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This paper is intended to introduce the reader to the idea of reductions for
matrix problems. First, we introduce 4 new formulation for such matrix
problems, bimodule problems, generalizing a notion of Drozd. This is then
related to more established languages, including partitioned matrix problems,
differential biquivers, and bocses. Finally, several applications of the reductions
are given, including Drozd’s Tame and Wild Theorem.

1. Introduction

The aim of this paper is to discuss several (more or less) equivalent
formulations of matrix problems and their reductions. Before moving on to
general frameworks, however, it is worthwhile to start at the beginning: the
problem of putting a matrix over a field k into normal form by elementary row
and column operations. Of course there are the two standard examples, which
we give names, the reasons for which will become apparent later.

Edge reduction: putting a matrix into the form [§ 3] (where the 1 is an
identity matrix and O denotes an arbitrary rectangular matrix of zeros) using
arbitrary elementary row and column operations; and

Loop reduction: over an algebraically closed field k, putting a square
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matrix into Jordan Normal Form using elementary row operations and their
inverse column operations simultaneously.

More generally, one can consider a partitioned matrix problem-in which the
matrix is divided into blocks, and only prescribed elementary transformations
may be used. The following two examples taken from [14] serve well to
illustrate this.

PROBLEM 1. Put a matrix [x|*] partitioned into two blocks (denoted by
*’s) into normal form using any row operations, but column operations only
within each block; and

ProBLEM 2. The same, but also allowing the addition of multiples of
columns in the right-hand block to columns in the left-hand block.

In fact, these problems are very easily solved. For Problem 2, put the
right-hand block into normal form using edge reduction to obtain [1|§ §
where we have divided the left-hand block into the corresponding smaller
blocks. Adding multiples of columns on the right to the left, we can set the top
of these to zero: [°]3 3] (this operation will be called regularization later).
Finally, use edge reduction on the remaining * to obtain

o = O
o OO

1
0
0

OO O

Similarly for Problem 1, use edge reduction on the left-hand block to obtain
[3 9171 and now observe that the problem of putting the *’s into canonical
form is precisely the transpose of Problem 2. (One can do any row operation
on the top * provided one simultaneously does the inverse operation on the
first column.)

Although this approach works for Problems 1 and 2, in general the
situation is much more complex. One needs a systematic method for solving
such problems. The first such formulation, given by Kleiner and Roiter [15,
11], was via differential graded categories, and in particular used rather special
such categories, namely free triangular ones. Roiter subsequently gave another
formulation, with the notion of a bocs [14], but again the bocses must be rather
special: normal, free and triangular. In the next section we introduce yet
another formulation of these problems, using a bimodule over a category,
equipped with a derivation. This seems to be the most elegant formulation (at
least for theoretical purposes). We shall then give a form, differential biquivers,
which is most suitable for calculations. This is precisely a restatement of
normal free triangular (and linear) bocses. The last language we shall discuss is
that of bocses, which is still needed for the proof of Drozd’s Tame and Wild
Theorem [7,3]. Finally, in §5 we give some applications.
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2. Bimodule problems

Let k be a commutative ring, which will usually be a perfect (or even
algebraically closed) field. Recall that a category is called a k-category if its
morphism spaces are k-modules, and composition of morphisms is k-bilinear.
We do not demand that the morphism spaces are finitely generated over k.
A functor between k-categories is called a k-functor provided it is k-linear. In
the sequel all categories will be k-categories, and all functors, k-functors. We
denote the category of all k-modules by Modk, and the subcategory of finitely
generated k-modules by modk.

DerniTiON. If K and L are k-categories, then

(1) a left K-module is a (covariant) k-functor K°°—Modk,
(2) a right L-module is a k-functor L —»Modk, and
(3) a K-L-bimodule is a k-bilinear functor K°® x L—Modk.

If M is a K-L-bimodule, X, X' and Y, Y’ are objects in K and
L respectively, me M(X, Y), aeK(X', X) and beL(Y, Y’), then the element
mM (a, b) of M(X’, Y’) can conveniently be denoted by amb. Thus modules and
bimodules over categories are in many ways like ordinary modules and
bimodules.

DeriniTiON. If K is a k-category and M is a K-K-bimodule, then
a derivation i: K — M is given by k-linear maps i: K(X, Y)—» M(X, Y) for each
pair of objects X, Y in K, such that whenever ae K(X, Y)and be K (Y, Z) then
i(ab) = ai(b)+i(a)b.

DEFINITION. By a bimodule problem we mean a triple (K, M, i) where K is
a k-category, M is a K-K-bimodule and i: K—M is a derivation.

DEFINITION. By a representation of (K, M, i), or a matrix over (K, M, i) we
mean a pair, denoted by Xm, consisting of an object X in K and an element
me M(X, X).

We turn the set of matrices over (K, M, i) into a category Mat(K, M, i)
by defining the morphisms from Xm to X'm’ to be the fe K(X, X') with
mf—fm’ = i(f), and composing them using the composition in K. Of course the
identity morphisms are in Mat(K, M, i) since i(1,) = 0 for each object X. Note
that fis an isomorphism in Mat(K, M, i) if and only if it is an isomorphism in
K, for suppose that f has inverse f ! in K, then fi(f ") +i(f) f=i(ff ') =0,
soi(f Y= —f"Li(f)f~, and hence m’f "' —f "'m = i(f '), which just says
that ! is a morphism from X'm’' to Xm.

We also want to consider some especially nice types of bimodule
problems. Let us call a problem Krull-Schmidt if the following additional
assumptions are satisfied: the ring k is a field, the spaces K(X, Y) and M(X, Y)
are all finite-dimensional over k, and K is a Krull-Schmidt category [13]: it has
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finite direct sums (coproducts), and split idempotents, that is, if ee K(X, X) has
e? = e, then there is an object Y and morphisms fe K(X, Y) and ge K(Y, X)
with fg = e and ¢f = 1.

