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Abstract. A conjecture of Kac states that the polynomial counting the num-

ber of absolutely indecomposable representations of a quiver over a finite field
with given dimension vector has positive coefficients and furthermore that its

constant term is equal to the multiplicity of the corresponding root in the as-
sociated Kac-Moody Lie algebra. In this paper we prove these conjectures for
indivisible dimension vectors.

1. Introduction

Let Q be a finite quiver without loops with vertices I and fix α ∈ NI . In [19]
V. Kac showed (over an algebraically closed field) that Q has an indecomposable
representation of dimension vector α if and only if α is a root of a certain Kac-
Moody Lie algebra g associated to Q. This was a spectacular generalization of
earlier results by Gabriel [15] for the finite type case and Dlab and Ringel [13] for
the tame case.

Now assume that the ground field is finite. In this case one should consider
absolutely indecomposable representions, i.e. indecomposable representations which
remain indecomposable over the algebraic closure of the ground field.

For α ∈ NI let aα(q) be the number of absolutely indecomposable representations
of Q with dimension vector α over Fq. Kac has shown that aα(q) is a polynomial in
q with integral coefficients [20]. Regarding this polynomial Kac made the following
intriguing conjectures:

Conjecture A. aα(q) ∈ N[q].

Conjecture B. If α is a root then aα(0) is the multiplicity of α in g.

Despite our greatly increased understanding of the relationship between quivers
and Kac-Moody Lie algebras (thanks to Ringel, Lusztig, Kashiwara, Nakajima
and others) and despite the fact that over twenty years have passed since these
conjectures were stated, virtually no progress has been made towards their proof.
See [17, 26, 36] for some partial and related results.

In this paper we make the first substantial progress by proving the following
result:
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Theorem 1.1. Conjecture A and B are true if α is indivisible.

To prove such a result it is clear that one should first find a good cohomological
interpretation for the polynomial aα(q). Unfortunately the equivariant cohomology
of the representation space of Q (which is the obvious choice) counts representations
with multiplicity (see [2, 22]) and this yields trivial results in our case.

Thus one of the main results in this paper is a new interpretation of aα(q) in
the case that α is indivisible. To state this new interpretation we have to introduce
some notations. We assume temporarily that our base field is C. The double Q̄
of Q is the quiver obtained by adding a reverse arrow a∗ : j → i for each arrow
a : i → j in Q. The preprojective algebra of Q is Π0 = CQ̄/(

∑
[a, a∗]) where the

sum runs over the arrows in Q.
Define a bilinear form on CI by i · j = δij and let λ ∈ ZI be such that λ · α = 0

but λ · β 6= 0 for 0 < β < α. Then we show in §2 that

(1.1) aα(q) =
d∑

i=0

dimH2d−2i(Xs,C) qi

(singular cohomology) where Xs is the (smooth) moduli-space of λ-stable Π0-
representations of dimension vector α [23] and d = 1/2 dimXs. It is clear that
this formula proves Conjecture A for indivisible α.

Now let Λα = Rep(Π0, α)nil be the nilpotent representations in the representation
space of α-dimensional representations of Π0. Lusztig has shown [27, Thm 12.9][28]
that Λα is a Lagrangian subvariety of the affine space Rep(Q̄, α) and furthermore
that the irreducible components of Λα index a basis of U(g+)α (see also [21]). We
first observe that Conjecture B for α indivisible is equivalent to the following.

Proposition 1.2. Let α be indivisible. The number of irreducible components of
Λα which contain a λ-stable (or equivalently: semistable) representation is equal to
dim gα.

We then prove this proposition by relating the Harder-Narasimhan filtration on
Π0-representations to the PBW-theorem for U(g+). This approach was partially
suggested by a talk of M. Reineke. See [33].

Let us now sketch how we prove (1.1). Unless otherwise specified our base field
is now finite. We show first that aα(q) counts the points of a smooth affine variety
X related to a deformed preprojective algebra of Q [9]. Our aim is then to count
the points on X using the Lefschetz fixed point formula for the Frobenius action
on l-adic cohomology.

Since we are not able to extract any meaningful results directly from X, we
construct a one-parameter family Ξ of smooth varieties whose general fiber is X
and whose special fiber is Xs. Now it is easy to see that Xs carries a Gm-action
whose fixed point set is projective. By combining the Weil conjectures with results
from [4, 5] we deduce from this that the absolute values of the eigenvalues of the
Frobenius action on the cohomology of Xs are the same as those of a smooth
projective variety (see Appendix A).

Since Ξ is not locally trivial we cannot directly transfer results from Xs to X.
However an argument involving the hyper-Kähler structure on the representation
space of Q̄ shows that Xs and X are homeomorphic for the analytic topology in
characteristic zero (see [30, Cor. 4.2]). By specialization this implies that Xs and
X have isomorphic cohomology in large characteristic. Unfortunately it is not
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immediately clear to us that this isomorphism is compatible with Frobenius (think
of the example given by elliptic curves).

Therefore we refine Nakajima’s argument in such a way that it shows that the
family Ξ is trivial for the analytic topology (see lemma 2.3.3 below). It follows
that the cohomology of the fibers of Ξ is constant in large characteristic. Thus X
and Xs have the same cohomology even when the Frobenius action is taken into
account. This allows us to prove (1.1) using a simple technical lemma (see lemma
A.1).

Some words on the organization of this paper. The proof of (1.1) and the equiv-
alence of Conjecture B and Proposition 1.2 are contained in Section 2. The proof
of (1.1) relies on a few basic results on l-adic cohomology and invariant theory over
Z. We have collected those in two appendices so that they don’t detract from the
main arguments. The proof of Proposition 1.2 is contained in Section 3. Inspired
by the referees’ reports we have also included the short Section 4 which discusses
some natural questions raised by this paper.

We wish to thank Henning Andersen for some useful information regarding in-
variants over Z. We also wish to thank Markus Reineke for communicating us the
main results of [33].

At the end of the paper we include an appendix by H. Nakajima which avoids
the arguments of Section 2.3 by showing directly that two varieties have the same
number of points over finite fields. We have retained the original Section 2.3,
however, since it shows more—the existence of a canonical isomorphism between
the cohomology of Rep(Πλ, α)λ//G(α) and Rep(Π0, α)λ//G(α) for arbitrary λ and α
(see below for notations).

