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1 Introduction

Given a Hermitian n X n matrix H, we write Eig(H) = {v1,va,...,vs} for the eigen-
values of H, which we list in decreasing order, and repeat each value according to its
multiplicity. We are interested in the following problem: Suppose, we have given three
Hermitian matrices H(1), H(2), H(3) with H(1)+ H(2)+ H(3) = p1¢,. What can be
said about the possible eigenvalues Eig(H(s))?

Fulton [3] has explained a recent complete solution of Horn’s conjecture, which an-
swers this question. The first key step in the solution was taken by Klyachko [5], who
used the correspondence between symplectic quotients and geometric invariant theory
quotients to convert questions about eigenvalues into Schubert calculus. A final step was
taken by Knutson and Tao [6], who proved a certain saturation property for Littlewood-
Richardson coefficients. Another proof of the saturation property was recently given
by Derksen and Weyman [2] using properties of semi-invariants for representations of a
certain quiver.

In this expository note we show that most of the argument, from Klyachko onwards,
can be formulated naturally in terms of quiver representations. We use the theory
developed by Schofield [7],[8], King [4] and others, as well as the observations in [2] and

[3]-

2 Semi-stability for representations of quivers

2.1 (Notation) Let k be an algebraically closed field. Denote by Q@ = (Qo, @1,t,h)
be a finite gquiver, i.e. (g is the set vertices, (J; the set of arrows, and the maps
t,h: Q1 — Qg determine the orientation of the arrows. Thus we have ta — ha for each
a € Q1.

We write Ko(Q) := Z? with the canonical basis (¢;)zeq,- Moreover Ko(Q)* =
Homy(Ko(Q),Z).

A representation V' of @) is given by a collection of vector spaces (V;)zeq, and a
collection of linear maps (V,).cq, with V, € Homg(Viq, Vo). The dimension vector
dimV € Ko(Q) is given by (dimV)(z) := dim V.

For representations V, W we define

HomQ(V, W):= {((P:c):cEQo € DzeQo Hom(V, We) | ¢haVa = Wagpy, for all @ € Q1 }



Thus we obtain the Abelian category of representations of ). Will assume always @
without oriented cycles.

2.2 (Canonical exact sequence and Ringel form) For two representations V' and
W of @) we have the following canonical exact sequence:

\4 5T‘//V

0 — Homg(V, W) % $4eq, Hom(Vy, W,) —%
Sacor Hom(Vi, Wia) ™% Bxto(V,W) — 0 (1)
with
S ((#2)2eQo = (PhaVa — Wapta)acq, and Ty ((Ya)acq,) i= [V — E(¢) » W]

where E,(¢) = (16“ ;/pvi)
We define the Ringel form for o, 5 € Ko(Q) by

(a,8) = ) a(z)B(z) - > a(ha)b(ta) (2)
zEQo a€Q1

and find by (1) that (dimV,dim W) = dim Homg(V, W) — dim Extg(V,W). For a €
Ko(Q) we get (@, —) € Ko(Q)"-

2.3 (Semi-invariants) For a dimension vector § € Ko(Q) we consider the affine space
Rep(Q, ) := Dacg, Hom(kP(#2) 1cFha))

with the actions of the algebraic groups GLx(8) 1= [[,cq, GLx(B(z)) and SLk(8) :=
[lzcq, SLk(B(z)) by conjugation. Thus GLi(B) orbits correspond to isoclasses of rep-
resentations of ¢) with dimension vector (.

We call the ring of SLy(8)-invariants

SI(Q, B) := k[Rep(Q, )]+

also the ring of GLy(f)-semi-invariants, since it has a weight space decomposition

SI(Qvﬂ) = @UEKO(Q)* SI(Qvﬂ)

with

SI(Q,8), = {f €k[Rep(Q,8) | g- f = ] det(g)7=)f for all g € GL(8)}

z€Qo

We have identified Ko(Q)* with the character group of GLk(8). Note, that
SI(@,B)s # 0 implies o(B) = 0, since the diagonal elements t - 1qp, (gy act trivially

on Rep(@Q, §).



