
In�nite-dimensional modulesin the representation theory of�nite-dimensional algebrasWilliam Crawley-BoeveyNormally, when one studies the representation theory of a �nite-dimensionalassociative algebra, one restricts to studying its �nite-dimensional modules. Afterall, this includes the simple modules, ideals, the indecomposable injective modules,and so on. However, in�nite-dimensional modules do occasionally arise, eitheras objects of interest in themselves, or because of their relationship with in�nitefamilies of �nite-dimensional modules. These notes correspond closely to a series ofthree introductory talks on in�nite-dimensional modules that I gave in Trondheimin Summer 1996. My aim was:(1) To give a selection of examples showing how in�nite-dimensional modulescan arise naturally when studying �nite-dimensional algebras.(2) To outline the general theory of in�nite-dimensional modules, in particularthe notion of purity and the connection with the model theory of modules. Thehigh points are the various �niteness conditions on algebraically compact modules,and the Ziegler spectrum.(3) To show how this general theory applies to the special cases of tame and/orhereditary algebras. In particular for tame algebras, to show how certain in�nite-dimensional `generic modules' control the behaviour of �nite-dimensional modules,and for hereditary algebras to show how in�nite-dimensional `stones' are related toproperties of the general representation of a given dimension.These three objectives corresponded to the three lectures, and they correspondto the three sections in this article.Throughout, we restrict to studying �nite-dimensional associative algebras(with 1) over an algebraically closed �eld K, and write D for duality with the�eld. Except where stated, all modules are left modules. We write A-mod forthe category of �nite-dimensional A-modules, and A-Mod for the category of allA-modules. (Many of the results remain true for artin algebras, provided that onereplaces the phrase `�nite-dimensional module' by `�nitely generated module'. In1991 Mathematics Subject Classi�cation. Primary 16G10.This paper is in �nal form and no version of it will be submitted for publication elsewhere.1



2 WILLIAM CRAWLEY-BOEVEYfact the general theory expounded in Section 2 applies to arbitrary rings, but `�nite-dimensional' sometimes needs to be replaced by `�nitely presented', and sometimesby `module with a left almost split map', so there are complications.)This article contains a couple of original results, the properties of tree mod-ules in Section 1.4, the characterization of coherent functors in Section 2.1 (whichenables the de�nition used in these notes), and the characterization of de�nablesubcategories in Section 2.3. (The last two were �rst presented in lectures I gaveat Bielefeld University in 1993.) In addition, I sketch a proof of the classi�cationof the indecomposable algebraically compact modules for a tame hereditary alge-bra, which does not seem to be fully written down in the literature, and a proofof Scho�eld's classi�cation of the stones for a hereditary algebra. Although �rstmentioned by Scho�eld in 1991, at the time of writing there is no other writtenversion of this result. The proof given here is based on lectures given by Scho�eldin Krippen, Germany, in 1995. I would like to thank Henning Krause, who visitedLeeds while I was preparing my lectures.1. Examples of in�nite-dimensional modulesIn this section we explain a few standard facts, and give various examplesshowing how in�nite-dimensional modules can actually arise for �nite-dimensionalalgebras.1.1. Kronecker modules. The Kronecker algebra is the path algebra of theKronecker quiver � -!-! �. Its modules, Kronecker modules, are therefore given byvector spaces and linear maps U �-!-!� V:Of course, in most situations where Kronecker modules arise, the vector spaceswill be �nite dimensional. Sometimes, however, it is essential to consider in�nite-dimensional Kronecker modules.Example. Aronszajn and others initiated the study of in�nite-dimensionalKronecker modules because of their applications to functional analysis. Let V be aHilbert space, for example L2(0; 1), and let T be an unbounded operator on V , forexample the di�erential operator (Tf)(x) = x2 dfdx . Observe that T is not everywherede�ned, but only on a dense subspace U of V . This de�nes an in�nite-dimensionalKronecker module X = U T-!-!inc Vwith base �eld K = C . Typically one wants to �nd the eigenvalues of T , sothe � 2 K such that Tf = �f for some f 2 U . This can be reformulated asHom(R�; X) 6= 0, where R� is the moduleR� = K �-!-!1 K;



INFINITE-DIMENSIONAL MODULES 3and in this way one can introduce the algebraic and homological properties ofKronecker modules.Example. In addition to the R� (� 2 K) one should consider the moduleR1 = K 1-!-!0 K:Now a Kronecker module X is said to be2 torsion-free if Hom(R�; X) = 0 for all � 2 K [ f1g, and2 divisible if Ext1(R�; X) = 0 for all � 2 K [ f1g.It turns out that there are no non-zero �nite-dimensional modules which are bothtorsion-free and divisible, but there are in�nite-dimensional ones. Using the stan-dard projective resolution of a Kronecker module, one �nds thatU �-!-!� Vis torsion-free divisible if and only if � is invertible and � � �� invertible for all� 2 K. The �rst of these conditions enables us to identify U and V , with � theidentity map. Now the second condition, that � � � is invertible for all �, impliesthat f(�) is invertible for all nonzero polynomials f(T ) 2 K[T ]. Thus U becomesa vector space over the rational function �eld K(T ) on settingf(T )g(T ) u = g(�)�1f(�)(u):We conclude that a module is torsion-free divisible if and only if it is isomorphic toU T-!-!1 Ufor some K(T )-vector space U .1.2. Indecomposable decompositions. Any �nite-dimensional module isisomorphic to a direct sum of indecomposables, essentially uniquely. Does thisgeneralize to in�nite-dimensional modules?First we need in�nite direct sums. If Xi (i 2 I) is a family of modules, thentheir direct sum isMi2I Xi = f(xi) 2Yi2IXi j all but �nitely many xi are zerog:Whereas the product satis�es Hom(X;Qi Yi) = QiHom(X;Yi), the direct sumsatis�es Hom(�iXi; Y ) = QiHom(Xi; Y ). One writes XI and X(I) for the productand direct sum of copies of X indexed by I.Theorem (Krull-Remak-Schmidt-Azumaya). If a module M decomposes as adirect sum of indecomposables, M =Mi2I Mi ;each with local endomorphism ring, then any indecomposable direct summand ofM is isomorphic to some Mi, and in any decomposition of M as a direct sum ofindecomposables, the terms are in 1-1 correspondence with the Mi.



4 WILLIAM CRAWLEY-BOEVEYHowever, even for Kronecker modules there is pathological behaviour. Suchbehaviour was originally found by Corner for abelian groups, and it was adapted toK[T ]-modules, the Kronecker algebra, and other algebras by Brenner and Ringel [3].Example. For the Kronecker algebra:2 There is a nonzero module with no indecomposable direct summand.2 There are indecomposables L;M;M 0 with L�M �= L�M 0 but M 6�=M 0.2 If q � 2 there is a moduleM with M i �=M j , i � j (mod q).For algebras of �nite representation type, however, there is no pathology what-soever. The following result is due to Auslander [2] and independently to Ringeland Tachikawa [29].Theorem. If A has �nite representation type, then any indecomposable moduleis �nite dimensional (so has local endomorphism ring), and any module is a directsum of indecomposables.1.3. Endo�nite modules. A vector subspace X of an A-module M is fullyinvariant if �(X) � X for any A-module endomorphism of M , or in other words,if X is a submodule of M when it is considered in the natural way as an End(M )-module. One says thatM is endo�nite if it has the ascending and descending chaincondition on its fully invariant subspaces, that is, if lengthEnd(M)M <1. Clearly�nite-dimensional modules are endo�nite, but there are also in�nite-dimensionalendo�nite modules. Nevertheless, the general theory shows that every endo�nitemodule is a (possibly in�nite) direct sum of indecomposable endo�nites, and thesehave local endomorphism ring. Thus the Krull-Remak-Schmidt-Azumaya Theoremapplies.Example. If L=K is a �eld extension (transcendental, since K is algebraicallyclosed), then AL = A
K L is a �nite-dimensional L-algebra. Now ifM is a �nite-dimensional AL-module, then it is automatically an A-module by restriction, andas such it is in�nite-dimensional, but endo�nite. It is of interest to determine theindecomposable direct summands. In particular if A is the Kronecker algebra andL = K(T ), then the regular moduleK(T ) T-!-!1 K(T )for AL is indecomposable as an A-module since its endomorphism ring is easily seento be EndK[T ](K(T )) �= K(T ), and this is a local ring. Clearly the direct sums ofcopies of this module are the torsion-free divisible modules.Example. For an algebra A and n � 0 there is an a�ne scheme mod(A; n)of A-module structures on Kn, see for example [10]. If R is the coordinate ringof mod(A; n), then there is a universal A-R-bimodule AMR, free of rank n overR, which specializes to each of these A-module structures when tensored with thesimple R-modules. If the total quotient ring S of R is artinian (for example, ifmod(A; n) is reduced) then M 
R S is an endo�nite A-module, and presumably itsstructure describes the general behaviour of n-dimensional A-modules.