Of course in this case Mat(K, M, i) is also a Krull-Schmidt category. It
clearly has direct sums, so suppose e: Xm-—Xm is idempotent. Since
idempotents split in K there is an object Y and fe K(X, Y) and ge K(Y, X)
with fg = e and gf = 1,. It is easy to check that f and g give morphisms
between Xm and Yn where n = gmf —gi(f).

We describe a Krull-Schmidt bimodule problem by drawing a picture as
follows. For each isomorphism class of indecomposable objects in K, choose
a representative X and draw a vertex labelled X. For each pair X, Y of vertices
take a basis of M(X, Y) and draw a solid arrow X — Y for each basis element.
Also, if X # Y take a basis of K(X, Y) and draw a dotted arrow X — — - Y for
each basis element. If X = Y take a basis of K(X, X) which includes 1,, and
draw a dotted loop at X for each basis element except 1. To complete the
description of the bimodule problem we must specify multiplication tables for
K and the left and right actions of K on M, and specify i(a) for each dotted
arrow d.

2.1. Examples

Problem 1 can now be formulated as
YEZLW

with i = 0, so K has 3 indecomposable objects with trivial endomorphism rings
and no maps between them. Thus K = (modk)x(modk)x(modk) or
modk x k x k. A matrix over (K, M, i) is given by an object X of K and an
element me M(X, X). Writing

X=Y0..0Y®Z®..0ZaWd..W
we see that M(X, X) looks like

(MY, Y) ... M(Y, YYM(Y, Z) ... M(Y, ZYM(Y, W) ... M(Y, W) ]
M(Y,Y) ... M(Y, Y) M(Y, Z) ... M(Y, Z) M(Y, W) ... M(Y, W)
M(Z,Y)... M(Z, YM(Z,2Z)... M(Z, ZYM(Z, W) ... M(Z, W)
MZ,Y)... M(Z, YM(Z,Z)... M(Z, ZIM(Z, W) ... M(Z, W)
MW, Y)... M(W, YYM(W, Z) ... M(W, ZYM(W, W)...M(W, W)

| MW, Y) ... M(W, Y)M(W, Z) ... M(W, Z)M(W, W) ... M(Y, W) |

and since M(Z, Y)and M(Z, W) are one-dimensional, and the other spaces are
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zero, the element m is given by a matrix of the form

[ 0070 ]
IAOB'

[oooJ

where the 4 and B are block matrices over k. Similarly an element e K(X, X)
is given by a block matrix

[ 0,(0(0 T
o oo
Lo o e, |

and the condition for 0 to be a morphism from Xm to X'm’ is m0 = 0m’, which
reduces to

A0y, =0,A" and BO, =0,B.

For an isomorphism 0, this just says that [A4| B] is obtained from [A4"| B'] by
elementary column operations within each block, and simultaneous elementary
row operations.

Problem 2 can be formulated as shown in Fig. 1, with b¢ = a. This time

z
/ \
| T —— o w
Fig. 1

K has been enlarged, so 0e K(X, X) is given by a block matrix

0,1 0 [ 0 7
o, | o |
0

|
o ToTer |

and now the condition that mf = 0m’ is equivalent to

AO0y+BO,=0,4" and BOy =0,B

which means that columns of B can be added to A.
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2.2. Drozd’s bimodule problems

One special type of bimodule problem has already been considered by
Drozd. Let A and B be categories and let N be an A-B-bimodule. Set
K = A x B and consider the K-K-bimodule ¢N obtained by restriction via the
projections of K onto A and B. We denote Mat(K, ¢Ng, 0) by R(N).
Pictorially, these bimodule problems look as in Fig. 2 where all solid arrows go

from the top to the bottom, and all dotted arrows start and finish in the same
half.

ExampLE 1. Our Problems 1 and 2 are of this type.

ExampLE 2. Let (K,|—|) be a vector space category, so K 1is
a Krull-Schmidt category and |—| is a functor from K to modk. If N is the
modk-K-bimodule with N(—, —) = hom,(—,|—), then R(N) is just the

category #(K,|—|) of representations of (K, |—|); see [13, §2.5].

EXAMPLE 3. Let A be a finite-dimensional k-algebra, A = B = proj(A), the
category of finite-dimensional projective left A-modules, and N = rad proj(4)
regarded as an A-B-bimodule in the obvious way (where radC denotes the
radical of the category C, see for example [13, §2.2]). Here an object of R(N) is
given by two projective A-modules P, Q and a A-module map f: P —»radQ, and
a morphism from f: P—Q to f": P> Q' is given by A-module maps P — P’ and
0 — Q' giving a commutative square

P-LQ
! !
P -

The functor from R(N) to mod A taking f: P — Q to coker(f) gives a represen-
tation equivalence between the full subcategory of R(N) on the objects with no
direct summand of the form 0: P -0 and mod A, and hence the representation
theory of A is phrased as a bimodule problem.

2.3. The reduction lemma

The main reduction lemma is the following:
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REDUCTION LEMMA. Let (K, M, i} be a bimodule problem, N a subbimodule
of M and i: K - M/N the derivation induced by i. Let L = Mat(K, M/N, i). If
we consider N as an L-L-bimodule N, by using the forgetful functor L— K,

then there is a derivation i: L— N, and an equivalence F:
Mat(L, (N,, i)->Mat(K, M, i).

Proof. For each element ge (M/N)(X, Y), choose a lifting a(q) in M(X, Y),
and define i’ by sending 6e¢ L(Xq, X'q)) to

i(0) +ba(q) —a(g)0e (N )(Xq, X'q) = N(X, X').

