \(\tilde{V}_b, \tilde{W}_b \) are non-square.

\(\text{(iv)} \) We consider \(V_d = U^p \tilde{V}_d, W_d = X^p \tilde{W}_d \). Then \(Q^i \) has the same block form as in (190). Furthermore, it follows that \(p_{11}^p = q_{11}^i \) in both cases.

\(\text{(v)} \) Let \(V_d = U^p \tilde{V}_d (U^i)^{-1}, W_d = X^p \tilde{W}_d (X^i)^{-1} \). Then \(P^i \) has block form as in (191) and \(p_{11}^p = p_{33}^i \).

With the information gathered in \(\Sigma \), (A) - (D), we are now able to analyse the shape and correspondences within blocks of \(Q^i \) and \(P^i \) in all ten cases.
\(Q^i U^i = W^i P^i \)

- \(Q^i \) is of lower triangular block form

- \(P^i \) is of upper triangular block form (diagonal form with respect to \(\varepsilon \))

Let \(X \) denote the link corresponding to the basis of the image of \(a \ (b, c, d, \text{respectively}) \) and let \(Y \) denote the link corresponding to a basis of the starting vector space without the basis of the kernel of \(a \ (b, c, d, \text{respectively}) \). We know that \(\sigma_\Lambda(X) = Y \). Then the respective blocks in \(Q^i, P^i \) and \(Q^j, P^j \) (\(Q^k, P^k, Q^l, P^l, Q^p, P^p \), respectively) coincide.

The first property follows by the definition of \(P^i \) in (171). The last property is given by the block equalities named in (A) - (D), (ii) - (v). We deduce the shapes of \(Q^i \) and \(P^i \) in each of the cases (1) - (10) from the information given by the computations (A) - (D) and (\(\Sigma \)).

1. In this case, \(\varepsilon \) is the only arrow incident to the vertex \(i \). It follows from (174) in (\(\Sigma \)) that \(P^i \) has the required diagonal block form. By construction, \(\varepsilon \) determines the basis of \(U_{\varepsilon i} \). The basis of \(U_{\varepsilon 0} \) is given by the standard basis which corresponds to the only link of the semichain \(R \). Thus, \(Q^i \) is given by a \((1 \times 1)\)-block matrix and we are done.

2. In this case, we either have that \(\tilde{V}_a \) and \(\tilde{W}_a \) are both given by a \((2 \times 2)\)- or a \((3 \times 2)\)-matrix. It follows from (A) that we obtain for the cases (ii) and (iv) that \(Q^i \) is of the form \(Q^i = \begin{pmatrix} q_{11}^i & 0 \\ q_{21}^i & q_{22}^i \end{pmatrix} \). The second filtration on the vertex \(i \) is the standard filtration. It follows that the \(P^i \) is a \((1 \times 1)\)-matrix and thus fulfills the requirements.

Similarly, we have for the cases (iii) and (v) that \(P^i = \begin{pmatrix} p_{11}^i & 0 \\ 0 & p_{22}^i \end{pmatrix} \), and that \(Q^i \) is a \((1 \times 1)\)-matrix.

3. This case is analogous to case (2).

4. The starting and terminating vector space of \(\tilde{V}_a \) are given by \(U_{\varepsilon a} \). The starting vector space of \(\tilde{V}_a \) differs from it and is given by \(U_{\varepsilon 0} \). It follows that we only combine (A) (ii) and (iv) with (\(\Sigma \)):

<table>
<thead>
<tr>
<th>(A)</th>
<th>give</th>
<th>((\Sigma))</th>
<th>gives</th>
<th>results in</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ii)/(iv)</td>
<td>(q_{12}^i = 0)</td>
<td>(q_{12}^i = q_{21}^i = 0)</td>
<td>(Q^i = \begin{pmatrix} q_{11}^i & 0 \ q_{21}^i & q_{22}^i \end{pmatrix}), (P^i = \begin{pmatrix} p_{11}^i & 0 \ 0 & p_{22}^i \end{pmatrix})</td>
<td></td>
</tr>
</tbody>
</table>

We see that \(Q^i \) and \(P^i \) satisfy the required conditions on their block form.
(5) The terminating vector space of \tilde{V}_b is given by $U_{\mathcal{R}_i}$, and the same property holds for \tilde{W}_b. Thus, we combine (B) (ii) and (iii) with (Σ) and obtain analogously to (4) that Q^i and P^i are of the required form.

(6) Note that the terminating vector space of \tilde{V}_b is given in a different basis than the starting vector space of \tilde{V}_a. Thus, we can have the following combinations of (A) and (B):

(A) (ii) with (B) (iv),(v)
(A) (iii) with (B) (ii),(iii)
(A) (iv) with (B) (iv),(v)
(A) (v) with (B) (ii),(iii).

Recall that \tilde{V}_a starts in $U_{\mathcal{C}_i}$ in the cases (iii) and (v). It starts in $U_{\mathcal{R}_i}$ in the cases (ii) and (iv). The terminating vector spaces are given for \tilde{V}_b similarly: in the cases (iv) and (v) it is given by $U_{\mathcal{C}_i}$ and in (ii) and (iii) by $U_{\mathcal{R}_i}$. Summing up the results gives

\[
\begin{array}{|c|c|c|c|c|}
\hline
(A) & \text{give(s)} & (B) & \text{give(s)} & \text{results in} \\
\hline
(ii)/(iv) & q_{12}^i = 0 & (iv)/(v) & p_{21}^i = 0 & Q^i = \begin{pmatrix} q_{11}^i & 0 \\ q_{21}^i & q_{22}^i \end{pmatrix}, P^i = \begin{pmatrix} p_{11}^i & p_{12}^i \\ 0 & p_{22}^i \end{pmatrix} \\
(iii)/(v) & p_{21}^i = 0 & (ii)/(iii) & q_{12}^i = 0 & Q^i = \begin{pmatrix} q_{11}^i & 0 \\ q_{21}^i & q_{22}^i \end{pmatrix}, P^i = \begin{pmatrix} p_{11}^i & p_{12}^i \\ 0 & p_{22}^i \end{pmatrix} \\
\hline
\end{array}
\]

We can see in the table above that Q^i and P^i have in each combination the required form.

(7) We have in contrast to (6) that the terminating vector space of \tilde{V}_b and the starting vector space of \tilde{V}_a coincide. Note that \tilde{V}_a is given by a (2×3)– or (3×3)–block matrix. The map \tilde{V}_b is given by a (3×2)– or (3×3)–block matrix. This allows the following combinations of (A) and (B) and gives the respective information:

\[
\begin{array}{|c|c|c|c|}
\hline
(A) & \text{give(s)} & (B) & \text{give(s)} \\
\hline
(ii)/(iv) & q_{12}^i = q_{13}^i = 0 & (ii)/(iii) & q_{13}^i = q_{23}^i = 0 \\
(iii)/(v) & p_{21}^i = p_{32}^i = 0 & (iv)/(v) & p_{21}^i = p_{31}^i = 0 \\
\hline
\end{array}
\]

The vector space whose basis is not determined by the filtration $0 \subset \text{im}(b) \subset \ker(a) \subset V_s$ is given by the standard basis. The map inheriting its block structure from this vector space is given by a (1×1)–matrix.
Summarising, we obtain the following block forms:

(A) (ii) and (iv): \(Q^i = \begin{pmatrix} q_{11}^i & 0 & 0 \\ q_{21}^i & q_{22}^i & 0 \\ q_{31}^i & q_{32}^i & q_{33}^i \end{pmatrix}, \quad P^i = \begin{pmatrix} p_{11}^i \\ p_{12}^i \\ p_{13}^i \\ p_{22}^i \\ p_{23}^i \\ p_{33}^i \end{pmatrix} \)

(A) (iii) and (v): \(Q^i = \begin{pmatrix} q_{11}^i \end{pmatrix}, \quad P^i = \begin{pmatrix} p_{11}^i \\ p_{12}^i \\ p_{13}^i \\ 0 \\ 0 \\ p_{33}^i \end{pmatrix} \)

(8) This case is analogous to the cases (4) and (7) combined. This implies that we consider the combinations from (7) for (A) (ii) and (iv). We obtain for all those combinations that

\[Q^i = \begin{pmatrix} q_{11}^i & 0 & 0 \\ q_{21}^i & q_{22}^i & 0 \\ q_{31}^i & q_{32}^i & q_{33}^i \end{pmatrix} \]

In contrast to (7), the matrix \(P^i \) is not given by one block, but is determined by \(\tilde{V}_c \) as in (3):

\[P^i = \begin{pmatrix} p_{11}^i & 0 \\ 0 & p_{22}^i \end{pmatrix} \]

(9) Note that we have the same combinations of (A) and (B) as in (6). The terminating vector space of \(\tilde{V}_c \) coincides with the starting vector space of \(\tilde{V}_a \). We obtain for (A) and (C) the following possible combinations:

(A) (ii) with (C) (ii),(iii)
(A) (iii) with (C) (iv), (v)
(A) (iv) with (C) (ii),(iii)
(A) (v) with (C) (iv), (v).

We sum up the information in the following table:

<table>
<thead>
<tr>
<th>(A)</th>
<th>give(s)</th>
<th>(B)</th>
<th>give(s)</th>
<th>(C)</th>
<th>give(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ii)/(iv)</td>
<td>(q_{12}^i = q_{13}^i = 0)</td>
<td>(iv)/(iii)</td>
<td>(p_{21}^i = q_{23}^i = 0)</td>
<td>(ii)/(iii)</td>
<td>(q_{13}^i = 0)</td>
</tr>
<tr>
<td>(iii)/(v)</td>
<td>(p_{31}^i = p_{32}^i = 0)</td>
<td>(ii)/(iii)</td>
<td>(q_{12}^i = 0)</td>
<td>(iv)/(v)</td>
<td>(p_{21}^i = p_{31}^i = 0)</td>
</tr>
</tbody>
</table>

We obtain the block forms:

(A) (ii) and (iv): \(Q^i = \begin{pmatrix} q_{11}^i & 0 & 0 \\ q_{21}^i & q_{22}^i & 0 \\ q_{31}^i & q_{32}^i & q_{33}^i \end{pmatrix}, \quad P^i = \begin{pmatrix} p_{11}^i \\ p_{12}^i \\ 0 \\ p_{22}^i \\ p_{23}^i \\ 0 \end{pmatrix} \)

(A) (iii) and (v): \(Q^i = \begin{pmatrix} q_{11}^i \\ q_{21}^i \\ q_{22}^i \end{pmatrix}, \quad P^i = \begin{pmatrix} p_{11}^i \\ p_{12}^i \\ p_{13}^i \\ 0 \\ 0 \\ p_{33}^i \end{pmatrix} \)

which are of the wanted form.
We consider the same combinations of (A) and (B) as in (6). The following combinations are allowed for (B) and (D):

- (B) (ii) with (D) (ii), (iv)
- (B) (iii) with (D) (ii), (iv)
- (B) (iv) with (D) (iii), (v)
- (B) (v) with (D) (iii), (v).

We sum up the information obtained from the commutativities of the respective possible combinations:

<table>
<thead>
<tr>
<th>(A)</th>
<th>give(s)</th>
<th>(B)</th>
<th>give(s)</th>
<th>(D)</th>
<th>give(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ii)/(iv)</td>
<td>q^{i}_{21} = 0</td>
<td>(iv)/(v)</td>
<td>p^{i}{21} = p^{i}{31} = 0</td>
<td>(iii)/(v)</td>
<td>p^{i}{31} = p^{i}{32} = 0</td>
</tr>
<tr>
<td>(iii)/(v)</td>
<td>p^{i}_{21} = 0</td>
<td>(ii)/(iii)</td>
<td>q^{i}{13} = q^{i}{23} = 0</td>
<td>(ii)/(iv)</td>
<td>q^{i}{12} = q^{i}{13} = 0</td>
</tr>
</tbody>
</table>

We obtain the block forms

- (A) (ii) and (iv): \(Q^{i} = \begin{pmatrix} q^{i}_{11} & 0 & 0 \\ q^{i}_{21} & q^{i}_{22} & 0 \\ q^{i}_{31} & q^{i}_{32} & q^{i}_{33} \end{pmatrix} \)
 \(P^{i} = \begin{pmatrix} p^{i}_{11} & p^{i}_{12} & p^{i}_{13} \\ 0 & p^{i}_{22} & p^{i}_{23} \\ 0 & 0 & p^{i}_{33} \end{pmatrix} \)

- (A) (iii) and (v): \(Q^{i} = \begin{pmatrix} q^{i}_{11} & 0 & 0 \\ 0 & q^{i}_{22} & 0 \\ q^{i}_{31} & q^{i}_{32} & q^{i}_{33} \end{pmatrix} \)
 \(P^{i} = \begin{pmatrix} p^{i}_{11} & 0 & 0 \\ p^{i}_{12} & p^{i}_{13} \end{pmatrix} \)

The block matrix \(Q^{i} \) is of lower triangular and \(P^{i} \) of upper triangular form. Thus, they satisfy the condition.

This case is a combination of the cases (9) (with respect to the arrows c and a) and (10) (with respect to the arrows b and d). Thus, we consider the same combinations of (A) and (C) ((B) and (D)) as in (9) ((10)). We sum up the information obtained from those combinations:

<table>
<thead>
<tr>
<th>(A)</th>
<th>give(s)</th>
<th>(B)</th>
<th>give(s)</th>
<th>(C)</th>
<th>give(s)</th>
<th>(D)</th>
<th>give(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(ii)/(iv)</td>
<td>q^{i}_{12} = 0</td>
<td>(iv)/(v)</td>
<td>p^{i}_{21} = 0</td>
<td>(ii)/(iii)</td>
<td>q^{i}_{13} = 0</td>
<td>(iii)/(v)</td>
<td>p^{i}_{31} = 0</td>
</tr>
<tr>
<td>(iii)/(v)</td>
<td>p^{i}_{31} = 0</td>
<td>(ii)/(iii)</td>
<td>q^{i}_{13} = 0</td>
<td>(iv)/(v)</td>
<td>p^{i}_{21} = 0</td>
<td>(ii)/(iv)</td>
<td>q^{i}_{12} = 0</td>
</tr>
</tbody>
</table>

In combination, this data results for (A) (ii)-(v) in the following block forms of \(P^{i} \) and \(Q^{i} \):

\[
Q^{i} = \begin{pmatrix} q^{i}_{11} & 0 & 0 \\ q^{i}_{21} & q^{i}_{22} & 0 \\ q^{i}_{31} & q^{i}_{32} & q^{i}_{33} \end{pmatrix}, \quad P^{i} = \begin{pmatrix} p^{i}_{11} & p^{i}_{12} & p^{i}_{13} \\ 0 & p^{i}_{22} & p^{i}_{23} \\ 0 & 0 & q^{i}_{33} \end{pmatrix}.
\]

We see that they are both of the required lower and respectively upper triangular block form.
5.3 On the computation of inverses

Let U be a \mathbb{X}_0-representation and let U^i be one of the linear maps of U, $i \in \{1, \ldots, n\}$. In this section, we describe how to obtain the inverse of U^i. Recall that U^i is invertible by construction.

We observe at first that any row and any column band of U^i consists of maximal two non-zero block entries and at least one non-zero block entry. Recall that we only obtain elementary subchains of length 2 or 3. Any link x (y) which is not contained in an elementary subchain of length 3 thus gives a row (column) consisting of exactly one non-zero entry. Let x and y be contained in the elementary subchain $e_{x,y}(g)$ of length 2. We have that

$$U^i(x,z) = \begin{cases} 1 & \text{if } z = y \text{ and } e_{x,y}(g) \neq e_2(g), \\ F_\varphi & \text{if } z = y \text{ and } e_{x,y}(g) = e_2(g), \\ 0 & \text{else}, \end{cases}$$

$$U^i(z,y) = \begin{cases} 1 & \text{if } z = x \text{ and } e_{x,y}(g) \neq e_2(g), \\ F_\varphi & \text{if } z = x \text{ and } e_{x,y}(g) = e_2(g), \\ 0 & \text{else}. \end{cases}$$

For any elementary subchain of length 3, we consider several entries in U^i. Any elementary subchain of the form

$$x \sim y \sim z - a$$

with $y, z \in \mathcal{C}_i$, $x, a \in \mathcal{R}_i$, results in the following entries in U^i:

$$\begin{array}{c|c|c|c|c|c} x & y & z & a & y & z \\ \hline x & 1 & 1 & \text{or} & a & 0 & 1 \\ a & 0 & 1 & x & 1 & 1 \end{array}$$

(194)

An elementary subchain of the form

$$w \sim x \sim y \sim z$$

with $x, y \in \mathcal{C}_i$ and $w, z \in \mathcal{R}_i$ gives the following entries in U^i:

$$\begin{array}{c|c|c|c|c|c} w & x & y & z & x & y \\ \hline w & 1 & 0 & \text{or} & z & 1 & 1 \\ z & 1 & 1 & w & 1 & 0 \end{array}$$

(195)

In case of an L-cycle, the elementary subchain $e_2(g)$ can be involved. If $e_2(g) = z - a$, then $x \sim y \sim z - a$ results in the following entries in U^i:

$$\begin{array}{c|c|c|c|c|c} x & y & z & a & y & z \\ \hline x & 1 & 1 & \text{or} & a & 0 & F_\varphi \\ a & 0 & F_\varphi & x & 1 & 1 \end{array}$$

(196)

217
The elementary subchain $w - x \sim y - z$ with $e_2(g) = w - x$ gives

\[
\begin{array}{c|cc}
 w & x & y \\
 z & F_{\varphi} & 0 \\
 \hline
 x & 1 & 1 \\
 y & w & F_{\varphi} & 0
\end{array}
\]

Note that the entries described in (194) - (197) do not have to arise in one block as depicted here. The entries can be separated by several columns or rows. In order to compute the inverse of U^i, we can rearrange the columns and rows such that the non-zero entries are given by blocks as described above (i.e. the respective entries are not separated by zero entries). Those blocks lie on the diagonal. We denote the rearranged matrix by \hat{U}^i and neglect any band structure for this matrix. In order to compute the inverse of \hat{U}^i, it is enough to compute the inverses of the respective blocks:

\[
\begin{align*}
(1 & 1)^{-1} = (1 & -1), & (0 & 1)^{-1} = (-1 & 1) \\
(1 & 0)^{-1} = (1 & 0), & (1 & 1)^{-1} = (0 & 1) \\
(1 & 1)^{-1} = (1 & -F_{\varphi}^{-1}), & (0 & F_{\varphi})^{-1} = (-F_{\varphi}^{-1} & 1) \\
(0 & F_{\varphi})^{-1} = (0 & F_{\varphi}), & (1 & 1)^{-1} = (0 & F_{\varphi}^{-1})
\end{align*}
\]

Rearranging the rows and columns of $(\hat{U}^i)^{-1}$ back to the order given in U^i, we obtain $(U^i)^{-1}$ with the band structure deduced from U^i.

Example 5.7. Let Λ be given as in Example 2.3.1. by the quiver

\[
\begin{align*}
\varepsilon & \circ \varepsilon \\
\end{align*}
\]

with $Sp = \{\varepsilon\}$, $R = \{a^2\}$.

(i) Let $w = \varepsilon^*a\varepsilon^*$ be an asymmetric string. Its corresponding Σ-chain is given by

\[
g_w : \begin{array}{cccccccc}
R_{12} & \sim & C_{\varepsilon^*} & \sim & R_{11} & \sim & R_{13} & \sim & C_{\varepsilon^*} & \sim & C_{\varepsilon^*} & \sim & R_{12} \\
\varepsilon_0 & \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & \varepsilon_4 & \varepsilon_5 & \varepsilon_6 & \varepsilon_7 \\
\end{array}
\]

The \overline{X}_0-representation $U(g_w)$ has one matrix U^1. It is given by

\[
U^1 = \begin{bmatrix}
 x_1 & 0 & 1 & 0 \\
 x_2 & 1 & 0 & 1 \\
 x_3 & 0 & 0 & 0 \\
 x_4 & 0 & 0 & 1 \\
\end{bmatrix}
\]

218
We consider the following U^1:

$$
U^1 = \begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{pmatrix}
$$

Applying (198) to the respective blocks yields

$$
(U^1)^{-1} = \begin{pmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
$$

We obtain be reordering of the columns and rows:

$$
U^1 = \begin{pmatrix}
1 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
$$

(ii) Let w_z be a symmetric band with $w_p = \varepsilon^{*}a\varepsilon^{*}a^{-1}$. Its corresponding L-cycle is given by

$$
g_{w_z} : C_{\varepsilon^{*}} \sim C_{\varepsilon^{*}} - R_{11} \sim R_{13} - C_{\varepsilon^{*}} \sim C_{\varepsilon^{*}} - R_{13} \sim R_{11}
$$

We obtain

$$
U^1 = \begin{pmatrix}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & F_{p} & 0 \\
1 & 0 & 1 & 0
\end{pmatrix}
$$

We rearrange as follows:

$$
U^1 = \begin{pmatrix}
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & F_{p} & 0 \\
0 & 0 & 1 & 1
\end{pmatrix}
$$
and compute its inverse according to (199) and (201):

\[
(U^1)^{-1} = \begin{pmatrix}
 x_3 & x_6 & x_2 & x_7 \\
 x_5 & 0 & 1 & 0 & 0 \\
 x_4 & 1 & -1 & 0 & 0 \\
 x_1 & 0 & 0 & F_{\varphi}^{-1} & 0 \\
 x_0 & 0 & 0 & -F_{\varphi}^{-1} & 1 \\
\end{pmatrix}
\]

Arranging the rows and columns according to \(U^1\) gives

\[
(U^1)^{-1} = \begin{pmatrix}
 x_3 & x_6 & x_2 & x_7 \\
 x_0 & 0 & 0 & F_{\varphi}^{-1} & 1 \\
 x_4 & 1 & -1 & 0 & 0 \\
 x_1 & 0 & 0 & F_{\varphi}^{-1} & 0 \\
 x_5 & 0 & 1 & 0 & 0 \\
\end{pmatrix}
\]

Remark 5.8. Keep in mind that \(U^i\) must not always be unique. Consider again Example 5.7 (ii). In \(U^1\), we can also switch the columns \(x_5\) and \(x_4\) and the rows \(x_7\) and \(x_2\). Then we obtain the matrix

\[
(U^1)' = \begin{pmatrix}
 x_4 & x_5 & x_1 & x_0 \\
 x_3 & 1 & 1 & 0 & 0 \\
 x_6 & 0 & 1 & 0 & 0 \\
 x_7 & 0 & 0 & 1 & 1 \\
 x_2 & 0 & 0 & F_{\varphi} & 0 \\
\end{pmatrix}
\]

Its inverse is given by

\[
[(U^1)']^{-1} = \begin{pmatrix}
 x_3 & x_6 & x_7 & x_2 \\
 x_4 & 1 & -1 & 0 & 0 \\
 x_5 & 0 & 1 & 0 & 0 \\
 x_1 & 0 & 0 & F_{\varphi}^{-1} & 0 \\
 x_0 & 0 & 0 & 1 & -F_{\varphi}^{-1} \\
\end{pmatrix}
\]

Rearranging its rows and columns back, we obtain the same \((U^1)^{-1}\) as in the example.
5.4 The image of F in terms of strings and bands

We analyse in this section the modules in the image of F in terms of strings and bands as defined in Subsection 3.2. Recall that an α-relation in an \mathcal{L}–graph corresponds to a letter w_i. A β-relation indicates a change between the bases according to the two constructed filtrations of V_i. Thus, we are especially interested in the α–relations of the \mathcal{L}–graph. In particular, we want to examine the entries in the matrix which come from links incident to the α–relations and see what happens to them under the action of F.

Keep in mind that we are going to compose the results in the notation of strings and bands and thus also change within the proofs to this notation at some point.

Lemma 5.9. Let g be an \mathcal{L}–graph and denote by $U_s(g)$ ($U(g, V)$) a corresponding representation where V is - in case of g being a cycle - the vector space given according to some φ in the construction, and some s such that $\psi_s \in \Psi(g)$.

(i) Any subchain of the form $x_{i-1} - x_i \sim x_{i+1} - x_{i+2}$ of g that, in case of a cycle, does not contain $e_2(g)$, results in the following action in $F(U_s(g))$ ($F(U(g, V))$):

\[
\begin{align*}
x_{i-1} &\xrightarrow{\varepsilon=1} x_{i+2} \quad \text{if } g \text{ is an } \mathcal{L} \text{-chain with } \psi_s(x_i) = 1, \psi_s(x_{i+1}) = -1, \\
x_{i-1} &\xrightarrow{\varepsilon=1} x_{i+2} \quad \text{if } g \text{ is an } \mathcal{L} \text{-chain with } \psi_s(x_i) = -1, \psi_s(x_{i+1}) = 1, \\
V_{i-1} &\xrightarrow{\varepsilon=1} V_{i+2} \quad \text{if } g \text{ is an } \mathcal{L} \text{-cycle, with } V_{i-1}, V_{i+2} \text{ disjoint copies of } V,
\end{align*}
\]

(ii) Any subchain of the form $x_{i-1} - \overline{x_i} \sim x_{i+1} - x_{i+2}$ of g that, in case of a cycle, does not contain $e_2(g)$, results in the following action in $F(U_s(g))$ ($F(U(g, V))$):

\[
\begin{align*}
x_{i-1} &\xleftarrow{\varepsilon=1} x_{i+2} \quad \text{if } g \text{ is an } \mathcal{L} \text{-chain with } \psi_s(x_i) = 1, \psi_s(x_{i+1}) = -1, \\
x_{i-1} &\xleftarrow{\varepsilon=1} x_{i+2} \quad \text{if } g \text{ is an } \mathcal{L} \text{-chain with } \psi_s(x_i) = -1, \psi_s(x_{i+1}) = 1, \\
V_{i-1} &\xleftarrow{\varepsilon=1} V_{i+2} \quad \text{if } g \text{ is an } \mathcal{L} \text{-cycle, with } V_{i-1}, V_{i+2} \text{ disjoint copies of } V.
\end{align*}
\]

Proof. Recall that $V_{\varepsilon} = U^i \tilde{V}_{\varepsilon} (U^i)^{-1}$ where $i = s(\varepsilon)$ and U^i belongs to $U_s(g)$ ($U(g, V)$). Denote by $M(x_i, x_j)$ the entry in a matrix M in the row indexed by x_i and in the column indexed by x_j. In case of an \mathcal{L}–cycle, this entry is a block of size $\deg(\varphi) \times \deg(\varphi)$. We show the statement for g an \mathcal{L}–chain. The proof for g an \mathcal{L}–cycle is analogous. Recall that any $\psi \in \Psi(g)$ is uniquely defined for \mathcal{L}–cycles (Subsection 4.1.4).