INFINITE-DIMENSIONAL MODULES 5Remark. For any algebra A the endo�nite A-modules can be described usingcertain integer-valued functions. By de�nition, a character � is a function from theset of �nite-dimensional A-modules to N with1. �(X � Y ) = �(X) + �(Y ), and2. �(Z) � �(Y ) � �(X) + �(Z) for any exact sequence X ! Y ! Z ! 0.A character is said to be irreducible if it cannot be written in a non-trivial wayas a sum of other characters. In [8], I proved that every character can be writtenin a unique way as a sum of irreducibles, and that the indecomposable endo�nitemodules correspond 1-1 to irreducible characters viaM 7! �M with �M(X) = lengthEnd(M)Hom(X;M ):It must be mentioned that this character theory is very similar to a theory ofScho�eld [30, Theorem 7.12], in which equivalence classes of homomorphisms fromA to a simple artinian ring are in 1-1 correspondence with `Sylvester rank functions'.In particular, the fact that every character is uniquely a sum of irreducibles isalready implicit in Scho�eld's work. Nevertheless, the character theory seems moreappropriate here, being more module-theoretic.1.4. Tree modules. Suppose that A = KQ=I where Q is a quiver and I isan ideal in the path algebra KQ. By a tree over A we mean a map of quiversF : �! Q with the following properties1. � is a connected quiver, which is a tree, so has no cycles, even unoriented.However, � may be in�nite.2. F is unrami�ed, meaning that for each vertex i 2 � and arrow a 2 Q withhead (respectively tail) at F (i), there is at most one arrow b 2 F�1(a) withhead (respectively tail) at i.3. No path in � is sent to a path occuring (with non-zero coe�cient) in anyelement of I.A tree over A can be described by drawing the quiver � and labelling each vertexand arrow with its image in Q. For example, the picturer r r r rr rr r rr r r r r r@@Rb @@Rb @@Rb @@Rb @@Rb @@Rb @@Rb��	a ��	a ��	a��	a ��	a ��	a ��	a ��	a��qqq @@ q q qdescribes a tree over the algebra A = Kha; bi=(a; b)4. (In this case Q has only onevertex, so there is no need to label the vertices of �.)If F is a tree over A then there is a corresponding tree module KF with a basiselement xi for each vertex i in �, and the action of A given as follows. If i is avertex in � and p is a path in Q, then pxi = 0 if there is no path in � lifting pand starting at i. On the other hand, if there is such a path, then it is uniquelydetermined, and pxi = xj if it terminates at vertex j.



6 WILLIAM CRAWLEY-BOEVEYTheorem. If F : � ! Q is a tree over A, then KF is an indecomposable A-module. If F 0 : �0 ! Q is another tree over A then KF �= KF 0 if and only if thereis a quiver isomorphism � : �! �0 with F 0 � � = F .This has been known for some time in case � is �nite (so that KF is a �nite-dimensional module), see Gabriel [11, 3.5]. Indecomposability has also been provedby Krause [19] in case � is in�nite, but at most two arrows are incident at any vertexin �. To solve the general case we use that the group algebra of a free group hasno non-trivial idempotents. First we need a lemma.If F : �! Q, F 0 : �0 ! Q are trees over A, then by a partial map � : F ; F 0we mean a quiver isomorphism � : D� ! R� satisfying F 0 � � = F jD� , where D� is anon-empty connected (hence full) subquiver of � which is closed under predecessors(i.e. if r ! s is an arrow in � and s 2 D�, then r 2 D�), and R� is a non-emptyconnected (hence full) subquiver of �0 which is closed under successors (i.e. if r ! sis an arrow in �0 and r 2 R�, then s 2 R�).Given vertices r 2 � and s 2 �0, we write r; s to mean that there is a partialmap � : F ! F 0 with r 2 D�, s 2 R� and s = �(r). This relation has the followingproperties.(A) If r 2 � and s 2 �0 are vertices, then there is at most one partial map� : F ! F 0 inducing r ; s.(B) If F 00 : �00 ! Q is another tree over A, and r 2 �, s 2 �0 and t 2 �00 arevertices, and r ; s ; t, then r ; t. Indeed if � : F ! F 0 and � : F 0 ! F 00are the corresponding partial maps, then there is a partial map  : F ! F 00 withD = D� \ ��1(D�) and  = � � �jD .(C) If r 2 � and s 2 �0 are vertices with r ; s and s ; r, then the corre-sponding partial maps are inverse isomorphisms between � and �0. Namely, theconstruction of (B) gives a partial map from F to F sending r to r, but by (A) itis the identity map.A partial map � : F ; F 0 induces a linear map �� : KF ! KF 0 sending xr tox�(r) if r 2 D�, and to zero if r =2 D�. It is easy to see that �� is an A-module map.Given a vertex r 2 � and an element x 2 KF we write cr(x) for the coe�cient ofxr in x.Lemma. Any A-module map � : KF ! KF 0 can be written uniquely as a(possibly in�nite) linear combination� = X�:F;F 0 ����with �� 2 K, such that for each vertex r 2 �, there are only �nitely many non-zero�� with r 2 D� . In particular, if cs(�(xr)) 6= 0 then r; s.Proof. The �niteness condition ensures that P� ���� is well-de�ned, andthe uniqueness follows from property (A). Let � : KF ! KF 0 be an arbitraryhomomorphism. Because F and F 0 are unrami�ed, given a : r ! t in � and u 2 �0with cu(�(xt)) 6= 0, there must be an arrow b : s! u in �0 with F (a) = F 0(b) andcs(�(xr)) = cu(�(xt)). Dually, given b : s! u in �0 and r 2 � with cs(�(xr)) 6= 0,there must be an arrow a : r! t in � with F (a) = F 0(b) and cu(�(xt)) = cs(�(xr)).



INFINITE-DIMENSIONAL MODULES 7It follows that if r 2 � and s 2 �0 are vertices with cs(�(xr)) 6= 0, then there is apartial map � inducing r; s and with c�(t)(�(xt)) = cs(�(xr)) for all t 2 D�. Thelemma follows.Proof of the Theorem. Let G be the group of automorphisms of � overQ, so consisting of those automorphisms g of � with F � g = F . The fact that Fis unrami�ed implies that G acts freely on the tree �, so it is free. We considereach element of G as a partial map F ! F . By property (C) and the lemma,End(KF ) = S � J whereS = f� 2 End(K�) j � is of the formX�2G����g; andJ = f� 2 End(K�) j cs(�(xr)) = 0 for all r; s 2 � with s; r:gEvidently S is a subalgebra of End(KF ) and J is an ideal. Let � 2 End(K�) bea non-trivial idempotent. Now � 2 End(K�)=J �= S �= KG, and since G is a freegroup, its group algebra has no non-trivial idempotents. Thus � = 0 or 1, andreplacing � by 1� � if necessary, we obtain a non-zero idempotent � 2 J . Choosea vertex r 2 � with �(xr) 6= 0, say�(xr) = �1xr1 + : : :+ �nxrnwith 0 6= �j 2 K and vertices rj 2 � with r ; rj. Since the relation ; istransitive, by reordering we may assume that r1 is minimal, so that if rj ; r1,then also r1; rj. Since �2 = �, for some j we havecr1(�(xrj )) 6= 0so rj ; r1. Thus also r1 ; rj, but this contradicts the fact that � 2 J . Thus KFhas no non-trivial idempotent endomorphisms, so is indecomposable.Now suppose that  is an isomorphismKF ! KF 0 . Let r 2 � be a vertex, andwrite (xr) = �1xr1 + : : :+ �nxrnwith 0 6= �j 2 K and vertices rj 2 �0 with r ; rj. Now xr = Pnj=1 �j�1(xrj )and each term in the sum is a linear combination of xs with rj ; s. Thus for somej we have r; rj ; r, so � and �0 are isomorphic over Q.Remark. Associated to a tree F : �! Q over A there is also a completed treemodule K̂F . If KF is considered as the set of functions from the vertex set of � toK with �nite support, then K̂F is the set of functions without restriction on thesupport. Another construction of it is as follows. Reversing all arrows in � and Q,we get a quiver map F op : �op ! Qop which is a tree over the opposite algebra Aop.Then K̂F �= D(KFop ). Note, however, that K̂F need not be indecomposable. Forexample if A is the path algebra of the Kronecker quiver, with the arrows labelleda and b, then K̂F1 is decomposable, where F1 is the treer r r r r r r@@Rb @@Rb @@Rb��	a ��	a ��	a @@ q q qwhereas K̂F2 is indecomposable, where F2 is the tree