2. Proof of (1.1) and the equivalence of Proposition 1.2 and
conjecture B

2.1. Notations and constructions. LetQ = (I,Q, h, t) be a finite quiver without
loops with vertices I and edges Q. h, t are the maps which associate starting and
ending vertex to an edge. There is a standard symmetric bilinear form on ZI given
by

(i, j) =

{
1 if i = j

− 1
2#{arrows between i and j} if i 6= j

We let g be the Kac-Moody Lie algebra whose Cartan matrix (aij)ij is given by
aij = 2(i, j).

An absolutely indecomposable representation of Q over a field k is an indecom-
posable representation V with the property that V ⊗k k̄ is indecomposable, or
equivalently End(V )/ radEnd(V ) = k. For α ∈ NI , aα(q) is the number isomor-
phism classes of absolutely indecomposable representations of Q with dimension
vector α over the finite field Fq.

We now introduce some standard constructions related to the quiver Q. Since
we want to use lifting to characteristic zero we need to define things over Z. This
makes our notations a little pedantic for which we apologize in advance. For some
basic material with respect to invariants over Z we refer to Appendix B. The
essential ingredient, on which we will rely tacitly below, is that all constructions are
compatible with base change over an open part of Spec Z.

Let Q̄ be the double quiver of Q. Thus Q̄ has the same vertices as Q but the
edges are given by {a, a∗ | a ∈ Q} where h(a∗) = t(a) and t(a∗) = h(a).
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If R is a commutative ring and λ ∈ RI then Πλ is the corresponding deformed
preprojective algebra [9]. Thus

(2.1) Πλ = RQ̄/

∑
a∈Q

[a, a∗]−
∑
i∈I

λii


For α, β ∈ N let Mα×β , Mα, Gl(α) be the Z-schemes corresponding respectively to
the α× β-matrices, the α× α-matrices and the invertible α× α-matrices.

For α ∈ NI we define Rep(Q,α) =
∏

e∈QMαh(e)×αt(e) . We use corresponding
notations for Q̄ and Πλ.

For i, j ∈ I put i · j = δij . This defines a bilinear form on RI for any ring R.

Lemma 2.1.1. If R is a field and if α · λ 6= 0 in R then Rep(Πλ, α) = ∅.

Proof. This follows from the standard trace argument. �

We also define Gl(α) =
∏

i∈I Gl(αi) and we put G(α) = Gl(α)/Gm.
The Lie algebra of Gl(α) is given by M(α) =

∏
iMαi×αi

. Over a field l we may
identify Lie(Gl(α)l) with its dual via the trace pairing. Under this pairing the dual
to Lie(G(α)l) is identified with the trace zero matrices in M(α)l. We denote the
variety of trace zero matrices with M(α)0.

The algebraic group G(α) acts by conjugation on Rep(Q,α) and the orbits
Rep(Q,α)(l)/G(α)(l) for l a field correspond to isomorphism classes ofQ-representa-
tions defined over l.

Now let λ ∈ ZI such that λ · α = 0. Then λ defines a character χλ of G(α)
given by (xi)i∈I 7→

∏
i det(xi)λ

i . As in [23], χ defines a line bundle L on Rep(Q̄, α).
We define Rep(Q̄, α)λ as the L-semistable part [35, §II] of Rep(Q̄, α). Using the
Hilbert-Mumford criterion [23, Prop. 3.1] one finds that if k is an algebraically
closed field then V ∈ Rep(Q̄, α)(k) lies in Rep(Q̄, α)(k)λ if and only if

(2.2) λ · dimV ′ ≥ 0

for every subrepresentation 0 6= V ′ ( V . If we replace the inequality in (2.2) by a
strict one then we obtain the stable representations.

Consider the map

(2.3) µ : Rep(Q̄, α) →M(α)0 : (xa)a∈Q̄ 7→
∑

[xa, x
∗
a]a∈Q

Over a field l, µ may be identified with a suitable moment map for the G(α)l action
on Rep(Q̄, α)l via the identification of Lie(G(α))∗l with M(α)0l . We will refer to
(2.3) as the moment map. We clearly have µ−1(λ) = Rep(Πλ, α).

Let L be the line in the affine space in M(α)0 spanned by 0 and λ and let W =
µ−1(L) ∩ Rep(Q̄, α)λ. Put Ξ = W//G(α) and let f : Ξ → L be the induced map.
We put X = f−1(λ) = Rep(Πλ, α)λ//G(α) and Xs = f−1(0) = Rep(Π0, α)λ//G(α).

Definition 2.1.2. We say that λ ∈ ZI is generic with respect to α ∈ NI if λ ·α = 0
but λ·β 6= 0 for all 0 < β < α (note that such a λ exists if and only if α is indivisible).

If λ is generic for α then it follows from (2.2) that over an algebraically closed
field the notions of λ-semistability and λ-stability coincide.

Lemma 2.1.3. Assume that λ is generic with respect to α. Then there exists a
non-empty open U ⊂ Spec Z such that Rep(Πλ, α)λ

U = Rep(Πλ, α)U .
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Proof. It is sufficient to prove this over k = Q̄. In that case every x ∈ Rep(Πλ, α)(k)
is simple by lemma 2.1.1. Then by (2.2) it follows that x is semistable (in fact stable)
for λ. �

Since we are only interested in large characteristics we will commit a slight abuse
of notation by identifying X with Rep(Πλ, α)//G(α) in the case that λ is generic.
This is justified by the last lemma.

Lemma 2.1.4. Assume that λ is generic with respect to α. Then there exists a
non-empty open U ⊂ Spec Z such that the map f : ΞU → LU is smooth.

Proof. Again it is sufficient to do this over k = Q̄.
First we note that if x ∈ Rep(Q̄, α)λ(k) then by (2.2) End(x) = k and in partic-

ular G(α)k acts freely on Rep(Q̄, α)λ
k .

By lemma 2.1.5 below µ is smooth at x. Thus the restriction of µ to Rep(Q̄, α)λ
k

is smooth. It follows that the induced map Wk → Lk is also smooth.
Since G(α)k acts freely on Wk we deduce that Wk → Wk/G(α)k = Ξk is also

smooth. This then yields that Ξk → Lk is surjective on tangent spaces and hence
smooth. �

We have used the following standard lemma.

Lemma 2.1.5. Let X be a smooth symplectic variety over an algebraically closed
field k and assume that G is a linear algebraic group acting symplectically on X.
Assume that in addition there is a moment map µ : X 7→ g∗ where g = Lie(G). Let
x ∈ X. If the differential in x of the G-action g → Tx(X) is injective then µ is
smooth at x.

Proof. Since we don’t have a reference where this lemma is stated in the current
generality (i.e. arbitrary characteristic) we include the easy proof for the conve-
nience of the reader.