(i) Let first $\psi_s(x_i) = 1$ and $\psi_s(x_{i+1}) = -1$. Note that there do not exist elementary subchains of type 4 for $\overline{\mathcal{X}}_\Lambda$ (see Remark 4.73). Thus, we
can determine the respective entries in U^i, $(U^i)^{-1}$ and \hat{V}_ε (see Section 5.3):

\[
U^i(x_{i-1}, x) = \begin{cases}
1 & \text{if } x = x_i, \\
0 & \text{else,}
\end{cases}
\]

\[
U^i(x_{i+2}, x) = \begin{cases}
1 & \text{if } x \in \{x_i, x_{i+1}\}, \\
0 & \text{else,}
\end{cases}
\]

\[
U^i(x, x_i) = \begin{cases}
1 & \text{if } x \in \{x_{i-1}, x_{i+2}\}, \\
0 & \text{else,}
\end{cases}
\]

\[
U^i(x, x_{i+1}) = \begin{cases}
1 & \text{if } x = x_{i+2}, \\
0 & \text{else,}
\end{cases}
\]

\[
\hat{V}_\varepsilon(x, y) = \begin{cases}
1 & \text{if } x = y \in P(C^*_i), \\
0 & \text{else,}
\end{cases}
\]

\[
(U^i)^{-1}(x_{i-1}, x) = \begin{cases}
1 & \text{if } x = x_{i-1}, \\
0 & \text{else,}
\end{cases}
\]

\[
(U^i)^{-1}(x_{i+1}, x) = \begin{cases}
-1 & \text{if } x = x_{i-1}, \\
1 & \text{if } x = x_{i+2}, \\
0 & \text{else,}
\end{cases}
\]

\[
(U^i)^{-1}(x, x_{i-1}) = \begin{cases}
1 & \text{if } x = x_{i-1}, \\
-1 & \text{if } x = x_{i-1}, \\
0 & \text{else,}
\end{cases}
\]

\[
(U^i)^{-1}(x, x_{i+2}) = \begin{cases}
1 & \text{if } x = x_{i+1}, \\
0 & \text{else.}
\end{cases}
\]
We compute $\tilde{V}_\varepsilon (U^i)^{-1}$ and denote its entries by (\cdot, \cdot):

$$(x_i, x) = \sum_l \tilde{V}_\varepsilon(x_i, l) (U^i)^{-1} (l, x) = (U^i)^{-1} (x_i, x) = \begin{cases} 1 & \text{if } x = x_{i-1}, \\ 0 & \text{else,} \end{cases}$$

$$(x_i, x_{i+1}) = \sum_l \tilde{V}_\varepsilon(x_i + 1, l) (U^i)^{-1} (l, x) = 0,$$

$$(x, x_{i-1}) = \sum_l \tilde{V}_\varepsilon(x, l) (U^i)^{-1} (l, x_{i-1})$$

$$= \tilde{V}_\varepsilon(x, x_i) - \tilde{V}_\varepsilon(x, x_{i+1}) = \begin{cases} 1 & \text{if } x = x_i, \\ 0 & \text{else,} \end{cases},$$

$$(x, x_{i+2}) = \sum_l \tilde{V}_\varepsilon(x, l) (U^i)^{-1} (l, x_{i+2})$$

$$= \tilde{V}_\varepsilon(x, x_{i+1}) = 0.$$

Applying (208)-(213), we compute $V_\varepsilon = U^i \tilde{V}_\varepsilon (U^i)^{-1}$:

$$V_\varepsilon(x_{i-1}, x) = \sum_l U^i(x_{i-1}, l)(l, x) = (x_i, x) = \begin{cases} 1 & \text{if } x = x_{i-1}, \\ 0 & \text{else,} \end{cases},$$

$$V_\varepsilon(x, x_{i-1}) = \sum_l U^i(x, l)(l, x_{i-1}) = \begin{cases} 1 & \text{if } x \in \{x_{i-1}, x_{i+2}\}, \\ 0 & \text{else,} \end{cases},$$

$$V_\varepsilon(x_{i+2}, x) = \sum_l U^i(x_{i+2}, l)(l, x)$$

$$= (x_i, x) + (x_{i+1}, x) = \begin{cases} 1 & \text{if } x = x_{i-1}, \\ 0 & \text{else,} \end{cases},$$

$$V_\varepsilon(x, x_{i+2}) = \sum_l U^i(x, l)(l, x_{i+2}) = 0.$$

We see that ε acts as follows on the basis element x_{i-1} of V_i:

$$x_{i-1} \xrightarrow{\varepsilon} x_{i-1} + x_{i+2}. \quad (214)$$

We can rewrite (214) to

$$x_{i-1} \xrightarrow{\varepsilon} -x_{i+2}$$

which gives the statement.

Let now $\psi(x_i) = -1$ and $\psi(x_{i+1}) = 1$. Proceeding analogously to the first part, we obtain that

$$x_{i-1} \xrightarrow{\varepsilon} -x_{i+2}$$
(ii) The statement follows analogously to (i). For \(\psi_s(x_i) = 1 \) and \(\psi_s(x_{i+1}) = -1 \), the entries of interest in \(U^i \) and \((U^i)^{-1} \) are given as follows:

\[
U^i(x_{i-1}, x) = \begin{cases}
1 & \text{if } x \in \{ x_i, x_{i+1} \}, \\
0 & \text{else,}
\end{cases}
\]

\[
U^i(x_{i+2}, x) = \begin{cases}
1 & \text{if } x = x_{i+1}, \\
0 & \text{else,}
\end{cases}
\]

\[
U^i(x, x_i) = \begin{cases}
1 & \text{if } x = x_{i-1}, \\
0 & \text{else,}
\end{cases}
\]

\[
U^i(x, x_{i+1}) = \begin{cases}
1 & \text{if } x \in \{ x_{i-1}, x_{i+2} \}, \\
0 & \text{else,}
\end{cases}
\]

\[
(U^i)^{-1}(x_i, x) = \begin{cases}
-1 & \text{if } x = x_{i+2}, \\
1 & \text{if } x = x_i, \\
0 & \text{else,}
\end{cases}
\]

\[
(U^i)^{-1}(x_{i+1}, x) = \begin{cases}
1 & \text{if } x = x_{i+2}, \\
0 & \text{else,}
\end{cases}
\]

\[
(U^i)^{-1}(x, x_{i-1}) = \begin{cases}
1 & \text{if } x = x_i, \\
0 & \text{else,}
\end{cases}
\]

\[
(U^i)^{-1}(x, x_{i+2}) = \begin{cases}
-1 & \text{if } x = x_i, \\
1 & \text{if } x = x_{i+1}, \\
0 & \text{else.}
\end{cases}
\]

Computing \(V_\varepsilon \) results in

\[
x_{i+2} \xrightarrow{\varepsilon} -x_{i-1}.
\]

Similarly, we obtain in the case \(\psi_s(x_i) = -1, \psi_s(x_{i+1}) = 1 \) that

\[
x_{i+2} \xrightarrow{\varepsilon} -x_{i-1}.
\]

\[\square\]

Remark 5.10. Note that the case \(\psi_s(x_i) = -1, \psi_s(x_{i+1}) = 1 \) only occurs for \(\Sigma \)-chains \(g \) with two double ends when using the method described in Remark 4.58 in order to construct the \(\overline{\Phi} \)-representation \(U_s(g, p) \). We observe that we either have \(\psi_s(x_i) = -1, \psi_s(x_{i+1}) = 1 \) or \(\psi_s(x_i) = 1, \psi_s(x_{i+1}) = -1 \) for such \(\Sigma \)-chains. This is due to the definition of the maps \(\psi^*_s(g) \) for the \(\Sigma \)-chain \(g \): \(\psi^*_s(x^*_i) = -\psi_s(x_{m+1-i}) \) (see Remark 4.49) where \(x^*_i \in g_0^*, x_{m+1-i} \in g_0 \), and we have in particular that \(x^*_i = x_{m+1-i} \) (see Definition 4.22).
Lemma 5.11. Let \(g \) be an \(\Sigma \)-graph and denote by \(U(g) \) (\(U(g, V) \)) a corresponding representation where \(V \) describes - in case of \(g \) being an \(\Sigma \)-cycle - the vector space corresponding to some \(\varphi \) in the construction. Let \(x_i \) \(\in \) basis of \(\text{im}(a) \) and \(x_{i+1} \) \(\in \) basis of \(V_i \oplus \ker(a) \) be two links in \(g_0 \), where \(a : i \rightarrow j \in Q_{\text{ord}}^\text{ord} \).

(i) Let \(x_i, x_{i+1} \in \mathfrak{C} \). Then any subchain of the form \(x_{i-1} \xleftarrow{a} x_i \xrightarrow{a} x_{i+1} - x_{i+2} \) of \(g \) that, in case of a cycle, does not contain \(e_2(g) \), results in the following action in \(F(U(g)) \) (\(F(U(g, V)) \)):

\[
x_{i-1} \xleftarrow{a} x_i \xrightarrow{a} x_{i+2} \quad \text{if } g \text{ is an } \Sigma \text{-chain}
\]

\[
V_{i-1} \xleftarrow{a} V_{i+2} \quad \text{if } g \text{ is an } \Sigma \text{-cycle}, V_{i-1}, V_{i+2} \text{ disjoint copies of } V
\]

(ii) Let \(x_i, x_{i+1} \in \mathfrak{R} \). Any subchain of the form \(x_{i-1} \xleftarrow{a} x_i \xrightarrow{a} x_{i+1} - x_{i+2} \) of \(g \) that, in case of a cycle, does not contain \(e_2(g) \), results in the following action in \(F(U(g)) \) (\(F(U(g, V)) \)):

\[
x_i \xleftarrow{a} x_{i+1} \quad \text{if } g \text{ is an } \Sigma \text{-chain}
\]

\[
V_i \xleftarrow{a} V_{i+1} \quad \text{if } g \text{ is an } \Sigma \text{-cycle}, V_i, V_{i+1} \text{ disjoint copies of } V
\]

(iii) Let \(x_i \in \mathfrak{C}, x_{i+1} \in \mathfrak{R} \). Any subchain of the form \(x_{i-1} \xleftarrow{a} x_i \xrightarrow{a} x_{i+1} - x_{i+2} \) of \(g \) that, in case of a cycle, does not contain \(e_2(g) \), results in the following action in \(F(U(g)) \) (\(F(U(g, V)) \)):

\[
x_{i-1} \xleftarrow{a} x_{i+1} \quad \text{if } g \text{ is an } \Sigma \text{-chain},
\]

\[
V_{i-1} \xleftarrow{a} V_{i+1} \quad \text{if } g \text{ is an } \Sigma \text{-cycle}, V_{i-1}, V_{i+1} \text{ disjoint copies of } V
\]

(iv) Let \(x_i \in \mathfrak{R}, x_{i+1} \in \mathfrak{C} \). Any subchain of the form \(x_{i-1} \xleftarrow{a} x_i \xrightarrow{a} x_{i+1} - x_{i+2} \) of \(g \) that, in case of a cycle, does not contain \(e_2(g) \), results in the following action in \(F(U(g)) \) (\(F(U(g, V)) \)):

\[
x_i \xleftarrow{a} x_{i+2} \quad \text{if } g \text{ is an } \Sigma \text{-chain},
\]

\[
V_i \xleftarrow{a} V_{i+2} \quad \text{if } g \text{ is an } \Sigma \text{-cycle}, V_i, V_{i+2} \text{ disjoint copies of } V
\]

Proof. We use the same notation as in the proof of Lemma 5.9. We show the statement for \(g \) an \(\Sigma \)-chain. The proof for \(g \) an \(\Sigma \)-cycle is analogous.

(i) Note that both links \(x_{i-1} \) and \(x_{i+2} \) belong to row label sets. Thus, \(x_{i-1} \neq x_{i-2} \) and \(x_{i+2} \neq x_{i+3} \). It follows that \(x_i \) belongs to exactly one elementary subchain which is of length 2 (\(x_{i-1} - x_i \)) and \(x_{i+1} \) also belongs to exactly one elementary subchain which is of length 2 (\(x_{i+1} - x_{i+2} \).}
Recall that $V_a = U^j \tilde{V}_a (U^i)^{-1}$. We obtain for the respective matrix components:

\[
U^j(x, x_i) = \begin{cases} 1 & \text{if } x = x_{i-1}, \\ 0 & \text{else,} \end{cases} \quad U^j(x_{i-1}, x) = \begin{cases} 1 & \text{if } x = x_i, \\ 0 & \text{else,} \end{cases}
\]

(215)

\[
U^i(x, x_{i+1}) = \begin{cases} 1 & \text{if } x = x_{i+2}, \\ 0 & \text{else,} \end{cases} \quad U^i(x_{i+2}, x) = \begin{cases} 1 & \text{if } x = x_{i+1}, \\ 0 & \text{else,} \end{cases}
\]

(216)

\[
\tilde{V}_a(x, x_{i+1}) = \begin{cases} 1 & \text{if } x = x_i, \\ 0 & \text{else,} \end{cases} \quad \tilde{V}_a(x, x) = \begin{cases} 1 & \text{if } x = x_{i+1}, \\ 0 & \text{else.} \end{cases}
\]

(217)

We compute the relevant entries of the inverse of U^i:

\[
(U^i)^{-1}(x_{i+1}, x) = \begin{cases} 1 & \text{if } x = x_{i+2}, \\ 0 & \text{else,} \end{cases}
\]

(218)

\[
(U^i)^{-1}(x, x_{i+2}) = \begin{cases} 1 & \text{if } x = x_{i+1}, \\ 0 & \text{else.} \end{cases}
\]

(219)

Denote by (\cdot, \cdot) the respective entries of the product $\tilde{V}_a (U^i)^{-1}$. We obtain the following from (215) - (219):

\[
(x, x_{i+2}) = \sum_l \tilde{V}_a(x, l) (U^i)^{-1}(l, x_{i+2}) = \tilde{V}_a(x, x_{i+1}) = \begin{cases} 1 & \text{if } x = x_i, \\ 0 & \text{else,} \end{cases}
\]

(220)

\[
(x_i, x) = \sum_l \tilde{V}_a(x_i, l) (U^i)^{-1}(l, x) = (U^i)^{-1}(x_{i+1}, x) = \begin{cases} 1 & \text{if } x = x_{i+2}, \\ 0 & \text{else.} \end{cases}
\]

(221)

We use the results from (220) and (221) to finish the computation of V_a:

\[
V_a(x_{i-1}, x) = \sum_l U^j(x_{i-1}, l)(l, x) = (x_i, x) = \begin{cases} 1 & \text{if } x = x_{i+2}, \\ 0 & \text{else,} \end{cases}
\]

\[
V_a(x, x_{i+2}) = \sum_l U^j(x, l)(l, x_{i+2}) = U^j(x, x_i) = \begin{cases} 1 & \text{if } x = x_{i-1}, \\ 0 & \text{else.} \end{cases}
\]

We see that V_a acts as follows on the respective basis elements:

\[
x_{i-1} \overset{a}{\longleftarrow} x_{i+2}
\]

(222)
(ii) Note that \(x_{i-1} \) and \(x_{i+2} \) belong to column label sets. Thus, we can have that \(x_{i-1} = x_{i-2} = \mathcal{C}_\varepsilon \), for some \(\varepsilon \in \text{Sp} \) with \(\overline{x_{i-2}} \sim x_{i-1} \). Similarly, we can have that \(x_{i+2} = x_{i+3} = \mathcal{C}_\eta \), for some \(\eta \in \text{Sp} \) with \(\overline{x_{i+2}} \sim x_{i+3} \). Note that we cannot have both cases at once by excluding \(k(\eta, \varepsilon \mid \eta^2 = \eta, \varepsilon^2 = \varepsilon) \) (Remark 4.73). Depending on those cases, \(x_i (x_{i+1}) \) can belong to one or two elementary subchains.

Recall that \(V_a = \tilde{V}_a \). Thus, the number of elementary subchains which contain \(x_i (x_{i+1}) \) does not affect \(V_a \) and it follows for all cases:

\[
\tilde{V}_a(x, x_{i+1}) = \begin{cases}
1 & \text{if } x = x_i, \\
0 & \text{else},
\end{cases} \\
\tilde{V}_a(x_i, x) = \begin{cases}
1 & \text{if } x = x_{i+1}, \\
0 & \text{else}.
\end{cases}
\]

We obtain that \(V_a \) acts as follows on the respective basis elements:

\[
x_i \xrightarrow{a} x_{i+1}.
\]

(iii) Note that \(x_{i-1} \) belongs to a row label set and that \(x_{i+2} \) belongs to a column label set. We can have that \(x_{i+2} = x_{i+3} = \mathcal{C}_\eta \), for some \(\eta \in \text{Sp} \) with \(\overline{x_{i+2}} \sim x_{i+3} \). In this case, \(x_{i+1} \) belongs to two elementary subchains. They affect the entries of \(U^j \). Recall that \(V_a = U^j \tilde{V}_a \). We see that the number of elementary subchains containing \(x_{i+1} \) does not affect \(V_a \).

The relevant entries of the matrices are given by

\[
U^j(x, x_{i+1}) = \begin{cases}
1 & \text{if } x = x_{i-1}, \\
0 & \text{else},
\end{cases} \\
\tilde{V}_a(x, x_{i+1}) = \begin{cases}
1 & \text{if } x = x_i, \\
0 & \text{else},
\end{cases} \\
\tilde{V}_a(x_i, x) = \begin{cases}
1 & \text{if } x = x_{i+1}, \\
0 & \text{else}.
\end{cases}
\]

We obtain for \(V_a \):

\[
V_a(x_{i-1}, x) = \sum_l U^j(x_{i-1}, l) \tilde{V}_a(l, x) = \tilde{V}_a(x_i, x) = \begin{cases}
1 & \text{if } x = x_{i+1}, \\
0 & \text{else},
\end{cases} \\
V_a(x_i, x_{i+1}) = \sum_l U^j(x, l) \tilde{V}_a(l, x_{i+1}) = U^j(x, x_i) = \begin{cases}
1 & \text{if } x = x_{i-1}, \\
0 & \text{else}.
\end{cases}
\]

Thus, \(V_a \) acts as follows on the respective basis elements:

\[
x_{i-1} \xleftarrow{a} x_{i+1}.
\]

(iv) Note that \(x_{i-1} \) belongs to a column label set, and that \(x_{i+2} \) belongs to a row label set. We can have that \(x_{i-1} = x_{i-2} = \mathcal{C}_\varepsilon \), with \(\overline{x_{i-2}} \sim x_{i-1} \). In this case, \(x_i \) belongs to two elementary subchains. They affect the entries of \(U^j \). Recall that \(V_a = \tilde{V}_a \left(U^j \right)^{-1} \). Thus, the number of elementary
subchains containing \(x_i \) does not affect the entries of \(V_a \). The relevant entries of the matrices \(U_i \) and \(\tilde{V}_a \) are given as follows:

\[
U_i(x_{i+2}, x) = \begin{cases}
1 & \text{if } x = x_{i+1}, \\
0 & \text{else,}
\end{cases}
U_i(x, x_{i+1}) = \begin{cases}
1 & \text{if } x = x_{i+2}, \\
0 & \text{else,}
\end{cases}
\]

\[
\tilde{V}_a(x_{i+1}, x) = \begin{cases}
1 & \text{if } x = x_i, \\
0 & \text{else,}
\end{cases}
\tilde{V}_a(x, x_i) = \begin{cases}
1 & \text{if } x = x_{i+1}, \\
0 & \text{else,}
\end{cases}
\]

Computing the inverse of \(U_i \) according to Section 5.3 results in

\[
(U_i)^{-1}(x_{i+1}, x) = \begin{cases}
1 & \text{if } x = x_{i+2}, \\
0 & \text{else,}
\end{cases}
(U_i)^{-1}(x, x_{i+2}) = \begin{cases}
1 & \text{if } x = x_{i+1}, \\
0 & \text{else.}
\end{cases}
\]

We compute the respective entries of \(V_a \):

\[
V_a(x, x_{i+2}) = \sum_l \tilde{V}_a(x, l)(U_i)^{-1}(l, x_{i+2}) = \tilde{V}_a(x, x_{i+1}) = \begin{cases}
1 & \text{if } x = x_i, \\
0 & \text{else,}
\end{cases}
\]

\[
V_a(x_i, x) = \sum_l \tilde{V}_a(x_i, l)(U_i)^{-1}(l, x) = (U_i)^{-1}(x_{i+1}, x) = \begin{cases}
1 & \text{if } x = x_{i+2}, \\
0 & \text{else.}
\end{cases}
\]

It follows that \(V_a \) acts as follows on the respective basis elements:

\[
x_i \xrightarrow{a} x_{i+2}.
\]

\[\Box\]

Remark 5.12. We obtain an analogous result to Lemma 5.11 if we switch the roles of \(x_i \) and \(x_{i+1} \): in this case, we have that \(x_i \hat{=} \text{basis of } V_i \oplus \ker(a) \), \(x_{i+1} \hat{=} \text{basis of } \text{im}(a) \). The respective action in \(F(U(g)) \) \((F(U(g), V))\) is then described by \(a^{-1} \).

Lemma 5.13. Let \(g \) be an \(\Sigma \)-chain with one double end. Let \(U_s(g) \) be a corresponding representation \((s \in \{1, 2\}) \).

\(i \) If \(x_1 = \xi \) is the double end for some \(\xi \in \text{Sp} \), then the subchain \(x_1 - x_2 \) results in the following action on \(x_2 \) in \(F(U_s(g)) \):

\[
\varepsilon(x_2) = \begin{cases}
0 & \text{if } s = 1, \\
x_2 & \text{if } s = 2,
\end{cases}
\]

228
(ii) If $x_m = \mathcal{C}_e^*$ is the double end for some $\varepsilon \in \mathcal{S}_p$, the subchain $x_{m-1} - x_m$ results in the following action on x_{m-1} in $F(U_s(g))$:

$$\varepsilon(x_{m-1}) = \begin{cases} 0 & \text{if } s = 2, \\ x_{m-1} & \text{if } s = 1. \end{cases}$$

Proof. (i) We proceed similar as in Lemma 5.9 and compute V_ε. We know that $x_1 \in \mathcal{C}_i$ for some $i \in Q_0$ and $x_2 \in \mathcal{R}_i$. It follows that $x_3 \neq x_2$ (otherwise $x_3 = x_2 \in \mathcal{C}_i$). We obtain the following entries:

$$U^i(x, x_1) = \begin{cases} 1 & \text{if } x = x_2, \\ 0 & \text{else}, \end{cases}$$

$$U^i(x_2, x) = \begin{cases} 1 & \text{if } x = x_1, \\ 0 & \text{else}, \end{cases}$$

$$V_\varepsilon(x, y) = \begin{cases} 1 & \text{if } y \in \mathcal{C}_e^+, \\ 0 & \text{else}. \end{cases}$$

It follows that

$$\left(U^i\right)^{-1}(x_1, x) = \begin{cases} 1 & \text{if } x = x_2, \\ 0 & \text{else}, \end{cases}$$

$$\left(U^i\right)^{-1}(x, x_2) = \begin{cases} 1 & \text{if } x = x_1, \\ 0 & \text{else}. \end{cases}$$

Denote by (\cdot, \cdot) the matrix given by the product $V_\varepsilon U^i$. Recall that $\psi_1(x_1) = -1$ and $\psi_2(x_1) = 1$. Thus, x_1 belongs to \mathcal{C}_e^- for $s = 1$, and to \mathcal{C}_e^+ for $s = 2$. We obtain the following:

$s = 1$:

$$(x_1, x) = \sum_l V_\varepsilon(x_1, l) \left(U^i\right)^{-1}(l, x) = 0,$$ \hspace{1cm} (223)

$$(x, x_2) = \sum_l V_\varepsilon(x, l) \left(U^i\right)^{-1}(l, x_2) = V_\varepsilon(x, x_1) = 0 \text{ for all } x,$$ \hspace{1cm} (224)

$s = 2$:

$$(x_1, x) = \sum_l V_\varepsilon(x_1, l) \left(U^i\right)^{-1}(l, x) = \left(U^i\right)^{-1}(x_1, x) = \begin{cases} 1 & \text{if } x = x_2, \\ 0 & \text{else}, \end{cases}$$ \hspace{1cm} (225)

$$(x, x_2) = \sum_l V_\varepsilon(x, l) \left(U^i\right)^{-1}(l, x_2) = V_\varepsilon(x, x_1) = \begin{cases} 1 & \text{if } x = x_1, \\ 0 & \text{else}. \end{cases}$$ \hspace{1cm} (226)

229
We use (223) - (226) to compute \(V_\varepsilon \). Its relevant entries are given as follows:

\[
\begin{align*}
\textbf{s} = 1 : \\
V_\varepsilon(x_2, x) &= \sum_i U^i(x_2, l)(l, x) = (x_1, x) = 0 \text{ for all } x, \quad (227) \\
V_\varepsilon(x, x_2) &= \sum_i U^i(x, l)(l, x_2) = 0 \text{ for all } x,
\end{align*}
\]

\[
\begin{align*}
\textbf{s} = 2 : \\
V_\varepsilon(x_2, x) &= \sum_i U^i(x_2, l)(l, x) = (x_1, x) = \begin{cases} 1 & \text{if } x = x_2, \\ 0 & \text{else}, \end{cases} \quad (229) \\
V_\varepsilon(x, x_2) &= \sum_i U^i(x, l)(l, x_2) = U^i(x, x_1) = \begin{cases} 1 & \text{if } x = x_2, \\ 0 & \text{else}. \end{cases} \quad (230)
\end{align*}
\]

We obtain from (227) - (228) that

\[
\varepsilon(x_2) = 0 \text{ if } s = 1,
\]

and

\[
\varepsilon(x_2) = x_2 \text{ if } s = 2,
\]

from (229) - (230).

(ii) Recall that \(\psi_1(x_m) = 1 \) and \(\psi_2(x_m) = -1 \). The proof is analogous to (i).

\(\square \)

Lemma 5.14. Let \(g \) be an \(\Sigma \)-chain with two double ends. Denote by \(U_s(g, p) \) a corresponding representation \((p \in \mathbb{N}\setminus\{0\}, \ s \in \{1, 2, 3, 4\}) \).

(i) Let \(x_1 = \mathcal{C}_s \varepsilon^* \) for some \(\varepsilon \in \text{Sp} \). The subchain \((x_1, 1) - (x_2, 1) \) results in the following action on \((x_2, 1) \) in \(F(U_s(g, p)) \):

\[
\varepsilon((x_2, 1)) = \begin{cases}
0 & \text{if } s \in \{1, 3\}, \\
1 & \text{if } s \in \{2, 4\}.
\end{cases}
\]

(ii) Let \(x_m = \mathcal{C}_n \eta^* \) for some \(\eta \in \text{Sp} \). If \(p \) is odd, the subchain \((x_{m-1}, p) - (x_m, p) \) results in the following action on \((x_{m-1}, p) \) in \(F(U_s(g, p)) \):

\[
\eta((x_{m-1}, p)) = \begin{cases}
0 & \text{if } s \in \{1, 2\}, \\
1 & \text{if } s \in \{3, 4\}.
\end{cases}
\]

If \(p \) is even, the subchain \((x_1, p) - (x_2, p) \) results in the following action on \((x_2, p) \) in \(F(U_s(g, p)) \):

\[
\varepsilon((x_2, p)) = \begin{cases}
0 & \text{if } s \in \{2, 4\}, \\
1 & \text{if } s \in \{1, 3\}.
\end{cases}
\]
Proof. (i) We know that \((x_2, 1) \neq (x_3, 1)\) since \(x_2 \in \mathcal{R}\). Thus, \((x_1, 1)\) is only contained in the elementary subchain \((x_1, 1) - (x_2, 1)\) of \(g^{[\bar{x}]}\). Recall that \(\psi_1((x_1, 1)) = \psi_3((x_1, 1)) = 1\) and \(\psi_2((x_1, 1)) = \psi_4((x_1, 1)) = -1\). Thus, the cases \(s = 1, 3\) follow analogously to Lemma 5.13, (i) with \(s = 1\). Similarly, the cases \(s = 2, 4\) are analogous to the case \(s = 2\) of Lemma 5.13, (i).