8 WILLIAM CRAWLEY-BOEVEYr r r r r r r@@Ra @@Ra @@Ra��	b ��	b ��	b ��	 q q q1.5. Limits. A system of modules and mapsX1 ! X2 ! X3 ! : : : has direct(or inductive) limit lim-!Xi = ([Xi)= �where � is the equivalence relation which identi�es x 2 Xi with x0 2 Xj if theyhave the same image in some Xk (k � i; j). If the maps are 1-1 then the directlimit is the union of the modules. Dually, a system ! Y3 ! Y2 ! Y1 has inverse(or projective) limitlim -Yi = f(yi) 2YYi j yi+1 7! yi in Yi for all ig:More generally one needs the notions of direct and inverse limits for systems ofmodules and maps indexed by a �ltered poset or category, but we shall not de�nethese here. To work with limits, one needs the following formulasHom(lim-!Xi;M ) �= lim -Hom(Xi;M )Hom(M; lim -Yi) �= lim -Hom(M;Yi)Hom(N; lim-!Xi) �= lim-!Hom(N;Xi) for N �nite dimensional.In fact the last of these characterizes the set of �nite-dimensional modules. It isalso crucial to know that a direct limit of exact sequences is exact, but an inverselimit need not be.Example. Suppose that � is a connected component of the Auslander-Reitenquiver which is quasi-serial, meaning that it does not contain any projective orinjective module, and for any indecomposable module X in � the middle term Eof the Auslander-Reiten sequence 0 ! DTrX ! E ! X ! 0 is either indecom-posable, or can be decomposed into two indecomposable summands E1, E2 withdimE1 < dimX < dimE2 and dimE1 < dimDTrX < dimE2. Any quasi-serialcomponent either has shape ZA1
r r r r rr r r rr r r r rr r r rr r r��� ��� ��� ������ ��� ��� ������ ��� ��� ������ ��� ���@@R @@R @@R @@R@@R @@R @@R @@R@@R @@R @@R @@R@@R @@R @@Rqqq qqq qqq qqq qqq q q q qqq q q q qqq q q q q q q q q qq q qq q qor it is a tube ZA1=(�d) of width d � 1, obtained by identifying each vertex andarrow with the one d places to the left.An indecomposable module X in a quasi-serial component is quasi-simple ifthe middle term E in its Auslander-Reiten sequence is indecomposable. These are



INFINITE-DIMENSIONAL MODULES 9exactly the modules on the edge of the component. If S is a quasi-simple, there arerays starting and ending at S, and we de�ne the Pr�ufer module S1 to be the directlimit of a chain of irreducible maps S ! S2 ! S3 ! : : : , and the adic module Ŝto be the inverse limit of a chain of irreducible maps : : :! 3S ! 2S ! S.
r r S r rr 2S S2 rr 3S r S3 r4S r r S4r r r��� ��� ��� ������ ��� ��� ������ ��� ��� ������ ��� ���@@R @@R @@R @@R@@R @@R @@R @@R@@R @@R @@R @@R@@R @@R @@Rqqq qqq qqq qqq qqq q q q qqq q q q qqq q q q q q q q q qq q qq q qIt may seem that these modules depend on the choice of irreducible maps, but thisis not the case, for example using [25, Corollary 4.2] and its dual.As an example, for the path algebra of the Kronecker quiver the modules R�(� 2 K [ f1g) are quasi-simple, all in tubes of width 1. Now the Pr�ufer module(R0)1 is the tree module for the tree F1 of the last section, while the adic moduleR̂0 is the completed tree module for the tree F2.Theorem (Krause). If S is quasi-simple then S1 is indecomposable.Proof. Krause's proof [20] uses a functorial argument due to Auslander. Herewe reformulate it naively. Identify S and each Si as a submodule of S1, and writein for the inclusion S ! Sn. Let us say that a map � : S !M extends inde�nitelyif for all n, it can be extended to a map Sn ! M (that is, it factors through in).We need two properties pertaining to this notion:(a) If T is a non-zero submodule of Sn and p : Sn ! Sn=T is the naturalprojection, then pin : S ! Sn=T extends inde�nitely. By induction it su�cesto prove that there is a map g : Sn+1 ! Sn=T with gin+1 = pin (for then g issurjective, so Sn=T can also be identi�ed as a quotient Sn+1=T 0, etc). Now theAuslander-Reiten sequence starting at Sn has the form0! Sn �jq�! Sn+1 � (Sn=S)! TrDSn ! 0where j is the inclusion and q the natural projection. Since p is not a split monomor-phism it factors as p = gj + hq where g : Sn+1 ! Sn=T and h : Sn=S ! Sn=T .Then qin = 0, so pin = gjin = gin+1, as required.(b) The inclusion in : S ! Sn doesn't extend inde�nitely. Namely, supposethat k > n and there is a map � : Sk ! Sn with in = �ik. Then in =  inwhere  is the composite of � with the inclusion Sn ! Sk. Now � is not a splitepimorphism, so  is not invertible, so it must be nilpotent. This is impossiblesince in =  in =  2in = : : : .Now suppose that S1 is decomposable, say as U �V , and write �U and �V forthe corresponding projections onto U and V . Choose n su�ciently large to ensure



10 WILLIAM CRAWLEY-BOEVEYthat Sn meets both U and V non-trivially, and then choose k so as to ensure that�U(Sn); �V (Sn) � Sk. Now ik : S ! Sk factors asS s7!(s;s)�����! Sn=(Sn \ U ) � Sn=(Sn \ V ) (s;t)7!�V (s)+�U (t)������������! Sk:By (a) the left hand map extends inde�nitely, but by (b) the composite does not.This is impossible.2. Purity and model theory of modulesIn this section we describe the ingredients in a general theory of in�nite-dimensional modules, culminating in the notion of the Ziegler spectrum. Actuallythere are two di�erent ways to study such modules.On the one hand, one can study modules using �rst-order logic. Indeed anA-module is nothing more than a `model' of a theory in a suitable `language ofA-modules'. With this approach, the study of modules is a part of model theory.On the other hand, one can study modules using algebra. In particular the`functor category' (A-mod;Ab) of all additive functors from A-mod to the categoryof abelian groups, turns out to be an abelian category, so one can apply the conceptsof homological algebra.For example the �-algebraically compact modules (mentioned in Section 2.4below), can be studied in model theory with the notion of a `totally transcendentaltheory', or in algebra with the notion of a �-injective object of the functor cate-gory. With my own algebraic background, while quite ready to use results provedwith model-theoretic techniques, I am always happy to see a proof using functorcategories.2.1. Coherent functors. An additive functor F : A-Mod ! Ab is said tobe coherent if it commutes with direct limits and products. The coherent functorsform an abelian category C(A), whose morphisms are the natural transformationsof functors.Examples. The following are coherent functors:1. The n-fold forgetful functor Forgetn :M 7!M � : : :�M (n copies).2. The representable functor Hom(X;�) for X �nite dimensional.3. The tensor product functor N
A� for N a �nite-dimensional right module.4. More generally, Exti(X;�) and Tori(N;�) for X and N �nite dimensional.The de�nition we have given of a coherent functor di�ers from the usual one:normally one only considers functors on the category of �nite-dimensional modules,and then the coherent ones are those which are cokernels of a morphism betweentwo representable functors. The next result, however, shows that the two conceptsare equivalent.Lemma 1. If � : X ! Y is a map between �nite-dimensional modules, thenthe functor M 7! Coker(Hom(Y;M ) ! Hom(X;M )) is coherent. Moreover, anycoherent functor is isomorphic to one of these.



INFINITE-DIMENSIONAL MODULES 11Proof. It is straightforward that this construction de�nes a coherent functor,as one sees by using the fact that a direct limit or a product of exact sequences isexact. Now suppose that F is a coherent functor. First, observe that it su�ces to�nd a �nite-dimensional module X and an element � 2 F (X) such that the mapHom(X;M ) ! F (M ), h 7! F (h)(�) is surjective for all modules M . Namely,in this case the functor G(M ) = Ker(Hom(X;M ) ! F (M )) is also coherent,so by the same argument there is Y and an element � 2 G(Y ) such that themap Hom(Y;M ) ! G(M ) is surjective. Now � is actually a map X ! Y , andF (M ) �= Coker(Hom(Y;M ) ! Hom(X;M )). Second, observe that one only needsto check that Hom(X;M ) ! F (M ) is surjective for M �nite dimensional, for anarbitrary module is the direct limit of its �nite-dimensional submodules M�, andif each of the maps Hom(X;M�)! F (M�) is surjective, then so is the direct limitHom(X;M )! F (M ).We now consider the product Q�;�F (M�), in which M� runs through all iso-morphism classes of �nite-dimensional A-modules, and � runs through all elementsof each F (M�). This product contains a canonical element c, whose �; � componentis � itself. Now we havec 2Y�;�F (M�) �= F (Y�;�M�) �= lim-!F (X�)where the direct limit is over the �nite-dimensional submodules X� of Q�;�M�.Thus c = F ( )(�) for some module X� and some � 2 F (X�), where  is theinclusion  : X� ,!Q�;�M�. Clearly � is a suitable element.Lemma 2. If a = (aij) is a p� q matrix of elements of A, and n � q, thenFa(M ) = f(z1; : : : ; zn) 2Mn j 9zn+1; : : : ; zq 2M with qXj=1 aijzj = 0 for all igde�nes a coherent subfunctor Fa of Forgetn, and any coherent subfunctor of Forgetnarises in this way.Proof. It is easy to see that this de�nes a coherent subfunctor. Conversely, bythe previous result any coherent subfunctor of Forgetn is the image of a morphismHom(X;�) ! Forgetn, where X is some �nite-dimensional module. IdentifyingForgetn with Hom(An;�), Yoneda's lemma shows that this morphism is inducedby a homomorphism An ! X. Now extending this to a surjection Aq ! X forsome q � n, there is a projective resolution Ap ! Aq ! X ! 0. Now the mapAp ! Aq is given by a q� p matrix of elements of A, and its transpose induces theoriginal subfunctor.The previous result provides a connection between coherent functors and the`language of A-modules', which is used to study modules using the methods ofmodel theory. Given elements aij 2 A, the string(9zn+1)(9zn+2) : : : (9zq)(a11z1 + � � �+ a1qzq = 0 ^ : : :^ ap1z1 + � � �+ apqzq = 0)is an example of a formula in the language of A-modules. Its features are:2 It has `free' variables z1; : : : ; zn.



