Infinite-dimensional modules
in the representation theory of
finite-dimensional algebras

William Crawley-Boevey

Normally, when one studies the representation theory of a finite-dimensional
assoclative algebra, one restricts to studying its finite-dimensional modules. After
all, this includes the simple modules, ideals, the indecomposable injective modules,
and so on. However, infinite-dimensional modules do occasionally arise, either
as objects of interest in themselves, or because of their relationship with infinite
families of finite-dimensional modules. These notes correspond closely to a series of
three introductory talks on infinite-dimensional modules that I gave in Trondheim
in Summer 1996. My aim was:

(1) To give a selection of examples showing how infinite-dimensional modules
can arise naturally when studying finite-dimensional algebras.

(2) To outline the general theory of infinite-dimensional modules, in particular
the notion of purity and the connection with the model theory of modules. The
high points are the various finiteness conditions on algebraically compact modules,
and the Ziegler spectrum.

(3) To show how this general theory applies to the special cases of tame and/or
hereditary algebras. In particular for tame algebras, to show how certain infinite-
dimensional ‘generic modules’ control the behaviour of finite-dimensional modules,
and for hereditary algebras to show how infinite-dimensional ‘stones’ are related to
properties of the general representation of a given dimension.

These three objectives corresponded to the three lectures, and they correspond
to the three sections in this article.

Throughout, we restrict to studying finite-dimensional associative algebras
(with 1) over an algebraically closed field K, and write D for duality with the
field. Except where stated, all modules are left modules. We write A-mod for
the category of finite-dimensional A-modules, and A-Mod for the category of all
A-modules. (Many of the results remain true for artin algebras, provided that one
replaces the phrase ‘finite-dimensional module’ by ‘finitely generated module’. In
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fact the general theory expounded in Section 2 applies to arbitrary rings, but ‘finite-
dimensional’ sometimes needs to be replaced by ‘finitely presented’, and sometimes
by ‘module with a left almost split map’, so there are complications.)

This article contains a couple of original results, the properties of tree mod-
ules in Section 1.4, the characterization of coherent functors in Section 2.1 (which
enables the definition used in these notes), and the characterization of definable
subcategories in Section 2.3. (The last two were first presented in lectures I gave
at Bielefeld University in 1993.) In addition, I sketch a proof of the classification
of the indecomposable algebraically compact modules for a tame hereditary alge-
bra, which does not seem to be fully written down in the literature, and a proof
of Schofield’s classification of the stones for a hereditary algebra. Although first
mentioned by Schofield in 1991, at the time of writing there is no other written
version of this result. The proof given here is based on lectures given by Schofield
in Krippen, Germany, in 1995. I would like to thank Henning Krause, who visited
Leeds while I was preparing my lectures.

1. Examples of infinite-dimensional modules

In this section we explain a few standard facts, and give various examples
showing how infinite-dimensional modules can actually arise for finite-dimensional
algebras.

1.1. Kronecker modules. The Kronecker algebra is the path algebra of the
Kronecker quiver ¢ = e. Its modules, Kronecker modules, are therefore given by

vector spaces and linear maps
0
uv— v
¢

Of course, in most situations where Kronecker modules arise, the vector spaces
will be finite dimensional. Sometimes, however, it is essential to consider infinite-
dimensional Kronecker modules.

EXAMPLE. Aronszajn and others initiated the study of infinite-dimensional
Kronecker modules because of their applications to functional analysis. Let V be a
Hilbert space, for example L?(0, 1), and let T' be an unbounded operator on V, for
example the differential operator (T'f)(z) = z2 %. Observe that T' is not everywhere
defined, but only on a dense subspace U of V. This defines an infinite-dimensional
Kronecker module

T
X = U3V
with base field KX = C. Typically one wants to find the eigenvalues of T', so
the A € K such that T'f = Af for some f € U. This can be reformulated as

Hom(Rj, X) # 0, where R, is the module

A
Ry, = K — K,
1
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and in this way one can introduce the algebraic and homological properties of
Kronecker modules.

ExaMPLE. In addition to the Ry (A € K) one should consider the module

1
R, = K I K.
0

Now a Kronecker module X is said to be

O torsion-free if Hom(Ry, X) = 0 for all A € K U {oo}, and

O divisible if Ext' (R, X) = 0 for all A € K U {0}
It turns out that there are no non-zero finite-dimensional modules which are both
torsion-free and divisible, but there are infinite-dimensional ones. Using the stan-
dard projective resolution of a Kronecker module, one finds that

U é v
¢

1s torsion-free divisible if and only if ¢ 1s invertible and § — A¢ invertible for all
A € K. The first of these conditions enables us to identify U and V, with ¢ the
identity map. Now the second condition, that 8 — A is invertible for all A, implies
that f(8) is invertible for all nonzero polynomials f(T') € K[T]. Thus U becomes

a vector space over the rational function field K (T') on setting

F(T) 1
= u=g(8)" " f(0)(u).
L w= 9@ FO)w)
We conclude that a module 1s torsion-free divisible if and only if 1t is isomorphic to
T
U= vU
1
for some K (T')-vector space U.

1.2. Indecomposable decompositions. Any finite-dimensional module is
1somorphic to a direct sum of indecomposables, essentially uniquely. Does this
generalize to infinite-dimensional modules?

First we need infinite direct sums. If X; (¢ € I) is a family of modules, then
their direct sum is

@Xi ={(z;) € HXi | all but finitely many z, are zero}.

i€l i€l
Whereas the product satisfies Hom(X,[[,Y;) = [[, Hom(X,Y;), the direct sum
satisfies Hom(&; X;,Y) = [], Hom(X;,Y). One writes X’ and X for the product
and direct sum of copies of X indexed by I.

THEOREM (Krull-Remak-Schmidt-Azumaya). If a module M decomposes as a
direct sum of indecomposables,
=@,

i€l
each with local endomorphism ring, then any indecomposable direct summand of
M s isomorphic to some M;, and in any decomposition of M as a direct sum of
indecomposables, the terms are in 1-1 correspondence with the M;.
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However, even for Kronecker modules there is pathological behaviour. Such
behaviour was originally found by Corner for abelian groups, and i1t was adapted to
K[T)-modules, the Kronecker algebra, and other algebras by Brenner and Ringel [3].

ExaAMPLE. For the Kronecker algebra:

O There 1s a nonzero module with no indecomposable direct summand.

O There are indecomposables L, M, M’ with L& M = L § M’ but M % M’.
O If ¢ > 2 there is a module M with M* =~ M’ < i =j (mod q).

For algebras of finite representation type, however, there is no pathology what-
soever. The following result is due to Auslander [2] and independently to Ringel
and Tachikawa [29].

THEOREM. If A has finite representation type, then any tndecomposable module
1s finite dimensional (so has local endomorphism ring), and any module is a direct
sum of indecomposables.

1.3. Endofinite modules. A vector subspace X of an A-module M is fully
wnvariant if #(X) C X for any A-module endomorphism of M, or in other words,
if X is a submodule of M when it is considered in the natural way as an End(M)-
module. One says that M is endofinite if it has the ascending and descending chain
condition on its fully invariant subspaces, that is, if lengthEnd(M) M < oo. Clearly
finite-dimensional modules are endofinite, but there are also infinite-dimensional
endofinite modules. Nevertheless, the general theory shows that every endofinite
module is a (possibly infinite) direct sum of indecomposable endofinites, and these
have local endomorphism ring. Thus the Krull-Remak-Schmidt-Azumaya Theorem
applies.

ExaMPLE. If L/K is a field extension (transcendental, since K is algebraically
closed), then A¥ = A @k L is a finite-dimensional L-algebra. Now if M is a finite-
dimensional A¥-module, then it is automatically an A-module by restriction, and
as such 1t is infinite-dimensional, but endofinite. It is of interest to determine the
indecomposable direct summands. In particular if A is the Kronecker algebra and
L = K(T), then the regular module

for Al is indecomposable as an A-module since its endomorphism ring is easily seen
to be Endgr(K(T)) = K(T'), and this is a local ring. Clearly the direct sums of
copies of this module are the torsion-free divisible modules.