Let ω ∈ Γ(X,∧2ΩX) be the symplectic form. The defining property for a moment
map is that for all x ∈ X, v ∈ Tx(X) and w ∈ g we have

dµx(v)(w) = ω(wx, v)

where wx is the image of w in Tx(X).
We need to show that dµx is surjective. In other words for all φ ∈ g∗ we need to

find v ∈ TxX such that for all w ∈ g one has dµx(v)(w) = φ(w) which is equivalent
to ω(wx, v) = φ(w).

Since g → TxX : w → wx is injective we may extend φ linearly to an element
φ′ ∈ Tx(X)∗ such that φ(w) = φ′(wx). Since ω is non-degenerate we may find
v ∈ TxX such that ω(−, v) = φ′. This finishes the proof. �

2.2. Reformulation of Kac’s conjectures for indivisible dimension vectors.
We assume throughout that α ∈ NI is indivisible. We put k = F̄p and we let q be
a power of p. We prove the following result.

Proposition 2.2.1. Assume that λ ∈ ZI is generic for α ∈ NI and let X =
Rep(Πλ, α)//G(α) be as in §2.1. Then for p� 0 we have

aα(q) = q−d|X(Fq)|

with d = 1− (α, α)
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Proof. We consider the projection map

π : Rep(Πλ, α) → Rep(Q,α)

According to [7, Thm 3.3] the image of π(Fq) consists of indecomposable represen-
tations. Since α is indivisible, representations of dimension vector α are absolutely
indecomposable if and only if they are indecomposable. Thus the image of π(Fq)
consists of absolutely indecomposable representations.

Let Rep(Q,α)a.i denote the constructible subset of absolutely indecomposable
representations in the affine space Rep(Q,α). It is also shown in loc. cit. that the
elements of Rep(Q,α)a.i.(Fq) lift to Rep(Πλ, α). More precisely the inverse image
of x ∈ Rep(Q,α)a.i.(Fq) can be identified with Ext1(x, x)∗.

Starting from a variant of the Burnside formula we compute∣∣Rep(Q,α)a.i.(Fq)/G(α)(Fq)
∣∣ =

1
|G(α)(Fq)|

∑
x∈Rep(Q,α)a.i(Fq)

|StabG(α)(x)|

= q−1 1
|G(α)(Fq)|

∑
x∈Rep(Q,α)a.i(Fq)

|End(x)|

= q−1 1
|G(α)(Fq)|

∑
x∈Rep(Πλ,α)(Fq)

|End(π(x))|
|Ext1(π(x), π(x))|

= q(α,α)−1 |Rep(Πλ, α)(Fq)|
|G(α)(Fq)|

where we have used that (−,−) is the symmetrization of the Euler form onK0(mod(kQ)).
Since p � 0 the inequalities defining genericity also hold in Fp. Hence we will

assume this. By lemma 2.1.1 our choice of λ insures that Rep(Πλ, α)(k) contains
only simple representations. Thus if x ∈ Rep(Πλ, α)(Fq) then End(x) = Fq and
hence x has trivial stabilizer in G(α)(k).

Using [24, Cor. 5.3.b] we obtain

|Rep(Πλ, α)(Fq)|/|G(α)(Fq)| = |Rep(Πλ, α)(Fq)/G(α)(Fq)|

= |(Rep(Πλ, α)(k)/G(α)(k))Gal(k/Fq)|

= |X(k)Gal(k/Fq)| = |X(Fq)| �

2.3. Cohomological triviality. According to the program outlined in the intro-
duction we want to compare the cohomology of X and Xs (see §2.1). One way to
do this is to show that Rif!(Ql) is constant, at least over an open part of the base
Spec Z. This is the content of the next proposition. Note that we do not assume
that λ is generic with respect to α.

Proposition 2.3.1. There exists a non empty open U ⊂ Spec Z such that for
every i, Rif!(Ql)U is the pullback of a sheaf on U .

Corollary 2.3.2. Let k = Fp. For p � 0 there is an isomorphism between
Hi

c(Xs,k,Ql) and Hi
c(Xk,Ql) which is compatible with the Frobenius action.

Proof. Let fs, fg be the restrictions of f to Xs and X.
Using the previous proposition and the fact that Rif! commutes with base change

we find for p � 0: Rifs!,Fp(Ql) ∼= Rifg!,Fp(Ql) on Spec Fp. We may consider
Rifs!,Fp

(Ql) and Rifg!,Fp
(Ql) as the Gal(k/Fp)-modules given by Hi

c(Xs,k,Ql) and
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Hi
c(Xk,Ql) respectively. Since the Frobenius action is determined by the action of

Gal(k/Fp) [10, §1.8] this proves what we want. �

Proof of Proposition 2.3.1. We use Deligne’s generic base change result for direct
images [11, Thm 1.9]. This result was only stated for torsion sheaves, but the
corresponding result for l-adic sheaves is an easy consequence.

Since f is of finite type there are only a finite number of i for which Rif!(Ql) is
non-zero. So we may treat each i separately. Put F = Rif!(Ql). Let g : L → Z
be the structure map and let ε : g∗g∗F → F be the map given by adjointness. Let
A,B be the kernel and cokernel of ε. By [11, Thm 1.9] g∗g∗F and hence A,B will
be constructible over an open subset V ⊂ Spec Z.

Below we show that εC : g∗CgC,∗FC → FC is an isomorphism. By [11, Thm 1.9]
we have g∗CgC,∗FC = (g∗g∗F)C. Hence AC = BC = 0. From the fact that AV

and BV are constructible it follows that Supp(AV ) and Supp(BV ) are constructible
subsets of Ξ whose image in Spec Z does not contain the generic point. Hence we
find AU = BU = 0 for a suitable open U ⊂ V .

Now we prove our claim that εC is an isomorphism. To do this we replace the
etale topology on ΞC, LC with the analytic topology. Then the claim follows from
the comparison theorem [3, §6.1.2], lemma 2.3.3 below and the fact that LC is
connected. �

In the rest of this subsection our base field will be C so we drop the corresponding
subscript.

Lemma 2.3.3. f : Ξ → L is a trivial (topological) family.

