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Abstract

In this thesis we classify all indecomposable finite dimensional modules of
clannish algebras with idempotent relations on the special loops. To this
end, we start with the introduction of the notion of asymmetric and sym-
metric strings and bands in terms of words. The classification will be given
in terms of those. We first examine directions on special letters in these
words of a clannish algebra. Then we reduce the case to skewed-gentle al-
gebras and construct a bundle of semichains for such an algebra. Thus, we
are able to reduce the classification problem for skewed-gentle algebras to
the matrix problem of bundles of semichains studied by Bondarenko. From
this problem, we extract one classification of the indecomposable finite di-
mensional modules of a skewed-gentle algebra. From this classification, we
can deduce a classification for clannish algebras. Finally, we adjust this clas-
sification to obtain one similar to that obtained by Crawley-Boevey, in which
the symmetric band modules are indexed by a vector space equipped with a
pair of idempotent endomorphisms. In contrast to Crawley-Boevey’s classi-
fication, however, ours gives representations with better bases, not requiring
the introduction of a fixed non-zero non-identity element of the field, and so
working over the field with two elements. Applied to the algebra generated
by an idempotent and a square zero element, it confirms a conjecture of
Crawley-Boevey in 1988.
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1 Introduction

Interesting problems from representation theory can be described by quivers
with certain relations. One type of such problems are clannish algebras.
They were introduced in 1989 by Crawley-Boevey [CB89] and are the main
subject of this thesis. Crawley-Boevey classified the modules of clannish al-
gebras in terms of strings and bands if the underlying field has at least three
elements. This is a direct conclusion of the classification of the indecom-
posable representations of clans in [CB89|, whose notion was motivated in
particular in order to solve the Gel’fand problem [Gel71|. The method used
to obtain the classification for clans is the so called functorial filtration. It
was developed by Gel’fand and Ponomarev [GP68| and set by Gabriel into
the functorial setting. Ringel also applied this method for the classification of
the indecomposable representations of the Dihedral 2-Groups [Rin75]. This
classification is also given in terms of strings and bands. Crawley-Boevey
used the same approach for another of his papers prior to [CB89]: in [CBS88],
Crawley-Boevey gives a classification of the indecomposable modules of the
clannish algebra k(e,a | €2 = £,a% = 0). Similar to the result in [CB89], this
classification does not include algebras which have a base field with less than
three elements. This is due to the introduction of ¢, a non-linear combin-
ation of the letter € and 1. However, Crawley-Boevey conjectured in the
introduction of [CB88| (near the end of page 386) the existence of an analog-
ous classification for arbitrary fields given in the original alphabet (replacing
the letter ¢ by €) of the algebra.

The aim of this thesis is to give a classification of the indecomposable fi-
nite dimensional modules of a clannish algebra in terms of asymmetric and
symmetric strings and bands independent of the cardinality of the base field.
The algebra considered in [CB88| will serve as one of our standard examples.
In order to fill the gap in the existing classification, we will use a different
approach than the functorial filtration method. To this end, we will at first
consider skewed-gentle algebras, give a classification for them and then de-
duce from that one the classification for clannish algebras. We can proceed in
this way since the skewed-gentle algebras belong by definition to the class of
(quasi-)clannish algebras. Skewed-gentle algebras were introduced by Geift
and de la Pefia as a specification of quasi-clannish algebras [GdIPn99] which
are a generalisation of clannish algebras.

Similar to [BMMO3], we will exploit the connection between skewed-gentle
algebras and a matrix problem. Here, we reduce the classification problem
of indecomposable modules of a skewed-gentle algebra to the matrix prob-
lem in terms of bundles of semichains introduced by Bondarenko in 1988
[Bon88, Bon91|. This will enable us to obtain a first formulation of the in-
decomposale finite dimensional modules of a skewed-gentle algebra in terms
of strings and bands and deduce a respective first formulation for clannish
algebras. However, this first formulation does not confirm Crawley-Boevey’s



conjecture yet. In order to do so, we will refine the first classification result
by applying results from [Bre74].

The same matrix problem which was studied by Bondarenko, was also stud-
ied by Deng in the context of bushes [Den00|. He found that his results can
be applied to clannish algebras including base fields of cardinality two. How-
ever, the results by Deng cannot directly confirm the conjecture imposed by
Crawley-Boevey in [CB8§|.

In this thesis, we draw clear parallels between chains and cycles as considered
by Bondarenko and string and band modules of skewed-gentle algebras. We
also include a detailed discussion of the relevant results of Bondarenko since
they are pertinent to our approach. We include additional examples to shed
some light on the results which are available in [Bon88| but not in the english
translation [Bon91]. Additionally, they will help the reader to gain a better
understanding of the technical construction given by Bondarenko.

1.1 Outline

This thesis is structured as follows:

In Chapter 2 we collect the preliminaries which are used in the later chapters.
Those include the basics of representation theory as well as the notion of clan-
nish algebras. Based on its definition, we define words. Here, we distinguish
in particular between ordinary and special letters. This property is deduced
from the definition of a clannish algebra. Furthermore, we introduce the
properties coadmissibility and minimality for words and describe associated
modules. For those, so called periodic words are of particular interest.

We proceed in Chapter 3 by defining asymmetric and symmeiric strings and
bands which are given by so called undirected words. The classification (The-
orem 6.9, Theorem 6.10) will be given in terms of those. To any directed
word, an undirected one can be associated. We introduce two types of direc-
ted words (weakly consistent and consistent words) and compare those types
for directed words which have as associated undirected words asymmetric
and symmetric strings and bands. The definition of the weakly consistent
and consistent words depends on a linear ordering on certain words which
we introduce in the previous chapter.

We start Chapter 4 by presenting the results of [Bon88, Bon91] and by giving
detailed examples which we found to be missing in the existing literature. In
doing so, we fix notation for this type of matrix problem. After introducing
the basics on this topic, we give an explicit construction in order to show
that for any skewed-gentle algebra A there exists a bundle of semichains X
(Theorem 4.70). From this construction on, we reduce ourselves to skewed-
gentle algebras. The construction allows us to give an explicit description on
how to obtain £-graphs from undirected words. We show in Theorem 4.113
that any asymmetric and symmetric string and band results in an £-graph
which leads to a canonical X,-representation. We even find by Corollary



4.117 that there exists a 1-1-correspondence between their equivalence classes
and the isomorphism classes of the £—chains which give canonical represent-
ations. We obtain similar results with respect to asymmetric and symmetric
bands and simple £—cycles (Theorem 4.130, Corollary 4.142). We prove in
Section 4.7 that the directions added on the constructed £—graphs coincide
with those on letters of so called finite index in weakly consistent and con-
sistent words.

The main results which are required in order to obtain the classification, are
to be found in Chapter 5. We show that the category mod(A) of finite dimen-
sional modules of a skewed-gentle algebra A and the category Rep(X,) of
representations of the bundle of semichains X, are equivalent (Theorem 5.6).
We present a classification of the finite dimensional modules of the skewed-
gentle algebra A in terms of strings and bands (Theorem 5.49). From this,
we deduce a respective classification for clannish algebras A (Theorem 5.50).
In the final chapter, Chapter 6, we examine the symmetry axes of the sym-
metric bands more closely in the context of the four subspace problem. In
order to do so, we apply results of [Bre74]. Finally, these results allow us
to refine the classification result as formulated in Chapter 4 such that we
will be able to confirm the conjecture stated by Crawley-Boevey in [CB8§|
(Theorem 6.10).

1.2 Main Theorem
1.2.1 Main Theorem for the algebra k(c,a |2 =¢,a% = 0)

We start this Subsection by first giving the respective result from [CBS8S].
To this end, let k be a field with at least three elements and let A = k(e,a |
e? = ¢,a® = 0). We consider the alphabet T' = {a,a™!,¢*}, where ¢t = Ae — pl
with 0 # A, u e k and X # u. We call t* a special letter with formal inverse
given by itself. We build words by considering sequences in the letters of T,
in which each t* is either followed by a or a™!, and each a or a™! is followed
by t*.

For the classification, we want to consider only certain words. We distin-
guish between asymmetric and symmetric strings and bands. Strings are
finite words in a, a”! and t*, whose first and last letters are given by ¢*. A
string is symmetric if it is equal to its inverse which is obtained by reversing
the order of the letters, and exchanging a and a™'. An example for an asym-
metric string is the following: t*at* since it is unequal to its inverse t*a~'t*.
An example for a symmetric string is given by t*at*a~!t*. Important is that
we have that the sequence left of the middle ¢* is equal to the inverse of the
sequence right of it. Thus, this letter t* in the middle of the word gives a
symmetry axis.

Bands are defined by infinite periodic words. To specify a band it suffices
to give one period. An example for an asymmetric band can be described
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by its periodic part, the finite subsequence t*a. The whole band is then
of the form ...t*at*at*a.... Important is that when considering the whole
word, it is not equal to its inverse shifted by any position. For a symmetric
band, we want exactly the opposite. We want that it is equal to its in-
verse shifted by some position. An example for a symmetric band can be
described by the finite subsequence t*at*at*a 't*a~' which results in the
word ...t*at*at*a 't a 't at*at*a 't a”! ... We see - by comparing the
left subsequence to the inverse of the right subsequence - that there are two
symmetry axes per periodic part in the band, given by the first t* and the
one in fifth position.

We want to consider modules given by exactly those four types of words.
For this we need to replace each letter ¢* by either ¢ or t~!. We can consider
t* as a placeholder for one of the other two letters. The question is which
of the two letters to use to replace t*. Crawley-Boevey gives an answer by
giving an ordering on the words. We consider in a word the inverse of the
subsequence left of a letter t* and compare it to the subsequence right of
t*. Comparing those two subsequences defines by which letter ¢* is replaced.
Here, we replace t* by t if the inverse of the left subsequence is bigger than
the right subsequence. Otherwise, we replace t* by t~'. There are some let-
ters - those which we have called symmetry axes above - which do not obtain
a unique replacement this way since the inverse of their left subsequence is
equal to their right subsequence. But we will see in the presentation of the
modules that we can omit this discussion.

Considering the words with t* replaced as described above, they describe
modules. Each string results in a string module, and each band in a band
module. For the bands, their repeating structure allows to only consider
one of their periodic parts. We will give examples for the words above. To
this end, we display each letter of the form x by an arrow from the right
to the left, and each letter of the form z~! by an arrow from the left to
the right. Now setting vector spaces from a certain module category at its
vertices describes the respective module, consisting of a vector space given
by the direct sum of the vector spaces at its vertices and the action of the
algebra described by the displayed arrows. Note that all considered vector
spaces are finite dimensional.

For the asymmetric string t*at” we replace each t* such that we consider tat
for the module. Let V' be a k—module. The A—module M (tat,V') with the
Vs being disjoint copies of V' is described by

t t

Vo Vi<——"V;

Vs (1)

This module gives an example in the image of the functor in [CB88, §1, p.
388|, applied to modk.

For the symmetric string t*at*a™'t* we consider tat*a™1t"!. Here, the letter
t* in the middle has not been replaced since it is a symmetry axis, but is
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determined by the category of the vector space. Let V be in mod k[s]/(q(s)),
where ¢ describes the quadratic polynomial with ¢(¢) = 0. The A-module
M (tat*a™'t71, V) with the V/s being disjoint copies of V' is given by:

Vb-;Vl-&Vth:s. (2)

Since t is a linear combination of € and 1, the module can also be displayed
with V being a k[f | f2 = f]-module and with € = f on the loop. This
module then gives an example in the image of the functor in [CB88, §1, p.
388], applied to mod k[ f | f? = f].

For the asymmetric band given by ...t*at*ata... we consider the sub-
sequence ta. We consider V in modk[T,T7!] where T acts as the shift
between the repetitions. The A—module M(...tata...,V) with the V/s be-
ing disjoint copies of V is given by

V();t—/vl- (3)

This module gives an example in the image of the functor in [CB88, §1, p.
388], applied to mod k[T, T7].

We consider for the symmetric band ...t*at*at*a 't*a"! ... the subsequence
t*at*at*a 't 'a~!. Similar to the symmetric string case, the letters giving
the symmetry axes are defined by the category of the vector space. Let V be
in modk(f,g)/(q(f),q(g)) with ¢ the quadratic polynomial as above. The
A-module M(...t*atat*a 't ta™t ..., V) with the V;’s being disjoint copies
of V is given by

t:fCVO L AL L V3:_>t=9- (4)

Similar to the module of a symmetric string, we can express this module in
terms of € on the loops with V being a k(f,g | f? = f,¢* = g)-module. Tt
gives an example in the image of the functor in [CB88, §1, p. 388], applied
to modk(f,g| f* = f,9* = g).

Crawley-Boevey states in [CB88| that the modules of this form give indecom-
posable finite dimensional modules of the algebra:

Theorem 1.1. [CB88, Main Theorem| Let k be a field with at least three
elements, let A =k(e,a|? = ,a> =0). Let M be a list of modules obtained
from all asymmetric and symmetric strings and bands as described above
in examples (1)-(4), with the modules V' running through a complete list of
non-isomorphic indecomposable modules for each module category. Then M
gives a complete list of non-isomorphic indecomposable A—modules.

As we have seen, this result does not operate on the original alphabet
of the algebra but introduces the letter t* (¢,¢71). Due to this introduction,

12



the field k is required to have at least three elements.

The main result of this thesis confirms Crawley-Boevey’s conjecture from
the same paper [CB88]. Here (near to the end of page 386), he conjectures
that there is an analogous classification to the one given above in which the
letter t* (t,t71) is replaced by the letter e* (g,e71). This classification would
hold for arbitrary fields.

In our setup, by replacing t* by €, the above given examples for strings and
bands correspond to the following:

The word e*ae* is an asymmetric string and e*ac*a"'e* describes a sym-
metric string. Repeating the sequence €*a gives an asymmetric band, while
repeating e*ac*ac*a 'e*a~! describes a symmetric band. We have replaced
each t* by ¢*. It follows that we need to replace each of these £* by either
e or e 1. In order to do so, we proceed analogously as above with the ¢*’s.
Also for building the modules from those words, we proceed analogously as
above. This leaves us with the following modules: For the asymmetric string
we obtain from cae the A—module M (eae, V) with V' a k—module, and the
Vi’s disjoint copies of V:

Vo=—V<="—Vo=——1V5. (5)

For the symmetric string we consider eac*a™'e™!. The A—module M (cac*a"te™1, V)
with V in modk[f | f? = f] and the Vj’s disjoint copies of V', is given by:

W)<€—V1<a—V2:>€:f. (6)

For the asymmetric band we consider ea. The A-module M(...caca...,V)
with V' in mod k[T, T~!] and the Vj’s being disjoint copies of V, is given by

Vo<-——Vi. (7)
~_7

Finally, we consider the symmetric band. Here, we obtain the A—module
M(...c%acac*a e a7t ..., V) with V in modk(f,g | 2= f,9°=g), and all
Vi’s being disjoint copies of V:

I Vo="=Vi="—Va="—V; Je=s. (8)

Here, a depiction of the form Vy «— V; means that we have for e(v1) = vg
that e(vg) = vo, where vy € Vp, v1 € V5. This is due to the idempotent relation
on €.

Our main theorem applied to k(s a | e2 = £,a? = 0) reads:

Main Theorem. (k(e al|e?=c¢,a%=0)) Let k be an arbitrary field, let
A =k(e,a|e? =¢e,a?=0). Let M be a list of modules obtained from all
asymmetric and symmetric strings and bands as described in examples (5)-
(8), with the modules V' running through a complete list of non-isomorphic
indecomposable modules for each module category. Then M gives o complete
list of non-isomorphic indecomposable A—modules.
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1.2.2 General formulation of the Main Theorem

Let k be a field. Let w be an asymmetric string and let V' be a k—module.
Then we denote by Mj(w, V') the following module:

K1 Ko K3 rc
wy Wy w3 wy"

Vo Vi Va Vi

where k; € {+1,-1} and w = wy...w,, which we will discuss in detail in
Section 2.4.

Let w = ue*u™! be a symmetric string (with m being the length of u) and let
V be a k[f | f2 = f]-module. Then we denote by Ma(w, V) the following
module:

K1 K9 K3

3 Km
‘/0 wq ‘/1 Wy ‘/,2 Wg Win, VmD‘E:f-

Let w; be an asymmetric band of period p, an let V' be a k[T, T~1]-module.
We denote by M3(v, V') the module

K1 Ko K3 Kp-1

wy Wy Ws Wp-1
W—W=—"Vr =5 Vo
wgp

Let w; be a symmetric band of period p with periodic part e*un*u™!, Ju| = m,
and let V be a k(f,g| f? = f,¢* = g)-module. We denote by M4(v,V) the

module

2 ~3 2t Km+1

8:fCVO Wy Vi w3 v Wa o Wmel Vmgn:g.

The V;’s in the modules are disjoint copies of the given V. The k;’s are
directed according to the linear ordering (cf. Definition 2.41) on the words
for special letters w; (cf. Section 2.3). Otherwise, k; is given by the ordinary
letters (cf. Section 2.3) in w or wy, respectively.

Our final classification result reads as follows:

Main Theorem. Let A be a clannish algebra. The modules of the form
M;(w, V), i=1,2,3,4, with w running through the sets of asymmetric and
symmetric strings and bands, respectively, and V' running through a complete
list of non-isomorphic indecomposable modules for each module category, give
a complete list of pairwise non-isomorphic indecomposable modules of A.

14
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2 Preliminaries

We start this chapter by revising the basics of representation theory in Sec-
tion 2.1. Moreover, we introduce clannish and skewed-gentle algebras in
Section 2.2 following [CB89| and [GdIPn99|. Section 2.3 deals with direc-
ted and undirected alphabets obtained from a clannish algebra and words
built from any of the alphabets. In the next chapter, we define the notion
of asymmetric and symmetric strings and bands which are given by equi-
valence classes of certain words. We examine in Subsection 2.3.1 the so
called Z —words more closely which lead to the notion of bands. In particu-
lar, we determine certain properties of words in Subsections 2.3.2 and 2.3.3.
These properties are required in order to describe the words which lead to
£-graphs giving canonical X,-representations (compare Sections 4.5 and
4.6). We close the chapter with Section 2.4 which explains how directed
words describe A—modules.

Throughout this thesis let k be a field. Note that k is not necessarily
algebraically closed.
Moreover, we denote by N the natural numbers including 0.

2.1 Quivers and their representations

We follow [ARS97]. For k algebraically closed, see also [ASS06].

A quiver @ is given by a quadruple (Qo,Q1,s,t) consisting of a finite
set of vertices g, a finite set of arrows ()1 and two maps s,t: Q1 — Qo,
assigning to each arrow z € Q)1 its source s(x) and its target t(x), giving
x:8(x) — t(x). A loop at vertex i is an arrow x € Q1 with s(x) =t(z) = 1.
A path p in Q is given by a sequence p = p,, ...p; of arrows p; € Q, 1 <i < n,
such that s(pi+1) = t(p;). The length of such a path p is n. We denote by
s(p) = s(p1) the source of p and its target by t(p) = t(p,). For each vertex
i € Qo we have the trivial path e; of length 0 with s(e;) =t(e;) = i.

The concatenation poq of two paths p=p,...p1 and ¢ = gy ... q1 is given by

Prn---D1Gm---q1 if s(p1) =t(qm),

if g =
poq= Pn p1 1 7= Cs(p1)>
Gm - --q1 ifp=eygn)
0 otherwise.

In the following, we also write pq instead of p o g for short.

A k —linear representation of ) is given by a tuple V' = (Vi, V4 )ieQo.acQ, Where
Vi is a vector space for each ¢ € Qg and V, : V; - V; is a linear map for each
a:i— j €. The representation V is called finite dimensional if V; is finite
dimensional for all i € Q.

Let V = (V;,Va)iq and W = (W;,Wy); 4 be two representations of a given
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quiver Q. A morphism f:V — W is given by a family f = (fi)iq, of
k —linear maps f; : V; — W; such that f;V, = W, f; for (a:i1 - j) € Q1, i.e.
the following diagram commutes:

o,

-
f.

J
PN .

=

Va

P a—

S

The composition of two morphisms of representations is given in the obvious
way. The direct sum V@ W of V and W is given by

Vo O
(%EBWZ',VQGBWQ—(O Wa))ia.

A representation V' = (V;, Vy)i 4 is called indecomposable if it cannot be writ-
ten as a direct sum V =W & U of two non-zero representations W, U.

We denote the category of representations of a quiver @ by Rep(Q). The
full subcategory of finite dimensional representations is denoted by rep(Q).
If @ is finite, then both categories are abelian.

Moreover, one can associate to any quiver @ the path algebra k Q. This is the
k —algebra with underlying k —vector space with basis given by the paths in
@. The product of two basis elements is given by the above concatenation.
The path algebra is associative. Furthermore, k @ is finite dimensional if and
only if @ does not have oriented cycles, see [ARS97, §III.1, Proposition 1.1].
It is unital with 1 =30, €v-

A relation r on a quiver () is a k-linear combination of paths p; which
have lengths at least two. For R a set of relations on @, the pair (Q,R)
is called a quiver with relations. Its associated path algebra k(Q,R) is
given by k@Q/(R). Generally, we are going to consider for any algebra A
left A—modules and denote by Mod(A) the category of all those modules.
We denote the full subcategory of finite dimensional modules by mod(A).
It is a well-known result, e.g. |[ARS97, §III.1, Theorem 1.5|, that the cat-
egories rep(Q)) and mod(k Q) are equivalent. This induces an equivalence
between rep(@,R) and mod(k Q/(R)) [ARS97, §II1.1, Proposition 1.7].
Furthermore, the following Krull-Remak-Schmidt-Theorem is well-known:

Theorem 2.1. [ARS97, Theorem 2.2 (b)] Let A be a k—algebra and let
{Vitier and {Wj}jes be two finite families of finitely generated indecomposable

A-modules. If
[vi= 1w,
i€l jeJ

then there exists a permutation w: 1 — J such that V; = Wy for all i€ 1.
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2.2 Clannish algebras

We consider clannish algebras in the sense of [CB18], with one minor restric-
tion: we ask the relations on the special arrows to be idempotent relations.

Let Q be a quiver, Sp a subset of the loops of Q. We call any € € Sp
a special arrow, and in contrast to that any a € Q; \Sp an ordinary arrow.
We denote the set of ordinary arrows by Q™% Let RS = {¢2 —¢ | ¢ € Sp}
describe the idempotent relations on the special arrows, and let R be a set
of monomial relations on Q which do not start or end in a special loop, nor
involve the square of one.

Definition 2.2. Let A = kQ/(RURSP). We call the algebra A clannish if
the following conditions hold:

(i) at most two arrows start at any vertez: |{a € Q; | s(a) =v}| <2 for all

UEQ07

(1)* at most two arrows terminate at any verter: |{a € Q; | t(a) = v}| < 2
for all v e Q,

(ii)  for any a € QY"Y, there is at most one ¢ € Q; such that ca ¢ R,
(ii)* for any a € Q"Y, there is at most one be Q, such that ab ¢ R.
Example 2.3. 1. The algebra A =k Q/(RURSP) with quiver Q
ool
Sp = {e} and R = {a?} is a clannish algebra.

2. Let Q be given by

K

EC._m>O_y>.:’>n

with Sp = {e,n,k} and R = {yz}. Then kQ/(RUR®P) is a clannish
algebra.

3. Consider the quiver QQ

with Sp = {k} and R = @. The path algebra kQ/(RUR®P) is not

clannish since (1)* does not hold for vertex 2.

18



4. The algebra A =k Q/(RURSP) with quiver Q

1—%*5>9_Y.3

z

4
with Sp = @, R = {yx,yz} is clannish.

Similar to clannish is — as the name already suggests — the notion of
quasi-clannish which is a generalization of the former. To this end, let @,
Sp, Q™4 and RSP be as above. Denote by R a set of relations, by (R) the
ideal in k Q/(R5P) generated by the classes of elements in R. Let J be the
ideal in k Q/(R5P) generated by the ordinary arrows.

We denote by g the following automorphism of k Q/(R5P) of order 2:

g(1y) =1, for all v € Qq,
if ¢ ord

g(a) = ¢ 1 (a) € Qg ’ for all a € Q™
—a if t(a) € Q,",

g(e) =1y -¢ for all € € Sp,

where QQF = {s(¢) | £ € Sp}, Q§™ = Q1\ Q.

Definition 2.4. [GdlPn99, Definition (4.2)] Let A = kQ/(RURP). Then
A is called quasi-clannish if the following conditions hold:

(i) (R)<cJ?is a(g)—ideal in kQ/(RSP),

(i) at most two arrows start at any vertex: |{a € Q1| s(a)=v}| <2 for all

v € Qo,

(11)* at most two arrwos terminate at any vertex: |{a € Q1 | t(a) = v}| <2

for all v e Qq,
(iii)  for any a € QYY there is at most one be Q1 with ab¢ R,
(i1i)* for any a € QYY there is at most one c € Q1 with ca ¢ R.
Lemma 2.5. [GdIPn99] Any clannish algebra is quasi-clannish.

Example 2.6. By Lemma 2.5, Example 2.3.1., 2. and 4. also are quasi-
clannish algebras.

The converse of Lemma 2.5 does not hold in general. But one can restrict
the notion of quasi-clannish as follows:

Definition 2.7. Let A =kQ/(RURSP) be quasi-clannish. We call A string-
quasi-clannish if R consists of monomial relations only and no relation con-
tains the square of a special loop.
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Then we obtain the following result:
Lemma 2.8. Any string-quasi-clannish algebra is clannish.

Proof. 1t is enough to check that no relation starts or ends in a special loop.
We give a proof by contradiction.

Let € € Sp and let p and ¢ be paths in @ such that ep and ¢e are again
paths. Assume for simplicity that p and ¢ only consist of ordinary arrows

that do not end in vertices incident to special loops. By Definition 2.7, (R)
is (g)- invariant in k Q/(R5P). The action of g on ep and ge is given by the
following:

9(ep) = (Ly(e)-c)p = p — €D, (9)
9(ge) = q(14) —€) =q - ge. (10)

Now (9) and (10) do not lie in (R) since R only consists of monomial rela-
tions. Thus, they give a contradiction. O

Definition 2.9. [GdIPn99, Definition (4.2)] Let A =k Q/(RURSP) be quasi-
clannish. It is called skewed-gentle if it additionally satisfies the following
conditions:

(iv) R consists of monomial relations of length 2,
(v) for any a € QY there is at most one be Q1 with abe R,
(v)* for any a € QY there is at most one c € Q1 with ca € R.

Example 2.10. 1. The algebras in Example 2.3.1. and Ezample 2.3.2.
are skewed-gentle.

2. The algebras in Example 2.3.3. and 2.53.4. are not skewed-gentle.

3. The algebra given by the following data is not skewed-gentle:

Q: 122 3—>4,

Sp=¢, R ={cba}.
Lemma 2.11. Any skewed-gentle algebra is clannish.