Define F by sending the object (Xq)n to X (x(q)+n) and 6 to 0. It is trivial to
check that F is an equivalence.

ExampLE. Recall that Problem 1 has been phrased as a bimodule problem
(K, M, i) which lcoks like

YEZLW.

Let N be the subbimodule of M generated by a, so that N is
Y&z w

and M/N is
Y Zbw

We shall see later that L = Mat(K, M/N, 0) has indecomposable objects and
morphisms described by Fig. 3 where me(M/NY(Z®W, Z&W) is of the

Y0 L
Fig. 3
form [$5]. Now N.(Z0, YO)= N(Z, Y)=ka and N, (Z&W)m, Y0)
= N(Z®W, Y) = k[{]; but for example ; N, (Y0, Z0) = N(Y, Z) = 0. Thus the
bimodule problem (L, |N;, i’} looks as shown in Fig. 4. In fact i’ is zero and

S
~_ &
a T
(Z®W)m
AN
YO/[GO] ‘ «\\\\\
wo
Fig. 4

aa = [¢]. Now if Xn is an indecomposable matrix over this, and W0 is
a summand of X, then X actually equals W0 (and »n must of course be zero). If
we replace L by its full subcategory on the objects without W0 as a summand,
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and use the restrictions of ; N, and , then the only indecomposable matrix we
lose is precisely this one, while the remaining matrix problem is the transpose
of Problem 2 (the arrows are reversed). Of course this is what happened to the
partitioned matrices in the introduction.

2.4. Computation of Mat(K, M, i) when M is semisimple

If we want to use the reduction lemma to replace a matrix problem
(K, M, i) by (L, N, i), then we need to compute L = Mat(K, M/N, i), and
the simplest case is when N is maximal, so that M/N is simple. In this section
we show how to compute Mat(K, M, i) for M semisimple. Throughout this
section we need the following assumptions: (K, M, i) is a Krull-Schmidt
bimodule problem and k is a perfect field.

Since k is perfect, K(X, X) splits over its radical for each object X in K,
and so there is a subcategory S of K with the same objects, and such that
K = S®rad K. Namely, choose splittings for a complete set of representatives
of the indecomposable objects in K, and extend this to K by fixing
a presentation of each object in K as a direct sum of these indecomposables.
Clearly S is a semisimple category, that is, there are no nonzero morphisms
between nonisomorphic indecomposables, and the endomorphism rings of
indecomposables are division rings. Note also that in this case
rad M = (rad K)M + M (rad K).

LEMMA. There is a derivation j: K— M with j(S) =0 and Mat(K, M, i)
equivalent to Mat(K, M, j).

Proof. Since k 1s perfect, for each indecomposable object X, S(X, X) is
separable over k, and hence ilsx,x): S(X, X)— M(X, X) is an inner derivation.
By fixing presentations of the objects in § as direct sums of indecomposables
one deduces that ilg: S — ¢M is an inner derivation, that is, for each object X in
K there is an element my, e M (X, X) such that i(s) = smy —mys for se S(X, Y).
Define j by

jl@=i(@)+mya—am, (acK(X,Y)),

and an equivalence from Mat(K, M, i) to Mat(K, M, j) sending Xm to
X(m+my) and 6 to 0.

REGULARIZATION. Let (K, M, i) be a bimodule problem with M semisimple,
and suppose that K = S®rad K with i(S) = 0. Then there is an equivalence F:
Mat(ker(i), M/im(i), 0) > Mat(K, M, i).

Proof. Since M is semisimple, (rad K)M = M(radK) = 0, and it follows
that the restriction of i to radK is a bimodule map. Since im()
=i(S)+i(radK) = i(radK), this is a subbimodule of M, and hence the
left-hand side is well-defined. Since M is semisimple, the projection
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M — M /im(i) is split, say by a. It is easy to check that the functor F defined by
F(Xq) = Xa(q) for ge(M/im(i))(X, X) and F(f) = 0 is an equivalence.
For example,

Mat(e —= ® i(¢) = a) = Mat(e o).

Thus we only need to compute Mat(K, M, 0) with M simple.

LeMMA. Let (K, M,0) be a bimodule problem with M semisimple,
K = S®radK and denote Mat(S, jMg, 0) by L. Then Mat(K, M, 0) is equiva-
lent to L@ ,(radK),, the category with the same objects as L, with morphism
spaces hom(Xm, X'm') = L(Xm, X'm"®(rad K)(X, X'), and multiplication
given by (0, p)(0', ¢') = (00", 00" + 0 ¢ + 0@').

Proof. Define F: L® (radK), —»Mat(K, M, 0) by F(Xm)= Xm and
F((6, 9)) = 0+¢. It is easy to see that F is an equivalence.

We have reduced further, and only need to compute Mat(K, M, 0) when
K is semisimple and M is simple. In the general case of M semisimple this
corresponds to the representations of a species (possibly with oriented cycles)
and is rather complicated, but if k is algebraically closed and M is simple there
are just two possibilities:

Edge reduction. If the bimodule problem has no dotted arrows (that is, K is
semisimple) and the only solid arrow is an edge, i.e. not a loop, so it looks like

X aY Zy V4] Zn
e—>e o o ... e,

then the category of matrices over it is

X0 w YO Z,0 Z>0 Z,0
@ — — @0 — — @ ® [ ] ®

where W= (X®Y)m and me M(X@®@Y, X®Y) looks like [J 2].

Loop reduction. If the only arrow is a solid loop at X, then Mat(K, M, 0)
is equivalent to L@modk[x] where L is obtained from K by deleting all
objects with X as a direct summand.