12 WILLIAM CRAWLEY-BOEVEY2 It has `quanti�ed' variables zn+1; : : : ; zq.2 Elements of the module (other than 0) only enter as variables.2 Elements of A only enter as constants.This is a positive primitive formula; in a general formula there can be other logicalsymbols, for example :, _ and 8, but still elements of the module only enter asvariables and elements ofA only enter as constants. If a formula has n free variables,then it has a solution set inMn. Clearly in this way the positive primitive formulascorrespond to the coherent subfunctors of Forgetn.As is usual in model theory, one would like to prove `elimination of quanti�ers',meaning that if M is a module and ' is a formula with n free variables, thenthe solution set of ' in Mn can also be de�ned by a formula without quanti�edvariables. Unfortunately this is not true; the best that can be done is given by thefollowing theorem. There are proofs in [17], [24] and [32].Theorem (Baur, Monk). Given a module M and a formula ', there is aboolean combination  of positive primitive formulas such that ' and  have thesame solution sets.A formula without free variables is called a sentence, so that in any module, asentence is either true or false. For example, if A = K[�]=(�2) is the ring of dualnumbers, then a module is semisimple if the sentence (8x)(�x = 0) is true, and itis free if the sentence (8x)(9y)((x = �y) _:(�x = 0)) is true.One says that two modules are elementarily equivalent if they satisfy exactlythe same sentences. In fact in the theorem above, the formula  only depends on 'and the sizes of the sets F (M ) with F coherent. Moreover, because of our standingassumption that A is an algebra over an algebraically closed (hence in�nite) �eld, itturns out to only depend on whether or not F (M ) = 0. Thus there is the followingconsequence.Corollary. Two modules M and M 0 are elementarily equivalent if and onlyif F (M ) = 0, F (M 0) = 0 for all coherent functors F .2.2. Purity. When dealing with in�nite dimensional modules, it is possibleto have an exact sequence 0 ! L !M ! N ! 0 which is not split, but which isvery close to being split. One says that it is a pure-exact sequence, and that theimage of L in M is a pure submodule, if the following equivalent conditions hold:(a) 0! F (L)! F (M )! F (N )! 0 is exact for all coherent functors F .(b) 0! Y 
L! Y 
M ! Y 
N ! 0 is exact for any �nite-dimensional rightmodule Y (and hence also for Y in�nite dimensional).(c) 0 ! Hom(N;X) ! Hom(M;X) ! Hom(L;X) ! 0 is exact for any �nite-dimensional module X. That is, any map from L to a �nite-dimensionalmodule factors through the map L!M .(d) 0 ! Hom(X;L) ! Hom(X;M ) ! Hom(X;N ) ! 0 is exact for any �nite-dimensional module X. In other words, any map from a �nite-dimensionalmodule to N factors through the map M ! N .



INFINITE-DIMENSIONAL MODULES 13Here condition (b) is the one most commonly seen in references as the de�nition ofa pure submodule. Conditions (c) and (d) show that if any module in a pure-exactsequence is �nite-dimensional, then the sequence must actually be split exact.Very briey, to see the equivalence, we have (a))(b) on taking F to be thetensor product functor; (b))(c) on dualizing the tensor product sequence for Y =DX and using the isomorphismD(DX
M ) �= Hom(M;X); (c))(d) by Auslander-Reiten theory, for there is an exact sequence0!Hom(N;D TrX)! Hom(M;DTrX)! Hom(L;DTrX)!! DHom(N;X) ! DHom(M;X)! DHom(L;X)! 0;(d))(a) using a resolution 0! Hom(Z;�)! Hom(Y;�)! Hom(X;�)! F ! 0of F (where Z is the cokernel of the map X ! Y ), applying each term to the exactsequence, and then using the snake lemma. Many other equivalent conditions for apure-exact sequence can be found, for example, in [17, Theorem 6.4] and [26, x1F].Examples.1. If L1 � L2 � : : : are direct summands of M , then L = SLi need not be adirect summand ofM , but it is a pure submodule. Namely, if F is a coherentfunctor, then each sequence 0! F (Li)! F (M )! F (M=Li)! 0 is exact,hence so is their direct limit 0! F (L)! F (M )! F (M=L)! 0.2. A direct sum of modules �iXi is a pure submodule of the product QiXi,for any �nite direct sum is a summand of the product.3. Every module can be embedded as a pure submodule in a product of �nite-dimensional modules. If �� :M ! N� (� 2 �) is a complete list of all mapsfrom M to a �nite-dimensional module (up to isomorphism), then clearlyany map from M to a �nite-dimensional module factors through the mapM !Q�N�, so this embeds M as a pure submodule of Q�N�.2.3. De�nable subcategories. Let C be a full subcategory of A-Mod. Wesay that C is de�nable if the following equivalent conditions hold:(i) C is closed under products, direct limits and pure submodules(ii) C is closed under elementary equivalence and direct summands.(iii) C is de�ned by the vanishing of some set of coherent functors.It follows that C is also closed under direct sums.Proof of equivalence. (i))(ii) A theorem of Frayne [4, Corollary 4.3.13]implies that if M and M 0 are elementarily equivalent, then M 0 is elementarilyembedded in (hence a pure submodule of) some ultrapower of M . Now if F is anultra�lter on a set I then the ultrapower QIM=F is the direct limit over all J 2 Fof the powers MJ . Thus if M 2 C then so is M 0. (ii))(iii) is the corollary inSection 2.1. (iii))(i) follows from properties of coherent functors.Remark. There are three other concepts equivalent to de�nable subcategories.I. Complete theories of modules. These are maximal consistent sets of sen-tences. The corresponding de�nable subcategory consists of all direct sum-mands of models of the theory. (In general this subcategory need not be



14 WILLIAM CRAWLEY-BOEVEYclosed under products, but in our case it is, since it follows from the factthat A contains an in�nite �eld.)II. Serre subcategories in C(A). A Serre subcategory S is a full subcategorywith the property that F 0 2 S , F; F 00 2 S for any exact sequence0 ! F ! F 0 ! F 00 ! 0 of coherent functors. The corresponding de�n-able subcategory consists of the modules on which all F 2 S vanish. Thiscorrespondence is due to I. Herzog [16].III. Closed subsets of the Ziegler spectrum. We discuss this in Section 2.5.Examples. The following are de�nable subcategories:1. The perpendicular category X? = fM j Hom(X;M ) = Ext1(X;M ) = 0g forX a �nite-dimensional module. This is because Hom(X;�) and Ext1(X;�)are coherent.2. fM j Hom(M;X) = 0g is de�nable for X �nite dimensional, since there isan isomorphism Hom(M;X) �= D(DX 
M ), and the functor DX 
 � iscoherent.3. fM j proj: dimM � ng is de�nable for n � 0, for proj: dimM � n if andonly if Torn+1(X;M ) = 0 for all �nite-dimensional modules X, and thefunctors Torn+1(X;�) are coherent.Remark. Any collection A of modules can be closed up to form a de�nablesubcategory, which we denote by A. In the case when A consists of only onemodule M , we write M . In fact every de�nable category occurs as some M , for ifC is de�nable, and F� runs through the isomorphism classes of coherent functorsnot vanishing on C, choose M� 2 C with F�(M�) 6= 0. Then C =Q�M�.Given any collection A of �nite-dimensional indecomposable modules, it shouldbe considered a standard problem to describe A. For example this is of interest if Ais an Auslander-Reiten component, or part of a component. (It may be that Ringel'ssewing procedure for Auslander-Reiten components of special biserial algebras isgiven by sewing two components when their closures intersect, see [28].)Proposition. If A is a collection of �nite-dimensional indecomposables, then1. A contains no other �nite-dimensional indecomposables, and2. if A is in�nite then A must contain in�nite-dimensional indecomposables.Proof. The �rst assertion follows from Auslander-Reiten theory. If X is a�nite-dimensional indecomposable module, then the simple functor S de�ned byS(M ) = Hom(X;M )=f� : X !M not a split monomorphismgis coherent. Now S vanishes on A, so it vanishes on A. The second assertion usesthe compactness of the Ziegler spectrum, discussed later.2.4. Algebraically compact modules. IfM is a module and F is a coherentsubfunctor of Forget1, then F (M ) is a subgroup ofM (even an End(M )-submoduleofM ). The subgroups which arise in this way (for some F ) are called subgroups of�nite de�nition of M . They form a lattice, which is denoted Latt(M ).



