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Given a ring R (associative, with 1) one can define the
endolength of an R-module M to be its length when it is regarded
in the natural way as an EndR(M)—module, and thus one can
consider the class of modules of finite endolength. The aim of
this paper is to show that this is a useful concept. Briefly, the
contents are as follows. In §§1-3 we cover some background
machinery, in §§4-6 we discuss the modules of finite endolength
for a general ring, and in §§7-9 we show how these modules
control the behaviour of the finite length modules for noetherian
and artin algebras. Although much of this paper has a survey
nature, there are some new results proved here, the main ones
being the characterization of the pure-injective modules which
occur as the source of a left almost split map in §2, the
character theory for modules of finite endolength in §5, and the
characterization of the artin algebras with an indecomposable
module of infinite length and finite endolength (a generic

module) proved in §§8-9.
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1 THE FUNCTOR CATEGORY

If R is a ring, we denote by R-Mod the category of left
R-modules, and by mod-R be the category of finitely presented
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(f.p.) right R-modules. We denote by D(R) the category of
additive functors from mod-R to Z-Mod (the category of abelian
groups). This category has a very rich structure, and is an
invaluable tool for the study of R-modules. First of all, it is
an abelian category, with kernels, images and cokernels computed
"pointwise”. For example, a morphism of functors f:%—¥% is by
definition a natural transformation, so that for each f.p. module
X there is a homomorphism fX:?(X)——ag(X) of abelian groups. The
kernel of f is then the functor which is defined on objects by
(Ker f£)(X) = Ker(fX), and similarly for the image and cokernel of
f. It follows that a sequence F¥—5—¥H of functors is exact if
and only if the sequence F(X)—5(X)—H(X) is exact for all f.p.

modules X.

We shall also need to use the fact that D(R) is a Grothendieck
category, which as far as we are concerned means that it has
injective envelopes [G], and in particular, that we can do
homological algebra in D(R). There are several very important

classes of functors which we now list.

1.1 The representable functors are the functors (X,-) =
HomR(X,—) with X a f.p. right R-module. By Yoneda’s lemma,

HomD(R)((X,—),?) is isomorphic to #(X) for any functor ¥, and it

follows that (X,-) is a projective object in D(R).

Given a functor ¥, a family of finitely presented modules
(XA) and elements f. € ?(XA)’ one can consider the smallest

AN’ A
subfunctor ¥ of ¥ such that f_ € ?(XA) for all AeA. This is the

A
subfunctor of ¥ generated by the elements fA' Now the fA
determine maps (XA,—)——ag, and the functor (XA’_) is generated by

the identity endomorphism of X so that § is the image of the

A’
map uAeA (XA,~)——+?. Defining the notion of a finitely generated

(f.g.) functor in the obvious way, the isomorphism

(X,,-) @ ... @ (X ,-) =2 (X,0...0X_,-)
1 n n

1
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shows that a functor is finitely generated if and only if it is a

quotient of a representable functor.

Finally let us observe that the representable functors are
precisely the f.g. projective functors. Namely, any f.g.
projective functor ¥ is a summand of a representable functor

-)) = oP
D(R)((X’ )) = EndR(X) shows
that ¥ = (Y,-) with Y a summand of X (so that it is f.p.).

(X,-), and then the isomorphism End

1.2 A functor ¥ is said to be coherent if it is a quotient of a
representable functor by a finitely generated subfunctor, or in
other words, if it is finitely presented. If ¥ has projective

presentation
f
(vY,-) — X,-) — % — 0, (+)

then f is determined by a homomorphism a:X—Y, and if Z is the

cokernel of «, then ¥ actually has a projective resolution
0 — (Z,-) — (v,-) 5 (x,-) —> % —o0. (%)

The name "coherent" (rather than "finitely presented") is used
because of the following well-known and important property, which
implies that the category of coherent functors is closed under

kernels, cokernels, images and extensions.
LEmMa. A f.g. subfunctor of a coherent functor is coherent.

Proof. It suffices to prove this for representable functors. Now
a f.g. subfunctor of (X,-) is the image of a map f as in (+), and

so the projective resolution (%) shows that Im(f) is coherent.

1.3 The simple functors in D(R) have been determined by
Auslander [A3]. If X is a f.p. right R-module and J-is a left

ideal in EndR(X) one can define a subfunctor (X,-), of (X,-) via

J

(X,Y)J = {eeHomR(X,Y) | ¢o0€J for all ¢eHomR(Y,X)}
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If m is a maximal left ideal in EndR(X) we set YX m=(X,—)/(X,—)m.

LemMa. The functors yX m 2re simple, and every simple functor in

D(R) is isomorphic to some YX m
Proof. If ¥ is a subfunctor of (X,-), then J = F(X) is a left
ideal in EndR(X], and the inclusion % < (X,—)J follows from the
definition. If in addition ¥ is a proper subfunctor of (X,-) then

J is a proper ideal, for if 1, € F(X) then certainly ¥ = (X,-).

It follows that the maximal sﬁbfunctors of (X,-) are precisely
the functors (X,—)m with m a maximal left ideal in EndR(X). Thus
yX,m is simple. Finally, one only has to observe that, by
Yoneda’s lemma, every simple functor is a quotient of a

representable functor.

1.4 If M is a left R-module, the tensor product functor —eM =
—®RM is right exact. Conversely, if ¥ is any right exact functor
then ¥ = —®%(R) where ¥(R) has its natural structure as a left

R-module. It is easy to see that Hom (—eM, —eN) = HomR(M,N).

D(R)
The next property will be needed later.

LEMMA. Ext1

D(R)(?,—®M) = 0 for ¥ coherent.

Proof. The functor % has a projective resolution (%), so one can

compute Ext1 as the cohomology of the complex
Hom( (X, -),—M) — Hom((Y,-),-eM) — Hom((Z,-), —eM).

This is, however, isomorphic to XeM — YoM — Ze&M, so it is

exact.

1.5 An exact sequence £ : O s M %5 N B) L > 0 of left

R-modules is said to be pure exact (and a a pure mono, and Im(«)

a pure submodule of M) provided that the tensor product sequence

0 — X®RM —_— X®RN _ X®RL — 0
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is exact for every right R-module X. Of course it is always right
exact. Since tensor products commute with direct limits, direct
limits are exact, and every module is a direct limit of f.p.
modules, it suffices for this to hold for f.p. modules X. In
other words, § is pure exact if and only if the sequence of

functors 0 — —&M > —eN sy L. — 0 is exact in D(R).

1.6 A left R-module M is said to be pure-injective if every pure
exact sequence whose first term is M splits. This notion has many
equivalents, for example that of algebraic compactness. For our
purposes, however, we shall only need the following

characterization [GJ2].

LemMa. Up to isomorphism, the injectives in D(R) are the functors

——oM with M pure-injective.