Proof. Since any relation is of length two, it does not contain the square of
a special loop. Lemma 2.8 yields the result. O

Remark 2.12. Any algebra which is Morita equivalent to a clannish (quasi-
clannish, skewed-gentle, respectively) algebra is also called clannish (quasi-
clannsih, skewed-gentle, respectively).
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2.3 Words

In order to give a description for words of the clannish algebra A, we consider
the latter in terms of the quiver Q with relations RURSP. We follow [CB18]
for most definitions in this section.

Let A =kQ/(RURSP) be a clannish algebra.

A letter is an arrow x € Qq, its formal inverse 271, or a symbol €* for any
€ € Sp. The formal inverse of a symbol € is given by itself.

We call a letter a*! for a € Q‘frd of ordinary type or simply ordinary, and a
letter e*!, e* for € € Sp of special type or simply special. We distinguish direct
letters, which are of the form « for some x € Qq, from inverse letters, which
are of the form x~! for some x € Q;.

In the next step, we want to build words from certain sets of letters, so called
alphabets. We are going to consider two types of words, coming from two
types of alphabets.

We denote by

Pa(A) = {a,a7 [ac QP} u e, |« e Sp}
the directed alphabet of A, and by
Tua(A) = {a,a | ae QI u{e* | e eSp}

the undirected alphabet of A.
There exists the following forgetful map:

QSid: I_\d(A) - Fud(A)
z® if z e QMY (11)

*

x*  if x € Sp,

xh —

for ke {+1,-1}.

Example 2.13. Let A be as in Example 2.2.1. Then its directed and undir-
ected alphabet are given by

Lua(A) = {a,a™t,e*},
I‘d(A) = {a,a_l,e,s_l}.

Example 2.14. Let A be given by the quiver

Ec\/e]
N

21
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with Sp = {n, k,e}, R ={ca,db,ec}. Its undirected and directed alphabets are

Twa(A) ={a,b,c, d,e,a_l,b_l,c_l,d_l,e_l,6*,/6*,77*},
Lq(A) = {a,b,c, d,e,ail,bfl,cfl,dfl,efl,s, ﬁ,n,efl, /{1,7771}.

In the following, we might simply write I'yq, I'q if the given algebra is
clear from the context.
Let T be either a directed or undirected alphabet for a clannish algebra A.
Then a I'-1-word w; is given by a sequence of letters from I' of the following
form:

Wy ... Wy it 1={0,...,n},(n>0),
if I=N
w={ o (12)
Lo W_wo if I=-N,
LW QW QW | 1w ... if I= Z,

such that
(i) for two consecutive letters w;, wir1: s(w;) = t(w;+1) in Q,

(ii) for two consecutive letters w;, wis1: wi‘1 + Wiy1,

(i) if 7 =71 ...7; € R, then neither r nor its inverse 7~ = r;1... 77 occur

as a consecutive subsequence of w.

(iv) for € € Sp, €*¢* does not occur as a consecutive subsequence of w; in
I'yq, nor do ee and e te7!
Lq.

occur as a consecutive subsequence of w; in

Note that the "|" in the definition of a Z —word is necessary to indicate the
position of the letter wy and wy within the word.

Example 2.15. Consider the algebra A from Ezxample 2.2.1.

Then for I ={0,1,2,3},

w=¢clae

is a I'q—1-word. For1=127,

1

* * -1 % -1 _*
Wy =...ag"ag’ |a " eta" e L.

1s a I'yq — Z —word, where w; consists of repetitions of the displayed subword
to the left and to the right.

Example 2.16. Let A be as in Evample 2.14. Then
wy = e*a td er ebn* b tag*a d ekt ebn b a . .
is a T'ywq — N—word and the following gives a T'q — (- N)—word:

wey=...d Yere tdasta td ek,

22



The length of a I' - I —word with I = {0,...,n} is given by n. For I = {0},
a I' - I-word is given by a trivial word 1, , for some vertex v € )9 and
ke {+,-}. Wecall a ' -I-word w; directed if T' = T'q and undirected if
I' =Twq. With this adjective to describe the words, we might also drop the
I'-notation and say for instance "directed I -word" instead of "I'q—I —word".
We denote the set of all directed I-words by W'(I'q(A)), and the set of
all undirected I-words by W'(I'ya(A)). If the given algebra is clear from
the context, we write W, instead of W'(I'+(A)) where « € {ud,d}. We
denote by W(T'x(A)) = Ujjew W'(I'x(A)) the set of all finite words of I', (A),
* € {ud,d}. We write W, (x € {ud,d}) for short. For any word in W,, we
drop the subscript in the notation when convenient and write w € W, of
length n instead of w; € W, with I ={0,...,n}.
Note that (11) induces the map

DL W(Ta(A)) — W(Tua(A)). (13)

For a directed I-word vy, we call an undirected I-word w; € ®¢, (v;) an
undirected version of vy.

Vice versa, for some undirected I -word wy, we call any directed I -word v,
in the preimage (®°,)™" (w;) of w; a directed version of w;.

For a given I' — I —word w; there exists for every ¢ € I an associated vertex
vi(wy) in Qq, given by

for 1=%7: Ui(wz) = S(’U)Z) - t(wi+1)’
i) = t(w; if 1 >1,
for I=N: Ui(wN) _ S(w ) (w +1) 1 Z
t(wr) if v =0,
i) = t(w; if 4 < -1,
for I=-N: vi(w_ ) = s(wi) = t(wir1) if i
s(wo) if1=0,

s(w;) =t(wiy1) if0<i<mn,

t(wy) if i =0, it w#1,, for all v,k
for I={0,...,n}: v;(w)= s(wy) fiem
{v if w=1,,, some v, k.

Example 2.17. We consider the word w from Ezxample 2.15. Then
vi(w) = s(w;) =1 for all i € {0,...3}.
Example 2.18. Let A and wy be given as in Frample 2.16. Then
vs(wy) = s(ws) = s(k*) =5 =t(ws) =t(c),

va(wy) = s(wz) = s(a™t) = 2.
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The inverse of a I' - I-word w; as in (12) is given by

wyt . wrt if I ={0,...,n},(n>0),

wpt = e - )
wy w1y ... if I =-N,
cowytwtwgt JwTiwTl o i T =7,

with (z71)7! = z for any letter z e I.

Note that the inverse of a I' - N—word is given by a I' = (-N)-word by
definition, and, dually, the inverse of a I' — (- N)-word is an I' = N—word.
We define the inverse of a trivial word by (1,,)7! = Ly —r.

Example 2.19. The inverse of w from Example 2.15 is given by

wl=elg e,

For w, from the same example, we obtain the inverse

w;' = .. agtag* a7t

Example 2.20. The inverses of the words from Example 2.16 are given by
(wy)t =...a b e ke dae”,

(w,N)_1 =k e ldaca'd e e M. . ..

Now we choose for each letter [ € I' a sign sgn(l) € {+,—-} such that

two distinct letters [ and [’ with the same starting vertex in Q have the
same sign if and only if {I,I'} = {z7!,y} and either zy € R or 2 = y € Sp.
Thus, if w; and w;,1 are two consecutive letters in a I' — I -word w;, then
sen(w;?) = -sgn(wpn).
The sign of a I'=I—-word w; for I={0,...,n} or I = Nis given by sgn(w;), or,
if wy =1y, by k. Simlarly, for I=-N, it is given by sgn(wp). Additionally,
we assume for a given algebra A that the sign on a letter is compatible with
both alphabets I'q and I'yq, that is, for any two letters x € I'g, y € ['yq with
¢1,(x) = y we have sgn(z) = sgn(y).

Example 2.21. Consider A as in Ezample 2.3.1. and T'q(A), Tywa(A) from
Ezample 2.13. It follows from the relations on A that sgn(a) = sgn(a™') and
sgn(e) = sgn(e™), but sgn(a) # sgn(e).

Example 2.22. Lei A be as in Example 2.1/ and consider its undirected
alphabet T'yq. We obtain the following correspondences from the given rela-
tions:

sgn(c™') = sgn(a)# sgn(d™),

sgn(d™') = sgn(b) # sgn(c™t),

sgn(e”!) = sgn(c) * sgn(x*),

sgn(b™') # sgn(n*),

sgn(a™') # sgn(e*).
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Thus, we can choose the signs as follows:

sgn(c') =sgn(d ') =sgn(d) = sgn(x") = sgn(n*) = sgn(c") = +,
sgn(e™!) =sgn(a™) =sgn(b™!) = sgn(a) = sgn(b) = sgn(c) = sgn(e) = —.

As for each letter x € I', the source and target vertices s(z) and ¢(x) are

defined via the quiver QQ, we can extend this definition to some words. We
define for w; a I'-I-word with I = {0,...,n} or I = N, the source to be given
by s(w;) = vo(w;). For I ={0,...,n}, its target is given by t(w;) = v, (wy),
respectively for I = =N by t(w;) = vo(wy).
The composition vw of a I' = T-word v and a I' = J—word w is given by
the concatenation of sequences of letters, provided s(v) = t(w), sgn(v™!) =
-sgn(w), and vw is again a I'=I' —=word for some I'. Conventionally, we define
lyklok = lyk. The composition of a I' - (- N)-word v_y and a I' - N -word
wy is indexed in a way such that

(vw)z =...v_1v9 | Wwa. ...
Example 2.23. Let A be as in Fxample 2.2.1.

1. Let w = e tae, v = ac. Then we know by Ezample 2.21 that sgn(e) =
—sgn(a) and thus
wv = ¢ 'acae.

Note that vw s not o word, since the two words cannot be composed in
this order.

2. Letw_y=...aca"! be an (- N)—word and let vy =ca ... be an N -word.
Then the composition (wv)y is a Z-word given by
(wv)y =...aea”" |ea....
Example 2.24. Consider A as in Fxample 2.3.1. and w_y and wy from
Ezxample 2.16. Then we cannot compose them since sgn(k*) = + = sgn(n*)
and also their concatenation does not result in a I' = Z —word.

Any word which is bounded from below or above (I € {N,-N,{0,...,n}})
can be composed with a suitable trivial word:

lyswlgr if  v=v9(w), Kk =—sgn(wy),
v=v,(w), F=-sgn(w,),

Ly Wy it v=wvo(wy), k=-sgn(wy),

woyly, if v=vo(w-y), k=-sgn(wgl).

A subword of a I' — [ —word wy is a subsequence of consecutive letters of wy.

Example 2.25. Any ' — Z-word has an N—-word and an (- N)-word as
subwords.
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We fix some notation for certain subwords of a I'=I —word wy, where i € I:

wi[<i] = . wi—gwi_1,
wi[<i] = wiw;,
wi[> 1] = wiriwise ...,
wi[> 4] = wiwisq .. ..

Thus, w; = wy[< i]w[> ] = wi[< i]w[>¢] for any i € 1.
For a finite I'-word w of length n it follows

w[< 1] =1, ,, where v =vg(w),k =sgn(wy),
w[>1] = wy,

w[>n] = 1y 4, where v’ = v, (w), k" = —sgn(w,),
w[<n] =w.

Example 2.26. 1. Let A be as in Example 2.3.1. Consider w as in Ex-
ample 2.23.1. Then

w[<3]=¢""aq,

w[<2] =1,

w[<1]=1y,, where k=sgn(et),
w[< 3] = w,

w[< 2] =w[< 3],

w[< 1] = w[< 2],

2. Let z; = (wv)y from Ezample 2.23.2. Then

2[<1] = 2[< 0]
2[>0] = 2[21]

Example 2.27. 1. Consider A from Ezample 2.8.1. and wy as in Ex-
ample 2.16. Then

IN

z =w,
z =0

v

wy[> 3] =wy[>4] =ex*cbn” ...,

wy[<1] =1y, v=vo(wy),k =sgn(w)

2. For w_y from FExample 2.16 one has

w_y[<-2]=...a"'d?,



There exists an equivalence relation on W,, * € {d,ud}:
v ~w if and only if v =w™ or v =w. (15)

Example 2.28. 1.) Let A be as in Evample 2.8.1. For w = ac*a™le*,

v =c*aca”! we obtain w ~v since v=w'.

2.) Consider A from Ezample 2.14. The words v = dac* and w = e*a™*d™!
are equivalent.

For T = Z —words we define the shift w;[m] of w; for some m € Z by
wy[m] = Wy | Wt - (16)

If there exists p € N\{0} minimal with the property w, = w;[p], then we call
p the period of w, and can write wy in the following way:

W= ... W .. Wy | Wy Wy

We call the finite subword wy...w, of w, periodic part and denote it by
w,. We say that any letter of the form w;, (1), for k>0, i€ {1,...,p}

belongs to the positive copy w,ﬁk) of 1wy, while any w;,x, for £ < 0 and i €
{0,-1,...,—p+1} belongs to the negative copy wé“.

Example 2.29. Consider A as in Example 2.8.1. and w, with periodic part
Wy =c*a. Then
w _ (1) _ . (2)
1w = Wy w3wyg = Wy,

~(0) ~(=1)
W-1wWo = Wy W-3W-2 = Wy

since p =2 and
W1 = Wie(1-1)2, W2 = Wo4(1-1)2, W3 = Wii(2-1)2) W4 =W24(2-1)25

Wo = W0o+0-2; W-1 = W-1+0-2, W-2 = Wo4(-1).25 W-3=W_14(-1)-2

Remark 2.30. Let m € Z be positive. Then shifting by —m means moving
the letters of wy by m positions to the right. Shifting by m means moving
the letters by m positions to the left.

Lemma 2.31. The shift is additive:
wy[m+n] = (w[m])[n].

Proof. Consider the shifting map 7,,, : Z — Z, defined by 7,,,(7) = i+m. With
respect to the positions of the letters, the shift is exactly given by this map
acting on their indices. One has 7,4, (7)) =i+ m +n = 7,(7,(7)), giving the
result. O
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We introduce an equivalence relation ~, on W7 for « € {d,ud} as follows:
wy, ~z vy, if and only if w, = v,[m] or wy, = v;l[m] for some me Z.

Example 2.32. 1. Take A as in Example 2.3.1. and consider the two
following words of period 4:

wy =...cacla | caca. ..,
vy =...a tea e atea e L
The tnverse of wy is given by
w,'=. . eate o eaT e T

It follows vy ~; wy, since vy = w;[-1].
2. Let A be as in Example 2.28.2. and consider
wy = ...k eby b e | Krebpth et L
vy = b e eyt et erebnth L
Then vy ~ wy, since vy = w, [-2].

Lemma 2.33. The relations ~ and ~; are equivalence relations on W,, WZ,
respectively.

The proof is given in the next subsection.
Since one can clearly distinguish between the equivalence relations ~ and ~,
we drop the index of the second equivalence relation and use ~ instead of ~;
for easier reading in the following.

2.3.1 Properties of Z-words

In this subsection, we examine I' — Z —words more closely. We obtain nice
properties with respect to their shifts and inverses.

Lemma 2.34. Let w, e W%, » € {d,ud}, and let k € Z. Then
wy ' [-k] = (wa[k]) .

Proof. The statement follows easily by comparing the two:
Write wy, = ... w_jwp | wiws . ... Then the shift by k € Z is given by

U}Z[k] = W1 W | We+1Wk42 - - -
and its inverse by

-1 -1 -1y, -1 -1
(wo[k])™ = wpnwi [ wplwily -
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On the other hand, the inverse of w; is

-1 _ -1 -1

Wy =...wp Wy |w W2 -
Shifting this by —k gives
wy k] = wpwy !t [wl gy
It follows that w;*[~k] = (w,[k])~L. O

Corollary 2.35. Let w, €e W%, « € {d,ud}, and let k € Z. Then
wy k] = (wz[k])_l if and only if wy = (wZ[Qk])_l

Proof. By Lemma 2.34, we have that (w,[k])™' = w;![-k]. Applying this to
wy[k] = (wz[k])™! and then using a shift by —k on both sides of the newly
obtained equation gives

2 [-2k] =

Applying again Lemma 2.34 to the left hand term, it follows that

(wy[2k] )71 = wy,.

Example 2.36. Let A be as in FExample 2.3.1. Let

* —1 _* * =1 % % -1 %
wy=...e5a €'aleta e acTa T e"a. . ..

Note that w; is periodic with p = 4. Now consider the shift of w, by 2. Then

wy[2] =...e%a etac*a | etacta ea. ..
1_

[
(wz[2])” a7 leta | efa et acta e .
and thus wy = (wz[2])7. Similarly, we obtain that wy[1] = (w,[1])7 .

Example 2.37. Consider Ezample 2.32.2. Then v, = w;'[2]. We have
vy = (wz[2])7 as well.

Proof of Lemma 2.33. We first show reflexivity, symmetry and transitivity
for ~. Then we show the same for ~

o Reflexivity of ~ obviously holds since w = w for any finite word w.
Similarly, if v = w™!, then also w = v™! and hence symmetry is given.
For transitivity, we use the same arguments: let v ~ w, w ~ u. Without
loss of generality, let v = w™!. Then either w = u and it follows v = v~ *,

hence v ~ u; or w=u~! and v = u, hence v ~ u.
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e For the relation ~,, reflexivity is given by w;, = w;[0]. To show sym-
metry, assume w; ~ v;. Assume at first w, = vy[m] for some m € Z.
Then v, = w,[-m] and thus v, ~ w,. If, on the other hand, w, = v;![m]
for some m € Z, then it follows that v; = (w;[-m])™ = w;*[m] (Lemma
2.34). Hence, vy ~ wy. To show transitivity, let w;, ~ v, and v, ~ u.
Assume at first wy = v,[m] for some m € Z. If v, = uy[k] for some
k € Z, then w, = uy[k][m] = uy[k + m]. Hence, w, ~ u;. Now assume
that v, = u;'[k] for some k € Z. Then we obtain that wy = u; [k +m]
and thus w;, ~ uz. Now assume that w, = v;'[m] and v, = u;'[k] for
some k € Z. Applying Lemma 2.34 gives that w;, = uz[m — k] and thus
wy ~ uy. If; on the other hand, v, = u,[k], then, again by the same
lemma, w; = uy'[m - k]. It follows that w;, ~ u;. Hence transitivity
also holds.

O

2.3.2 Coadmissible words

In this subsection we introduce the notion of a coadmissible word. It is
useful with respect to the context of matrix problems for clannish algebras
(cf. Chapter 4). The connection becomes clear in Sections 4.5 and 4.6.

Definition 2.38. Let w; e I, for x € {d,ud}.

Then wy is left coadmissible provided that either 1 is not bounded below, or
sup(I) = n € N and there does not exist a letter | € I'x such that lw, is again
a word for 1 =e*! orl=¢* for someeeSp.

Stmilarly, w; is right coadmissible provided that either 1 is not bounded above,
or sup(I) = n € N and there does not exist a letter | € T\ such that wl is
again a word for 1 = *! or 1 =¢* for some ¢ € Sp.

We call w; coadmissible provided that w; is both left and right coadmissible.

Example 2.39. Consider A as in Example 2.3.1. Then
1. w=¢a 1s left coadmissible, but not rightcoadmissible,
2. w=ae” is right coadmissible, but not left coadmissible,

L is coadmissible.

3. w=ceae”
Example 2.40. Let A be as in Example 2.14.

1. The word wy from Example 2.16 is left coadmissible.

2. The word w_y from Example 2.16 is right coadmissible.

3. Let wy, be as in Example 2.52.2. It is coadmissible.

4. The word w = ex”c is also coadmissible.
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5. The word w = e 1s left coadmissible but not right coadmissible.

Denote by
W(T.(A)) = {w; e W(T',(A)) | wy right coadmissible }
the set of all right coadmissible words in T'y, with % € {d,ud}. Now let
WP =W, u WY
with » € {d,ud} be the set of positive I',—words, and let

WEE(T L (A)) = {w e W™ | t(wr) = i,sgn(wi) = K}

K

be a subset of W) consisting of words that have the same target vertex ¢
and the same sign k. We also write W}, for short.
Define

W = Wres a W(T, (A))

to be the set of positive right coadmissible T',—words. Let

WP = WP A W(I,(A))

*,0,K *,0,K
be the respective subset.

—_—

Definition 2.41. We define for two words v,w € WY, = € {d,ud} that
v<w if

(1) v=waz for some suitable word z € WP and a direct letter a, or
(2) w=vb"'z for some suitable word z € W™ and an inverse letter b™", or

(8) v=uaz and w=ub"'%, for suitable words z,% € W2, u e W,, a direct
letter a and an inverse letter b1,

Theorem 2.42. The relation ” <7 defines a lexicographical linear ordering
on W, for each » € {d,ud}, respectively.

Proof. Let v,w € Wf(’:% for » € {d,ud}, v # w. We show that either v <w or
w < v holds. Let n € N maximal such that v1...v, = wy...w,. Then there
are three different possibilities:

(1) Un+1 F Wnt1,
(i) [o] = n, [w] > n,

(iii) |w|=n, |v]>n.

31



Let us first consider the case n = 0 separately. We obtain in case (i) by
definition of W7 that sgn(vi) = sgn(wi). Thus, by definition of sign,
{vy,w1} = {x,y7 '} with either yz = 0 or x =y € Sp. Let us assume without
loss of generality that v; = y~! and wy = 2. Then we can write

v=ylu, whereu=uv[>2],
w=xz,  where z=w[>2].

Thus, by (3) of Definition 2.41, we obtain that v > w. In case (ii) we have
that v = 1; .. We can write w = 1; yw. Hence, w = vwyu for u = w[>2]. If wy
is an inverse letter, we obtain by (2) of Definition 2.41 that v < w, otherwise
by (1) of Definition 2.41 that w < v. Case (iii) is analogous.

Let now n > 0. In case (i) we have sgn(v,) = sgn(w,). It follows that
sen(v) = —sgn(v;!) = —sgn(w;') = sgn(weer). Thus, {vner,woet} =
{x,y7 '} with either zy = 0 or = = y € Sp. Without loss of generality assume
that v,41 = y‘l, Wp+1 = . Then we can write for u = v1...v, = W1 ... W,

that
w=urz,  wherez=w[>n+2],

v=uyls, wheres=v[>n+2].

Condition (3) of Definition 2.41 gives that w < v. In case (ii), p = sgn(wp+1) =
—sgn(wy,) = —sgn(vy,). Hence we can write v = vy ...v,14y,),, and

W=vWpu  with  w=w[>n+2].

If wp41 is now an inverse letter, it follows w > v by (2) of Definition 2.41.
Otherwise we obtain w < v by (3). Case (iii) is again analogous to (ii). O

Remark 2.43. It follows from above that we have for a,b e Q™ with t(a) =
5(b) in Q and sgn(a) =sgn(b™!) = k that

a<lyq) k< bt

—_—

We call two I',—words vy and wy comparable if vy, wy € W7 for some
ielnJ, ke{+,-}, xe{d,ud}, and if v; = wy, vy < wy or wy < v;. Otherwise
we call them ncomparable.

Example 2.44. Let A be as in Ezample 2.3.1. Then w =ac* and v=a"'e*

are two undirected finite right coadmissible words. One has w = 1y, a2,
v = lt(aq)ﬁaflz with k = —sgn(a) and z =u=¢*. By (3) of Definition 2.41
it follows that w < v.

Example 2.45. Consider A as in Example 2.14.

1. Let wy = e*a_ld_le/@*cbn*b_la. .. and vy = e*a tdek*e Ydas* ... be
two undirected right coadmissible N—words. Then wy < vy by (2) of
Definition 2.41. We have used bold letters to indicate the positions of
interest in vy and wy.
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2. Consider the following undirected finite right coadmissible words:
w=ek’c, v=er'ch, u=ex*cdt, x=ch.

Then w<wv by (1), v<u by (2) of Definition 2.41, and x is incompar-
able to w,v,u.

Note that ®¢, induces several other maps with the same assignment:

&l W(Ta(A) — W(Tw(A)),
((bpos)d . Wgos N Wgzsg

ud
(@), W — Wi

ud

We also can use the notions of direct%d and undirected versions with respect
to the maps @2, (@)1, and (&) .

ud? ud

Example 2.46. Let A be as in Fxample 2.3.1.
Let v =eae™! be a directed word. Then (®)¢, (v) =w =c*as*.
Now consider the undirected word w = e*ae*. Then

-1 111 -
(@id) (w) = {eae,cac™ !, e tac™ e tae},
i.e. it contains v but there are also more directed versions of w.

Example 2.47. Consider A from Ezample 2.3.1. and the words w, s and
wy from Fxample 2.45 . Then

((I)id)_l (w) = {eﬁ*C,eﬁ_lc}7
-1
(q)id) (S) = {Cb}7
((I)(‘i‘d)_l (wy) ={...ca d renchnp'a,...e 'a" d T ercbnb a,

e ta d en b a, . L .

2.3.3 Minimal words

Let I be finite throughout this subsection. Let v be a I'yq —I -word of length
m with ¢(v1) = s(u) for some p € Sp and s(vy,) = s(n), for some 7 € Sp.
Let k e N. Then we define

S (DD Gem1) ()

with

vt if i even, w*if i even.

o0 _ {v if ¢ odd, and k() - {77 if ¢ odd,

Then v¥ is again undirected.
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Definition 2.48. Let w be a I'yq —1—word of length n. We call w composite
if wis of the form w = v!*] for some word v of length m < n and some k > 0.
Otherwise, we call w minimal.

Example 2.49. Let A be as in Example 2.53.1. and consider its undirected

alphabet. Let

1 1

* =1 % % -1 _*
w=ac a € ac a £ a.

Then w = vl®] for v=a. Thus, w is composite and v is minimal.

Remark 2.50. We can also interpret the notion e for some periodic I'q —
Z —words vy as follows: Let @ZSZ') = ettt for all i € Z.. Then ] describes
the smallest subword of v, which contains x € {t,t™'} p times. Consider for
instance p=3. Then

¢ = erpppelent,
Lemma 2.51. Let w be a finite Tyq—word of length n with w = w™". Then
w 1s composite.

Proof. Writing the equality w = w™! in terms of letters gives

-1 -1

Wi. .. Wy =W, ... W .

It follows that
wi=w, . Vie{l,...,n}. (17)

If n is odd, then we can write n = 2k + 1 for some k € N. In particular, we
obtain that wy.1 = w,;il. It follows that w1 = €* for some € € Sp. Moreover,
we have that

Setting u = w; ... wy, we can write

* -1
w=ue u .

Hence, w is composite.
If n is even, then n = 2k for some k € N. It follows by (17) that wy = w; 1,
which contradicts the definition of a word. O

The converse only holds conditionally:

Lemma 2.52. Let w be o composite finite I'yg—word with w = olk] for some

minimal v and some k € N. If k is even, then w =w™".