3. Differential biquivers

In this section we give another formulation for Krull-Schmidt bimodules
(K, M, i) with K having only finitely many indecomposable objects, and when
the field k is algebraically closed. Our aim is two-fold. Firstly, we want to
introduce the notion of a differential, which is the link with bocses in §4; and



208 W. W. CRAWLEY-BOEVEY

secondly, we want to shoWw that there are practical algorithms for performing
reductions (suitable for implementation on a computer, for example).

DEFINITION. A biquiver Q is a quiver with two types of arrows, solid and
dotted. (Of course this is the same as the picture we drew before.)

By deﬁ‘ning' the degree of a path to be the number of dotted arrows
involved, the path algebra kQ becomes a graded algebra.

DerINITION. We call a linear map d: kQ—kQ a (linear triangular)
differential d (and then we call (Q, d) a differential biquiver) provided that

(1) d raises degrees by 1 and d? =0,

(2) d(e) =0 if e is a trivial path,

(3) d(ab) = d(a)b+(—1)'ad(b) if a is a path of degree i,

(4) (linearity) the differential of each arrow is a linear combination of
paths of length at most 2, and

(5) (triangularity) the arrows in Q can be ordered so that the differential of
any arrow only involves strictly smaller arrows.

Note that in view of (3), the differential is completely specified by giving
the images of arrows, and by (2) and (3), the differential of a path is always
a linear combination of paths with the same start and end.

As an example, consider the biquiver of Fig. 5 with differential d defined by

2

e R

9T AN Ty
1277 ¢l b A
S |
C\\\‘\‘\\ R /
\\\:3/
Fig. 5

db) = —E+ay, d({) = ¢p, and d zero on the other arrows. We use this
example to explain how to define the category R(Q, d) of representations of

Q. a).

The objects in R(Q, d) are given by representations V of the quiver of solid
arrows, so are specified by a vector space for each vertex and a linear map for
each solid arrow (see Fig. 6).

Y
Y b v,
/a/
Z

3

Fig. 6
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The dotted arrows are used to increase the number of possible morphisms,
namely R(Q, d) contains the usual category of representations of the quiver of
solid arrows as a subcategory with the same objects, but which is in general not
full. Draw two copies of the quiver of solid arrows; draw arrows ; connecting
the two vertices corresponding to i, and draw the dotted arrows stretched
between the two copies (see Fig. 7). :

Fig. 7

A morphism F from V to V' is a representation of this quiver whose
restriction to the left-hand half is V, to the right-hand half is V', and which
satisfies relations of the form aw;—w;a = d(a) for each solid arrow a: i—j
(where the paths in d(a) are regarded as going from the left-hand side of the
diagram to the right). In our example the relations are

aw,—wya =d(a) =0,
bw,—wyb =db)= —¢+ay.

Similarly the product of two morphisms is constructed from the differentials of
the dotted arrows. Namely, in a product F” = FF’ one has w{ = w,;w; for each
vertex i, and if ¢: i— ——j is a dotted arrow, say with differen-
tial d(¢) =) 4,0u¥, “Aq€k and ¢,, W, dotted arrows), then
¢ = QWi—®;0 + Y Ay @

3.1. Relationship with bimodule problems

In this section we exhibit the correspondence between differential biquiv-
ers and bimodule problems, generalizing the construction given by Drozd [7]
of the bocs corresponding to one of Drozd’s bimodule problems.

Let k be an algebraically closed field, (K, M, i) a Krull-Schmidt bimodule
problem, K = S®J with i(S) =0 as in §2.4, and suppose that K has only
finitely many indecomposable objects X, ..., X,. For each 1 <i, j < n, let
M= M(X,;, X;)and J;; = J(X;, X)), and let 4;; and &;; be bases for DM;; and
DJ;; respectively (where D(—) = hom,(—, k)). Construct a biquiver Q on the
vertices 1,...,n, whose set of solid arrows from i to j is A;; and whose set of
dotted arrows from i to j is ®;;. (Of course this is just the picture we drew
before.) We shall define a linear map d: kQ — kQ.

14 — Banach Center t. 26, cz. |
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Clearly we may identify DM,; (respectively DJ;) with the subspace of the
path algebra kQ spanned by the solid (respectively dotted) arrows from i to j.
The multiplication map m;j,: J;;®,J ;,,~ J,, has as dual Dm;;,, a map from
DJ,, to D(J;;®J;,). Now this second space can be identified with DJ;.®,DJ,,,
and hence with the subspace of kQ spanned by the paths consisting of a dotted
arrow from i to j followed by a dotted arrow from j to m. We define d on dotted

arrows by

d(p) = ), Dmy,(¢p) for pe®,,.
j=1

I

Similarly the duals of the derivation i,,: J,, » M,, and the multiplication
maps lijm: J;QM,, » M, and 1y M;;®J ;,,— M, can be identified with maps
into kQ. We then define d on solid arrows via

d(a) = Di,(a)+ Y, (Dlijm(a)— Drijm(a))  for ae A,,.
j=1
Finally, define d on arbitrary paths using the rules that d is zero on the
trivial paths, and d(ab) = d(a)b+(— 1) ad(b) if a is a path of degree i. Then one
has :

LeEMMA. d is a differential, which is linear by construction, and triangular
provided that the bases A;; and ®;; have been chosen to respect the radical series
of M and K.

To show that d is a differential it suffices to prove that d?(¢) and d*(a) are
zero. Writing out the appropriate equations and dualizing back, this is
precisely equivalent to the axioms that K is associative, i is a derivation, the
two actions of K on M commute, and that they are actions. In fact, since this is
an equivalence, if (Q, d) is an arbitrary differential biquiver, then one can
revérse this procedure and construct a bimodule problem.