Proposition (Schofield) Suppose o, 8 € Ko(Q) are dimension vectors with {a, ) =
0. Fiz V € Rep(Q, o), then the polynomial

d”: Rep(Q,B8) — k, W — det(6))
is an element of SI(Q, B)(q,~), and dV(W) = 0 if and only if Homg(V, W) # 0.

Remark: In the above proposition we have Extgo(V,W) = 0 if and only if
Homg(V,W) = 0 since (o, ) = 0.

2.4 (Semi-stability) For o € Ko(Q)* and a dimension vector 8 € Ko(Q), an element
W € Rep(Q, B) is called o-semi-stable, if there exists f € SI(Q, 8)n, with f(W) # 0 for
some n > 1. Note, that the set of o-semi-stable points Rep(Q, 5)5*° is open in Rep(Q, §).

For dimension vectors 3,3’ € Ko(Q) we write 5’ — [ if a general representation of
dimension 3 has a subrepresentation of dimension ’. Similarly, we write

ext(a, 8) = min{dim Extg(V, W) |V € Rep(Q,a), W € Rep(Q,5)}

Note, that ext(a, ) = 0 implies that general representations of dimension « resp. g
admit only trivial extensions.

The implications (a)<=(b)<=(c) of the following theorem appear (independently)
in [2] and [10]. Anyway, we include the proof since it is so easy.

Theorem Let a,f € Ko(Q) be dimension vectors with (a,3) = 0. Then the following
are equivalent:

(a) There exists a (o, —) semi-stable representation in Rep(Q,B).
(b) (@,8) <0 for all B — B.
(c) ext(e,B) = 0.
(d) For some V € Rep(Q, ) we have 0 # dV € SI(Q, B)(a,-)-
In case k = C, these conditions are equivalent to

(e) There exists a representation W € Rep(Q, ) with

YN OWrWe— Y WaWy = (@, 62) Lop) (3)
%E_Q1 2691

for all z € Qo, where W € Hom(CP(he) P(*)) denotes the adjoint of W, with
respect to the standard Hermitian product on C*.

Proof: (a)==(b) By hypothesis, a general representation is (o, —) semi-stable, thus (b)
holds by Proposition 3.1 from [4].

(b)=(c). This is [8, 5.4], using (a, 5) = 0.

(c)==(d). This is 2.3, since by hypothesis we find V € Rep(Q,a) and W €
Rep(Q, B) with Extgo(V,W) =0 = Homg(V,W).

(d)=(a) is trivial.

The equivalence of (a) and (e) is essentially [4, 6.5]. .



2.5 (General subrepresentations) Let S := Z" and
Plr,b):={A=(A1,A2,...) €ES|b—r > >X>---> X >0, \;=0for¢ > r}
We write Gr(?) for the Grassmannian of r-dimensional subspaces of k°. For a given
flag F with
0=F CFRC---CF,=%"anda partition A € P(r,b) we have the Schubert

variety
Q(F):={LeGr(%) | dim(L N Fpy;—y,) >ifor 1 <i<r}

and we write o for the corresponding class in the intersection ring A* Gr(%). Recall,
that the classes o) with A € P(r,d) form a Z-basis of A* Gr (%), and we agree 03 =0 €
A*Gr (k) for A € P(r,b).

For dimension-vectors 3,p with p < 3 we define Gr (g) = Hier Gr (f((z))) and
note that the intersction ring A* Gr (g) is canonically isomorphic to ®;cq, A" Gr (i((z)))
Thus we can write a&m) =1@ - Qoy®--©1e A*Gr(B) for X € P(p(z),B(z)).

For tecnical resons we set
Q(p,B) = Xacqs P(p(ta), B(ta)) C S
and for (A\(a))acg, € Q(p,3) we define (A(a))acq, € SP* by
(@) i= B(ha) — p(ha) — Ayqeayai(0) if 1 < i < plta)
and A;(a) = 0 else. Finally we let
Q'(p,8) := {(Ma))aca € Qp,B) | Ma) € P(p(ha), f(ha)) for all a € Q1}

Since the Littlewood-Richardson coefficients are nonnegative, we have the following
version of the Theorem in [1].