Proof. Since k is even, w is of the form

* * =1
ve ...EU

for a suitable € € Sp. Its inverse is given by
wl=ve* . efvh.

It follows that w = w™". O
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Example 2.53. Let A be given as in Example 2.3.1. Recall that T'yq(A) =
{a,a™t e*}.
Let w = ae*a 'e*a = v® for v =a. Note that k =3 is odd. The inverse of w
1s given by

wt=ateas*a .
We see that w +w™ L.
Consider in contrast to that x = v14 = ac*a e*ac*a™. Its inverse is
r =as*aetasta !

and thus © =z~ L.
Lemma 2.54. Let w be a finite T yq—word with w + w™". Ifw is coadmissible,
then w s not composite.

Proof. Assume towards a contradiction that w is coadmissible and compos-
ite. By Lemma 2.52 it follows that w = v[¥] for some minimal v with & odd.
In particular, k # 2 and there exist €, € Sp such that e*vn* is again a word.
It follows that e*wn* also is a word. Thus, w is not coadmissible which gives
a contradiction. O

Example 2.55. Let A be as in Frample 2.14. Recall that

Cuwa(A) ={a,b,c,d, 67a_l,b_l,c_l,d_l,e_l,e*ﬂi*,n*}.

1

Let w=c'k*e'd. Then w+w™' and w is coadmissible. Futhermore, w is

not composile.
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2.4 Modules obtained from directed words

It is not possible to obtain modules from words in I',q since the letters of
special type €* for € € Sp are not directed. In Section 3.1, techniques are
introduced on how to give these letters a direction such that one obtains
words in I'q. From those we can directly obtain A—modules and hence it is
enough to consider only directed words in this section. The general theory
on this topic can be found in [Rin75]. Here, we mostly follow [CB88| and
|CB18§|.

Let wy € Wj. The A—module M (wy) is given by a k —vector space with basis
b;, i € I, and with action of A in terms of the quiver Q as follows:

bi if vi(wi) = v,
evbi = .
0  otherwise,
for e, a trivial path in A associated to the vertex v in @, and for x € Q:
bi—l if’i—le[,wi:x,
biv1 ifi+1€[,wi+1=x_1,
SCbZ = . _1 Sp
b; if wi=2"" or wiy1 =2, and x € Q7"

0 otherwise.

Example 2.56. Let A = k{e,a)/(e? —¢,a?), and thus T'q = {a,a™',e,e71}.

Let w = a tcacas™! € Wy be a word of length 6. Then the corresponding
module M (w) has as a k-vector space basis by, . ..,bg and can be depicted as
follows:
a b5 15
N
c by bg
e
a b3
rd

bo \S\l 6/ b
by
or easier, as in the rest of this thesis:
by — by «— by < by «— by «— by —> bg.

Remark 2.57. It is important to keep the relations in mind when reading
modules as depicted above. This applies in particular to special letters. Due
to their idempotent relations, a depiction of the form

b1 «<— b;
for € € Sp, 1s read as follows:

e(bi) = b1,
E(bi_1) = bz‘—1~
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Example 2.58. Let A be given as in Example 2.1

561 5QH
N
nC3/ \4

with Sp = {n,k,e}, R = {ca,db,ec}. Consider w = ex ‘cbnb~lac. It is of
length 8. The module M(w) has basis by, ...,bs as k—vector space and is
depicted as

¥

or equivalently,

c b n b

b0<6—b1ib2@b3<—b4<—b5+b6<a—b7ib8,

Example 2.59. Let A = k{e,a)/(e? —¢,a?) as in Ezample 2.3.1., and thus
Lgq={a,at e et}

Let wy = ...acae™t | acaetacas™t - € W3 of period 4. This gives a module
M(wy) that is infinite dimensional as a k-vector space and can be depicted
as

1

AN

ba ba

v

or as follows:

£ a £ a £ a £ a £ a
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Example 2.60. Let A be as in Example 2.58 and let wy, be a directed Z —word
in the respective alphabet with periodic part given by wg = b™'c 'rcbn. The
underlying k —vector space of M (w;) is infinite-dimensional. We depict the
module as

One can see in all examples, that the action of the formal inverses is
depicted by arrows going from left to right, while the one of direct letters is
depicted by arrows from right to left.

There are two important A—module isomorphisms. For w; any directed
I -word, the morphism 4,, : M(w) — M (w™') is bijective by reversing the
basis. For w, € W%, there is a similar isomorphism i, : M (w;) — M (w;")
by reversing the basis according to taking the inverse. For wj the map
twy ki M(wy) — M (wy[k]), bi = bi_g, k € Z is also an isomorphism.

Example 2.61. We consider Example 2.59. Then p = 4 and t,4 acts as
Jollows on the module M (wy):

by
th,‘l__,_.._,»-""'ly f V
E by by
P V'
a Izﬁl._.-ng,&; b
£ O A tug,a
b72 th’4.-"'..““bo e
b R :

e a e
b_a

Example 2.62. Let A and wy, be as in Example 2.60. The period of wy, is 6
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and t; 6 acts on M(w;) as depicted:

gy D12
tugs. et
) . """"b"”bll bz
’LUz,G A/\ ‘‘‘‘‘ / thy()
b bs by <C . bo
bo b c b4 ,_‘.‘-bs
b ‘<C K bs -
by <

Hence, words in the same equivalence class give rise to modules in the
same isomorphism class. Note also that each map ¢,,, , gives rise to a periodic
part and vice versa.

2.4.1 Modules from periodic words

Let w; € W] be of period p, i.e. w; = wy[p]. Then we can abbreviate the
depiction of M (w,) to the periodic part and obtain the picture of a classical
band module (see [Rin75, CB8§|).

Example 2.63. We consider Ezample 2.59 from the previous subsection.
Using periodicity of wy, the depiction of M (w;) can be reduced to

Example 2.64. Consider again Example 2.62. Then we can depict M (wy)
in the following short form:

n

bo

In this case, the A—module M (w,) is free of rank p over k[T, T71], for T
acting as t,, ,, and hence becomes a A — k[T, T]-bimodule.
Thus, given a k[T, T!]-module V, we can "extend" the module M (w;) to
the module M (wz, V') = M(wz) ®yrp-1]V = @ier Vi for some finite set 1
of cardinality p and V; = V for all i € I: since M (w,) is free of rank p over
k[T,T'], we have as k —vector spaces

M (ws) ®yp -1V 2 (K[T, TP @ ppp-11V 2 V2.

The depiction of M(wz, V') is similar to the one of M (w;), with disjoint
copies of V' at the vertices instead of basis elements. Indexing the copies of
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V' is helpful to read the action of A which is given according to wy,.

To describe the action of A on the vector space M (wz, V') more detailed, we
introduce a more formal way of describing the module M (wy, V). To this
end, let for i € {0,...,p—1}

V{={Q_}|’I_)Z'=UEV,Q_]]'=O Vji’i},
pi: VoV, vev=(0,...,0,0,0...,0).
Then we have im(gp;) =V; 2V for all i € {0,...p—1} and

M(w,, V)= @ Vi= @D im(y;) (18)

0<i<p-1 0<i<p-1
as k —vector spaces. By the action of A on M (w;, V'), we have

WiPir1 = Pi, (19)
that is, the following diagram commutes:

Wy Wi+1

V;+l

............. Pi+1l
Pi Pi+2

v
Let (vo,...,vp-1) € ®im(p;). Then

p-1
z(vo,...,vp-1) = P x((0,...,0,v;,0,...,0)) forall zeQq,
i=0

where by (19) for all x € Q9"

(Ogiv); if Jarrow : V; -V,

z((dijv)i) :{

0 otherwise,
and for all € € Sp:

(6;5v); if Jarrowe: V-V
e((6:5v)5) =1 (digv)y  if 3 arrow e: V; - Vj,

0 otherwise.

Example 2.65. We consider again M (w;) as in Example 2.63, and V a
k[T, T ']-module. Then M (w;,V) is of the form




where the V;’s are disjoint copies of V. Also in this depiction, the special
letters € and ™1 are acting with respect to the vector spaces as described in
Remark 2.57. The action of A on M(w,, V') is thus given as follows: let
(vo,v1,v2,v3) € M(wyz, V). Then a and & act according to the depiction:

a(vo,v1,v2,v3) = (v1,0,v3,0)

e(vg,v1,v2,v3) = (Vg + U3, 1 + v2,0,0)

Example 2.66. Consider again Example 2.62. Then we can depict for a
given k[T, T~ ]-module V, the module M (wz, V') in the following short form.:

n

Vo

The action of A on the module is given by

(vo,v1,v2,v3,v4,V5) 2, (0,v9,0,0,v5,0)
N (0,0,v1,v4,0,0)
5 (0,0, v3 + v3,0,0,0)
15 (0,0,0,0,0,v +vs).

2.4.2 Modules from periodic words with w0, = e"ontv™!

In this subsection we consider directed Z—-words w; of period p = 2m+2 with
periodic part w, of the form evonPfv~t, where k,u € {+1,-1}, v a subword
of w, with |v| = m, and €,7 € Sp. We examine words of this form also
more detailed in Subsection 3.2.4. They will play an important role in the
classification of indecomposable A—modules (cf. Chapter 6).

For V a k[T,T~!]-module, we have seen in the previous subsection how to
depict the module M (w;, V). Let u = k = 1, and let the V;’s be disjoint
copies of V. Then

M(wz,V): Vi W Va2
e=T

We can abbreviate this depiction using the symmetries in the two idem-
potents. To this end, let W = V@ V. Then W is a k(f,e | f2 = f,e? =
e)—module and we can depict M (w;, W) as follows:

V1 V2

Wi

M(wy, W):  e=e C Wo W, Dn:f (20)

where the Wy’s are disjoint copies of W and M (w5, W) = @], W; as k —vector
spaces. Note that one can consider the maps ¢; from the previous subsection
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also with respect to M (w,, W). To this end, consider ¢; : W; — W, where
Wi={z|zi=2eW,z; =0 Vj#i}, 0<i<m. One obtains as before
M (wz, W) = @], W; as vector spaces. The commutativity relations are now
given by

VP = Pi-1, 1<i<m
Po = fpo, (21)
Pm = €Pm.-

Thus, A acts on M (w,, W) according to wy, that is, with the notation from
the previous subsection and w e W:

(dipw); if 3 arrow z: W; — Wy,
z((dijw)i) = { ’

0 otherwise,
for all z € Q*4, and for all € Sp

(dijw);  if 3 arrow e : W; — W for some I,
e((dijw);) =1 (dpw); if 3 arrow e: W; — W,

0 otherwise.

In particular, we have that

e((diow);) = (dio f(w));, and (22)
N((6imw)i) = (dime(w));. (23)

Example 2.67. Let W be a k(f,e| f? = f,e? = e)—module and let A be as in
Ezample 2.5.1. Consider the periodic word wy in Tq(A) with periodic part
Wy, = efacaetagta ea e aTt ) ke {+1,-1}. Then we depict M (wy, W)
as

e:eCWO a %] < Wo = W3 £ Wy - W5j€=f

with the W;’s disjoint copies of W for alli € {0,...5} and €,a acting according
to the above descriptions:

a’(vﬂv V1, V2, 7)3,'04,'[)5) = (Ulv 07 V3, 07 7}570)7

e(vo,v1,v2,v3,v4,05) = (fvo,v1 +v2,0,0,v3 + v4, ev5).

Example 2.68. Let W be a k(f,e | f% = f,e* = e)—module and let A be as
in Ezample 2.58. Consider the periodic word w; with W, = néb‘lc‘ln“bc,
O, pe {+1,-1}. Then M (wy, W) is depicted as follows:

n:eCWO—b>W1—C>W23;~;=f
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where the W;’s are disjoint copies of W,0<i <2, and A acts as follows:

(vo,v1,v2) N (0,0, 0)
'i) (0a07vl)
> (fvo,0,0)

—> (0,0, evy).
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3 Words of string and band type

As mentioned before (see Section 2.4) we would like to base the classification
theorem on undirected words. Hence, we need to find a bridge from those
to the A—modules in the classification statement.

To do so, we are going to introduce two different types of directed words
in Section 3.1. One type is given by weakly consistent words for which the
direction of the special letters depends on the directions of the ordinary
arrows in the word. Here, the direction refers to the exponent of the letter
and thus to its type (inverse, direct). In contrast to the weakly consistent
words, we have the consistent words that include the special letters in the
data set for the directions of the special letters. In particular, we introduce
the ¢*—index for letters of weakly consistent words and the c—index for letters
of consistent words. Those indices measure the distance from a directed
special letter to the letters which give conclusion on the type of directed
word.

In Section 3.2, we introduce the notion of asymmetric and symmetric strings
and bands. Our goal is to give the classification of the indecomposable finite
dimensional modules in terms of those strings and bands. In order to do
so, we will see in Chapter 4 that they result in £-graphs from which the
canonical X, -representations are obtained. In preparation of these results,
we take a closer look on the symmetries in symmetric bands in Subsection
3.2.5.

It is only natural to compare the weakly consistent and consistent directed
versions of the strings and bands with the hope that one type of those will
describe the finite dimensional indecomposable modules. This comparison is
the content of Section 3.3. We will see that the directions coincide on letters
of finite index, excluding one particular type of letter for symmetric strings
(Theorems 3.53 and 3.61, Proposition 3.67).

3.1 Types of directed words

Througout this subsection let I' be either the directed or undirected alphabet
of a clannish algebra A.

Definition 3.1. Let w; be a non-trivial I' — 1 —word. Then the direction of
the letter wj, j €1 is given by

1 ifwj=x for some x € Qq,
dir(w;) =dirj(w;) ={ -1 if wj =27 for some = € Qy,
0 fwj=c" for someeeSp.
Note that for I' = I'q one has dir;(w;) # 0 for all j € L.

We can use the direction of a letter to visualize it, respectively the word it
belongs to:

45



If [ e T is a letter with dir(l) = 1, then we depict it by an arrow going from

right to left:
l

<~ .

If, on the other hand, h € T" is a letter with dir(h) = -1, then it is of the
form h =171 for some [ € Q; and we depict it by an arrow going in opposite

direction: l

.
A letter [ € T of the form [ =* (i.e. [ € 'yq) is depicted by an edge:

l*
This visualization is very helpful to the reader: we are going to see later (in
Subsections 3.1.1 and 3.1.2) that the directions on the special letters for the

two mentioned types of directed words are given in an intuitive way with
respect to this visualization.

Example 3.2. Consider the finite directed word v = € ae of length 3 with
alphabet given by A as in Ezample 2.31. Then the directions of the single
letters are given by

dir(vy) = -1, dir(ve) =1, dir(vs)=1.

If we consider the undirected word w = ac*a"'e* obtained from the undirected
alphabet of the same A, then the directions are given by

dir(wy) =1, dir(wg) =dir(wy) =0, dir(ws) =-1.

According to the above description, we can depict the two words as follows:

e a €

v )
a & a ¢g*

w ——— —

3.1.1 Weakly consistent words

Throughout this section let w; be a coadmissible undirected I —word for either
I={0,...,n} (n>0) or I=7Z.
We are now going to define weakly consistent words.

Definition 3.3. Let v; € (®%,)" (w;). We call v; weakly consistent provided
that

1 if (wi[< D7t 2 w[> 4],

dir(v;) = dir; (vr) = {-1 if (wi[<j) 7" <wn[> 4],

for all j €I with w; a special letter.
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In case of equality, the direction is not uniquely defined. This means we
can either have dirj(v;) = 1 or dirj(v;) = =1 if (wi[< 7])7 = wi[> j].
It is possible to construct a weakly consistent directed version from an un-
directed word by assigning exponents to the special letters in the undirected
word as described in Definition 3.3.

Remark 3.4. It is clear from the definition that there does not always exist a
unique weakly consistent directed version v; of wy, e.g. we will see in Section
3.2 that there is a unique weakly consistent directed version for words of so
called asymmetric types, but not for symmetric ones.

Remark 3.5. Note that the directions on letters of ordinary type are the
same n the undirected word w; as in its weakly consistent directed version
%

dirj(wr) = dir;(vr) for all j €I with w; of ordinary type.

Example 3.6. 1. Consider the algebra A as in Example 2.3.1. Let w =
e*ae*. Let v e (04,)7 (w) be weakly consistent. We have v = viavs
with v; € {e,e7} for i=1,3. We have for the letter v that w[< 1]7! =
Lyey s £ = —sgn(e*), w[> 1] = ac*. Hence, w[> 1] = w[< 1] az, for
z=¢*, and thus w[< 1]71 > w[> 1] and dir(vy) = 1. It follows similarly
that dir(ve) = 1. Hence, v is of the form eae.

2. Let A be as in Example 2.14. Consider w = ade*d'a™" and let v €
(@)™ (w). Then v is given by v = advsd " a™" with vy € {e,e™}. We
have

(w[<3])t=dtat = o[> 3].
Thus, v is weakly consistent for any choice of vs.

To measure at which point of w; the relevant information for the direction
of a letter v; in a weakly consistent directed version vy is found, we introduce
an index for each j €I for which v; is of special type:

Definition 3.7. Let v; be a weakly consistent directed version of the undir-
ected 1 —word wy. The c*—index of a special letter vj, j €1, is given by

ind; (v;) = sup{length(zy) | (wi[< iD= 2wy, wi[> 4] = zvay )}
for some undirected subwords zy, uy, xy of w.

Note that we can also define this index on the undirected version wy
since the direction of special letters in v; only depends on w;. We define
ind; (wy) = ind; (v;) for v; a weakly consistent directed version of wy.

We denote by J* the interval [j—ind} (w;), j+ind} (w;)] in Z, and its left and
right hand side subintervals by J* = [j - ind} (wy), j], J3 = [, 7 + ind} (wy)],
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respectively.
The letters left (resp. right) of J* determine the direction on v; for v; weakly
consistent. We denote them by

j2 =g —indj(w) -1,
Jy =7 +ind; (wy) + 1.

For I = {0,...n}, we set conventionally j* =0 (j7 = n+1) if wj» = 1;,
(wjr = 1; ) for i = t(w1), Kk = sgn(w1) (i = s(wy), K = sgn(wy), respectively).

Remark 3.8. By definition, w;+, w;» are of ordinary type. Hence,

Ji
dirjx (wy) = dirjx (w;) = dirj(vr).

Example 3.9. 1. Consider w (v, respectively) as in Example 3.6.1. Then

indj (w)=0, 1*=[1,1], 12=0, 1;=2,
ind;(w) =0, 3"=[3,3], 3:=2, 3i=4.

2. Let A be as in Example 2.3.1 and let w = e*a ‘e a ‘e ac*ac*. Then
indf(w) =0, 1*=[1,1], 1*=0, 1*=2,
ind;(w) =0, 3%=[3,3], 3" =2, 3]=4,
ind; (w) =4, 5% =[1,9], 5 =0, 5% =10,
ind7(w) =0, =[7,7], 7T5=6, T7;=8,
indg(w) =0, =[9,9], 9* =8, 97 =10.

Example 3.10. 1. Consider w and v as in Example 3.6.1. Then

U1* = lt(vl),n with K = Sgn(vl)a

’UHr

V2,

U3+ = V2,

U3 = 15(1}3)# with p = sgn(vg),

and thus

dir(ws) = dir(va),

dir(v1) = dir(1y(y,) ) = dir(ve),
dir(vs) = dir(v2) = dir(1(u,),u)-

2. Let w and v be as in Fxample 3.6.2. Then

v3s = Ly m, K =sgn(d),

Ugx = ]‘t(d),f’{,?

i.e. v3x = vz, It follows that dir(vs) = 1 and dir(vs) = -1 is possible.
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3.1.2 Consistent words

Throughout this subsection let v; be a coadmissible directed I-word for
either I={0,...,n} (n>0) or I=Z.

Definition 3.11. We call v; consistent provided that for any j € I with v;
special, we have that

1 if (w[<iD 2 ul[> 4],

dir;(vy) = { -1 if (ul<iD <ul> 4]

Again, in the case of equality, the direction is not uniquely defined, i.e.
we can either have dir;(v;) = 1 or dir;(v;) = 1 if (v,[< j])7 = vi[> j].

Example 3.12. Consider the coadmissible directed word v = eae from FEz-
ample 3.6.1. Then we have that

v[<1]7t = Li(ur),—p with p=sgn(vy), v[>1]=ae,

v[<3]t=ate, w[>3]= Ls(ug),e with k& =sgn(v3).

Then clearly, v[< 171 > v[> 1] and v[< 3]™ > v[> 3], so v is consistent.
Thus, it is both weakly consistent and consistent.

Example 3.13. Let A be as in Fxample 3.6 2. Consider the directed word

v=ercbnblacta b nbltaectatd e k.
'U1U2'U3U4v5 Ve V7 U8 Vg 'UlOyll V12 V13 V14 V15 V16 V17 V18

It is consistent with respect to the letters va, vs, v11, vi4 and vig. The entire
word 18 not consistent since it is not consistent with respect to vs.

For each j € I with v; of special type, we define its c-index as follows:

Definition 3.14. Let v; be as above a directed version of some undirected
word wy. The c—index for j € I with v; special is given by

indj(v;) = sup{length(zy) | (v[< iD= 2wy, vi[> 4] = zvay )
for some subwords zy, uy, xy of v;.

Note that it is not as easy as in the case of weakly consistent words to
construct a consistent directed version from an undirected word. However, it
can be done by proceeding inductively on the c—index of the special letters.
We introduce some notation with respect to the c—index. We denote by J¢
the interval [j —ind§(wy),j +indj(w;)] in Z, and its left and right hand side
subintervals by J¢ = [ - indj(wi), ], J§ = [4,j +indj(w;)], respectively.
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The letters left (resp. right) of J¢ determine the direction on v; where v; is
consistent. We denote them by

j< =4 —indj(w;) - 1,
j$ =g +indj(wy) + 1.

For I = {0,...n}, we set conventionally j¢ =0 (j¢ = n+ 1) if wje = 1;, for

i =t(wy), k=sgn(wr) (i =s(wy), k =sgn(w,)). We proceed similarly with
je.

Example 3.15. Consider the consistent directed word v in Example 3.12.
Then, as mentioned above, we have J = J*, j¢ = j* and j$ = j;, hence given
as i Erxample 3.9.

Remark 3.16. As in the previous subsection, we do not have any conditions
concerning the direction on letters of ordinary type, i.e. if v is a consistent
directed version of an undirected word wy, then

dirj(wy) = dir;(vy) for all j €1 with w; of ordinary type.

But in contrast to a weakly consistent orientation, we can now also have vj,
vjx of special type. Still, we have by definition

dirje (v) = dirje (vy) = dir;(vy).
Lemma 3.17. Let w; be an undirected 1 —word. Then
ind; (wz) > indj(vz)
for any j €1, any vy e (®4) 7" (wy).

Proof. The inequality follows directly from Definition 3.7 and Definition 3.14.
O
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3.2 Strings and bands

In this section, we classify certain types of undirected words. Our underly-
ing goal is to use these types to give a classification of the indecomposable
A-modules.

Let A be a clannish algebra throughout this section.

3.2.1 Asymmetric strings

Definition 3.18. Let w be a finite undirected word. It is said to be of
asymmetric string type if w is coadmissible and w + w™!.

We denote by W the set of all w e Wyq of asymmetric string type and by
we W / ~ with the equivalence relation ~ defined in Section 2.3. We call
weW? an asymietric string.

Example 3.19. Let A be as in Ezample 2.3. The word w = €*ae” 1is of

asymmetric string type while = e*ac*a™'e* is not since x = 271

Note that any asymmetric string w is minimal by Lemma 2.54.
We obtain for w of asymmetric string type, and for every directed version
€ (92 )7 (w), a module M (v) that is depicted, for a k—basis by, ... , by, as

v1 v2 Un-1 Un
bo by . b1 by

Definition 3.20. Let w be an asymmetric string and v € (@id)fl (w). Then
the module M (v) is called asymmetric string module.

Proposition 3.21. Let w be an asymmetric string. Then v € (®2)7" (w)
is weakly consistent if and only if the following holds for all j € I with v; of
special type:

Ldf (wl<g])™ > wl>4] (24)
-1 if (w[< )7t <w[> 4]

Proof. Tt follows directly from Definition 3.3 that v is weakly consistent if
(24) holds.

For the other implication, it is enough to show that (w[< j])™ # w[> j] for
all j eI with v; of special type. Assume there exists j € I with (w[< j])™' =
w[> j]. Let u = (w[< j])™! = w[> j]. With w; = &*, one can write w as
follows:

dir(v;) = {

-1 _*
w=u £ U.

-1

Then w = w™", contradicting the definition of an asymmetric string. O

Corollary 3.22. For each asymmetric string w there exists a unique v €
(@) (w) such that v is weakly consistent.
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Proof. By Proposition 3.21, we know that any dir(v;) with v; of special type
is uniquely determined by dir(w;+) and dir(wjx). Since both w;+ and w;-
are of ordinary type, their directions are known. Thus, one can construct
a weakly consistent directed version for any asymmetric string. Uniqueness
follows by Proposition 3.21. O

3.2.2 Symmetric strings

Definition 3.23. Let w be a finite undirected word. It is said to be of
symmetric string type if w is coadmissible and can be written as w = ue*u~!
for u a minimal undirected word.

We denote by W’ the set of all w € Wyq of symmetric string type and by
W’ = WS/ ~. We callwe W a symmetric string.

By w being of the form w = ue*u!, the condition w = w™! is implied (cf.

Lemma 2.52). Note that u is left coadmissible. Let u be in the following of
length m.

Example 3.24. Let A be as in Ezample 2.14. Then w = k*cbn*b ¢ " is
of symmetric string type with u = xk*cb.

Similar to the case of asymmetric strings, we can obtain modules using
the data of symmetric strings or more precisely, using the data u.
Namely, for every te (P d) (u), there are directed words of the form v*
te*1t71 with v* € (®9) 7 (w) and * € {+,—}. Now for each v*, * € {+,- }
arising in this way, we obtain two modules M;(v*), i = 0,1. Note that for any
i, we have M;(v") = M;(v™). Hence, it is enough to consider either v* or v™.
We call the one word out of the two that we consider v. Taking into account
that any idempotent € acting on a vector space V gives the decomposition
V =im(¢e) @ ker(¢), the module M;(v) is depicted as

t1 to

by < by L by ) i

with € acting as 7.
Let V be ak[f | f? = f]-module. Then we can depict the above module also
in the following way:

t1 to

tm-1
m— ml%vmja‘f

where the V;’s are disjoint copies of V.

Vo Vi

Lemma 3.25. Let w = ue*u™! be a symmetric string. Then there exists a
weakly consistent directed word v e (®2,)™" (w).

Proof. Since u is minimal, the direction of any v; of special type with j €1,
j #m+1is uniquely determined by dir(w;») and dir(w;).