Proof. Let V = Rep(Q̄, α). We will use the hyper-Kähler structure on V which was
introduced by Kronheimer [25]. For the benefit of the reader we recall the basic
facts. First we define a Riemannian metric on V via the trace form:

(2.4) (x, y) = Re
∑
a∈Q̄

Tr(xay
†
a)

where z† is the conjugate transpose to z.
Let H = R + RI + RJ + RK be the quaternions. We define an action of H on V

via

I(xa)a∈Q̄ = (ixa)a∈Q̄

J(xa, xa∗)a∈Q = (−x†a∗ , x†a)a∈Q

K(xa, xa∗)a∈Q = (−ix†a∗ , ix†a)a∈Q

It is clear that with respect to this quaternionic structure the metric (2.4) is hyper-
Kähler. Let H0 be the kernel of the reduced trace map on H. If β ∈ H0 then there
is an associated real symplectic form on V defined by ωβ(v, w) = (v, βw).

Let us write gl = Lie(Gl(α)) and u = Lie(U(α)) where U(α) is the maximal
compact subgroup of Gl(α) given by the product of unitary groups

∏
i∈I U(αi).

The hyper-Kähler structure on V is clearly U(α)-invariant and it is a standard fact
that the symplectic form ωβ has an associated moment map µβ : V → u∗ given by
µβ(v)(u) = − 1

2ωβ(v, uv) for v ∈ V , u ∈ u. Below we will write µR for µI .
The three moment maps µI , µJ , µK may be combined into a so-called hyper-

Kähler moment map

(2.5) µ : V → H0 ⊗R u∗ : x 7→ I ⊗ µI(x) + J ⊗ µJ(x) +K ⊗ µK(x)
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From the explicit description of µβ we deduce for h ∈ H:

(2.6) µβ(hx) = µh̄βh(x)

where h̄ is the conjugate of h in H. From (2.6) we deduce that (2.5) is H∗-invariant
if we let H∗ act on H0 by h · β = hβh̄.

For this action H0 − {0} is a homogeneous space and hence if we choose β ∈
H0 − {0} and a contractible subset S ⊂ H0 − {0} containing β then there is a
continuous map θβ,S : S → H∗ which is a section (above S) for the map h 7→ h · β.

Choose a U(α)-invariant λ ∈ u∗ and let V ′ = µ−1(S × λ), V ′′ = µ−1(β × λ).
Then V ′′ × S → V ′ : (x, s) 7→ θβ,S(s)x defines a trivialization of µ | V ′. Thus we
have proved that above S × λ, µ is a trivial bundle. Moreover this trivialization is
clearly U(α)-equivariant.

Put ωC = ωJ + iωK . This is a complex Gl(α)-invariant symplectic form on
V and it is easy to see that the associated moment map V → gl∗ is given by
µC(x) = µJ(x) + iµK(x) where we have extended µJ(x), µK(x) to linear maps
gl → C. A straightforward computation shows that

µR(x) =
i

2

∑
a

[xa, x
†
a]

µC(x) =
∑
a∈Q

[xa, xa∗ ]

where we have identified u, gl with their duals via the trace form (g, h) = −Tr(gh)
(the minus sign makes the form positive definite on u).

From the description µC = µJ + iµK we obtain:

µ−1
C (a) = µ−1

J

(
a− a†

2

)
∩ µ−1

K

(
a+ a†

2i

)

which yields

µ−1
C (Cλ) ∩ µ−1

R (iλ) ∼= µ−1((I + RJ + RK)× iλ)

µ−1
C (0) ∩ µ−1

R (iλ) ∼= µ−1(I × iλ)

From the fact that I+RJ+RK is contractible we deduce as explained above that µ
is trivial above (I+RJ+RK)×iλ. Since on the inverse image of (I+RJ+RK)×iλ,
µ and µC are basically the same we deduce that µC : µ−1

C (Cλ)∩ µ−1
R (iλ) → Cλ is a

trivial family in a way that is compatible with the U(α)-action.
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We now use this to construct the following commutative diagram of continuous
maps:

Xs × L
pr−−−−→ L

r

x ∥∥∥(
µ−1

C (0) ∩ µ−1
R (iλ)

)
/U(α)× L

pr−−−−→ L

p

y ∥∥∥(
µ−1

C (L) ∩ µ−1
R (iλ)

)
/U(α)

µ̄C−−−−→ L

r′

y ∥∥∥
Ξ

f−−−−→ L
Here p is obtained from the trivialization of µC we have constructed above (recall
that L = Cλ) and r, r′ are obtained from the inclusion µ−1

R (iλ) ⊂ Rep(Q̄, α)λ [23,
Prop. 6.5].

To prove the lemma it is now sufficient to show that the vertical maps on the
left are homeomorphisms. This is true by construction for p. We claim that it is
also true for r, r′. It suffices to consider r′ since r is obtained from r′ by restricting
to a fiber.

By [23, Prop. 6.5] r′ is a bijection. Hence it suffices to show that r′ is proper.
Clearly r′ is the restriction to

(
µ−1

C (L) ∩ µ−1
R (iλ)

)
/U(α) of the first map in the

following diagram

µ−1
R (iλ)/U(α) → Rep(Q̄, α)λ//G(α) → Rep(Q̄, α)//G(α)

By Theorem 2.3.4 below the composition of these two maps is proper. It follows
that the first map is also proper. This finishes the proof. �

We have used the following result.

Theorem 2.3.4. [32, Theorem 1.1] Let the notations be as above. The canonical
map

ψ : V → V//G× u : v 7→ (v̄, µR(v))

is proper.

2.4. End of proof. Let k = Fp. We choose λ generic with respect to α. Now
recall that Kac has shown [20] that aα(q) is a polynomial. We first show that Xk

is pure. By Corollary 2.3.2 we may as well show that Xs,k is pure. Since we will
now work exclusively over k we drop the corresponding subscript.

Define X0
s = Rep(Π0, α)//G(α). Then the canonical map u : Xs → X0

s is
projective [23]. Let ν : Gm × Rep(Q̄, α) → Rep(Q̄, α) be the action which has the
property that η ∈ Gm multiplies all arrows by η. This action induces Gm-actions
on Xs and X0

s and the map u commutes with these actions.
Now clearly X0

s = SpecR with R = O(Rep(Π0, α))G(α). The ring R is graded
via the Gm-action we have defined in the previous paragraph and it is easy to see
that the grading is of the form R = k +R1 +R2 + · · · with Ri finite dimensional.

Thus it follows that (X0
s )Gm consists of a single point o defined by the graded

maximal ideal of R and furthermore limt→0 ν(t, x) = o for all x ∈ X0
s . It also follows

that (Xs)Gm ⊂ u−1(o). Since u is projective we deduce that (Xs)Gm is projective.
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By the valuative criterion for properness (applied to u) we deduce that limt→0 ν(t, x)
exists for all x ∈ Xs and is contained in u−1(o). Hence by Proposition A.2 Xs is
pure.