Proof. Let ¥ be an injective functor. We show first that ¥ is

right exact. Namely, an exact sequence X—Y—>Z2—0 of f.p.

right R-modules gives an exact sequence 0—(Z, -)—(Y,-)—(X, )
of functors. Applying the exact functor Hom(-,%) and using
Yoneda’s lemma one sees that the sequence F(X)—F(Y)—F(2)—0
is exact, as required. Thus ¥ = -oM where M = ¥(R). Now given any
pure mono M—N, the morphism —eM — —®N is mono, so split, so

the map M—N is split. Thus M is pure-injective.

Conversely, suppose that M is pure-injective. Since the category
D(R) has injective envelopes, the functor —eM can be embedded in
an injective functor -eN. This gives a pure embedding M—N.
Since M is pure-injective, M is a summand of N, so &M is a

summand of —®N, and hence injective.

1.7 Next we introduce another tool for studying modules, the
subgroups of "finite definition" of a module. These were
introduced by Gruson and Jensen, and by Zimmermann. In Azumaya’s

article [Az] they are called "finite matrix subgroups." An
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additive subgroup of a left R-module M is said to be of finite

definition if it arises as the kernel FX x(M) of a map

M — X@RM, mr— X®m

for some f.p. right R-module X, and some element xeX. These
subgroups are not necessarily R-submodules of M, but they are

EndR(M)—submodules.

There is an equivalent definition as follows. If &% is a
subfunctor of (R,-) and M is a left R-module, then the space
Fg(M) = Hom((R,—)/?,—@M) can be regarded as the additive subgroup
of Hom((R,-),—eM) on the maps which annihilate #¥. Moreover, by
Yoneda's lémma, the last space can be identified with M. Thus
Fg(M) is canonically an additive subgroup of M. The subgroups of
M which arise in this way using f.g. subfunctors ¥ of (R,-) are
the subgroups of M of finite definition. To see this one only has
to note that any f.g. subfunctor of (R,-) is the image of a map
(X,-)—>(R,-) for some f.p. module X, and by Yoneda’s lemma this

map is determined by a map R—X, and hence by an element xeX.

We list some basic properties of the subgroups of finite

definition.

(1) The subgroups of finite definition form a lattice in M, for

F x(M) nF (M) (M), and

X, Y,y - FX@Y,x+y

FX,X(M) + FY,y(M) FZ’Z(M)

where Z is the cokernel of the map R—X®Y sending 1 to x-y, and

Zz is the common image of x and y.

(2) If N is a pure submodule of M then FX,x(N) =N n FX,x(M)'

(3) If (MA)AGA is a family of modules then
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FX,X(U’/\EA M) =1, . Fy x(M), and

F ) = Mhen Fx,x(MA)'

X,x(nXeA MA

the latter expression holding since tensor products X®R— commute

with products when X is a f.p. module.
2 INJECTIVE ENVELOPES OF SIMPLE FUNCTORS

Having determined the injective functors in the category D(R), it
is worthwhile to characterize the injective envelopes of the
simple functors. That is, to determine the indecomposable
pure-injective modules M such that —eM has a simple subfunctor.
This is not strictly necessary for our study of modules of finite
endolength,rbut it is an important finiteness condition which

will be relevant later.

2.1 In this paragraph we compute the injective envelope of the
simple functor yX,m'
LemMa. Let X be a f.p. right R-module, E = EndR(X) and m a
maximal left ideal in E. If I is the injective envelope of the
E-module E/m, and M = HomE(X,I), then the injective envelope of
yX,m is —eM.

Proof. Let 8:E—I be an E-module map inducing an isomorphism

from E/m to socE(I), and let f be the morphism
(X,-) — HomE(HomR(—,X),I)

which when applied to a f.p. module Y sends a map ¢ € HomR(X,Y)
to the map HomR(Y,X)——aI which sends ¢ to 6(yo¢). It is clear
that the kernel of f is (X,—]m, so that yX m embeds in

1

HomE(HomR(—,X),I). Now observe that the natural map

—aM — HomE(HomR(—,X),I)
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is an isomorphism since both functors are right exact and they
agree on R. Thus there is an embedding of yX,m in —®M. Now M is
pure-injective since HomR(—,M) = HomE(X®—,I) is exact on pure
exact sequences, so that if §:0—M—Y—Z—0 is pure, then the

map HomR(Y,M)——aHomR(M,M) is onto, and hence € splits. Finally

EndR(M)

R

HomE(X®RM,I) =

IR

HomE(HomE(HomR(X,X),I),I) = EndE(I)

is a local ring. It follows that -eM is the injective envelope of

the functor ¥ .
X, m

2.2 Recall that a map a:M—N of R-modules is said to be left
almost split if it is not a split mono, and any map M——X which
is not split mono factors through «. Dually B:N—M is right
almost split if it is a not split epi, and any map X—M which is
not split epi factors through 3. Taking X = M one sees that such
maps can only exist if M has local endomorphism ring. Moreover,
if a« exists then it is not a pure mono if and only if M is
pure-injective, while if B exists then it is not a pure epi (the
epi in a pure exact sequence) if and only if M is f.p.. Now
Auslander has shown that if M is f.p. and has local endomorphism
ring then there is a right almost split map terminating at M.

this paragraph we treat the case of left almost split maps.

2.3 THEOREM. Let M be an indecomposable pure-injective R-module.
The following statements are equivalent.

(1) M is the source of a left almost split map «:M—N.

(2) —M is the injective envelope of a simple functor.

(3) M = HomE(X,I) with X some f.p. right R-module, E = EndR(X]

and I the injective envelope of a simple left E-module.

Proof. The equivalence (2) ¢ (3) follows from (1.3) and (2.1).
Suppose that (1) holds and let ¥ be the kernel of the morphism

M — —eN. If ¥ = 0 then the inclusion of M in N is pure, and



Modules of finite endolength 135

so a split mono since M is pure- injective, a contradiction. Now
if ¥ is not simple, say with proper non-zero subfunctor ¥ then
(—eM)/F can be embedded in an injective functor —-eL, so there is
a map 6:M—L inducing a map -®M — —®L with kernel ¥. It
follows that 6 is not a split mono and cannot factor through «, a

contradiction. Thus ¥ is simple and (2) holds.

The proof of (2) = (1) is essentially contained in [A3]. In order
to sketch it we need to recall several facts. If X is a f.p.
right R-module and P—geQ——eX——eO is a projective presentation of
X with P and Q f.g., then the transpose Tr X of X relative to
this projective presentation is defined to be the f.p. left

R-module which is the cokernel of the map
HomR(f,R) : HomR(Q,R)——eHomR(P,R).

If Y is another f.p. right module, then
HomR(X,Y) = ﬂng(Tr Y,Tr X)

where Hom denotes the group of homomorphisms modulo the subgroup
of those which factor through a projective. In particular there

is a ring isomorphism
T : End_(X) — End_(Tr X)°P.
= R —R
Suppose (2), say —eM is the injective envelope of a simple ¥. We

construct a left almost split map with source M. As a first case,

suppose that #(R) # 0, so by Yoneda’'s lemma we know that ¥ is a

IR

¥ for some maximal left

R, m
ideal m in End(RR) 2 R. Now by (2.1) we know that M HomR(R,I) x

quotient of (R,-), and hence that ¥

IR

I is the injective envelope of a simple left R-module. In this

case the projection M—M/soc_(M) is a left almost split map.