For j =m +1 we have that ind}(w) = m. Thus, (w[< j])~ Low>j]=u
and the direction of v,,41 1 not uniquely determined. Thus, choosing any
orientation on v, gives a weakly consistent directed version. O

-1
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As one can see above, there are two options for a weakly consistent

directed version v of an asymmetric string w = ue*u"':

vt =tet™, ie. vpme1 =€, and

Vo= ts_lt_l, i.e. Umsl = 5_1,
where ¢ € (®4,)7" (u).

Example 3.26. Consider w from Example 3.24. Then
v* = kebnb te e

v = kebp o e kTt

are both weakly consistent directed versions of w.

It is not obvious whether there exists a unique consistent word v with
(®¢,) (v) =w for w a symmetric string.

3.2.3 Asymmetric bands

Definition 3.27. Let w; be an undirected Z —word. It is said to be of asym-
metric band type if w, = wy[p] for some p >0, and wy, # w3 [k] for all k € Z.
We denote by W the set of all w, € WZ, of asymmetric band type and
Wf = W“/ ~ with the equivalence relation ~ on Z —words from Section 2.83.
We call w € Wf an asymmetric band.

Example 3.28. 1. Let A be as in Example 2.3. Consider
wy=...c5ag" |ac”a...

It 1s of asymmetric band type with p =2 since

-1 _ 1

* =1 _* -1 _* -
w, =...ea € |a"ea

yields that w;t # wy.
2. Consider A from Ezample 2.14 and let w, with periodic part w, =
dac*a'bn b tetk*e . It is of asymmetric band type with p = 10.

We obtain for every directed version vy € (P¢ d)_1 (wy) of the same period
as wy, and for V a k[T, T~']-module, a module M (v;, V).
Similar as for wz, we denote the periodic part of v; by 0, = v1...v,. We
depict M(vz, V') in the following way:

V1 V2 Up-1
Vo t/ V-1
Up

It is not as straightforward as in the string cases to make statements on the
uniqueness of weakly consistent and consistent directed versions of asym-
metric bands (compare Section 3.3).
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Lemma 3.29. Let w; be an asymmetric band of period p. Let v, € (®%)7" (w;)
be of period p and weakly consistent. Then

1 «— (w. 5...wi1) ' >wisr...w. 5
dlr(U]) = ( ‘7_% J )_1 I 2
-1 = (wj_g...wj,l) <wj+1...w,%

for all j € Z with vj a special letter, where

_|p if p even,
p+1 if p odd.

Proof. Let v, be weakly consistent. Let j € I with v; special. If

(w,

-1
j_é...'u)j_l) > Wjs1 .. W, b,
2

J+3

it follows that (w[< j])™* < wz[> j]. Then we have by Definition 3.3 that

dir(v;) = 1. It follows similarly that (wjl~ i) < Wi W implies
2 2

dir(v;) = -1.

For the other implication, it is enough to show that

-1
(wj_g ...U)j_l) F Wj+1 ...U)j+g. (25)

Assume towards a contradiction that we have equality in (25). Consider p
to be even. Then we have that p = p. We have in particular that

wly =w;,p. (26)

The length of the subword Wj_p - Wi WjWjs1 -+ Wiy B is p+ 1. It follows

by periodicity that w,_p = Wi,z Combining this equality with (26) results

_pr
2

in w;,p =€ for some € € Sp. Let w; be given by n*, n € Sp and denote by u

2 .
the subword u = Wiy Wj-1- We can thus write

W) pyp - W1 WjWis1 - Wiy P = un*u e, (27)
Consider now wy[j — % +1]. Tt has periodic parts of form (27). Thus,
wolj -5 +1] = (wo[j - +1]) 7"
2 2
It follows (Corollary 2.35 and Lemma 2.34) that
wy, = (w2 = p]) ™ = wy ' [-2) + p). (28)

This contradicts w; being an asymmetric band.
Let now p be odd. It follows that p = p+ 1. The length of the subword
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Wy pA Wy ptl g Wy Wyprl Wy 1 IS P + 2. It follows by periodicity

that

wj_pTJrl_'_l = wj+pTH- (29)

We have by equality in (25) that
-1
(ij’QLlH) = Wjppt g (30)

Combining (29) and (30) gives that

-1
Wyt = (0,001 (81)
which contradicts the definition of a word. O

Corollary 3.30. Let w; be an asymmetric band. Then there exists a unique
directed version v € (D2,) that is weakly consistent.

Proof. By Lemma 3.29, one can always construct a unique weakly consist-
ent directed version for an asymmetric band analogously to the asymmetric
string case in Corollary 3.22. O

Corollary 3.31. Let w; be an asymmetric band. Let v, € (82,)7" (wz) be a
directed version. Then v, is consistent if and only if we have

; -1
Zf (Uj_%"...vj,l) >vj+1...vj+%5, (32)

~ -1
-1 Zf (Uj_%"...vj,l) <Uj+1"'vj+§v

dir(vj) =

Jor all j € Z with v; of special type, where p as in Lemma 3.29.

Proof. Let v, be consistent. Then (32) holds by the same line of argument
as in the proof of Lemma 3.29.

The converse implication follows from Lemma 3.29, since indj(v;) < ind; (vz)
(see Lemma 3.17) for all j € Z. O

Remark 3.32. It follows from Lemma 3.29 and Corollary 3.31 that every
J € Z giving a letter w; of special type in an asymmetric band wy has finite

p

c*~inder. In particular, ind} (w;) < §,

type also has finite c—indez.

and thus any j € Z with w; of special

Proposition 3.33. Let w, be an asymmetric band of period p. Then there
exists a unique weakly consistent o, € (9,)™" (w;) of period p.
Furthermore, if there ezists a consistent directed version v, € (%)™ (w,),
1t 15 unique.

Proof. Existence and uniqueness of a weakly consistent directed version is
given by Corollary 3.30. Uniqueness of a consistent word follows from Co-
rollary 3.31. 0
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3.2.4 Symmetric bands

Definition 3.34. Let w; be an undirected Z —word. It is said to be of sym-
metric band type if w;, = wy[p] for some p > 0 and w, = w;[k] for some
keZ.

We denote by W* the set of all w, € W, of symmetric band type and by
WS = Ws/ ~. We callwe WS a symmetric band.

Example 3.35. Let A be as in Fxample 3.28.1. Then

-1 -1
wy=...e°ag"a" " |ag¥a" ...

1 1

is of symmetric band type with Wy, = ac*a™"€* since w," = wy.

Lemma 3.36. Let wy be of symmetric band type. Then there exists | € Z
such that the periodic part of wy[l] is of the form e un*u™' for a suitable
undirected finite word u, and £,m € Sp.

Proof. First consider the case where |[w,| = 2. By definition of clannish
algebra, this is only possible for the algebra given by the quiver consisting
of two special loops €,7. Then it follows directly that p =2 and w, = ¢*n* or
wp =n*e*. Hence the result follows with u a trivial word.

Now let |@p| > 2. By definition of symmetric band type, there exists k' > 0
such that wy = w; [k'].

If k" is even, we can write k' = 2k for some k € Z. Applying Corollary 2.35
gives

wy = (wy[-2k]) 7! if and only if w,[-k] = (w,[-k]) 7"
The second equation implies
_ -1
Wp-k = wp—k?
Wy (k—i) = w;_l(k”), forallteZ.

Hence, w1, is a letter of special type.
We obtain two finite undirected words v = wy_41 ... wp and = w1 ... Wy_p_1
such that the periodic part is of the form w, = xw,_rv. Without loss of

generality assume |z| < |v]. Then there exists 1 < j < p such that y = w; ... w,
gives

(yz)™" =v. (33)

Let |v| =1, |[z| =g and |y|=h (i.e. I=h+g).
By (33), we have that



so y is a subword of v™1, ie., y1...yp = vl_l . .vl__l(h_l). But by periodicity, y
is also a subword of v, i.e., y1...yn = V_(4-1)--.v;. Combining the last two
equalities results in

-1
v .. ‘Ul—(h—l) =Y1...Yp = Ul—(h—l) ...

Hence, y is selfinverse, i.e., of the form y = zp*z~!, for some undirected
(finite) word z and some special letter . Furthermore, w; is of the form

«_—1 “1, % -1 -1
2T | mwp_ T 2 2T s Wy L

Now the periodic part of w; is of the form w, = 2w, gz zp*2". For m = |z
we obtain w,[m] with periodic part w, gz 'zu*z"'2. Then for u = z7'x,

e*=p* and n* = wy_k, we obtain w, of the desired form.

Now consider k' to be odd. Then we can write k' = 2k + 1 for some k € Z.
We obtain, analogously to the previous part (compare structure of proof of
Lemma 2.34) that

wa[-(k+1)] = (wa[-k]) "
This property results in
Wyl = Wy (),

a contradiction to the definition of a word. Hence, k' cannot be odd.

If ¥ =0, it follows that w, = w;l and thus w,, is of special type. Moreover,
w;,}l .. .wfl =W Wp-1, Le, Wl... . Wp_1 = ue*u~" for some undirected finite
word v and some € € Sp. With 7 = wy, it follows that @, = ue*u~'n*. Then

w;[~1] has periodic part e un*u~. O

Corollary 3.37. We can assume for a symmetric band wy, of period p that
A~ % *,—1
Wp = unu.

Proof. By Lemma 3.36 there exists k € Z such that w;[k] has periodic part
of the form e*un*u™t. Now wy[k] ~ wy, i.e., they lie in the same equivalence
class in W?. Hence we can choose w;[k] as representative of [w;] and thus
assume the periodic part to be of the form above. O

Assume from now on for w; a symmetric band of period p that its periodic

part is of the form w, = e*un*u™" with |u| = m, ¢,n7 € Sp. Note that u is
minimal due to the minimality of the period p.
According to Subsection 2.4.2, we obtain for every v, € (®¢,)7!(w;) of period
p, with 9, = e*tn"t™! and for V a k{e, f)/(e*~e, f>~ f)-module, a A-module
M(v,,V) (where 1,5 € {+1,-1}, 2,7 € Sp, £ € (B1)" (u)). We depict
M(v;, V') as described in Subsection 2.4.2 as

T L T A P
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Assuming b, = e*un*u~!, we can now determine the integer(s) k for which

we have w; = w;'[k] (compare next subsection).

3.2.5 Symmetries in symmetric bands

We have seen in the previous subsection that the periodic part of a sym-
metric band is of a certain form. Now we want to show that those words
admit exactly two types of reflection symmetries and one type of translation
symmetry.

In order to do so, we consider the infinite dihedral group and its properties.

It is well known that the group of isometries on Z, that is, the group of
bijective maps f : Z — Z that are distance preserving with respect to the
norm d(x,y) = |z—y| on Z, is given by the infinite dihedral group D ([Coh89,

p. 20]).
Consider the following two kinds of isometries for k € Z:

il — L,i— 2k —1
T L — Lyi— i — k.
Definition 3.38. An isometry of the form ry is called reflection (symmetry)
and one of the form 1, translation (symmetry).
Clearly, r,% =id holds for every k € Z, i.e., r; is self-inverse, and Tl_l =7
for any [ € Z. It follows for ¢ € Z that
remr(i) =i+ 1= 7 (i) = 7 (0).

In particular, this holds for 7 := ry and 7 := 73 which generate Do ([Coh89,

p. 20]):
Do = (r,7 | r? =id, rrr = 771).

Note that reflections reverse the order. For i < j in Z we have r(j) < r(7).

Definition 3.39. We define the action of Doo on Wy for wy = (w;)iez as
follows:
r(wZ) = (w;(ll) )i627 (34&)
7(wz) = (Wr(s) )iez- (34b)
Lemma 3.40. The operations in (34a) and (34b) give a (left) group action
of Do 0on Wy.

Proof. Since we have defined the action on the generators of D, it is enough
to show well-definedness:

P2 (ws) = r(r(ws)) = r((withyViex) = (wiiez,
rrr(us) = r(r(r(w2))) = 1(r((wry)iez)) = 7wk ) )iez) = (WrrngiyJiez

= (w103 iez = 7 (wy).
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Lemma 3.41. The following holds for any k € Z and any Z —word wy:
Tk(wz) = wz[_k]
Proof. The equation follows by definition of 7 and the shift on words. O

Denote by Sym(W,) the set of permutations on W,. Then by the action
of Deo on Wy, we obtain 7,7 € Sym(W,) and an injective map

(r,7 | r? =id,rrr = 77 1) & Sym(W,).
Let from now on be wy; a symmetric band of period p with periodic part

Wy = e*untul.
We denote the stabilizer group of w, under Do by Stabp_ (w;).

Lemma 3.42. For any a € Z, the composition r1, is a reflection of the form
re on W,

Proof. We have that

rra(ws) = (W} i))iez = (Wils_gyiez = (W5ly)iez,

-1 -1 -1
ra (wy) = (wrg(i))iez = (w2g_¢)iez = (wo )iz
2
Hence, they both act in the same way on W;. 0

Lemma 3.43. Let S, 4 = (T, 774) for n,a € Z. Then

Sn,a = {Tkny rTa+kn}keZ'

Proof. We first show that Sy, 4 2 {Tkn, "Taskn tkez. Clearly, (7)) = {Tkn trez-
Furthermore,

(TTa)(Tkn) = T(TaTkn) =TTa+kn

and the inclusion follows.

In order to show S, 4 S {7n,"Taskn tkez, We assume for contradiction that
this inclusion does not hold: Assume r7, € S, , with b # a + kn for any k € Z.
Then the following composition is also in Sy, 4:

(r7a)(rmp) = (r7a”)Th = T—aTp = Th—a-

Here, we have used that rmyr = 7_; for any [ € Z which follows inductively
from r7r = 77, Now 7p_q € Sn,q if and only if b—a = In for some [ € Z. This
results in b = a + In which contradicts the assumption on b. O

Proposition 3.44. Let w; be a symmetric band of period p, W, = e*un*u !,

Then
StabDw (wZ) = Sp72.
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Proof. We first show the inclusion Sy, 9 € Stabp_ (w;). By Lemma 3.43 we
have Sy 2 = {Tkp, "Toskp hez- Let us examine the elements of S 5.

By Lemma 3.41 and periodicity we know that 73, (w;) = wz[kp] = w; for any
k e Z. Thus, Ty, € Stabp_, (wz).

Let us consider now elements of the form r7o,g,. If k is even, we can write
k =2l for some [ € Z. Then 779, is a reflection of the form ry,;, by Lemma
3.42. For [ > 0 this describes the reflection in the first position of the positive

copy uA)I(,Hl). For [ <0, we rewrite 1+ Ip as follows:

L+lp=1+({-p+p=-p+1+({+1)p.

Thus, it describes for [ < 0 the reflection in the first position of the negative
copy uA)I(,Hl).

Now consider k to be odd. Then k +1 is even and rro,y, is a reflection of
the form r, . Using p = 2m + 2, we can rewrite the subscript:

1+%
k 2+(k+1)p-2m-2 k+1
o Rp 2 (ke Dp2m=2 kel (35)
2 2 2
For % <0, kp describes the reflection in position m + 2 of the negative
2
k+l
copy u?l(, 2 ). For % >0, we rewrite (35) to
k+1 k+1 k+1
5 p—m:( —1)p—m+2m+2=(T—1)p+m+2.
Hence, 7, xp describes the reflection in position m + 2 in the positive copy
2
NCY
p 2.

It follows that r7mo,kp(ws) = wy for any k € Z. Thus, any element of S)
stabilizes wy, so Spa € Stabp, (ws).

It remains to show equality. By definition, Stabp,_, (w;) is a subgroup of De.
The non-trivial subgroups of D are given by ([Speb56, §1.2.4, Example 2|)

Gy = (r7y,), for some n € Z, (36)
Gon = (), for some n >0, (37)
Gna = (Tn,774) for some n>1,0<a<n. (38)

Lemma 3.43 shows that S, , = G, which is the largest subgroup of De.
Hence, it is enough to show that Stabp_(w;) # De. To this end, assume
towards a contradiction that we have equality. Then 7(w;) = w; for any
[ € Z. In particular, this holds for [ = p—1. It follows by Lemma 3.41 that

wy[p—1] = Tp-1(wy) = ws,

contradicting minimality of the period p. Hence, Stabp_(w;) # Do and
Sp2 = Stabp_ (w;) follows. O
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Corollary 3.45. Let w; be a symmetric band of period p > 0 with periodic
part Wy, = e unul.
Then w, = w;'[k] if and only if

=-2 (modp), k=2m (mod p), (39)
=-2(m+2) (modp) ork=2(2m+1) (mod p). (40)

Proof. Consider the equalities

which result from the symmetries in the periodic parts. By Proposition 3.44
we know that these are all reflection symmetries of w,. Applying Lemma
2.34 and Corollary 2.35 to the above equations yields the result. O

The previous Lemma and Proposition illustrate that the symmetry points
are given by the letters with index j = 1,-m,—(2m + 1),m + 2 (mod p)
which are exactly the symmetry points in the positive and negative copies
of the periodic part. Hence, there does not exist a unique weakly consistent
directed version for symmetric bands. The next lemma shows that we can
use a simplified criterion to check on weak consistency for directed versions.

Lemma 3.46. Let w, be a symmetric band with period p and periodic part
Wy = e*un*u~t. Let v, € (89,)7" (wy) be a directed version. Then v, is weakly
consistent if and only if for all j € Z with j #1,-m,-(2m+1),m+2 (mod p)

and v; of special type we have that

dir('[) ) _ 1 ’Lf (wj—(erl)wj—m - ’U}j_l)_l > Wit - - - WigmWi+m+1,
’ -1 4f (wj_(mﬂ)wj,m - wj,1)71 < Wit -« - WijpmWi+m+1-
Proof. By Corollary 3.45 we have for any j = 1,-m,—(2m+1),m+2 (mod p)
that (wy[< j])™' = w,[> j]. Hence, any letter v; indexed by such a j can
have direction 1 or —1 in a weakly consistent directed version.

Thus, it is enough to show that for j # 1,-m,—-(2m +1),m + 2 (mod p) we
have that

-1
(wj_(m+1)wj_m . wj—l) FWjsl - o WirmWirm+1-

Assume towards a contradiction that the two terms are equal for the index
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j. We write

Rl = Wi (m+1)Wj-m - - - Wj-1,
22 = Wj+1 .- Witm,
2= 2 W22 = Wi (ma1)Wi-m - - - Wj—1WjWj1 -« - Wi,
T1=Wj—m - -Wj-1,
T2 = Wil -+ - WijrmWjtm+1,

T=T1WjT2 = Wj—m -+ - Wj-1WjWj+1 - - - WjtmWjrm+1-

1

By assumption 2]~ = z2. Hence,

wily=wj Vie{l,...,m+1}.

In particular, w]f_l(mﬂ) = W4 (m+1)- Furthermore, |z| = |z[ = p. Tt follows by
periodicity that w;_(mi1) = Wjsme1)- Then w;_ (1) = wjf_l(mH) is given by
a special letter, say x*. Let w; = u*. Then we can write

* * =1
wj_(m+1)wj_m < Wi 1WiWyg1 - - Wjam = K YU Y
where y = wj_p, ... w;_1. By periodicity, it follows that

wy[j] = (wZ[j])_l-

This can be rewritten to
w; = w; ' [-25]. (41)

By choice of j # 1,-m,—(2m + 1),m + 2 (mod p), equation (41) gives a
contradiction to Corollary 3.45. 0l

Corollary 3.47. Let w; be a symmeltric band of period p and with periodic
part Wy, = *un*u~t. Then we have for all j € Z with j # 1,-m,—(2m+1), m+2
(mod p) that ind}(w;) < oo, in particular, ind} (w;) < §.

Proof. This result follows directly from Lemma 3.46. 0l

Remark 3.48. Let wy be a symmetric band as in Corollary 3.47 and let vy €
(92 )" (w,). By Definition 3.7 and Definition 3.14, we have that indj(vz) <
ind; (vz) for all j € Z. Thus it follows by the above Corollary that indj(vz) <
L <oo forall j € Z with j #1,-m,—(2m +1),m+2 (mod p).

Proposition 3.49. Let wy, be a symmetric band of period p with periodic

part wy, = e*un*u~t. Then there exists a weakly consistent directed version

vs € (By) 7 (ws).
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Proof. By Lemma 3.46 we know that for j # 1,-m,—-(2m+1),m+2 (mod p)
we have ind} (w;) < §. Thus, we can simply set dir(v;) = dir(w;») = dir(w;: ).
For any j =1,-m,—(2m+1),m+2 (mod p), we know by Corollary 3.45 that
(wy[< j1)7' = w,[> j]. Hence, setting dir(v;) to be 1 or —1 gives a weakly
consistent word. O

Lemma 3.50. Let wy, be a symmetric band with period p > 0 and periodic part
W, = e*untut. Let vy € (99, Y (w,) be a weakly consistent directed word
as in Lemma 3.46. Let j € Z with w; a special letter and indj (vy) = d < oo.
Then there do not exist k,l € Z with wy,w; special letters and indj(v;) =
ind/ (v;) =00 and |j - k| =]j -] < d.

Proof. Assume towards a contradiction that such indices k, [ € Z exist. Then,
by Corollary 3.47, wg,w; describe symmetry axes.

By assumption, w; lies exactly in the middle between w;, and w;. Let x
describe the subword between wy and w;, hence ™! describes the subword
between w; and w;. By definition of w;,w; as symmetry axes, we have

wy[> 1] = (w[< 1]) 7

and
wy[> k] = (wy[< k])_l.

By the symmetries in j,k and [ we obtain
wy[> 1] = (wy[< k]) 7L

Now we can write w;[< j] = 7 wyw,[> 1] and (wy[< 7])7! = 27 wpw,[< k] 7L
Thus indj (w;) = oo, a contradiction to the assumption. O

We can also determine the stabilizer Stabp_ (w;) for w, an asymmetric
band of period p:

Proposition 3.51. Let w; be an asymmetric band of period p. Then
Stabp,. (wz) = {Tkp }kez-
Proof. We know by Lemma 3.41 that
Tip(wz) = wy[-kp).

Thus, 73 € Stabp, (w;) for any k € Z. Assume that {7y }rez # Stabp, (ws).

We know that Stabp_ (w;) is a subgroup of Ds. They are given by (36)

- (38). Thus, Stabp_ contains a reflection of the form 77y = rx with k €
2

{0,...,p—1}. Then
rr(wz) = (wily)iez = (1) ez

63



Denote by 1, the periodic part of r7i(w;). It is given by

-1 -1

O | -1
Up = Wp_p ... Wy Wy ... Wy

Since 77y, € Stabp,, (wz) it follows that W), = @y:

Wy ... Wy :wlil...wl_lwgl...wgl.
This equality yields that
_ -1 -1
WY Whe] = Wp_q - .. W] (42)
wk...wp:wgl...wgl. (43)
We obtain that
wy = w, [k -1]
which contradicts w; being asymmetric. O
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3.3 Comparison of weakly consistent and consistent words

In this section we examine correspondences of the two types of directed words
introduced in Section 3.1. To this end, we can consider the asymmetric and
symmetric strings and the asymmetric band as one case. The approach on
symmetric bands is more complicated and thus is considered separately.

We see that for the asymmetric cases there exists a unique directed ver-
sion that is both consistent and weakly consistent. In the case of symmetric
string, there exist two possible directed versions which are also both consist-
ent and weakly consistent.

The symmetric band is the most complicated case. Here, we know what
the consistent directed versions look like with respect to the symmetry axes.
Moreover, any consistent directed version is also weakly consistent. But the
converse does not hold: only any weakly consistent directed version with
symmetry axes oriented in the way of types 1) - 4) in Proposition 3.70 is also
consistent.

Recall with the following example some notation from the Subsections 3.1.1
and 3.1.2:

Example 3.52. Let A be as in Fxample 2.14. Consider

W = W WaW3Wa W5 WeW7WWe (44)

=e*a by b tacta L (45)

The word v = ta b Yo ac ta™td ™! is a weakly consistent and consistent
directed version of w. The special letters in v are indexed by 1,4 and 7. For

j=1and j="7 we have ind;(w) = indj(w) and thus most of the following
data coincides:

j=1: ind] (w) = ind{(v) =0,
1" = [1 -ind] (w), 1 +ind] (w)] = [1,1],
1°=[1-ind{(w),1+ind{(v)] = [1,1],
wis = 1+indj(w) -1 = we,
vie = 1+ind{(v) - 1 = wy,
wyx =1 -indj(w) +1 =1y ,,

Vie = 1- 1ndf(’U) +1= 18(6),:‘47

J=T: ind7(w) =ind5(v) = 1,
7" = [6,8] = 7°,
wyx = V15 = Wy,

Wyx = Vie = Ws.
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For j =4 we obtain different values:

indj (w) =3, ind§(v) =2,
4* = [1,7], 4°=12,6],
Wy = W1, Vqe = Wi,
wyr = W, vge = wr.

3.3.1 Directed words from strings and asymmetric bands

Let us first show that a weakly consistent orientation on asymmetric and
symmetric strings and asymmetric bands is also consistent.

Theorem 3.53. Let w be a siring, either asymmetric or symmetric, and
let w, be an asymmetric band. Let v € (92)7 (w) (v, € (92,)7" (wy)) be
weakly consistent. If w is a symmetric string of the form ue*u™', assume
additionally that v = t"t™! for t € (®1,)7" (u) and k € {+1,-1}. Then v (v,
respectively) is consistent.

Remark 3.54. Recall that any weakly consistent directed version is uniquely
given in both asymmetric cases. Only for the symmetric ones do we obtain
more than one possible weakly consistent directed version (compare Section

3.2).

Proof of Theorem 3.53. We show the statement for w an asymmetric string.
The other two cases are analogous.

Let v € (®,)™" (w) be weakly consistent and assume towards a contradiction
that v is not consistent. Then there exists 1 < j <n with w; a special letter
and dir(v;) # dir(vje) and dir(vje) = dir(vje). Thus, ind}(w) > indf(v) and
vje =vje are special letters. Let 2~! denote the undirected subword between
wje and w; in w; hence, x is the undirected subword between w; and wje.
Set y =w[< j¢], z = w[> j¢]. Then w is of the form

-1
YWieT W;TWj¢ 2.

Assume without loss of generality that dir(v;) = 1. Hence, dir(vje) =
dir(vje) = 1. The weakly consistent orientation with respect to the pos-
itions j¢, j¢ and j gives the following inequalities:

-1 -1
1) y = <z wjrwjez,
2) zwjez <zwiey e z <y,
3) e 'wjrwjey ! < 2.

Thus, we get
-1 -1 -1_ -1
T wizwiey  <z<y  <TTwjrwjez.

Comparing the first and last word in this chain of inequalities gives y~! < z,
a contradiction to inequality 2). O
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The next step is to show that a consistent word is also weakly consist-
ent. This is more complicated to show than the previous statement. Let us
therefor first introduce some auxiliary lemmas.