ProrosiTioN. Mat(K, M, i) and R(Q, d) are equivalent.

Proof. We construct an equivalence F from Mat(K, M, i) to R(Q, d). Any
object X in K is a direct sum of the X, and if X =~ @%_, X7 then we can
choose morphisms ¢;;€ S(X;, X) and p;;eS(X, X) (1 <i<n, 1 <j<n)such
that

(0, G)#EC )
e"f"’“”{lx,., )= 9,

We define F by sending a matrix Xm over (K, M, i) to the representation V' of
(Q, d) whose vector space V; at vertex i is k™, and if ae A; then in the
representation V it is given by a matrix with entries a,, = a(e,mp;). If 6:

Xm—X'm' is a morphism in Mat(K, M, i), then F() is the morphism in

n n;
Z:Pueuzzlx-
=1j=1
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R(Q,d) given by linear maps w;: V,—»V/ for each i, defined by
(@)y 1, = mgle, 0py) and @: V- V] for e ®;; defined by ¢, = @ (m,(e;0p%)),
where ng and =, are the projections of K onto § and J. It is tedious but not
essentially difficult to verify that F is an equivalence.

3.2. Reductions of differential biquivers

The reduction algorithm for bimodule problems now gives the following
operations on a differential biquiver (Q, d).

Regularization. If there is a solid arrow a in Q with d(a) being a nonzero
linear combination of dotted arrows, say d(a) = ) 4;¢; with the 4, # 0 and ¢,
being maximal amongst the ¢, with respect to the triangularity, then construct
(Q, &) with R(Q, d) = R(Q', d') as follows. The quiver Q' is the same as Q but
with g and ¢, deleted, while d' is the same as the restriction of d, but whenever
d(x) has a term which involves ¢,, this occurrence is replaced by

1
_T Z }'igoi’

1i#1
and whenever a term involves g, it is deleted.

Edge reduction. If there is a solid arrow a: i —»j with differential zero, and
which is an edge, i.e. i #j, one can again construct (Q’, d'). This time the
construction is slightly more complicated, so we shall only give an example. We
hope that the interested reader can obtain the reduction either by using
bimodule problems, or by examining the references [15, 11, 14]. For the
example (Q, d) we gave before, after reducing the edge a, one obtains the
situation of Fig. 8 with d'(y,)=p¢,, d&)=aé,, d)=¢ 0,

d¢)=¢04+0l, d(b;)= —¢, and d'(by)) =y¥,—¢,—ab,. (Now one can
regularize b,, and then b, to obtain a differential biquiver with no solid arrows,
so the vertices correspond to the indecomposable representations of (Q, d).)

Loop reduction. If there is a solid arrow a: i —i with differential zero and
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which is a loop, then there is a reduction of the bimodule problem which would
correspond to a differential biquiver but for the fact that it would have
infinitely many vertices —corresponding to the different possible Jordan blocks
for a in any representation. By restricting to a finite subset, however, one
obtains (Q', d') and a fully faithful functor from R(Q’, d) to the full subcategory
of R(Q, d) on the representations in which a only involves this finite set of
Jordan blocks. See §5.2 for an example of this reduction.

4. Bocses

We first recall the notion of tensor products over categories. If M is an
A-B-bimodule and N a B-C-bimodule, then there is an A-C-bimodule M® z N
solving the usual universal problem. If 0: A— B is a functor and M is an
A-C-bimodule we denote B® ,M by M, and similarly on the right-hand side.

A pair (4, V) is called a bocs provided that A is a category and V is an
A-coalgebra, that is, V is an A-A-bimodule equipped with 4-A4-bimodule maps
g: V> A (the counit) and u: V-V ® ,V (the comultiplication), satisfying the
usual counitary and coassociativity laws po(1®e¢) = po(e®1) =1id, and
uo(1®u) = po(u®1). The kernel of ¢ is denoted by V.

The principal bocs (A, A) is defined by ¢ =id, and g the isomorphism
A->AQ  A.

The category R(A, V) of representations of the bocs (4, V) has as objects
the finite-dimensional left 4-modules, and as morphisms F — G the A-module
maps f: VR, F-G. If g: V® ,G— H is another morphism, the product fy is
defined by

VR, FLVe, Ve , FL Ve ,GSH.

Clearly R(A, A) is just modA, the category of finite-dimensional left
A-modules.

A morphism of bocses (0,, 0,): (4, V) (B, W) is defined by a functor 0,:
A— B and an A-A-bimodule map 0: V - ,W,, where W, is the A-A-bimodule
obtained from W by restricting on each side using 8,, and which preserves the
coalgebra structure in the obvious way. Such a morphism induces a functor

0y, 0)*: R(B, W)—>R(A. V)
whose effect on objects is restriction via 0,.

4.1. Operations on bocses

If (4, V) is a bocs and 6: A — B is a functor, one can define a B-coalgebra
structure on ’V? = B® ,V® ,B, and obtain a bocs (B, ®V3), and a morphism
0, =0, 0,): (4, V)—>(B, BV®. The raison d’étre for bocses is

LemMaA [2]. 6F is fully faithful.
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In fact the proof of this is rather easy; see [3]. Let us stress why this is so
important. Given a bocs (A4, V), the idea is to simplify it by constructing
a category B and functor 0: A — B such that res,: mod B—modA is dense. In
this case 0¥ is an equivalence, and we can replace (4, V) by (B, 2V3).

In order to construct such functors one uses pushouts. If A’ is a sub-
category of A and (': A’ B’ is a functor, there is a pushout diagram

AL
() Lol
A5 4

Now if res,.: mod B'—»mod A’ is dense, then the pushout property ensures that
so is res,. For example if A" is of finite representation type one can let 0
A'— B’ be a semisimple approximation [1]: for categories this means that if
M,,...,M, are a complete set of representatives of the indecomposable
finite-dimensional right 4-modules then B’ is a product of n copies of modk,
and 0'=(M,,....,M,).