R
Thus we may assume that #(R) = 0. Say ¢ = YX m where X is a f.p.
right R-module and m is a maximal left ideal in E = EndR(X), and

so by (2.1) we may assume that M = HomE(X,I) where I is the
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injective envelope of E/m.

We now consider contravariant functors R-Mod — Z-Mod. By [A3]

there are isomorphisms

IR

1 R
ExtR(—,HomE(X,I)) HomE(Torl(X,—),I)

IR

HomE(ﬂng(Tr X,-), 1), (+)

where for any left R-module Z, the group HomR(Tr X,2) is

considered as an E-module by means of the isomorphism T.

We construct a map
h : HomR(—,Tr X) — HomE(Hng(Tr X,-), 1)

whose image is a simple functor. Since #(R) = 0, any endomorphism
of X which factors through a projective module belongs to m, and

so m descends to a maximal left ideal m in EQQR(X). Let

o gggR(X) —> I be an E-module map inducing an isomorphism from
EggR(X)/E onto the socle of I, and let 6 be the composition

-1
End,(Tr X)°P 5 End,(Tr x)°P T End. (X) 251

We now define h by sending y € HomR(Z,TP X) to the map
HomR(Tr X,Z2) — I which sends ¢ to 6(yo¢). Clearly (Ker h)(2) is

equal to
{y € HomR(Z,TP X)|yox € Ker(6) V x € HomR(TP X,2)}

and since Ker(8) is a maximal right ideal in EndR(Tr X), it
follows that Ker h is a maximal subfunctor of HomR(—,Tr X), Jjust

as in the proof of (1.3). Thus the image of h is indeed simple.

Let L be a module with (Im h)(L) # O, for example L = Tr X

suffices. We can choose an extension

£ : o——aHomE(x,I)—“-aN—@-)L——)o
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whose image in Ext;(L,HomE(X,I)) generates the simple subfunctor
of Exté(—,HomE(X,I)) corresponding to Im(h) under the isomorphism
(¥). From the long exact sequence for € we obtain an exact

sequence

Hom (-, N)MﬂomR(-, L)——Ext (-, Hom(X, 1))

and by definition the image of 1, under the connecting map is £.

L
Thus the cokernel of Hom(—,B) is isomorphic to Im(h) and hence is
simple. The next lemma then shows that «:M—N is a left almost
split map.

Lemia [A3, Chapter II, Proposition 4.2]. Let 0—M—">N-PsL—0 be
an exact sequence of left R-modules. If the cokernel of Hom(-—,B)

is a simple contravariant functor R-Mod —— Z-Mod, then the map «

is left almost split if and only if EndR(M) is local.
3 Z-PURE-INJECTIVE MODULES

A module M is said to be Z-pure-injective provided that every
direct sum of copies of M is pure-injective. In this section we
describe a very useful characterization of the Z-pure-injective
modules, one application of which is the fact that modules of
finite endolength are always direct sums of indecomposable

submodules, something which is not at all obvious.

3.1 THeoreN. If M is an R-module, then the following statements
are equivalent

(1) M has the dcc on subgroups of finite definition.

(2) M is Z-pure-injective.

(3) Every product of copies of M is a direct sum of
indecomposables with local endomorphism ring.

(4) Every product of copies of M is a direct sum of

indecomposables of cardinality = max(RX_.,card(R)).

0,

We only prove (1)=(2) and (1)=(3), the implications which are
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most relevant for our study of modules of finite endolength. The
reader can find the other implications, and indeed a host of
other equivalent statements in [GJ1], [ZH], [JL, 8.11, [P, 3.2]

and in Azumaya’s article [Az].

Proof of (1)=(2). Since FX,x(uIM) = UI FX,

UIM also has the dcc on subgroups of finite definition, so by

X(M) it is clear that

replacing M by UIM, it is enough to show that M is
pure-injective, that is, that -eM is injective. In fact it
1 ((R,-)/%,—eM) = 0 for all

D(R)
subfunctors ¥ of (R,-), an analogue of Baer’s criterion for

suffices to prove that Ext

injectivity. To see why, let -®M — —®L be the injective

envelope of —®M, so there is an exact sequence
0 — M — L — —e(L/M) — 0. (1)

If —eM is not injective then L/M # O, and choosing x € L/M one
obtains a map (R,-) — —e(L/M). If this has kernel ¥ then by
assumption the pullback of (%) via the mono (R,-)/¥ — -®(L/M)
is split. This means that -eM ® (R,-)/% embeds in —eL, which

contradicts the minimality of —eL.

let £ : 0 — M — & X, (R,-)/%F — 0 be an extension. We

show that £ is split. We have the equality

Hom( (R, -)/%, M) = N Hom((R, -)/%, —M)
§f.g €%

and since the terms in the intersection are subgroups of finite
definition of M, and M has the dcc on such subgroups, one can

find a f.g. subfunctor K of ¥ with
Hom( (R, =) /%, M) = Hom((R, =)/, —eM).

That is, ¥ has the property that any map (R,-) — —eM which

annihilates H, also annihilates %.

Now let & be a f.g. subfunctor of ¥ containing K. Since (R,-)/%
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is coherent, Lemma (1.4) shows that the pullback of £ with
respect to the map (R,-)/% —» (R,-)/F splits. Thus there is a
map fg : (R,—-) — & which annihilates &, and such that the

is equal to the natural projection of (R,-) onto

- f

composition nofg

(R,-)/¥. Now the difference f actually maps (R,-) into -eM,

g K
and it annlhilates ¥, so that it also annihilates ¥, and hence fﬂ

annihilates §. This shows that f,, annihilates any f.g. subfunctor

H
of ¥ containing ¥. Thus fR annihilates ¥, so it induces a map

(R,-)/F — & splitting &, as required.

Proof of (1)=(3). Any product of copies of M also satisfies the
hypothesis, so we only need to prove that M is a direct sum of
indecomposables with local endomorphism rings. If U is a pure
submodule of M then FX,x(U) = U n FX,x(M)’ so U has the dcc on
subgroups of finite definition, is pure-injective, and hence is a
summand of M. Given an ascending chain of pure submodules of M,
their union is again a pure submodule (since tensor products
commute with direct limits), so if O#xeM, by Zorn’s lemma we can
choose a pure submodule U, maximal with respect to the condition
x¢U. Now M = UeX, and if X were to decompose this would
contradict the maximality of U. Thus M has an indecomposable
summand. Now let A be a maximal set of indecomposable submodules

of M whose sum U = X V is direct and is pure in M. If U#M then

it is a summand, andv?ts complement has an indecomposable summand
which could be adjoined to A, a contradiction. Finally, because
the category D(R) has injective envelopes, any indecomposable
injective functor has local endomorphism ring, so any

indecomposable pure-injective module has local endomorphism ring.
4 MODULES OF FINITE ENDOLENGTH

In this section we describe the basic properties of modules of
finite endolength, most of which are deduced directly from the
properties of Z-pure—-injective modules. We finish with some

examples.
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4.1 ProprosIiTION. An R-module has finite endolength if and only
if it has the acc and the dcc on subgroups of finite definition.