ExaMPLE. For an algebra A and n > 0 there is an affine scheme mod(4,n)
of A-module structures on K™, see for example [10]. If R is the coordinate ring
of mod(A4,n), then there is a universal A-R-bimodule 4 Mg, free of rank n over
R, which specializes to each of these A-module structures when tensored with the
simple R-modules. If the total quotient ring S of R is artinian (for example, if
mod(4,n) is reduced) then M ®g S is an endofinite A-module, and presumably its
structure describes the general behaviour of n-dimensional A-modules.
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REMARK. For any algebra A the endofinite A-modules can be described using
certain integer-valued functions. By definition, a character x is a function from the
set of finite-dimensional A-modules to N with

L x(X&Y)=x(X)+x(Y), and

2. x(Z2) < x(Y) < x(X) + x(Z) for any exact sequence X - Y — Z — 0.

A character is said to be irreducible if it cannot be written in a non-trivial way
as a sum of other characters. In [8], I proved that every character can be written
in a unique way as a sum of irreducibles, and that the indecomposable endofinite
modules correspond 1-1 to irreducible characters via

M= xu with xu(X) = lengthg,q ) Hom(X, M).

It must be mentioned that this character theory is very similar to a theory of
Schofield [30, Theorem 7.12], in which equivalence classes of homomorphisms from
A to asimple artinian ring are in 1-1 correspondence with ‘Sylvester rank functions’.
In particular, the fact that every character is uniquely a sum of irreducibles is
already implicit in Schofield’s work. Nevertheless, the character theory seems more
appropriate here, being more module-theoretic.

1.4. Tree modules. Suppose that A = K@Q/I where @ is a quiver and [ is
an ideal in the path algebra K. By a iree over A we mean a map of quivers
F: T — @ with the following properties

1. T is a connected quiver, which is a tree, so has no cycles, even unoriented.

However, I" may be infinite.
2. F' i1s unramafied, meaning that for each vertex ¢ € I" and arrow a € @ with
head (respectively tail) at F(7), there is at most one arrow b € F~1(a) with
head (respectively tail) at 4.
3. No path in T is sent to a path occuring (with non-zero coefficient) in any
element of I.
A tree over A can be described by drawing the quiver I' and labelling each vertex
and arrow with its image in (). For example, the picture

s

NN NN
AR A

AT

describes a tree over the algebra A = K(a,b)/(a,b)*. (In this case @ has only one
vertex, so there is no need to label the vertices of T'.)

If F is a tree over A then there is a corresponding tree module K with a basis
element z; for each vertex ¢ in T', and the action of A given as follows. If 7z is a
vertex in I and p is a path in @, then pz; = 0 if there is no path in T’ lifting p
and starting at . On the other hand, if there is such a path, then it is uniquely
determined, and pz; = z; if it terminates at vertex j.
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THEOREM. If F : T' — Q is a tree over A, then Kr 1s an indecomposable A-
module. If F/ : T/ — @ 1is another tree over A then Krp = Kp/ if and only if there
15 a quiver isomorphism 6 :T' — T/ with F' 0§ = F.

This has been known for some time in case T is finite (so that Kr is a finite-
dimensional module), see Gabriel [11, 3.5]. Indecomposability has also been proved
by Krause [19] in case I is infinite, but at most two arrows are incident at any vertex
in I'. To solve the general case we use that the group algebra of a free group has
no non-trivial idempotents. First we need a lemma.

IfF:T — @, F':T' — Q are trees over A, then by a partial map 6 : F ~+ F’
we mean a quiver isomorphism 6 : Dy — Ry satisfying F' o6 = F|p,, where Dy is a
non-empty connected (hence full) subquiver of I' which is closed under predecessors
(ie.if r — s is an arrow in I' and s € Dy, then r € Dy), and Ry is a non-empty
connected (hence full) subquiver of I which is closed under successors (i.e.if r — s
is an arrow in IV and » € Ry, then s € Ry).

Given vertices r € T and s € T, we write 7 ~» s to mean that there is a partial
map 0 : F — F' with r € Dy, s € Ry and s = 6(r). This relation has the following
properties.

(A)If r € T and s € I' are vertices, then there is at most one partial map
6 : F — F' inducing r ~» s.

(B) If F” : T" — @ is another tree over A, and r € T, s € IV and ¢t € T are
vertices, and r ~» s ~» t, then r ~» ¢t. Indeed if 6 : F — F’ and ¢ : F' — F”
are the corresponding partial maps, then there is a partial map ¢ : F — F” with
Dy = Dy ﬂg_l(Dgs) and ¢ = ¢09|D,,,~

(C)Ifr € T and s € IV are vertices with 7 ~+ s and s ~» 7, then the corre-
sponding partial maps are inverse isomorphisms between T' and I. Namely, the
construction of (B) gives a partial map from F to F sending r to r, but by (A) it
1s the identity map.

A partial map 6 : F ~» F' induces a linear map ag : Kr — Kp: sending z, to
zg(ry if r € Dy, and to zero if r ¢ Dy. It is easy to see that oy is an A-module map.
Given a vertex r € I and an element z € Kp we write ¢,(z) for the coefficient of

z, 10 T.

LEMMA. Any A-module map B : Kp — Kpg: can be written untquely as a
(possibly infinite) linear combination

with Ag € K, such that for each vertex r € T', there are only finitely many non-zero
Ap with r € Dg. In particular, if ¢;(B(z,)) # 0 then r ~ s.

ProoF. The finiteness condition ensures that >, Agas is well-defined, and
the uniqueness follows from property (A). Let 8 : Krp — Kp be an arbitrary
homomorphism. Because F' and F’ are unramified, given a : » — ¢ in T and v € T’
with ¢y (B(2+)) # 0, there must be an arrow b : s — w in IV with F(a) = F'(b) and
es(B(zr)) = cu(B(24)). Dually, given b : s — v in IV and r € T with ¢,(8(=z,)) # 0,
there must be an arrow a : 7 — ¢ in T with F(a) = F'(b) and ¢, (B(z:)) = cs(B(2)).
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It follows that if » € T and s € I are vertices with ¢;(8(z,)) # 0, then there is a
partial map ¢ inducing r ~ s and with cy(;)(8(:)) = ¢;(B(x,)) for allt € Dy. The
lemma follows. O

Proor oF THE THEOREM. Let G be the group of automorphisms of I' over
@, so consisting of those automorphisms g of I with 7' o g = F'. The fact that F
1s unramified implies that G acts freely on the tree T', so it 1s free. We consider
each element of G as a partial map F — F. By property (C) and the lemma,
End(Kp) =S @ J where

S = {8 € End(Kr) | B is of the form Z Aopag}, and
pea
J ={B € End(Kr) | ¢;(B(z,)) =0for all r,s € T with s ~ r.}

Evidently S is a subalgebra of End(Kpg) and J is an ideal. Let 8 € End(Kr) be
a non-trivial idempotent. Now B € End(Kr)/J = S = KG, and since G is a free
group, its group algebra has no non-trivial idempotents. Thus 8 = 0 or 1, and
replacing 3 by 1 — 3 if necessary, we obtain a non-zero idempotent § € J. Choose
a vertex r € T with S(z,) # 0, say

B(zr) = A1@p, + ...+ Apy,

with 0 # A; € K and vertices r; € ' with » ~ 7;. Since the relation ~» is
transitive, by reordering we may assume that r; is minimal, so that if r; ~ r,
then also r1 ~» r;. Since 32 = (3, for some j we have

cry (B(ar;)) # 0
so r; ~ r1. Thus also 71 ~» 7;, but this contradicts the fact that 5 € J. Thus Kg
has no non-trivial idempotent endomorphisms, so is indecomposable.
Now suppose that v is an 1somorphism Kgp — Kp. Let » € T be a vertex, and
write