INFINITE-DIMENSIONAL MODULES 15AmoduleM is said to be algebraically compact provided that any covering ofMby complements of cosets of subgroups of �nite de�nition has a �nite subcovering.We relate this de�nition to more standard ones with the following lemma.Lemma. M is algebraically compact if and only if it has the following property:the natural map M ! lim -M=M�; x 7! (M� + x)is surjective for any family M� (� 2 �) of subgroups of �nite de�nition of M , whichis �ltered in the sense that for any �; � 2 � there is � 2 � with M� �M� \M�.Proof. Suppose that M has the given property for �ltered families, and hasa covering by complements of cosets Ci of subgroups Mi of �nite de�nition. If thiscovering has no �nite subcovering, then for any �nite subset F � I the intersectionCF = Ti2F Ci is non-empty, and so it is a coset of MF = Ti2F Mi, which isa subgroup of �nite de�nition. As F varies, the MF form a �ltered family, andthe CF de�ne an element of the inverse limit, so there is x 2 M such that eachCF = MF + x. But this is impossible since M is covered by the complements ofthe Ci.Now suppose that M is algebraically compact and M� is a �ltered family. Anelement of the inverse limit is given by cosets C� withC� � C� wheneverM� �M�.If this element is not in the image of M , thenM =[� (M nC�) = (M nC�1) [ � � � [ (M nC�r)using the �nite subcovering property. Now there is M� � TM�i , and so C� � C�ifor each i, which is impossible.Using [17, Corollary 7.4], the lemma shows that our de�nition agrees withthe usual de�nition of an algebraically compact module, and then there are manyequivalent properties. The most important one being that M is algebraically com-pact if and only if it is pure-injective, which means that any pure-exact sequence0 ! M ! E ! N ! 0 splits. Using the example at the end of Section 2.2 it isequivalent that M is a direct summand of a product of �nite-dimensional modules.Remark. There is a whole hierarchy of �niteness conditions on Latt(M ) whichare reected in properties of the module M and the de�nable subcategory M .Starting from the strongest, we have:(1) M is endo�nite if and only if Latt(M ) has the ascending and descendingchain conditions. To see this one uses that every End(M )-submodule is a sum ofintersections of subgroups of �nite de�nition, see [8, Proposition 4.1].(2) M is �-algebraically compact (meaning that M (I) is algebraically compactfor all sets I) if and only if Latt(M ) has the descending chain condition. There aremany equivalent conditions for this, for example that every power M I is a directsum of indecomposables with local endomorphism ring. See [17, Theorem 8.1].(3)M has elementary Krull dimension if the Krull dimension of Latt(M ) existsas an ordinal number. It is equivalent that Latt(M ) contains no subset isomorphicto (Q;�). This notion was introduced by Garavaglia [12] and later studied by



16 WILLIAM CRAWLEY-BOEVEYZiegler [32]. Various properties are known, for example if M is a non-zero modulewith elementary Krull dimension, then M contains an indecomposable endo�nitemodule. Recently Krause [21] has given a proof of this using functor categories.(4) In [32], Ziegler introduced the notion of the width of a lattice, and showedthat if M is a non-zero algebraically compact module and Latt(M ) has boundedwidth, then M must have an indecomposable direct summand.Examples. The following are algebraically compact modules.1. Any �nite-dimensional or endo�nite module is algebraically compact.2. The dual of an arbitrary module is algebraically compact.3. If : : : ! X2 ! X1 ! X0 is a system of �nite-dimensional modules thenlim -Xi �= D(lim-!DXi) so it is algebraically compact. In particular, Ŝ isalgebraically compact for any quasi-simple module S.4. IfM has an endomorphism � with �nite-dimensional kernel which is locallynilpotent, so M = SKer(�n), then M is �-algebraically compact. IndeedM is an A-K[T ]-bimodule with T acting as �, and as a K[T ]-module it istorsion with �nite-dimensional socle. Thus it is an artinian K[T ]-module, soas an A-module it must have the descending chain condition on subgroupsof �nite de�nition.5. (Krause [21]) If S is a quasi-simplemodule in a tube, then S1 is algebraicallycompact, for if the tube has width d then for all n there is an exact sequence0! Sd ! Snd ! S(n�1)d ! 0. Moreover, as n varies, these exact sequencesare compatible, and taking the direct limit gives rise to an exact sequence0 ! Sd ! S1 ! S1 ! 0. Now the endomorphism of S1 is locallynilpotent with �nite-dimensional kernel, so the previous example applies.2.5. The Ziegler spectrum. The Ziegler spectrum ZgA is de�ned to be theset of isomorphism classes of indecomposable algebraically compact modules. Anyindecomposable algebraically compact module has cardinality at most 2cardA, sothere are no set-theoretic problems. The Ziegler spectrum is useful because everymodule is elementarily equivalent to a direct sum of indecomposable algebraicallycompact modules [32, Corollary 6.9], and it follows that any de�nable subcategoryis uniquely determined by the indecomposable algebraically compact modules thatit contains.Theorem (Ziegler). The sets (F ) = fM 2 ZgA j F (M ) 6= 0g with F acoherent functor, form a base of open sets for a topology on ZgA. With this topology,ZgA is compact. More generally, all of the sets (F ) are compact.It follows immediately that a subset of the Ziegler spectrum is closed if and onlyif it is the set of indecomposable algebraically compact modules in some de�nablesubcategory. Ziegler's proof of the theorem [32] uses model-theoretic language. Amore algebraic proof using functor categories has been given by Herzog [16]. Seealso Krause [22].Remark. By Auslander-Reiten theory the open points of ZgA are the �nite-dimensional indecomposable modules. Now compactness implies that the closure



INFINITE-DIMENSIONAL MODULES 17of an in�nite set of �nite-dimensional indecomposables must contain an in�nite-dimensional indecomposable.Remark. The closed points of ZgA are not fully understood. However, theresult below implies that if M is indecomposable endo�nite then fMg is closed inZgA. On the other hand, if fMg is a closed subset of ZgA and M has elemen-tary Krull dimension, then the result mentioned in Section 2.4 implies that M isendo�nite.Proposition (Garavaglia). An indecomposable module M is endo�nite if andonly M consists of the direct sums of copies of M .Proof. If M is endo�nite, of endolength n, then any chain of subgroups of�nite de�nition of M has length at most n. This carries over to any module Nin M , so N has endolength at most n, so is a direct sum of indecomposable end-o�nite modules. Now the module M � N also has endolength at most n, so allindecomposable direct summands of N must be isomorphic to M , see [8, x4.5].If M consists of the direct sums of copies of M then M is �-algebraicallycompact, since one of the characterizations of such modules is that every productof copies of M is a direct sum of modules of bounded cardinality, see [17, Theorem8.1]. Thus Latt(M ) has the descending chain condition, soM must have elementaryKrull dimension. Now by the property mentioned in Section 2.4, M must containan indecomposable endo�nite module, but the only possible such module isM .3. Tame and/or hereditary algebras3.1. Tame hereditary algebras. Suppose that A is a �nite-dimensional(connected) tame hereditary algebra. Assuming that A is basic, it must be thepath algebra of an extended Dynkin quiver, for example the Kronecker quiver.Recall that the Auslander-Reiten quiver of A decomposes into three parts���@@ ���@@� �� �P R Iwhere P is the set of indecomposable preprojective modules, I is the set of indecom-posable preinjective modules, and R is the set of indecomposable regular modules.Moreover R consists of a family of tubes indexed by K [ f1g. (For more details,see [27].)A module M is said to be torsion-free if Hom(R;M ) = 0, or equivalentlyif Hom(S;M ) = 0 for all quasi-simple modules S. It is said to be divisible ifExt1(R;M ) = 0, or equivalently if Ext1(S;M ) = 0 for all quasi-simple modules S.These notions agree with the de�nitions given in Section 1.1 for Kronecker modules.Theorem. The indecomposable algebraically compact A-modules are:



18 WILLIAM CRAWLEY-BOEVEY1. The �nite-dimensional indecomposable modules.2. The modules Ŝ and S1 for each quasi-simple module S.3. A unique indecomposable torsion-free divisible module. It is endo�nite.In�nite-dimensional modules for tame hereditary algebras were �rst studied byRingel [26], generalizing earlier work of Aronszajn and Fixman [1] on Kroneckermodules. Using this, a classi�cation of the indecomposable algebraically compactmodules was given by Okoh [23], but it didn't fully pin down the adic modules.Finally, the full classi�cation was obtained by Prest [24]. (It was also implicit inwork of Geigle [13].)Here we sketch a proof of the theorem, freely using the properties of �nite-dimensional modules for a tame hereditary algebra. For example, the layout ofthe picture above indicates that there are no non-zero homomorphisms from R toP or from I to P or R. We also need the fact that for any tube T , any mapfrom a module in P to one in I factors through a module whose indecomposabledirect summands lie in T . In addition we need to use the fact that the categoryof �nite dimensional regular modules is an abelian category, closed under images,kernels and cokernels, in which every object is uniserial, and with the simple objectsbeing the quasi-simple modules. In particular there are no non-zero maps betweenmodules in di�erent tubes.We need the Auslander-Reiten translations, which for a hereditary algebracan be de�ned by �M = Tor1(DA;M ) and ��M = Ext1(DA;M ). They areadjoint functors, so that Hom(M; �N ) �= Hom(��M;N ). In addition there are theAuslander-Reiten formulasDExt1(X;M ) �= Hom(M; �X) and Ext1(M;X) �= DHom(��X;M )for X �nite dimensional. Finally, it is not hard to see that even for in�nite-dimensional modules there are isomorphismsM �= ���M if Hom(M;A) = 0, andM �= ���M if Hom(DA;M ) = 0.Lemma 1. If M is an A-module, then2 Hom(M;P) = 0 if and only if M has no direct summand in P.2 Hom(I;M ) = 0 if and only if M has no direct summand in I.Proof. We prove the �rst of these two statements. Clearly, if Hom(M;P) = 0then M has no summand in P. For the converse, we prove by induction that ifn is the smallest integer with Hom(M; ��nP ) 6= 0 for some projective P , then Mhas a direct summand in P. If n = 0 then there is a non-zero map from M toa projective. Since A is hereditary, the image of this map is projective, and thenthe map onto this projective must split, so M has a projective direct summand. Ifn > 0 thenHom(M; ��nP ) �= Hom(���M; ��nP ) since Hom(M;A) = 0�= Hom(�M; ���nP ) since ��; � are adjoint�= Hom(�M; ��(n�1)P ):Thus by induction �M has a direct summand in P, and hence so does M .



INFINITE-DIMENSIONAL MODULES 19Lemma 2. R[ I = fM j Hom(M;P) = 0g.Proof. The right hand side is de�nable and contains R[I, so it also containsR[ I. For the reverse inclusion, suppose that Hom(M;P) = 0. Now M embedspurely in a product N of �nite-dimensional modules, and since each of these is a�nite product of indecomposables, N is a product of �nite-dimensional indecom-posables. Collecting terms we have N �= N1�N2 where N1 is a product of modulesin P and N2 is a product of modules in R [I. Now Hom(M;N1) = 0, so M mustembed purely in N2. Thus M 2 R [ I.This lemma is used in the proof of the next, which is the key result in Prest'sproof.Lemma 3. R = fN j Hom(N;P) = Hom(I; N ) = 0g.Proof. The right hand side is de�nable and contains R, so it also containsR. For the reverse inclusion, suppose that N belongs to the right hand side, butis not in R. Thus there is a coherent functor F with F (R) = 0 for all R 2 R butwith F (N ) 6= 0. NowF (�) �= Coker(Hom(Y;�) Hom(�;�)������! Hom(X;�))for some map � : X ! Y of �nite-dimensional modules. Write X = X1 �X2 withthe indecomposable direct summands of X1 in P [R and those of X2 in I, and let�i be the restriction of � to Xi. De�ningF 0(�) = Coker(Hom(Y;�) Hom(�1;�)�������! Hom(X1;�));one sees immediately that ifM is a module with Hom(X2;M ) = 0, then F (M ) = 0if and only if F 0(M ) = 0. It follows that F 0(R) = 0 for all R 2 R but F 0(N ) 6= 0.Now if I is preinjective then F 0(I) = 0. Namely, since any map from a pre-projective to a preinjective factors through a regular module, any map � : X1 ! Ifactors through a regular module, say as X1 ! R ! I. Now F 0(R) = 0, whichmeans that X1 ! R factors through �1. But this implies that � factors through�1, so F 0(I) = 0.Thus fM j F 0(M ) = 0g contains R [ I, and since it is de�nable, it containsR[ I, and hence by the previous lemma it contains N . But we have already seenthat F 0(N ) 6= 0.Lemma 4. If S is a quasi-simple module then S1 is divisible and Ŝ is torsion-free. If T is another quasi-simple module then Hom(T; S1) is 1-dimensional ifT �= S, and zero otherwise, while Ext1(T; Ŝ) is 1-dimensional if T �= ��S, and zerootherwise.Proof. We use the fact that the category of �nite-dimensional regular modulesis an abelian category, in which every indecomposable object is uniserial, and inwhich the quasi-simple modules are the simple objects. Now if T is quasi-simplethen Hom(S1; T ) �= lim - Hom(Sn; T ) and Hom(T; Ŝ) �= lim - Hom(T; nS)



20 WILLIAM CRAWLEY-BOEVEYand the uniserial structure implies that the maps in these inverse limit systems arezero, so the inverse limits are themselves zero. AlsoHom(T; S1) �= lim-!Hom(T; Sn)from which the assertion for Hom(T; S1) follows.Finally, the isomorphismHom(X;DY ) �= Hom(Y;DX) induces an isomorphismon Ext1, and so Ext1(T; Ŝ) �= Ext1((DS)1 ; DT );where DT and DS are quasi-simple modules for the opposite algebra of A, whichis tame hereditary again, and we have used the isomorphism Ŝ �= D((DS)1 ). NowExt1((DS)1 ; DT ) �= DHom(��DT; (DS)1 )by the Auslander-Reiten formula, and this last space is 1-dimensional or zero, ac-cording to whether or not ��DT �= DS, or equivalently whether T �= ��S.In these notes we have only discussed algebraically compact modules for �nite-dimensional algebras, but there are no problems de�ning such modules for any ring,and there are short proofs of the next result in [32] and [17].Lemma 5. The indecomposable algebraically compact modules for a Dedekinddomain � are1. The �nite length indecomposables �=mn, with m a maximal ideal in �.2. The m-adic modules �̂m = lim -�=mn and Pr�ufer modules �m1 = lim-!�=mn.3. The �eld of fractions of �.Proof of the theorem. We use the perpendicular categoryX? = fM j Hom(X;M ) = Ext1(X;M ) = 0gassociated to a �nite-dimensional module X, which is a de�nable subcategory. IfM and N are two modules in X? then the image of any map � : M ! N is alsoin X?, and then using the long-exact sequence for Hom(X;�) it follows that Ker �and Coker � also belong to X?.We need the following observation: if the indecomposable direct summands ofX include all quasi-simples in some tube T , then X? contains no indecomposablepreprojective or preinjective modules. This follows from the fact that any mapfrom a preprojective module to a preinjective module factors through a direct sumof modules in T .We show �rst that A has a unique indecomposable torsion-free divisible module,and it is endo�nite. We have seen this in Section 1.1 for the Kronecker algebra. IfA is not Morita equivalent to the Kronecker algebra then there is a quasi-simplemodule S in a tube of width at least two, and the category S? is equivalent tothe module category for a new tame hereditary algebra B, see for example [14] or[6]. Now the Grothendieck group of B has smaller rank than A, so by induction Bhas a unique indecomposable torsion-free divisible module, and hence so does A.Moreover this module is endo�nite by Garavaglia's characterization.