By combining Proposition 2.2.1, Lemma A.1 with Corollary 2.3.2 and the fact
that Kac has shown that aα(q) is a polynomial in q [20], it follows

aα(q) =
∑
i≥0

dimH2d+2i
c (Xs,k,Ql)qi

with d = 1− (α, α) and k = Fp for p� 0. Since this is true for large characteristic
we obtain

(2.7) aα(q) =
∑
i≥0

dimH2d+2i
c (Xs,C,C)qi

where we have switched to a complex base field and complex coefficients (but we
are still using sheaf cohomology).

Furthermore if Xs,C is non-empty then we compute

dimXs,C = dim Rep(Π0, α)λ − dimG(α) = dim Rep(Q̄, α)λ − 2 dimG(α) = 2d

Thus the sum in (2.7) runs from i = 0 to i = d. Applying Poincaré duality we
obtain (1.1). We now switch to ordinary singular cohomology. See for example [38,
Ch 5].

We now prove the equivalence of Conjecture B and Proposition 1.2. In the rest of
this section our base field will be C. Our starting point is the following commutative
diagram

(2.8)

Rep(Π0, α)λ open−−−−→ Rep(Π0, α)

q

y yq

Rep(Π0, α)λ/G(α) −−−−→
u

Rep(Π0, α)//G(α)

where all the maps are the obvious ones.
By (1.1) we have aα(0) = dimH2d(Xs,C). With a similar argument as the one

used in [37, Prop. 4.3.1] one shows that Xs is homotopy equivalent to u−1(0). Thus
H2d(Xs,C) = H2d(u−1(0),C).

Let (−)nil denote the nilpotent representations in Rep(Π0, α) and Rep(Π0, α)λ.
We have Rep(Π0, α)nil = q−1(0). So by the commutativity of (2.8) we also have
Rep(Π0, α)λ,nil = q−1(u−1(0)).

Since the leftmost map in (2.8) is a principal G(α)-bundle and the top map is
an open immersion we find that if Xs 6= ∅ then dimu−1(0) = dim Rep(Π0, α)nil −
dimG(α). Since Rep(Π0, α)nil [27, 12.9] is a Lagrangian subvariety of Rep(Q̄, α) it
follows that u−1(0) is equidimensional and furthermore dimu−1(0) = (1/2) dim Rep(Q̄, α)−
dimG(α) = d. Hence (even if Xs = ∅), dimH2d(Xs,C) is equal to the num-
ber of irreducible components of u−1(0). Using again that the leftmost map is
a principal G(α)-bundle this is equal to the number of irreducible components of
Rep(Π0, α)λ,nil. This finishes the proof.

3. Proof of Conjecture B for indivisible roots

In this section our ground field is C.



ABSOLUTELY INDECOMPOSABLE REPRESENTATIONS 11

At the end of the previous section it was shown that Proposition 1.2 and Con-
jecture B are equivalent. So we only prove Proposition 1.2. The idea for the proof
of Proposition 1.2 came partially from a talk by Reineke [33].

In the previous section we have used the notion of λ-stability introduced by King
[23] which is derived from geometric invariant theory. A technical inconvenience of
this notion is that if we work in Rep(Q̄, α) then λ ·α must be zero. Hence we cannot
use the same λ for all α. Following Reineke [33] we use therefore an alternative
notion of stability we will call slope stability (for a general discussion on stability
notions in arbitrary abelian categories see [34]).

We fix an element Θ ∈ ZI and we define the corresponding “slope function”
s(α) = (Θ · α)/dimα where dimα =

∑
αi. If V is a finite dimensional represen-

tation of Q̄ then we put s(V ) = s(dimV ). If X ⊂ Rep(Q̄, α) is irreducible then we
write s(X) = s(α).

A representation V of Q̄ is (Θ-slope) stable (resp. semistable) if for all proper
subrepresentations W of V we have s(W ) < s(V ) (resp. s(W ) ≤ s(V )). It is
easy to see that for a fixed dimension vector α, King (semi)stability and slope
(semi)stability are equivalent for suitable λ and Θ. Below the notion of (semi)stability
will refer to Θ-slope (semi)stability for an arbitrary but fixed Θ.

The following lemma is standard.

Lemma 3.1. Assume that V,W are semistable representations such that s(V ) >
s(W ). Then Hom(V,W ) = 0.

The following result is proved in [16, 33].

Theorem 3.2. Let V be a representation of Q̄. Then there exists a unique filtration

0 = V0 ( V1 ( · · · ( Vn−1 ( Vn = V

such that all Vi+1/Vi are semistable and such that s(Vi+1/Vi) is a strictly decreasing
function of i.

The filtration introduced in the last theorem is called the Harder-Narasimhan
filtration. Let us write

t(V ) = (dim(V1/V0), . . . ,dim(Vn/Vn−1))

We call t(V ) the HN-type of V .
If X is a variety then we write IrrX for the set of irreducible components of X.

If α ∈ NI then we write Λα for Rep(Π0, α)nil. According to [27] this is a Lagrangian
subvariety of Rep(Q̄, α) and furthermore Irr Λα indexes a basis for U(g+)α[21, 28].

If X ∈ Irr Λα then we say that X is semistable if it contains a semistable repre-
sentation.

Let Sα be the set of tuples Z∗ = (Z1, . . . , Zn) with Zi semistable elements of
certain Irr Λαi

such that α =
∑
αi and such that s(Zi) is strictly decreasing.

For Z∗ ∈ Sα we define m′(Z∗) as the set of all V ∈ Λα such that if (Vi)i is the
HN-filtration on V then Vi/Vi−1 ∈ Zi.

The following is our main theorem.

Theorem 3.3. (1) If Z∗ ∈ Sα then m′(Z∗) has a dense intersection with
unique Z ∈ Irr Λα. Put m(Z∗) = Z.

(2) The map m defines a bijection between Sα and Irr Λα.

Proof. Let us call a subset Z of Λα good if it has the following properties.
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(1) The elements of Z have constant HN-type denoted by t(Z).
(2) Z is constructible.
(3) Z has a dense intersection with a unique irreducible component of Λα.

We prove a claim which is used in the proof of 1. and 2.
Claim. Let Z1 be an open subset of a semistable irreducible component of Λβ and
let Z2 ⊂ Λγ be good. Assume that s(Z1) > t(Z2)1. Define Z ⊂ Λβ+δ as the set
of all V ∈ Λβ+δ which contain a semistable subrepresentation U ⊂ V such that
U ∈ Z1, V/U ∈ Z2. Then Z is good.