(ii) Let \(p\) be odd. We have that \((x_m, p)\) is only contained in the elementary subchain \((x_m-1, p) - (x_m, p)\). Recall that \(\psi_s^*(\!(x_m, p)\!)) = \psi_s(x_m)\). It follows that \(\psi_1((x_m, p)) = \psi_2((x_m, p))^l = 1\) and that \(\psi_2((x_m, p)) = \psi_4((x_m, p)) = -1\). The cases \(s = 1, 2\) follow analogously to Lemma 5.13 (ii) for \(s = 1\). Similarly, the cases \(s = 3, 4\) follow analogously to Lemma 5.13 (ii) for \(s = 2\).

Consider now \(p\) to be even. Recall that \(\psi_s^*(\!(x_1, p)\!)) = -\psi_s(x_1)\). Hence, we obtain that \(\psi_1((x_1, p)) = \psi_3((x_1, p)) = 1\) and that \(\psi_2((x_1, p)) = \psi_4((x_1, p)) = 1\). The cases \(s = 1, 3\) follow analogously to Lemma 5.13 (ii) for \(s = 2\). Similarly, the cases \(s = 2, 4\) follow analogously to Lemma 5.13 (ii) for \(s = 1\).

\(\square\)

Lemma 5.15. Let \(g\) be an \(\Omega\)-cycle and let \(U(g, \varphi)\) be a corresponding representation. Let \(e_2(g) = x_{i-1} - x_i\).

(i) Let \(x_{i-1} \in \mathcal{R}\) and \(x_i \in \mathcal{C}\). Then \(e_2(g)\) results in the following action in \(F(U(g, \varphi))\):

- for \(x_i\) basis of \(\text{im}(b)\) and \(x_{i+1}\) basis of \(V_k \ominus \ker(b)\) for some \(b \in Q_1^{\text{ord}}\), \(s(b) = k\):

\[
\begin{array}{ccc}
V_{i-1} & \xleftarrow{b=F^1} & V_j, \\
& & \\
\end{array}
\]

- for \(x_i\) basis of \(V_k \ominus \ker(b)\) and \(x_{i+1}\) basis of \(\text{im}(b)\) for some \(b \in Q_1^{\text{ord}}\), \(s(b) = k\):

\[
\begin{array}{ccc}
V_{i-1} & \xrightarrow{b=F^1} & V_j, \\
& & \\
\end{array}
\]

- for \(x_i = x_{i+1} = \mathcal{C}_{\varepsilon^*}\) for some \(\varepsilon \in \text{Sp}\), \(s(\varepsilon) = k\):

\[
\begin{array}{ccc}
V_{i-1} & \xrightarrow{\varepsilon=F^1} & V_j, \\
& & \\
\end{array}
\]

where

\[
j = \begin{cases}
 i + 1 & \text{if } x_{i+1} \in \mathcal{R}, \\
 i + 2 & \text{if } x_{i+1} \in \mathcal{C},
\end{cases}
\]

and \(V\) a \(k\)-vector space of dimension \(\deg \varphi\) with the \(V_i\)'s disjoint copies of \(V\).
(ii) Let \(x_{i-1} \in \mathcal{C} \) and \(x_i \in \mathcal{R} \). Then \(e_2(g) \) results in the following action in \(F(U(g, \varphi)) \):

- for \(x_{i-2} \) basis of \(\text{im}(a) \) and \(x_{i-1} \) basis of \(V_k \oplus \ker(a) \) for some \(a \in Q^\text{ord}_1 \), \(s(a) = k \):
 \[
 V_j \xleftarrow{a=F_{\varphi}^{-1}} \tilde{V}_i,
 \]

- for \(x_{i-2} \) basis of \(V_k \oplus \ker(a) \) and \(x_{i-1} \) basis of \(\text{im}(a) \) for some \(a \in Q^\text{ord}_1 \), \(s(a) = k \):
 \[
 V_j \xrightarrow{a=F_{\varphi}} \tilde{V}_i,
 \]

- for \(x_{i-2} = x_{i-1} = \mathcal{C} \), for some \(\varepsilon \in \text{Sp} \), \(s(\varepsilon) = k \):
 \[
 V_j \xleftarrow{\varepsilon=F_{\varphi}^{-1}} \tilde{V}_i,
 \]

where

\[
 j = \begin{cases}
 i-2 & \text{if } x_{i-2} \in \mathcal{R}, \\
 i-3 & \text{if } x_{i-2} \in \mathcal{C},
 \end{cases}
 \quad (231)
\]

and \(\tilde{V} \) a \(k \)-vector space of dimension \(\deg \varphi \) with the \(\tilde{V}_i \)'s disjoint copies of \(\tilde{V} \).

Proof. Keep in mind that we consider \(\mathcal{C} \)-cycles and thus, that each link indicates a subband of size \(\deg(\varphi) \). We keep the computations in the proof in terms of the links and will switch in the last step to the computations in terms of vector spaces.

(i) We consider the subchain \(x_{i-2} \sim x_{i-1} \sim x_i \sim x_{i+1} \sim x_{i+2} \) with \(x_{i-1} \in \mathcal{R} \) and \(x_i \in \mathcal{C} \). Assume without loss of generality that \(x_{i-1} \) basis of \(V_l \oplus \ker(a) \) and \(x_{i-2} \) basis of \(\text{im}(a) \) for \(a : l \to h \in Q^\text{ord}_1 \). Note that \(e_2(g) \) determines the entries in the matrix \(U^l \):

\[
 U^l(x_{i-1}, x_i) = F_{\varphi}.
 \quad (232)
\]

Moreover, \(V_a \) is given independent of \(U^l \): we have that \(V_a = U^l V_a \) for \(x_{i-2} \in \mathcal{C} \), and \(V_a = \tilde{V}_a \) for \(x_{i-2} \in \mathcal{R} \), where \(\text{im}(a) \subset V_b \).

Assume that \(k = l \), that is \(x_i \) basis of \(V_l \oplus \ker(b) \), \(x_{i+1} \) basis of \(\text{im}(b) \) for some \(b : l \to m \in Q^\text{ord}_1 \), and assume that \(x_{i+1} \in \mathcal{C} \). We have that \(V_b = U^m \tilde{V}_b (U^l)^{-1} \). Denote by \((\cdot, \cdot) \) the product \(\tilde{V}_b (U^l)^{-1} \). We have that

\[
 (U^l)^{-1}(x, x_{i-1}) = \begin{cases}
 F_{\varphi}^{-1} & \text{if } x = x_i, \\
 0 & \text{else},
 \end{cases}
 \quad (233)
\]

\[
 (U^l)^{-1}(x, x) = \begin{cases}
 F_{\varphi}^{-1} & \text{if } x = x_{i-1}, \\
 0 & \text{else}.
 \end{cases}
 \quad (234)
\]

232
Similar to the previous proofs, we obtain that

\[(x_{i+1}, x) = \sum_j \tilde{V}_b(x_{i+1}, j) (U^l)^{-1}(j, x) = (U^l)^{-1}(x_i, x)\]

\[
= \begin{cases}
F^{-1}_\varphi & \text{if } x = x_{i-1}, \\
0 & \text{else,}
\end{cases}
\]

\[(x, x_{i-1}) = \sum_j \tilde{V}_b(x, j) (U^l)^{-1}(j, x_{i-1}) = \tilde{V}_b(x, x_i) F^{-1}_\varphi
\]

\[
= \begin{cases}
F^{-1}_\varphi & \text{if } x = x_{i+1}, \\
0 & \text{else.}
\end{cases}
\]

It follows that

\[V_b(x, x_{i-1}) = \sum_j U^m(x, j)(j, x_{i-1}) = U^m(x, x_{i+1}) F^{-1}_\varphi
\]

\[
= \begin{cases}
F^{-1}_\varphi & \text{if } x = x_{i+1}, \\
0 & \text{else,}
\end{cases}
\]

\[V_b(x_{i+2}, x) = \sum_j U^m(x_{i+2}, j)(j, x) = (x_{i+1}, x)
\]

\[
= \begin{cases}
F^{-1}_\varphi & \text{if } x = x_{i+1}, \\
0 & \text{else.}
\end{cases}
\]

We obtain that \(\tilde{V}_{i-1} \overset{\varphi^{-1}}{\longrightarrow} \tilde{V}_{i+2}\).

Consider now \(x_{i+1} \in \mathbb{R}\). Then \(V_b\) is given by \(V_b = \tilde{V}_b (U^l)^{-1}\). The relevant entries of \(U^l\) are given as in (233) and (234). We obtain for \(V_b\) the following:

\[V_b(x, x_{i-1}) = \sum_j \tilde{V}_b(x, j) (U^l)^{-1}(j, x_{i-1}) = \tilde{V}_b(x, x_i) F^{-1}_\varphi
\]

\[
= \begin{cases}
F^{-1}_\varphi & \text{if } x = x_{i+1}, \\
0 & \text{else,}
\end{cases}
\]

\[V_b(x_{i+1}, x) = \sum_j \tilde{V}_b(x_{i+1}, j) (U^l)^{-1}(j, x) = (U^l)^{-1}(x_i, x)
\]

\[
= \begin{cases}
F^{-1}_\varphi & \text{if } x = x_{i-1}, \\
0 & \text{else.}
\end{cases}
\]

We obtain that \(\tilde{V}_{i-1} \overset{\varphi^{-1}}{\longrightarrow} \tilde{V}_{i+1}\).

Assume that \(k \neq l\), that is, \(x_j \doteq \text{basis of } \text{im}(b)\), \(x_{i+1} \doteq \text{basis of } V_k \ominus \ker(b)\)
where \(b : k \rightarrow l \in Q^{\text{ord}}_1\). Assume additionally that \(x_{i+1} \in \mathcal{C}\). It follows
that \(V_b = U^t \tilde{V}_b (U^k)^{-1} \) with

\[
U^t(x_{i-1}, x) = \begin{cases}
F_\varphi & \text{if } x = x_i, \\
0 & \text{else},
\end{cases}
\tag{235}
\]

\[
U^t(x, x_i) = \begin{cases}
F_\varphi & \text{if } x = x_{i-1}, \\
0 & \text{else}.
\end{cases}
\tag{236}
\]

Similar to the previous cases, we obtain for \((\cdot, \cdot) = \tilde{V}_b (U^k)^{-1} \) that

\[
(x_i, x) = \sum_j \tilde{V}_b(x_i, j) (U^k)^{-1} (j, x) = (U^k)^{-1} (x_{i+1}, x)
\]

\[
= \begin{cases}
1 & \text{if } x = x_{i+2}, \\
0 & \text{else},
\end{cases}
\]

\[
(x, x_{i+2}) = \sum_j \tilde{V}_b(x, j) (U^k)^{-1} (j, x_{i+2}) = \tilde{V}_b(x, x_{i+1})
\]

\[
= \begin{cases}
1 & \text{if } x = x_i, \\
0 & \text{else}.
\end{cases}
\]

It follows that

\[
V_b(x_{i-1}, x) = \sum_j U^t(x_{i-1}, j)(j, x) = F_\varphi(x_i, x)
\]

\[
= \begin{cases}
F_\varphi & \text{if } x = x_{i+2}, \\
0 & \text{else},
\end{cases}
\]

\[
V_b(x, x_{i+2}) = \sum_j U^t(x, j)(j, x_{i+2}) = U^t(x, x_i)
\]

\[
= \begin{cases}
F_\varphi & \text{if } x = x_{i-1}, \\
0 & \text{else}.
\end{cases}
\]

We obtain that \(\tilde{V}_{i-1} \leftarrow b=F_\varphi \tilde{V}_{i+2} \).

Assume that \(x_{i+1} \in \mathfrak{R} \). Then \(V_b = U^t \tilde{V}_b \). The entries of \(U^t \) are given as described in (235) and (236). We obtain for \(V_b \) the following:

\[
V_b(x, x_{i+1}) = \sum_j U^t(x, j) \tilde{V}_b(j, x_{i+1}) = U^t(x, x_i)
\]

\[
= \begin{cases}
F_\varphi & \text{if } x = x_{i-1}, \\
0 & \text{else},
\end{cases}
\]

\[
V_b(x_{i-1}, x) = \sum_j U^t(x_{i-1}, j) \tilde{V}_b(j, x) = F_\varphi \tilde{V}_b(x_i, x)
\]

\[
= \begin{cases}
F_\varphi & \text{if } x = x_{i+1}, \\
0 & \text{else}.
\end{cases}
\]

Thus, the computations result in \(\tilde{V}_{i-1} \leftarrow b=F_\varphi \tilde{V}_{i+1} \).
Assume that $x_i = x_{i+1} = C_\epsilon^*$ for some $\epsilon \in \text{Sp}$ with $s(\epsilon) = l$. Then we have that $x_{i+1} \in C$. By definition of $e_2(g)$, it follows that $\text{dir}_{i,i+1}(g) = -1$. Note that $x_i \in C_\epsilon^*$ and $x_{i+1} \in C_\epsilon^*$. We want to compute $V_\epsilon = U^l \tilde{V}_\epsilon (U^l)^{-1}$. Here, the relevant entries of U^l are given by

\begin{align*}
U^l(x,x_i) &= \begin{cases}
1 & \text{if } x = x_{i+2}, \\
F_\varphi & \text{if } x = x_{i-1}, \\
0 & \text{else,}
\end{cases} \\
U^l(x,x_{i+1}) &= \begin{cases}
1 & \text{if } x = x_{i+2}, \\
0 & \text{else,}
\end{cases} \\
U^l(x_{i+2},x) &= \begin{cases}
1 & \text{if } x \in \{x_{i+1},x_i\}, \\
0 & \text{else,}
\end{cases} \\
U^l(x_{i-1},x) &= \begin{cases}
F_\varphi & \text{if } x = x_i, \\
0 & \text{else.}
\end{cases}
\end{align*}

Thus, we obtain according to Section 5.3 that the respective entries of its inverse are the following:

\begin{align*}
(U^l)^{-1}(x,x) &= \begin{cases}
F_\varphi^{-1} & \text{if } x = x_{i-1}, \\
0 & \text{else,}
\end{cases} \\
(U^l)^{-1}(x_{i+1},x) &= \begin{cases}
1 & \text{if } x = x_{i+2}, \\
0 & \text{else,}
\end{cases} \\
(U^l)^{-1}(x,x_{i+2}) &= \begin{cases}
1 & \text{if } x = x_{i+1}, \\
0 & \text{else,}
\end{cases} \\
(U^l)^{-1}(x,x_i) &= \begin{cases}
F_\varphi^{-1} & \text{if } x = x_i, \\
-F_\varphi^{-1} & \text{if } x = x_{i+1}, \\
0 & \text{else.}
\end{cases}
\end{align*}

We denote by (\cdot,\cdot) the entries of the product $\tilde{V}_\epsilon (U^l)^{-1}$. We obtain the
following:

\[
(x_i, x) = \sum_j \tilde{V}_\varepsilon(x_i, j) (U^l)^{-1} (j, x) = (U^l)^{-1} (x_i, x)
\]

\[
= \begin{cases}
F^{-1}_\varphi & \text{if } x = x_{i-1}, \\
0 & \text{else},
\end{cases}
\]

\[
(x_{i+1}, x) = \sum_j \tilde{V}_\varepsilon(x_{i+1}, j) (U^l)^{-1} (j, x) = 0 \text{ for any } x \in \mathcal{C}_l,
\]

\[
(x, x_{i-1}) = \sum_j \tilde{V}_\varepsilon(x, j) (U^l)^{-1} (j, x_{i-1})
\]

\[
= \tilde{V}_\varepsilon(x, x_{i}) F^{-1}_\varphi + \tilde{V}_\varepsilon(x, x_{i+1}) (-F^{-1}_\varphi)
\]

\[
= \tilde{V}_\varepsilon(x, x_{i}) F^{-1}_\varphi = \begin{cases}
F^{-1}_\varphi & \text{if } x = x_{i}, \\
0 & \text{else},
\end{cases}
\]

\[
(x, x_{i+2}) = \sum_j \tilde{V}_\varepsilon(x, j) (U^l)^{-1} (j, x_{i+2}) = \tilde{V}_\varepsilon(x, x_{i+1}) = 0 \text{ for any } x \in \mathcal{C}_l.
\]

Multiplying the above from the left by \(U^l\) results in

\[
V_\varepsilon(x, x_{i-1}) = \sum_j U^l(x, j) (j, x_{i-1}) = U^l(x, x_{i}) F^{-1}_\varphi = \begin{cases}
1 & \text{if } x = x_{i-1}, \\
F^{-1}_\varphi & \text{if } x = x_{i+2}, \\
0 & \text{else},
\end{cases}
\]

\[
V_\varepsilon(x_{i+2}, x) = \sum_j U^l(x_{i+2}, j) (j, x) = (x_i, x) + (x_{i+1}, x)
\]

\[
= (x_i, x) = \begin{cases}
F^{-1}_\varphi & \text{if } x = x_{i-1}, \\
0 & \text{else}.
\end{cases}
\]

Hence, we obtain that \(\varepsilon\) acts as follows on \(V_{i-1}\):

\[
\tilde{V}_{i-1} \xrightarrow{\varepsilon=F^{-1}_\varphi} \tilde{V}_{i+2} \text{ and }
\]

\[
\tilde{V}_{i-1} \xrightarrow{\varepsilon} \tilde{V}_{i-1}.
\]

Considering \(\tilde{V}_\varepsilon = 1 - V_\varepsilon\) yields that

\[
\tilde{V}_{i-1} \xrightarrow{\varepsilon=-F^{-1}_\varphi} \tilde{V}_{i+2}.
\]

(ii) The proof is analogous to (i). Note that we have for \(x_{i-2} = x_{i-1} = \mathcal{C}_e^*\) for some \(e \in \text{Sp}\) that \(\text{dir}_{i-2,i-1}(g) = 1\) due to the definition of \(e_2(g)\).

\[\square\]

Remark 5.16. We see in the proof above that \(e_2(g)\) influences the map corresponding to the incident link which belongs to a column label set.
Remark 5.17. In case of a symmetric band w_z, we assume that its periodic part is of the form $\hat{w}_p = \varepsilon^* u^* u^{-1}$ (cf. Subsection 3.2.4). We know by construction that
\[
e_2(g_{w_z}) = x_1 - \bar{x}_1,
\]
where $\bar{x}_0 = x_1 = \text{c}_\varepsilon \text{ and } \text{dir}_{0,1}(g_{w_z}) = 1$. Thus, $\bar{x}_1 \in R$ and it follows that
\[
\bar{V}_0 \xleftarrow{\varepsilon=-F_0^{-1}} \bar{V}_1
\]
in $F(U(g_{w_z}, \varphi))$.

The above results show that we have for strings w that each link $x_i \in g_{w,0}$ with $x_i \in R$ corresponds to a basis element in $F(U_s(g_w))$. Similarly, we have for bands w_z that each link $x_i \in g_{w_z,0}$ with $x_i \in R$ corresponds to a copy V_i of V in $F(U(g_{w_z}, \varphi))$.

Recall from Chapter 4.7 that the direction on links of L-graphs coincides with the directions on the respective special letter if the letter has finite index. This information together with the Lemmas 5.9 - 5.15 enables us to directly read the image of F from the original string or band and its corresponding L-graph. To this end, we introduce an alphabet fitting our needs with respect to the image of F.

Definition 5.18. Let Λ be a skewed-gentle algebra. Let
\[
\Sigma_d(\Lambda) := \{\varepsilon^\pm 1, x^\pm 1 \mid \varepsilon \in \text{Sp}, x \in Q_{1}^{\text{ord}}\}
\]
be an extension of $\Gamma_d(\Lambda)$. We denote the respective set of directed words by
\[
W(\Sigma_d(\Lambda)) := \{w_i \mid w_i \in \Sigma_d(\Lambda) \text{ for all } i \in I\}.
\]

There exists the following forgetful map:
\[
\psi^\Sigma_{\Lambda} : \Sigma_d(\Lambda) \longrightarrow \Gamma_d(\Lambda) \quad (237)
\]
\[
x^\varepsilon \longmapsto \begin{cases}
x^\varepsilon & \text{if } x \neq \bar{\varepsilon} \text{ for any } \varepsilon \in \text{Sp}, \\
\bar{x}^\varepsilon & \text{else.}
\end{cases}
\]

We consider the following subset of $\Sigma_d(\Lambda)$:
\[
\tilde{\Sigma}_d(\Lambda) := \{\varepsilon, \varepsilon^{-1}, x^\pm 1 \mid \varepsilon \in \text{Sp}, x \in Q_{1}^{\text{ord}}\} \quad (238)
\]
and denote the respective set of words by $W(\tilde{\Sigma}_d(\Lambda))$. We denote the restriction of ψ^Σ_{Λ} to $\tilde{\Sigma}_d(\Lambda)$ by $\tilde{\psi}^\Sigma_{\Lambda}$.

Similarly as (11) induces the map (13) in Section 2.3, the map (237) induces the following map:
\[
\Psi^\Sigma_{\Lambda} : W(\Sigma_d(\Lambda)) \longrightarrow W(\Gamma_d(\Lambda))
\]
We denote the respective restriction by $\tilde{\Psi}^\Sigma_{\Lambda}$.

Note that we can compose the map $\tilde{\Psi}^\Sigma_{\Lambda}$ with Φ^d_{ud}. We denote this composition by Ψ^Σ_{ud}.

237
Remark 5.19. The notation above can be also be applied to clannish algebras.

Example 5.20. Let Λ be given by the two-loop quiver in Example 2.3.1.

(i) Let $w = \epsilon^*a^{-1}\epsilon^*$ be an asymmetric string. Let $v \in (\Phi_{ud})^{-1}(w)$ be given by $v = \epsilon^{-1}a^{-1}\epsilon^{-1}$. Note that v is (weakly) consistent. Let $t \in (\Psi_{ud})^{-1}(v)$ be given by $t = \epsilon^{-1}a^{-1}\epsilon^{-1}$. Then $t \in (\Psi_{ud})^{-1}(w)$.

(ii) Let w_z be a symmetric band with $\hat{w}_p = \epsilon^*u\epsilon^*u^{-1}$, where $u = a\epsilon^*a$. Let $\hat{v}_z \in (\Phi_{ud})^{-1}(w_z)$ with $\hat{t}_p = \epsilon a\epsilon^*a^{-1}\epsilon^{-1}a^{-1}$. Note that v_z is (weakly) consistent. Let $t_z \in (\Psi_{ud})^{-1}(v_z)$ with $\hat{t}_p = \epsilon a\epsilon^*a^{-1}\epsilon^{-1}a^{-1}$. Then $t_z \in (\Psi_{ud})^{-1}(w_z)$.

Having introduced this notation, we are able to compose the corresponding statements.

Theorem 5.21. (i) Let w be an asymmetric string. Let g_w be the Σ-chain corresponding to w with \overline{X}_0-representation $U_1(g_w)$. Then there exists $v \in (\Psi_{ud})^{-1}(w)$ (weakly) consistent with

$$F(U_1(g_w)) = M(v).$$

(ii) Let $w = u\epsilon^*u$ be a symmetric string. Let g_u be the Σ-chain corresponding to w with \overline{X}_0-representation $U_u(g_u)$. Then there exists $v \in (\Psi_{ud})^{-1}(w)$ (weakly) consistent with

$$F(U_u(g_u)) = M(t)$$

where $t \in (\Psi_{ud})^{-1}(u)$ with $v = t\epsilon^*t^{-1}$, $\kappa \in \{+1, -1\}$, and

$$i = \begin{cases} 1 & \text{if } s = 1, \\ 0 & \text{if } s = 2. \end{cases}$$

(iii) Let w_z be an asymmetric band. Let g_{w_z} be the Σ-cycle corresponding to w_z with \overline{X}_0-representation $U(g_{w_z}, \varphi)$. Then there exists $v_z \in (\Psi_{ud})^{-1}(w_z)$ (weakly) consistent with

$$F(U(g_{w_z}, \varphi)) = M(v_z, V)$$

where V is a $k[T, T^{-1}]$-vector space with $\dim(V) = \deg(\varphi)$.

(iv) Let w_z be a symmetric band with periodic part $\hat{w}_p = \epsilon^*u\eta^*u^{-1}$.

238
(iv.i) Let \(g_{w_2} \) be the \(\Sigma \)-cycle corresponding to \(w_2 \) with \(\overline{\Phi}_0 \)-representation \(U(g_{w_2}, \varphi) \). Then there exists \(v_z \in (\overline{\Psi}_w)^{-1}(w_2) \) (weakly) consistent with periodic parts \(\hat{v}_p^{(i)} = \varepsilon \tau^{-1} t \) for all \(i \in \mathbb{Z} \) and with

\[
F(U(g_{w_2}, \varphi)) = M(v_z, V)
\]

where \(V \) is a \(k[T, T^{-1}, (T + 1)^{-1}] \)-vector space if \(\delta_0(g) \) is even, or \(V \) is a \(k[T, T^{-1}, (T - 1)^{-1}] \)-vector space if \(\delta_0(g) \) is odd, with \(\dim(V) = \text{deg}(\varphi) \).

(iv.ii) Let \(g_u \) be the \(\Sigma \)-chain corresponding to \(w_2 \) with \(\overline{\Phi}_0 \)-representations \(U_s(g_u, p), p \in \mathbb{N} \). Then there exist words \(v_z \in (\Psi_{w_2}^0)^{-1}(w_2) \) (weakly) consistent with periodic parts \(\hat{v}_p^{(i)} = x \tau y \tau^{-1} t \) for all \(i \in \mathbb{Z}, x, y \in S_p \),

\[
\{ F(U_s(g_u, p)) \}_{1 \leq s \leq 4} = \{ M_{0,1,2,3}(t^{[p]}) \}_{x \in \{ \varepsilon, \bar{\varepsilon}, \eta, \bar{\eta} \}, y \in \{ \eta, \bar{\eta} \} ,}
\]

where \(t^{[p]} \) is given as defined in Subsection 2.3.3, Remark 2.50,

\[
x = \begin{cases}
\varepsilon & \text{if } s = 1, 3, \\
\bar{\varepsilon} & \text{if } s = 2, 4,
\end{cases}
\]

\[
y = \begin{cases}
\eta & \text{if } s = 1, 2, \\
\bar{\eta} & \text{s} = 3, 4,
\end{cases}
\]

and with the module \(M_{i,j,x,y}(t^{[p]}) \) of the form

\[
\begin{array}{ccc}
x=1 & \circlearrowleft & y \rightarrow t \rightarrow x \rightarrow y \rightarrow t \rightarrow x \rightarrow y \rightarrow t \rightarrow x \rightarrow y \rightarrow t \rightarrow x, & \ldots \]
\end{array}
\]

\[
\begin{array}{ccc}
x=j & \circlearrowleft & y \rightarrow t \rightarrow x \rightarrow y \rightarrow t \rightarrow x \rightarrow y \rightarrow t \rightarrow x, & \ldots \]
\end{array}
\]

with the \(k \)-th copy of \(t^\varepsilon \) acting on a respective copy of the basis elements \((b_0, \ldots, b_m) \).

Proof. The proof follows from the Lemmas 5.9 - 5.15.