INFINITE-DIMENSIONAL MODULES 21Next we check that the modules in the list are indecomposable and algebraicallycompact. If S is quasi-simple then Ŝ is indecomposable, for by Lemma 4 if it de-composes then one summand is divisible, and thus by the Auslander-Reiten formulahas no non-zero map to a regular module. This is impossible since Ŝ embeds inQ nS. By a similar argument (or the theorem in Section 1.5) the modules S1 areindecomposable. We have already observed at the end of Section 2.4 that Ŝ andS1 are algebraically compact.It remains to check that the list contains all indecomposable algebraically com-pact modules. We prove this by induction on the rank of the Grothendieck group ofA. LetM be an in�nite-dimensional indecomposable algebraically compact module.Suppose �rst that Hom(S;M ) 6= 0 for some quasi-simplemodule S. Choose twotubes T1 and T2 not containing S, and let Xi be the direct sum of all quasi-simplesin Ti. Since there are no non-zero maps between modules in distinct tubes, everymodule in R belongs either to X?1 or to X?2 . If F1 and F2 are the correspondingclosed subsets of the Ziegler spectrum, then by Lemmas 1 and 3 we have M 2 R =F1[F2 in the Ziegler spectrum. Thus, say,M 2 X?1 . Now a non-zero map S !Mcan be extended to a map S1 ! M by the argument of [25, 4.1]. Moreover, thismap must be injective, for the kernel of the map Sn ! M is in X?1 , so is regular,and then if it is non-zero it must contain S. Thus there is an exact sequence� : 0! S1 !M ! N ! 0:Now N belongs to X?1 , so Hom(I; N ) = 0. If S1 ! Y is a non-zero map to a�nite-dimensional indecomposable module then Y must be preinjective, and thepushout of � splits since Ext1(N; Y ) �= DHom(��Y;N ) = 0. Thus � is pure-exact,and hence split. This implies that M �= S1.Thus we may suppose that Hom(S;M ) = 0 for all quasi-simple S, or in otherwords, M is torsion-free.If the algebra is the Kronecker algebra, let U1 and U2 be two quasi-simplemodules, for example the modules R0 and R1 of Section 1.1. Then each U?i isequivalent to K[T ]-Mod. By the argument used above, M either belongs to U?1 orto U?2 , and it corresponds to an algebraically compact K[T ]-module, for exampleusing the characterization of algebraically compact modules as those for which thesummation map M (I) ! M extends to a map M I ! M , see [17, Theorem 7.1].Now the the indecomposable algebraically compact K[T ]-modules are known byLemma 5, and each one corresponds to an A-module listed in the theorem.Finally if the algebra is not Kronecker, one can �nd distinct quasi-simples S1and S2 in a tube of width at least two. Now every indecomposable regular moduleis in one of the categories Ei = fN j Ext1(Si; N ) = 0g, so by the Ziegler spec-trum argument, M belongs to one of these two categories, say E1. Since M is alsotorsion-free it is in S?1 . Now this category is equivalent to B-Mod for some tamehereditary algebra B whose Grothendieck group has smaller rank. Moreover Mcorresponds to an algebraically compact B-module. Now by induction the inde-composable algebraically compact B-modules are known, and it is easy to see thatthe corresponding A-modules are listed in the theorem.



22 WILLIAM CRAWLEY-BOEVEY3.2. General tame algebras. An algebra is tame if for all d, its indecom-posable modules of dimension d can be parametrized by a �nite number of curves.Adapting Drozd's Tame and Wild theorem, I proved [5, 7]:Theorem. If A has tame representation type then1. For each d, all but �nitely many indecomposable modules of dimension dbelong to tubes.2. For each d, there are only �nitely many in�nite-dimensional indecomposableendo�nite modules of endolength d.The in�nite-dimensional indecomposable endo�nite modules which occur in thesecond part of the theorem are called generic modules. The question of how tubescorrespond to generic modules remained open, but it is now partially answered bythe following correspondence. (The �rst part is due to Krause [21]).Theorem. The closure of any tube contains at least one generic module. Con-versely, for a tame algebra, every generic module is in the closure of a tube (indeed,in�nitely many tubes).Proof. If S is quasi-simple in a tube, then S1 has the descending chaincondition on subgroups of �nite de�nition, so it has elementary Krull dimension, seeSection 2.4. Thus S1 contains an indecomposable endo�nite module G. But S1 isan in�nite-dimensional indecomposable module, so G must be in�nite dimensional.For the converse, I proved in [7] that if G is a generic module for a tamealgebra, then there is an A-K[T ]-bimodule M , �nitely generated free over K[T ],such that G �= M 
 K(T ), and such that for all but �nitely many � 2 K, themodules M 
 K[T ]=(T � �)n (n � 1) form a tube. Now the closure of this tubecontains G.Remark. One hope with in�nite-dimensional modules was to �nd an elemen-tary proof of the second Brauer-Thrall conjecture, that an algebra of in�nite rep-resentation type has strongly unbounded representation type. This is the closestyet: any algebra with a tube must have strongly unbounded representation type.Example. If A is a tubular algebra (in the sense of [27]) then its Auslander-Reiten quiver has the structure���@@ ���@@������������p p p p p pP T0 Ti T1 Iwhere P is the set of indecomposable preprojective modules, I is the set of inde-composable preinjectives, and for each rational number 0 � i �1 there is a familyof tubes Ti indexed by K[f1g (except that the families T0 and T1 also have somecomponents containing projectives and injectives).



INFINITE-DIMENSIONAL MODULES 23By the argument we used for tame hereditary algebras, the indecomposablealgebraically compact modules in each Ti (0 < i < 1) are the �nite-dimensionalmodules, the Pr�ufer and adic modules associated to quasi-simples, and one genericmodule. We shall not attempt here to analyse the indecomposable algebraicallycompact modules in T0 and T1, but we note that each contains one generic module.In this way one obtains all generic modules. Presumably there are indecomposablealgebraically compact modules in STi which are not in any Ti (certainly this is thecase if the base �eld is countable), but no examples seem to be known.3.3. General hereditary algebras. If A is an arbitrary �nite-dimensionalhereditary algebra, then it is hopeless to try and classify all indecomposable alge-braically compact A-modules or even all endo�nite modules. However, a theoremof Scho�eld classi�es the stones, that is, the indecomposable endo�nite modulesMwhich satisfy Ext1(M;M ) = 0. (The endomorphism ring of any such module is adivision ring, by the argument of the Happel-Ringel Lemma [15, Lemma 4.1])Assuming that A is basic, we can write it as a path algebra A = KQ, whereQ is a quiver without oriented cycles. Let the vertices in Q be labelled 1; : : : ; n,so any �nite-dimensional module X has dimension vector dimX 2 Nn. Its i-thcomponent is dimHom(Pi; X), where Pi is the indecomposable projective modulefor vertex i. One says that � 2 Nn is a Schur root if it is the dimension vector of a�nite-dimensional module X with End(X) = K. A vector � 2 Nn is indivisible ifits coordinates have no common divisor.Theorem (Scho�eld). The stones are in 1-1 correspondence with indivisibleSchur roots, with a stone M corresponding to the vector � whose components are�i = lengthEnd(M)Hom(Pi;M ).This theorem was �rst mentioned by Scho�eld in 1991, and he outlined a proofof it in a lecture in Krippen, Germany, in 1995. The proof here is based upon thatlecture, except that we use the language of characters, as in Section 1.3, rather thanScho�eld's `Sylvester rank functions' [30].If � 2 Nn, then the function �� de�ned on �nite-dimensional modules by��(X) = maxfhdimX=Y; �i j Y � X is a submoduleg is a character, where h�;�iis the Ringel form for Q. One de�nes hom(X; �) (respectively ext(X; �)) to bethe minimal value of dimHom(X;Z) with Z ranging over all modules of dimensionvector � (respectively dimExt1(X;Z)). This is also the value taken for Z in a denseopen subset of the variety of representations of dimension �. A �nite-dimensionalmodule X is said to be �-semistable if hdimX; �i = 0 and hdimY; �i � 0 for allsubmodules Y � X. The following two facts are proved in [9]. (Actually, only onedirection of (b) is mentioned there, but the converse follows from (a).)(a) ��(X) = limr!1 1r hom(X; r�).(b) X is �-semistable if and only if hom(X; r�) = ext(X; r�) = 0 for some r > 0.In the proof outlined by Scho�eld, property (a) was not used, and property (b) wasderived from a classi�cation of the semi-invariants of representations of quivers.Lemma 1. The characters of stones are exactly the �� which are irreducible.