The only non-obvious property to prove is that Z has a dense intersection with
a unique irreducible component of Λβ+γ . So this is what we do below.

Let Z◦1 be the semistable locus of Z1 and let E be the set of 5-tuples (U, V,W, u,w)
with U ∈ Z◦1 , V ∈ Λβ+γ , W ∈ Z2, u ∈ Hom(U, V ), w ∈ Hom(V,W ) such that

0 → U
u−→ V

w−→W → 0

is exact. It is easy to see that E is a constructible subset of Rep(Q, β)×Rep(Q, β+
γ)× Rep(Q, γ)×Mβ×(β+γ)(k)×M(β+γ)×γ(k).

Due to the uniqueness of the HN-filtration the non-empty fibers of the projection
map p : E → Λβ+γ : (U, V,W, u,w) 7→ V are isomorphic to Gl(β)×Gl(γ) and hence
they have dimension β · β + γ · γ.

There is another projection map q : E → Z◦1 ×Z2 : (U, V,W, u,w) 7→ (U,W ). Its
fibers are non-empty since we can take V = U ⊕W . According to [8, Lemma 5.1]
its fibers have dimension

(β + γ) · (β + γ) + dim Ext1(W,U)− dim Hom(W,U)

and the proof also shows that these fibers are irreducible and locally closed.
According to [6, Lemma 1] we also have

dim Hom(U,W )− Ext1(W,U) + dim Hom(W,U) = 2(β, γ)

and furthermore according to lemma 3.1 we have Hom(U,W ) = 0. Substituting we
find that the fibers of q have dimension:

(β + γ) · (β + γ)− 2(β, γ)

According to lemma 3.4 below we find that E contains a dense irreducible locally
closed subset E′ such that dim(E −E′) < dimE. Furthermore the dimension of E
is:

(3.1) dim Λβ + dim Λγ + (β + γ) · (β + γ)− 2(β, γ)

Now we have for α ∈ ZI :

dim Λα =
1
2

dim Rep(Q̄, α) = α · α− (α, α)

A trite computation shows that Z = p(E) has dimension

(β + γ) · (β + γ)− (β + γ, β + γ) = dim Λβ+γ

and p(E − E′) has smaller dimension. Hence dim p(E′) = dimΛβ+γ . Since E′ is
irreducible it follows that p(E′) is dense in some irreducible component Z of Λβ+γ .
This finishes the proof of the claim.

It is clear that the claim implies 1. by induction (in this case we take Z1 to be
a semistable irreducible component of Λα and not just an open subset).
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Assume that 1. is proved. By the existence of the HN-filtration we have

Λα =
⋃

Z∗∈Sα

m′(Z∗)

Thus if X is an irreducible component of Λα.

X =
⋃

Z∗∈Sα

m′(Z∗) ∩X

Hence some m′(Z∗) ∩X must be dense in X. This implies the surjectivity of m.
Now for every Y ∈ Irr Λα select an open subset Y ◦ such that Y ◦ ∩ Z◦ = ∅ for

Y 6= Z. We define m′(Z∗)◦ ⊂ m′(Z∗) as m′(Z∗)◦ but with Zi replaced by Z◦i . The
claim still applies and we find that there is a unique irreducible component of Λα

intersected densely by m′(Z∗)◦. This component must be m(Z∗).
Now we may prove injectivity of m. Assume that Z∗ 6= Z ′∗ and that m′(Z∗)∩X

and m′(Z ′∗) ∩ X are both dense in X. Then m′(Z∗)◦ ∩ X and m′(Z ′∗)◦ ∩ X are
dense as well. But m′(Z∗)◦∩m′(Z ′∗)◦ = ∅ yielding a contradiction which completes
the proof. �

If X is an algebraic variety and S ⊂ X is a constructible set then let us say that
S is weakly irreducible if S contains a dense subset S′ which is irreducible locally
closed in X and has the property that dim(S − S′) < dimS.

Lemma 3.4. Let q : X → Y be a morphism between (reduced) algebraic varieties.
Let S ⊂ X, T ⊂ Y be constructible subsets with T = q(S) such that the fibers of
q : S → T are locally closed in X, irreducible and of constant dimension. If T is
weakly irreducible then so is S.

Proof. Left to the reader. �

For α ∈ NI let us put nα for the number of components of Λα and mα for the
number of semistable components. By [28] we have nα = dimU(g+)α. Theorem
3.2 yields the formula

nα =
∑

α1,...,αn

s(α1)>···>s(αn)∑
αi=α,

∏
i

mαi

and this formula allows us to determine the mα recursively from the nα.
Put rα = dim gα. It turns out that we can give an explicit expression for mα in

terms of the rα. Put an arbitrary total ordering on NI with the property s(β) >
s(γ) ⇒ β > γ and β > γ ⇒ s(β) ≥ s(γ).

Lemma 3.5. The following formula holds.

(3.2) mα =
∑

(u1,β1),...,(un,βn)
β1>...>βn

s(β1)=···=s(βn)=s(α)∑
uiβi=α,

∏
i

(
rβi + ui − 1

ui

)

Proof. By the PBW-theorem we have

nα =
∑

(u1,β1),...,(un,βn)
β1>...>βn∑

uiβi=α,

∏
i

(
rβi

+ ui − 1
ui

)
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In this formula we may collect the βi’s with equal slope. Let m′
α be given by the

righthand side of (3.2). Then we have

nα =
∑

α1,...,αn

s(α1)>···>s(αn)∑
αi=α,

∏
i

m′
αi

and by induction it follows m′
αi

= mα. This finishes the proof of (3.2). �

Proof of Proposition 1.2. Recall that λ ∈ ZI is such that λ ·α = 0 and λ ·β 6= 0 for
all 0 < β < α.

Now it is clear that King semistability for λ is equivalent to slope semistability
for Θ = −λ. Hence for this particular Θ we need to show that mα = rα. This
follows immediately from (3.2). �

4. Closing comments

The authors are often posed the following natural questions:

Question 4.1. How essential is the indivisibility of α in the proof of Conjecture
A and B?

Question 4.2. Lusztig has shown that the irreducible components of Λα index a
basis of U(g+)α. Can Proposition 1.2 somehow be strenghtened by establishing an
explicit bijection between the stable irreducible components in Λα and a basis for
gα?