Remark 5.22. We obtain in (iv.ii) of the above lemma a direct assignment between the two sets. It is of the following form:

\[
\begin{align*}
F(U_1(g_u, p)) &= M_{0,1,2,3}(t^{[p]}) \\
F(U_2(g_u, p)) &= M_{0,1,2,3}(t^{[p]}) \\
F(U_3(g_u, p)) &= M_{0,1,2,3}(t^{[p]}) \\
F(U_4(g_u, p)) &= M_{0,1,2,3}(t^{[p]})
\end{align*}
\]

We consider \(t^{[p]} \) as subword of \(v_z \) with periodic parts \(\hat{v}_p^{(i)} = \varepsilon \tau^{-1} t \) for \(s = 1 \).

Similarly, for \(s = 2 \), we consider it as a subword of \(v_z \) with \(\hat{v}_p^{(i)} = \varepsilon \tau^{-1} t \), and for \(s = 3 \) we consider \(v_z \) with \(\hat{v}_p^{(i)} = \varepsilon \tau^{-1} t \), and for \(s = 4 \) we have \(\hat{v}_p^{(i)} = \varepsilon \tau^{-1} t \).
Note that we explicitly know the form of the words \(v, v_z \), respectively, in \(\mathcal{W}(\Sigma_d(\Lambda)) \) in the above theorem, according to the respective lemmas. We examine in the next section whether we can restrict the statement to words from \(\mathcal{W}(\Gamma_d(\Lambda)) \).

Example 5.23. Let \(\Lambda \) be as in Example 2.14. Recall that it is given by the quiver

\[
\begin{array}{ccc}
 & 1 & \\
 a & \downarrow & c \\
 2 & \downarrow & e \\
b & \downarrow & d \\
 3 & \downarrow & 4 \\
 & \eta & \\
\end{array}
\]

with \(\text{Sp} = \{ \varepsilon, \eta, \kappa \} \) and \(R = \{ ca, ec, db \} \).

(i) Let \(w = d^{-1}e\kappa^*c \) be an asymmetric string. Its corresponding \(\Sigma \)-chain is given by

\[
g_w : \begin{cases}
C_{22} - R_{23} - R_{41} - C_{41} - R_{53} - C_{e^*} - R_{51} - C_{23} - R_{22} \\
x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7 & x_8 & x_9
\end{cases}
\]

We obtain that \(F(U_1(g)) \) is given by

\[
x_1 \xrightarrow{d} x_2 \xleftarrow{e} x_4 \xleftarrow{\kappa = -1} x_7 \xrightarrow{c} x_9.
\]

(ii) Let \(w = e^*a^{-1}b\eta^*b^{-1}a\varepsilon^* \) be a symmetric string. Its corresponding \(\Sigma \)-chain is given by

\[
g_{e^*a^{-1}b\eta^*b^{-1}a\varepsilon^*} : \begin{cases}
R_{11} - C_{e^*} - R_{12} - C_{e^*} - R_{12} - R_{32} - C_{\eta^*} \\
x_0 & x_1 & x_2 & x_3 & x_4 & x_5 & x_6 & x_7
\end{cases}
\]

where \(u = e^*a^{-1}b \). This gives the following for \(F(U_s(g)) \):

\[
x_0 \xleftarrow{\varepsilon = -1} x_3 \xrightarrow{a} x_5 \xleftarrow{b} x_6 \xleftarrow{\eta}
\]

with

\[
\eta = \begin{cases}
1 & \text{if } s = 2, \\
0 & \text{if } s = 1.
\end{cases}
\]

Example 5.24. Let \(\Lambda \) be as in Example 2.3.1: \(\Lambda = kQ/\left(R \cup R_{\text{Sp}} \right) \) where

\[
\begin{array}{ccc}
 & 1 & \\
a & \downarrow & \\
\end{array}
\]

with \(R = \{ a^2 \} \) and \(\text{Sp} = \{ \varepsilon \} \).

240
(i) Let \(w_z \) be a symmetric band with \(\hat{w}_p = \varepsilon^*a\varepsilon^*a^{-1} \). The corresponding \(\Sigma \)-cycle is given by

\[
g_{w_z} : \varepsilon^* - \mathcal{R}_{11} - \mathcal{R}_{13} - \varepsilon^* - \mathcal{R}_{13} - \mathcal{R}_{11} - \varepsilon^*
\]

Take \(\varphi_0 \neq t, t-1 (\delta_0(g_{w_z}) = 1) \) and let \(\bar{V} \) be a \(k \)-vector space of dimension \(\deg(\varphi) \). Then \(F(U(g_{w_z}, \varphi)) \) is given by

\[
\bar{V}_0 \xrightarrow{a} \bar{V}_1 \xrightarrow{\varepsilon^{-1}} \bar{V}_2 \xrightarrow{a} \bar{V}_3
\]

where the \(\bar{V}_i \)’s are disjoint copies of \(\bar{V} \).

(ii) Note that there is also a corresponding \(\Sigma \)-chain \(g_{w_z} \) for the symmetric band given in (i). It is given by

\[
g_{w_z} : \varepsilon^* - \mathcal{R}_{11} - \mathcal{R}_{13} - \varepsilon^*.
\]

In order to construct \(U_s(g_{w_z}, 2) \), we consider

<table>
<thead>
<tr>
<th>(x_0)</th>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>(x_5)</th>
<th>(x_6)</th>
<th>(x_7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(h) :</td>
<td>(\varepsilon^* - \mathcal{R}{11} - \mathcal{R}{13} - \varepsilon^* - \mathcal{R}{13} - \mathcal{R}{11} - \varepsilon^*)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\psi_1) :</td>
<td>(-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\psi_2) :</td>
<td></td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\psi_3) :</td>
<td></td>
<td>(-1)</td>
<td>(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\psi_4) :</td>
<td>(1)</td>
<td></td>
<td></td>
<td>(-1)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applying Lemma 5.14 to \(h \) results in \(F(U_s(g_{w_z}, 2)) \) being given by

\[
s = 1 : \varepsilon = 0 \sum b_0 \xrightarrow{a} b_1 \xrightarrow{\varepsilon^{-1}} b_1^{(1)} \xrightarrow{a} b_0^{(1)} \varepsilon = 1
\]

\[
s = 2 : \varepsilon = 0 \sum b_0 \xrightarrow{a} b_1 \xrightarrow{\varepsilon^{-1}} b_1^{(1)} \xrightarrow{a} b_0^{(1)} \varepsilon = 1
\]

\[
s = 3 : \varepsilon = 0 \sum b_0 \xrightarrow{a} b_1 \xrightarrow{\varepsilon^{-1}} b_1^{(1)} \xrightarrow{a} b_0^{(1)} \varepsilon = 1
\]

\[
s = 4 : \varepsilon = 0 \sum b_0 \xrightarrow{a} b_1 \xrightarrow{\varepsilon^{-1}} b_1^{(1)} \xrightarrow{a} b_0^{(1)} \varepsilon = 1
\]

and \(b_i^{(1)} \) a copy of \(b_i \). We can also display the modules in a different way. For example, for \(s = 1 \), this reads:

\[
\varepsilon = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \sum V_1 \xrightarrow{a} V_2 \xrightarrow{\varepsilon^{-1}} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}
\]

for \(V \) a \(k \)-vector space of dimension two, and with \(V_1 \) and \(V_2 \) being disjoint copies of \(V \).
(iii) Let \(w_2 \) be an asymmetric band with \(\hat{w}_p = a^{-1}e^*e^{-1}e^* \). Its corresponding \(\mathcal{L} \)-cycle is given by

\[
\hat{g}_{w_2} : \mathcal{R}_{13} \sim \mathcal{R}_{11} - \mathcal{C}_{e^*} \sim \mathcal{C}_{e^*} - \mathcal{R}_{13} \sim \mathcal{R}_{11} - \mathcal{C}_{e^*} \sim \mathcal{C}_{e^*}
\]

Take \(\varphi_0 \neq t \). We obtain that \(F(U(\hat{g}_{w_2}, \varphi)) \) is given by

\[
\hat{V}_0 \xrightarrow{a} \hat{V}_1 \xrightarrow{a} \hat{V}_2 \xrightarrow{a} \hat{V}_3
\]
5.5 The image of F in terms of $\mathcal{W}(\Gamma_d(\Lambda))$

We have seen in the previous section that the image of the functor F can be described in terms of words in the alphabet $\Sigma_d(\Lambda)$. By definition, we have that $\mathcal{W}(\Gamma_d(\Lambda)) \subset \mathcal{W}(\tilde{\Sigma}_d(\Lambda)) \subset \mathcal{W}(\Sigma_d(\Lambda))$. In this section, we examine whether we can also express the image of F in terms of $\mathcal{W}(\Gamma_d(\Lambda))$. We will see that the answer is affirmative for the image of canonical representations arising from Σ-cycles and from Σ-chains without two double ends. Recall that we consider Λ to be a skewed-gentle algebra.

To this end, we show first that two words v_i, v'_i in $\mathcal{W}(\tilde{\Sigma}_d(\Lambda))$ which differ only in one special letter by $v_j = v'_j$ for some $j \in I$, give rise to isomorphic modules.

Let $I = \{0, \ldots, n\}$. We denote by μ_j the map

$$\mu_j: \mathcal{W}(\Sigma_d(\Lambda)) \to \mathcal{W}(\Sigma_d(\Lambda))$$

$$(\ldots, v_{j-1}, v_j, v_{j+1}, \ldots) \mapsto (\ldots, v_{j-1}, \tilde{v}_j, v_{j+1}, \ldots)$$

sending the special letter v_j of a word v_i to \tilde{v}_j, where $j \in \{1, \ldots, n\}$.

Let $I = \mathbb{Z}$ and let v_i be a \mathbb{Z}-word of period p. Assume that $\tilde{v}_p(i) = \tilde{v}_p(k)$ for all $i, k \in \mathbb{Z}$. We denote then by μ_j the map

$$\mu_j: \mathcal{W}(\Sigma_d(\Lambda)) \to \mathcal{W}(\Sigma_d(\Lambda))$$

$$(v_1, \ldots, v_j, \ldots, v_p) \mapsto (v_1, \ldots, \tilde{v}_j, \ldots, v_p)$$

for all $i \in \mathbb{Z}$, sending the special letter v_j of any periodic part of the word v_i to \tilde{v}_j, where $j \in \{1, \ldots, p\}$.

For example, μ_j sends v_i to v'_i and vice versa, since μ_j is self-inverse.

Remark 5.25. Due to the definition of $\mu_j(v_i)$, we have that

$$\text{dir}(v_i) = \text{dir}(\mu_j(v_i)), \forall i \in I \text{ and for any } j \in I.$$

Furthermore, we have that

$$v_i = (\mu_j(v_i)), \forall i \neq j,$$

$$v_j = (\mu_j(v_i))_j$$

Proposition 5.26. Let w be an asymmetric string in $\Gamma_{ad}(\Lambda)$. Let $v, v' \in \mathcal{W}(\Sigma_d(\Lambda))$ such that $\mu_j(v) = v'$ for some $j \in I$, $\Psi^\circ_v(v) = \Psi^\circ_{v'}(v')$ is (weakly) consistent and $\Psi^\circ_{\text{ad}}(v) = \Psi^\circ_{\text{ad}}(v') = w$. Then $M(v) \cong M(v')$.

Proof. We show the statement by induction on $\text{ind}_x^v(v)$. Let $I = \{0, \ldots, n\}$. Assume that $\text{dir}(v_j) = -1$ and $v_j = e^{-1}$ for some $e \in \text{Sp}$ (the other cases follow analogously). Denote the basis of the k-vector space $M(v)$ by (b_0, \ldots, b_n) where $v_i(b_i) = b_{i-1}$ for all $1 \leq i \leq n$. Similarly, denote by (c_0, \ldots, c_n) the basis
of $M(v')$.

Let $\text{ind}_y^f(w) = 0$. Let $f : M(v) \longrightarrow M(v')$ be given by

\[
\begin{align*}
 b_i &\longmapsto \begin{cases}
 c_i & \forall i \leq j - 1, \\
 -c_i & \forall i \geq j + 1,
 \end{cases} & \forall i \neq j, \\
 b_j &\longmapsto c_{j-1} - c_j.
\end{align*}
\]

Then f is injective. It follows that f is bijective. It remains to show that f is a morphism of Λ-modules. To this end, note that $\text{ind}_y^f(v') = \text{ind}_y^f(v)$. Thus, we have that $\text{dir}(v'_{j-1}) = \text{dir}(v'_{j+1}) = \text{dir}(v'_j) = -1$, and $v'_{j-1} = x^{-1}$, $v'_{j+1} = y^{-1}$ where x and y are ordinary letters. In particular, we have that $v_{j-1} = v'_{j-1}$ and $v_{j+1} = v'_{j+1}$. For $j \in I$, we have that $v_j = \varepsilon^{-1}$ and $v'_j = \varepsilon^{-1}$. We obtain by definition of f:

\[
\begin{align*}
 \varepsilon f(b_{j-1}) &= \varepsilon(c_{j-1}) = (1_{s(\varepsilon)} - \varepsilon)(c_{j-1}) = c_{j-1} - c_j, \\
 f(\varepsilon(b_{j-1})) &= f(b_j) = c_{j-1} - c_j,
\end{align*}
\]

where $s(\varepsilon)$ denotes the start vertex of ε in the quiver. Similarly, we have that

\[
\begin{align*}
 fy(b_j) &= f(b_{j+1}) = -c_{j+1}, \\
 yf(b_j) &= y(c_{j-1} - c_j) = -c_{j+1}. \quad (239)
\end{align*}
\]

Recall that $yx = 0$ since Λ is skewed-gentle. This implies that $y(c_{j-1}) = 0$ which gives (239).

For all other indices, we have that $b_i = c_i$ and $v_i = v_i'$. Thus, f gives a module isomorphism between $M(v)$ and $M(v')$.

Let now $\text{ind}_y^f(w) = d > 0$. Let $w_{jz} = y$ and $w_{jz} = x$. Let $k, l \in J^*$ such that w_k and w_l are of special type and $|j - k| = |j - l| \leq d$. Assume for now that this is the only pair in J^* with those properties. Let $w_k = w_l = \eta^*$ for some $\eta \in S_p$. We either have $\text{dir}(v_k) = -\text{dir}(v_l)$ or $\text{dir}(v_k) = \text{dir}(v_l)$. In both cases, by Lemma 3.55, we either have that $\text{ind}_k^*(w) < d$ and $\text{ind}_l^*(w) < d$, or that $\text{ind}_k^*(w) < d$ and $\text{ind}_l^*(w) \geq d$.

Let us first consider $\text{dir}(v_k) = -\text{dir}(v_l)$ with $\text{ind}_k^*(w) < d$, $\text{ind}_l^*(w) < d$. Assume without loss of generality that $\text{dir}(v_k) = \text{dir}(v_l) = -1$ and thus $\text{dir}(v_l) = 1$. By induction, we have that

\[
M(\mu_k(v)) \cong M(v) \cong M(\mu_k(v)). \quad (240)
\]

It follows that $M(v) \cong M(\mu_k \mu_k(v))$. Thus, we can assume v_k and v_l to be such that $v_k = v_l^{-1}$. Recall that we also have by definition of μ_j that $v_k^* = (v_l^*)^{-1}$. Let $f : M(v) \longrightarrow M(v')$ be given by

\[
\begin{align*}
 b_i &\longmapsto \begin{cases}
 c_i & \forall i \leq j - 1, \\
 -c_i & \forall i \geq j + 1,
 \end{cases} & \forall i \notin \{j, \ldots, j^*_+ - 1\}, \\
 b_{j+i} &\longmapsto c_{j-i-1} - c_{j+i} \quad \text{for all } i \in I \text{ such that } j + i \in \{j, \ldots, j^*_+ - 1\}.
\end{align*}
\]

244
This map is injective and by $M(v)$ and $M(v')$ having same dimension, f is bijective. It remains to show that f is a morphism of Λ-modules.
Since $f : b_i \mapsto c_i$ and $v_i = v'_i$ for all $i \leq j - 1$, it remains to check the commutativity relation for all $i \geq j$. Consider $i = j$. We have $v_j = \tilde{e}^{-1}$ and $v'_j = \tilde{e}^{-1}$ and the commutativity relation to be checked is given by $f \tilde{e} = \tilde{e} f$. We have that $\tilde{e}(c_{j-1}) = c_j$ which yields that $\tilde{e}(c_{j-1}) = c_j = f(b_j)$. Consider now $i \in I$ such that $j + i \in \{ j + 1, \ldots, j_*^* - 1 \}$. By symmetry in v_j we have that $v_{j+i} = (v_{j+i-1})^{-1}$. Assume without loss of generality that $\text{dir}(v_{j+i}) = 1$ and $\text{dir}(v_{j-i}) = 1$. Furthermore, by definition of μ_j, we have that $v_{j+i} = v'_{j+i}$ and that $v_{j-i} = v'_{j-i}$. Thus, it follows for $v_{j-i}(b_{j-i}) = b_{j-i-1}$ that $v_{j+i}(b_{j-i-1}) = b_{j-i}$.
The commutativity relation thus follows from the following:

$$f v_{j+i}(b_{j+i}) = f(b_{j+i-1}) = \tilde{c}_{j+i-1} = c_{j+i-1},$$
$$v'_{j+i} f(b_{j+i}) = v_{j+i}(c_{j+i-1} - c_{j+i}) = c_{j-i} - c_{j+i-1}.$$

The commutativity relation follows for all other indices $j + i \in \{ j + 2, \ldots, j_*^* - 1 \}$ analogously (by Lemma 3.59: $\text{dir}(v_{j+i}) = \text{dir}(v_{j+i-1})$).
The next in line is to show that $fx = xf$ for the index j_*^*. We have that $x(b_{j_*^*/2}) = b_{j_*^*/2}$. Moreover, we have by symmetry in position j that $x(b_{j_*^*/2}) = 0$; otherwise, we have that $v_{j_*^*/2} x = x^{-1}$ and symmetry yields that $v_{j_*^*/2} x = x$ which contradicts the definition of a word. Thus, we obtain that

$$fx(b_{j_*^*/2}) = f(b_{j_*^*/2}) = -c_{j_*^*/2},$$
$$xf(b_{j_*^*/2}) = x(c_{j_*^*/2} - c_{j_*^*/2-1}) = -c_{j_*^*/2}.$$

For all $i \geq j_*^*$ we have that $f : b_i \mapsto c_i$ and $v_i = v'_i$. Hence, the commutativity follows for all $i \geq j_*^*$. The existence of the commutativity relations shows that $f : M(v) \longrightarrow M(v')$ is a Λ-module isomorphism.

The case $\text{dir}(v_k) = - \text{dir}(v_l)$ with $\text{ind}_k^*(w) < d$ and $\text{ind}_l^*(w) \geq d$ follows analogously (by Lemma 3.59: $\text{dir}(v_k) = \text{dir}(v_l)$).

Consider now the case where $\text{dir}(v_k) = \text{dir}(v_l)$. It follows by Lemma 3.56 and 3.59 that $\text{dir}(v_k) = \text{dir}(v_l) = \text{dir}(v_j)$ in both cases ($\text{ind}_k^*(w) < d$, $\text{ind}_l^*(w) < d$, or $\text{ind}_k^*(w) < d$, $\text{ind}_l^*(w) \geq d$). By induction, we can use again the bijections given in (240). Thus, we can assume v_k and v_l to be such that $v_k = \tilde{v}_k$.

Let $f : M(v) \longrightarrow M(v')$ be given by

$$b_i \longmapsto \begin{cases} c_i & \forall i \leq j - 1, \\ -c_i & \forall i \geq l, \end{cases} \forall i \notin \{ j, \ldots, l - 1 \},$$
$$b_{j+1} \longmapsto c_{j+i-1} - c_{j+i} \quad \text{for all } i \in I \text{ such that } j + i \in \{ j, \ldots, l - 1 \}.$$

It follows analogously to the previous case that f is a module isomorphism. The key step in this case is given for the index l. Assume that $v_l = \eta^{-1}$ for some $\eta \in \text{Sp}$. Then $v_l(b_l) = b_{l-1}$ yields that $\eta(b_{l-1}) = b_l$. It follows that
\[v_k = \overline{\eta}^{-1} \text{ with } \overline{\eta}(b_{k-1}) = b_k. \] In particular, it follows that \(\eta(b_k) = 0. \) We obtain for the index \(l \) that
\[
\eta_i(b_{l-1}) = \eta_i(b_l - b_{l-1}) = -c_l,
\]
\[f_i(b_{l-1}) = f_i(b_l) = -c_l. \]
\[\square \]

Finally, let \(\{k_i\}_{1 \leq i \leq n} \) and \(\{l_i\}_{1 \leq i \leq n} \) be in \(J^* \) such that all \(w_{k_i} \) and \(w_{l_i} \) are of special type and \(|j - k_i| = |j - l_i| \leq d \) for all \(i \in \{1, \ldots, n\} \). Assume additionally that all pairs of this form in \(J^* \) are described by the above sets. For all pairs \((k_i, l_i) \) with \(\text{dir}(w_{k_i}) = -\text{dir}(w_{l_i}) \) we proceed as described above, starting with the pair \((k_j, l_j) \) with smallest \(|j - k_j| \). This is the pair \((w_{k_j}, w_{l_j}) \) which is closest to \(w_j \). From this one, we continue towards the margin of \(J^* \).

We proceed with all pairs of this form, until we either reach a pair \((k_p, l_p) \) with \(\text{dir}(w_{k_p}) = \text{dir}(w_{l_p}) \), or we reach the margin of \(J^* \). In the first case, we also proceed with the pair \((k_p, l_p) \) as described above. The result follows.

Example 5.27. Let \(\Lambda \) be given by the two-loop quiver with relations as described in Example 2.3.1. Let \(w = a\varepsilon^* a\varepsilon^{-1} \varepsilon^* a \) be an asymmetric string in \(\Gamma_{\text{ud}}(\Lambda) \). Let \(v = a\varepsilon a\varepsilon^{-1} \varepsilon a \) be a directed version of \(w \) and let \(v' = \mu_4(v) = a\varepsilon a\varepsilon^{-1} \varepsilon a \).

In order to see that \(M(v) \cong M(v') \), consider first \(v'' = a\varepsilon a\varepsilon^{-1} \varepsilon a \). Let the bases as \(k \)-vector spaces be given by \((b_0, \ldots, b_7) \) for \(M(v) \), by \((c_0, \ldots, c_7) \) for \(M(v') \) and by \((d_0, \ldots, d_7) \) for \(M(v'') \). In the proof of Proposition 5.26, it is actually shown that \(M(v'') \cong M(v) \) and that \(M(v'') \cong M(v') \). In detail, the module isomorphism \(f: M(v) \to M(v'') \) is given by
\[
\begin{align*}
b_i &\mapsto -d_i & \quad & \forall i \leq 1, \\
b_{3-i} &\mapsto d_{3+i-1} - d_{3-i} & \quad & \forall i \in \{0, 1\}, \\
b_i &\mapsto d_i & \quad & \forall i \geq 4.
\end{align*}
\]

The module isomorphism \(g: M(v'') \to M(v') \) is given by
\[
\begin{align*}
d_i &\mapsto c_i & \quad & \forall i \geq 2, \\
d_1 &\mapsto c_2 - c_1, \\
d_0 &\mapsto -c_0.
\end{align*}
\]

Thus, the module isomorphism \(M(v) \cong M(v') \) is given by \(g \circ f \).

Proposition 5.28. Let \(w = u \varepsilon^* u^{-1} \) be a symmetric string in \(\Gamma_{\text{ud}}(\Lambda) \) for \(\Lambda \) a skewed-gentle algebra, \(\varepsilon \in \text{Sp} \), \(|u| = m \). Let \(v = t \varepsilon^* t^{-1}, v' = t' \varepsilon^* (t')^{-1} \in \mathcal{W}(\Sigma(\Lambda)) \) with \(\kappa, \kappa' \in \{+1, -1\} \), such that \(\mu_j(t) = t' \) for some \(j \in \{1, \ldots, m\} \), \(\Psi^\Sigma(\Lambda)(v) = \Psi^\Sigma(v') \) is (weakly) consistent and \(\Psi^\Sigma(\Lambda)(v) = \Psi^\Sigma(v') = w \). Then \(M_i(v) \cong M_i(v') \) for \(i = 0, 1 \).
Proof. Assume that $\text{dir}(v_j) = -1$, $v_j = \eta^{-1}$. The other cases follow analogously. Recall that the Λ-module $M_i(v)$ can be written as follows:

$$b_0 \xrightarrow{v_1} b_1 \xrightarrow{v_2} \cdots \xrightarrow{v_{m-1}} b_{m-1} \xrightarrow{v_m} b_m \xrightarrow{\varepsilon=1} (241)$$

Thus, the proof is analogous to the proof of Proposition 5.26, apart from the case $v_{m+1} \in J^*$. Let $\epsilon = \text{given by } 3.59$. We have that $\text{ind}_{m+1}^* \geq d$. Let $k \in J^*$ such that $|j - k| = |j - (m+1)|$. By Lemma 3.55 we know that $\text{ind}_k^*(w) < d$. Lemma 3.59 yields that $\text{dir}(v_k) = \text{dir}(v_j)$. Hence, $v_k \in \{\varepsilon^{-1}, \varepsilon^{-1}\}$ since $v_{m+1} = \varepsilon$. Let the basis of $M_i(v)$ be as described above be given by (b_0, \ldots, b_{2m}) and the one of $M_i(v')$ be given by (c_0, \ldots, c_{2m}). Let $f : M_i(v) \to M_i(v')$ with $i = 1$ be given by

$$b_q \mapsto c_i \quad \forall i \leq j - 1,$$

$$b_{q+1} \mapsto c_{j+q-1} - c_{j+q} \quad \forall q \in I \text{ such that } j + q \in \{j, \ldots, m\},$$

$$b_q \mapsto -c_i \quad \forall i \geq m + 1.$$

Then f is an injective and thus bijective map between the vector spaces $M_i(v)$ and $M_i(v')$. In order to show that f is a Λ-module morphism, we examine the commutativity relations of the form $f \lambda = \lambda f$, $\lambda \in \Lambda$. We have that $f : b_q \mapsto c_q$ and $v_q = v'_q$ for all $q \leq j - 1$. Thus, the above relation directly follows for those indices. A similar argument yields the relations for any $q \geq m + 1$. The cases $j \leq q \leq m$ follow analogously to the case of an asymmetric string using symmetry in j and definition of μ_j. The special case to consider here is $q = m$. Recall that $f : b_m \mapsto c_k - c_m$. By induction, we know that $M(\mu_k(v')) \cong M(v')$ and similarly, that $M(\mu_k(v)) \cong M(v)$. By induction, we can also assume that $v_k = \varepsilon^{-1}$. Thus, $c_k \in \text{im}(\varepsilon)$. It follows that

$$f \varepsilon(b_m) = f(b_m) = c_k - c_m,$$

$$\varepsilon f(b_m) = \varepsilon(c_k - c_m) = c_k - c_m,$$

yielding the commutativity relation. Note that we write here $\varepsilon(b_m) = b_m$ according to the depiction (241). Consider now the case $i = 0$. By induction, we can consider $v_k = \varepsilon^{-1}$. Thus, $c_k \in \text{im}(\varepsilon) = \text{ker}(\varepsilon)$. We obtain that $\varepsilon(c_k - c_m) = 0$. The commutativity relation follows. \hfill \square

Example 5.29. Let Λ be given by the two-loop quiver with relations as described in Example 2.3.1. Let $w = u \varepsilon u^{-1}$ be a symmetric string in $\Gamma_{ud}(\Lambda)$ with $u = \varepsilon^a a^{-1} \varepsilon^a$. Consider $v = \varepsilon^{-1} a^{-1} \varepsilon^{-1} a \varepsilon a \varepsilon$ and $v' = \varepsilon^{-1} a^{-1} \varepsilon^{-1} a \varepsilon a^{-1} \varepsilon a \varepsilon$ in $\tilde{\Sigma}_d(\Gamma)$. Note that $\mu_3(\varepsilon^{-1} a^{-1} \varepsilon^{-1} a) = \varepsilon^{-1} a^{-1} \varepsilon^{-1} a$. The word v is in particular given in terms of the alphabet $\Gamma_d(\Lambda)$ and (weakly) consistent. Consider additionally $v'' = \varepsilon^{-1} a^{-1} \varepsilon^{-1} a \varepsilon a \varepsilon \varepsilon$. We have that $\mu_3(\varepsilon^{-1} a^{-1} \varepsilon^{-1} a) = \varepsilon^{-1} a^{-1} \varepsilon^{-1} a$. Denote by $(b_0, \ldots, b_4, b_5, \ldots, b_9)$ the basis of the k-vector space

247
Let \(i = 1 \). We obtain that \(M_1(v) \cong M_1(v') \) as modules by sending

\[
M_i(v), by (c_0, \ldots, c_4, c_5, \ldots, c_9) the basis of M_i(v') and by (d_0, \ldots, d_4, d_5, \ldots, d_9) the basis of M_i(v '').
\]

Now let \(i = 0 \) and consider the module homomorphism \(f : M_0(v) \to M_0(v'') \) which is given by

\[
b_0 \mapsto d_0, \\
b_1 \mapsto d_0 - d_1, \\
b_2 \mapsto d_2, \\
b_3 \mapsto -d_2 - d_3, \\
b_4 \mapsto -d_1 - d_4, \\
b_i \mapsto d_i \quad \forall i \geq 5.
\]

It follows that \(f \) is a module isomorphism. Consider next the module homomorphism \(g : M_0(v') \to M_0(v'') \) given by

\[
c_0 \mapsto d_0, \\
c_1 \mapsto d_0 - d_1, \\
c_i \mapsto -d_i \quad \forall 2 \leq i \leq 4, \\
c_i \mapsto d_i \quad \forall i \geq 5.
\]

It follows that \(g \) is an isomorphism. The module isomorphism \(M_0(v) \cong M_0(v') \) is given by \(g^{-1} \circ f \).