In this case every EndR(M)—submodule of M has finite definition.

This shows that the endolength of a module is the same as its
pp-rank in the sense of [P]. The proposition follows directly
from the lattice structure of the subgroups of finite definition

and the next lemma.

LEMMa. If M is a pure-injective R-module, then every cyclic
EndR(M)—submodule of M is an intersection of subgroups of finite

definition.

Proof. An element meM determines a morphism (R,-) — —eM, and
hence a monomorphism ¢: (R,-)/¥ —> —M where ¥ is the kernel,
Recall that the space Hom((R,-)/¥,-®M) can be regarded as a
subgroup of M, and it is clearly an EndR(M)-submodule. If

® € Hom((R,-)/%,—M) then since —®M is injective there is a
factorization 6 = ac¢ for some a:-—eM -— —eM. Now a corresponds
to an endomorphism of M, and this shows that Hom((R,-)/%, M) is
the EndR(M)—submodule of M generated by m. Finally, we have
already used in the proof of (3.1) the fact that Hom((R,-)/%, M)

is an intersection of subgroups of finite definition.

4.2 LemMa. The endomorphism ring of a finite endolength module

has nilpotent radical.
Proof. Nakayama’s Lemma.

4.3 ProrosiTioN. The class of finite endolength modules is

closed under finite direct sums, and arbitrary products or direct
sums of coples of one module. Moreover, if L is a pure submodule
of a module M of finite endolength, then L is a direct summand

and endolen(L) = endolen(M).
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Proof. Most of this can be proved using elementary means, but
having proved (4.1) this all follows from the equalities in
(1.7). Recall that since a pure submodule has finite endolength

it is pure-injective, and hence a summand.

4.4 PropoSITION. Indecomposable R-modules of finite endolength

have local endomorphism rings and cardinality = max(RO,card(R)).
Proof. This follows from (3.1).

4.5 ProprosiTiON. Every module of finite endolength is a direct
sum of indecomposable modules of finite endolength. Conversely,
such a direct sum has finite endolength if and oﬁly if there are
only finitely many isomorphism classes of indecomposables

involved.

The only part not contained in (3.1) is the "only if", which

follows from the lemma below.

LEmMa. If Ml""’Mn are non-isomorphic indecomposable modules of

finite endolength, then endolen(M1©...@Mn) = 212 endolen(Mi).

1
Proof. Since the Mi have local endomorphism rings, the ring
EndR(Ml@. . .@Mn)/rad EndR(Ml@. . .@Mn)

is isomorphic to the product nizl EndR(Mi)/rad EndR(Mi]’ and the

assertion follows.

REMARKS. (1) Since the indecomposables have local endomorphism
rings, the decomposition of a finite endolength module into

indecomposable summands is essentially unique.

(2) A result of Garavaglia, see [P, Exercise 2, p200], shows that
an indecomposable module M has finite endolength if and only if

every product of copies of M is isomorphic to a direct sum of
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copies of M. One direction is as follows. If M has finite
endolength, then nI M is a direct sum of indecomposable modules,
and it has endolength equal to that of M. Now since it has M as a
summand, it cannot have any other indecomposable summands by the

lemma above.

4.6 ProposITION. If a module of finite endolength is either

artinian or noetherian, then it has finite length.

This follows from a simple generalization of a theorem of

Lenagan,

THEOREM. If a bimodule is artinian on one side and noetherian on

the other, then it has finite length on each side.

Proof. Let RMS be such a bimodule, artinian over R and noetherian
over S. Since M has both chain conditions on sub-bimodules, to
prove the theorem we may assume that M is simple as a bimodule.
Now socR(M) is a non-zero sub-bimodule, so equal to M. Therefore
RM is semisimple, and hence of finite length since it is
artinian. Now the usual form of Lenagan’s Theorem shows that MS

has finite length, see [MR, 4.1.6] or [GW, 7.10].

4.7 ExawpLes. (1) If R is a ring without invariant basis number
[C, §0.2], for example the endomorphism ring of an infinite
dimensional vector space, then there are no non-zero modules M of
finite endolength, for by definition R" = R" for some n # m, and
then R"e_ M = R"o_M as End, (M)-modules, but they have different

R R
lengths as such.

(2) The Jacobson density theorem shows that a simple R-module S
has finite endolength if and only if R/AnnR(S) is simple

artinian.

(3) Aring R is said to be of finite representation type if it is
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left artinian and has only finitely many isomorphism classes of
finite length left R-modules. This is a left-right symmetric
condition, and for such rings, every module is a direct sum of
finitely generated modules [A2,RT]. It is proved in [P, 11.38],
[ZHZ, Theorem 6] and [CB3, 1.2] that a ring R has finite
representation type if and only if every R-module has finite

endolength.

(4) There is a 1-1 correspondence between isomorphism classes of
finite endolength modules M with EndR(M) a division ring, and
isomorphism classes of ring-theoretic epimorphisms 6:R—S from R
to a simple artinian ring S. The correspondence is given by

sending M to the homomorphism

R — End( ),

M
EndR(M)

and sending 8 to the restriction of the simple S-module [R3].

(5) If R is a commutative ring, then the indecomposable modules
of endolength 1 are precisely the quotient fields of factor rings
R/P with P a prime ideal in R. More generally, if R is a prime
Goldie ring then the restriction of the simple module for the
simple artinian quotient ring of R is the unique faithful
indecomposable module of finite endolength, see [CB3, 1.3]. It
follows that if R is a noetherian ring or a PI ring, then the
prime ideals in R can be identified with the indecomposable
modules of finite endolength whose annihilator is prime. Thus,
for example, a simple noetherian ring has a unique indecomposable

module of finite endolength.

(6) If R is a Dedekind domain, then the indecomposable modules of
finite endolength are the quotient field of R and the modules

R/mn with m a maximal ideal. This is because, if I is a non-zero
ideal in R, then R/I is an artinian principal ideal ring, so that

the indecomposable R/I-modules have form R/m". More generally, if
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R is an hereditary noetherian prime ring, then the only
indecomposable module of finite endolength and infinite length is
the restriction of the simple module of the simple artinian
quotient ring of R. In this case, the proper factor rings of R

have finite representation type.
5 CHARACTERS

Pure-injective modules have been extensively studied by model
theorists using rather sophisticated ideas, see for example [P],
“but for a module M of finite endolength, it appears that many of
these concepts can be encoded in simple numerical data, which we
call the character of M. In general, by a character for mod-R we
mean a function x which assigns to each f.p. right R-module X a
non-negative integer x(X), and which satisfies the two conditions

(1) x(XeY) = x(X) + x(Y) for all f.p. modules X, Y.

(2) x(2) s x(Y) = x(X) + x(Z) for any right exact sequence
X—Y—Z2—0 of f.p. modules.