¥(2p) = M@p, + ...+ Anze,

with 0 # A; € K and vertices r; € IV with r ~ 7;. Now z, = E?:l )\jfy_l(:crj)
and each term in the sum is a linear combination of z, with r; ~» s. Thus for some

j we have r ~» 7; ~» 7, so T' and I are isomorphic over Q). O

REMARK. Associated to atree F': ' — @ over A there 1s also a completed tree
module f(p. If K7 1s considered as the set of functions from the vertex set of ' to
K with finite support, then K is the set of functions without restriction on the
support. Another construction of it 1s as follows. Reversing all arrows in T' and @,
we get a quiver map FP : I'? — Q°P which is a tree over the opposite algebra A°P.
Then Kp = D(Kpe»). Note, however, that K need not be indecomposable. For
example if A is the path algebra of the Kronecker quiver, with the arrows labelled
a and b, then KFI 1s decomposable, where F} is the tree

NN N

whereas K, is indecomposable, where Fy is the tree
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y’y‘ y’y y’y s

1.5. Limits. A system of modules and maps X; — X5 — X3 — ... has direct
(or tnductive) limat

limX; = () X:)/ ~
where ~ is the equivalence relation which identifies z € X; with o’ € X; if they
have the same image in some X; (k > ¢,7). If the maps are 1-1 then the direct
limit is the union of the modules. Dually, a system — Y3 — Y — Y7 has inverse
(or projective) limat
lim¥; = {(w) € [[ ¥ | yi41 — v in ¥; for all ¢}
More generally one needs the notions of direct and inverse limits for systems of
modules and maps indexed by a filtered poset or category, but we shall not define
these here. To work with limits, one needs the following formulas
Hom(lim X;, M) = limHom(X;, M)
foinin'y —
Hom(M,limY;) = lim Hom(M, Y;)
Hom(N, 1ir_>nXi) = 1_ir_>r1Hom(N, X;) for N finite dimensional.
In fact the last of these characterizes the set of finite-dimensional modules. It is

also crucial to know that a direct limit of exact sequences is exact, but an inverse
limit need not be.

EXAMPLE. Suppose that A is a connected component of the Auslander-Reiten
quiver which 1s quasi-serial, meaning that i1t does not contain any projective or
injective module, and for any indecomposable module X in A the middle term E
of the Auslander-Reiten sequence 0 — DTrX — E — X — 0 1is either indecom-
posable, or can be decomposed into two indecomposable summands E;, E; with
dmFE; < dimX < dimE, and dimF; < dimDTr X < dim E;. Any quasi-serial
component either has shape Z A,

NN
N AN ANV ANV ANE
ANV AVAVAVE
N ANV ANV ANYANE

or it is a tube ZAs/(7%) of width d > 1, obtained by identifying each vertex and
arrow with the one d places to the left.

An indecomposable module X in a quasi-serial component is guast-stmple 1f
the middle term E in its Auslander-Reiten sequence is indecomposable. These are
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exactly the modules on the edge of the component. If S is a quasi-simple, there are
rays starting and ending at S, and we define the Prufer module S, to be the direct
limit of a chain of irreducible maps S — S — S3 — ..., and the adic module S
to be the inverse limit of a chain of irreducible maps ... — 35 — 3,5 — S.

/\/\/\
/\/\/\/\
NN N
NSNS N

It may seem that these modules depend on the choice of irreducible maps, but this
is not the case, for example using [25, Corollary 4.2] and its dual.

As an example, for the path algebra of the Kronecker quiver the modules Ry
(A € K U{oo}) are quasi-simple, all in tubes of width 1. Now the Priifer module
(Ro)eo is the tree module for the tree Fj of the last section, while the adic module
Ro 1s the completed tree module for the tree Fj.

THEOREM (Krause). If S is quasi-simple then S, is indecomposable.

Proor. Krause’s proof [20] uses a functorial argument due to Auslander. Here
we reformulate it naively. Identify S and each S; as a submodule of S, , and write
i, for the inclusion S — S,,. Let us say that a map 6 : S — M extends indefinitely
if for all n, it can be extended to a map S, — M (that is, it factors through ).
We need two properties pertaining to this notion:

(a) If T is a non-zero submodule of S, and p : S, — S,/T is the natural
projection, then pi, : S — S, /T extends indefinitely. By induction it suffices
to prove that there is a map g : Sp41 — Sn/T with gi,i1 = pip, (for then g is
surjective, so S, /T can also be identified as a quotient S,y1/7", etc). Now the
Auslander-Reiten sequence starting at S, has the form

()
0— 8, = Spy1®(S./S) > Te DS, — 0
where j 1s the inclusion and ¢ the natural projection. Since p 1s not a split monomor-
phism it factors as p = gj + hq where g : Sp11 — S, /T and h : S, /S — S,/T.
Then ¢t, =0, s0 piy, = gJin = ginyt1, as required.

(b) The inclusion %, : S — S, doesn’t extend indefinitely. Namely, suppose
that & > n and there is a map ¢ : Sy — S, with 4, = ¢ix. Then 2, = i,
where 1 1s the composite of ¢ with the inclusion S, — S;. Now ¢ is not a split
epimorphism, so ¥ is not invertible, so it must be nilpotent. This is impossible
since 4, = Yi, = Y%, = .. ..

Now suppose that S, is decomposable, say as U ¢V, and write ny and 7y for
the corresponding projections onto U and V. Choose n sufficiently large to ensure
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that S, meets both U and V non-trivially, and then choose k so as to ensure that
T (Sn), mv (Sn) C Si. Now i) : S — Sj factors as

g s—(3,3) (G t)y—mv(s)+mu(t) Sk.

Sn/(Sn NU)® S, /(S NV)

By (a) the left hand map extends indefinitely, but by (b) the composite does not.
This is impossible. O

2. Purity and model theory of modules

In this section we describe the ingredients in a general theory of infinite-
dimensional modules, culminating in the notion of the Ziegler spectrum. Actually
there are two different ways to study such modules.

On the one hand, one can study modules using first-order logic. Indeed an
A-module is nothing more than a ‘model’ of a theory in a suitable ‘language of
A-modules’. With this approach, the study of modules is a part of model theory.

On the other hand, one can study modules using algebra. In particular the
‘functor category’ (A-mod, Ab) of all additive functors from A-mod to the category
of abelian groups, turns out to be an abelian category, so one can apply the concepts
of homological algebra.

For example the 3-algebraically compact modules (mentioned in Section 2.4
below), can be studied in model theory with the notion of a ‘totally transcendental
theory’, or in algebra with the notion of a X-injective object of the functor cate-
gory. With my own algebraic background, while quite ready to use results proved
with model-theoretic techniques, I am always happy to see a proof using functor
categories.

2.1. Coherent functors. An additive functor F : A-Mod — Ab is said to
be coherent if it commutes with direct limits and products. The coherent functors
form an abelian category C(A), whose morphisms are the natural transformations
of functors.

ExaAMPLES. The following are coherent functors:

1. The n-fold forgetful functor Forget™ : M — M & ... 5 M (n copies).

2. The representable functor Hom(X, —) for X finite dimensional.

3. The tensor product functor N®4 — for N a finite-dimensional right module.
4. More generally, Exti(X, —) and Tor;(N, —) for X and N finite dimensional.

The definition we have given of a coherent functor differs from the usual one:
normally one only considers functors on the category of finite-dimensional modules,
and then the coherent ones are those which are cokernels of a morphism between
two representable functors. The next result, however, shows that the two concepts
are equivalent.

LEMMA 1. If6 : X — Y is a map between finite-dimensional modules, then
the functor M — Coker(Hom(Y, M) — Hom(X, M)) is coherent. Moreover, any
coherent functor is isomorphic to one of these.
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Proor. It is straightforward that this construction defines a coherent functor,
as one sees by using the fact that a direct limit or a product of exact sequences 1s
exact. Now suppose that F' is a coherent functor. First, observe that it suffices to
find a finite-dimensional module X and an element £ € F(X) such that the map
Hom(X,M) — F(M), h — F(h)(£) is surjective for all modules M. Namely,
in this case the functor G(M) = Ker(Hom(X,M) — F(M)) is also coherent,
so by the same argument there is ¥ and an element § € G(Y) such that the
map Hom(Y, M) — G(M) is surjective. Now @ is actually a map X — Y, and
F(M) = Coker(Hom(Y, M) — Hom(X, M)). Second, observe that one only needs
to check that Hom(X, M) — F(M) is surjective for M finite dimensional, for an
arbitrary module is the direct limit of its finite-dimensional submodules M, and
if each of the maps Hom(X, M,) — F(M,) is surjective, then so is the direct limit
Hom(X, M) — F(M).