We think that a positive answer to Question 4.2 is rather unlikely. For example
the set of stable components of Λα depends on λ ∈ ZI (or Θ ∈ ZI) and there does
not seem to be a natural choice. A preliminary difficulty is that we don’t actually
know if the desired bijection can exist since we have only been able to count the
semistable components of Λα (3.2).

If α is indivisible then the stable and semistable components of Λα coincide. The
indivisibility hypotheses is also used in a very essential way in the proof of Propo-
sition 2.2.1 which establishes a connection between the absolutely indecomposable
representations of Q and the simple representations of Πλ. Finally the indivisi-
bility hypotheses is used to establish the smoothness of Xs,C which allows us to
go from cohomology with compact support (2.7) to ordinary singular cohomology
using Poincare duality (1.1). This is necessary since we need a cohomology theory
which is homotopy invariant.

Appendix A. Purity

For the benefit of the reader we recollect some basics. As usual q is a power of
a prime number p and l 6= p is another prime number. We put k = F̄p.

Assume that Z/k is a variety defined over Fq, i.e. there is some Z0/Fq such that
Z = (Z0)k. Let F : Z → Z be the corresponding Frobenius morphism. The key
method for counting rational points on Z0 is given by the trace formula [10, Thm
3.2]

|Z0(Fqr )| =
2 dim Z∑

i=0

(−1)i Tr(F r;Hi
c(Z,Ql))
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For this formula to be effective one needs information on the eigenvalues of F . Let us
say that Z is (cohomologically) pure if the eigenvalues of F acting on Hi

c(Z,Ql) have
absolute value qi/2. This definition only depends on Z and not on the particular
choice of Fq and Z0. The Weil conjectures [12] imply that if Z is smooth proper
over k then Z is pure.

We have used the notion of purity in the following context:

Lemma A.1. Assume that Z is pure and that there is a polynomial p(t) ∈ Z[t]
such that |Z0(Fqr )| = p(qr). Then p(qr) =

∑
i dimH2i

c (Z,Ql)qri and in particular
p(t) ∈ N[t].

Proof. It is clearly sufficient to show that the action of F on H2i
c (Z,Ql) has a

unique eigenvalue qi and that in addition H2i+1
c (Z,Ql) = 0.

Write p(t) =
∑

i b2it
i and bj = 0 for j odd. Since Z is pure the eigenvalues of F

acting on Hi(Z,Ql) are given by εijqi/2 where j = 1 . . . βi and |εij | = 1. From the
hypotheses and the trace formula we obtain

(A.1)
2d∑

i=0

(−1)ibiq
ri/2 =

2d∑
i=0

(−1)i

βi∑
j=1

εrijq
ri/2

where d = dimZ. Dividing by qrd we find

b2d = lim
r→∞

β2d∑
j=1

εr2d,j

Using a Van der Monde type argument we see that the limit on the righthand side
only exists if ε2d,j = 1 for all j. Subtracting the leading term in q from (A.1) and
repeating the same argument we ultimately find that εij = 1 for all i, j. Since
bi = 0 for odd i we find that βi = 0 for odd i. This finishes the proof. �

In this paper we use the following purity criterion:

Proposition A.2. Assume that Z is smooth quasi-projective and that there is an
action λ : Gm × Z → Z such that for every x ∈ Z the limit limt→0 λ(t, x) exists.
Assume in addition that ZGm is projective. Then Z is pure.

Proof. Let ZGm =
⋃

α Lα be the decomposition into connected components and for
each α define

Wα = {x ∈ Z | lim
t→0

λ(t, x) ∈ Lα}

According to [4, Thm 4.1, proof of Thm 4.2] the Lα, Wα are smooth and the Wα are
locally closed in Z. Furthermore the limit map fα : Wα → Lα is a Zariski locally
trivial affine fibration. Furthermore in [5] it is shown that there is a filtration
∅ = Z0 ⊂ Z1 ⊂ · · · ⊂ Zn = Z of Z by closed subsets such that for every i, Zi+1−Zi

is one of the Wα (this depends on Z being quasi-projective).
Looking at Zariski open sets we find

Rifα∗Ql =

{
Ql if i = 0
0 otherwise

Thus

(A.2) Hi(Wα,Ql) = Hi(Lα,Ql)
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By the Weil conjectures Lα is pure. Since Lα and Wα are smooth, (A.2) and
lemma A.3 below imply that Wα is pure as well. Applying lemma A.4 finishes the
proof. �

We have used the following lemmas

Lemma A.3. If Z is smooth then Z is pure if and only if the eigenvalues of F
acting on Hi(Z,Ql) have absolute values qi/2.

Proof. This follows by Poincaré duality. �

Lemma A.4. Assume that we have a decomposition Z = Y
∐
U where Y is closed

and Y , U are pure. Then Z is also pure and in addition we have short exact
sequences

(A.3) 0 → Hi
c(Y,Ql) → Hi

c(Z,Ql) → Hi
c(U,Ql) → 0

Proof. This follows from the fact that in the long exact sequence

→ Hi−1
c (U,Ql) → Hi

c(Y,Ql) → Hi
c(Z,Ql) → Hi

c(U,Ql) → Hi+1
c (Y,Ql) →

the connection maps must be zero by purity. �

Appendix B. Invariants over Z

In this paper we have used lifting to characteristic zero. To do this rigorously we
need that taking invariants commutes with base change over a Zariski open part of
the base. This is of course well known but we have not found an explicit reference.
For simplicity we will only consider the case where the base is Zf . Replacing
Spec Zf by a Zariski open subset amounts to “increasing” f in the following sense:

Convention B.1. If f ∈ Z then increasing f means making f larger for the partial
order given by divisibility.

Let G be reductive group defined over Zf [35]. All G-actions below are rational.
That is: they are obtained from a coaction of O(G).

First recall Seshadri’s generalization of Geometric Invariant Theory to an arbi-
trary base ring.

Theorem B.2. [35, §II] Let R be finitely generated Zf algebra and let M be a
finitely generated R-module. Assume that G acts rationally on R and M . Then RG

is a finitely generated Zf -algebra and MG is a finitely generated RG-module. In
addition if X = SpecR and X//G = SpecRG then X//G has the usual behavior in
the sense that if Spec k → Spec Zf is a geometric point then the points in (X//G)(k)
correspond to the closed orbits in X(k).

It follows in particular that Spec(R⊗ k)G → Spec(RG ⊗ k) is set-theoretically a
bijection. We want it to be an isomorphism. The result we need is the following:

Theorem B.3. Let R be finitely generated Zf algebra and let M be a finitely
generated R-module. Assume that G acts rationally on R and M . Then there exists
a Zariski open subset U of Spec Zf such that for every geometric point Spec k → U
we have that the canonical map MG ⊗ k → (M ⊗ k)G is an isomorphism and in
addition Hi(G,M ⊗ k) = 0 for i > 0.