This notion is adapted from Schofield’s definition of a Sylvester
module rank function [Sc], but we like the name "character" since
they have many properties in common with group characters. We
stress, however, that our characters are non-negative integer
valued, and in no way involve traces. It is natural to call the
number ¥(R) the degree of y; if it is zero then condition (2)
above shows that ¥ = 0. If M is a left R-module of finite

endolength, the assignment

xM(X) = length (X®RM)

EndR(M)

defines the character Ay of M. Its degree is the endolength of M.

5.1 THeorew. If Ml""Mn are non-isomorphic indecomposable

R-modules of finite endolength then their characters are

independent over Z.
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Proof. Suppose there is a relation 2121 aixM = 0 with aieZ. Let
i
M= Ul aM, E= [ End,(M)%
ai>0 ai>0

so that M is naturally an R-E-bimodule, and let

N= Il (-a)M, F= [ End (M)°P
ai<0 171 ai<0 R

so that N is an R-F-bimodule. Thus the indecomposable summands of

M and N are non-isomorphic, and the relation implies that
1ength(X®RME) = 1ength(X®RNF)

for all f.p. modules X. In particular, assuming that the relation
is non-trivial, both M and N are non-zero. Recall that if X is a

f.p. right R-module and xeX then the subgroup FX,X[M) is defined

by an exact sequence

0 — FX,x(M) — R@RM — X®RM — (X/xR)@RM — 0,

so we deduce that

length(FX’X(M)E) = 1ength(FX X(N)F). (+)

¥

We construct a pair U,u such that F,. (M) is a simple

EndR(M)—submodule of Mand F

U,u

U,u(N) is a simple EndR(N)—submodule

of N. By (4.1) one can choose a subgroup of finite definition

FY y(M) which is simple as an End (M)-module, and then FY (N) is
(N)

non-zero by (+). Inside FY y(N) we can find a subgroup Fz

which is simple as an End (N)-module. Setting U = YoZ and u = y+z
one has FU,u FY,y N FZ,z so that FU,u(N) = FY,y

(N) is a simple
End.(N)-submodule of N. Also F (M) is a submodule of F (M)
R U’u Y’y

and is non-zero by (+), so is equal to FY y(M), and hence is a

simple EndR(M)-submodule.

Choose 0 # m € F (M) and 0 # n € F (N). We show that
U,u U)u
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m e FX,x(M) & n € FX,x(N)

for any pair X,x. Now

X’ U’ X,X
& FX,x(M) = FU,u(M) + FX,X(M)’
and F + F = F where Z is the cokernel of the map R—UeX

U,u X, x Z,z
and z is the common image of u and x. Thus

m e FX,x(M) & length(FX’x(M)E) = length(FZ’z(M]E).

The same argument for N and the property (%) then prove our

assertion.

The element m determines a map (R,-) —> —®M whose kernel X is

given by

X(X)

{0 € HomR(R,X) | 6(1)em = 0O}

(M)}.

{6 € Hom (R,X) | m € F

R X,e(1)

Similarly the element n gives a map (R,-) — -®N whose kernel is
also X by the statement above. Thus the injective envelope —®L of
(R,-)/K embeds in both —eM and —N, so that L is a summand of

both M and N. Since L # O this is impossible by the Krull-Schmidt

theorem.

5.2 THEOREM. Every character yx can be written as a sum
X=Xy *ooo t Ay
1 n

with the M.1 indecomposable modules of finite endolength.
The proof is given in several steps.

Step 1. We define a function on the coherent functors ¥ € D(R),

which we again denote by %, as follows. If ¥ has resolution
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0 — (2,-) —> (¥Y,-) — X,-) — F — 0
for a right exact sequence X—Y—2—0, then we set
x(F) = x(X) - x(Y) + x(2).

This is a non-negative integer since y is a character, and it is
well-defined by the long form of Schanuel’s Lemma. Note that
2((X,-)) = x(X), so this function can really be thought of as
extending x. Standard arguments with projective resolutions show
that if 0—F—F—H~—0 is an exact sequence of coherent

functors then (%) = x(F) + x(¥).

Step 2. We extend the function of the previous paragraph to f.g.
functors ¥ € D(R) by setting

x(F) = min { x(¥) | ¥ coherent, H—»% }.

This agrees with the first definition in case ¥ is coherent

because of the additivity of x in that case.

If ¥ is a f.g. subfunctor of ¥ then x(%) = x(¥). Namely, there is
a map 0: H—»F with H coherent and x(H) = x(¥). Since ¥ is f.g.
one can find a f.g. subfunctor X of 9—1(9) mapping onto ¥. Now X
is a f.g. subfunctor of H, so is coherent. Thus x(¥) = x(X) =
x(H) = x(F).

Step 3. We extend the function ¥ to all functors ¥ € D(R), with g%

now taking values in Nu{x}. Namely, we set
2x(F) =max { x(§) | § f.g., § € F }.

This agrees with the definition for f.g. functors by the
observation above. We show that if 0——F—25§ B)R——%O is exact,
then

x(8) = x(F) + x(3H) (+)
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with the usual conventions if any term is o. Our proof involves a
sequence of special cases. We have already observed "Case Q",

that (¥) holds when ¥, § and ¥ are coherent.

Case 1. Suppose that all f.g. subfunctors of ¥ and H are

coherent. If £ is a f.g. subfunctor of § then the sequence
o— a_l(f) — £ — B(¥) —0

is exact. Since £ and B({) are finitely generated, they are
coherent by the assumption, and hence so is a_l(f), and so by

Case 0 we have
2(2) = 2o 1(8)) + x(B(2)). ()

Now a_l(f), £ and B(¥) are subfunctors of ¥, § and H

respectively, so
2 @) = 1(F), 28 =18, x(BL) = x(3).
Loy, ¢

and B(£) contain any given f.g. subfunctors of %, § and X. Now

Moreover, by taking £ large enough we can ensure that o

the equality (+) follows on taking the supremum of (%) over all
£.

Case 2. Suppose that ¥ is coherent. Since ¥ is f.g. so one can
find a surjection £—»# with £ coherent and x(£) = x(#). Form the
pul 1back

xX¢e— O
=_¢— 0O

a s F > é > E > 0
0 > F > g > % > O
0 0

Note that & embeds in $®f which is coherent, so that f.g.
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subfunctors of & are coherent. Thus x(&) = x(¥) + x(£) and

x (&) = x(§) + x(X), and so x(§) = x(F) + x(H) - x(X). Now if

x(X) # 0 then X has a f.g. (and hence coherent) subfunctor ¥ with
x($) = 0. But then ¥£/F—»¥, so that

x(H) = x(£/%) = (&) - x(F) < x(£),

a contradiction.

Case 3. Suppose that all f.g. subfunctors of §¥ are coherent. The

proof is the same as Case 1, using Case 2 to prove (%}).