We now consider the product HA@ F(M,), in which M, runs through all iso-
morphism classes of finite-dimensional A-modules, and ¢ runs through all elements
of each F(M,). This product contains a canonical element ¢, whose A, ¢ component
1s ¢ itself. Now we have

ce [[F() = F(J] M) = lim F(X,)
A g A g
where the direct limit 1s over the finite-dimensional submodules X, of HA 4 M.
Thus ¢ = F(¢)(¢) for some module X, and some £ € F(X,), where ¢ is the
inclusion 4 : X, — [, ® M), Clearly € 1s a suitable element. O

LEMMA 2. If a = (as;) is a p X ¢ matriz of elements of A, and n < g, then

g
Fo(M)={(z1,... ,20) € M"™ | 2p41,...,24 € M with Zaijzi =0 for all i}
ji=1
defines a coherent subfunctor F, of Forget™, and any coherent subfunctor of Forget™
arises in this way.

Proor. It is easy to see that this defines a coherent subfunctor. Conversely, by
the previous result any coherent subfunctor of Forget™ is the image of a morphism
Hom(X,—) — Forget™, where X is some finite-dimensional module. Identifying
Forget™ with Hom(A™,—), Yoneda’s lemma shows that this morphism is induced
by a homomorphism A" — X. Now extending this to a surjection A? — X for
some ¢ > n, there is a projective resolution A? — A? — X — 0. Now the map
AP — A1 1s given by a ¢ X p matrix of elements of A, and its transpose induces the
original subfunctor. O

The previous result provides a connection between coherent functors and the
‘language of A-modules’, which is used to study modules using the methods of
model theory. Given elements a;; € A, the string

(F2n4+1)(Fzn42) .. . (Fzg)(@1121 + -+ a142 =0 AL A ap121 + - -+ apgzq = 0)

1s an example of a formula in the language of A-modules. Its features are:
O It has ‘free’ variables z1, ..., z,.
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O It has ‘quantified’ variables z,41,... , 2.

O Elements of the module (other than 0) only enter as variables.

O Elements of A only enter as constants.

This is a positive primative formula; in a general formula there can be other logical
symbols, for example =, V and V, but still elements of the module only enter as
variables and elements of A only enter as constants. If a formula has n free variables,
then 1t has a solution set in M™. Clearly in this way the positive primitive formulas
correspond to the coherent subfunctors of Forget™.

As 1s usual in model theory, one would like to prove ‘elimination of quantifiers’,
meaning that if M i1s a module and ¢ i1s a formula with n free variables, then
the solution set of ¢ in M™ can also be defined by a formula without quantified
variables. Unfortunately this is not true; the best that can be done is given by the
following theorem. There are proofs in [17], [24] and [32].

THEOREM (Baur, Monk). Given a module M and a formula ¢, there is a
boolean combination ¢ of positive primitive formulas such that ¢ and i have the
same solution sets.

A formula without free variables is called a sentence, so that in any module, a
sentence is either true or false. For example, if A = K[e]/(¢?) is the ring of dual
numbers, then a module is semisimple if the sentence (Vz)(ez = 0) is true, and it
is free if the sentence (Vz)(Jy)((z = ey) V =(ez = 0)) is true.

One says that two modules are elementarily equivalent if they satisfy exactly
the same sentences. In fact in the theorem above, the formula ¢ only depends on ¢
and the sizes of the sets F/(M) with F' coherent. Moreover, because of our standing
assumption that A is an algebra over an algebraically closed (hence infinite) field, it
turns out to only depend on whether or not F(M) = 0. Thus there is the following
consequence.

COROLLARY. Two modules M and M’ are elementarily equivalent if and only
if F(M)=0< F(M') =0 for all coherent functors F.

2.2. Purity. When dealing with infinite dimensional modules, it is possible
to have an exact sequence 0 - L — M — N — 0 which is not split, but which is
very close to being split. One says that it is a pure-ezact sequence, and that the
image of L in M is a pure submodule, if the following equivalent conditions hold:

(a) 0= F(L) > F(M) — F(N) — 0 is exact for all coherent functors F.

b)) 0-YR®L—->Y®M —Y ®N — 0is exact for any finite-dimensional right
module ¥ (and hence also for Y infinite dimensional).

(¢) 0 — Hom(N, X) — Hom(M, X) — Hom(L, X) — 0 is exact for any finite-
dimensional module X. That 1s, any map from L to a finite-dimensional
module factors through the map L — M.

(d) 0 —» Hom(X,L) — Hom(X, M) — Hom(X,N) — 0 is exact for any finite-
dimensional module X. In other words, any map from a finite-dimensional
module to N factors through the map M — N.
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Here condition (b) is the one most commonly seen in references as the definition of
a pure submodule. Conditions (¢) and (d) show that if any module in a pure-exact
sequence 1s finite-dimensional, then the sequence must actually be split exact.

Very briefly, to see the equivalence, we have (a)=(b) on taking F to be the
tensor product functor; (b)=(c) on dualizing the tensor product sequence for ¥ =
DX and using the isomorphism D(DX®@M) = Hom(M, X); (c)=(d) by Auslander-
Reiten theory, for there is an exact sequence

0 — Hom(N, D Tr X) — Hom(M, D Tr X) — Hom(L, DTr X) —
— DHom(N, X) — DHom(M, X) — DHom(L, X) — 0;

(d)=(a) using a resolution 0 — Hom(Z, —) — Hom(Y, —) —» Hom(X,—) - F — 0
of F' (where Z is the cokernel of the map X — Y'), applying each term to the exact
sequence, and then using the snake lemma. Many other equivalent conditions for a
pure-exact sequence can be found, for example, in [17, Theorem 6.4] and [26, §1F].

EXAMPLES.

1. If Ly € Ly C ... are direct summands of M, then L = |JL; need not be a
direct summand of M, but it is a pure submodule. Namely, if F' is a coherent
functor, then each sequence 0 — F(L;) — F(M) — F(M/L;) — 0 is exact,
hence so is their direct limit 0 — F(L) —» F(M) — F(M/L) — 0.

2. A direct sum of modules @;X; is a pure submodule of the product [[, X;,
for any finite direct sum is a summand of the product.

3. Every module can be embedded as a pure submodule in a product of finite-
dimensional modules. If 85 : M — N, (A € A) is a complete list of all maps
from M to a finite-dimensional module (up to isomorphism), then clearly
any map from M to a finite-dimensional module factors through the map
M — [T, Na, so this embeds M as a pure submodule of [], Nj.

2.3. Definable subcategories. Let C be a full subcategory of A-Mod. We
say that C is definable if the following equivalent conditions hold:
(1) C is closed under products, direct limits and pure submodules
(i1) C is closed under elementary equivalence and direct summands.
(ii1) C is defined by the vanishing of some set of coherent functors.
It follows that C 1s also closed under direct sums.

PROOF OF EQUIVALENCE. (i)=-(ii) A theorem of Frayne [4, Corollary 4.3.13]
implies that if M and M’ are elementarily equivalent, then M’ is elementarily
embedded in (hence a pure submodule of) some ultrapower of M. Now if F is an
ultrafilter on a set I then the ultrapower [[; M/F is the direct limit over all J € F
of the powers M7. Thus if M € C then so is M’. (ii)=(iii) is the corollary in
Section 2.1. (iii)=(i) follows from properties of coherent functors. O

REMARK. There are three other concepts equivalent to definable subcategories.
I. Complete theories of modules. These are maximal consistent sets of sen-
tences. The corresponding definable subcategory consists of all direct sum-
mands of models of the theory. (In general this subcategory need not be
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closed under products, but in our case it is, since it follows from the fact
that A contains an infinite field.)