4.2, Freely generated categories and bimodules

In general, pushouts of the form (%) are rather difficult to compute, and
there is also the even more difficult problem of computing V2. However, when
A is freely generated over A’ and V is freely generated as an A-A-bimodule, the
calculations are possible. Let us first make these notions precise.

DEFINITION. An A-A-bimodule M is freely generated by m, ...,m, with
m;e M(X,;, Y)) provided that the natural map
@ A(—, X)®,AY, -)-M
i=1

is an isomorphism. A category A4 is freely generated by a,, ...,a, over A,
a subcategory of 4 with the same objects, provided that the a; freely generate
an A’-A’-subbimodule T of A4, and the natural functor from T® to A is an
isomorphism, where T?® is the tensor category of T over A’ defined by

n=0

T® =@ TQ®,T®,...®,T

n

In this case B is freely generated over B’ by 6(a,), ...,0(a,) and one can
make computations with V2 For example

LEMMA [3, Lemma 4.1]. If A is freely generated over A’, the counit ¢ is onto,
the kernel V of ¢ is projective as an A-A-bimodule and J' = ker(B'® . B'— B) is
a projective B'-B'-bimodule, then the kernel of the induced bocs BV® is isomorphic
to BI'B@BVE,
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4.3. The bocs of a differential biquiver

as follows. Let A’ be a Krull-Schmidt category whose indecomposable objects
correspond to the vertices of Q, and with A'(X, X) = k1, and A’(X, Y) = O for
X and Y distinct vertices. Let 4 be the category freely generated over 4’ by
elements ae A(X, Y) corresponding to the solid arrows a: X —» Y in Q, let V be
the A-A-bimodule freely generated by elements ¢ e (X, Y) for dotted arrows
@: X ———>Y, and let V= A®V as an A’-A-bimodule. We turn (4, V) into
a bocs by defining the left A-module structure on V' via

a(b, v) = (ab, d(a)b +av)

for a solid arrow a: X - Y, be A(Y, Z) and ve WY, Z) (where d(a) can be
regarded as an element of V), the counit ¢ via &(a, v) = a, and comultiplication
1 via

e 0) =(1y, 0®(, 0)
for ac A(X, Y), and

10, 9) = 0, P)R(1y, 0)+(1x, O®(0, ¢)+d(e)

where ¢: X — — > Y and d(¢) can be regarded as an element of V® ,V.

The bocses that one obtains this way are precisely the normal free
triangular linear bocses [14]. Of course the operations of regularization, edge
reduction and loop reduction carry over quite naturally to such bocses. For
example, if a is a solid edge with differential zero, let A” = {A4’, a) and use the
semisimple approximation A” — B".

Let us finally observe how to phrase the representation theory of an
algebra using bocses. In §2.2, we have shown that an algebra gives rise to
a special type of bimodule problem. In §3.1 we have seen that bimodule
problems lead to differential biquivers, and now we have shown how to phrase
differential biquivers as bocses.

5. Applications

5.1. Problems of finite representation type

Given a matrix problem, say a differential biquiver (Q, d), which is known
to be of finite representation type, that is, R(Q, d) contains only finitely many
nonisomorphic indecomposables, the triangularity ensures that there is always
a solid arrow whose differential involves only dotted arrows. If the differential
is nonzero, the arrow can be regularized; if the differential is zero, then the
arrow is an edge — otherwise there are infinitely many nonisomorphic indecom-
posables—and it can be reduced. Since each vertex corresponds to an
indecomposable representation, and each edge reduction adds a new vertex,
one can do no more than
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Number of indecomposables — Initial number of vertices

edge reductions. Since also each regularization reduces the number of arrows in
the biquiver, this procedure must terminate, and it can only do so if eventually
there are no solid arrows in the biquiver. However, at this stage, the vertices
correspond to the indecomposable representations, the dotted arrows corres-
pond to bases of the spaces of noninvertible morphisms between them, and the
differentials give their multiplication table, so R(Q, d) is completely described
(up to equivalence). Of course it is also easy to explicitly compute the
representations of the original differential biquiver by reversing this process.

However, appealing that this might be, a sample computation for the
quiver Eg

involves 30 edge reductions (of course), 225 regularizations, and involves
biquivers with up to 621 arrows. For E, it takes 56 edge reductions and 842
regularizations on biquivers with up to 2146 arrows. Although performing the
operations in a different sequence will change these numbers, we do not expect
that they can be reduced substantially.

Incidentally, given an arbitrary differential biquiver (Q, d) of finite
representation type, when this procedure is reversed in order to determine the
indecomposable representations of (Q, d) it turns out that they are described by
trees (and hence by matrices only involving the numbers 0 and 1). For example
(and to indicate what we mean), the maximal sincere indecomposable represen-
tation of E¢ is given by the tree

i 6 53 2
al el lb
25 3£653
cl lc
445 4

where a vertex labelled with i corresponds to a basis element of the vector
space at vertex i of the representation of E;, and an arrow labelled with
x corresponds to an identity in the matrix for x; the other elements being zero.

5.2. Computing representations of a fixed size

In this section we want to give an example to indicate to what extent the
reductions can be used to classify the representations of a given size for
a matrix problem of arbitrary representation type. We shall use differential
biquivers and consider the three-dimensional representations of the free
associative algebra k{x, y), that is, the differential biquiver (Q, d) of Fig. 9
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Fig. 9

with d = 0. We must begin by reducing a loop, and there are the following
possibilities for the Jordan normal form of b:

(1) J5,

@) J,()®J, (D),

3) J, (A,

() S, () (4 # ),

) Jl(;i)Z@Jx(l‘) (4 # W),

6) J,(ADJ (w@J,(v) (4, u, v distinct).