Case 4. Suppose that ¥ is finitely generated. We can find a
surjection £—»% with £ coherent. This gives a commutative exact

diagram

(@]
Vv
O— Yé6— Mé— Re—— 0O
Vv
O¢— BPé— é— RO
N
x
N
o

o
v

W

so that x(¥) = x(8) + x(H) and x(¥) x(X) + x(§) since £ is

coherent, and x(&) = y(X) + (%) since € is a subfunctor of ¥, so
that f.g. subfunctors of & are coherent. Thus (%) = x(F) + x(#),

as required.

General case. The proof is the same as in Case 1, now using Case

4 to prove (¥).

Step 4. If M is a module with the property that
Hom(#,—®M) = O for all functors ¥ with x(¥) =0 (=*)

then M has endolength = x(R).
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Proof. If not, then by (4.1) we can find a strictly increasing

chain

Fg (M) < Fg’. (M) < ... < Fg (M) < Fg (M)

0 1 d d+1
of subgroups of finite definition, where d = x(R) and the ?i are
f.g. subfunctors of (R,-). Moreover, we may assume that

?d*'l Sg‘ds 591 590,

if necessary by replacing 91 by Zj>i 9j. Consider the coherent

functors
(R,—)/9d+1——»(R,—)/?d——»...——»(R,—)/gl——»(R,—)/FO.

Each of these functors is a quotient of (R,-) so has x bounded by
x(R), and they have y decreasing, so at some stage there are two

functors with the same y, say (R,—)/?i+ —>» (R,—)/?i. Since the

1
kernel X of this map has x(X) = 0, we have an exact sequence

0——+Hom((R,—)/§.,—@M)——»Hom((R,—J/?i+1,—@M)——»Hom(K,—@M)
) 0

F||1 |

g.(M) Fg. (M
i i+l

which contradicts the assumption that the chain is strictly

increasing.

Step 5. It follows from the considerations above and Lemma (4.5)
that there are at most y¥(R) non-isomorphic indecomposable modules

with the property (*). Let them be M MP, and denote by a;

TR
the smallest value of x(¥) with ¥ a non-zero subfunctor of —®Mi.
Since -eM, has no subfunctors with ¥ = 0 it follows that a, #0.
We claim that for all § with ¥(¥) < » one has

r
x(§) =¥ a, length (Hom(§, —eM,)). (#)
i=1

End(M, )
i

On specializing to the case when § = (X,-) one deduces that
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2(X) =
i

LN wo Be!
[\
[
2
=
e

which proves the theorem. We first prove (#) in two special

cases. -

Case 1. Suppose that every non-zero subfunctor ¥ of ¥ has

x(®) = x(§). Clearly we may assume that x(¥) # 0. The injective
envelope —®M of ¥ has the property (*) since if ¥ is a functor
with x(#) = 0 and 6: ¥ — -eM is a map, then ¥ n Im(@) is a
subfunctor of ¥ with ¥ = 0, so is zero, and hence 6 = 0 since §
is essential in —eM. Thus M has finite endolength and is a direct
sum of copies of the Mi' In particular there is a non-zero map
from § to some —®Mi. Now any non-zero map § —» —®Mj must be
mono, so that —®Mj is the injective envelope of §. Thus
Hom(?,—@Mj) =0 for jJ # i, and the injective property for —®Mi
shows that Hom(§,—®M1) is simple as an EndR(Mi)—module, proving

(#), since clearly a, = x(%).

Case 2. Suppose that every subfunctor H of § has x(¥) € {0,x(%)}.
For any functor ¥, the sum T¥ of the subfunctors £ € ¥ with

x(£) = 0 is the unique largest subfunctor of ¥ with x = 0. Thus
G/TG satisfies the condition of Case 1, and then (#) follows
since x(%) = x(9/T%) and Hom(?,—@Mi) = Hom(?/T?,—@Mi).

General case. We can filter ¥ by subfunctors
O=§’0<§1<...<§’ =g

so that whenever §i = ¥ = §i+1 then x(¥) € {x(?i),x(§i+1)}. Now

§i+1/gi satisfies the condition of case 2, and (#) follows since

both sides of (#) are additive on short exact sequences.

5.3 Let us say that a non-zero character y is irreducible if it

cannot be written as a sum y = xl + xz with xl and 12 non—-zero

characters. The previous two theorems may now be reformulated as
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follows.

CoroLLARY. (1) The assignment M +— X\ induces a bijection
between the isomorphism classes of indecomposable modules of
finite endolength and the irreducible characters.

(2) The irreducible characters are independent over Z.

(3) Every character is a sum of irreducible characters.

5.4 ReMark. The Sylvester module rank functions, upon which our
characters are based, were used by Schofield [Sc] to classify
suitable equivalence classes of ring homomorphisms from R to a
simple artinian ring. Quite why these homomorphisms are related
to finite endolength modules is not clear to us, except in the

case of a ring epi, in which case Example (4.7)(4) applies.
6 DUALITY

In this section we use characters to define a 1-1 correspondence
between the indecomposable left and right R-modules of finite -
endolength. This seems to be a special case of a duality studied
by Herzog [H]. When he introduced Sylvester module rank functions
in [Sc], Schofield observed that these were equivalent to
Sylvester map rank functions, and that the latter were left-right
symmetric for the ring R. In the context of characters this takes
the following form. If x is a character for mod-R we define a
character Dy on f.p. left R-modules, so formally a character for

mod—RoP, as follows. If X is a f.p. left R-module, let
P-%Q-—5X-—0 (+)
be a projective presentation of X. We define
* * *
(Dx)(X) = x(Q ) - x(P ) + x(Coker(a ))

»*
where (=) = HomR(—,R) is the duality between f.g. projective
*
left and right R-modules, so that Coker(«a ) is the transpose of X
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with respect to the resolution (+). One can check that Dy is
well-defined, and when this is done, that DDy = x, so that D
defines a duality between the characters on mod-R and on mod—RoP.

Note also that ¥ and Dy have the same degree.

6.1 If yx = xM then there is a much simpler expression for Dx.
Combined with the fact that every character is a sum of
characters of this form, this gives an indirect proof that Dy is
well-defined.

LEMMA. DxM(X)=1ength (HomR(X,M)) for f.p. left R-modules X.

EndR(M)

Proof. If (+) is a projective presentation, then the diagram

A ¥
Qe M — Pe

¥
R RM—-—)Coker‘(oc )®RM——90

0——9HomR(X,M)——aHomR(Q,M)——aHomR(P,M)

commutes and has exact rows. Now count lengths.

6.2 The duality D clearly induces a 1-1 correspondence between
irreducible characters for mod-R and mod—ROp, and hence between
the isomorphism classes of indecomposable left and right
R-modules of finite endolength, say M «— DM with XpM = DxM. Note
in particular that M and DM have the same endolength. The

proposition below shows how to construct DM.

6.3 ProposiTION. If M is an indecomposable R-module of finite
endolength, E = EndR(M), and T is the injective envelope of the
unique simple left E-module, then HomE(M,I) is a direct sum of

copies of DM.