Proposition For dimension vectors p,3 € Ko(Q) we have p — [ if and only if for
some A = (A(a))acq, € Q'(p,B) we have

0# H Tx(a) H T5a) € A* Gr (i((:f))) for allz € Qg (4)
W e

Proof: By the Theorem in [1] we have

ps fm 04 H ( Z Ugta)agm))

a€Q1 \XeP(p(ta),0(ta))

> (H aii%a&’;z;)

AGQ(,O”B) a’te
= > | ITT 2 IT 52
AEQ(p,B) \ zEQ0 %EZQ:é 2691



Now, by the Littlewood-Richardson rule, for each A € P'(p, 5, Q) we have

[I (11 USE()L) 11 U§2)) = >, <11 Ufﬁ) (5)
z€Qo a€Q: a€Q1 wEP(p,8) =€Qo

ta=xz ha=z

for some cf > 0, if we set P(p,3) := Xzeq,P(p(z),B(2)). Thus, p — § iff (5) gives a
nonzero expression for some A € Q'(p, 8). This is clearly the case iff (4) holds. 0

Remark: Suppose, at z € (J1 end exactly one arrow a and starts exactly one arrow b.
If we have A € Q'(p, ), then condition (4) is for  equivalent to

A(b) C A(a) where
Aa) = {((ﬂ(m) - p(x))ﬁ’(w)—ﬁ’(ta)’)\l(a),...,)\p(ta)(a)) if p(z) > p(ta)
(A1+(P(ta)—p(w))(a)a ceey Ap(ta)(a)) else
3 The star quiver

3.1 (Notation) We consider for n € N the following quiver Q("):

21(1)a1—(1)>:82(1) -------------- :cn_l(l)an_l(l) Tn an—1(2)$n_1(2) .............. z2(2) 21(2) z1(2)
an_1(3)
zn_}(3)
$2k3)
Tan_1(3)

21(3)

and the dimension vector 8, € Ko(Q(™) defined by B,(zi(s)) = ifor 1 <i < n— 1,
s=1,2,3,and B(z,) = n.

Moreover, we choose partitions v(s) = (v1(s),...,v,(s)) with v,(s) = 0 for s =
1,2,3, and suppose p := 23 " 1;(s) € No. We associate to v a dimension vector
o, by setting

ay(z:(8)) == r1(s) — viya1(s) 1<i<n—-1,s=1,2,3

ay(z,) = Z vi(s) —p

S
note, that in fact o, > 0. The corresponding weight o, := (oy,,—) is given by

0u(€xy(s)) = ¥i(8) — viya(s) for 1 <i<n—1and o,(z,) = —p.

3.2 (Semi-invariants and GL¢(n)-modules) We keep the above notation and state
the following result from [2] in a for us convenient way:



Proposition The GLc(n)-module @;_;S,(5)(C") has a summand of type S,~(C") if
and only if SI(Q™, B,)0, # 0

3.3 (General submodules) Let I be a subset of {1,2,...,n}, with r elements
11,1%2, ..., in increasing order. We assign to I a partition A(I) with X\;(I) := n—r+j—1;.
Note, that the corresponding Schubert cell in Gr (7 ) with respect to a given flag F is

Qg(I)( V)=A{L € Gr(})|dim(LNF)=jfore; <l<ij4;and 0< 5 <7}

if we take i :=0, 2,41 =n+ 1.

We denote by P the set of triples I = (I(1),1(2),1(3)) of r-element subsets of
{1,2,...,n}. For I € P we write the elements of I(s) as (¢1(s),...,%(s)) in increasing
order. We define for I € P? a dimension vector 81 € Ko(Q) by B1(z,) = 7 and

Br(zi(s)) :=jfor ¢;(s) <l <ij41(s)and 0< j<n, s=1,2,3

Next we define

_{IEPn|Zz)\ n—r)andO#HaA(I(s))EA Gr(7)}

s 7=1

Note, that by the first condition in S} the second means [], Ox(I(s) = 40x(12,..r) TOT
some d € N.

Proposition With the above notation we have:
(a) For P € P we have B1 — B, if and only if 0 # [[, ox1(s)) € A" Gr (7).

(b) Let ' — B, with §'(z,) = r, then there exists I € S» with Br(zi(s)) > B'(zi(s))
foralll<i<m—1landl <s<3.