Lemma 3.55. Let w be a string, either asymmetric or symmetric, and let w,
be an asymmetric band. Let j € I (for I ={0,...,n} or I = Z, respectively)
with wj of special type and ind (w) = d < oo (ind;j (w;) = d < oo, respectively).
Then there do not exist k,l € I with k < j <l, wg, w; both of special type, and
l7—k| =17 -1 <d such that ind;(w) > d and ind; (w) > d (ind;(w;) > d and
ind; (wy) > d, respectively).

Proof. We first show the statement for w an asymmetric string. For sym-
metric strings, the proof is analogous.

Assume towards a contradiction that such indices k,l € Z exist with the
above properties. Denote by x the subword of w between w; and w; (hence
z~1 gives the subword of w between wy, and w;). Since |j —k| =|j -] < d, we
have |z| < d. Denote by y the subword of w between w;» and wy, (hence y™*
describes the word between w; and w;x and we have |y| + [z + 1 = d). Also,
kE* < j* and ji <[}, so let z (respectively u) be the subword between wyx

and wjx (w;+ and wyx, respectively). Thus, w is of the form

...wkfzwjiywkx_lexwly_leiuwli e (46)

Assume without loss of generality that |y| < |z|. Then by symmetry in wy
and wy, y is a finite subword of a word of the form

(nx—x—ls*x)h’

for some h € N, where s" = s...sis a word given by h copies of s and n* = wy,

£* =wj. One has |y| +|z| + 1 = ind}(w), |y| + |u| + 1 = ind] (w).
For x = x1...xy we know that z; is ordinary. By symmetry in position [ we
obtain

Ty= (wji)_l. (47)
Similarly, symmetry in position k results in

a;}l = (wj)" (48)
Combining (47) and (48) gives

Thus, ind; (w) > d + 1, contradicting the assumption on its c*~index.

Now let w; be an asymmetric band. Assume again towards a contradiction
that the indices k,[ € Z as above exist. By Lemma 3.29, ind} (wy) is finite and
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it is enough to consider for j = j (mod p) the subword ¢ = wy[> jlwyw,[< 7]
of wy; to determine the weakly consistent orientation in position j. The let-
ters wy, and wy are by assumption in ¢. Also, it follows from indy+ and ind;:
that both wy+ and wy+ are not contained in ¢. We extend ¢ to the left up to
and including wyx, and to the right up to and including w;;. We denote the
resulting word by .

Now % is a finite subword of w, which is of the same form as the subword in
(46). Using the same arguments as in the asymmetric string case on i, the
proof for an asymmetric band follows analogously. O

Lemma 3.56. Let w be a string of length n, either asymmetric or symmetric,
for some n € N, and let w, be an asymmetric band. Let v € (@ﬂd)_l (w)
(v, € (92)7" (w,)) be weakly consistent. If w is a symmetric string of the
form ue*u™, assume additionally that v = te"t™" for t € (%)™ (u) and
k € {+1,-1}. Moreover, let j € I (I ={0,...n} or I =7Z) with w; special
and ind;(v) = d (ind;(vz) = d, respectively). Let k,l € I and k < j <1 with
lj— k| =7 -1 <d, wg and wy special letters, and ind;(v) < d, ind] (v) < d
(ind; (v;) < d, ind; (vz) < d, respectively).

Then either dir(vy) = —dir(v;) or dir(vy) = dir(v;) = dir(v;).

Proof. We show the statement for w an asymmetric string. For symmetric
strings and asymmetric bands, the proof is analogous by the same arguments
as in Lemma 3.55 (for symmetric bands first consider j # m + 1 which is
analogous to the proof for asymmetric strings. For j = m + 1 it follows by
symmetry of w that indj (w) = ind; (w) and thus that dir(vg) = —dir(v;)).
Assume without loss of generality that dir(v;) = -1 and ind; (w) > ind;,(w).
For dir(v;) = 1 we consider the following cases regarding the positions of j7
and [7:

e [} <ji. Then L* c J* and we need to distinguish
1) j<I* and
2) I*<j.

e ji <I[}. Similarly to the above, we distinguish
3) j<I* and
4) 1* <j.

e ji =1]. This case is given by 5) below and does not need further

distinction.
We prove now for each of the five above cases that the statement holds.

1) 17 <75 and j <1*: Since I} € J*, we obtain by symmetry in position j
that k* € J*, too. We obtain from the same symmetry that ind;(w) =
ind; (w). Then, again by symmetry in position j, dir(v;:) = —dir(vy»)
and dir(v;+) = —dir(vgr ). Hence, dir(v;) = —dir(vg).
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2) I < ji and I* < j: For two suitable undirected words z1, x2 with
ind; (w) = |x1| +|z2| + 1, w can be written within the interval L* as:

with w; = n*.

-1 -1 *
W Ty WHT] W TW (50)

*

To determine position k, we use symmetry in j and distinguish the
following cases:

a)

|z1| = |z2| + 1:
We have z1 = axy! for a = w;+ € Q"¢ and we can rewrite w from
(50) to:

1

-1_-1_x -1 -1 -1 -1 %
S €Ty 1) T2 WEWr Ty WL WAL ) T2Wpk - .

where w;: = ¢. Thus, indj(w) = 2|2a| + 2 = ind; (w). Hence, by
symmetry in j, wgs = wj' and thus dir(wys) = —dir(wg). It
follows directly that dir(vy) = —dir(v;).

|z1] > |zo| + 1:

We have z1 = z3az;! for some suitable undirected word x3 and
a = wy+. Using the symmetries in positions [ and &, we can deduce
from (50) the following form of w:

1 1

-1 -1 % -1 _-1_-1 -1 -1, -1 —1 x
€Ty Ty AT Ty WETIW T WiTA T T WTIATS 1) T2W -
where wpx = cb, n,e € Sp. Then indg(w) = 2[za| + |z3[ + 2 =
ind; (w) and it follows by the same line of argument as in 2)a)

that dir(vg) = —dir(v;).

|z1| < 22| + 1:

If |z1| = |z2|, then wy is of ordinary type which is a contradiction.
Hence |z1| < |z2] and we can write x3 = x7'e*x3 for a suitable
undirected word z3 and €* = w; a special letter. For |z3| = 0 one

has x3 = z7'e* and w is given by

* -1 *, =1 _*
L WEE TIWT WXL Ty E wl:

It follows by symmetry in j that z; = a & for @ = w;» and some
suitable word Z1. Refining w by this gives

cat

5*a_150117*:611awka_lileiflawla_ljm*iﬁlae*wli .
with w; =n*, wy, = €*.

It follows from the above that indj(w) = 2|Z;| + 4 = ind; (w) and
as above that dir(vg) = —dir(v;).

Now let |z3| > 1. Then 3 = z7'e*z3. Assume for contradiction
that dir(vg) = dir(v;) = —dir(v;). Recall that we assume without
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loss of generality that dir(v;) = —1. Hence, dir(vy) = dir(v;) = 1.
We obtain from (50) by symmetry in position [ the following form
for w:

. .wlixglwkxlwjxflwlxm*xfla*wgwli e

with wps = a, wyx = ¢, wj =n", wy, =w; = €*. The weakly consistent
orientation gives the following inequalities:

(i) from position j (after eliminating 27'e* on both sides from
the left):

1

z3a”t .. <xintayt

*
g xsc...,

(ii) from position k: xln*xflg*xm*azils*q:gc. o<xgal L

Extending (i) by z1n*27le* from the left on both sides and ap-
plying (ii) and again (i) gives:

1 1 1 1

* -1 % — * =1 % * =1 _*
TN X1 € T3Q ... <X T1 € T1N) Ty € X3C...

<xga”l.. <xntayietase. ...

Thus, comparing the first and last element of the inequality-chain
and reducing by the same word as added before, we obtain

J;ga_l...<xgc...,

a contradiction to the definition of the linear order introduced in
Section 2.3.

3) ji <lIi and j < 1*: Let x1,x3 be two undirected suitable words with
|z1] + |z3| + 1 = ind; (w), such that (by symmetries in j and ) w is of
the form:

. .wjf:cIlwkxlb_lﬂsga_lxglexgwlixglb:cflwlxleixgwli e

with wjs = b~! and wyx = a.
Since dir(w;:) = ~1 by assumption, it follows directly indj(w) = |21
and thus wy+ = w;+. Hence, dir(vg) = dir(v;) = —dir(v;).

4) 5 <li and I* < j: Let x1, 29 and z3 be three words such that |x;| +
|zo| + x3| + 2 = ind} (w) and w is of the form:

...wlixglb:r;lexflwlmm*xgwjixgwli e (51)

where w; =0, w;x = bl
Similar to case 2), we distinguish the following subcases:

a) |z1] =[xl
By symmetry in j, we obtain w; = b an ordinary letter. This
contradicts the assumption on wy.
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b) |x1| = |zo| + 1:
We can write z1 = bxgl and w as follows:

.. .wlfxgbzz:glexgb_lwlb:cgln*ﬂsgwjixgwli e

We have |z3] > 0 (otherwise it follows w; = w;+, a contradiction to
the different types of the two letters).

If |z3| = 1, then x3 = ¢* = wy, and w;» = wpx. Thus, dir(y;) =
dir(vj), contradicting the assumption. Hence, |z3| > 1.

We can write x3 = €*bry. Assume towards a contradiction that
dir(vg) = dir(v)(= —dir(v;)). We consider w of the following
form:

. .wli:EZIIb_lwkbeIwjxgb_lwlbxgln*xgwﬁs*b:n4wli .

with wg = w; =¢€*, wj =0, wyr = bl
Since v is weakly consistent, the following inequalities hold:

(i) for position I: wyr ... < wl_*1 cs

(ii) for position k: bx4wl}1 o> bx;ln*fcgb_ls*bmgln*asgb_ls*bmwli

(iii) for position j: .fcgb’la*bmwlll .. < xgb’la*bmgln*xgb’la*bmwli e

We extend (iii) from the left by zob'e*br;'n* and obtain the
following chain of inequalities, using (iii), (ii) and then (iii) again.
Igb_lé*bl’gln*:ng_l&‘*b$4wl_i1 ...
< ﬂvgb_lf—:*bxgln*xgb_lf—:*bxgln*:cgb_lf—:*bmwli ...
< xgb_le*bmwl}l ...

< ang_le*bxgln*xgb_ls*bx4wli e
Comparing the first and last term gives
-1
wli ...<wli...’

a contradiction to (i).

) |z1] > |zo| + 1:
We can write x1 = :mbwgl for a suitable undirected word x4 and
obtain for w:

LW .x4bx§1wj:r2b_1xfwlx4bx§117*m2wj:xgwli ..
with w; =n", w; = " and wjy = bl
Let us first consider the case |z4| = |z3]. It follows x4 = 31 and

thus by symmetry in position j that w; = wl_il. But wy is of special
type while w;+ of ordinary type, giving a contradiction.
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Now assume |z4| < |x3|. We obtain by symmetry in position j
that x3 is of the form x3 = z;1e* x5 for a suitable (possibly trivial)
undirected word x5. By symmetry in position [, we can write w
as follows:

Wy a:glwkmbxglexgb*lx;lwla:4bx§1n*angfla:;1£*x5wli .

with w; =n*, wy = w; = €*.

Assume for contradiction that dir(v;) = dir(vy) = —dir(v;). The
directed version v of w is weakly consistent, giving:

(i) from position k:

x5wl’*1 o> x4b:r§177*xgb’lx;le*mbxgln*xgb’le

e wswyr ..y
(ii) from position j: x5wl}1 .. < $4b$§17]*x2b_11‘;15*x5wl: ce
(ili) from position : wy'... > wy ..
(Note that in (ii) we have reduced both sides from the left by
woblayte®).
Extending (ii) from the left by v = x4br;'n*zeb to le* and ap-
plying (i) and (ii) afterwards gives
-1 o DU B
VIsWp ... < VTgbxy N w2b Xy e TRWY
< :1:5le1 S <UTBWEE -
Comparing the first and last term of this chain of inequalities
gives
wl_il...<wli...,

a contradiction to (iii).

Now consider the last case |z4] > |v3|. We can write x4 = 5w 23"
for some suitable x5. We can deduce the following form for w:

1 -1 -1 -1 —1p. -1 -1
C Wiy N T2b w3 Ty wTswyr g bry wiTeb X3
c_lxglwlx5cx§1bxgln*:vgwjixgwli .
with wys = ¢, wj =n", w =w; =" and wjx = bl

Assume for contradiction dir(v;) = dir(vi) = —dir(v;). We obtain
from the weakly consistent orientation on v:

(i) from position I: wl_il C > W
ii) from position k:
(i) p

w]_*l D> b_lazgc_

lxgle*xg,cxglbazgln*mzb_lxgwli o

(iii) from position j:

:L’gb_lxgc_lxgle*wg)cxglbxgln*xgb_lzrgwli e

1 -1

€*x5ca:§1b:v§1n*x2w]f e

> x2b71x3w111xg
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(Note that we have reduced in case (ii) both words from the left by
wser3tbryintze.) Applying (iii), (i) and again (iii) gives (after
reducing in the last step by zob lzzc™! 16*x5cx§1bx§1n* from
the left):

T5

xgb_lazgwlil:vgle*x5cx§1bx§1n*x2w;} ..

15*:6503:;;1bxgln*xzb_lxgwli e

<xob tzge oy
< zowd

-1
< x2b ™ w3WYS - .
Comparing the first and last term gives
-1
wli ...<wli...,

contradicting (i).

[21] < |of:
In this case we can write xo = 2]
and consider w in the following way:

le* 4,4 for some suitable word x4

. wli:L’glba:fwkxlwjxilwlxm*azile*mwﬁ TIWp -

with wj: = b1, wj =n", wy =w; =¢<".
Assume for contradiction that dir(vy) = dir(v;) = —dir(v;). The
following inequalities hold:

(i) from position k: x4b_1x3wl11 L 951n*x{lé*xln*x{lg*mb_la:gwli o

1 1

(ii) from position j: zin*x] €*x4b_1x3wli L J:4b_1:z3wl_ s

(iii) from position I: wl_il C> W
We extend (ii) from the left by z17*27'e* and obtain the following

chain of inequalities, applying (ii), (i) and (ii) again:

15*x4b_1x3wl21 ...

1

. -
L1 Iy
<xinry 5*:1:177%[15*1:4[)_11:310[1 .
< a:4bfla:3wli1 .

16*m4b_1:n3wli e

<xzintxy

Comparing the first and last term gives
-1

wli ...<wli...,

a contradiction to (iii).
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4*) In contrast to w of the form as in (51), one can also have w given by

...wljz_ley_lb:r_lwlijiyn*zwli . (52)

with w; = 0", w;: = b~L. To analyse (52), we distinguish the following
cases:

a*)

b*)

|2l = lyl:
By symmetry in position j, we have w;+ = b=, This contradicts
dir(v;) = 1.

2] <yl:
We can write y = gaz™! for a suitable subword 7 and wy+ = a. Tt
follows that (52) can be refined to

-1 -1- -1 “1--1p -1 .
c W wETh T Ywpr 2T wizaT Y by wirwryazT oy zwps

Note that we have also used symmetry in j to extend to the left.
One has ind;(w) = |z and wy» = w;+. Hence, dir(vg) = dir(v;) =
—dir(vy).

lyl < zl:
We can write z = 4y 1bz with wjr = b~! and Z a suitable subword.
Refining (52) results in

W Z_lb_lywjy_lbm_lwlmwji yn*y_lewli . (53)

Now |z| # |z| (otherwise w; = wj+). Consider |z| > |z|. Then
Z=x"1e*2 with w; = * and 2 a suitable subword. Thus, (53) can
be refined to

. wli2_1a*xb_1ywjy_lbx_lwlmw]—iyn*y_lbx_la*éwli .
If |2] = 0, we can write x = ™!
subword. By symmetry in position j, we obtain indj(w) = |Z|+ 1
and thus wy» = wj». It follows that dir(vy) = dir(v;) = —dir(v;).
Now assume || > 0 and for contradiction dir(vg) = dir(v;). The
following inequalities hold:

Z with w;» = a and z a suitable

(i) position k: 2a™t---> ab lyn*y tbrterwb lynTytha e s . .
(ii) position I: a™t--->c...
(iii) position j: y~ bz te*ab lyn*y tbrte* se- - > y b e 27t L L.
Reducing inequality (iii) from the left by y~*bx~'e* and applying
(i) afterwards, we obtain

!Eb_lyn*y_lbx_lz—:*éc. > Eath L

> ob Lyt y b e ab tynty Thr e se .
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We reduce the first and last term on the left by ab~lyn*y tbz=te*.
Applying then (ii) results in

s> ab lynty T iba e 2> a7t L
Comparing the first and last term of this chain of inequalities
contradicts the linear ordering on WY7 .
Finally, consider || < |z|. Then write z = #a~'z where w;+ = a and
Z a suitable subword. The word w as in (53) can be refined to

O DU | 12 -1~-1
cwprZa T wETwp 2 b ywsy T bzaT T wmwgs

It follows that indj(w) = |z| and thus wy+ = w;+. It follows that
dir(wvg) = dir(vy) = —dir(v;).

5) ji=1i:
It follows that dir(v;) = dir(w;+) = dir(w;+) = dir(v;). By assumption
dir(wv;) = —dir(v;) giving a contradiction.

For dir(v;) = dir(v;), we automatically obtain the statement, since we either
have dir(vg) = —dir(v;) or dir(vg) = dir(v;). O

Example 3.57. Consider A, w and v from Fxample 3.52. Recall that v is
weakly consistent. Note that w is an asymmetric string. For j=4, k=1 and
[ =7 we have

|j_k|:|j_l|:37

ind; (w) =3,

indg (w) =0 < indj (w),
ind; (w) = 1 <ind; (w).

The assumptions of Lemma 3.56 are satisfied. We see that

dir(vg) = dir(vy) = dir(vy).

Example 3.58. Consider A from Ezample 2.8.1. Let

. * =1 * % %
w: € a € ae ae

be an asymmetric string. Then

v: e la leacace

s a weakly consistent directed version of w. Take j =3, k=2,1=5. Then

we have

|j_k|:|j_l|:27

ind} (w) =2,

indj (w) = 0 < indj (w),
ind; (w) =0 < ind; (w).
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Furthermore, we see that
dir(vg) = —dir(vy).

Lemma 3.59. Let w be a string of length n, either asymmeltric or symmetric,
for some n €N, and let w, be an asymmetric band. Let v e ()" (w) (vs €
(@) (wy), respectively) be weakly consistent. If w is a symmetric string
of the form us*u™", assume additionally that v = te"t™" for t € (®¢,)7" (u)
and k€ {+1,-1}. Let jeI (I ={1,...,n} or I =7) and indj(v) =d < oo
(ind} (v,) = d < oo, respectively). Let k,l € I with k <j <1, |j—-kl =]j-
l| <d, wg and w; special letters, and indj(v) > d,ind; (v) < d (indj(v;) >
d,ind; (v;) < d, respectively). Then dir(v;) = dir(v;).

Proof. We show the statement for w an asymimetric string. For symetric
strings and asymmetric bands, the proof is analogous by the same arguments
as in Lemma 3.55.
Observe that j +ind; (w) < +ind; (w) (otherwise indy (w) < d by symmetry
in position j).
Consider at first the case j +indj(w) = [ +ind; (w). Then ji =} and thus
dir(w;x) = dir(w;x ). It follows directly that dir(v;) = - dir(wv;).
Now let j+indj(w) < l+ind; (w). Then ji <[} also. Assume j ¢ L*. Denote
by @ the subword between w; and w;x and by y the subword between w;«
and wjx. Assume for contradiction that dir(v;) = dir(v;) and without loss
of generality that dir(v;) = —1. By symmetry in the positions [ and j, w is
then of the form

1

-1 -1, -1 ~13-1,_~
cwprTwErh Ty fT L wy L wp y T b T wrw gy wys

L*

where w» = b ws = ¢, wpr = a and wp = f. It follows that ind}(w) =
J+ J- T Z k

|z| < d which is a contradiction.

Now consider j € L*. Denote by y the subword of w between the letters

w; and wj.+, by x the one between w; and w;, and by z the subword of w

between w,+ and wyx:
J+ +

-1, -1
WY WET T W TWYW i ZWE (54)

Then ind} (w) = |z[ +[y[ + 1> [y| + |2| + 1 = ind; (w) and thus |z| > |z].
Assume towards a contradiction that dir(v;) = —dir(v;) and without loss of
generality that dir(vj) = -1. Let w;+ = ¢ and wyr = bL.

Assume at first dir(vg) = 1. We obtain the following inequalities from v
being weakly consistent:

: s B -1
(i) from position k: Ywis - > T WBWYW,E 2

.. .y .. 71
(ii) from position j: wjxzwys ... > Wis s
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(iii) from position I: x‘lexwkyw;} > YW W

We extend (ii) from the left by the word y. Applying now the above inequal-
ities in order starting with (i) gives

-1 -1 -1 -1
X wjxwlywﬁzwli . < ywjf o< yw]:zwli . <XZ w]xwkywﬁ -

Since wy, = w;, we can reduce the above chain to

Wy ZWs - < wj_il e (55)

By assumption on dir(v;), both letters w;+ and w;: are inverse. Hence, (55)

is contradicting the definition of the linear order ”<" defined in Section 2.3.
Let now dir(vg) = —=1. Observe at first that |x| # |y| in (54) (otherwise, by
symmetry in [, wj = w;» giving a contradiction to them being, respectively,
of special and ordinary type). We distinguish the different possibilities:

(i) Assume |z| > |y|. By symmetry in position [, we can write
z=gby "
Thus, (54) can be refined to
wjiy_lwkyb_lgj_lwjg]by_lwlywji 2wy ..

It follows that wy+ = wj=. Thus, ind}(w) = |y| < d, giving a contradic-
tion to the assumption on the ¢*—index of wy.

(ii) Assume |z| < |y| in (54). By symmetry in position [, we can write
y =a71n*g for a suitable subword § and w; = 7*. Refining (54) by this
results in

~—1_ % -1 =1 %~
Wi N TWET T Wi rw T N wss 2w (56)

It follows that |g| # || (otherwise wj» = w;). Hence, let at first [g] < |z|.
Then z = gcz for a suitable subword = and wj» = = ¢!. The refined
version of (56) is given by

U I s 2
Wiy N YCTWET ¢ Y WiYCTWT O C Y ) YwE 2wy

It follows that w;+ = w;x and thus dir(v;) = -1, a contradiction to the
assumption on the direction of v;.

Consider now the case |g| > |z|. Then g = ze*y for a suitable subword
7y and w; =e*:

——1 *_—-1_%* -1 =1 % %
Wiy e TN TwEr T wizwW T N TE YW 2w .. (57)

Refining ¢ analogously as y and g above results in contradictions in
the cases |g] # || and |g| < |z| (analogously to the above).
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For |y| > |z| we can write 4 = 271n*s for a suitable subword s. Thus,
we consider now

=1 % % -1 =% -1 =1 % % -1 =%
cwirsT I zet T n rwpr T wizwrT n ee rT n swiszwys ... (58)

Now, comparing (56) - (58), we see that instead of refining further, we
can consider |s| - 0 instead. Assume without loss of generality that
|s| = 0. This results in x = ¢z for some suitable subword Z. It follows
that w;+ = w;+ and thus dir(v;) = 1. This contradicts our assumption
on the direction of v;.

O

Example 3.60. Let A be as in Example 2.3.1. Let

1 1 1

* * * * - * * - * - * *
w: e agagag’a " eag’a T eTa e ae
be an asymmetric string. The following word is a weakly consistent directed

version of it:

v: cacacaca tecactatetatetae

iel: 12345678 91011 12 13 14 15 1617
Consider now j=11, k=9 and [ =13. We have

|j_k|:|j_l|:27
ind; (w) =2,
indy(w) =6 > ind; (w),

ind; (w) =0 < indj (w).

We see that
dir(vj) = dir(v;).

With these auxiliary lemmas, we are able to prove the following theorem:

Theorem 3.61. Let w be an asymmetric or symmetric string and let wy, be
an asymmetric band. Let v e (@)™ (w) (vy € (9,)7! (wy), respectively) be
a directed version of w (wy, respectively). Then v (vy, respectively) is weakly
consistent if and only if it is consistent.

Proof. We show the statement for w an asymmetric string. For symmetric
strings and asymmetric bands, the proof is analogous by the same arguments
as in Lemma 3.55.

Let w be an asymmetric string. Let v € (®¢,)7" (w) be consistent and z €
(@) (w) weakly consistent. We show the statement by induction on
indj(w) for jeI={1,...,n}.

For ind(w) = 0 it follows that ind}(w) = indj(w). Hence wjs = wje and
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wj+ = wje are of ordinary type. So dir(v;) = dir(z;).
Now let ind} (w) = d > 0. Again, the statement is clear for ind; (w) = indj(w),
so assume ind; (w) > indj(w). Let k,l € I such that k = j¢, [ = j{. Then

dix(vx) = dir(er) = dir(v;) (59)
and |j — k| =|j =] <d. Thus we can apply Lemma 3.55 and either have
a) indj(w) < d and ind; (w) < d, or
b) indj(w) > d and ind; (w) < d.
Let us first consider case a): by induction we obtain

dir(vg) = dir(zx) and
dir(vy) = dir(z).

By Lemma 3.56 we either have dir(z;) = dir(z;) = dir(z;) and we obtain by
(59) the result. Alternatively, we have —dir(z;) = dir(z;). Then it follows by
induction that dir(vy) = —dir(v;), a contradiction to (59), so this case does
not occur.

In case b) it follows by induction that dir(v;) = dir(z;). By Lemma 3.59
we obtain dir(z;) = dir(z;) and using induction on [ and (59) results in
dir(z;) = dir(vy). O

Corollary 3.62. Let w = ue*u™" be a symmetric string and v e (92,)7" (w)
be (weakly) consistent. Then v =te"t™" for t € (®2,)7" (u), ke {+1,-1}.

Corollary 3.63. For any asymmetric string (band, respectively), there exists
a unique consistent directed version.

Proof. By Corollary 3.22 we know that there exists a unique weakly con-
sistent directed version for any asymmetric string. Corollary 3.30 gives the
same for asymmetric bands. Theorem 3.61 states that any consistent direc-
ted version of an asymmetric string or band is also weakly consistent. Thus,
uniqueness of a consistent directed version is inherited from the uniqueness
of a weakly consistent directed version in both cases. O

3.3.2 Directed words from symmetric bands

For symmetric bands, the relation between consistent and weakly consistent
orientations is not as intuitive as in the other cases. The two sets of types
of directed versions are not equal, but there is merely an embedding of
the consistent directed versions in the set of all weakly consistent directed
versions.