Proof. Let S = socE(I) and F = EndE(I) so that N = HomE(M,I) is
an F-R-bimodule. Since I is the injective envelope of S, the
F-module HomE(S,I) is simple, and so lengthF(HomE(Z,I)) =
lengthE(Z) for any E-module Z of finite length. In particular N
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has finite length over F. Now there is an isomorphism
HomE(HomR(—,M),I) = HomE(M,I)®R— on f.p. left R-modules since

both functors are right exact and they agree on R, and so

lengthE(HomR(X,M)) lengthF(HomE(HomR(X,M),I))

lengthF[N®RX)

and hence lengthF(N®RX) = DxM(X) (X). Now N is a direct sum

= *pM
of copies of DM by the lemma below.

B.4 1LemMa. If N is an R-E-bimodule of finite length over E and
xl,...,xn are the characters of the isomorphism classes of
indecomposable summands of N as an R-module, then there are

positive integers a 2 with

1"

length (Xe N) = a x,(X) + ... +ax (X)

for all f.p. modules X.

Proof. Let xi be the character of an indecomposable module Mi’ e}
by assumption we can write N = ”121 l_lI1 M, for non-empty index

sets Ii' Since

_ _n
EndR(N]/rad EndR(N] = ﬂ1=1EndR(“11Mi)/Pad EndR(uIiMi)

the simple EndR(N)—modules which occur in a composition series
for Xe N have the form S, = l.lI1 T, for some i, where T, is the

. . . TR
unique simple End (M, )-module. Since Xe N = Ui=1 LIIi XeM,, the

number of times that S.1 occurs in the composition series is

length (X®Mi) = xi(X].

EndR(Mi)
Letting ai = lengthE(Si) > 0, the equality follows.
6.5 ReMark. If M is a f.p. module of finite endolength, then

HomE(M,I) is indecomposable by (2.1), so is isomorphic to DM. It
then follows from (2.3) that DM is the source of a left almost
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split map.
7 GENERIC MODULES

Recall that a ring R is called a noetherian (respectively artin)
algebra if its centre Z(R) is a noetherian (respectively
artinian) ring, and R is a f.g. Z(R)-module. The reason for
considering noetherian algebras is that they have a good supply
of modules of finite endolength, the finite length modules.
Indeed, a module has finite length if and only if it has finite
length as a Z(R)-module, for example by Lenagan’s Theorem (4.6).
The next proposition shows that amongst the finite endolength

modules, there is an essentially unique finiteness condition.

7.1 ProrosiTiON. For an indecomposable finite endolength module
M over a noetherian algebra, the following are equivalent

(1) M has finite length.

(2) M is finitely presented.

(3) M occurs as the source for a left almost split map.
Moreover these conditions are equivalent to the same conditions

for DM.

Proof. (1)e(2) follows from Lenagan’s Theorem (4.6). If (3)
holds, then M = HomE(X,I) by (2.3). Now X is f.g. as a
Z(R)-module so E is a noetherian Z(R)-algebra, and therefore I is
artinian as a Z(R)-module. Thus M is artinian, and hence of
finite length by (4.6). If M is f.p. then the same argument shows
that DM has finite length, and then M is the source of a left
almost split map by (6.5).

7.2 In view of the above proposition, it is natural to pick out
the indecomposable modules of finite endolength which have
infinite length. We call these generic modules. We then say that
a noetherian algebra R is generically trivial if it has no

generic modules, is generically tame if for all d there are only
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finitely many isomorphism classes of generic modules of
endolength d, and is generically wild if there is a generic
module whose endomorphism ring is not a PI ring. Note that since
the endomorphism ring EndR(M) of a generic module has nilpotent
radical, it is a PI ring if and only if the division ring
EndR(M)/rad EndR(M) is finite dimensional over its centre. The
definitions above are in terms of generic left R-modules. By
(6.2) the notions of generic triviality and generic tameness are
left-right symmetric. We do not know if the same is true for

generic wildness.

7.3 We first consider the question of generic triviality. Recall
that an artin algebra R is said to have strongly unbounded
representation type if, for infinitely many d, there are
infinitely many non-isomorphic indecomposable R-modules of length
d. The important part is the existence of one such d, for then
the existence of infinitely many d has been proved by Smale [Sm].
This condition is, however, impossible if R is a finite ring. A
more natural condition is to use finite length modules of bounded

endolength. The following result is proved in §9.

TueoreM. If R is an artin algebra, then R has a generic module if
and only if there are infinitely many non-isomorphic
indecomposable finite length R-modules of some fixed endolength.
If in addition the simple R-modules have infinite underlying
sets, these statements are equivalent to R having strongly

unbounded representation type.

The example of a discrete valuation ring shows that the
equivalence fails for noetherian algebras without some extra
assumptions, while an example of Ringel, see [CB3, 1.6], shows

that it fails in general for artinian rings.

The Second Brauer-Thrall Conjecture, which is now proved, asserts

that if a finite dimensional algebra over an algebraically closed
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field is of infinite representation type, then it has strongly

unbounded representation type. Thus one has

CoroLLARY. A finite dimensional algebra over an algebraically
closed. field has finite representation type if and only if it is

generically trivial.

The natural extension of the Second Brauer-Thrall Conjecture is
to ask whether this corollary remains true for noetherian
algebras. Of course this reduces immediately to artin algebras,
since in a generically trivial noetherian algebra every prime

ideal must be maximal.

7.4 1If k is an algebraically closed field and R and S are f.g.
k-algebras, let us say that a functor F:S-Mod——R-Mod is a
representation embedding if
. (1) F sends indecomposable modules to indecomposable modules,
(2) F sends non-isomorphic modules to non-isomorphic modules,

(3) F

{114

M@S— where M is an R-S-bimodule which is f.g.
projective as an S-module (and on which k acts centrally).
Equivalently, F is an exact k-linear functor which preserves

products and direct sums.

Clearly a representation embedding sends f.d. modules to f.d.
modules, and sends modules of finite endolength to modules of
finite endolength. A f.g. k-algebra R is said to be of wild
representation type if there is representation embedding

k<x, y>-Mod——R-Mod, where k<x,y> is the free associative algebra
on two generators. (This is the variant of Drozd’s original
definition of wild representation type used in [CB3].) In this
case there is a representation embedding S-Mod——>R-Mod for any

f.g. k-algebra S, namely if S = k<x ..,xn>/I then the

1"
composition

S-Mod — k<x .,xn>—Mod —Ee k<x, y>-Mod —Ee R-Mod,

10
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is a representation embedding. Here G is the fully faithful
representation embedding used by Brenner [B]. Thus, in some

sense, R is at least as bad as S, for any S.

Now suppose that R is a f.d. k-algebra, with k still an
algebraically closed field. By a one-parameter family of
R-modules of dimension d, we mean the set of modules

{Me, | 1k[T1/(T-2) [xek}, where M is an R-k[Tl-bimodule, free of
rank d over k[T]. We say that R is of tame representation type
provided that for all d > O there are a finite number of such
one-parameter families, such that every indecomposable R-module
of dimension d is isomorphic to a module in one of these

families. The following theorem 1s fundamental.

TueoreM oF Drozp. A f.d. algebra R is either tame or wild, and

not both.