II. Serre subcategories in C(A4). A Serre subcategory S is a full subcategory
with the property that F¥ € § < F,F” € 8§ for any exact sequence
0 - F — F' — F"” — 0 of coherent functors. The corresponding defin-
able subcategory consists of the modules on which all F € § vanish. This
correspondence is due to I. Herzog [16].

ITI. Closed subsets of the Ziegler spectrum. We discuss this in Section 2.5.

ExaAMPLES. The following are definable subcategories:

1. The perpendicular category X+ = {M | Hom(X, M) = Ext'(X, M) = 0} for
X a finite-dimensional module. This is because Hom(X, —) and Ext' (X, —)
are coherent.

2. {M | Hom(M, X) = 0} is definable for X finite dimensional, since there is
an isomorphism Hom(M, X) = D(DX ® M), and the functor DX ® — is
coherent.

3. {M | proj.dim M < n} is definable for n > 0, for proj.dimM < n if and
only if Torn+1(X, M) = 0 for all finite-dimensional modules X, and the
functors Torn+1(X, —) are coherent.

REMARK. Any collection A of modules can be closed up to form a definable
subcategory, which we denote by A. In the case when A consists of only one
module M, we write M. In fact every definable category occurs as some M, for if
C is definable, and F runs through the isomorphism classes of coherent functors
not vanishing on C, choose My € C with Fi(M») # 0. Then C =], M..

Given any collection A of finite-dimensional indecomposable modules, it should
be considered a standard problem to describe A. For example this is of interest if A
is an Auslander-Reiten component, or part of a component. (It may be that Ringel’s
sewing procedure for Auslander-Reiten components of special biserial algebras is
given by sewing two components when their closures intersect, see [28].)

ProposiTION. If A is a collection of finite-dimensional indecomposables, then
1. A contains no other finite-dimensional indecomposables, and
2. if A is infinite then A must contain infinite-dimensional indecomposables.

Proor. The first assertion follows from Auslander-Reiten theory. If X is a
finite-dimensional indecomposable module, then the simple functor S defined by

S(M) = Hom(X,M)/{6 : X — M not a split monomorphism}

is coherent. Now S vanishes on A, so it vanishes on A. The second assertion uses
the compactness of the Ziegler spectrum, discussed later. O

2.4. Algebraically compact modules. If M is a module and F is a coherent
subfunctor of Forget®, then F (M) is a subgroup of M (even an End(M )-submodule
of M). The subgroups which arise in this way (for some F') are called subgroups of
finite definition of M. They form a lattice, which is denoted Latt(M).
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A module M is said to be algebraically compact provided that any covering of M
by complements of cosets of subgroups of finite definition has a finite subcovering.
We relate this definition to more standard ones with the following lemma.

LEMMA. M s algebraically compact if and only if it has the following property:
the natural map

M—>1<i£_nM/M>\, CC'—>(M>\—|—£C)

1s surjective for any family My (A € A) of subgroups of finite definition of M, which
1s filtered in the sense that for any A, u € A there ws v € A with M, C My N M,.

Proor. Suppose that M has the given property for filtered families, and has
a covering by complements of cosets C; of subgroups M; of finite definition. If this
covering has no finite subcovering, then for any finite subset 7 C I the intersection
Cr = [ier Ci is non-empty, and so it is a coset of Mp = (\;cp M;, which is
a subgroup of finite definition. As F' varies, the Mg form a filtered family, and
the C'r define an element of the inverse limit, so there is @ € M such that each
Cr = Mp + . But this is impossible since M is covered by the complements of
the Cl

Now suppose that M is algebraically compact and M) is a filtered family. An
element of the inverse limit is given by cosets C'y with C,, C C\ whenever M, C M.
If this element 1s not in the image of M, then

M= JM\Cy) = (M\Gr) U UM\ Cy,)
A
using the finite subcovering property. Now there is M, C (| My,, and so C, C Ch,
for each 7, which is impossible. O

Using [17, Corollary 7.4], the lemma shows that our definition agrees with
the usual definition of an algebraically compact module, and then there are many
equivalent properties. The most important one being that M is algebraically com-
pact if and only if it is pure-injective, which means that any pure-exact sequence
0 —- M — E — N — 0 splits. Using the example at the end of Section 2.2 it 1s
equivalent that M is a direct summand of a product of finite-dimensional modules.

REMARK. There is a whole hierarchy of finiteness conditions on Latt(A) which
are reflected in properties of the module M and the definable subcategory M.
Starting from the strongest, we have:

(1) M is endofinite if and only if Latt(M) has the ascending and descending
chain conditions. To see this one uses that every End(M )-submodule is a sum of
intersections of subgroups of finite definition, see [8, Proposition 4.1].

(2) M is B-algebraically compact (meaning that M) is algebraically compact
for all sets I) if and only if Latt(M ) has the descending chain condition. There are
many equivalent conditions for this, for example that every power M7 is a direct
sum of indecomposables with local endomorphism ring. See [17, Theorem 8.1].

(3) M has elementary Krull dimension if the Krull dimension of Latt(M) exists
as an ordinal number. It is equivalent that Latt(M) contains no subset isomorphic
to (,<). This notion was introduced by Garavaglia [12] and later studied by
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Ziegler [32]. Various properties are known, for example if M is a non-zero module
with elementary Krull dimension, then M contains an indecomposable endofinite
module. Recently Krause [21] has given a proof of this using functor categories.

(4) In [32], Ziegler introduced the notion of the width of a lattice, and showed
that if M is a non-zero algebraically compact module and Latt(}) has bounded
width, then M must have an indecomposable direct summand.

ExaAMPLES. The following are algebraically compact modules.

1. Any finite-dimensional or endofinite module 1s algebraically compact.

2. The dual of an arbitrary module is algebraically compact.

3.If ... - Xy —» X1 — Xp 1s a system of finite-dimensional modules then
lim X, = D(lir_)n DX;) so it is algebraically compact. In particular, S is
algebraically compact for any quasi-simple module S.

4. If M has an endomorphism ¢ with finite-dimensional kernel which is locally
nilpotent, so M = |JKer(¢"), then M is X-algebraically compact. Indeed
M is an A-K|[T]-bimodule with T' acting as ¢, and as a K[T]-module it is
torsion with finite-dimensional socle. Thus it is an artinian K[T]-module, so
as an A-module it must have the descending chain condition on subgroups
of finite definition.

5. (Krause [21]) If S is a quasi-simple module in a tube, then S, is algebraically
compact, for if the tube has width d then for all n there 1s an exact sequence
0 — 84 — Spa — S(n—1)a — 0. Moreover, as n varies, these exact sequences
are compatible, and taking the direct limit gives rise to an exact sequence
0 — 53 — Seo — Soo — 0. Now the endomorphism of S, is locally
nilpotent with finite-dimensional kernel, so the previous example applies.

2.5. The Ziegler spectrum. The Ziegler spectrum Zg A is defined to be the
set of isomorphism classes of indecomposable algebraically compact modules. Any

indecomposable algebraically compact module has cardinality at most 252744,

0
there are no set-theoretic problems. The Ziegler spectrum is useful because every
module is elementarily equivalent to a direct sum of indecomposable algebraically
compact modules [32, Corollary 6.9], and it follows that any definable subcategory
1s uniquely determined by the indecomposable algebraically compact modules that

1t contailns.

THEOREM (Ziegler). The sets (F) = {M € ZgA | F(M) # 0} with F a
coherent functor, form a base of open sets for a topology on Zg A. With this topology,
Zg A is compact. More generally, all of the sets (F') are compact.

It follows immediately that a subset of the Ziegler spectrum 1is closed if and only
if 1t 1s the set of indecomposable algebraically compact modules in some definable
subcategory. Ziegler’s proof of the theorem [32] uses model-theoretic language. A
more algebraic proof using functor categories has been given by Herzog [16]. See
also Krause [22].

REMARK. By Auslander-Reiten theory the open points of Zg A are the finite-
dimensional indecomposable modules. Now compactness implies that the closure
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of an infinite set of finite-dimensional indecomposables must contain an infinite-
dimensional indecomposable.