One must divide into cases, and we shall consider case (2). After reducing b, one
obtains the differential biquiver (Q’, d') of Fig. 10 with differential given (for the

a
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solid arrows) by

d'(ay) = aag—a,, dag) = —aga—ayy,
d'(a,) = aag—a;n—azy, d{a;)=0,

d'(az) = aa,, d'(ag) = Pay+yas—asa—ayy,
d'(a,) = —a48, d'(ag) = Bas+ya,.

d'(as) = Ba;+ya,—asp,
The vertices of this biquiver correspond to the different types of Jordan blocks:
the upper one being J,(4) and the lower J,(4); and a representation of this
which is n-dimensional at the top, and m-dimensional at the bottom corres-
ponds to a representation of (Q, d) in which a involves n copies of J,(4) and
m of J,(A). Thus we are concerned with the representations of this which are
one-dimensional at each vertex.

Next we reduce the loop a,. In a representation of the appropriate
dimension this is a 1 x 1 matrix, so when we perform the reduction we only
need to consider the Jordan block J,(u). In this case the effect of the reduction
is to delete the arrow g® and ré€place each occurrence of a- in a differential by p.
Thus we now have

d'(a3) = pa, d'(ag) = —a,a—uy,
d'(ay) = —up, dlag) = fas+uy.

Next one picks a solid arrow whose differential only involves dotted arrows, for
example a,. We need to divide into cases according to whether or not its
differential is zero; in this case, whether u = 0 or u # 0. In the first case one
would reduce a,, but we shall just consider the latter, so we regularize a,,
which deletes a, and f. Also we regularize a5, deleting a, and «. We obtain the
differential biquiver with arrows y, a,, a,, a5, g4, ag and ay, and with
differentials

d@)=0, dag)=—pu,
d'(ay) =0, dag) =yas—ayy,
d(as) =0, d(ag) = uy.

Now regularizing aq leaves only the solid arrows a,, a,, as, ag and a,, all with
differential zero. Reducing a,, ag and a, in the same way as a,, introduces new
parameters v, £ and @, and leaves just a, and a;. Now reduce the edge as, to
obtain the differential biquiver of Fig. 11 with differential

d(0) =d(e) =d(b,) =0, d(b,y)=0b,9,
d(b,) = by5—cb,, d(by) = —eb,.

Now a representation which has dimension n; at vertex i torresponds to
a representation of the starting biquiver of dimension n, +n, at the top and
n,+ny at the bottom, so the possibilities are n = (1,0, 1) or n=(0, 1, 0).
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b,
1@3
ba mbz/
b,
Fig. 11

Again one divides into cases, in each of which one deletes the vertices on which
n is zero. Continuing only with the second case, one obtains the differential
biquiver consisting only of the loop b,, and after reducing this with parameter
o, it has no solid arrows. Thus we are finished: there is a unique representation
of this with the required dimension, namely the simple representation.
Backtracking one obtains an indecomposable three-dimensional representation
of k{x, y> given by the matrices

0 0 v o 0
i 0 and y= |0 0 u
1 2 1 & ¢

®
I
SO

for any 4, u, v, & ¢, 0 with u # 0.

The general algorithm. For the inductive step we are given the following
data:

(1) a locally closed subset X of affine m-space, i.e. one defined by
polynomial equalities and inequalities,

(2) a differential biquiver (Q, d) over the field k(x,,...,x,) of rational
functions, which is defined at every element of X,

(3) the dimension vector of the representations we must classify, that is,
a vector specifying the dimensions of the spaces V.

Step 1. Delete any vertex where the dimension vector is zero. This ensures
that the procedure must terminate, since provided that one is considering
representations with a fixed dimension vector, which is nonzero at each vertex,
the operations all reduce the norm of the representation: the sum over the solid
arrows of the product of the components of the dimension vector at each end
(or for bimodule problems, the dimension of M(X, X)).

Step 2. Let a be a solid arrow whose differential only involves dotted
arrows, say

d(a) = /11(,01"{‘12(/)2‘*‘ +}'n(pn

and the ¢, are arranged in decreasing order relative to the triangularity of the
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differential. Divide X into the subsets
Xo={xeX|i(x) =...=4,(x) =0},
X, ={xeX|(x)=...=41(x)=0, 4;(x) #0} (1<i<n).

For the xe X (i # 0), regularize a and use the induction. Thus we may replace
X by X, and suppose that d(a) = 0.

Step 3. Use edge or loop reduction on a. Divide into cases according to the
possible dimension vectors and/or Jordan normal form structure as in the
example. In the case of loop reduction, replace X by X x A™ if m parameters
have been introduced.

Remarks. (1) The output of this procedure is a complete list of represen-
tations of the given dimension vector, each one specified by matrices whose
entries are 0, 1, or a parameter, with the parameters running through a locally
closed subset of an affine m-space. Of course it will not determine whether such
subsets are nonempty, let alone give parametrizations for them.

(2) There are some problems of uniqueness. For example in case (6) of the
very first reduction, the obvious symmetry of exchanging A and u will be lost
later on. This may (not very prettily) be avoided by choosing a total ordering
on the field (arbitrarily) and demanding 4 < u <.

5.3. Drozd’s Tame and Wild Theorem
Let k be an algebraically closed field. We recall some definitions.

DErFINITION. A finite-dimensional algebra A is wild if there is a finitely
generated A-k<{x, y>-bimodule M which is free as a right k{x, y>-module and
such that the functor F(—)= M ®j(.,, — from the category of finite-
dimensional k<{x, y)-modules to mod(A) preserves indecomposability and
isomorphism classes.