Let \(v_z \) be a \(\Gamma_d - \mathbb{Z} \)-word, \(V \) be a \(k[T, T^{-1}] \)-module with \(T \) acting as \(A \in \text{End}(V) \). We encode this information in the following additionally and may write \(M(v_z, (V, A)) \) instead of \(M(v_z, V) \), if convenient.

Proposition 5.30. Let \(w_z \) be an asymmetric band of period \(p \) with periodic part \(\hat{w}_p \). Let \(v_z, v'_z \in \mathcal{W}(\Sigma_d(A)) \) with \(\hat{v}_{i} = \hat{v}_{i}^{(k)} = \hat{v}_{i}^{(l)} \) for all \(i, k \in \mathbb{Z} \) and such that \(\mu_j(v_z) = v'_z \) for some \(j \in \{1, \ldots, p\} \), \(\Psi_{\text{ud}}^p(v_z) = \Psi_{\text{ud}}^p(v'_z) = w_z \). Then

\[
M(v_z, (V, A)) \cong M(v'_z, (V, -A))
\]

for \(V \) a \(k[T, T^{-1}] \)-module, \(A \in \text{End}(V) \) invertible.
Proof. We show the statement by induction on the c^*–index of w_j. Recall that $\text{ind}^*_c(w_z) < \frac{p}{2}$ (cf. Corollary 3.31, Remark 3.32)). Thus, it follows that $|J^*| \leq p - 2$ and we can assume for simplicity that $J^* \subseteq [2, p - 1]$ (otherwise, the proof follows analogously with a respective shift on the indices).

Let $\text{ind}^*_c(v_z) = 0$. We have that $v_{j-1} = v_j^*$ and that $v_{j+1} = v_{j+1}^*$, and similarly in v'_{z}. Thus, $\text{dir}(v_{j-1}) = \text{dir}(v_{j+1}) = \text{dir}(v_j)$, and similarly in v'_{z}.

Assume that $v_{j} = \varepsilon^{-1}$. The case $v_{j} = \varepsilon$ follows analogously. We have that $v_{j}^* = \varepsilon^{-1}$.

Let $v_{j-1} = x^{-1}$ and $v_{j+1} = y^{-1}$. Recall that $v_{j-1} = v_{j-1}^*$ and $v_{j+1} = v_{j+1}^*$. Let $v_i(b_i) = b_{i-1}$ for all $i \in \mathbb{Z}$.

Consider the ring isomorphism $g : k[T, T^{-1}] \rightarrow k[T, T^{-1}]$, $T \mapsto -T$. As first step, we show that $h : \Lambda M(v_z) k[T, T^{-1}] \rightarrow \Lambda M(v'_z) g$ is an isomorphism of bimodules. Here, $M(v'_z) g$ denotes the right $k[T, T^{-1}]$–module $M(v'_z)$ restricted to g. Recall that $M(v_z)$ becomes a $\Lambda - k[T, T^{-1}]$–modules by T acting as $t_{v_z, p}$. Hence, we have that $b_i T = t_{v_z, p}(b_i)$ for any $b_i \in M(v_z)$, with $t_{v_z, p}$ the shift by $-p$ on v_z. We denote the respective operation of $M(v_z) g$ by $b_i T = b_i (-T)$.

Let $q \in \mathbb{Z}$ be the index of the periodic parts of v_z, v'_z, respectively. We choose for q even:

$$
\begin{align*}
 h : \quad & b_{i+qp} \quad \mapsto \quad \begin{cases}
 c_{i+qp}, & 1 \leq i \leq j - 1, \\
 -c_{i+qp}, & j + 1 \leq i \leq p,
 \end{cases} \\
 \quad \mapsto \quad c_{j-1+qp} - c_{j+qp},
\end{align*}
$$

and for q odd:

$$
\begin{align*}
 h : \quad & b_{i+qp} \quad \mapsto \quad \begin{cases}
 -c_{i+qp}, & 1 \leq i \leq j - 1, \\
 c_{i+qp}, & j + 1 \leq i \leq p,
 \end{cases} \\
 \quad \mapsto \quad -c_{j-1+qp} + c_{j+qp}.
\end{align*}
$$

By definition, h is a bijective map between k–vector spaces. Let us show next that it is a morphism of left Λ–modules. To this end, we observe that the key points are given at v_j and v_{j+1} in $v'_p(k)$. Let k be even. We obtain that

$$
\begin{align*}
 h \varepsilon(b_{j-1+qp}) &= h(b_{j+qp}) = c_{j-1+qp} - c_{j+qp}, \\
 \varepsilon h(b_{j-1+qp}) &= \varepsilon(c_{j-1+qp}) = (1 - \varepsilon)(c_{j-1+qp}) = c_{j-1+qp} - \varepsilon(c_{j-1+qp}), \\
 &= c_{j-1+qp} - c_{j+qp},
\end{align*}
$$

and that

$$
\begin{align*}
 h y(b_{j+qp}) &= h(b_{j+1+qp}) = -c_{j+1+qp}, \\
 y h(b_{j+qp}) &= y(c_{j-1+qp} - c_{j+qp}) = y(-c_{j+qp}) = -c_{j+1+qp}.
\end{align*}
$$

249
Here, we have used in the last equation that $yx = 0$ by definition of Λ being skewed-gentle. This gives that $y(c_{j-1+qp}) = 0$.

For q odd, we have that

$$h\varepsilon(b_{j-1+qp}) = h(b_{j+qp}) = -c_{j-1+qp} + c_{j+qp},$$
$$\varepsilon h(b_{j-1+qp}) = \varepsilon(-c_{j-1+qp}) = (1 - \varepsilon)(-c_{j-1+qp}) = -c_{j-1+qp} - \varepsilon(-c_{j-1+qp}),$$

and that

$$h\gamma(b_{j+qp}) = h(b_{j+1+qp}) = c_{j+1+qp},$$
$$\gamma h(b_{j+qp}) = \gamma(-c_{j-1+qp} + c_{j+qp}) = \gamma(c_{j+qp}) = c_{j+1+qp}.$$

These equations give commutativity relations at the positions j and $j+1$ in each periodic part. The other commutativity relations follow by definition of h. Hence, h is a morphism of left Λ-modules.

Finally, we show that h is a morphism between the modules $M(v_2)_k[T, T^{-1}]$ and $M(v'_2)_p$. Let q be even. Then we have that

$$h(b_{i+qp}T) = h(b_{i+(q-1)p}) = \begin{cases} -c_{i+(q-1)p}, & 1 \leq i \leq j - 1, \\ c_{i+(q-1)p}, & j + 1 \leq i \leq p, \\ -c_{j-1+(q-1)p} + c_{j+(q-1)p}, & i = j, \end{cases}$$

$$\begin{aligned} (h(b_{i+qp})) \ast T = & \begin{cases} c_{i+qp} \ast T & 1 \leq i \leq j - 1, \\ -c_{i+qp} \ast T & j + 1 \leq i \leq p, \\ (c_{j-1+qp} - c_{j+qp}) \ast T & i = j, \end{cases} \\ = & \begin{cases} -c_{i+(q-1)p} & 1 \leq i \leq j - 1, \\ c_{i+(q-1)p} & j + 1 \leq i \leq p, \\ -c_{j-1+qp} + c_{j+qp} & i = j. \end{cases} \end{aligned}$$

The above yields that $h(b_{i+qp}T) = h(b_{i+qp}) \ast T$ for q even. Similarly, we obtain for q odd the respective commutativity relations.

The above yields that

$$M(v_2, (V, A)) = M(v_2) \otimes_{k[T, T^{-1}]} (V, A) \cong M(v'_2) \otimes_{k[T, T^{-1}]} (V, A).$$

Note that we can write

$$M(v'_2) \otimes_{k[T, T^{-1}]} (V, A) \cong \left(M(v'_2) \otimes_{k[T, T^{-1}]} k[T, T^{-1}] \right) \otimes_{k[T, T^{-1}]} (V, A).$$

Recall that T acts as A on the vector space V. We consider for $v \in V$ the element $1 \otimes v \in k[T, T^{-1}]_g \otimes_{k[T, T^{-1}]} (V, A)$:

$$T(1 \otimes v) = T \otimes v = (-1 \ast T) \otimes v = -1 \otimes T v = -1 \otimes Av.$$
Thus, it follows that

\[M(\nu_z^1)_g \otimes_{\mathbb{H}[T,T^{-1}]} (V,A) \cong M(\nu_z^2) \otimes_{\mathbb{H}[T,T^{-1}]} (V,-A). \]

Summarising, we obtain that

\[M(\nu_z,(V,A)) \cong M(\nu_z^1,(V,-A)). \]

Let now \(\text{ind}_k^i(w_z) = d > 0. \) Assume that \(\text{dir}(\nu_j) = -1 \) and that \(\nu_j = \bar{v}^{-1} \) (the cases \(\nu_j = \nu^{i-1} \) and \(\text{dir}(\nu_j) = 1 \) follow analogously). Let \(k, l \in J^* \) such that \(|k - j| = |l - j| \) and \(w_k = w_l = \kappa^* \) for some \(\kappa \in \text{Sp}. \) Assume without loss of generality that \(k < j < l \) and that \((k,l)\) is the pair in \(J^* \) with \(|k - j| = |l - j| \) minimal. Let \(w_{j^+} = x^{-1} \) and \(w_{j^+} = y^{-1}. \)

Let \(\text{dir}(\nu_k) = \text{dir}(\nu_l). \) We observe that we have in this case that their directions are equal to \(\text{dir}(\nu_j) \) (compare Lemmas 3.56, 3.59). We have by Lemma 3.55 that at least one of \(\text{ind}_k^i(w_z) \) and \(\text{ind}_l^j(w_z) \) is smaller than \(d. \) Assume without loss of generality that \(\text{ind}_k^i(w_z) < d. \) We can assume by induction that \(M(\mu_k(\nu_z^1),(V,-A)) \cong M(\nu_z^2,(V,A)). \) We can also assume by induction that \(\nu_k = \bar{v}_k, \) say, \(\nu_k = \bar{v}^{-1} \) and \(\nu_l = \eta^{-1}. \) Similarly we have that \(M(\mu_k(\nu_z),(V,-A)) \cong M(\nu_z,(V,A))). \) Thus, we can also assume that \(\nu_k^* = \bar{v}^{-1} \) and \(\nu_l^* = \eta^{-1}. \) Let \(h : \Lambda M(\nu_z)_{k[T,T^{-1}]} \rightarrow \Lambda M(\nu_z)_g \) be given as follows for \(q \) even (with \(q \) as in the induction basis):

- \(b_{i+q} \rightarrow c_{i+q}, \quad 1 \leq i \leq j - 1, \)
- \(b_{j+i+q} \rightarrow c_{j-i+1+q} - c_{j+i+q}, \quad \forall i \text{ such that } j + i \in \{j, \ldots, l - 1\}, \)
- \(b_{i+q} \rightarrow -c_{i+q}, \quad l \leq i \leq p, \)

and for \(q \) odd:

- \(b_{i+q} \rightarrow -c_{i+q}, \quad 1 \leq i \leq j - 1, \)
- \(b_{j+i+q} \rightarrow -c_{j-i+1+q} + c_{j+i+q}, \quad \forall i \text{ such that } j + i \in \{j, \ldots, l - 1\}, \)
- \(b_{i+q} \rightarrow c_{i+q}, \quad l \leq i \leq p. \)

By definition, \(h \) is a bijective map between the two vector spaces. We show next that \(h \) is a morphism of \(\Lambda \)-modules. Here, the key points are given by the indices \(j \) and \(l. \) Let \(q \) be even. We obtain that

- \(\epsilon h(b_{j+1}) = h(b_{j-1}) = c_{j-1+q} - c_{j+q}, \)
- \(\epsilon h(b_{j-1+q}) = \epsilon(c_{j-1+q}) = (1_{\delta}(\epsilon) - \bar{\epsilon})(c_{j-1+q}) = c_{j-1+q} - c_{j+q}, \)
- \(h\eta(b_{l-1+q}) = h(b_{l+q}) = -c_{l+q}, \)
- \(\eta h(b_{l-1+q}) = \eta(c_{k+q} - c_{l-1+q}) = -c_{l+q}, \)

251
where \(s(\varepsilon) \) denotes the starting vertex of \(\varepsilon \) in the quiver. We have used in the last equation that \(e_{k+q}(b) \in \ker(\eta) = \ker(\eta) \). Now let \(q \) be odd:

\[
\begin{align*}
\varepsilon h(b_{j-1+qp}) &= h(b_{j+qp}) = -c_{j-1+qp} + c_{j+qp}, \\
\varepsilon h(b_{j-1+qp}) &= \varepsilon(-c_{j-1+qp}) = (1_s(\varepsilon) - \varepsilon)(c_{j-1+qp}) = -c_{j-1+qp} + c_{j+qp}, \\
h\eta(b_{i-1+qp}) &= h(b_{i+qp}) = c_{i+qp}, \\
\eta h(b_{i-1+qp}) &= \eta(c_{k+q-p} - c_{1+q-p}) = c_{i+qp}.
\end{align*}
\]

It follows that \(h \) is morphism between \(A \)-modules. Finally, we examine the interaction of \(T \) and \(h \). Again, let \(q \) be even:

\[
h(b_{i+qp}) \ast T = \begin{cases}
 c_{i+kq}(-T) & 1 \leq i \leq j - 1, \\
 (c_{j-f-1+qp} - c_{j+f+qp})(-T) & i = j + f \in \{j, \ldots, l - 1\}, \\
 -c_{i+qp}(-T) & l \leq i \leq p,
\end{cases}
\]

\[
= \begin{cases}
 -c_{i+(q-1)p} & 1 \leq i \leq j - 1, \\
 -c_{j-f-1+(q-1)p} + c_{j+f+(q-1)p} & i = j + f \in \{j, \ldots, l - 1\}, \\
 c_{i+(q-1)p} & l \leq i \leq p.
\end{cases}
\]

Proceeding analogously for \(q \) being odd yields that \(h(b_{i+qp}) \ast T = h(b_{i+qp}T) \) for all \(1 \leq i \leq p, q \in \mathbb{Z} \). It follows that \(h \) is a bimodule morphism between the modules \(\Lambda M(\mu_k(v_z))_{k[T,T-1]} \) and \(\Lambda M(\mu_k(v'_z))_q \). By the same association as in the induction basis, we obtain additionally that \(M(\mu_k(v_z), (V, -A)) \cong M(\mu_k(v'_z), (V, A)) \). It follows that

\[
M(v_z, (V, A)) \cong M(v'_z, (V, -A)).
\]

Let now \(\text{dir}(v_k) = -\text{dir}(v_l) \). Similar to the previous case, we can assume by induction that \(v_k = v_l^{-1} \), say \(v_k = \eta, v_l = \eta^{-1} \): by induction we have that \(M(\mu_k(v_z), (V, -A)) \cong M(v_z, (V, A)) \) and \(M(\mu_k(v_z), (V, -A)) \cong M(v'_z, (V, A)) \). Consider the map \(h_k : \Lambda M(\mu_k(v_z))_{k[T,T-1]} \rightarrow \Lambda M(\mu_k(v'_z))_q \) given as follows: for \(q \) even:

\[
\begin{align*}
b_{i+qp} &\rightarrow c_{i+qp} & 1 \leq i \leq j - 1, \\
b_{j+i+qp} &\rightarrow c_{j-i+1+q} - c_{j+i+qp} & \forall i \text{ such that } j + i \in \{j, \ldots, j^*_+ - 1\}, \\
b_{i+qp} &\rightarrow -c_{i+qp} & j^*_+ \leq i \leq p,
\end{align*}
\]

and for \(q \) odd:

\[
\begin{align*}
b_{i+qp} &\rightarrow -c_{i+qp} & 1 \leq i \leq j - 1, \\
b_{j+i+qp} &\rightarrow c_{j-i+1+q} + c_{j+i+qp} & \forall i \text{ such that } j + i \in \{j, \ldots, j^*_+ - 1\}, \\
b_{i+qp} &\rightarrow c_{i+qp} & j^*_+ \leq i \leq p.
\end{align*}
\]
Proceeding analogously to the previous case, it follows that h is a morphism of left Λ–modules. Here, the key points are given by the indices j and j^* and we use that $yz = 0$ by definition of Λ being skewed-gentle. Hence, we obtain that $y(b_{j,qp}) = 0$ for any $q \in \mathbb{Z}$. We obtain analogously to the previous case that h is an isomorphism between the modules $\Lambda M(\mu_k(v_z))_{\mu[T,T^{-1}]}$ and $\Lambda M(\mu_k(v'_z))_g$. Thus, we have that $M(\mu_k(v_z),(V,A)) \cong M(\mu_k(v'_z),(V,-A))$. It follows that

$$M(v_z,(V,A)) \cong M(v'_z,(V,-A)).$$

\[\square\]

Example 5.31. Let Λ be given as in Example 2.3.1. We consider the asymmetric band w_z in $\mathcal{W}(\Gamma_{ud}(A))$ with periodic part $\hat{w}_p = \varepsilon^*a \varepsilon^*a^{-1}\varepsilon^*a^{-1}$. Let v_z, $v'_z \in \mathcal{W}(\Sigma_d(A))$ with periodic parts given by $\hat{v}_p = \varepsilon^{-1}a \varepsilon^{-1}a^{-1}\varepsilon^{-1}a^{-1}$ and $(v'_z) = \varepsilon^{-1}a \varepsilon^{-1}a^{-1}\varepsilon^{-1}a^{-1}$. We observe at first that $\text{ind}_3^1(v_z) = 2$ and $\text{ind}_3^1(v'_z) = 0$.

Since $v_1 = \varepsilon^{-1}$, we use induction on v_5 which yields that $\mu_5(v_z)$ has periodic part $(\mu_5(v_z))_p = \varepsilon^{-1}a \varepsilon^{-1}a^{-1}\varepsilon^{-1}a^{-1}$ and $\mu_5(v'_z)$ has periodic part $(\mu_5(v'_z))_p = \varepsilon^{-1}a \varepsilon^{-1}a^{-1}\varepsilon^{-1}a^{-1}$. Additionally, we have by induction that $M(v_z,(V,A)) \cong M(\mu_5(v_z),(V,-A))$ and $M(v'_z,(V,A)) \cong M(\mu_5(v'_z),(V,-A))$. The induction step yields that $M(\mu_5(v_z),(V,-A)) \cong M(\mu_5(v'_z),(V,A))$. With this, we obtain the wanted isomorphism.

Proposition 5.32. Let w_z be an asymmetric or symmetric band of period p. Let $v_z \in \mathcal{W}(\Sigma_d(A))$ such that $\Phi_{ud}^d(v_z) = w_z$ and $\tilde{v}_p^{(i)} = \tilde{v}_p^{(k)}$ for all $i, k \in \mathbb{Z}$. Denote by $M(v_z)$ the bimodule in which any special letter v_j of $\tilde{v}_p^{(i)}$ sends b_j to b_{j-1}. Denote by $M'(v_z)$ the bimodule in which v_j sends b_j to $-b_{j-1}$ for some $j \in \{1, \ldots, p\}$ with v_j special. Then

$$M'(v_z,(V,A)) \cong M(v_z,(V,-A)).$$

Proof. The proof follows analogously to the induction step of the proof of Proposition 5.30. \[\square\]

Proposition 5.33. Let w_z be a symmetric band of period p with periodic part $\hat{w}_p = \varepsilon^*u \eta^*u^{-1}$ where $\varepsilon, \eta \in \text{Sp}, |u| = m$. Let v_z, $v'_z \in \mathcal{W}(\Sigma_d(A))$ such that

- $\text{dir}(v_{1+k}) = \text{dir}(v_{m+2+k}) = \text{dir}(v'_{1+k}) = \text{dir}(v'_{m+2+k}) = 1$ for all $k \in \mathbb{Z}$,
- $\tilde{v}_p^{(i)} = \tilde{v}_p^{(k)}$ and $\tilde{v}_p^{(i)} = \tilde{v}_p^{(k)}$ for all $i, k \in \mathbb{Z}$,
- $\mu_j(v_z) = v'_z$ for some $j \in \{1, \ldots, p\}$ with $j \neq 1, m + 2$,
- $\Psi_{ud}^\Sigma(v_z) = \Psi_{ud}^\Sigma(v'_z)$ is (weakly) consistent,
- $\Psi_{ud}^\Sigma(v_z) = \Psi_{ud}^\Sigma(v'_z) = w_z$.

253
Then

\[M(v_z, (V, A)) \cong M(v'_z, (V, -A)) \] \hspace{1cm} (242)

where \(V \) is a \(k[T, T^{-1}, (T - 1)^{-1}] \)-module, \(A \in \text{End}(V) \) invertible with \(1 \) (\(-1\)) not an eigenvalue.

Proof. The periodic part of \(w_z \) is of the form \(\hat{w}_p = \varepsilon^* \eta^* u^{-1} \). By assumption, we can assume without loss of generality that \(\hat{v}_p = \varepsilon \eta t^{-1} \) with \(\Psi^v_P(t) = u \).

The proof follows analogously to the proof of Proposition 5.30. In order to apply the induction, we need to take into consideration that \(\text{ind}^*_{1, q p}(w_z) = \infty = \text{ind}^*_{1, p q}(w_z) \) for all \(q \in \mathbb{Z} \). \(\square\)

Proposition 5.34. Let \(w_z \) be a symmetric band of period \(p \) with periodic part given by \(\hat{w}_p = \varepsilon^* \eta^* u^{-1} \), \(\eta, \varepsilon \in \text{Sp}, \lvert u \rvert = m \). Let \(v_z, v'_z \in \mathcal{W}(\Sigma_d(A)) \) such that

- \(\hat{v}^{(i)}_p \equiv \varepsilon \eta t^{-1}, \hat{v}'^{(i)}_p = \varepsilon \eta (t')^{-1} \) for all \(i \in \mathbb{Z} \),
- \(\text{dir}(v_{1+kp}) = \text{dir}(v_{m+2+kp}) = \text{dir}(v'_{1+kp}) = \text{dir}(v'_{m+2+kp}) = 1 \) for all \(k \in \mathbb{Z} \),
- \(\mu_j(t) = t' \) for some \(j \in \{1, \ldots, m\} \),
- \(\Psi^v_P(v_z) = \Psi^v_P(v'_z) \) is (weakly) consistent,
- \(\Psi^v_{\omega_0}(v_z) = \Psi^v_{\omega_0}(v'_z) = w_z \).

Let \(p \in \mathbb{N} \). Then

\[M_{i,j,\varepsilon,\eta}(t^{[p]}_j) = M_{i,j,\varepsilon,\eta}((t')^{[p]}_j) \] \hspace{1cm} (243)

where \(i, j \in \{0, 1\} \), \(t^{[p]}, (t')^{[p]} \) are defined as in Subsection 2.3.3 and with modules \(M_{i,j,\varepsilon,\eta}(-) \) defined as in Theorem 5.21.

Proof. We consider \(t^{[p]}_j \) and \((t')^{[p]}_j \) as subwords of \(v_z, v'_z \), respectively, and thus will use the \(c^* \)-indices of \(v_z, v'_z \) for the induction. Recall that this is conform with the way of orientation in \(\Sigma \)-chains with two double ends. Note that any \(\eta \) (or \(\varepsilon \)) in \(t^{[p]} \) which is given between \(t \) and \(t^{-1} \) (\(t^{-1} \) and \(t \) has infinite \(c^* \)-index. The proof is analogous to the proof of Proposition 5.28. \(\square\)

Remark 5.35. The above statement also holds if the periodic parts are given by

- \(\hat{v}^{(i)}_p \equiv \varepsilon \eta t^{-1} \) and \(\hat{v}'^{(i)}_p \equiv \varepsilon \eta (t')^{-1} \), or
- \(\hat{v}^{(i)}_p \equiv \varepsilon \eta t^{-1} \) and \(\hat{v}'^{(i)}_p \equiv \varepsilon \eta (t')^{-1} \), or
- \(\hat{v}^{(i)}_p \equiv \varepsilon \eta t^{-1} \) and \(\hat{v}'^{(i)}_p \equiv \varepsilon \eta (t')^{-1} \),

\[254 \]
for all \(i \in \mathbb{Z} \).

We are able to refine Theorem 5.21 by the above results as follows with respect to the alphabets:

Theorem 5.36. Let \(\Lambda \) be a skewed-gentle algebra as above.