REMARK. The closed points of Zg A are not fully understood. However, the
result below implies that if M is indecomposable endofinite then {M7} is closed in
Zg A. On the other hand, if {M} is a closed subset of Zg A and M has elemen-
tary Krull dimension, then the result mentioned in Section 2.4 implies that M is
endofinite.

ProPosITION (Garavaglia). An indecomposable module M is endofinite if and
only M consists of the direct sums of copies of M.

Proor. If M is endofinite, of endolength n, then any chain of subgroups of
finite definition of M has length at most n. This carries over to any module N
in M, so N has endolength at most n, so is a direct sum of indecomposable end-
ofinite modules. Now the module M ¢ N also has endolength at most n, so all
indecomposable direct summands of N must be isomorphic to M, see [8, §4.5].

If M consists of the direct sums of copies of M then M is ¥-algebraically
compact, since one of the characterizations of such modules is that every product
of copies of M is a direct sum of modules of bounded cardinality, see [17, Theorem
8.1]. Thus Latt(M) has the descending chain condition, so M must have elementary
Krull dimension. Now by the property mentioned in Section 2.4, M must contain
an indecomposable endofinite module, but the only possible such module s M. [

3. Tame and/or hereditary algebras

3.1. Tame hereditary algebras. Suppose that A is a finite-dimensional
(connected) tame hereditary algebra. Assuming that A is basic, it must be the
path algebra of an extended Dynkin quiver, for example the Kronecker quiver.
Recall that the Auslander-Reiten quiver of A decomposes into three parts

where P is the set of indecomposable preprojective modules, 7 is the set of indecom-
posable preinjective modules, and R is the set of indecomposable regular modules.
Moreover R consists of a family of tubes indexed by K U {co}. (For more details,
see [27].)

A module M is said to be torsion-free if Hom(R, M) = 0, or equivalently
if Hom(S, M) = 0 for all quasi-simple modules S. It is said to be divisible if
Ext!(R, M) = 0, or equivalently if Ext' (S, M) = 0 for all quasi-simple modules S.
These notions agree with the definitions given in Section 1.1 for Kronecker modules.

THEOREM. The indecomposable algebraically compact A-modules are:
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1. The finite-dimenstonal tndecomposable modules.
2. The modules S and S, for each quasi-simple module S.
3. A unique windecomposable torsion-free divisible module. It is endofinite.

Infinite-dimensional modules for tame hereditary algebras were first studied by
Ringel [26], generalizing earlier work of Aronszajn and Fixman [1] on Kronecker
modules. Using this, a classification of the indecomposable algebraically compact
modules was given by Okoh [23], but it didn’t fully pin down the adic modules.
Finally, the full classification was obtained by Prest [24]. (It was also implicit in
work of Geigle [13].)

Here we sketch a proof of the theorem, freely using the properties of finite-
dimensional modules for a tame hereditary algebra. For example, the layout of
the picture above indicates that there are no non-zero homomorphisms from R to
P or from 7 to P or R. We also need the fact that for any tube T, any map
from a module in P to one in 7 factors through a module whose indecomposable
direct summands lie in 7. In addition we need to use the fact that the category
of finite dimensional regular modules is an abelian category, closed under images,
kernels and cokernels, in which every object is uniserial, and with the simple objects
being the quasi-simple modules. In particular there are no non-zero maps between
modules in different tubes.

We need the Auslander-Reiten translations, which for a hereditary algebra
can be defined by 1M = Tor; (DA, M) and 7~ M = Extl(DA,M). They are
adjoint functors, so that Hom(M, 7N ) = Hom(7~ M, N). In addition there are the
Auslander-Reiten formulas

DExt'(X, M) = Hom(M,7X) and Ext'(M,X)= DHom(r~ X, M)

for X finite dimensional. Finally, it is not hard to see that even for infinite-
dimensional modules there are isomorphisms M = 7~ 7 M if Hom(M, 4) = 0, and

M = 77~ M if Hom(DA, M) = 0.

LEMMA 1. If M is an A-module, then
0O Hom(M,P) =0 if and only if M has no direct summand in P.
0O Hom(Z, M) = 0 if and only if M has no direct summand in T.

ProOF. We prove the first of these two statements. Clearly, if Hom(M,P) =0
then M has no summand in P. For the converse, we prove by induction that if
n is the smallest integer with Hom(M, 77" P) # 0 for some projective P, then M
has a direct summand in P. If n = 0 then there is a non-zero map from M to
a projective. Since A is hereditary, the image of this map is projective, and then
the map onto this projective must split, so M has a projective direct summand. If
n > 0 then

Hom(M, 7" P) = Hom(r~ M, "P) since Hom(M, 4A) =0
= Hom(rM, 77" P) since 7~ , T are adjoint
= Hom(rM, T_("_l)P).

Thus by induction 7M has a direct summand in P, and hence so does M. O
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LEmMMA 2. RUZ = {M | Hom(M,P) = 0}.

Proor. The right hand side is definable and contains R UZ, so it also contains
R UZ. For the reverse inclusion, suppose that Hom(M,P) = 0. Now M embeds
purely in a product N of finite-dimensional modules, and since each of these is a
finite product of indecomposables, N is a product of finite-dimensional indecom-
posables. Collecting terms we have N = N; @ N, where N; is a product of modules
in P and Ny is a product of modules in R UZ. Now Hom(M, N1) = 0, so M must
embed purely in No. Thus M € RUZ. O

This lemma 1s used in the proof of the next, which is the key result in Prest’s
proof.

LEMMA 3. R = {N | Hom(N,P) = Hom(Z, N) = 0}.

Proor. The right hand side is definable and contains R, so it also contains
R. For the reverse inclusion, suppose that N belongs to the right hand side, but
is not in R. Thus there is a coherent functor F with F(R) = 0 for all R € R but
with F(N) # 0. Now

Hom(6,-)
5

F(-) = Coker(Hom(Y, —) Hom(X, —))

for some map # : X — Y of finite-dimensional modules. Write X = X; ® X, with
the indecomposable direct summands of X; in P UR and those of X5 in 7, and let
6; be the restriction of 8 to X;. Defining

Hom(6:,—)
—_— %

F'(—) = Coker(Hom(Y, —) Hom(Xy, —)),

one sees immediately that if M is a module with Hom(X3, M) = 0, then F(M) =10
if and only if F/(M) = 0. It follows that F/(R) = 0 for all R € R but F/(N) # 0.

Now if T is preinjective then F'(I) = 0. Namely, since any map from a pre-
projective to a preinjective factors through a regular module, any map ¢ : X7 — I
factors through a regular module, say as X; — R — I. Now F/(R) = 0, which
means that X; — R factors through #;. But this implies that ¢ factors through
61, s0 F'(I) = 0.

Thus {M | F/(M) = 0} contains R UZ, and since it is definable, it contains
R UZ, and hence by the previous lemma it contains N. But we have already seen

that F'(N) # 0. O

LEMMA 4. If S s a quasi-simple module then S, 1s divisible and S is torsion-
free. If T is another quasi-simple module then Hom(T, Se,) is 1-dimensional if
T =S, and zero otherwise, while Extl(T, S) is 1-dimensional if T = 7= S, and zero

otherwise.

Proor. We use the fact that the category of finite-dimensional regular modules
1s an abelian category, in which every indecomposable object is uniserial, and in
which the quasi-simple modules are the simple objects. Now if T' is quasi-simple
then

Hom(Seo, T') = limHom(S,,T) and Hom(T, ,§) = lim Hom(T', »,5)



20 WILLIAM CRAWLEY-BOEVEY

and the uniserial structure implies that the maps in these inverse limit systems are
zero, so the inverse limits are themselves zero. Also

Hom(T, S ) = lim Hom(T, Sy)

from which the assertion for Hom(T', Se ) follows.
Finally, the isomorphism Hom(X, DY) = Hom(Y, DX) induces an isomorphism

on Ext!, and so

Ext!(T, 5) = Ext*((DS)eo , DT),

where DT and DS are quasi-simple modules for the opposite algebra of A, which
is tame hereditary again, and we have used the isomorphism S = D((DS)s ). Now

Ext'((DS)e, DT) = D Hom(7~ DT, (DS)wo )

by the Auslander-Reiten formula, and this last space is 1-dimensional or zero, ac-
cording to whether or not 7= DT = DS, or equivalently whether 7' 22 7~ 5. O

In these notes we have only discussed algebraically compact modules for finite-
dimensional algebras, but there are no problems defining such modules for any ring,
and there are short proofs of the next result in [32] and [17].