As in the previous subsection, we will need some auxiliary lemmas in order
to describe this embedding.
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Lemma 3.64. Let w; be a symmetric band of period p > 0, with periodic
part Wy, = e*un*u~t. Let j € Z with w; a special letter and ind (w) = d < oo.
Then there do not exists k + 1 € Z with wy, w; special letters, |j—k|=|j-1|<d
and ind} (w;) > d, ind] (w;) > d.

Proof. Let us first make two observations: by assumption on ind;(w;), we
have that 7 # 1,-m,—(2m + 1),m + 2 (mod p). Assume without loss of
generality that k < j < [. It follows by Lemma 3.64 that indj (w;) < co and
ind; (wy) < oo.

Assume for contradiction that k,l € Z as in the statement exist. By the
second observation we know that neither k nor [ gives the position of one
of the symmetry axes. By Lemma 3.46 we only need to consider a finite
subword of wy to determine the direction on w;. Hence, the statement follows
analogously to the proof of Lemma 3.55 in the previous subsection. O

Lemma 3.65. Let w; be a symmetric band of period p > 0 with periodic
part W, = e*un*u~l. Let v, € (@) (wy) be weakly consistent with periodic
copies ’f)](,i) = etityit) fort e (®%) 7 (u) and pi, ki € {+1,-1}. Let j € Z with
w; a special letter and indj (w;) =d < oco. Let k,l € Z with |j - k| =]j -1 <d,
wg, wy both special letters and indj(w;) < d, ind; (w;) < d.

Then either dir(v;) = dir(vg) = dir(v;) or dir(vy) = —dir(v;).

Proof. By Lemma 3.46 we consider for k,[,j each only finite subwords, so
also in sum a finite subword of wy. Thus, the proof is analogous to the proof
of Lemma 3.56 of the previous subsection. O

Lemma 3.66. Let w, be a symmetric band of period p > 0 with periodic
part Wy, = *un*u~t. Let v, € (@ﬂd)_l (wy) be weakly consistent with periodic
copies @;[(,l) = etityit™! fort e (D)7 (u) and pi, ki € {+1,-1}. Let j € Z with
w; a special letter and indj (w;) = d < oco. Let k,l € Z with |j - k| =]j 1| <d,
wg, wy both special letters and indj,(w;) > d, ind] (w;) < d.

Then dir(vj) = dir(v;).

Proof. By the same arguments as in the previous proofs, this proof is ana-
logous to the proof of Lemma 3.59 of the previous subsection. O

Now we are able to relate consistent directed versions to weakly consistent
ones of symmetric bands.

Proposition 3.67. Let w; be a symmetric band of period p with periodic

part W, = e*un*u~t. Let z, € (@) (wy) be weakly consistent with periodic

copies ig) = c%isnis™, where s € (94,)7 (u) and 0y, 6; € {+1,-1}. Further-
more, let v, € (@) (w,) be consistent with periodic copies @,SZ') = ghitprig=t
for t e (®) 7 (u) and s, ki € {+1,-1}.

Then one has for all j € Z with w; a special letter and ind;(w;) < oo that
dir(vy) = dir(z;).
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Proof. By Lemma 3.46, we only need to consider a finite subword for j
in order to check on consistency and weak consistency. Thus, the proof
is analogous to the proof of Theorem 3.61, using Lemmas 3.64, 3.65 and
3.66. O

Corollary 3.68. Let w; be a symmetric band of period p with periodic part

W, = e*un*u~l. Then any consistent v, € (@) (wy) preserves the sym-

metry axes of w, with respect to u.

Proof. The statement follows directly from Proposition 3.67. O
Example 3.69. Let A be as in Example 2.3.1. and let wy, be a symmetric
band of period 8 with

1 1

. -
eta™",

N

* * * -
Wy =€ ag ac a
*
u=ae a.
Let v, be a consistent directed version of w,. Then

(i ; ;-1 -1 -1
Ulgl)=5’“a6a5'“a € a T,

t = aca,
for all i € Z, where p;, k; € {+1,-1} and t is a directed version of u.

Proposition 3.70. Let w; be a symmetric band of period p with periodic
part W, = e*un*u~l. Let vy € (@) (wy) be a directed version of wy with
periodic copies ﬁz()i) = ettt for t e (@) (u) and pi, ki € {+1,-1}.
Then vy, is consistent if and only if it is of one of the following four types:

1) pi=r;i=-1 forallicZ,
2) wi=r;=1 foralli€Z,
3) (unique sink) there exists a unique j € Z such that:

-1 Vi<j,
e ’
pi = 1 Vi>j

4) (unique source) there exists a unique j € Z such that:

1 Vi<j,
o .
S BRI

Proof. By Corollary 3.68 we know that the symmetry axes of w, are pre-
served by consistency, i.e. any consistent x, € (®¢ d)_1 (w;) has periodic cop-
ies of the form iz(,l) = etisntis™t for pi, ki€ {+1,-1}, s € (@id)_l (u). Hence,
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we can reduce each subword v and ™! to a vertex and only consider the sym-

metry axes to show consistency. Thus, any periodic part w,@” = ghiyntiu~! is
being reduced to e*in™. To do so, we use a new indexing of the letters, only
referring to those giving symmetry axes. We denote by ¥, the thus reduced
version of v,. Then, v; is consistent if and only if ¥, is consistent. We can
picture v, with respect to 1) - 4) as follows:

J

J

Let us first show that @, given by 1) —4) is consistent:

b

4

As we can see, we have indj(?;) = 0 for all j € Z. Hence, dir(v;) is
uniquely determined and we have

’lv)j,1 = ’ng and 17]'+1 = T}ji
for any j € Z. Now T)j__ll < ¥j41 and thus

(0a[<J]) 7" <[> ]
Thus, any 0, of form 1) is consistent.
This case is analogous to 1) with reversed inequalities.

For all j € Z with ind§(9;) = 0, the result is clear by the same arguments
as given in case 1).

Let us now consider 9;, U;+1 for j € Z with indj(¥;),indj,;(9) > 0. By
the form of 3), there exists only one pair of indices with this property,
namely the two neighbouring letters with opposite directions: dir(9;) =
—dir(9j41). We have

foralli<j: dir(;) = dir(v;),
forall k>j+1: dir(ox) = dir(9;41).

It follows dir(v;) = —dir(9g) for all i < j, k > j + 1. Thus,

giving indj(v;) = co = indj,; (¥;). Hence, any v; of type 3) is consistent.

The proof of this case is analogous to case 3).

82



Conversely, assume that ¥y is consistent.

If all letters of ¥, have the same direction, i.e. indj(%;) = 0 for all j € Z, then
Uy is of type 1) or 2).

Assume now that there exists j € Z with indj(9;) > 0, i.e., one has for its
direct neighbours 0;_1, 911 that dir(9;-1) = —dir(?;4+1). Assume without loss
of generality that dir(?;) = dir(?9;-1). Then the vertex between 0; and ©;.1
is either a source or a sink. Let x = x1 ...z be a finite subword of ¥, with
x| = ’lv)j+1 and dil”(.%‘i) = dir(@j+1) for all 1 <4 < k. Similarly let z = z1...2
be a finite subword of @, with z; = 0; and dir(z;) = dir(¢;) for all 1 <4 <.
Assume without loss of generality that |x| < |z|. Denote by y the N —subword
of ¥, starting on the right hand side of x and assume dir(y;) = —dir(xg).
Thus, we assume that ¥, is none of the above types, in particular it is neither
of type 3) nor of type 4). We obtain that

indf,(9) =|2| -1, and
G+1)E=0G+1) = (Jz[-1)-1=7+1-]z],
G+DS=G+D)+(x|-1)+1=75+1+]x|

It follows that dir(9;.1) = dir(v;) giving a contradiction. O

Corollary 3.71. Let w; be a symmetric band of period p with periodic part
Wy = e*un*uTl. Let v, € (@) (w,) be weakly consistent, given by one of
the types 1)—4) of Proposition 3.70 and with periodic copies 17;1) = ghigprit=!

where t € (P?

ud

"1 (w) and pi, ki € {+1,-1}. Then v, is consistent.

Proof. The result follows from Proposition 3.67 and 3.70: by Proposition
3.67 we know that weakly consistent and consistent orientations coincide on
those j € Z with ind}(w;) < co. Proposition 3.70 gives that letters v; with
ind; (w;) = oo are consistent for the types 1) - 4). O
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3.4 Formulation of Main Theorem

We have now considered all components which are necessary to state the
main theorem of this thesis. The proof of it will be given later (Chapter 6,
Theorem 6.10).

For an easier formulation, we denote by W; the following set of words, and
by C; the following category (i = 1,2,3,4):

Wi Ci

asymmetric strings | modk

symmetric strings | modk[f | f2 = f]
asymmetric bands | mod k[T, T !]

symmetric bands modk(e, f |eZ=¢, f? = f)

| W DN | .

Furthermore, we denote by V; a complete set of all finite dimensional, pair-
wise non-isomorphic indecomposable modules of C;, i = 1,2, 3,4.

Let w e Wy, V be a Ci-module. Then we denote by My (w, V) the following
module:

where

o { 1 if (w[<i])™" > w[> 1],

1 else,

for all ¢ e I with w; a special letter, and where the V;’s are disjoint copies of
V.

Let w = ue*u™! € Wy and let V be a Cy—module. Then we denote by
Moy (w, V') the following module:

K1 K9 K

w w w3 Km
Vo Vi< Vg = < Vi )=t

where

o { 1 if (w[<i])™" > w[> 1],

1 else,

for all 1 < ¢ < m, with w; a special letter, and where the V;’s are disjoint
copies of V.

Let wy, € W5 be of period p, an let V be a C3—module. We denote by
Ms(v, V) the module

Ky
wfl wSQ w;S wpfll
Vo w ‘/p—l )
K
wpp



where

ﬁ:{ 1 if (wi[<i]) ™" > wa[> ],

1 else,

for ¢ € Z with w; a special letter, and where the V;’s are disjoint copies of V.
Let w, € Wy be of period p with periodic part w, = e un*u!, and let V be
a C4—module. We denote by My(v, V) the module

K2 KFm+1

Wiy wy wy w, M
e=e ‘/0 ‘/1 ‘/2 i Vm ) n=Ff ,

where

1 if (wel[<i]) ™ > w[> 1],
R =
-1 else,

for all 2 <i<m+ 1 with w; a special letter, and where the V;’s are disjoint
copies of V.

The exponents k; with ¢ € I such that w; is an ordinary letter, are given by
the respective exponents in w or wy, respectively, in the above descriptions
of M;(w, V'), M;(ws, V), respectively. Our final classification result reads
as follows:

Main Theorem: Let A be a clannish algebra. The modules of the form
M;(w, V), i=1,2,3,4, with w running through W; and V running through
Vi, give a complete list of finite dimensional, pairwise non-isomorphic in-
decomposable modules of A.

Remark 3.72. We can see by the definition of Mi(w,V) and Mz(w,V)
that we actually consider modules arising from weakly consistent directed ver-
sions of w for the asymmetric cases. Recall that they coincide with consistent
directed versions for those two cases.

Similarly, we know by Theorem 3.61 that the set of weakly consistent and
consistent directed versions of symmetric strings coincide. We consider those
versitons here, too.

The case of a symmetric band is - as before - the most complicated one and
requires further investigation. On first sight it might seem to behave sim-
tlar to the other cases with respect to its directed versions, but we need to be
careful here: the directions chosen on the symmetry azes are hidden in the
action of e and f on the vector space.
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4 Formulation of a matrix problem

In this chapter, we reduce the setting to skewed-gentle algebras (see Sec-
tion 4.3) and give an explicit construction of a bundle of semichains for a
given skewed-gentle algebra. In order to do so, we first present in Section 4.1
the results and constructions on representations of bundles of semichains ¥
from [Bon88, Bon91]. We introduce in particular the sets &(£) of so-called
simple, admissible £-chains, and the set of so-called simple £—cycles 6(2)
Starting from those sets, [Bon91]| gives a nice construction of the canonical
X-representations which finally lead to a classification of those. By trans-
forming our classification problem into the classification problem presented
in those papers, we are able to use their classification results for our purposes.
Before doing so, we give an explicit description of the category Rep(X) of
representations of the bundle of semichains X (cf. Section 4.2).

We proceed in Section 4.4 with the above mentioned construction of a bundle
of semichains X, for a given skewed-gentle algebra A and thus prove that
such a bundle always exists for a skewed gentle algebra (Theorem 4.70). Fur-
thermore, our method describes a unique way of constructing the bundle. In
Section 4.5 and 4.6, we describe how to obtain £-graphs from words in
Fwa(A). We find in particular that words given by asymmetric and sym-
metric strings result in simple, admissible £—chains (Theorem 4.113). Sim-
ilarly, we can obtain such £—chains from symmetric bands (Theorem 4.113).
We also see that asymmetric and symmetric bands result in simple £—cycles
(Theorem 4.130). To this end, the notion of minimal and coadmissible words
becomes important (cf. Chapter 2). Finally, we are able to show that there
exists a 1-1-correspondence between strings and symmetric bands and the
isomorphism classes of simple, admissible £—chains (Corollary 4.117). Simil-
arly, we see that there exists a 1-1-correspondence between asymmetric and
symmetric bands and the isomorphism classes of simple £—cycles (Corollary
4.142).

Another advantage of our construction is described in Section 4.7: we show
here that the directions on £-graphs coincide with the directions on spe-
cial letters of finite index due to the way we construct the bundle. Chapter
5 will show in which way this result helps us for the classification of the
indecomposable modules.

4.1 Matrix problem for bundles of semichains

We introduce in this section the notion of a bundle of semichains and their
representations after [Bon91]. Therefore, we stay close to the structure of
[Bon91]. Furthermore, we outline the strategy for the classification of the
indecomposable representations of bundles of semichains given in [Bon91|
and proven in [Bon88|. We also cite useful properties with respect to this
classification from |Bon88|.
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We start with some definitions and notation.

4.1.1 Bundles of semichains

Definition 4.1. Let II be a finite partially ordered set. Then Il is a semi-
chain if it can be written as a disjoint union

k
IT= |_| Hia
i=1
such that each 11; consists of either one element or two incomparable elements
and such that for all v €1l; and y € Il; with @ < j one has x <y.
The sets II; are called links of 11.

We denote the elements of a two-point link II; by x*, x~, respectively, and
write x¥2x” to denote their incomparability.

Remark 4.2. If each I1; consists of one point, then Il is called a chain.

Example 4.3. The semichain 11 =TIy UTly with I1 = {1}, Iy = {2%,27} can
be depicted in o Hasse diagram in the following way:

T\l/

Denote by X = {€q,...,Cx,Ry,..., Ry} a family of pairwise disjoint
semichains, that is,
&nd;=0 Vi # 7,
RiNR; =0 Vi # 7,
CGnR; =2 Vi, j.

Moreover, denote by

N N
c-Ue, "=Un;
i=1 i=1

the union of the respective semichains.

Definition 4.4. We call elements of € column labels and those of R row
labels. Accordingly, any €; and € itself, any R;, R itself is called a column
label set and row label set, respectively.

Denote by £(€&;) or £(R;) the set of links of the semichain €; or R;,
respectively. The union of the sets £(&;),...,£(¢&,) is denoted by £(C),
and the union of £(R1),...,L(R,) similarly by £(R). Moreover, we set
£=8(%X)=£L£(€)uL(R). Denote by Xy = CUR the set of elements of € and
R. Let o be an involution (that is, 0? =id) on Xy such that o(X) = X for
all elements X belonging to a two-point link.

88



Definition 4.5. A bundle of semichains is a pair X = (X,0) where X =
{€1,...,CN, Rq,...., RN} is a family of pairwise disjoint semichains and o
an involution on the set Xg of elements of the semichains.

Example 4.6. Let N = 2, X = {€1, &, R, R}, where € = {€];x¢7;},
Cy={Cn}, Ry = {R11 >Rz}, Ro = {Ru2). Let o be given by

o: Ry = Co1, Rz NRoy, ¢§IH¢§1,<€{+,—}-

Then X = (X,0) is a bundle of semichains.

Example 4.7. Let N =1, & = {Q:hi%:h}, Ry = {%11 > NRqg > 9%13} and o
acts as follows:

¢§1 < thp Ce{+ -},
Riz < Rig,
R11 < RAys.

This gives for X = {€1,9R} the bundle X = {X,0}.

Definition 4.8. A representation of the bundle X = (X,0) over k is given
by a collection of the form U = (Ux,U") xexy,1<i<N Such that

e Ux is a finite dimensional k —vector space of the form k"X where nx =

dim(Ux) and such that dim(Ux) = dim(Uy(x))-

o U': Dcee, Uc — @renr, Ur is a k-linear map for each 1<i< N.
Equivalently, U can be expressed as a finite matriz with band structure
gwen as follows:

- horizontal bands are indezed by the elements R € R;,

- vertical bands are indezed by the elements C € €.
We denote by P(X) the band indexed by X € Xy. Then
- the band P(X) has dim(Ux) rows (columns) if X e R (X € €).

Remark 4.9. Note that for some elements X € Xg the corresponding band
P(X) may be empty.

We are going to see examples for X-representations in Subsection 4.1.4.

Definition 4.10. Let U = (Ux,U")x,; and V = (Vx, V") x,; be two represent-
ations of X. Then U and V are said to be equivalent if for anyie {1,..., N}
the matrices U' and V' can be obtained one from the other by a sequence of
transformations of the following types:

89



1. Perform an arbitrary elementary transformation of the rows (respect-
ively columns) within the band P(X) in U', X e R; (X € &;), for any
1<i< N, but

la. if o(X) =Y with X e Ry, Y e R; (X €&, Y € &), for some
1 < 7 < N, then perform the same transformation on the band
P(Y) in UY.

1b. if o(X) =Y with X e R;, Y €€ (X € &, Y € R;), for some
1< j < N, then perform the inverse transformation on the band

P(Y) in UY.

2. For X <Y inR; (€;) for some 1 <i< N, add a multiple of the band
P(X) to the band P(Y) within the matriz U’

Transformations of the types 1,1a,1b and 2 are called admissible.

Remark 4.11. We will make use of admissible transformations in particular
in Section 4.2 in order to define the category of representations of a bundle
of semichains.

Definition 4.12. Let U and W be two representations of the bundle X.
Then the direct sum U @ W of the two representations is defined as follows:

o The vector space (U @ W)x for X € X is given by Ux & Wx.
o The matriz (U@ W) forie{l,...,N} is given by

UZ-W-:(@UC)@(@WC)MJ(@UR)@(@WR)_

Ce¢; CeC; ReR; ReR;

Remark 4.13. Note that the intuitive definition of a direct sum of two
representations would be to define U @ W* as maps

@ (U0®Wc)—> @ (URGBWR).
Ce¢; ReR;

We use the natural isomorphism between these direct sums and the respective
ones given in Definition 4.12 in order to define them as we did.

Definition 4.14. Let U be a representation of the bundle X. Then U is
indecomposable if it is not equivalent to the direct sum of two non-trivial
representations of X.
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4.1.2 £-graphs

The aim of this subsection is to define £— graphs. From those we construct
in the next subsection certain representations of X.

Recall that £ = £(X) denotes the set of links arising from the semichains
in X. In the following we identify links consisting of one point with the
corresponding point itself. The number of points of a link X is denoted by
r(X).

We are going to consider the following two symmetric binary relations on £:

Definition 4.15.  a) The relation o € £x £ is given by the tuples (X,Y")

such that
either X=zY, r(X)=r(Y)=1, o(X) =Y,
or X=Y, r(X)=2.

If (X,Y) € o, we write XaY'.
b) The relation B c £ x £ is given by the tuples (X,Y') such that

either X e (), YeL(R),
or X e (M), YeL(e), forsomel<i<N.

For v € {«, B}, we say that two links X,Y € £ are in y—relation, if XY
holds. We write X~Y if X and Y are not in y—relation.

Remark 4.16. Let X € £. It follows by definition:

XaX if and only if X is a two-point link,
XaX if and only if X is a one-point link.

Example 4.17. Consider the bundle of semichains given in Example 4.7.
Let €11 denote the link containing the two points €1 and €7,. We identify
the other links only consisting of one point with the points themselves. Then
we obtain the following relations:

R1;B8C11 forany 1<j <3,
¢r1alyy,

Ri1aRs,

RioaX  for any X € €1 UR;.

Next, we define an L£—graph. To this end, let  be the set of finite
non-oriented graphs consisting of chains and cycles of the form

C1 P1 Cc2 Cm—-1 Pm-1 Cm
[ ] o [ ] [ )

m>1
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(&1 P1 c2 Cm-1 Pm-1 C‘n

Pm

Denote in the following by

B m—1 if C is a chain of length m,
m =
m if C is a cycle of length m.

the number of edges in the graph C. For cycles, we consider in the following
indices ¢ > m modulo m.

Definition 4.18. Let C = (¢, pj)i<icm-1,1<j<m € . An £-graph on C is a
Junction g: C - Lu{a, B} with

g(ci) € £, forall 1 <i<m,

9(p;) € {o, B}, forall 1< j <m,

such that the following holds:
a) If p; connects the nodes c; and civ1 in C, then g(c;)g(pi)g(civ1).
b) For p; and p;+1 neighbouring edges in C, then g(p;) + g(pis1)-
c) If C is a cycle, and g(cp,), g(c1) are one-point links, then g(pm) # a.

The length of an £—graph g is denoted by |g| and given by the number m of
nodes in C.

Remark 4.19. Note that we have added condition c) in Definition 4.18 in
contrast to the original [Bon91]. This condition has to be given in order to
guarantee a correct notion of equivalence.

Definition 4.20. We call an £—graph g on a chain C' an £—chain and an
L—graph g on a cycle C an L-cycle.

We denote in the following z; = g(¢;) and A; ;41 = g(pi). Thus, we can
describe an £-graph ¢ uniquely by the sequences gy = {xq,...,Tn} and
g1 = { M2, -, Ameim ) (90 = {Mi2,.-., Am1}, respectively). Using for an
a-relation the symbol ~, and for a S-relation the symbol —, we can depict
an £—cycle as

Tl ~29 — -+ — Tyl ~ Ty OF Tl — T2~ ~Tm-1 — Tm

| | e A

depending on g1. Recall that the second kind of depiction only is given if x
and x,, are not one-point links. We depict an £—chain in a similar way.

Example 4.21. Let X be given as in Ezample 4.7 with relations as in Ez-
ample 4.17. Then
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1. g: Rig— €11 ~ €1 —Riz ~ R — €1 is an L—chain, and

2. the following is an L£—cycle:

g+ €1 - Rz~ R - €~ Ep - R ~ Rz - G
e

Using the description of an £—graph g via the two sequences gg and g1,
it is easy to define the corresponding reversed graph g*, or to compare g to
a second graph:

Definition 4.22. Let g be an £—graph with sequence of links go = {x1,...,Tm}
and sequence of relations g1 = {Ai2,..., Am—1m} (90 = {M2,..., Am1}, Te-
spectively). Its reversed £—graph g is given by

96 = {x’m,v e 7$1}7
o Dme1ms 5 A2} if g an £ — chain,
917 {Mm—tms s M2, Am1} if g an £ cycle.

Definition 4.23. Let g and h be two £—graphs given by go = {x1,...,Tm},

g1 ={ M2, Aij} and ho ={y1,...,ym'}, ha = {12, ..., pir jr } where (i,7) =
(m—1,m) if g is an L-chain and (i,5) = (m,1) otherwise, (i',j") = (m' -
1,m") if h is an £-chain and (i',j") = (m',1) otherwise. Then g = h if

(1) m=m’,

(1) x;=y; for all 1<i<m,

1) Nij =i forall1<i<m,2<j<m (1<j<m
J = Hig

Example 4.24. Consider the £—graphs from FExample 4.21. Then we obtain
the following reversed graphs:

1. g% = €11 =Ry ~ Riz — i1 ~ Ep — Ryo,
2. g"=g.

We define next two properties of £—graphs. They are called admissibility
and simplicity. Later, those properties will be useful in order to define so
called canonical representations and in order to describe their constructions.

Definition 4.25. An £—chain g is called admissible if the following holds: if
there exist X,Y € £, X #Y with XaY, and ¢; € C with g(¢;) = X, then there
exists an edge p € C containing ¢; (i.e., p=p; or p = pi—1) with g(p) = a.

Remark 4.26. This condition holds for any £—cycle.
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Example 4.27. Both £-graphs from Ezample 4.21 are admissible. For the
same bundle X, the following £—chain is not admissible:

g i Ria — €11 ~ €11 — Rys.

This 1is due to T4 = Ri3 being a one-point link which is in a—relation with
the one-point link PR11.

Remark 4.28. As we see in the above example, admissible £—chains are
allowed to have two-point links as end points without any restriction (see
Ezample 4.21.1).

The critical one-point links are those being in a—relation with other one-point
links. Hence, one-point links which are not in any a—relation can also be end
points in an admissible £—chain.

The notion of simplicity is given in terms of isomorphisms.

Definition 4.29. A homomorphism 7 : C — C’ of graphs is given by a map
on the nodes c; which preserves adjacency. That is, two neighbours c;, ciji1
in C are sent to neighbours c} =7(¢), c;ﬂ =7(cis1) in C".

If the homomorphism T is bijective, it is called isomorphism.

Definition 4.30. Let 7: C - C’ be an isomorphism of graphs and let g, ¢’
be two £—graphs defined on C, C', respectively. Then T is an isomorphism
of £—graphs if g =g'7.

We denote the group of automorphisms on an £—graph g by Aut(g).

A rotation for an £—cycle g is given by an automorphism T for which there
exists k € Z such that 7(c;) = ¢y for all 1 <i <m. The group of rotations
on g is denoted by Rot(g).

Definition 4.31. We call an £-chain g symmetric if Aut(g) is not trivial.
An L£-cycle g is called symmetric if the quotient group Aut(g)/Rot(g) is
not trivial.

Definition 4.32. We call an £-cycle g simple if Rot(g) = {id}.

Example 4.33. 1. Consider the £—cycle from Example 4.21.2. Then its
underlying graph Cy is of the form

] —C —C3 —C4 — C5, — Cg — C7 — C8.
l |

The automorphism group of g is given by Aut(g) = {id, 7} where 7 is
an isomorphism on Cy, with the action

C4 <> Cs, C3 <> Cg, C2 <> (7, C1 <> C8.

The morphism T is clearly not a rotation, so Rot(g) = {id}. Thus, g
s symmetric and simple.
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2. Consider for the same bundle as before the cycle

g: €1 - Rz~ R -~ - R ~ Rz -y
e A

It has the same underlying graph as given in 1. For 1.3 :¢; = cjz3 we
have Aut(g) = Rot(g) = {7u3,id}. Thus, g is neither symmetric nor
simple.

3. Consider again the same bundle as before. Let
g= € -Riz~R1 -~ - Rz ~Rinn -y
be an £—chain. It is symmetric since

Tic <> c9y, 1<i<4

gives a non-trivial automorphism on g for the underlying graph
Cyic1—cag—c3—c4—c5—Cg—C7—Cs.