(i) Let \(w \in \Gamma_{ud}(\Lambda) \) be an asymmetric string. Let \(v \in (\Phi_{ud}^d)^{-1}(w) \) be (weakly) consistent. Let \(\nu' \in \tilde{\Sigma}_d(\Lambda) \) such that \(F(U(g_{\nu'})) = M(\nu') \).

\[
M(\nu') \cong M(v).
\]

(ii) Let \(w \in \Gamma_{ud}(\Lambda) \) be a symmetric string of the form \(w = u^*w^*u^{-1} \). Let \(\nu \in (\Phi_{ud}^d)^{-1}(w) \) be (weakly) consistent. Let \(\nu' \in \tilde{\Sigma}_d(\Lambda) \) be such that \(F(U_\nu(g_{\nu})) = M_i(\nu') \) where

\[
i = \begin{cases}
1 & \text{if } s = 1, \\
0 & \text{if } s = 2.
\end{cases}
\]

Then \(M_i(\nu') \cong M_i(v) \) for \(i \in \{0,1\} \).

(iii) Let \(w_\omega \in \Gamma_{ud}(\Lambda) \) be an asymmetric band. Let \(\nu_\omega \in (\Phi_{ud}^d)^{-1}(w_\omega) \) be (weakly) consistent with periodic parts \(\nu_p^{(i)} = \nu_p^{(k)} \) for all \(i, k \in \mathbb{Z} \). Let \(\nu'_\omega \in \tilde{\Sigma}_d(\Lambda) \) such that \(F(U(g_{\nu_\omega}, \varphi)) = M(\nu'_\omega, (V, A)) \) where \(A = \sigma_1 F_{\varphi}^2 \in \text{End}(V) \), \(\sigma_1, \sigma_2 \in \{+1, -1\} \) and \(V \) a \(k[T, T^{-1}] \)-module of dimension \(\deg(\varphi) \). Then

\[
M(\nu_\omega, (V, A)) \cong M(\nu'_\omega, (V, (-1)^\omega A))
\]

where \(\omega \) denotes the number of all special letters which do not act as \(A \) in \(\nu_p^{(i)} \), plus the number of inverse special letters in \(\nu_p^{(i)} \).

(iv) Let \(w_\omega \in \Gamma_{ud}(\Lambda) \) be a symmetric band with periodic part \(\nu_p = \varepsilon^*u\eta^*u^{-1} \). Let \(\nu_\omega \in (\Phi_{ud}^d)^{-1}(w_\omega) \) be (weakly) consistent with periodic parts \(\nu_p^{(i)} = \varepsilon t^{\eta_{i-1}} \) if \(s = 1 \), \(\varepsilon t^{\eta_{s-1}} \) if \(s = 2 \), \(\varepsilon t^{\eta_{s-1}} \) if \(s = 3 \), \(\varepsilon t^{\eta_{s-1}} \) if \(s = 4 \), for all \(i \in \mathbb{Z} \), \(t \in (\Phi_{ud}^d)^{-1}(u) \). Let \(\nu'_\omega \in \tilde{\Sigma}_d(\Lambda) \) such that \(\{F(U_\nu(g_{\nu}, p))\}_{x,y} \cong \{M_{i,j,x,y}((t')^{[p]})\}_{x,y} \), where \(\nu_p^{(i)} = \varepsilon t^{\eta_{i-1}}(t')^{-1} \) for \(s = 1 \), \(\nu_p^{(i)} = \varepsilon t^{\eta_{s-1}}(t')^{-1} \) for \(s = 2 \), \(\nu_p^{(i)} = \varepsilon t^{\eta_{s-1}}(t')^{-1} \) for \(s = 3 \), \(\nu_p^{(i)} = \varepsilon t^{\eta_{s-1}}(t')^{-1} \) for \(s = 4 \), for all \(i \in \mathbb{Z} \). Then

\[
M_{0,1,x,y}(t^{[p]}) \cong M_{0,1,x,y}((t')^{[p]}),
\]

where \(x \in \{\varepsilon, \bar{\varepsilon}\}, y \in \{\eta, \bar{\eta}\} \).

255
(v) Let \(w_z \in \Gamma_{ud}(\Lambda) \) be a symmetric band with periodic part \(\hat{w}_p = \varepsilon^* u_1 u^{-1} \).

Let \(v_z \in (\Phi_{ud})^{-1}(w_z) \) be weakly consistent with periodic parts \(\hat{v}_p^{(i)} = \varepsilon^* u_1 u^{-1} \) for all \(i \in \mathbb{Z} \). Let \(\hat{v}_z' \in \Sigma_{ud}(\Lambda) \) such that \(F \left(U(g_{w_z}, \varphi) \right) = M(\hat{v}_z', (V, A)) \) where \(p \in \mathbb{N} \), \(A = -F^{-1}_\varphi \in \text{End}(V) \) a \(k[T, T^{-1}, (T + 1)^{-1}] \)-module \(k[T, T^{-1}, (T - 1)^{-1}] \)-module) if \(\delta_0(g_{w_z}) \) is odd (even).

Then

\[
M(\hat{v}_z', (V, A)) \cong M(\hat{v}_z', (V, (-1)^\omega A))
\]

where \(\omega \) denotes the number of inverse special letters which do not act as \(A \) in \(\hat{v}_p^{(i)} \), plus the number of all special letters in \(\hat{v}_p^{(i)} \).

Proof. We observe that \(v_t(z) = \mu_{j_1} \circ \cdots \circ \mu_{j_k}(v_t'(z)) \) where \(v_t'(z) \) denote the inverse special letters of \(v_t(z) \) with \(j_1, \ldots, j_k \notin \{1, m + 2\} \) in case (iv).

The results follow by applying the following Propositions on the respective special letters:

- (i) Proposition 5.26
- (ii) Proposition 5.28
- (iii) Proposition 5.30 and Proposition 5.32
- (iv) Proposition 5.34
- (v) Proposition 5.33 and Proposition 5.32.

Remark 5.37. In case of part (v) of the above theorem, we can write

\[
\omega = 3\bar{\omega} + 1
\]

where \(\bar{\omega} \) describes the number of special letters in \(t \): by symmetry in \(\hat{v}_p^{(i)} \) we have that the number of all special letters in this subword is equal to \(2\bar{\omega} + 2 \).

Also, the number of inverse special letters in \(\hat{v}_p^{(i)} \) is given by \(\bar{\omega} \) by symmetry and since the symmetry axes \(v_1 \) and \(v_{m+2} \) are given by direct letters. Hence, we consider \(3\bar{\omega} + 2 \). We know by construction that \(v_1 \) acts as \(-F^{-1}_\varphi \). It follows that \(\omega = 3\bar{\omega} + 1 \).

Thus, it is enough to consider \(\bar{\omega} + 1 \) instead of \(\omega \) in calculations for this case.

We can examine the value of \(\omega \) in part (v) of the above theorem more closely. To this end, we first revisit parts of the construction of \(\mathcal{L} \)-graphs coming from words.

Lemma 5.38. Let \(w_1 \) be a \(\Gamma_{ud}(\Lambda) \)-word and denote by \(g_{w_1} \) its corresponding \(\mathcal{L} \)-graph. Let \(x_j = \mathcal{E}_\delta \) and \(x_k = \mathcal{E}_\kappa \) for some \(\delta, \kappa \in \text{Sp}, j, k \in \{1, \ldots, |g_{w_1}|\} \)
with $j < k$. Assume that there does not exist $l \in \{j, \ldots, k\}$ with $x_l = \zeta_{\zeta^*}$ for any $\zeta \in \Sigma$. Then

$$\# \{ i \in \{j, \ldots, k\} \mid x_i \neq x_{i+1}, \text{ either } x_i, x_{i+1} \in \mathcal{L}(\mathcal{C}) \text{ or } x_i, x_{i+1} \in \mathcal{L}(\mathcal{R}) \}$$

is odd.

Proof. Subchains of the form $x_i - x_{i+1}$ do not contribute to the above set since we have by definition of the relation β that $x_i \in \mathcal{L}(\mathcal{C})$, $x_{i+1} \in \mathcal{L}(\mathcal{R})$, or vice versa. We observe also that subchains of the form $x_i - x_{i+1}$ only contribute to the mentioned set if the links are not of the form \mathcal{C}_{ζ^*} for any $\zeta \in \Sigma$. By definition, we can neglect subchains of the form $x_i - x_{i+1}$ with x_i and x_{i+1} not belonging to the same set of links with respect to columns and rows. Hence, the statement follows by a combinatorial argument. To this end, we mark links of $\mathcal{L}(\mathcal{C})$ by a black bullet, and those of $\mathcal{L}(\mathcal{R})$ by a white bullet. With x_j we start in a black one, and obtain the following picture:

![Diagram of bullet sequence]

where the final bullet corresponds to x_k. It follows that between x_j and x_k there can be a series of relations of the form $x_i - x_{i+1}$ of the wanted form. This series starts and ends in such a relation with $x_i, x_{i+1} \in \mathcal{L}(\mathcal{R})$. It follows by definition of g_u that the above set has odd cardinality. \qed

Lemma 5.39. Let w_z be a symmetric band with $w_z = \varepsilon^* u^* \eta^* u^{-1}$. Let g_{w_z} be its corresponding Σ-cycle. Then

(i) $\delta_0(g_{w_z})$ is even if and only if the number of special letters in u is odd,

(ii) $\delta_0(g_{w_z})$ is odd if and only if the number of special letters in u is even.

Proof. Recall that $\delta_0(g_{w_z}) = \delta(g_{w_z})/2$. Denote by k_i the number of indices contributing to $\delta(g_u)$ between two links of the form \mathcal{C}_{δ^*}, \mathcal{C}_{κ^*} for some $\delta, \kappa \in \Sigma$ (without any links of the form \mathcal{C}_{ζ^*} lying between them). Keep in mind that g_u is a subchain of g_{w_z}. Lemma 5.38 yields that each k_i is odd. Moreover, we have that

$$\delta(g_{w_z}) = 2 \left(\sum_{i=1}^{n} k_i \right),$$

and thus it follows

$$\delta_0(g_{w_z}) = \sum_{i=1}^{n} k_i.$$

We obtain that $\delta_0(g_{w_z})$ is even if and only if n is even, and that $\delta_0(g_{w_z})$ is odd if and only if n is odd.

The subchain g_u starts in the link \mathcal{C}_{x^*} and ends in \mathcal{C}_{y^*}. It follows that n is even if and only if the number of special letters in u is odd. It is odd if and only if the number of special letters in u is even. This observation yields the statement. \qed

257
Lemma 5.40. We have

\[(-1)^\bar{\omega}+1 = (-1)^{\delta_0(g_{w_z})} \]

in Theorem 5.36, (v) where \(\bar{\omega} \) denotes the number of special letters in \(t \).

Proof. Assume that \(\delta_0(g_{w_z}) \) is odd. We know by Lemma 5.39 that the number of special letters in \(t \) is even. Thus, \(\bar{\omega} \) is even and it follows that \(\bar{\omega} + 1 \) is odd. Analogously, it follows for \(\delta_0(g_{w_z}) \) even that \(\bar{\omega} + 1 \) is odd. \(\square \)

Corollary 5.41. Let \(w_z \) be a symmetric band with periodic part \(\hat{w}_p = \varepsilon^* u \eta^* u^{-1} \) for some \(\varepsilon, \eta \in \Sp \). Let \(v_z \in (\Phi_{ud}^d)^{-1}(w_z) \) be (weakly) consistent with \(v_p^{(i)} = \varepsilon^* \eta^* t^{-1} \) for all \(i \in \mathbb{Z} \), with \(t \in (\Phi_{ud}^d)^{-1}(u) \). Let \(V \) be a \(k[T, T^{-1}, (T-1)^{-1}] \)-module.

Then

\[F(U(g_{w_z}, \varphi)) \cong M(v_z, (V, (-1)^{\delta_0(g_{w_z})}F_{\varphi}^{-1})) \]

(244)

Proof. The isomorphism above follows from Theorem 5.36, (v) and Lemma 5.40. Note that we have to additionally take the letter \(v_{m+2} = \eta \) into account.

It is sending \(b_{m+2} \) to \(-b_{m+1} \) in \(F(U(g_{w_z}, \varphi)) \). It remains to show that 1 is not an eigenvalue of \((-1)^{\delta_0(g_{w_z})}F_{\varphi}^{-1} \). Let \(\delta_0(g_{w_z}) \) be odd. We obtain that \((-1)^{\delta_0(g_{w_z})} = 1 \). By construction, we have that \(\varphi_0 \neq t, t - 1 \). It follows that 1 is not an eigenvalue of \(F_{\varphi}^{-1} \).

Let \(\delta_0(g_{w_z}) \) be even. Then we have that \((-1)^{\delta_0(g_{w_z})} = -1 \). By construction, \(\varphi_0 \neq t, t + 1 \) which yields that \(-1 \) is not an eigenvalue of \(F_{\varphi}^{-1} \). This implies that 1 is not an eigenvalue of \(-F_{\varphi}^{-1} \). \(\square \)

We want to give the classification Theorem 4.61 in terms of the image of \(F \). In order to exclude isomorphic modules, we first recall some general results which have already been alluded to in Section 2.4.

Lemma 5.42. Let \(w \) be an asymmetric string and let \(v \in (\Phi_{ud}^d)^{-1}(w) \) be weakly consistent. Then

\[M(v) \cong M(v') \]

for any \(v' \in [v] \).

Proof. We have for \(v' \in [v] \) that \(v' \sim v \). It follows that either \(v' = v \) or \(v' = v^{-1} \). The isomorphism between the modules is given by the identity in the first case, and by \(i_w \) in the second case. Recall that \(i_w \) reverses the basis (cf. Section 2.4). \(\square \)

Lemma 5.43. Let \(w \) be a symmetric string and let \(v \in (\Phi_{ud}^d)^{-1}(w) \) be weakly consistent. Then

\[M_i(v) \cong M_i(v') \]

for any \(v' \in [v], i \in \{0, 1\} \).

258
Lemma 5.44. Let \(b \) by shift and by inverses separately.

Recall that two \(Z \)-words \(v_2 \) and \(v'_2 \) are said to be equivalent if \(v'_2 = v_2[m] \) or \(v'_2 = v_2^{-1}[m] \) for some \(m \in Z \). For bands, we will consider equivalences given by shift and by inverses separately.

Lemma 5.45. Let \(w_z \) be an asymmetric or symmetric band and let \(v_z \in (\Phi_{\text{ud}})^{-1}(w_z) \) be weakly consistent with \(\hat{v}_p^{(i)} = \hat{v}_p^{(k)} \) for all \(i, k \in Z \). Then

\[
M(v_z^{-1}) \cong M(v_z)_g
\]
as \(k[T, T^{-1}] \)-modules, where \(g : k[T, T^{-1}] \rightarrow k[T, T^{-1}] \) sending \(T \rightarrow T^{-1} \).

We have in particular that

\[
M(v_z, (V, A)) \cong M(v_z^{-1}, (V, A^{-1}))
\]
as \(\Lambda - k[T, T^{-1}] \)-bimodules.

Proof. The isomorphism \(h : M(v_z) \rightarrow M(v_z^{-1}) \) between the vector spaces is given by reversing the basis. Recall that \(T \) acts as the shift \(t_{w_z,p} \) on \(M(v_z) \). It follows that \(b_{i+qp}T = b_{i+q-1}p \) in \(M(v_z) \). We have in \(M(v_z^{-1}) \) that \(b_{i+qp}T = b_{i+q+1}p \) by reverse of the basis. Hence, \(b_{i+qp}g(T) = b_{i+q}T^{-1} = b_{i+p(q+1)}p \)

It follows from \(h \) that

\[
M(v_z, V) = M(v_z) \otimes_{k[T, T^{-1}]} V \cong M(v_z^{-1})_g \otimes_{k[T, T^{-1}]} V
\]
as bimodules. We obtain for \(m \in M(v_z^{-1}) \), \(v \in V \) that

\[
m_g(T) \otimes v = m \otimes g^{-1}(T)v.
\]

This yields the following isomorphism of bimodules:

\[
M(v_z^{-1})_g \otimes_{k[T, T^{-1}]} V \cong M(v_z^{-1})_g \otimes_{k[T, T^{-1}]} V
\]

which results in

\[
M(v_z, (V, A)) \cong M(v_z^{-1}, (V, A^{-1})).
\]

Note that \(T \) acts as \(A^{-1} \) on the right hand side. \(\square \)

Lemma 5.45. Let \(w_z \) be an asymmetric or symmetric band and let \(v_z \in (\Phi_{\text{ud}})^{-1}(w_z) \) be weakly consistent with \(\hat{v}_p^{(i)} = \hat{v}_p^{(k)} \) for all \(i, k \in Z \). Then

\[
M(v_z[m]) \cong M(v_z)
\]
for any \(m \in Z \),
as \(k[T, T^{-1}] \)-modules. We have in particular that

\[
M(v_z[m], (V, A)) \cong M(v_z, (V, A))
\]
as \(\Lambda - k[T, T^{-1}] \)-bimodules.
Proof. The isomorphism between the $k[T, T^{-1}]$–modules $M(v_z[m])$ and $M(v_z)$ is given by the respective shift on the basis. Thus, the second isomorphism between the two $\Lambda - k[T, T^{-1}]$–modules follows directly. \hfill \square

Remark 5.46. We see by Lemma 5.44 and Lemma 5.45 that equivalent words do not necessarily give isomorphic modules with the same Λ.

However, we can also see by the above results that running through the list of $A \in \text{End}(V)$ acting as T for one representative of an equivalence class will give a complete set of modules for this class.

Lemma 5.47. Let w_z be a symmetric band with periodic part $\hat{w}_p = \varepsilon^* \eta^* u^{-1}$.

Let $v_z \in (\Psi^\Sigma_{ud})^{-1}(w_z)$ be weakly consistent with periodic parts of one of the following forms:

(i) $\hat{v}_p^{(i)} = \varepsilon \tau \eta t^{-1}$

(ii) $\hat{v}_p^{(i)} = \varepsilon \tau \eta t^{-1}$

(iii) $\hat{v}_p^{(i)} = \varepsilon \tau \eta t^{-1}$

(iv) $\hat{v}_p^{(i)} = \varepsilon \tau \eta t^{-1}$

for all $i \in \mathbb{Z}$, $t \in (\Phi^d_{ud})^{-1}(u)$, $p \in \mathbb{N} \setminus \{0\}$. Then

\[
\{M_{i,j,x,y}(t[p])\}_{i,j,x,y} \cong \{M_{i',j',x',y'}(t'[p])\}_{i',j',x',y'}
\]

(245)

as Λ–modules for any $v_z' \in [v_z]$ with t' a subword of v_z, $t' \sim t$, and where $i \neq j \in \{0,1\}$, $i' \neq j' \in \{0,1\}$, $x \in \{\varepsilon, \varepsilon\}$, $y \in \{\eta, \eta\}$ and $x' \in \{\varepsilon, \varepsilon\}$, $y' \in \{\eta, \eta\}$, or $x' \in \{\varepsilon^{-1}, \varepsilon^{-1}\}$, $y' \in \{\eta^{-1}, \eta^{-1}\}$, or with the roles of x' and y' switched.

Proof. Let $v_z' \in [v_z]$. Then $v_z' = v_z[m]$ or $v_z' = v_z^{-1}[m]$ for some $m \in \mathbb{Z}$. Let p be even. Let at first $v_z' = v_z[m]$ with $t' = t$ (i.e. $m = kp$ for some $k \in \mathbb{Z}$).

We have that $x' \in \{\varepsilon, \varepsilon\}$ and $y' \in \{\eta, \eta\}$. The isomorphism of sets (245) is given by the identity. Let $v_z' = v_z^{-1}[m]$ with $t' = t$. Then $x' \in \{\varepsilon^{-1}, \varepsilon^{-1}\}$ and $y' \in \{\eta^{-1}, \eta^{-1}\}$. By reversing the basis elements, we see that (245) is given by

\[
M_{i,j,x,y}(t[p]) \cong M_{j,i,x^{-1},y^{-1}}(t[p])
\]

(246)

Similarly, we obtain an isomorphism of the form

\[
M_{i,j,x,y}((t^{-1})[p]) \cong M_{j,i,x^{-1},y^{-1}}((t^{-1})[p])
\]

(247)

This refers to modules given by $v_z[m']$ with $t' = t^{-1}$ and $v_z^{-1}[m]$ with $t' = t^{-1}$. Let $v_z' = v_z[m]$ with $t' = t^{-1}$ (i.e. $m = kp$ for any $k \in \mathbb{Z}$). Exploiting the
properties \(\text{im}(\varepsilon) = \ker(\bar{\varepsilon}) \), \(\ker(\varepsilon) = \text{im}(\bar{\varepsilon}) \), and similar properties for \(\eta \), we find that (245) is given by
\[
M_{i,j,x,y}(t^{[p]}) \cong M_{j,i,\bar{x},\bar{z}^{-1}((t^{-1})^{[p]})}
\] (248)

Combining (246)-(248) gives the isomorphism in (245) for any \(v'_z \) as described above.

Now consider \(p \) to be odd. Let \(v'_z = v'^{-1}_z[m] \). Then \(x' \in \{ \varepsilon^{-1}, \bar{\varepsilon}^{-1} \} \), \(y' \in \{ \eta^{-1}, \bar{\eta}^{-1} \} \). Let \(t' = t^{-1} \). Reversing the basis elements yields that the isomorphism in (245) is given by
\[
M_{i,j,x,y}(t^{[p]}) \cong M_{j,i,\bar{x},\bar{z}^{-1}((t^{-1})^{[p]})}.
\] (249)

Now consider \(t' = t \). We obtain a similar isomorphism as in (249) where the second module refers to \(v_z[m] \).

Finally, we consider modules given by \(v_z \) and \(v'_z = v_z[m] \). For those modules we obtain that the isomorphism in (245) is given by
\[
M_{i,j,x,y}(t^{[p]}) \cong M_{j,i,\bar{x},\bar{z}^{-1}((t^{-1})^{[p]})}.
\] (250)

Here, we use the properties \(\text{im}(\varepsilon) = \ker(\bar{\varepsilon}) \), \(\ker(\varepsilon) = \text{im}(\bar{\varepsilon}) \), and same for \(\eta \).

Combining the isomorphisms (249) and (250) in both cases, yields the isomorphism in (245) for any \(v'_z \) with \(v'_z \sim v_z \).

Example 5.48. Let \(w_z \) be a symmetric band of period \(p \) with periodic part \(\hat{w}_p = \varepsilon^{-1}u_{\eta}^*u^{-1} \). Let \(v_z \) be as in Lemma 5.47. We consider \(p = 4 \). Assume without loss of generality that \(|t| = 1 \). We obtain for the periodic parts of \(v_z \) as in Lemma 5.47 (i) - (iv) the following modules:

(i) \(M_{0,1,\varepsilon,\eta}(t^{[p]}) \): \(e = 0 \cup c_1 c_1 \eta c_2 c_2 \bar{\eta} c_3 c_3 \eta c_4 c_4 \bar{\eta} \) \(e = 1 \)

(ii) \(M_{0,1,\varepsilon,\eta}(t^{[p]}) \): \(e = 0 \cup c_1 c_1 \eta c_2 c_2 \bar{\eta} c_3 c_3 \eta c_4 c_4 \bar{\eta} \) \(e = 1 \)

(iii) \(M_{0,1,\varepsilon,\eta}(t^{[p]}) \): \(e = 0 \cup c_1 c_1 \eta c_2 c_2 \bar{\eta} c_3 c_3 \eta c_4 c_4 \bar{\eta} \) \(e = 1 \)

(iv) \(M_{0,1,\varepsilon,\eta}(t^{[p]}) \): \(e = 0 \cup c_1 c_1 \eta c_2 c_2 \bar{\eta} c_3 c_3 \eta c_4 c_4 \bar{\eta} \) \(e = 1 \)

Consider in contrast to those the following modules arising from \(v'^{-1}_z[m] \):

(i) \(M_{1,0,\varepsilon^{-1},\eta^{-1}}(t^{[p]}) \): \(e = 1 \cup c_1 c_1 \eta c_2 c_2 \bar{\eta} c_3 c_3 \eta c_4 c_4 \bar{\eta} \) \(e = 0 \)

(ii) \(M_{1,0,\varepsilon^{-1},\eta^{-1}}(t^{[p]}) \): \(e = 1 \cup c_1 c_1 \eta c_2 c_2 \bar{\eta} c_3 c_3 \eta c_4 c_4 \bar{\eta} \) \(e = 0 \)

(iii) \(M_{1,0,\varepsilon^{-1},\eta^{-1}}(t^{[p]}) \): \(e = 1 \cup c_1 c_1 \eta c_2 c_2 \bar{\eta} c_3 c_3 \eta c_4 c_4 \bar{\eta} \) \(e = 0 \)
We obtain an isomorphism $M_{0,1,x,y}(t^{|v|}) \rightarrow M_{0,1,x^{-1},y^{-1}}(t^{|v|})$, with $x \in \{\varepsilon, \bar{v}\}$, $y \in \{\eta, \bar{\eta}\}$, by sending $b_i \mapsto c_{4+1-i}$, $b_i' \mapsto c_{4+1-i}'$ for all $1 \leq i \leq 4$.

In addition, we consider the following modules arising from $v_2[m]$, $m \neq kp$ for any k:

(i) $M_{0,1,\eta,\varepsilon}((t^{-1})^{|p|})$: $\eta=0 \bigcup d_1 \not\rightarrow d'_1 \not\rightarrow d_2 \not\rightarrow d'_2 \not\rightarrow d_3 \not\rightarrow d'_3 \not\rightarrow d_4 \not\rightarrow d'_4 \bigcirc \eta=1$

(ii) $M_{0,1,\eta,\bar{\varepsilon}}((t^{-1})^{|p|})$: $\eta=0 \bigcup d_1 \not\rightarrow d'_1 \not\rightarrow d_2 \not\rightarrow d'_2 \not\rightarrow d_3 \not\rightarrow d'_3 \not\rightarrow d_4 \not\rightarrow d'_4 \bigcirc \eta=1$

(iii) $M_{0,1,\eta,\varepsilon}((t^{-1})^{|p|})$: $\eta=0 \bigcup d_1 \not\rightarrow d'_1 \not\rightarrow d_2 \not\rightarrow d'_2 \not\rightarrow d_3 \not\rightarrow d'_3 \not\rightarrow d_4 \not\rightarrow d'_4 \bigcirc \eta=1$

(iv) $M_{0,1,\eta,\bar{\varepsilon}}((t^{-1})^{|p|})$: $\eta=0 \bigcup d_1 \not\rightarrow d'_1 \not\rightarrow d_2 \not\rightarrow d'_2 \not\rightarrow d_3 \not\rightarrow d'_3 \not\rightarrow d_4 \not\rightarrow d'_4 \bigcirc \eta=1$

The isomorphism $g : M_{1,0,x,y}(t^{|v|}) \rightarrow M_{0,1,x^{-1},y^{-1}}((t^{-1})^{|p|})$, with $x \in \{\varepsilon^{-1}, \bar{v}^{-1}\}$, $y \in \{\eta^{-1}, \bar{\eta}^{-1}\}$, is given as follows:

\[d_1 \mapsto c_4, \quad d_1' \mapsto c_4',\]
\[d_2 \mapsto -c_3 + c_4',\]
\[d_2' \mapsto -c'_3 + c_4,\]
\[d_3 \mapsto c_2 - c'_3,\]
\[d_3' \mapsto c'_2 - c_3,\]
\[d_4 \mapsto c_1 + c'_2,\]
\[d_4' \mapsto c'_1 + c_2.\]

We are now able to reformulate Theorem 4.61 in terms of the image of F:

Theorem 5.49. Choose for each asymmetric and symmetric band and string one representative in the equivalence class of its directed version which is given by v, v_2, respectively, as in Theorem 5.36. Then the set of representations of the form $M(v)$, $M_{0}(v)$, $M_{0,1,x,y}(t^{|p|})$, $M(v_2,(V,A))$ associated to the representatives gives a complete set of pairwise non-isomorphic indecomposable representations of the skewed-gentle algebra Λ.