DEFINITION. A finite-dimensional algebra A is tame if, for each d > 0, there
are a finite number of finitely generated A-k[x]-bimodules M; which are free as
right k[x]-modules such that every indecomposable A-module of dimension
d is isomorphic to M;®y,; N for some i and some simple k[x]-module N.

If A is tame then for each d > 0, in the affine variety mod,(A) of A-module
structures on k“, there is a one-dimensional subvariety which meets every
isomorphism class of indecomposable modules. If A is wild, then for each n,
there is some d such that in mod,(A) there is a locally closed subset of
dimension n of nonisomorphic indecomposable modules. Thus an algebra
cannot be both tame and wild. In [7] Drozd proved the remarkable fact that

THEOREM (Drozd). Every finite-dimensional algebra is either tame or wild.

The proof uses a new type of bocs, which Drozd calls almost free. In [3] ;Ne
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have repeated the argument, using a variation on this called a layered bocs. We
outline how the proof goes in [3].

DEerFINITION. Let (4, V) be a bocs. We say that (4, V) is layered if there is
a collection (4; w; ay, ...,a,; vy, ...,v,) where:

(1) A’ is a subcategory of A on the same objects, and it is a minimal
category: a skeletal category equivalent to proj(R) where R is a finite product
of k-algebras, each of which is either k or of the form k[x, f(x)™ '] for some
nonzero polynomial f.

(2) wis a grouplike: it is an A’-A’-bimodule map 4" -» ,.V,. inducing a bocs
morphism (i, ) (4', A)—>(A4, V) where i is the inclusion of 4’ in 4.

(3) w is a reflector which means that (i, w)* reflects isomorphisms, that is,
if f'is a morphism in R(A4, V), and (i, w)* (f) is an isomorphism, then so is f.

(4) The a, (respectively v;) are indecomposable elements of A (respectively
V): they are elements of A(X, Y;) (respectively V(Z;, W) for indecomposable
objects X, Y, (respectively Z;, W) of A.

(5) The v; freely generate V as an A-A-bimodule.

(6) The a; freely generate 4 over A4'.

(7) Define the differential d: , A, — ..V, by d(a) = aw(ly)—w(ly)a for
acA(X,Y). We demand that for each i, d(q) is contained in the
A;-A-subbimodule of ¥ generated by all the v;’s, where 4, = (A', a,, ...,a;_ .

To set up an induction using the norm (as in the last section), suppose that
the bocs (4, V) is not wild (in an appropriate sense). Consider a,. If it has
differential zero and it is an edge, then the edge reduction operation still works
provided that A'(X,, X,) and A'(Y,, Y;) are both equal to k. However, there is
the following

ProrosiTiON (Drozd). (A4, V) is wild in the following two cases:

(1) d(a,) =0, and either A'(X,, X,) #k or A'(Y,, Y,) # k; and
(2) A(X,, X,) # kand A(Y,, Y,) # k and d(a,) = r-v,, for some noninver-
tible r in R = A'(X,, X )®,A(Y, Y).

If a; has differential zero and it is a loop, then by the proposition,
A'(Xy, X,) = k, so one can replace 4" by (A, a,). Now suppose that a, has
nonzero differential. If its differential was a k-linear combination of the v;, then
it would be possible to regularize it. However, this need not be the case, since
it is in general an R-linear combination of them. For example, if
A(X,, X)) =k[x] and v, e V(X,, Y;), then it is possible that d(a,) = xv,.

If V is a vector space and x an automorphism, then by Fitting’s Lemma
there is a decomposition V = V,@V, with x acting as an automorphism on Vj,
and nilpotent on V,. More generally, there is

Partial loop reduction. Let X be an indecomposable object in A4,
A'(X, X) = k[x], and r a positive integer. Let 4" be the category obtained
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from A’ by localizing x, so A”(X, X) = k[x, x~*], let B = A” x(modk), and
let . A’ — B be the functor whose first component is the inclusion 4" — 4",
and whose ith component to modk is the i-dimensional indecomposable
representation of A’ in which x is a nilpotent Jordan block. If 0: A — B is the
pushout of ¢, then the induced bocs (B, BV5) is layered.

After applying this reduction one can identify a, and v, in the new bocs
and still d(a,) = xv,. But now x is invertible in B'(X,, X,), so one can replace
v, by xv, and then regularize. In general, one must be more sophisticated and
use part (2) of the proposition, but essentially the same procedure is possible. In
this way one obtains

THEOREM. If (A, V) is a layered bocs which is not wild, and d > 0, then there
are categories B,, ...,B, and functors 0,: A— B; such that

(1) the bocses (B;, W)) induced by the 6, are minimal, that is, they are
layered with a collection of the form (B; w; ; wy,...,w,); and

(2) every representation of (A, V') with dimension at most d is isomorphia to
(0)F(N) for some i and some representation N of (B;, W).

From this result, by observing that minimal bocses have a rather simple
representation theory, not only can one deduce the Tame and Wild Theorem,
but also there is control on the maps, and one obtains

THEOREM [3]. If A is tame, then

(1) for all d >0, all but a finite number of isomorphism classes of
indecomposable A-modules of dimension d are isomorphic to their Auslan-
der—Reiten translates;

(2) for all d >0, all but a finite number of isomorphism classes of
indecomposable A-modules of dimension d lie in homogeneous tubes [13, §3.11;

(3) there are at most countably many other components in the Auslan-
der—Reiten quiver; and

(4) every Auslander—Reiten component contains only finitely many isomor-
phism classes of indecomposables of each dimension.
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