24 WILLIAM CRAWLEY-BOEVEYProof. If � is a character, we write dim� for the vector with (dim�)i = �(Pi),so that �(P ) = hdimP; dim�i for any projective module P . Then�(X) � maxfhdimX=Y; dim�i j Y � Xgfor any module X (for if 0! P 0 ! P ! X=Y ! 0 is a projective resolution, then�(X) � �(X=Y ) � �(P )� �(P 0) = hdimX=Y; dim�i). Clearly the �� are exactlythe `extremal characters' for which this inequality is always an equality. Writing anextremal character as a sum of irreducibles, it is clear that every summand mustalso be extremal. Thus, in order to prove the lemma it su�ces to show that if Mis an indecomposable endo�nite module then �M is extremal if and only if M is astone. Note �rst that if X is any �nite-dimensional module, thenhdimX; dim�Mi = lengthEnd(M)Hom(X;M )� lengthEnd(M)Ext1(X;M );for both sides are additive on short exact sequences, and the assertion holds byde�nition for X projective.Suppose thatM is a stone. Let Y be the kernel of the mapX !M r given by aset of End(M )-module generators of Hom(X;M ). Clearly we have Hom(X=Y;M ) �=Hom(X;M ), and since X=Y embeds in M r, the equality Ext1(M r;M ) = 0 impliesthat Ext1(X=Y;M ) = 0. ThushdimX=Y; dim�M i = lengthHom(X=Y;M )� lengthExt1(X=Y;M ) = �M (X);so that �M is extremal.Conversely, suppose that Ext1(M;M ) 6= 0. Thus there is a non-split exactsequence 0 ! M ! E ! M ! 0, and since M is algebraically compact, thissequence cannot be pure-exact. Thus there is a �nite-dimensional submodule X ofM such that the inclusionX !M doesn't factor through E, and hence Ext1(X;M )is non-zero. Now for any submodule Y � X, we have lengthExt1(X=Y;M ) � 0,strict for Y = 0, and lengthHom(X=Y;M ) � lengthHom(X;M ), strict for Y 6= 0(since the inclusion of X in M doesn't factor through X=Y ). ThushdimX=Y; dim�M i = lengthHom(X=Y;M )� lengthExt1(X=Y;M ) < �M (X):Since this holds for all Y , the character �M cannot be extremal.Lemma 2. If � is a Schur root then ?� = f� 2 Qn j h�; �i = 0g is the Q-spanof the dimension vectors of �-semistable modules.Proof. We may assume that � is sincere (i.e. every coordinate is strictlypositive). Namely, if �i = 0, then by fact (b) the projective module Pi is �-semistable. Now if � 2 ?� then so is � � �i dimPi, and this vector has supportcontained in the quiver obtained by deleting vertex i. The claim then follows byinduction.Since � is a Schur root, it is the dimension vector of a module X with triv-ial endomorphism algebra. Moreover, by [31, Theorem 6.1] we may assume thathdimY; �i � h�; dimY i > 0 for all non-zero proper submodules Y of X.We �rst check the lemma in case X �= Pi is projective. In this case the inversetranslates ��Sj of simplemodules Sj (j 6= i) are �-semistable, as are the projectives



INFINITE-DIMENSIONAL MODULES 25Pj with Hom(Pi; Pj) = 0. Thus, if � is the Coxeter transformation, then the Q-span contains all vectors ��1(�j) (j 6= i), where �j is the coordinate vector. Theassertion follows.Now assume that X is not projective. Thus  = � +�(�) = �+dim�X 2 Nn.Now if Y is a non-zero proper submodule ofX then the equality h�;�(�)i = �h�; �igives hdimX=Y; i = h�; dimY i � hdimY; �i < 0:Suppose that � 2 ?�. By rescaling, we suppose that the components of � areintegral. For m 2 N su�ciently large, the vector � = �(�) + m is sincere andhdimX=Y; �i < 0 for any non-zero proper submodule Y of X. Since also h�; �i = 0,this means that X is �-semistable, and hence by fact (b) there is a module Z ofdimension `� (` � 1) with Hom(X;Z) = Ext1(X;Z) = 0. Since X is sincere, Zcannot have an injective summand. Then Hom(��Z;X) = Ext1(��Z;X) = 0, so��Z is �-semistable, and it has dimension `(� +m��1()).We apply this �rst with � = 0 to see that ��1() belongs to the Q-span, andthen to deduce that any � 2 ?� belongs to the Q-span, as required.Proof of the theorem. By the �rst lemma it su�ces to prove that �� isirreducible if and only if � is an indivisible Schur root.Suppose that �� irreducible. If � is not a Schur root then by the canonicaldecomposition [18, x4] one can write � =  + � with ext(; �) = ext(�; ) = 0.Thus for any r > 0 we have ext(r; r�) = ext(r�; r) = 0, and this means that thegeneral representation of Q of dimension r� is a direct sum of representations ofdimensions r and r�. Thus hom(X; r�) = hom(X; r) + hom(X; r�), so by fact(a) we have �� = � + �� . Thus � must be a Schur root, and it is indivisible, forif � = m then ��(X) = limr!1 1r hom(X; rm) = m�(X).Now suppose that � is an indivisible Schur root, but that �� is reducible. Writeit as sum of irreducibles. By the extremal property used in the proof of Lemma 1the summands are extremal, so �� = � + �� + : : : with ; �; : : : indivisible Schurroots.Now any �-semistable module is -semistable, for if X is �-semistable, then��(X) = 0. Thus � (X) = ��(X) = � � � = 0, and in particularhdimX; i; hdimX; �i; : : :� 0:However, the sum of all these terms is hdimX; �i = 0, so each term must be zero,and therefore X is -semistable. Now ?� � ? by the second lemma, but theRingel form h�;�i is nondegenerate, so  and � must be multiples of each other.Thus � = , so �� is irreducible. References[1] N. Aronszajn and U. Fixman,Algebraic spectral problems, StudiaMath., 30 (1968), 273{338.[2] M. Auslander, Representation theory of artin algebras II, Commun. Algebra, 2 (1974), 269{310.[3] S. Brenner and C. M. Ringel, Pathological modules over tame rings, J. London Math. Soc.14 (1976), 207{215.[4] C. C. Chang and H. J. Keisler, Model theory (North-Holland, Amsterdam 1973).



26 WILLIAM CRAWLEY-BOEVEY[5] W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc., 56 (1988),451{483.[6] W. Crawley-Boevey, Regular modules for tame hereditary algebras, Proc. London Math.Soc., 62 (1991), 490{508.[7] W. Crawley-Boevey, Tame algebras and generic modules, Proc. London Math. Soc., 63(1991), 241{265.[8] W. Crawley-Boevey,Modules of �nite length over their endomorphism rings, in: Represen-tations of algebras and related topics, London Math. Soc. Lec. Note Ser. 168 (Camb. Univ.Press 1992), 127{184.[9] W. Crawley-Boevey,On homomorphisms from a �xed representation to a general represen-tation of a quiver, Trans. Amer. Math. Soc., 348 (1996), 1909{1919.[10] P. Gabriel, Finite representation type is open, in: Representations of algebras, Lec. Notesin Math. 488 (Springer, Berlin 1975), 132{155.[11] P. Gabriel, The universal cover of a representation-�nite algebra, in: Representations ofalgebras, Lec. Notes in Math. 903 (Springer, Berlin 1981), 68{105.[12] S. Garavaglia,Dimension and rank in the model theory of modules, manuscript 1979, revised1980.[13] W. Geigle, The Krull-Gabriel dimension of the representation theory of a tame hereditaryArtin algebra and applications to the structure of exact sequences, Manuscripta Math., 54(1985), 83{106.[14] W. Geigle and H. Lenzing, Perpendicular categories with applications to representationsand sheaves, J. Algebra, 144 (1991), 273{343.[15] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc., 274 (1982), 399{443.[16] I. Herzog, The Ziegler spectrum of a locally coherent Grothendieck category, preprint.[17] C. U. Jensen and H. Lenzing, Model theoretic algebra (Gordon and Breach, New York 1989).[18] V. Kac, In�nite root systems, representations of graphs and invariant theory II, J. Algebra,78 (1982), 141{162.[19] H. Krause, A note on in�nite string modules, in: Representations of algebras, CanadianMath. Soc. Conf. Proc. 14 (Amer. Math. Soc. 1993), 309{312.[20] H. Krause, Constructing large modules over artin algebras, preprint.[21] H. Krause, Generic modules over artin algebras, preprint.[22] H. Krause, The spectrum of a locally coherent category, preprint.[23] F. Okoh, Indecomposable pure-injective modules over hereditary artin algebras of tame type,Commun. Algebra 8(20) (1980), 1939{1941.[24] M. Prest, Model theory and modules, London Math. Soc. Lec. Note Ser. 130 (Camb. Univ.Press 1988).[25] C. M. Ringel, Finite dimensional hereditary algebras of wild representation type, Math. Z.161 (1978), 235{255.[26] C. M. Ringel, In�nite dimensional representations of �nite dimensional hereditary algebras,Ist. Naz. Alta Mat., Symp. Math. 23 (1979), 321{412.[27] C. M. Ringel, Tame algebras and integral quadratic forms, Lec. Notes in Math. 1099(Springer, Berlin 1984).[28] C. M. Ringel, Some algebraically compact modules I, preprint.[29] C. M. Ringel and H. Tachikawa, QF-3 rings, J. f�ur die Reine und Angew., 272 (1975),49{72.[30] A. Scho�eld, Representations of rings over skew �elds, London Math. Soc. Lec. Note Ser.92 (Camb. Univ. Press 1985).[31] A. Scho�eld,General representations of quivers, Proc. LondonMath. Soc., 65 (1992), 46{64.[32] M. Ziegler,Model theory of modules, Ann. Pure Appl. Logic 26 (1984), 149{213.Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, EnglandE-mail address: W.Crawley-Boevey@Leeds.ac.uk