Proof. Both indecomposability and completeness follow from Theorem 5.6 and Theorem 5.36. The Lemmas 5.42 - 5.47 yield that the modules are pairwise non-isomorphic. \qed

Theorem 5.50. Choose for each asymmetric and symmetric string and band one representative as in Theorem 5.49. Then the set of representations of
the form $M(v), M_i(v), M_{i,j}(t[p]), M(v_z, (V, A))$ associated to the representatives gives a complete set of pairwise non-isomorphic indecomposable representations of the clannish algebra Λ.

Proof. The statement follows from Theorem 5.49 as explained in Section 4.3.

Theorem 5.50 gives a classification of the finite dimensional modules of clannish algebras. However, it cannot yet confirm the classification given by Crawley-Boevey given in [CB89] and his conjecture from [CB88]. In order to confirm both of them, we need to refine the above statement further. This is the goal of the next chapter.
6 Symmetric bands in the context of the 4-subspace-problem

The directions put on the subchains corresponding to the symmetry axes in symmetric bands may seem to be arbitrary on first sight (cf. Chapter 4). The case of directions on the joints of the composite 2-chain arising from one with two double ends behaves similarly. In order to gain a better understanding on why those directions are chosen in this way, we examine the symmetry axes and their roles in the modules more closely in this chapter. To this end, we reduce the case of a symmetric band module to the four-subspace problem. This allows us to apply results from [Bre74] and find answers here (cf. Theorem 6.5, Theorem 6.7). The results of this chapter explain the choices taken on the directions in [Bon88, Bon91]. Finally, they allow us to reformulate Theorem 5.49 and thus confirm the conjecture made by Crawley-Boevey for an arbitrary field in [CB88] (Theorem 6.10).

6.1 Reduction to the 4-subspace-problem

The 4-subspace-problem describes the problem of classifying all indecomposable modules of a quiver of type

\[
\tilde{D}_4:
\]

where \(V_2, V_3, V_4\) and \(V_5\) are subspaces of \(V_1\) for any representation \(V\) (see [SS07, Chapter XIII.3.]).

Gelfand and Ponomarev gave a solution to the problem in 1970 for the base field being algebraically closed ([GP72]). It was followed by a classification by Brenner for an arbitrary skew field in 1974 ([Bre74]).

We want to use this classification in order to describe the modules arising from symmetric bands in more detail. This new knowledge allows us to analyze the indecomposables resulting from the matrix problem \(\exists \Lambda\) in this setup.

Let \(w_z\) be a symmetric band of period \(p\) with \(\hat{w}_p = \varepsilon^* u \eta^* u^{-1}\), \(|u| = m\), \(p = 2m + 2\) and \(\varepsilon, \eta \in \text{Sp}\). According to its periodic part, we can also depict \(w_z\) in the following form:

\[
w_z:
\]

(251)

265
Let \(v_z \in (\Phi_{ud})^{-1}(w_z) \) with \(v_z(t) = \epsilon^\kappa t \eta^\mu t^{-1} \), \(t \in (\Phi_{ud})^{-1}(u) \), \(\kappa, \mu \in \{+1, -1\} \) for all \(i \in \mathbb{Z} \). The band module \(M(v_z, V) \) can be depicted as follows:

\[
\begin{array}{c}
V \\
\downarrow \epsilon^t \\
V \\
\end{array}
\begin{array}{c}
\downarrow \eta^t \\
V \\
\end{array}
\]

Similar to (251), it can be rewritten to

\[
\epsilon (V \oplus V) \\
\downarrow \eta^t \\
V \\
\]

Let \(W = V \oplus V \). It follows that \(W \) is a \(k(e, f \mid e^2 = e, f^2 = f) \)-module:

\[
\epsilon = f \bigcup W \bigcup \eta = e \tag{252}
\]

Consider next modules of the form \(M_{i,j,x,y}(t^{[p]}) \):

\[
\begin{array}{c}
b_0^{(p)} \\
\downarrow x \\
b_0^{(p-1)} \\
\downarrow t \\
b_0^{(2)} \\
\downarrow t \\
b_0^{(1)} \\
\end{array}
\begin{array}{c}
b_0^{(p)} \\
\downarrow b_0^{(p)} \\
\downarrow b_0^{(p-1)} \\
\downarrow b_0^{(2)} \\
\downarrow b_0^{(1)} \\
\end{array}
\begin{array}{c}
y \\
\end{array}
\]

Now let \(W \) be a \(k \)-vector space of dimension \(p \). We can rewrite (253) with the respective choices of \(x \) and \(y \) as follows:

\[
\epsilon \bigcup W \bigcup \eta \\
\]

As above, we see that \(W \) is a \(k(e, f \mid e^2 = e, f^2 = f) \)-module:

\[
\epsilon = f \bigcup W \bigcup \eta = e \tag{254}
\]

By this way of depicting, it is easy to see that \(\epsilon \) acts as \(f \) and \(\eta \) as \(e \) on \(W \). Since both are idempotents, they each give a vector space decomposition of \(W \) of the form \(\text{im}(f) \oplus \ker(f) = W = \text{im}(e) \oplus \ker(e) \). Hence, each of the two maps \(e \) and \(f \) is characterised by its decomposing property and one can equivalently to (254) consider

\[
\begin{array}{c}
W \\
\end{array}
\begin{array}{c}
\text{im}(f) \\
\end{array}
\begin{array}{c}
\text{ker}(f) \\
\end{array}
\begin{array}{c}
\text{im}(e) \\
\end{array}
\begin{array}{c}
\text{ker}(e) \\
\end{array}
\]

266
It naturally follows that we can consider the classification of modules as in (254) in terms of a 4-subspace-problem.

In this section, we use the same notation as in [Bre74]. Hence, the 4-subspace-problem to be considered is given by $(U; K)$, $K = (K_1, K_2, K_3, K_4)$:

Due to (255), we are interested in the modules of defect 0, that is, (cf. [Bre74, §1])

$$\rho(U; K) = \sum_{i=1}^{4} \dim(K_i) - 2\dim(U) = 0.$$

Moreover, we want one type of those modules to satisfy

$$K_1 \oplus K_2 = U = K_3 \oplus K_4, \quad (256)$$

and have unique non-trivial intersection between two of the subspaces. The second type of them should satisfy any direct sum decomposition:

$$U = K_i \oplus K_j \quad \forall \ i \neq j. \quad (257)$$

Thus, the cases of interest from [Bre74] are case (i) (second type of modules) and cases (ii) and (iii) (first type of modules) of [Bre74, §5]. Note that case (i) corresponds to the homogeneous tubes of the AR-quiver of \tilde{D}_4, and the cases (ii) and (iii) correspond to two of the 2-tubes of the AR-quiver.

To examine the different cases, we recall the following result from [Bre74, §2]:

Lemma 6.1 (Gelfand and Ponomarev). If $(U; K)$ is indecomposable, and $\rho(U; K) = 0$, then either

(a) For all $i \neq j$, $1 \leq i, j \leq 4$, $K_i \oplus K_j = U$, or

(b) There exist $i', j' \in \{1, 2, 3, 4\}$, $i' \neq j'$ such that $K_{i'} \cap K_{j'} \neq 0$ and, if $i \in \{i', j'\}$ and $j \notin \{i', j'\}$, then $K_i \oplus K_j = U$.

6.1.1 Case (i)

We consider the following setting:

$$U = \zeta_1 Q \oplus \zeta_2 Q,$$

$$K_1 = \zeta_1 Q, \quad K_2 = \zeta_2 Q, \quad K_3 = (\zeta_1 + \zeta_2) Q, \quad K_4 = (\zeta_1 + \zeta_2 A) Q,$$

267
where $\zeta_i \in \text{Hom}_k(Q,U)$ injective, and $A \in \text{End}_k(Q)$ invertible, indecomposable and for which 0 and 1 are not eigenvalues. Here, A indecomposable means that if we consider Q as $k[x]$-module, Q will be indecomposable. This results in

$$Q \cong k^m,$$

$$U \cong k^{2m} = \{(p,q) \mid p,q \in k^m\},$$

$$K_1 \cong \{(p,0) \mid p \in k^m\},$$

$$K_2 \cong \{(0,q) \mid q \in k^m\},$$

$$K_3 \cong \{(p,p) \mid p \in k^m\},$$

$$K_4 \cong \{(p,A(p)) \mid p \in k\}.$$

We examine the intersections of two subspaces: it is easy to see from the above notation of the subspaces that the following intersections are trivial:

$$K_1 \cap K_2 = 0, \quad K_1 \cap K_3 = 0, \quad K_2 \cap K_3 = 0.$$

We obtain the following for the other intersections:
Let $(p,q) \in K_1 \cap K_4$. Then $q = A(z) = 0$ for some $z \in k^m$, and $p = z$. Since 0 is not an eigenvalue of A, it follows $z = 0$ and thus $p = 0 = q$.

Let $(p,q) \in K_2 \cap K_4$. Then $p = 0$ and $q = A(p) = A(0) = 0$ (A non-singular).
Finally, let $(p,q) \in K_3 \cap K_4$. Then $p = q = A(z)$ for some $z \in k^m$, and $p = z$. Thus, $A(z) = z$ holds. Now 1 is not an eigenvalue of A, so $z = 0$, giving also $p = q = 0$. Thus, we obtain

$$K_1 \cap K_4 = 0, \quad K_2 \cap K_4 = 0, \quad K_3 \cap K_4 = 0,$$

which shows that there do not exist $i \neq j \in \{1,2,3,4\}$ with $K_i \cap K_j \neq 0$.

Lemma 6.1 gives

$$K_i \oplus K_j = U \quad \forall i \neq j, 1 \leq i,j \leq 4.$$

It follows that this case gives modules of the second type (cf. 257).

Remark 6.2. Recall that for $A \in \text{End}(Q)$, we can consider Q as $k[x]$-module by defining ([Jac85, §3.2])

$$(a_0 + a_1x + \cdots + a_mx^m)x = a_0x + a_1(Ax) + \cdots + a_m(A^mx)$$

6.1.2 Case (ii)

We examine the case for the identity permutation ι and then conclude from this the respective results for the other permutations. Hence, we consider the following setting:

$$U = \zeta_1 Q \oplus \zeta_2 Q,$$

$$K_1 = \zeta_1 Q, \quad K_2 = \zeta_2 Q, \quad K_3 = (\zeta_1 + \zeta_2)Q, \quad K_4 = (\zeta_1 + \zeta_2 J)Q.$$
where $\zeta_i \in \text{Hom}_k(Q,U)$ injective, $i = 1, 2$, and $J \in \text{End}_k(Q)$, nilpotent and indecomposable.

To make notation within the following computations easier, we use

\[
Q \cong k^m, \\
U \cong k^{2m} = \{(p, q) \mid p, q \in k^m\}, \\
K_1 \cong \{(p, 0) \mid p \in k^m\}, \\
K_2 \cong \{(0, q) \mid q \in k^m\}, \\
K_3 \cong \{(p, p) \mid p \in k^m\}, \\
K_4 \cong \{(p, J(p)) \mid p \in k^m\}.
\]

We find that $K_1 \cap K_4 \neq 0$.

Let $(p, q) \in K_1 \cap K_4$. Then there exists $z \in k^m$ with $J(z) = q$ and $p = q$.

We know that $\ker(J) \neq 0$ since J is nilpotent. Thus, there exists $q' \in \ker(J)$ such that $(q', 0) \in K_1 \cap K_4$.

Having found a non-trivial intersection, we can apply Lemma 6.1 which yields that

\[K_1 \oplus K_j = U \quad \forall \{i, j\} \neq \{1, 4\}, i \neq j,\]

and, in particular,

\[K_1 \oplus K_2 = U = K_3 \oplus K_4.\]

Thus, the following permutations of the subspaces (only denoting the indices) give a decomposition of the wanted form:

\[
(1, 2, 3, 4), (2, 1, 3, 4), (1, 2, 4, 3), (2, 1, 4, 3), \\
(3, 4, 1, 2), (3, 4, 2, 1), (4, 3, 1, 2), (4, 3, 2, 1), \\
(1, 3, 2, 4), (1, 3, 4, 2), (3, 1, 2, 4), (3, 1, 4, 2), \\
(2, 4, 1, 3), (4, 2, 1, 3), (2, 4, 3, 1), (4, 2, 3, 1).
\]

Note that of the given permutations in [Bre74], the permutation ι corresponds to $(1, 2, 3, 4)$, (12) to $(2, 1, 3, 4)$, (13) to $(3, 2, 1, 4)$, (24) to $(1, 4, 3, 2)$, (34) to $(1, 2, 4, 3)$ and $(12)(34)$ to $(2, 1, 4, 3)$. Hence, it follows that the permutations ι, (12), (34) and $(12)(34)$ give indecomposable modules of the wanted first type (cf. 256). The permutations (13) and (24) do not.

6.1.3 Case (iii)

We proceed similar to case (ii). The setting is the following:

\[
U = \zeta_1 Q \oplus \zeta_2 Q \oplus \mu_3 X, \\
K_1 = \zeta_1 Q \oplus \mu_3 X, \quad K_2 = \zeta_2 Q \oplus \mu_3 X, \quad K_3 = (\zeta_1 + \zeta_2)Q, \\
K_4 = (\zeta_1 + \zeta_2(J + 1) + \mu_3 b)Q
\]
Hence, the following permutations of the subspaces give modules of the form (256):

\[Q \cong k^m, \]
\[X \cong k, \]
\[U \cong k^{2m+1} = \{(p,q,x) \mid p,q \in k^m, x \in k\}, \]
\[K_1 \cong \{(p,0,x) \mid p \in k^m, x \in k\}, \]
\[K_2 \cong \{(0,q,x) \mid q \in k^m, x \in k\}, \]
\[K_3 \cong \{(p,p,0) \mid p \in k^m\}, \]
\[K_4 \cong \{(p,(J+1)(p),\mu_3b(p)) \mid p \in k^m\} \]

It is easy to see that \((0,0,x) \in K_1 \cap K_2\) for any \(x \in k\), i.e. \(K_1 \cap K_2 \neq 0\). By Lemma 6.1, it follows that

\[K_i \oplus K_j = U \quad \forall \{i,j\} \neq \{1,2\}, i \neq j. \]

Hence, the following permutations of the subspaces give modules of the form (256):

\[(1,3,2,4),(3,1,2,4),(1,3,4,2),(3,1,4,2), \]
\[(2,4,1,3),(2,4,3,1),(4,2,1,3),(4,2,3,1), \]
\[(1,4,2,3),(1,4,3,2),(4,1,2,3),(4,1,3,2), \]
\[(2,3,1,4),(3,2,1,4),(2,3,4,1),(3,2,4,1). \]

Comparing those to the list of permutations given in [Bre74], we observe that \(\iota\) corresponds to \((1,2,3,4)\), \((23)\) to \((1,3,2,4)\), \((24)\) to \((1,4,3,2)\), \((13)\) to \((3,2,1,4)\), \((14)\) to \((4,2,3,1)\) and \((13)(24)\) corresponds to \((3,4,1,2)\). It follows that \((23)\), \((24)\), \((13)\) and \((14)\) give indecomposable modules of the wanted first type. The permutations \(\iota\) and \((13)(24)\) do not.

6.2 Interpretation of the cases (ii) and (iii) in terms of strings

In this subsection, we use the results on the cases (ii) and (iii) of the previous subsection in order to find indecomposable \(k(e,f)/(e^2 - e, f^2 - f)\)-modules corresponding to the modules of the form \(F(U(g_n,p))\) from Section 5.4.

Before we state the respective result, we consider the following auxiliary lemma:

Lemma 6.3. Let \(\Theta\) be a lower triangular matrix of size \(n \times n\) with

- \(\Theta_{ii} = \Theta_{jj}\) for all \(i,j\),
- \(\Theta_{i,i-(i-1)} = \Theta_{i+1,i+1-(i-1)} = \Theta_{i+2,i+2-(i-1)} = \cdots = \Theta_{n,n-(i-1)}\) for all \(i \geq 3\) odd,
\[\Theta_{i,i-(i-1)} = \Theta_{i+1,i+1-(i-1)} = \Theta_{i+2,i+2-(i-1)} = \cdots = \Theta_{n,n-(i-1)} = 0 \text{ for all } i \geq 2 \text{ even,} \]

or an upper triangular matrix with

\[\Theta_{ii} = \Theta_{jj} \text{ for all } i, j, \]
\[\Theta_{i-(i-1),i} = \Theta_{i+1-(i-1),i+1} = \Theta_{i+2-(i-1),i+2} = \cdots = \Theta_{n-(i-1),n} \text{ for all } i \geq 3 \text{ odd,} \]
\[\Theta_{i-(i-1),i} = \Theta_{i+1-(i-1),i+1} = \Theta_{i+2-(i-1),i+2} = \cdots = \Theta_{n-(i-1),n} = 0 \text{ for all } i \geq 2 \text{ even,} \]

and with \(\Theta^2 = \Theta \) in any case. Then \(\Theta_{ij} = 0 \) for all \(i \neq j \).

Proof. Assume without loss of generality that \(\Theta \) is lower triangular. Assume towards a contradiction that \(\Theta_{ij} \neq 0 \) for some \(i \neq j \). Denote by \(J \) the set of indices of non-zero minor diagonals of \(\Theta \). Let \(D \) be the diagonal given by the smallest index in \(J \) with entries \(0 \neq l \in k \). Let the entries of the main diagonal be denoted by \(a \). By the idempotent property on \(\Theta \) we get that \(a^2 = a \) and \(l = al + la \). Thus, \(a \in \{0, 1\} \). For \(a = 0 \) it follows that \(l = 0 \). If \(a = 1 \), we obtain \(2l = l \) and thus, \(l = 0 \). Hence, \(D \) is given by a zero diagonal and its index is not the smallest element in \(J \). It follows inductively that \(J \) does not contain a smallest element, yielding that \(J = \emptyset \). \(\square \)

Theorem 6.4. Let \(A = k(e, f)/(e^2 - e, f^2 - f) \). Denote \(\bar{e} = 1 - e \), \(\bar{f} = 1 - f \). Then the following \(A \)-modules are pairwise non-isomorphic and indecomposable:

1) of dimension \(2n, n \geq 1 \):

\[f=0 \left(b_1 \xrightarrow{e} b_2 \xrightarrow{f} \cdots \xrightarrow{f} b_{2n-1} \xrightarrow{e} b_{2n} \right) f=1 \]

a) \[f=0 \left(b_1 \xrightarrow{e} b_2 \xrightarrow{f} \cdots \xrightarrow{f} b_{2n-1} \xrightarrow{e} b_{2n} \right) f=1 \]

b) \[f=0 \left(b_1 \xrightarrow{e} b_2 \xrightarrow{f} \cdots \xrightarrow{f} b_{2n-1} \xrightarrow{e} b_{2n} \right) f=1 \]

c) \[f=0 \left(b_1 \xrightarrow{e} b_2 \xrightarrow{f} \cdots \xrightarrow{f} b_{2n-1} \xrightarrow{e} b_{2n} \right) f=1 \]

d) \[f=0 \left(b_1 \xrightarrow{e} b_2 \xrightarrow{f} \cdots \xrightarrow{f} b_{2n-1} \xrightarrow{e} b_{2n} \right) f=1 \]

2) of dimension \(2n + 1, n \geq 0 \):

\[f=0 \left(b_1 \xrightarrow{e} b_2 \xrightarrow{f} \cdots \xrightarrow{f} b_{2n-1} \xrightarrow{e} b_{2n} \xrightarrow{f} b_{2n+1} \right) f=1 \]

a) \[f=0 \left(b_1 \xrightarrow{e} b_2 \xrightarrow{f} \cdots \xrightarrow{f} b_{2n-1} \xrightarrow{e} b_{2n} \xrightarrow{f} b_{2n+1} \right) f=1 \]

b) \[f=0 \left(b_1 \xrightarrow{e} b_2 \xrightarrow{f} \cdots \xrightarrow{f} b_{2n-1} \xrightarrow{e} b_{2n} \xrightarrow{f} b_{2n+1} \right) f=1 \]

c) \[f=0 \left(b_1 \xrightarrow{e} b_2 \xrightarrow{f} \cdots \xrightarrow{f} b_{2n-1} \xrightarrow{e} b_{2n} \xrightarrow{f} b_{2n+1} \right) f=1 \]

d) \[f=0 \left(b_1 \xrightarrow{e} b_2 \xrightarrow{f} \cdots \xrightarrow{f} b_{2n-1} \xrightarrow{e} b_{2n} \xrightarrow{f} b_{2n+1} \right) f=1 \]

271
Proof. First, we show indecomposability. To this end, we compute the endomorphism ring of each module. If its only idempotents are given by 1 and 0, it is local and thus the module is indecomposable.

1) We show the statement for the case 1a). The cases 1b), c) and d) follow analogously.

Denote the respective module in 1a) by M_{2n}. The actions of e and f on the vector space k^{2n} in terms of matrices are the following:

$$f = \begin{bmatrix}
0 \\
1 & 1 \\
1 & 0 \\
0 & 0 \\
& \\
& \\
& \\
& \\
1 & 1 \\
0 & 0 \\
1
\end{bmatrix}, \quad e = \begin{bmatrix}
1 & 1 \\
1 & 0 \\
0 & 0 \\
& \\
& \\
& \\
& \\
1 & 1 \\
0 & 0
\end{bmatrix}$$

i.e.,

$$f_{i,j} = \begin{cases}
1 & \text{if } i > 1 \text{ even and } j \in \{i, i+1\}, \text{ or } i = j = 2n, \\
0 & \text{otherwise}
\end{cases}$$

$$e_{i,j} = \begin{cases}
1 & \text{if } i \text{ odd and } j \in \{i, i+1\}, \\
0 & \text{otherwise}
\end{cases}$$

Let $\theta = (\theta)_{i,j} \in \text{End}_A(M_{2n})$. To examplify the general method, we first consider relations arising from the commutativity relations in positions (i,j) with $|i-j| \leq 1$. We obtain (258) - (262) from the commutativity relation $e\theta = \theta e$, and
\(f \theta = \theta f \) gives (263) - (267):

\[
\begin{align*}
\theta_{2h+1,2h-1} &= \theta_{2h+1,2h} + \theta_{2h+2,2h}, & 1 \leq h \leq n - 1, \\
\theta_{2h+1,2h+1} &= \theta_{2h+1,2h+1} + \theta_{2h+2,2h+1}, & 0 \leq h \leq n - 1, \\
\theta_{2h+1,2h+2} &= \theta_{2h+1,2h+2} + \theta_{2h+2,2h+2}, & 0 \leq h \leq n - 1, \\
\theta_{2h,2h-1} &= 0, & 1 \leq h \leq n, \\
\theta_{2h,2h+1} &= 0, & 1 \leq h \leq n - 1, \\
\theta_{2h,2h-2} &= \theta_{2h,2h-1} + \theta_{2h+1,2h-1}, & 2 \leq h \leq n, \\
\theta_{2h,2h+2} &= \theta_{2h,2h} + \theta_{2h+1,2h}, & 1 \leq h \leq n, \\
\theta_{2h,2h-1} &= \theta_{2h,2h+1} + \theta_{2h+1,2h+1}, & 1 \leq h \leq n - 1, \\
\theta_{2h,2h+2} &= 0, & 0 \leq h \leq n - 1, \\
\theta_{2h+1,2h} &= 0, & 1 \leq h \leq n - 1.
\end{align*}
\]

We first analyse the entries being equal to zero:

Note that (259) and (261) give the same zero entries. Furthermore, (264) gives \(\theta_{2h+1,2h} = 0 \) for \(1 \leq h \leq n \). This is identical with (267). Equation (261) results in the diagonal below the main one being zero with respect to the even rows. The entries in the diagonal above the main one are zero by (262) (even rows) and (266) (odd rows). Equation (267) results in the entries being zero in odd rows in the diagonal below the main one.

Moreover, these entries simplify some of the other equations. After inserting (261), equation (263) reads

\[
\theta_{2h,2h-2} = \theta_{2h+1,2h-1}, \quad 2 \leq h \leq n,
\]

which results in pairwise equal entries between even rows \(i \) and odd rows \(i + 1 \) on the second diagonal below the main one. On the other hand, (258) simplifies to

\[
\theta_{2h+1,2h-1} = \theta_{2h+2,2h}, \quad 1 \leq h \leq n - 1
\]

by (267). It follows that we have pairwise same entries on the second diagonal below the main one between odd rows \(i \) and even rows \(i + 1 \). Thus, we obtain by (268) and (269) that all entries of the second diagonal below the main one are equal to each other.

Similarly, by (266), we can consider

\[
\theta_{2h+1,2h+1} = \theta_{2h+2,2h+2}, \quad 0 \leq h \leq n - 1
\]

instead of (260). Hence, we obtain pairwise equal entries on the main diagonal between odd rows \(i \) and even rows \(i + 1 \). Equation (261) simplifies (265) to

\[
\theta_{2h,2h} = \theta_{2h+1,2h+1}, \quad 1 \leq h \leq n - 1.
\]
It follows that there are pairwise equal entries on the main diagonal between even rows i and odd rows $i+1$. Hence, (270) and (271) result in the main diagonal consisting of equal entries.

Let us now consider entries (i, j) with $|i - j| \geq 2$. The commutativity relation $f\theta = \theta f$ results in (272) - (279), $e\theta = \theta e$ in (280) - (287):

\[
\begin{align*}
\theta_{i,i+l} &= 0, & i \text{ odd}, l \geq 2 \text{ odd}, \\
\theta_{i,i+l-1} &= 0, & i \text{ odd}, l \geq 2 \text{ even}, \\
\theta_{i,i-l} &= 0, & i \text{ odd}, l \geq 2 \text{ odd}, i - l \neq 1, \\
\theta_{i,i-l-1} &= 0, & i \text{ odd}, l \geq 2 \text{ even}, i - l \neq 1, \\
\theta_{i,i+l} &= \theta_{i,i+l} + \theta_{i+1,i+l}, & i \text{ even}, l \geq 2 \text{ even}, \\
\theta_{i,i+l-1} &= \theta_{i,i+l} + \theta_{i+1,i+l}, & i \text{ even}, l \geq 2 \text{ odd}, \\
\theta_{i,i-l} &= \theta_{i,i-l} + \theta_{i+1,i-l}, & i \text{ even}, l \geq 2 \text{ even}, i - l \neq 1, \\
\theta_{i,i-l-1} &= \theta_{i,i-l} + \theta_{i+1,i-l}, & i \text{ even}, l \geq 2 \text{ odd}, i - l \neq 1, \\
\theta_{i,i+l} &= 0, & i \text{ even}, l \geq 2 \text{ odd}, \\
\theta_{i,i+l-1} &= 0, & i \text{ even}, l \geq 2 \text{ even}, \\
\theta_{i,i-l} &= 0, & i \text{ even}, l \geq 2 \text{ odd}, \\
\theta_{i,i-l-1} &= 0, & i \text{ even}, l \geq 2 \text{ even}, \\
\theta_{i,i+l} &= \theta_{i,i+l} + \theta_{i+1,i+l}, & i \text{ odd}, l \geq 2 \text{ even}, \\
\theta_{i,i+l-1} &= \theta_{i,i+l} + \theta_{i+1,i+l}, & i \text{ odd}, l \geq 2 \text{ odd}, \\
\theta_{i,i-l} &= \theta_{i,i-l} + \theta_{i+1,i-l}, & i \text{ odd}, l \geq 2 \text{ even}, \\
\theta_{i,i-l-1} &= \theta_{i,i-l} + \theta_{i+1,i-l}, & i \text{ odd}, l \geq 2 \text{ odd},
\end{align*}
\]

Note at first that (274) and (275) give the same zero entries, as well as (282) and (283) do. Moreover, (280) is covered by (281), and (272) is covered by (273).