We will informally say that the formation of MG is compatible with base change
for f large enough.
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Proof. Recall that if H is a reductive algebraic group over an algebraically closed
field k then an H-representation of countable dimension is said to have a good
filtration if it has an ascending filtration by co-Weyl-modules Y (λ), or equivalently
if Hi(H,Y (λ)⊗ U) = 0 for all i > 0 and all λ [14]. In particular (−)H is exact on
representations with a good filtration and the category of representations with good
filtrations is stable under taking cokernels of surjective maps and extensions. It is
a deep theorem [14, 29] that the category of representations with a good filtration
is stable under tensor product.

Put A = Zf . If V is a G-module free of finite rank over A and if V ⊗A k (k as in
the statement of the theorem) has a good filtration then it follows from exactness
of (−)G that dim(V ⊗A k)G is the number of Y (0)’s in a good filtration of V ⊗A k.
This can be computed in terms of characters so we conclude

(B.1) dim(V ⊗A k)G = dim(V ⊗A Q̄)G = rkV G = dim(V G ⊗A k)

By the universal coefficient theorem the canonical map

(B.2) V G ⊗A k → (V ⊗A k)G

is a monomorphism and hence by (B.1) it an isomorphism.
If V is not necessarily of finite rank but has a filtration 0 = V0 ⊂ V1 ⊂ V2 ⊂ · · ·

such that each Vi+1/Vi is free of finite rank and (Vi+1/Vi)⊗A k has a good filtration
then it is easy to see that (B.2) is still an isomorphism.

Since the action of G is locally finite there exist a finitely generated G module W
such that R is a quotient of SW . By increasing f we may assume that W is free.
If the characteristic of k is large with respect to λ (in a suitable sense) then Y (λ)
is simple [18, Ch. 6]. It follows that if char k is large then the finite dimensional
G-representation Λ(W ⊗A k) has a good filtration. It then follows from [1, §4.3]
that SW ⊗A k = S(W ⊗A k) has a good filtration as well. From the proof it follows
that this good filtration is compatible with the grading.

Now we filter SW by degree and we put the induced filtration on R. We choose
a compatible filtration on M such that grM is a finitely generated grR-module
(confusingly such a filtration is also called a good filtration!) [31]. Since grR and
grM are finite over the noetherian ring SV their Z-torsion is supported on a finite
set of primes. Hence by increasing f we may and we will assume that grR and
grM are torsion free.

Since SW has finite global dimension it is easy to see that (at the cost of possibly
increasing f) we may construct a graded resolution of grM whose terms are of the
form Ui ⊗A SW with Ui a free G-representation of finite rank. Increasing f again
if necessary we may assume that all Ui⊗A k have a good filtration. Thus it follows
that (grM)⊗A k will also have a good filtration compatible with the grading for all
k. Thus M ⊗A k has vanishing cohomology. The rest of the theorem follows from
the fact that (B.2) is an isomorphism with V = M . �

From Theorem B.3 one easily deduces that all standard constructions are com-
patible with base change if we take f large enough. We give an example whose
proof we leave to the reader.

Lemma B.4. Let X be of finite type over Zf and assume that G acts rationally
on X. Let L be a G-equivariant line bundle on X. Let Xss be the L-semistable
points on X [35, §II]. Then the formation of Xss and Xss//G is compatible with
base change for f large enough.
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Appendix by Hiraku Nakajima

The following simple proof avoids the arguments in Section 2.3, showing directly
that if λ is generic for α, then Rep(Πλ, α)λ//G(α) and Rep(Π0, α)λ//G(α) have the
same number of points over sufficiently large finite fields Fq.

Let k = Fp, the algebraic closure of a finite field.
Suppose that π : X → A1 is a smooth family of nonsingular quasi-projective

varieties over the line A1 = k with the following properties:
(1) there exists a Gm-action on X such that π is equivariant with respect to a

Gm-action on A1 of weight one,
(2) for every x ∈ X , the limit limt→0 t · x exists.

Such an action exists in the case of quiver varieties [30, §5].
Let Xλ = π−1(λ).

Theorem. The number #Xλ(Fq) of rational points is independent of λ (for Fq

containing fields of definition of X , π, λ and a finite number of auxilliary varieities).

Proof. First note that Xλ is isomorphic to Xtλ for t ∈ k∗. Therefore, it is enough
to show that #X0(Fq) is equal to #X1(Fq).

Let
⊔
Fα be the decomposition of the fixed point set XGm into connected com-

ponents. Each Fα is a nonsingular projective variety. Moreover, Fα is contained in
X0. (We have used the assumption (1).)

We consider the Bialynicki-Birula decomposition of X with respect to the Gm-
action:

X =
⊔
α

Xα,

where Xα = {x ∈ X | limt→0 t ·x ∈ Fα}. By the assumption (2), the right hand side
coincides with the whole space X . It is known that the natural projection Xα → Fα

is an affine fibration whose fiber is isomoprhic to the direct sum of positive weight
space in the tangent space at Fα. Therefore, we have

#X (Fq) =
∑
α

#Xα(Fq) =
∑
α

#Fα(Fq)qnα ,

where nα is the dimension of the fiber.
We also consider the Bialynicki-Birula decomposition of X0:

X0 =
⊔
α

(X0)α.

Then (X0)α is also an affine fibration over the same base Fα. The tangent space
of X (at a point in Fα) decompose into the sum of the tangent space of X0 (fiber
direction) and A (base direction). Therefore, the dimension of the fiber is equal to
nα − 1. Thus

#X0(Fq) =
∑
α

#(X0)α(Fq) =
∑
α

#Fα(Fq)qnα−1 =
1
q
#X (Fq).

On the other hand,

#X (Fq) =
∑
λ∈Fq

#Xλ(Fq) = (q − 1)#X1(Fq) + #X0(Fq).

Therefore the conclusion follows. �



ABSOLUTELY INDECOMPOSABLE REPRESENTATIONS 19

References

[1] H. H. Andersen and J. C. Jantzen, Cohomology of induced representations for algebraic
groups, Math. Ann. 269 (1984), no. 4, 487–525.

[2] K. A. Behrend, The Lefschetz trace formula for algebraic stacks, Invent. Math. 112 (1993),

no. 1, 127–149.
[3] A. Beilinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Astérisque, vol. 100, Soc. Math.
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