LEMMA 5. The indecomposable algebraically compact modules for a Dedekind
domain A are
1. The finite length indecomposables A/m™, with m a mazimal :deal in A.
2. The m-adic modules Ay, = lim A/m™ and Prifer modules Age = limA/m™.
— foinin'y
3. The field of fractions of A.

PROOF OF THE THEOREM. We use the perpendicular category
Xt ={M |Hom(X, M) = Ext'(X, M) = 0}

assoclated to a finite-dimensional module X, which is a definable subcategory. If
M and N are two modules in X+ then the image of any map 6 : M — N is also
in X1, and then using the long-exact sequence for Hom(X, —) it follows that Ker 6
and Coker 4 also belong to X*.

We need the following observation: if the indecomposable direct summands of
X include all quasi-simples in some tube T', then X' contains no indecomposable
preprojective or preinjective modules. This follows from the fact that any map
from a preprojective module to a preinjective module factors through a direct sum
of modules in T'.

We show first that A has a unique indecomposable torsion-free divisible module,
and it is endofinite. We have seen this in Section 1.1 for the Kronecker algebra. If
A 1s not Morita equivalent to the Kronecker algebra then there is a quasi-simple
module S in a tube of width at least two, and the category S* is equivalent to
the module category for a new tame hereditary algebra B, see for example [14] or
[6]. Now the Grothendieck group of B has smaller rank than A, so by induction B
has a unique indecomposable torsion-free divisible module, and hence so does A.
Moreover this module is endofinite by Garavaglia’s characterization.
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Next we check that the modules in the list are indecomposable and algebraically
compact. If S 1s quasi-simple then S is indecomposable, for by Lemma 4 if it de-
composes then one summand is divisible, and thus by the Auslander-Reiten formula
has no non-zero map to a regular module. This is impossible since S embeds in
[1~S. By a similar argument (or the theorem in Section 1.5) the modules S, are
indecomposable. We have already observed at the end of Section 2.4 that S and
Se are algebraically compact.

It remains to check that the list contains all indecomposable algebraically com-
pact modules. We prove this by induction on the rank of the Grothendieck group of
A. Let M be an infinite-dimensional indecomposable algebraically compact module.

Suppose first that Hom(S, M) # 0 for some quasi-simple module S. Choose two
tubes T} and 7% not containing S, and let X; be the direct sum of all quasi-simples
in T;. Since there are no non-zero maps between modules in distinct tubes, every
module in R belongs either to Xi or to X3 . If F; and F, are the corresponding
closed subsets of the Ziegler spectrum, then by Lemmas 1 and 3 we have M € R =
F1 UF; in the Ziegler spectrum. Thus, say, M € X{-. Now a non-zero map S — M
can be extended to a map So, — M by the argument of [25, 4.1]. Moreover, this
map must be injective, for the kernel of the map S, — M is in X{, so is regular,
and then if it is non-zero it must contain 5. Thus there is an exact sequence

E:0—>80o —>M—N—QO0.

Now N belongs to Xi, so Hom(Z, N) = 0. If S,, — Y is a non-zero map to a
finite-dimensional indecomposable module then Y must be preinjective, and the
pushout of ¢ splits since Ext'(N,Y) = D Hom(r~Y, N) = 0. Thus ¢ is pure-exact,
and hence split. This implies that M = S, .

Thus we may suppose that Hom(S, M) = 0 for all quasi-simple .S, or in other
words, M 1is torsion-free.

If the algebra is the Kronecker algebra, let U/; and U, be two quasi-simple
modules, for example the modules Ry and R, of Section 1.1. Then each Ul is
equivalent to K[T]-Mod. By the argument used above, M either belongs to U;i- or
to Us, and it corresponds to an algebraically compact K[T]-module, for example
using the characterization of algebraically compact modules as those for which the
summation map M) — M extends to a map M! — M, see [17, Theorem 7.1].
Now the the indecomposable algebraically compact K[T]-modules are known by
Lemma b, and each one corresponds to an A-module listed in the theorem.

Finally if the algebra is not Kronecker, one can find distinct quasi-simples 53
and S; in a tube of width at least two. Now every indecomposable regular module
is in one of the categories E; = {N | Ext*(S;, N) = 0}, so by the Ziegler spec-
trum argument, M belongs to one of these two categories, say E;. Since M is also
torsion-free it is in Si-. Now this category is equivalent to B-Mod for some tame
hereditary algebra B whose Grothendieck group has smaller rank. Moreover M
corresponds to an algebraically compact B-module. Now by induction the inde-
composable algebraically compact B-modules are known, and it is easy to see that
the corresponding A-modules are listed in the theorem. O
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3.2. General tame algebras. An algebra is tame if for all d, its indecom-
posable modules of dimension d can be parametrized by a finite number of curves.
Adapting Drozd’s Tame and Wild theorem, I proved [5, 7]:

THEOREM. If A has tame representation type then

1. For each d, all but finitely many indecomposable modules of dimension d
belong to tubes.

2. For each d, there are only finitely many infinite-dimensional indecomposable
endofinite modules of endolength d.

The infinite-dimensional indecomposable endofinite modules which occur in the
second part of the theorem are called generic modules. The question of how tubes
correspond to generic modules remained open, but it is now partially answered by
the following correspondence. (The first part is due to Krause [21]).

THEOREM. The closure of any tube contains at least one generic module. Con-
versely, for a tame algebra, every generic module is in the closure of a tube (indeed,
infinitely many tubes).

Proor. If S is quasi-simple in a tube, then S, has the descending chain
condition on subgroups of finite definition, so it has elementary Krull dimension, see
Section 2.4. Thus So, contains an indecomposable endofinite module G. But S, is
an infinite-dimensional indecomposable module, so G must be infinite dimensional.

For the converse, I proved in [7] that if G is a generic module for a tame
algebra, then there is an A-K|[T]-bimodule M, finitely generated free over K[T7,
such that G 2 M ® K(T), and such that for all but finitely many A € K, the
modules M @ K[T]/(T — A)* (n > 1) form a tube. Now the closure of this tube
contains G. O

REMARK. One hope with infinite-dimensional modules was to find an elemen-
tary proof of the second Brauer-Thrall conjecture, that an algebra of infinite rep-
resentation type has strongly unbounded representation type. This is the closest
yet: any algebra with a tube must have strongly unbounded representation type.

ExaMPLE. If A is a tubular algebra (in the sense of [27]) then its Auslander-
Reiten quiver has the structure

: aaa I

where P is the set of indecomposable preprojective modules, 7 1s the set of inde-
composable preinjectives, and for each rational number 0 < ¢ < oo there is a family
of tubes 7; indexed by K U{oco} (except that the families 7y and 7, also have some
components containing projectives and injectives).
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By the argument we used for tame hereditary algebras, the indecomposable
algebraically compact modules in each 7; (0 < 4 < o) are the finite-dimensional
modules, the Prufer and adic modules associated to quasi-simples, and one generic
module. We shall not attempt here to analyse the indecomposable algebraically
compact modules in 7 and 7o, but we note that each contains one generic module.
In this way one obtains all generic modules. Presumably there are indecomposable
algebraically compact modules in ﬁ which are not in any 7; (certainly this is the
case if the base field is countable), but no examples seem to be known.