It follows by (274) and (282) that the entries of the minor diagonals which start in even rows with index greater than 2, are zero. That is, (274) yields that all entries $\theta_{k,h}$ with k odd, h even, in the mentioned diagonals in the lower triangular part of θ are zero. On the other hand, (282) yields the same for the respective entries $\theta_{k,h}$ with k even and h odd. We obtain a similar result for the upper triangular part of θ: (273) and (281) imply that the entries in the minor diagonals which start in even columns, are zero. We have by (273) that the entries $\theta_{k,h}$ with k odd, h even in the respective diagonals, are zero. Similarly, (281) shows that the entries $\theta_{k,h}$ with k even, h odd in the respective diagonals are zero.

Some of the above equations also simplify to some additional zero relations: (276), (278), (284), (286) can be rewritten in the same order.
as follows:

\[\theta_{i+1, i+1} = 0, \quad i \text{ even}, l \geq 2 \text{ even}, \quad (288) \]
\[\theta_{i+1, i-l} = 0, \quad i \text{ even}, l \geq 2 \text{ even}, i-l \neq 1 \quad (289) \]
\[\theta_{i+1, i+1} = 0 \quad i \text{ odd}, l \geq 2 \text{ even}, \quad (290) \]
\[\theta_{i+1, i-l} = 0 \quad i \text{ odd}, l \geq 2 \text{ even}. \quad (291) \]

Relation (289) gives the same zero entries as (274), and (290) the same as (281). Similarly, (291) coincides with (283), and (288) gives a subset of (273).

Equation (277) simplifies to the following by (284):

\[\theta_{i, i-l-1} = \theta_{i+1, i+l}, \quad i \text{ even}, l \geq 2 \text{ odd}. \quad (292) \]

Thus, it implies that in the upper triangular part there exist pairwise equal entries between odd rows \(i\) and even rows \(i+1\) in the diagonals, counting from the third diagonal above the main diagonal on.

Equation (285) is simplified by (273) to

\[\theta_{i, i-l-1} = \theta_{i+1, i+l}, \quad i \text{ odd}, l \geq 2 \text{ odd}. \quad (293) \]

It follows from (293) that from the second diagonal on, in the upper triangular part, there are pairwise equal entries in the diagonals between odd rows \(i\) and even rows \(i+1\). Hence, by (292) and (293), the entries of any diagonal starting in an odd column in the upper triangular part of \(\theta\) are all equal to each other, counting from the third diagonal on.

We obtain similar results for the lower triangular part: equation (286) simplifies (279) to

\[\theta_{i, i-l-1} = \theta_{i+1, i-l}, \quad i \text{ even}, l \geq 2 \text{ odd}, i-l \neq 1. \quad (294) \]

This relation gives pairwise equal entries in the diagonals in the lower triangular part between even rows \(i\) and odd rows \(i+1\), counting from the third diagonal on. Also, (274) inserted into (287) results in

\[\theta_{i, i-l-1} = \theta_{i+1, i-l}, \quad i \text{ odd}, l \geq 2 \text{ odd}, \quad (295) \]

giving pairwise equal entries in the diagonals in the lower triangular part, from the fourth diagonal on, between odd rows \(i\) and even rows \(i+1\). Thus, together with (294), we obtain that on any diagonal in the lower triangular part any entry is equal to another.

Finally, we consider the special entry \((2n, j)\). We have so far that

\[\theta_{2n, j} = \begin{cases} 0 & \text{if } j \text{ odd}, \\ \theta_{2n, j} & \text{if } j \text{ even}. \end{cases} \quad (296) \]
where $\theta_{2n,j}$ is possibly non-zero for j even. Recall also, that any diagonal ending in an entry $\theta_{2n,j}$ for j even consists of entries which are equal to each other. We now analyse the commutativity relation $f\theta = \theta f$ for the index $(2n, j)$ separately. We obtain that

$$
(f\theta)_{2n,j} = \sum_{k=1}^{2n} f_{2n,k} \theta_{k,j} = f_{2n,2n} \theta_{2n,j} = \theta_{2n,j}, \quad (297)
$$

$$
(\theta f)_{2n,j} = \sum_{k=1}^{2n} \theta_{2n,k} f_{k,j} = \begin{cases}
\theta_{2n,j} f_{j,j} = \theta_{2n,j} & \text{if } j \text{ even}, \\
\theta_{2n,j-1} f_{j-1,j} = \theta_{2n,j-1} & \text{if } j \text{ odd}, j \neq 1.
\end{cases} \quad (298)
$$

Summarising, we obtain that

$$
\theta_{2n,j} = \begin{cases}
\theta_{2n,j} & \text{if } j \text{ even}, \\
\theta_{2n,j-1} & \text{if } j \text{ odd}, j \neq 1.
\end{cases} \quad (299)
$$

It follows that any minor diagonal in the lower triangular part of θ is zero. In particular, we have that θ is an upper triangular matrix with every second diagonal, starting to count from the main one on, is zero. Any $\theta \in \text{End}_A(M_{2n})$ is thus of the form of an upper triangular matrix as in Lemma 6.3. It follows by the same lemma that the only idempotents in $\text{End}_A(M_{2n})$ are given by 0 and 1. Hence, it is local and indecomposability of M follows.

2) For case a), we consider e and f in terms of the following matrices:

$$
f = \begin{bmatrix}
0 & 1 & 1 & \cdots & 1 \\
1 & 0 & 0 \\
\end{bmatrix}
$$

$$
e = \begin{bmatrix}
1 & 1 & \cdots & 1 \\
0 & 0 & \cdots & 0 \\
\end{bmatrix}
$$

Exploiting again commutativity of f and e with $\theta \in \text{End}_A(M_{2n+1})$, in particular $(e\theta)_{2n,j} = (\theta e)_{2n,j}$ gives that θ is of upper triangular form as described in Lemma 6.3. Indecomposability of M_{2n+1} follows. The cases b) - d) follow analogously.

Finally, we show that the modules are pairwise non-isomorphic. To this end, we show that they coincide with modules from [Bre74], case (ii) (dimension $2n$) or case (iii) (dimension $2n + 1$). We already know that the modules in the statement are indecomposable, hence, it is enough to show that the dimensions of the subspaces coincide and that the intersections of them do. Therefore, we assume an ordering as in (255).
1a) M_{2n} corresponds to case (ii), (12) (34):
\[
\begin{align*}
\text{im}(f) &= \langle b_2, b_4, \ldots , b_{2n} \rangle, & |\text{im}(f)| &= n, \\
\text{ker}(e) &= \langle b_1, b_2 - b_3, b_4 - b_5, \ldots , b_{2n-2} - b_{2n-1} \rangle, & |\text{ker}(f)| &= n, \\
\text{im}(e) &= \langle b_1, b_3, \ldots , b_{2n-1} \rangle, & |\text{im}(e)| &= n, \\
\text{ker}(f) &= \langle b_1 - b_2, b_3 - b_4, \ldots , b_{2n-1} - b_{2n} \rangle, & |\text{ker}(e)| &= n, \\
\text{im}(e) \cap \text{ker}(f) &= \langle b_1 \rangle \neq 0.
\end{align*}
\]

1b) M_{2n} corresponds to case (ii), (34). We use that $\text{ker}(\bar{f}) = \text{im}(f)$ and $\text{im}(\bar{f}) = \text{ker}(f)$ with f given as in a). We also have e given as in a). It follows that
\[
\text{im}(e) \cap \text{ker}(f) = \langle b_1 \rangle \neq 0.
\]

1c) M_{2n} corresponds to case (ii), (12): We have f acting as in a), and \bar{e} acting as $1 - e$ with e given as in a). Thus, we obtain that
\[
\text{ker}(e) \cap \text{ker}(f) = \langle b_1 \rangle \neq 0.
\]

1d) M_{2n} corresponds to case (ii), e: We have $\bar{f} = 1 - f$ and $\bar{e} = 1 - e$ with e and f as in a). Applying $\text{ker}(f) = \text{im}(f)$ and $\text{im}(f) = \text{ker}(f)$ as before, and same for e, we obtain that
\[
\text{im}(f) \cap \text{ker}(e) = \langle b_1 \rangle \neq 0.
\]

2a) M_{2n+1} corresponds to case (iii), (13):
\[
\begin{align*}
\text{im}(f) &= \langle b_2, b_4, \ldots , b_{2n} \rangle, & |\text{im}(f)| &= n, \\
\text{ker}(f) &= \langle b_1, b_2 - b_3, b_4 - b_5, \ldots , b_{2n} - b_{2n+1} \rangle, & |\text{ker}(f)| &= n + 1, \\
\text{im}(e) &= \langle b_1, b_3, \ldots , b_{2n+1} \rangle, & |\text{im}(e)| &= n + 1, \\
\text{ker}(e) &= \langle b_1 - b_2, b_3 - b_4, \ldots , b_{2n-1} - b_{2n} \rangle, & |\text{ker}(e)| &= n, \\
\text{im}(e) \cap \text{ker}(f) &= \langle b_1 \rangle \neq 0.
\end{align*}
\]

2b) M_{2n+1} corresponds to case (iii), (23): We have e given as in a), and $\bar{f} = 1 - f$ with f as in a). It follows that
\[
\text{im}(f) \cap \text{im}(e) \neq 0.
\]

2c) M_{2n+1} corresponds to case (iii), (14): Apply that $\bar{e} = 1 - e$ with e as in a). Moreover, we have that f is given as in a). Hence, we obtain that
\[
\text{ker}(f) \cap \text{ker}(e) \neq 0.
\]

277
2d) M_{2n+1} corresponds to case (iii), (24): As before, we use $\bar{f} = 1 - f$ and
$\bar{e} = 1 - e$ giving the correspondence $\ker(\bar{f}) = \im(f), \im(\bar{f}) = \ker(f)$,
and similar for e, \bar{e}. This yields that
\[
\ker(e) \cap \im(f) \neq 0.
\]

\[\Box\]

Proposition 6.5. The modules in Theorem 6.4, 1a) - d) correspond to the
modules $F(U_s(g, p))$, $s = 1, 2, 3, 4$, for $p \in \mathbb{N}\setminus\{0\}$ even, considered as
$k(e, f | e^2 = e, f^2 = f)$-modules. Similarly, the modules in 2a)-d) correspond to
the modules $F(U_s(g, p))$, $s = 1, 2, 3, 4$, for $p \in \mathbb{N}\setminus\{0\}$ odd, considered as
$k(e, f | e^2 = e, f^2 = f)$-modules.

Proof. Let w_z be a symmetric band with periodic part $w_p = \varepsilon^*u\varepsilon^*u^{-1}$. Denote by g_u the corresponding \mathcal{L}-chain with two double ends. Then we have
that $x_1 \sim x_1\varepsilon\varepsilon^*$ and $x_m \sim x_m\varepsilon\varepsilon^*$. We consider the composite \mathcal{L}-chain g_u^p reduced to its joints and its start and end link:

\[
x_1 - \cdots - x_m \sim x_m - \cdots - x_1 \sim x_1 - \cdots - x_k \sim x_k - \cdots - x_k
\]

where
\[
k = \begin{cases}
1 & \text{if } p \text{ odd}, \\
m & \text{if } p \text{ even},
\end{cases}
\]

\[
\bar{k} = \begin{cases}
1 & \text{if } p \text{ even}, \\
m & \text{if } p \text{ odd}.
\end{cases}
\]

In particular, we have that $\bar{k} = \{1, m\} \setminus \{k\}$. We add the action of $\psi_u \in \Psi(g_u)$ on the joints for p odd:

\[
x_1 - \cdots - x_m \sim x_m - \cdots - x_1 \sim x_1 - \cdots - x_1 \sim x_1 - \cdots - x_m
\]

$s = 1$: -1 1 -1 1 -1 1 -1 1 1
$s = 2$: 1 1 -1 -1 1 1 1 1 1
$s = 3$: -1 -1 1 -1 1 -1 -1 -1 -1
$s = 4$: 1 -1 1 -1 -1 1 -1 -1 -1

Applying Lemma 5.14 and Lemma 5.9 results in the following for $F(U_s(g_u^p))$
in terms of strings:

$s = 1$: $\varepsilon_0 \xrightarrow{\eta_0 = -1} \varepsilon_{-1} \varepsilon_{-1} \varepsilon_{-1} \varepsilon_{-1} \eta_{1}$
$s = 2$: $\varepsilon_0 \xrightarrow{\eta_0 = -1} \varepsilon_{-1} \varepsilon_{-1} \varepsilon_{-1} \varepsilon_{-1} \eta_{1}$
$s = 3$: $\varepsilon_0 \xrightarrow{\theta_0 = -1} \varepsilon_{-1} \varepsilon_{-1} \varepsilon_{-1} \varepsilon_{-1} \eta_{1}$
$s = 4$: $\varepsilon_0 \xrightarrow{\theta_0 = -1} \varepsilon_{-1} \varepsilon_{-1} \varepsilon_{-1} \varepsilon_{-1} \eta_{1}$
Table 3: Cases 1 and 2 with respect to s

<table>
<thead>
<tr>
<th>s</th>
<th>p even</th>
<th>p odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a)</td>
<td>2a)</td>
</tr>
<tr>
<td>2</td>
<td>1b)</td>
<td>2b)</td>
</tr>
<tr>
<td>3</td>
<td>1c)</td>
<td>2c)</td>
</tr>
<tr>
<td>4</td>
<td>1d)</td>
<td>2d)</td>
</tr>
</tbody>
</table>

With $f = \varepsilon$ and $e = \eta$ and a small adjustment on the signs of the basis elements, we obtain the wanted correspondence to the modules described in Theorem 6.4, 2a)-d). Similarly, we obtain the correspondence for p even and 1a)-d). In detail, the correspondence is given as in Table 3.

Remark 6.6. Let w_z be a symmetric band with periodic part $\hat{w}_p = \varepsilon^* \eta^* u^{-1}$. Applying Proposition 6.5 to g_u yields by Theorem 5.21 (iv,ii) that the modules from Theorem 6.4 correspond to modules of the form $M_{0,1,z,y}(t^{[p]})$, $x \in \{\varepsilon, \bar{\varepsilon}\}$, $y \in \{\eta, \bar{\eta}\}$, $t \in (\Phi_{ul})^{-1}(u)$.

6.3 Interpretation of case (i) in terms of bands

Let w_z be a symmetric band with periodic part $\hat{w}_p = \varepsilon^* \eta^* u^{-1}$. Denote by g_w the corresponding \mathbb{Z}-cycle and by $U(g_w, \varphi)$ its representation. Let $v'_z \in (\Phi_{ul})^{-1}(w_z)$ be weakly consistent such that $F(U(g_w, \varphi)) = M(v'_z, V)$.

We denote its periodic parts by $\hat{v}^{(i)}_p = \varepsilon t \eta t^{-1}$ for all $i \in \mathbb{Z}$. We know by Lemma 5.9, 5.11 and 5.15 that $M(v'_z, V)$ is of the following form:

$$V_0 \xrightarrow{t} V_1 \xrightarrow{\eta^{z-1}} V_2 \xrightarrow{t} V_3$$

Change any \bar{v}^{-1}_{j-1} to ε and any direct special letter v_j is of the form ε sending b_j to $-b_j$. Changing any \bar{v}^{-1} to ε will change v_1 to acting as $(-1)^{\bar{\omega}+1} F_{\varphi}^{-1}$ with $\bar{\omega}$ describing the number of inverse special letters in $\hat{v}_p^{(i)}$. Denote by $v_z \in (\Phi_{ul})^{-1}(w_z)$ the word obtained from v'_z after this action. For now, set $B = (-1)^{\bar{\omega}+1} F_{\varphi}^{-1}$. We can rewrite (300) as follows (cf. Section 6.1):

$$V_0 \oplus V_3 \xrightarrow{t} V_1 \oplus V_2$$

$$\begin{pmatrix} 0 & 0 \\ B & 1 \end{pmatrix} \xrightarrow{\varepsilon} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} \xrightarrow{\eta} \begin{pmatrix} 1 + B & -1 \\ 0 & 0 \end{pmatrix}$$
We have that the above V_i’s are disjoint copies of V. Assume that V is of dimension n. For $V \oplus V$ we consider its standard basis e_1, \ldots, e_{2n}. We obtain for (301):

\[
\begin{aligned}
\text{im}(\eta) &= \langle e_1, \ldots, e_n \rangle, \\
\text{ker}(\eta) &= \langle e_1 + e_{n+1}, \ldots, e_n + e_{2n} \rangle, \\
\text{im}(\varepsilon) &= \langle e_1, \ldots, e_n \rangle, \\
\text{ker}(\varepsilon) &= \langle B^{-1}(e_1) - e_{n+1}, \ldots, B^{-1}(e_n) - e_{2n} \rangle = \langle e_1 - B(e_{n+1}), \ldots, e_n - B(e_{2n}) \rangle.
\end{aligned}
\]

With those details, we can rewrite (301) in terms of the four subspace problem:

\[
\begin{array}{cccc}
V \oplus V & \xrightarrow{(1)} & \text{im}(\eta) & \xrightarrow{(1)} \text{im}(\varepsilon) \\
& & \xrightarrow{(0)} & \xrightarrow{(0)} \\
\text{ker}(\eta) & \xrightarrow{(1)} & \text{ker}(\varepsilon)
\end{array}
\]

(302)

Theorem 6.7. Let w_z be a symmetric band and let $v_z \in (\Phi_{\text{ud}}^d)^{-1}(w_z)$ be weakly consistent with $\phi_p^{(i)} = \varepsilon^i n^{-1}$ for all $i \in \mathbb{Z}$ and such that $F(U(g_{w_z}, \varphi)) \cong M(v_z, V)$. Then $V \oplus V$ with $e = \varepsilon$ and $f = \eta$ described as in (302) is an indecomposable $k(e, f \mid e^2 = e, f^2 = f)$–module.

Proof. We show that (302) fulfills the conditions of case (i) in [Bre74, §5]. Lemma 5.40 yields that if $\delta_0(g_{w_z})$ is odd, $\bar{\omega}$ is even and, vice versa, if $\delta_0(g_{w_z})$ is even, $\bar{\omega}$ is odd. Thus, we obtain that

\[
B = (-1)^{\bar{\omega} + 1}F_\varphi^{-1} = \begin{cases} -F_\varphi^{-1} & \text{if } \bar{\omega} \text{ is even,} \\ F_\varphi^{-1} & \text{if } \bar{\omega} \text{ is odd,} \end{cases}
\]

\[
= \begin{cases} -F_\varphi^{-1} & \text{if } \delta_0(g_{w_z}) \text{ is odd,} \\ F_\varphi^{-1} & \text{if } \delta_0(g_{w_z}) \text{ is even.} \end{cases}
\]

Recall the meaning of $\delta_0(g_{w_z})$ in the context of \mathcal{F}–representations (cf. Chapter 4): if $\delta_0(g_{w_z})$ is odd, then $\varphi \neq t, t - 1$, and if $\delta_0(g_{w_z})$ is even, then $\varphi \neq t, t + 1$. This implies for F_φ^{-1} that 0 and 1 are not its eigenvalues for $\delta_0(g_{w_z})$ odd. Similarly, 0 and -1 are not its eigenvalues for $\delta_0(g_{w_z})$ even. It follows that $-B$ does not have eigenvalue 0 or 1 in both cases.

It remains to see that (302) is part of the list given by Brenner. To this end, we observe that (302) can be obtained from the module with $\pi = \iota$ in Brenner’s list by applying the permutations (14)(12)(34) from right to left. Note that (34)(14)(14) = (34).

Recall that we can consider V as $k[x]$–module for $-B \in \text{End}(V)$ (Remark
6.2). By definition of $-B$ in terms of $\varphi = \varphi_0^n$, it follows that $V \simeq k[x]/(\varphi_0^n)$ as $k[x]$-modules. The Fundamental Structure Theorem for finitely generated modules over a principal ideal domain yields that V is indecomposable as $k[x]$-module ([Jac85, §3.8]).

Corollary 6.8. The modules of the form $M(v_z, V)$ for v_z weakly consistent with $\text{dir}(v_{1+2kp}) = \text{dir}(v_{m+2kp}) = 1$ and $\Psi^c_{\text{ad}}(v_z) = w_z$ for w_z a symmetric band, $V \oplus V$ an indecomposable $k(e, f \mid e^2 = e, f^2 = f)$-module, give a complete list of pairwise non-isomorphic indecomposable modules as described in case (i).

Theorem 6.7 and Theorem 6.5 enable us to reformulate Theorem 5.49 and finally give a classification of the finite dimensional modules of a clan-algebras in terms of Crawley-Boevey's conjecture from [CB88]. To this end, we recall the notation for the modules of concern as described in Section 3.4:

We denote by \mathcal{V}_i a complete set of all finite dimensional, pairwise non-isomorphic indecomposable $\mod \mathcal{C}_i$-modules, where

$$
\mathcal{C}_i = \begin{cases}
k & \text{if } i = 1, \\
k[f \mid f^2 = f] & \text{if } i = 2, \\
k[T, T^{-1}] & \text{if } i = 3, \\
k(e, f \mid e^2 = e, f^2 = f) & \text{if } i = 4.
\end{cases}
$$

For easier notation, we denote by \mathcal{W}_1 the set of asymmetric strings, by \mathcal{W}_2 the set of symmetric strings, by \mathcal{W}_3 the set of asymmetric bands and by \mathcal{W}_4 the set of symmetric bands.

Let $w \in \mathcal{W}_1$, V be a \mathcal{C}_1-module. Then we denote by $\mathcal{M}_1(w, V)$ the following module:

$$
V_0 \xleftarrow{w_1^1} V_1 \xleftarrow{w_2^2} V_2 \xleftarrow{w_3^3} \ldots \xleftarrow{w_{n}^{n}} V_n,
$$

where

$$
\kappa_i = \begin{cases}
1 & \text{if } (w[< i])^{-1} > w[> i], \\
-1 & \text{else},
\end{cases}
$$

for all $i \in I$ with w_i a special letter, and where the V_i's are disjoint copies of V. The direction κ_i on any ordinary letter w_i is given as in w.

Let $w = u\varepsilon^k w^{-1} \in \mathcal{W}_2$ and let V be a \mathcal{C}_2-module. Then we denote by $\mathcal{M}_2(w, V)$ the following module:

$$
V_0 \xleftarrow{w_1^1} V_1 \xleftarrow{w_2^2} V_2 \xleftarrow{w_3^3} \ldots \xleftarrow{w_{m}^{m}} V_m \xrightarrow{\varepsilon = f},
$$

281
where
\[
\kappa_i = \begin{cases}
1 & \text{if } (w[<i])^{-1} > w[>i], \\
-1 & \text{else},
\end{cases}
\]
for all \(1 \leq i \leq m\), with \(w_i\) a special letter, and where the \(V_i\)'s are disjoint copies of \(V\). The direction \(\kappa_i\) on any ordinary letter \(w_i\) is given as in \(w\).

Let \(w \in \mathcal{W}_p\) be of period \(p\), and let \(V\) be a \(C_3\)-module. We denote by \(\mathcal{M}_3(w, V)\) the module
\[
V_0 \xleftarrow{w_1^{n_1}} V_1 \xleftarrow{w_2^{n_2}} V_2 \xleftarrow{w_3^{n_3}} \cdots \xleftarrow{w_{p-1}^{n_{p-1}}} V_{p-1},
\]
where
\[
\kappa_i = \begin{cases}
1 & \text{if } (w_{Z}[<i])^{-1} > w_{Z}[>i], \\
-1 & \text{else},
\end{cases}
\]
for \(i \in \mathbb{Z}\) with \(w_i\) a special letter, and where the \(V_i\)'s are disjoint copies of \(V\). The direction \(\kappa_i\) on any ordinary letter \(w_i\) is given as in \(w\).

Let \(w \in \mathcal{W}_4\) be of period \(p\) with periodic part \(\bar{w}_p = v^* w^{-1} v u^{-1}\), and let \(V\) be a \(C_4\)-module. We denote by \(\mathcal{M}_4(w, V)\) the module
\[
\begin{array}{c}
V_0 \xleftarrow{w_2^{n_2}} V_1 \xleftarrow{w_3^{n_3}} V_2 \xleftarrow{w_4^{n_4}} \cdots \xleftarrow{w_{m+1}^{n_{m+1}}} V_m,
\end{array}
\]
where
\[
\kappa_i = \begin{cases}
1 & \text{if } (w_{Z}[<i])^{-1} > w_{Z}[>i], \\
-1 & \text{else},
\end{cases}
\]
for all \(2 \leq i \leq m+1\) with \(w_i\) a special letter, and where the \(V_i\)'s are disjoint copies of \(V\). The direction \(\kappa_i\) on any ordinary letter \(w_i\) is given as in \(w\).

Our final classification result reads as follows:

Theorem 6.9 (Main Theorem - skewed-gentle algebras). Let \(\Lambda\) be a skewed-gentle algebra. The modules of the form \(\mathcal{M}_i(w, V)\), \(i = 1, 2, 3, 4\), with \(w\) running through \(\mathcal{W}_i\) and \(V\) running through \(\mathcal{V}_i\), give a complete list of finite dimensional, pairwise non-isomorphic indecomposable modules of \(\Lambda\).

Proof. The result follows from Theorem 5.49, Theorem 6.7, Theorem 6.5. \(\Box\)

Theorem 6.10 (Main Theorem - clannish algebras). Let \(\Lambda\) be a clannish algebra. The modules of the form \(\mathcal{M}_i(w, V)\), \(i = 1, 2, 3, 4\), with \(w\) running through \(\mathcal{W}_i\) and \(V\) running through \(\mathcal{V}_i\), give a complete list of finite dimensional, pairwise non-isomorphic indecomposable modules of \(\Lambda\).
Proof. The proof follows from Theorem 6.9 by Section 4.3.

Remark 6.11. It follows from the proofs, that the letters in $M_2(w, V)$ and $M_4(w, V)$ are described by $u_1^{\kappa_1}, \ldots, u_m^{\kappa_m}$, with κ_i as described above. Furthermore, we see that the modules $M_3(w, V)$ and $M_4(w, V)$ correspond to modules which are described by weakly consistent words in the alphabet $\Gamma_d(\Lambda)$. One exception is given by the modules $M_4(w, V)$ of which some correspond to words in $\Sigma_d(\Lambda)$.

We see that Theorem 6.10 gives a classification of the finite dimensional modules for a clannish algebra over an arbitrary field. Thus, we can confirm Crawley-Boevey’s conjecture made in [CB88]. Furthermore, we are able to describe the indecomposable modules explicitly in terms of strings and bands by creating directed words from the asymmetric and symmetric strings and bands, either by using our conventions on the symmetry axes or by involving the categories C_i.
Bibliography