Remark 4.34. It is easy to see ([Bon88, §2[) that for a simple £—cycle g
one has | Aut(g)| < 2.
If g is additionally symmetric, then | Aut(g)| = 2.

The notion of simplicity for £—chains is given in different terms. In order
to give this definition, we first introduce so called double ends for £-chains.

Definition 4.35. Let g be an £—chain of length m > 1. The left end x1 of
g is called double if Ao = 58 and x1ax1. Analogously, the right end x,, of g
is called double if X\p,_1,m = B and xy0xy,. We denote the number of double

ends of g by d(g).
Remark 4.36. Note that in the case of m =1, we define d(g) =1 if zicux;.

Let h be an £-chain with d(h) = 2. Then the £—chain hl*] for & > 0 is
given by
R~ p @) o )

where

h@:{h if i odd,

h* if i even.
Note that we can also construct %) if only the right end of h is double.

Definition 4.37. Let g be an £—chain. Then g is called composite if there
exists an L—chain h and some k> 1 such that g = k],
Otherwise, g 1s called simple.
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Example 4.38. The £—-chain g from Exmaple 4.83.3. is composite with
k=2 and
h= &1 -Rizg~Rn - &1

The L£—chain h is simple.

Lemma 4.39. An £—chain g is symmetric if and only if it is composite of
the form g = RV with b stmple and k even.

Proof. Let g = hlF] be composite with h simple and k even. Let h be of
length n and its underlying graph C}, be given by:

Chici—cog—-—cy.

The £—chain g is thus of length n’ = kn. The map 7:Cy - Cy, ¢; = Cpri1—i
gives a non-trivial isomorphism of g. Hence, g is symmetric.

Conversely, assume ¢ to be symmetric. Let 7 € Aut(g) be non-trivial. By
definition, the images of neighbouring nodes under 7 are again neighbours.
Thus, 7 is either be given by a translation or a reflection. Since g is not a
cycle, T cannot be given by a translation. Thus, it is given by a reflection.
This implies ¢ being composite of form ¢g = hlF] where k is even for h
simple. O

Lemma 4.40. An £—chain g is simple (admissible) if and only if its reversed
L—chain g* is simple (admissible).

Proof. Follows from the definition of the reversed £—chain. O

Definition 4.41. Let C' be an Q—graph and g be an £—graph on C. A
subchain of g is given by restriction of g to a connected subgraph of C.

Example 4.42. If g is composite, say g = hlk] for some h, some k, then
each WD 1<i <k, is a subchain of g.

Finally we are able to denote the sets of £—chains and £-cycles which
are used to construct the canonical representations of the bundle.

Definition 4.43. We denote by S(L) the set of simple admissible £—chains
and by S(L) the set of simple £—cycles.

4.1.3 Subchains via orientations

We set in this subsection the prerequisites for the construction of a repres-
entation of the bundle from each £—graph. To this end, we introduce four
types of subchains which determine the maps of the representations. Sub-
chains of these types will be called elementary subchains.
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From now on consider an £—chain g € &(£) with go = {x1,...,2,}. We
embed ¢ into another £—chain denoted by g as follows:

g if d(g) =0,
N A if d(g) =1,z double end,
9= g~g® if d(g) =1, x,, double end,
g ~g~g° if d(g) =2
Consider in the next step x; = ;41 for some i € {1,...,m}. Then, clearly,

Ti0iv1, 1.e. A1 = o Starting from that relation in g, we construct a
maximal symmetric subchain §*) = w ~ w*, that is, the right end of w is
given by z; and the left end of w* by x;41. Now we consider the neighbours
of that subchain in §: if 3 does not contain the left (respectively, right)
end of g, we denote by y; (respectively, z;) the element in gy such that y; Sw
(respectively, w*5z;) extends w (respectively, w*) to another subchain of g.
Otherwise, we set y; = oo (respectively, z; = 00).

Remark 4.44. Note that by construction of §(i), we have that y; + z;
(otherwise one obtains a contradiction to the simplicity of g) and either
Vi, zi € £(Cr) U oo, or y;, z; € L(Rg)Uoo for some ke {1,...,N}. We assume
X < oo for all X € £, and thus obtain either y; < z;, or z; < y;.

Some types of the elementary subchains depend on an orientation on
the already mentioned subchain z; ~ x;41 where z; = x;,1. We define this
orientation.

Definition 4.45. Let x; = x;11 € go as above.
We write x; ~ x;41 if one of the following conditions holds:

a) yi <z and x; € £(), yi € £(Y) U oo, P € {€, R},

b) yi >z and ;€ £(), yi € £(Y) U o, D Y € {C,R}.
We write T; ~ 2411 if one of the following conditions holds:

a) yi >z and x; € £(), yi € £(Y) U oo, P € {€, R},

b) yi <z and ;€ £(9), yi € £(Y) oo, Y # Y € {€, R}

Remark 4.46. Note that in case a) we always orient towards the larger link.
In case b) we orient the other way around.

We are now able to finally define the notion of an elementary subchain
for £—chains.

Definition 4.47. Let g € G(£). An eclementary subchain of g is given by
any of its subchains that is of one of the following forms:
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1) xi—q -,
—_
2) Tis1 ~ X — Tis,

-
3) Ti1—Ti ~ Tiv1,

4) Tisi ~ Ti — Tig1 ~ Tiza.

Elementary subchains for £-cycles are defined similarly. Here, we set
g = g and obtain elementary subchains as defined above. But we need to
take care in the case that g is symmetric: if there exists an automorphism
7 # id with 7(¢;) = ¢j41, then the elements y; and z; belong to w ~ w* and
coincide. Hence, we cannot use the above construction. In this case, we
assume

Ti ~ Tiv1 if T; € 2(%) (60)
and
T~ Tiv1 if ZT; € S(Q:) (61)

We denote by e; j(g) = e;,i(g) an elementary subchain of g with ends given
by z; and x;. Note that we read the type of elementary subchain from left to
right within the £—graphs, meaning that i < j (in cylces considered modulo
m if necessary).

Remark 4.48 (|[Bon88, Lemma 2|). An L£-cycle g always contains a maz-
imal elementary subchain of length 2. That is a subchain x;_1 —x; which does
not belong to any elementary subchain of greater length. We denote by ea(g)
such a subchain with least i € {1,...,m}.

4.1.4 Construction of representations

In this subsection, we describe the canonical representations which we can
construct from £-graphs in &(£) US(L). We restrict ourselves to the con-
struction of the matrices of the respective representation, since we can con-
clude any information on the vector spaces from them.

The constructions require a lot of notation and description such that we first
give an overview on the representations and a very rough idea on how we
can obtain them, before going into a detail.

Overview on canonical representations.

where

© =g, @o a monic, irreducible polynomial over k,

do(g) = 0(9)/2,
(5(9) = #{Z € {1, - ,m} | Ti F Tij4l,LTiy Tijs1 € Q(X),X € {Q:, 9%}}
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L—graph g representation U

d(g) =0 Ui(g)
L—chain | d(g) =1 Us(g),s=1,2
d(g) =2 Us(g,p);s=1,2,3,4,peN

symmetric, dp(g) even | U(g,p),p0 #t,t+1
L-cycle | symmetric, dp(g) odd | U(g,¥), 0 #t, t—1
non-syminetric U(g,p),p0 #t

Overview on constructions.

The general idea for constructing a matrix U?, 1 <4 < N, of a representation
U for an £-graph g € §(£) uS(L) is the following:

The rows and columns of U’ are divided into bands which are indexed by
the elements of R; and €;, respectively. Each x; € gy being equal to such
an element indexes a row/column (or subband in case of a cycle) in the
respective band. The entry in the intersection of a row (subband) x; and
a column (subband) z; is 1 (identity block) if z; and x; are the ends of an
elementary subchain. Otherwise, the entry is 0.

In detail, the construction is more complicated (e.g. in case of a cycle, there
can also exist non-zero entries not given by an identity block) and requires
a lot of descriptive notation.

First, we set some general notation:

Let g€ S(L)US(L), go = {x1,...,%m}. Denote
90 = {wi € go | micws}

and denote by W¥(g) the set of maps of the form

1/} : 98 - {+17 _1}
such that ¥ (z;) = £1 whenever z; = ;..

Remark 4.49. [Bon88, §3.2.] Let g€ S(£)US(L) and let ¢ € ¥(g). Then
for the reversed graph g* there exists a similar set V(g*) with maps V™ given
by opposite sign.:

V(i) = —(z), i€ go-

Since ¥ € ¥(g) is not always uniquely defined (in particular, on double
ends), we have the following options and conventionally assume the following
for an £—chain g:

Remark 4.50. Note that any x; € g5 is given by a two-point link X € £.
The elements X* and X~ of X each describe a band in the respective matriz.
From the data given by g, we do not know to which band any x; € g5 with
x; = X 1s assigned. This is fized by the maps in V.
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a(g) [ [¥(g)] [ convention on & € U(g), s € (L. . [¥(g)]}
0 1 11 uniquely defined
1 ) P1(z1) =-1 o(x1) = 1 if 21 is the double end
Vi(zy)= 1 to(my)=-1 if z,, is the double end
1
1

5 4 Pi(x1) =-1 apo(z1) = Y3(w1) =-1 a(xy) = 1
Pi(zm) = 1 o(xm) = V3(xm) =-1 Ys(zp)=-1

Let X,Y € £ with XaX, YaY, Z e€Xy, x; € go and 1 <s5<4. We denote

9o(X) ={z; € go | z; = X},
90,5(Y) ={xi € go | wi = Y, b5 (i) = £1},
Z if Z=X
n(Zg.s)={ PO HZX
l96,,(Y)| it Z=Y¢
n(x;) = #{xi € go | xi = 25,0 <i < j}.

Remark 4.51. The sets gj (Y) are built in case of Y being a two-point
link. For one-point links X, we consider the set go(X).

To some extent, we can - with respect to the construction - group together
representations of the types U (g) and Us(g) for s = 1,2. The representations
U(g,e) and Us(g,p), s = 1,2,3,4, p € N, are each similar to the construc-
tion of the first two, but will be treated separately. Thus, we start with
the construction of U(g) and deduce from it the constructions of the other
representations.

Construction of U;(g), Us(g).

Let g € (&) with d(g) = 1. We start with the matrices U',..., U of U1(g).
Letie{l,...,N} and let X,Y,Z%, Z~ € €;uR;. Then the structure of U’ is
given as follows:

e The bands of U*:

- The row bands are indexed by the elements of fR;.

- The column bands are indexed by the elements of €;.
e Order of bands:

- The column/row band P(X) is situated left /above of the column /row
band P(Y) if X <Y.

- Additionally, if Z* and Z~ are two incomparable elements, P(Z™)
is situated left /above of P(Z7).

e Sizes of bands:

: dlmP(X) =n(X,g,1),
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- If o(X) =Y, then n(X,g,1) =n(Y,g,1).

e Within the bands:

- The rows (columns) of P(Z) are indexed by the elements in

90(Z), if Z is an element of a one-point link,

ggl(Z), if Z=2%is an element of a two-point link ,¢ € {+,-}.

- The j—th row (column) within P(Z) is indexed by the element
zi € go(Z) (951(Z)) such that n(xg) = j.

- If 2 ~ xpy1 in g with z # xpy1, then n(xg) = n(wre)-

To describe the entries of the matrix U?, we denote by zj, N x; the entry in
row z3 and column x; of U'. Then

R 1 if there exists ey j(g),
T NTj = .
! 0 otherwise.

The matrices Us(g) are constructed for each s € {1,2} as described above,
using the respective map ¥, to determine the sets gf—)'ys, and using these sets
to determine the elements indexing the respective bands. We obtain two
representations from one £—chain.

Example 4.52. on Ui(g).

1. Let N =1 and Ry = {9%11 > Ri9 > 9%13}, ¢ = {Q:irlié@h} with 0(9%11) =

R13 and otherwise o acts as identity. Let

«— ——

g: Ri2 = €11 ~ €11 =Rz ~ Ri1 = €11 ~ €11 — R
Tl €2 €3 T4 T5 T6 €7 xg

Pt +1 -1 +1 -1

The elementary subchains of g are:

Type 1) e12(g) =x1—x2, Type 3) e13(g) =1 -T2 ~73,
g) =3 = 1, es7(g) = w5 - Fg ~ a7,
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Following the above instructions, we thus obtain for the representation

Ui(9) = (Usyy, Unyas Usygs Ues s Uql,Ul) that U' is of the form

11 <
To ®e T3 Ty
) Riz x4 0 0 1 0
U= 9‘{12 Tl 1 0 1 0
s 0 0 0 1
Ry 25| 0 1] 0 1

The vector spaces have the following dimensions:

dim(Umn) = dim(U%m) =1,
dim(Ug;, ) = dim(Ug: ) = dim(Us,, ) = 2.

2. Let N =5 and let the bundle X = (X,0) be given by the semichains

¢ = {€¢]; ¢, }, R1 = {R11 > Rz},
Co = {€g1 < o < Co3}, Ry = {Ra1 > Roo > Aoz},
€5 = {€52¢5, }, N3 = {NR31 > N3z},
€4 ={Csy <y}, Ry = {Ra > Raz},
C5 = {€55C5, }, Rs = {Rs1 > Rs2 > Rz},

and let o be acting as follows (and as identity otherwise):

Ca1 < Rig, Ra1 < R3o,
Ca3 < Rs1, R41 < Rss,
€41 > NRag.

Consider the £—chain

-
g: Rag — €41 ~Roz — o1 ~ Rin = €11 ~ €11 - Ry

x1 €2 €3 X4 €5 T6 7 X8
wl : +1 -1

The elementary subchains of g are given by

Type 1): x; —xie1 V1<i<8 odd,

Type 3) Ty —Tg ~X7.
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The representation Uy(g) is given by the matrices

¢, ¢
1 6 L7 2 i’Zl
U = Ri2 =5 0 1 |, U= 4

9%11 T8 1 1 9%23 3

(WF)
U4 — x2

and U3 and U® are empty. The vector spaces of U1(g) have dimensions
dim(U€§1) =dim(Up,, ) =dim(Un,,) =1, (e{+,-},
dim(UQil) = dim(Um“) = 1, 1€ {2,4}

and all other vector spaces have dimension 0.
Example 4.53. on Us(g).
1. Consider the same setting as in Example 4.52.1. and let

-
g: Rz - €1 ~ €1 Rz ~ R - &y

xr1 x9 xrs3 T4 Ts T6
. 41 -1 +1
o +1 -1 -1

The elementary subchains are
Type 1):  e12(g) =x1-m2, Type 3): e13(9) =21 -T2~ 3.
6374(9) = $3 - x47
e5.6(9) = x5 — x6.

We obtain the following two matrices UL for the representations Us(g),

s=1,2:
11 <y ST
To Xg X3 X2 T3 T
Ul _ %13 T4 0 0 1 Ul _ %13 T4 0 1 0
1~ ) 2 -
5)%12 I 1 0 1 9%12 I 1 1 0
9%11 xIs5 0 1 0 ERH Is5 0 0 1

The dimensions of the respective vector spaces are given by:

s=1: dim(Un,,) =dim(Ug; ) =1, 1<i<3
dim(Ug;, ) =2,

s=2: dim(Uy,,) =dim(Ue; ) =1, 1<i<3,
dlm(UQIl) =2.
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2. Let X = (X,0) be as in Example 4.52.2. Consider the following £—chain
with two double ends:

-
g: Rso — C51 ~ C51 — Rp1 ~ Cog —NRoy ~ R3o — 3

T1 Ty ®3 T4 Tz T Ty T8
(% +1 -1 +1
o : +1 -1 -1

The matrices U11 and Uil of the representation Ui(g) are empty. The
others are given by

Ca3 <5
ljl2 = 5 5 Uig = 8 s
a1 Rgp a7
&G €5
T2 zs3

Uir’: Rso  x1 1 1
%51 Ty 0 1

The corresponding vector spaces Un,,, Ugyy, Uy, Uggl, Usser Uy, s
Uggl and U@gl have dimension 1. The other vector spaces have dimen-
ston 0.

Let us now consider s = 2. The malrices Uy and Uy are also emply.
The other matrices of the representation Us(g) are given by

U; = U7,
Us = Uy,

¢35
U3 _ T8

The following vector spaces have dimension 1: Un,,, Ug,y, Uns,, U¢§1,
Unsyr Umsys Ugr, and Ug; . The rest of them has dimension 0.

Note that we can obtain the entries of U7 from those of U{ in Example
4.53.1 by switching the columns. That is due to the following statement:

Lemma 4.54 ([Bon88, §6, Statement 3.2.]). Let g € &(£) with d(g) = 1.
Switching the positions of the bands indezed by two incomparable elements
X %X~ gives an equivalent set of representations.

Construction of U(g, ¢).
The case U(g, ) for g € S(£) is similar to the previous one, but a bit more
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complicated. Recall that ¢ is a monic polynomial in k[¢] which is irreducible
over k. Note at first that the choice of ¢y depends on the given £—cycle g:
if ¢ is non-symmetric, then g # t. For g symmetric, we distinguish between
00(g) being odd or even: in the first case, we assume that ¢g # t,¢t—1, in the
second case that ¢g # t,t+1. Moreover, we consider — as in the case of U;(g)
— the sets go(Z) and gy;(Z) as indices within the bands. But in contrast
to the case of £-chains, the elements of the respective sets do not index
rows and columns, but subbands within the bigger bands. The size of each
such subband is given by ¢ = deg(y) where ¢ = ¢. Let x; nz; denote the
intersection of the two respective subbands. Then for g not being of length
four and symmetric, the entries of U? are:

Lyxe  if there exists ey j(g) # e2(g)
rpnxj =1 F, if there exists ey ;(g) = e2(g) ,

0 otherwise

where F, denotes the Frobenius block of ¢. Recall that for the polynomial
© =t" +a,_1t" 1+ ag its Frobenius block is given by the (n x n)-matrix

0 —ag
1 . —a1
F,=
0 -ap—o
I -ap

In the special case that g is symmetric and |g| = 4, there exist two elements
x7, 141 such that there are two elementary subchains elll+1(g) of length 2

and e?;,,(g) of length 4. Then we combine the above instructions and set:
Ty N1 = Lo + Fy

Remark 4.55. In the special case where g is symmetric and |g| = 4, we have
that ea(g) = ell’lﬂ(g):

e2(g)
T1] ~— T2 — T3 ~— T4 Tr] ~— X9 — T3 ~— T4
l | l |

ea(9)

Remark 4.56 (|[Bon88, §6|). Admissible transformations of type 1 allow us
to consider subchains of the form és(g) = x;-1 — x; with i not being the least
in {1,...,m} instead of ea(g). In this case, the block in x;_1 Nx; is given by
F, or F;l,

Example 4.57. on U(p,g).

105



1. Consider the same setting as in Example 4.52, 1. and let

go: I Z2 €3 T4 x5 Te €T Ts
padc

g: €1 -Riz~ R -G~ - R ~ Rz -
i

P -1 +1 -1 +1
(S| +1 -1 +1
(CERE +1 -1 -1
Yy +1 +1 -1 -1

The £—cycle g is symmetric, 0(g) = #{2,6} =2 and 69(g) = 1 is odd.
Thus, @o #t,t —1. We choose ¢p =t+1, deg(p) =2:

o=(t+1)2=t>+2t+1.
The corresponding Frobenius matrixz is given by
0 -1
b0 )

We obtain the following matrices UL of Us(g, @), s = 1,2,3,4 (recall
that each x; € gy indexes a subband of size 2):

¢y ¢

T4 xTs I xIs
Ry 9]0 0 0 0]0 -1 0 0
O 0 0 0|1 -2 0 0
=0 0 1 0|1 0 0 0
Ul = o 0 o0 1|0 1 0 0}
Ry 23] 1 0 0 0[]0 0 1 0
o 1 0 0/0 0 0 1
%0 0 0 0/0 0 1 0
O 0 0 0|0 0 o0 1

with vector spaces of the following dimensions for s =1:
dim(%n) = dlm(mlg) = dlm(Q:_{l) = dlm(th) =4.

In the following, we are going to neglect the subband structure within
the matrices. In this example, it means that each entry denotes from
now on a respective block matriz of size 2 x 2, that is, any 1 is going
to denote a 2 x 2—identity matriz. In this version, the matrices U! are
given by
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+ -
11 Q:ll

T4 I I Ts
2)%13 T2 0 0 FAO 0
Uj = | 0 1|1 0}
%11 I3 1 0 0 1
6 | O 0 0 1
11 ¢
T Tr4 T8 xIs5
Rz 22 [ F, 0 0] 0
U; = er| 10 1] 0 |
Rt x3| O 1 0 1
ze | O 0 0 1
<
T4 T xIs xTs
9%13 xI9 0 F@ 0 0
Us = x| 01 0 1}
%11 I3 1 0 1 0
z6 | O 0 1 0
1 ¢
L1 T4  T5 X8
Rz w2 F, 0] 0 0
Us = zr| 1 0] 0 1
Ri1 z3 0 1 1 0
zg | O 0 1 0

The dimensions of the vector spaces are given by
dim(R11) =dim(R13) =4 for all s=1,2,3,4,
and

s=1,4:dim(€7,) =4, dim(¢}) =4,
s=2:dim(€],) =6, dim(¢y) =2,
s=3:dim(€};) =2, dim(€y,)=6.

2. Consider the bundle of semichains as in Example 4.52.2. Consider the
following £—cycle
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go: I X2 X3 X4 T5 Z6 g €rg
5
g:  Ca3 ~ NRs1 - €51 ~ €51 — Rz ~ Ry1 - €41 ~ Rog
\ |

1 +1 -1

It is non-symmetric, so we can choose ¢ = (t—1)3 =3 - 3t> + 3t - 1.
Its Frobenious block is thus given by

Its elementary subchains are:

Type 1): z; — xi1 V1<1i<8, even,
ea(g) = v3 — 1,

Type 2): x3 ~ x4 — T5.

The representation U(g, @) consists of the two empty matrices UL, U3
and additionally the following ones:

o3 (WR]
U2 — T U4 —

Roz w3 ’ Rar w6 7

U5: Rs3 5 1 1 )
Rs1 29 1

The following vector spaces of the representation have dimension given
by deg(v) = 3: Unys, Usys, Unyys Ueyys Unsys Uniys, UCSI’ where ( €
{+,-}. All the other vector spaces of U(g,y) have dimension 0.

Construction of Us(g,p).
Recall that g € §(£), s =1,2,3,4 and p € N is fixed. To describe the matrices

in Us(g,p), we need a slightly adjusted notation: Let X,Y € £ with XaX,
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YaY and let Z € Xiy. Denote

90(p) = {(%i,q) | zi € go,1 < q < p},
90(X,p) = {(zi,q) € go(p) | x: = X},
96.5(Y,p) = {(zi,0) € go(p) | i = Y, s () = =(-1)71},

(Zgs.p) - | 10PN Z=X
95, (Vop)| if Z=YC,Ce{+,-}]

n(zj) =p-#{rr €go | vj =, 1 <k <j},
n((xj,q)) = (n(z;) - 1p +q.

Now let i € {1,...,N}, X,Y,Z,Z*,Z~ € €; UR;. Then the matrix U’ is
structured as follows:

e The bands of U*:

- The row and column bands are indexed by the elements of R;, €;,
respectively.

e Order of bands:

- The bands are ordered as in the previous cases.
e Size of bands:

- dim P(X) =n(X,g,s,p),

- If o(X) =Y, then n(X,g,s,p) =n(Y,g,s,p).
e Structure in bands:

- The rows/columns of P(Z) are indexed by elements in

90(Z,p) if Z is an element in a one-point link,

gg (Zp)if Z = Z¢ is an element in a two-point link.

- The row/column (x;, q1) is situated above/left of the row /column
(SU]', QQ) if
i<j or  1=7,q1<q.
- The j—th row (column) within P(Z) is indexed by (xk,q) € g90(Z,p)
(96,5(Z,p)) such that n(zy,q) =j.

- If 2 ~ w1 in g with zp # xpy1, then n(xg) =n(wre).
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In order to describe the entries in U’, we denote by (z,q1) N (zj,q2) the
entry in row (z,q1) and column (z;,¢2). Then

1 if there exists ey j(g) and (a), (b) or (c) holds,

0 otherwise

(zg, q1) N (25, 92) = {
(62)
where
(a) @1 = ¢,
(b) g1 =q2 -1, g2 odd and either k or j is equal to 1,
(¢) g1 =q2—1, g2 even and either k or j is equal to m.

Remark 4.58. The construction of Us(g,p) seems to be — in comparison to
the other representations — chosen arbitrarily. The background is the follow-
ing [Bon88, §3.2/:

When constructing Us(g,p), we actually consider Us(h,1) where h = gl?l.
For the latter, we consider

W(h) ={¢s | 1s € W(g)}, ths:hg - {+1,-1},
such that
77[_) | o) = ws(g) ng(]) =9,
i) gD =g

Note that hS = U§:1 (gé]))a.

Denote in the following by (x,q;) the copy of xy in the subchain g{%) of h.
The information on how to put an orientation in h on its "joints" is vital to
understand the connection to the earlier given construction:

(xi,Qk)"'(fL'i,QkJrl) ifiE{l,m},xiE%, (63)
(xla(Jk)N(x’qu}€+1) ’LfZE{17m}7ZEZEQ: (64)

Interpreting (a) - (c) in this context gives a clear idea on what is happening:

(a) We consider in each copy ¢\%) of g the elementary subchains. If ex,;(9)
exists, then (a) ensures that we take the respective elementary subchain
ek,j(g(qﬂ')) i each copy g(qﬂ') wmto account, that is, we put 1 as entry in
each copy q; of xp Nx;j.

(b) Here, we consider two neighbouring copies (1) ~ (@) of g Since go
s odd, q1 is even and we know that they are of the form

gl = g*, g\ = g.
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Thus, ¢\ ends with the respective copy of 1 € go, and ¢(%) starts
with the respective copy of x1 € go. The middle of ¢(1) ~ ¢(42) s given

by

=X~ X — (65)

with some direction given on x1 ~ x1. If k=1 in (62) and (b) holds,
then (1,q1) € ¢\ s the end point of an elementary subchain, oth-
erwise (j = 1), an end point is given by (x1,q2) € g'9). Tt follows for

(65):

R T if k=1,
=X YT — .. ’ij=1.

Hence, (b) ensures that we take all elementary subchains including the
"joints" of the form x1 ~ x1 into account.

(c) It ensures — similar to (b) — that all elementary subchains including the
"joints" of the form xp, ~ xy, are taken into account.

We can conclude that we still follow the simple rule to put a 1 in the entry
of a row and column if the elements indexing those are the ends of some
elementary subchain in g[p], and we put O otherwise. The notation used in
the construction is required since we consider different copies of g.