3.3. General hereditary algebras. If A is an arbitrary finite-dimensional
hereditary algebra, then it 1s hopeless to try and classify all indecomposable alge-
braically compact A-modules or even all endofinite modules. However, a theorem
of Schofield classifies the stones, that is, the indecomposable endofinite modules M
which satisfy Ext'(M, M) = 0. (The endomorphism ring of any such module is a
division ring, by the argument of the Happel-Ringel Lemma [15, Lemma 4.1])

Assuming that A is basic, we can write it as a path algebra A = K@), where
@ 1s a quiver without oriented cycles. Let the vertices in @) be labelled 1,...,n,
so any finite-dimensional module X has dimension vector dim X € N”. Its i-th
component is dim Hom(P;, X), where P; is the indecomposable projective module
for vertex 7. One says that « € N” 1s a Schur root if it is the dimension vector of a
finite-dimensional module X with End(X) = K. A vector o € N" is indivisible if
1ts coordinates have no common divisor.

THEOREM (Schofield). The stones are in 1-1 correspondence with indivisible

Schur roots, with a stone M corresponding to the vector B whose components are
B; = lengthg,g(pry Hom(P;, M).

This theorem was first mentioned by Schofield in 1991, and he outlined a proof
of it in a lecture in Krippen, Germany, in 1995. The proof here 1s based upon that
lecture, except that we use the language of characters, as in Section 1.3, rather than
Schofield’s ‘Sylvester rank functions’ [30].

If 3 € N", then the function xp defined on finite-dimensional modules by
xp(X) = max{{dim X/Y,5) | Y C X is a submodule} is a character, where (—, —)
is the Ringel form for Q. One defines hom(X, 3) (respectively ext(X,[)) to be
the minimal value of dim Hom (X, Z) with Z ranging over all modules of dimension
vector 3 (respectively dim Ext'(X, Z)). This is also the value taken for Z in a dense
open subset of the variety of representations of dimension #. A finite-dimensional
module X is said to be (-semistable if (dim X,5) = 0 and (dimY,5) > 0 for all
submodules Y C X. The following two facts are proved in [9]. (Actually, only one
direction of (b) is mentioned there, but the converse follows from (a).)

(a) xp(X) =lim, o %hom(X, rf3).

(b) X is B-semistable if and only if hom(X, r8) = ext(X, r) = 0 for some r > 0.
In the proof outlined by Schofield, property (a) was not used, and property (b) was
derived from a classification of the semi-invariants of representations of quivers.

LEMMA 1. The characters of stones are exactly the xg which are irreducible.
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ProoF. If x is a character, we write dim x for the vector with (dim x); = x(F),
so that x(P) = (dim P, dimx) for any projective module P. Then

%(X) > max{(dim X/Y, dimy) | Y C X}

for any module X (forif 0 - P/ — P — X/Y — 0 is a projective resolution, then
x(X) > x(X/Y) > x(P) — x(P') = (dim X/Y,dim x)). Clearly the xg are exactly
the ‘extremal characters’ for which this inequality is always an equality. Writing an
extremal character as a sum of irreducibles, it i1s clear that every summand must
also be extremal. Thus, in order to prove the lemma it suffices to show that if M
1s an indecomposable endofinite module then x s is extremal if and only if M 1s a
stone. Note first that if X 1s any finite-dimensional module, then

(dim X, dim x»r) = lengthggq(ar) Hom(X, M) — lengthg,q ar) Ext'(X, M),

for both sides are additive on short exact sequences, and the assertion holds by
definition for X projective.

Suppose that M is a stone. Let Y be the kernel of the map X — M" given by a
set of End (M )-module generators of Hom(X, M). Clearly we have Hom(X/Y, M) =
Hom(X, M), and since X/Y embeds in M", the equality Ext'(M", M) = 0 implies
that Ext'(X/Y, M) = 0. Thus

(dim X /Y, dim xa7) = length Hom(X/Y, M) — length Ext'(X/Y, M) = xu (X),

so that xas 1s extremal.

Conversely, suppose that Extl(M, M) # 0. Thus there is a non-split exact
sequence 0 - M — E — M — 0, and since M 1s algebraically compact, this
sequence cannot be pure-exact. Thus there is a finite-dimensional submodule X of
M such that the inclusion X — M doesn’t factor through £, and hence Extl(X, M)
is non-zero. Now for any submodule Y C X, we have length Ext'(X/Y, M) > 0,
strict for Y = 0, and length Hom(X/Y, M) < length Hom(X, M), strict for Y # 0
(since the inclusion of X in M doesn’t factor through X/Y). Thus

(dim X /Y, dim xa7) = length Hom(X/Y, M) — length Ext'(X/Y, M) < xa(X).
Since this holds for all Y, the character x s cannot be extremal. O

LEMMA 2. If B is a Schur root then 13 = {£ € Q" | (£,8) = 0} is the Q-span

of the dimenston vectors of 3-semistable modules.

ProoOF. We may assume that 8 is sincere (i.e. every coordinate is strictly
positive). Namely, if §; = 0, then by fact (b) the projective module P; is §-
semistable. Now if € € -4 then so is & — & dim P;, and this vector has support
contained in the quiver obtained by deleting vertex :. The claim then follows by
induction.

Since 3 1s a Schur root, it 1s the dimension vector of a module X with triv-
ial endomorphism algebra. Moreover, by [31, Theorem 6.1] we may assume that
(dimY,8) — (8,dimY") > 0 for all non-zero proper submodules ¥ of X.

We first check the lemma in case X =2 P; is projective. In this case the inverse
translates 77 S; of simple modules S; (j # %) are B-semistable, as are the projectives
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P; with Hom(F;, P;) = 0. Thus, if ® is the Coxeter transformation, then the Q-
span contains all vectors ®7*(¢;) (j # i), where ¢; is the coordinate vector. The
assertion follows.

Now assume that X is not projective. Thus y = 8+ ®(6) = f+dim7X € N™
Now if Y is a non-zero proper submodule of X then the equality («, ®(5)) = — (6, &)
gives

(dim X/Y,7) = (8, dimY) — (dimY, ) < 0,

Suppose that ¢ € 3. By rescaling, we suppose that the components of ¢ are
integral. For m € N sufficiently large, the vector § = ®(£) + my is sincere and
(dim X/Y, 6) < 0 for any non-zero proper submodule Y of X. Since also (5, 6) = 0,
this means that X is §-semistable, and hence by fact (b) there is a module Z of
dimension £6 (£ > 1) with Hom(X, Z) = Ext'(X,Z) = 0. Since X is sincere, Z
cannot have an injective summand. Then Hom(7~Z, X) = Ext'(7~Z,X) = 0, so
777 is B-semistable, and it has dimension £(¢ + m®~1(y)).

We apply this first with £ = 0 to see that ®~1(y) belongs to the Q-span, and
then to deduce that any £ € +3 belongs to the Q-span, as required. O

PROOF OF THE THEOREM. By the first lemma it suffices to prove that xgs is
irreducible if and only if § 1s an indivisible Schur root.

Suppose that xg irreducible. If 8 is not a Schur root then by the canonical
decomposition [18, §4] one can write 8 = v + § with ext(y,§) = ext(6,y) = 0.
Thus for any r > 0 we have ext(ry, r§) = ext(ré, ry) = 0, and this means that the
general representation of @) of dimension r( is a direct sum of representations of
dimensions ry and 7. Thus hom(X,r5) = hom(X, ry) + hom(X, r§), so by fact
(a) we have xg = x4y + xs. Thus § must be a Schur root, and it is indivisible, for
if § = my then xg(X) = lim, o %hom(X, rmy) = mxy(X).

Now suppose that § is an indivisible Schur root, but that xg is reducible. Write
1t as sum of irreducibles. By the extremal property used in the proof of Lemma 1
the summands are extremal, so x5 = xy + x5 + ... with 4,6, ... indivisible Schur
roots.

Now any (-semistable module is y-semistable, for if X is [-semistable, then
xp(X) = 0. Thus x,(X) = xs(X) =--- =0, and in particular

(dim X, ), (dim X, §),... < 0.

However, the sum of all these terms is (dim X, 5) = 0, so each term must be zero,
and therefore X is y-semistable. Now +3 C 14 by the second lemma, but the
Ringel form (—, —) is nondegenerate, so v and 8 must be multiples of each other.
Thus § = v, so xg is irreducible. O
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