Proof: (a) We apply the proposition in 2.5 to our special situation. First, for I € P}
take
Mai(s)) == (4;(8) = 7,051 — 7 — 1,...41(s) — 1)

for j(s) <1 < 4j41(s) and 0 < j < 7,1 < s < 3. This shows, that [[, A(I(s)) # 0
implies §; — B, Conversely, we see from the remark in 2.5, that any possible choice
of the A(a;(s)) with TS (ai(s)) TN @i41(5)) # 0 implies A(I(s)) € Alan—1(s)). Thus the
condition is also necessary.

(b) Note first, that by passage to the closure of Schubert-cells we find for each I € P
with [], ox(s)) # 0 some I' € ST with B(z:(s)) < Br(z:(s)) for all i,s. The rest is

clear. O

Remark: It is a straightforward calculation, that for I € P we have

awﬂf Z Z Vz _T/L

s 1el(s)



3.4 (Linear algebra) Suppose, we have a Hermitian matrix H € C**™ with eigen-
values v; > vp > -+ > v, = 0. Then

141 0

\/ V1 0 \VV1I — Vil 0

H, 1:=U and H; := "
VVn-1 VVi = Viq1
0 0 0 0

for 1<+ <n—2then H, 1H ; = H and

H'H,— H, 1H ,=(vi—viy1) 1 for2<i<n-1 (6)
Hlezl/l—I/z (7)

Conversely, if we have matrices H; € CUTDXJ for 1 < j < (n—1) that fulfill (6) and (7),
then H, 1H} , is a Hermitian matrix with eigenvalues vq,v9,...,v, = 0. This last
property follows from the fact that if A and B are » X n matrices, then the traces of
the powers of AB and BA are eqal, so that AB and BA have the same characteristic
polynomial.

3.5 (Application to Horn’s problem) By the observations in this section, we can
interpret the equivalent statement in the following corollary as different characterizations
for the existence of a ¢, -semi stable representation of dimension 8, for the quiver Q(").

Corollary 1 Let v1(s) > va(s) > -+ > v,(s) be integers for s = 1,2,3, and suppose
pi= L3 S v(s) € Z. Then the following are equivalent:

(a) There exist Hermitian matrices H(s) € C**™ with eigenvalues v1(s) > -+ > vy(s)
for s =1,2,3 with
1 0
Sae=u( )
s 0 1

(b) For allI € ST and 1 <7 < n we have

HbIDINTO

s 1€l(s)

IN
=

(¢) The GLy(n)-module @3_, S.,(s)(C*) has a summand isomorphic to §,»(C").



Proof: Clearly, each of the conditions is equivalent to the corresponding condition for v/,
with v/(s) := v;(s) — vn(s) and p/ := p— >, vn(s). Thus we may assume v,(s) = 0 for
s =1,2,3. Now, we apply Theorem in 2.4 to the situation of Q™ and a,,, 8, € KO(Q(n))
as defined in 3.1.

Now, by 3.4, condition (a) above is equivalent to condition (e) of the theorem. By
the proposition and remark in 3.3, condition (b) is equivalent to condition (b) of the
theorem. By the proposition in 3.2 condition (c) is equivalent to condition (d) in the
theorem. a

Remark: The moduli space of (a,, —)-semi-stable representations, [4]

Proj(Bnens SIQ™, B1) (na,—))

should be interesting. It follows from recent work of A. Schofield [9], that this space is
a rational variety. It is not hard, to identify it with the GIT-quotient for triples of flags
with respect to the linearization associated to (v(1),7(2),r(3)), see also [5].

If weset U :={I € P*|> > XN(I(s)) = r(n—7)} we obtain the following

recursive description of S, which is basically Horn’s original definition.

Corollary 2 For I € U we have I € S if and only if
1
P Yo U] <(a-7)
s J€J(s)

forall J € 57 and1 < g<r.

Proof: 1t follows by an codimension argument, that for I € U we have
[[oae) # 0=l oracey = doory

for some integer d > 1. Since the multiplication of classes oy € A* Gr(7) is determined
by Littlewood-Richardson coefficients, we may use the equivalence of (b) and (c) in
Corollary 1 above. a

Corollary 3 The conditions (a) and (b) in Corollary 1 remain equivalent, if we allow
the v;(s) € R, and p € R.

This is the same argument as in the proof of Proposition 7 in [3].
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