In the following we work on h = g[P] to construct U, s(g,p) but might still use
the notation from the formal construction given above.

Remark 4.59. [Bon88, §6, Statement 4.3.] Choosing the orientations at all
joints in the opposite way than described in (63) and (64), gives an equivalent
representation for each s=1,2,3,4.

Example 4.60. on U(g,p).

1. Consider the same setting as in Example 4.52.1. and let

g: €1 -Riz~Ru1 -y

x1 Z2 x3 Ty

P -1 +1
1/12 +1 +1
Y3 -1 -1
1/14 +1 -1
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We choose p=3. Thus, we consider

h=g®) = g g L B Z g

=C11 -Riz ~Ri1 - €11 ~ &1 - R ~ Rz -

€11~ - Rz ~ R - €y

T xT9 I3 T4 T4 T3 T2 I T xT9 X3 Ty
1 3
P -1 +1  +1 -1 -1 +1
Yo +1 +1 +1 +1 +1 +1
Py -1 -1 -1 -1 -1 -1
vy +1 -1 -1 +1 +1 -1
The elementary subchains of h are:
Type 1) e(ml,k),(mg,k)(h)7 k=1,2,3,
Type 2)  e(q, 2),(x2,3) (1),
Type 3)  €(a5,1),(xa,2) (1)
The matrices UL in Uy(g,3), s =1,2,3,4, are given by
11 ¢
(174,1) (174,2) (37473) (37171) ($1,2) (x173)
(x2,1) 0 0 0 1 0 0
1 %13 (562,2) 0 0 0 0 1 0
Ui = (22,3) 0 0 0 0 1 1
(x3,1) 1 1 0 0 0 0
9%11 (x3,2) 0 1 0 0 0 0
(x3,3) 0 0 1 0 0 0
+
11
(.1'1,1) (1'1,2) (1'1,3) (1'4,1) (1'4,2) (ZL‘4,3)
(x2,1) 1 0 0 0 0 0
1 9%13 (.%‘2,2) 0 1 0 0 0 0
Uy = (z2,3) | 0 1 1 0 0 0
(x3,1) 0 0 0 1 1 0
R (x3,2) 0 0 0 0 1 0
(x3,3) 0 0 0 0 0 1
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<h

(.%'1,1) (.%'1,2) (.%'1,3) (.%'4,1) (.%'4,2) (.%'4,3)
(22,1) [ 1 0 0 0 0 0
9{13 (:B2,2) 0 1 0 0 0 0
Us = (22,3) | 0 1 1 0 0 0
(x3,1) 0 0 0 1 1 0
Rt (1’3,2) 0 0 0 0 1 0
(x3,3) 0 0 0 0 0 1
11 ¢
(‘Tlvl) ($172) ($173) (‘T471) (‘T472) (1:473)
(x2,1) 1 0 0 0 0 0
Rz (22,2) | 0 1 0 0 0 0
Uj = (22,3) | 0 1 1 0 0 0
(23,1) [0 0 0 1 1 0
9%11 (1'3,2) 0 0 0 0 1 0
(x3,3) 0 0 0 0 0 1

The dimensions of the vector spaces are given by the respective band
sizes, and dim(R12) = 0.

. Consider the bundle of semichains from Ezample 4.52.2. and the fol-
lowing £—chain with two double ends:

g:

(I
P
(UEE
(R

€11 —Rig ~Co1 —Rop ~R3o — €34

I L2 L3 Zq Is Le

-1 1
1 1
-1 -1
1 -1

Let p=2. Then we consider for the construction of the representations

Us(g,2) the £—chain

h = g[Q] :

h: €11 =Rz~ Ca1 —NRop ~R3z — 31 ~ €31 — N3z ~ Roy — Co1 ~ Rz - €y

I T2 T3 Tq Zs Ze Te Ts T3 T2 I
1 2
P -1 1 -1 1
o 1 1 -1 -1
Py -1 -1 1 1
Wy 1 -1 1 -1
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For any s, the matrices Uf and U2 are empty. Thus, the vector spaces
Ux,; for X e {€,R}, j e {1,2}, U¢§1 for ¢ € {+,-} and Ung, for
1 < j <3 have dimension 0. Moreover, the vector spaces Uy, ,, Ug,s,
Ueyyy Uy, Umyy and Ugp,, also have dimension 0. The dimensions of
the other vector spaces are for any s € {1,2,3,4} given by

dim(Upy,, ) = dim(Usp,, ) = dim(Un,, ) = dim(Us,, ) = 2,
dim(Uyg ) =dim(Ug ) =1, (e{+,-}.
11 31

The other matrices are given as follows:

s=1:
11 <y o
) (r1,2)  (21,1) ) (23,1)  (23,2)
Ul = Rig (:L‘Q,l) 0 1 s Ul = Ro (£U4,1) 1 0
(x2,2) 1 0 (334,2) 0 1
<5 <3
3 (1'6,1) (m672)
Uy = R3a (565,1) 1 1 s
(.1‘5,2) 0 1
s=2:
11 <y,
1 (IIZ‘l,l) (‘Tlaz) 9 9 3 3
Uy= Rip (2,1) 1 0 , Uj=Ui, U;=Uj,
(.IQ,Z) 0 1
s=3:
31 <5
1 1 9 9 3 (1‘672) ('Iﬁv]-)
U3 = Ula U3 = U2a U3 = %32 (.%'5, 1) 1 1 s
($5,2) 1 0
s=4:
Ui=Ui, Ui=U3j, U;=U3.
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4.1.5 Classification Theorem

Theorem 4.61. [Bon91, Main Theorem] Choosing one representative in
each isomorphism class of £—chains and £—cycles of S(£) US(L) gives the
following classification.:

The set of representations of the form Us(g), Us(g,p) and U(g, @) associated
to the representative £—graphs is a complete set of pairwise nonequivalent
indecomposable representations of the bundle X = (X,0).
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4.2 The category Rep(X)
Let X = (Cq,...,Cn,NR1,...,9) be as in Section 4.1, and let X = (X,0) be

a bundle of semichains with involution o.
Let U = (Ux,U") xex,,1<i<n be a representation of X. For S ¢ X a subset,
denote by Ug the k —vector space

Us = @ Uy.
YeS

Then U’ : Ug, = U, can be written in terms of an (ng xngé, )—matrix, where
1 1

ngl = dim(Us, ), nﬂUQi = dim(Usy, ).

Similarly, we denote by n)U( the dimension of the vector space Ux, X € Xp.
We write U&Y : Ux — Uy to denote the respective restriction (block matrix
in) of U, X e &, Y e N;.

Let W = (WXawi)Xexo,lsisN be a different representation of X. Its map
W': We, - Wy, is given by an (ngj X ng;/i)—matrix.

Remark 4.62. Note that the bands in U' and W' are indexed by the same
elements, but are of possibly different sizes.

Definition 4.63. Let X = (X,0) be a bundle of semichains as described
above. Then the category Rep(X) of representations of X is given by the
following data:

e The objects of Rep(X) are given by representations of X, that is, tuples
of the form U = (Ux,U") xexy,1<i<N -

o A morphism 0:U — W between two representations U = (Ux,UYx,
and W = (Wx,W")x, is gien by a tuple 8 = (P,Q). Each entry
of this tuple consists of N k—linear maps P',..., PN, Q',...,Q",
respectively, such that the conditions (i) - (iv) below are satisfied. As in
the defintion of a X—representation, one can also equivalently consider
the P'’s and Q"’s as finite matrices with band structure given by the
semichains of the bundle.

(Z) PilUQ —>W¢i anin:qui _)me V1<i< N,
(ii) QU =W'P! V1<i<N,
(117) for X,)Y €eXo, X #Y and o(X)=Y:
(a) if X €R;, Y € Ry for some 1<4,5 <N, then

Qé{X:Q?Y?
(b) if X €&, Y e for some 1<1i,j <N, then
P)i(X :P{/w

116



(c)if X e Ry and Y € €, or X € & and Y € R, for some
1<4,5 <N, then
Qi x = P}j,Y (Pl = Q{/Y? respectively)
(iv) for X,Y € Xy and » a block of the respective size with arbitrary
(possibly zero) entries from k:

(a) if X,Y €&, for someie{l,...,N}, then

)

. 0 ifX<Y or XaY
PXY: .
« fX>2Y

(b) if X,Y €R; for someie{l,...,N}, then

i 0 if X>Y or X&Y
Qxy = . .
x f X<Y
e The identity morphism on a representation U is given by 1y =
(P,Q) where P'=1¢xe., Q' = 1y.xr., where 7; = ng{i, c; = ng
e Let 0=(P,Q):U -V, p=(R,S):V - W be two morphisms. Then
their composition is given componentwise: @of = (RP,SQ) such that
S'\QU =W'R'P* V1<i<N.
Note that P? and @Q° inherit their band structures from U?, W, respect-
ively:
o Pl is of size n%¥ xn{ with X,Y €¢&;.
. Qg(y is of size nI)/(V X n}[{ with X,Y e R;.
It is a well-known fact that the Krull-Schmidt Theorem holds for Rep(X)
(see [Bon91, KR77]) and that Rep(X) is additive.
Example 4.64. Let N =1, X = {€1,0R1} with
¢ = {€];=¢, },
9%1 = {9%11 > 9{12 > %13}.
Let o act as identity on the elements with the following exception:
0’(9{11) = %13.

We know from the previous section that its representations of X = (¥X,0) have
the following band structure with ng,, = nx,,:

+ +
11 11

Ri3
Rio (66)
Ri1
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Let U and W be two representations of X and 6 = (P,Q) : U — W be a
morphism between them. Then the components of 0 are of the following
forms with respect to their bands:

T Rz Rz Ry
. 11 51 Riz | A 0 0

P! = Qfl 8 . Ql = Rio * * 0
11 9%11 * * A

Here, both A and > denote a block of the respective size with arbitrary entries
from k. The two A-blocks are equal.

Example 4.65. Let N =1 and X = {€,R1} with

Q:l = {Q:H < 612 < Q:T3§Q:I3 < Q:14}, (67)
M1 = {Ri1 > R=NRy, > Ris) (68)

The involution o acts as follows:
o: € R, C1a ~ Cyy,

and as identity on the other elements. Thus, any representation of X is of
the following form with ne,, = nw,, and ng,, = ne,,:

Cii €2 € €y iy

Ri3

.
12 (69)
Ry
Rt

Let U and W be two representations of X and 0 = (P,Q):U - W a morph-
ism. Its components are of the following forms with respect to their bands:

¢ €2 €y €y Cyy

Rz R, R Rn

¢1| B * * * *

@12 0 A N N N 9%13 * 0 0 0
Pl=g, [0 00} Q=X ~ ]~ 1010

€3 0 0 0 * * gm ol 0 Ml 103

¢y 0] 0 0] 0] A nip x| * 1

Here, A and B denote blocks of the respective sizes with arbitrary entries
from k.

We now prove the well-definedness of compositions in Rep(%).

118




Lemma 4.66. Let 0 = (P,Q):U -V and p = (R,S) : V > W be morphisms
in Rep(X). Then ¢ o6 € Rep(X).

Proof. Tt is enough to check (iii) and (iv) of Definition 4.63. In order to do
so, we denote in the following the ordering of the bands in the matrices by
<. Let X, Y eXg. Wewrite X <. Yif X<Y,orif X=Z"andY =2Z". In
particular, it follows that

Piy =0and Ryy =0 for X <. Y,
Q%y =0and Siy =0 for X >, Y.
Since we use (iv) to prove (iii), we start with the former.

(iv) Let X and Y be in Xp. It is enough to consider the zero blocks in the
composition.

(a) Let X,Y e€@; for some i€ {1,...,N}. Let X <Y. We obtain

(R'P")xy = Y, Rx;Pyy

ZGQ:Z‘
_ i i i i i i
= Z Ry Pzy + Z Ry, Pzy + Z Ry 7 Pzy
Z<: X X< Z<. Y Y<.Z

+ R&Xp)i(y + Rg(YP}i’Y
=0. (70)

Finally, let X and Y be incomparable, say X <. Y. Then

(Ripi)XY = Z R&ZP%Y + Z R&ZP%Y + Rg(XP)i(Y
Z<s X Y<.Z

+ RS(YPf/Y
~0, (71)

and

(R'P)yx= Y RyzPyx+ Y, Ry;Pyx+RyxPiy
Z<: X Y<iZ

+ Rg/YP{/X
=0. (72)

Combining (70) - (72) gives
(R'P)xy =0 if X <Y or XxY
(b) Proceeding analogously to (a) results in

(S'Q)xy =0 if X>Y or XzY.
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(i) Let X #Y € Xo with (X)) =Y. Note that X and Y are comparable.

(a)

Let X €R; and Y € R, for some ¢,j € {1,...,N}. We have that
Qkx=Q), and Six =50 (73)
We obtain that

($'Qxx = 3 SkzQzx+ ¥ SxzQ7x +SxxQxx
Z<: X X<:Z
= Sxx@xx (74)
and analogously, that
(S7Q7 vy = Sy Qy (75)
Combining (73), (74) and (75) gives the desired result:
(5°'Q)xx = (Q)yy.

Consider X € €; and Y € €; for some ¢ € {1,...,N}. It follows
analogously to (a) that

(R'P)Yxx = (R P)yy.

Let X € € and Y € R; for some 4,5 € {1,...,N} (X € R; and
Y €¢;). It follows analogously to (a) that

(R'PYxx = (SQ)yy (R P)yy =(8'Q")xx)  (T76)
We know already from (a) and (b) that
(R'P')xx = R x Pyx,
(7Q")yy = 53y QY y-
This results with (76) in
(S'Q)yy = 53y Q}y = RyxPix = (R'P')xx

The case X € R;, Y € ¢; for some ¢,j € {1,..., N} results analog-
ously to the above in

(S'Q)xx = (R P)yy.

120



Remark 4.67. In terms of matrices, a morphism 0 = (P, Q) is an isomorph-
ism provided that any of its components P' and Q° has full rank.

Any admissible transformation has full rank and respects the conditions (i)
- (iv) of a morphism in Rep(X) by definition. Thus, any admissible trans-
formation gives an isomorphism in Rep(X).

The converse of the previous remark is not trivial but we obtain the
following:

Lemma 4.68. Any isomorphism in Rep(X) is given by a finite product of
admissible transformations.

Proof. Let 6 = (P,Q) be an isomorphism in Rep(X). Then, in terms of
matrices, P’ is an upper and Q" is a lower triangular matrix for any 1 <i < N.
We first consider Q".

We apply Gauss elimination to the block rows of Q. Note that for incom-
parable elements X %X~ the block Qgﬁx- — which is situated below the
diagonal block QfX+X+ — is already 0 and does not need to be eliminated.
Together with @ having upper triangular form, Gauss elimination thus only
requires admissible transformations of type 2. We denote the obtained mat-

rix by Q"

Qi = ( H G(kvl’)‘)) Qia (77)

(3B

where G(k,I,\) describes the operation on the row blocks k and [ with
A ek (e.g. adding block row k multiplied by A to block row [). Now Q" is
of diagonal block form: (XY € €)

Oy = 0, if X=#Y,
XY s ifX=Y.

Thus, we can write it as follows:

Q' = ] Dk (78)

XE@Z'

where Dé( denotes the square matrix of same size as Q°, with an arbitrary
block (D% )x x, identity blocks in all other diagonal blocks (D% )yy, Y # X,
and O—entries in all off-diagonal blocks:

AL fZ=Y=X
(Di)zy={1 i#Z=Y+X.

0 else
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Any such Dg( is an admissible transformation of type 1a or 1b. Thus, combin-
ing (77) and (78), we can write Q" as a product of admissible transformations
of type 2 and of type 1:

Q":(H G(k,l,)\))( I1 Dgf).

BN Xe€;

Now consider P?. Proceeding analogously as for Q¢ with respect to P being
of upper triangular form and with respect to its block columns, we obtain

Pi= ( [T Dg(.) ( [T G‘l(kz,l,)\)).

Xe€; kLA

with similar notation as above. In particular, we denote by /_lg( its non-
arbitrary block of Dé( in position X X. Thus, P’ can be written as a product
of admissible transformations of type 1 and of type 2.

Note that the assumptions on certain matrices with respect to admissible
transformations of type la and 1b are satisfied. This is due to Q* and P’
being for any 1 <¢ < N of diagonal block form. Thus, for X # Y € Xy and
o(X) =Y, we have

- for X eR;, Y eR,; (X e, Y ed;) for some 4,5 € {1,..., N} that
k=4 (A=A,
~for X eRy, Y e€; (X e, Y eRy) for some 4,5 € {1,..., N} that
k=4 (A= 4).
Finiteness of the products follows in both cases from the finiteness of Q°, P,
respectively. O

Remark 4.69. By Lemma 4.68, isomorphic representations in Rep(%) are
given by equivalent ones (cf. Definition 4.10). In particular, the commutativ-
ity relation QU = W*'P" implies for the isomorphism 0 = (P,Q): U — W
that

Ui - (Qi)_l WPt

Thus, condition (iii) on morphisms ensures that any arbitrary elementary
transformation on the band P(X) implies the same or, respectively, inverse
transformation on the band P(Y'), where X and Y are two links with o(X) =
Y.
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4.3 Reduction to skewed-gentle algebras

In the following subsections, we take the next step in order to obtain a clas-
sification of the indecomposable finite dimensional modules of a clannish
algebra.

We can deduce from any clannish algebra A a skewed-gentle algebra A, by
neglecting some of the zero relations of A such that all necessary conditions
for A are fulfilled (compare Definition 2.9, conditions (v) and (v)*).

In the following, we will restrict ourselves to skewed-gentle algebras A. Re-
call that any skewed-gentle algebra is clannish by Lemma 2.11. Hence, the
previous results on clannish algebras also hold for skewed-gentle algebras.
Starting in the next subsection, we describe how to transform the setup of
a skewed-gentle algebra A into the setup of a bundle of semichains X, as
described in [Bon91]. The construction of X, will be given in such a way
that it is compatible with the directions on special letters of finite index for
strings and bands (Proposition 4.145). Eventually, our construction will lead
to an equivalence between the categories Rep(X,) and mod(A) (Theorem
5.6). Moreover, we obtain a classification of the indecomposable finite di-
mensional modules of a skewed-gentle algebra in terms of strings and bands
(Theorem 5.49). This classification derives from the former mentioned equi-
valence. Finally, we will be able to give a reformulation of this classification
which will lead to the classification for clannish algebras as conjectured in
[CB88| (Theorem 6.10). Starting from the classification on skewed-gentle
algebras, we will deduce a classification on clannish algebras as follows:

Let A =kQ/(RURSP) be a skewed-gentle algebra and let A =k Q/(Ru RSp)
be a clannish algebra. Assume that we obtain A from A by adding the set of
relations {ry...7, }ier to R. Denote by (Vi, Vz)ieQo,ze, @ A-representation.
Take the list of indecomposable finite dimensional modules of A given by
its classification and dismiss all those modules V' which do not fulfill the
relations 7 € {7y ... 7k, bier: VHVTI% # 0 for all 4 € I. The remaining ones give
a classificaiton of the indecomposable finite dimensional modules of A.
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4.4 Construction of a bundle of semichains

In this section we want to give a description on how to transform the setup
of a skewed-gentle algebra A into the setup of a bundle of semichains X, as
described in [Bon91]. The construction of X, will be given in such a way
that it is compatible with the directions on special letters of finite index
for strings and bands (Proposition 4.145). The construction given here co-
incides to some extend to the one of a bush given in [Den00| (see Remark
4.77). Eventually, our construction will lead to an equivalence between the
categories Rep(X,) and mod(A) (Theorem 5.6).

For the rest of the chapter, let A be a skewed-gentle algebra (unless stated
otherwise) given by a quiver @) with set of special loops given by Sp and a
set of relations R. Let V = (V, Va)ier,ate be an arbitrary representation of
A.

Let 7 = riro € R be a relation and let a € Q1 be an arrow. Then we write
a€rifri =a or ro = a. Note that in this case we have that a € Qj”d.

The goal of this section is to prove the following statement:

Theorem 4.70. Let A =k Q/(R5PUR) be a skewed-gentle algebra with R as
described above. Then there exists for A a bundle of semichains Xy .

We give the explicit construction of X, in the Subsections 4.4.1 - 4.4.5
and the proof of the above theorem. Examples for the complete construction
will be given in Subsection 4.4.7.

4.4.1 Filtrations from relations

In this subsection we describe how we obtain filtrations from the relations
in RURP. We need the filtrations in the following subsections in order to
create semichains and assign them to the bundles.

We obtain five different types of filtrations. The types (1) - (3) are obtained
from relations in R, while the filtrations of type (4) are obtained from RSP.
Filtrations of type (5) will be called standard filtration. They do not arise
from a relation.

First we describe the filtrations we obtain from R.
Let i € Qo and a € Q9 with s(a) = 4. If there does not exist r € R with a € 7,
then a filtration on ¢ is given by

(1) F;:0cker(a)cV;,

where ker(a) describes the subspace generated by the kernel of a. We call
any filtration of this form a filtration of type (1).

If there exists 7 € R with a € 7, then there exists b € Q"% with #(b) = i and
r = ab. We consider

(2) F;:0cim(b) cker(a) cV;,
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where im(b) denotes the subspace given by the image of b. This gives a

filtration of type (2).
Assume now that t(a) = i. We distinguish as before: if there does not exist
r € R with a € r, then

(3) F;:0cim(a)cV;.

gives a filtration of type (3).
If there exists a relation r with a € r, then we obtain again a filtration of
type (2).

Let us now consider filtrations which we obtain from RSP,
Let € € Sp with s(¢) = 4. Then we have the idempotent relation €2 = € on
and thus we can decompose V; into V; = im(e)@ker(e). We obtain a filtration

1m(£ (79)

c \/

ker(e)
which we call a filtration of type (4). Instead of (79) we write:
0 cim(e) @ ker(e) = V;
for this type of filtration.
At last, we consider a filtration that is not arising from a relation. We
call this filtration standard or a filtration of type (5) and it is of the form
(b)) F;i:0cVi.
This filtration arises at vertices i € (o which have at most one incident arrow.
Thus, if i € Qo is not an isolated vertex (where isolated means that no

arrows start and no arrows end in ), then we obtain two filtrations Fi(l),

Fi@) for 4, of which at least one is of type (1) - (4), and the other is of type
(1) - (3).

If, on the other hand, i € Qg is an isolated vertex, then both Fi(l) and FZ.(2)
are filtrations of type (5).

4.4.2 Semichains from filtrations

In this subsection we describe how to construct several semichains from fil-
trations of type (1) - (5). Here, we are going to distinguish between the types

125



(1) - (3), (5) and type (4). This is due to the fact that (1) - (3),(5) have the
form of a chain, while (4) is of diamond form. The goal is to obtain for each
F; of the above types a semichain S; with elements corresponding in some
way to the bases of the subspaces.

Let
FiIOZWOC%1C"'C%n:%

be a filtration of V; of type (1) - (3) or (5), i € Qo. Note that n < 3.
In the first step, we determine the bases of the respective subspaces and set

BiO = 07
B;1 is abasis of Vjq,

Bis is B;1 extended to abasis of Vjo,

giving iteratively
Bij is B; k-1 extended to abasis of V. (80)

Additionally, we assume the following with respect to the bases { By }x:
Let a:1— j € @1 and let

Fj:0=VjocVjic---cVi, =V

be a filtration on V. Note, that in case of a being a loop, we have i = j and
thus V; = Vj.

Let k € {0,...,m} such that Vjj gives the subspace generated by the image
of a, and let [ € {0,...,n} such that Vj; is the subspace generated by the
kernel of a, say

‘/jk = (wl,...,w%),
V;l=(1}1,...,vl~) and
Vi/Vir = {x1+ Vi, . zm + Vi),

where the elements wy, ..., w; are linearly independent and same holds for
v1,-.., 0 and @1, ..., 2. To simplify notation, in what follows, we will call
(x1,...,27) a basis of V;© V; and write V; © Vj; short for (x1,...,z5).

We assume that there exists for any wy, € {wy, ..., w; } aunique z4 € {z1,..., 75}
such that a(zg) = wp,.

By definition of {B;;} in (80), it follows that
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Hence,
Bi,k—l =Bip\Bix-1 Vke{l,...,n} (82)

is well-defined. Using (82), we can now define the elements Sj; of the semi-
chain §; corresponding to Fj. ‘
For ke {1,...,n}, the element Sj;, corresponds to B}, ,_,. We write

Sik = Bjp1 Vke{l,...,n}. (83)

Every element S;; belongs to a one-point link of the semichain. This one-
point link will also be denoted by S;;. It will be clear from the context,
whether we refer to S;; as an element or as a link of the semichain S;.

It remains to settle an ordering within the elements {S;; } of S;. There are
two possible ways to do that and we will use both in the following:

(i) We order the elements of S; with respect to the subspace inclusions in
F;, meaning

S@k > S@',k—l Vk e {2, R ,n}. (84)

We denote the resulting semichain by SZ.(C) where the superscript stands
for compatible with respect to the subspace inclusion:

SZ(C) : {Si,l < S@Q <-ee < Si,n—l < Sz,n} (85)

(ii) We order the elements of \S; in reversed order with respect to the sub-
space inclusions in Fj, giving

Si,k < Sz',k—l Vk e {2, R ,n}. (86)

We denote the resulting semichain by Si(r), where the superscript stands
for reversed:

SZ(T) : {Sz,n < Si,n—l < <L SLQ < Si,l-} (87)

Remark 4.71. In case of i being an isolated vertex, we obtain two standard
filtrations. FEach of them gives a semichain consisting of a single one-point
link. We call this kind of semichain standard.

Since there is no ordering given on those semichains, we have

i) = 5" (88)

for any standard semichain S;. Yet, for notational reasons, we will distin-
guish between those two copies of S; in the following.
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Thus, we have to choose S; from the set {SZ.(C),Si(T)}. How to do so, we
discuss in Subsection 4.4.4.

Let us now come to the semichains arising from filtrations of type (4). Hence,
let

F;:0=Vipc (Vi@ Vp)=Vsy (89)

with Vis = V;. Let € € Sp with s(¢) =14, and let Vj; =im(e), Via = ker(e).
Let B;j, be the basgis of Vj, for k = 1,2. Then we have the following properties:
(i

) Bi1 is the basis of im(¢),
(i) Bis is the basis of ker(e),
) B
v) Vi

(iii
(iv) Vi =(Bi) ® (Bi2)-

Again, we want to denote the elements of S; in terms of the bases of the
respective subspaces of F;. By (89) and (iv), there are only two bases to
consider, namely B;; and B;».

Thus, the element S;; of S; corresponds to By, k =1,2. We write

i1 nBz2 =

S 2 By k=1,2.

By (i