This is proved in [D], see also [CB1]. With the precise
definitions used here, it is discussed in [CB3]. In [CB3] we have
used the method of Drozd’s Theorem to study generic modules. The

basic results are

THeoreM. If R is a tame f.d. algebra, then R is generically tame.
In this case, if M is a generic R-module then EndR(M)/rad EndR(M)
is a rational function field in one variable over k, the ring
EndR(M) is split over its radical, and any two splittings are

con jugate.

There are additional results which show that in this case the
generic modules act in some way as "function fields" or "generic
points" for the one-parameter families of f.d. modules. It is
this fact which explains the terminology of "generic module", and
indeed our original interest in modules of finite endolength. We
shall not explain these results here, but refer the reader to

[CB3]. We point out, however, the following characterization of
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tame and wild representation type.

CoroLLARY. A f.d. algebra R is either generically tame or

generically wild, and not both.

Proof. In view of the theorem above, one only needs to prove that
if R is wild, then it is generically wild and not generically
tame. Now if R is wild then there is a representation embedding
F: k<x,y>-Mod—R-Mod. To see that R is not generically tame,
observe that the images of the modules k(x)[yl/(y-A) with A€k are
non-isomorphic generic R-modules of bounded endolength. For the
generically wildness of R, observe that if D is the universal
skew field of fractions of k<x,y> then F(D) is a generic

R-module, D embeds in EndR(F(D)), but D is not a PI ring.

We conjecture that this corollary remains true for noetherian

algebras.

7.5 We finish this section with another question. Let us say
that an artin algebra is generically directed if generic modules
can never be involved in cycles MO——aMl——a...——aMn——aMo of
non-zero non-isomorphisms between finite endolength
indecomposables. In particular the endomorphism ring of any

generic module is a division ring.

If R is a finite dimensional algebra over an algebraically closed
field, R is generically directed, and R has a faithful generic
module, is it true that R is either tame concealed or tubular in
the sense of [R4]? Note that such an algebra must be tame, since
if R is wild then one can easily construct generic modules whose

endomorphism ring is not a division ring.
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8 HEREDITARY ALGEBRAS

Let k be a field. In this section, by "algebra" we mean a
k-algebra (not necessarily f.d.), and by "bimodule" we mean a
bimodule on which k acts centrally. We prove a result which will
be needed in the next section, but along the way we determine the

behaviour of generic modules for f.d. hereditary algebras.

8.1 The following lemma makes an assertion of Ringel more
precise, allowing the argument used in [R1, §5.4] to be extended
from the category of finite dimensional modules, to the category
of all modules. Let R be an algebra and let X and Y be left
R-modules which are finite dimensional and finitely presented.
Suppose that HomR(Y,X) = 0, HomR(X,Y) = 0, and that E = EndR(X)op
and F = EndR(Y)0p are semisimple algebras. Since X is f.p. and Y
is f.d., the E-F-bimodule Ext;(X,Y) is f.d.. Let M be the
F-E-bimodule Hom(Ext |

R FM
triangular matrix algebra [ ].

(X,Y),F) and let S be the generalized upper

O E

LEMMA. There is an R-S-bimodule T, f.g. projective over S,
inducing a fully faithful functor T@S— : S-Mod —— R-Mod.

Proof. (1) Let P, P’ be E-modules and Q, Q' be F-modules. Since X
and Y are f.g. we have HomR(X®EP,X®EP’) = HomE(P,P’),
M%W%Q%§) HMHQQ),M%W%RMﬂ)=Omﬂ
HomR(Y®FQ,X®EP )

of R-modules making up the rows of the diagram

R

0. Thus, if we are given short exact sequences

0 — Y®FQ — L — X@EP —> 0

of o] b

0 — Y®FQ’——9 L' —> X@EP’——e 0

then for any map 0 € HomR(L,L’) there are maps ¢, Y making the
diagram commute. Moreover 8 is uniquely determined by ¢, ¥ since
if 8’ also makes the diagram commute then 6-8’ induces a map

X@EP——9Y®FQ .
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(2) The fact that X is finitely presented implies that
Ext.(Xe_P,Ys Q) = Hom_(P,Ext}(X,Y)e_Q)
R E F E R F
and in particular that
Extg (X, Yo M) & Ext!(X,Y)o M = Hon_(M,M). (+)

Let

C: 0 — YoM P,y S x o

be an extension corresponding to the identity endomorphism of M.
Now the left and right hand terms of { are naturally
R-E-bimodules, and since (+) is an isomorphism of E-E-bimodules
it follows that e = e for all ecE. Thus by (1), for each e€E

there is a unique endomorphism 6 of N making the diagram

0 —o Y®FM > N > X > O
el Gl le
0 — Ye_M > N y X > O

F

commute. This gives N the structure of an R-E-bimodule in such a

way that p and q are bimodule maps.

(3) Set T = YeN. We turn it into R-S-bimodule by defining

(y,n) [f m] = (yf,p(yem)+ne) for (y,n)eT and (f m]eS.
0 e 0 e
This is projective as an S-module since p is mono, and of course

it is finitely generated over S since it is f.d..

(4) A left S-module U is determined by a triple (P,Q,g) where P
is an E-module, Q is an F-module, and g is an F-module map
M@EP——eQ. Namely set P = e22U and Q = e11U. Now U has a
projective presentation of the form

0 — (0,Me

1
EP,O) ——9(P,M®EP®Q,LJ) —> U — 0,
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and tensoring with T gives an exact sequence

0 — Y@FM®EP — N@EP ® Y®FQ — T®SU — 0.

Thus T®SU fits in the pushout diagram
0 — Y@FT®EP — NTEP —> X@EP —> 0
0 — Y@FQ — T@SU — X@EP —> 0

Clearly the lower exact sequence corresponds to the element g

under the isomorphism HomF(M®EP,Q) & Exté(X@ P,Y@FQ).

E
Now let U’ = (P’,Q’,g’) be a second S-module. The S-module maps
a: U—U’ correspond to pairs (B,y) where BeHomE(P,P’),

7eHomF(Q,Q’) and such that g’<(1eB) = yog. Such a map a gives a

commutative diagram

0 — Y®FQ — T@SU —_— X®EP — 0

1®71 lea 1eB

0 — Y@FQ -— T@SU — X@EP — 0

and if lex = 0, then 188 = ley = 0, and hence B ¥ = 0, so that

T®S— is faithful. Conversely, if 0 € HomR(T®SU,T®SU’) then by (1)
this map induces a commutative diagram with maps B, ¥. Now (B,7)
is a homomorphism a:U—>U’ and lex = 6, so that T@S— is full.

8.2 let us say that an algebra R is strictly wild if there are
f.d. left R-modules X and Y, which are finitely presented, whose
endomorphism rings are division algebras, with HomR(X,Y) = 0,

HomR(Y,X) = 0, and the product

p=d Extp(X,Y) . dim Ext (X, Y)

im -
EndR(Y) EndR(X)

equal to at least 5. The next result is due to Ringel [R1].

LEmMA. A finitely generated algebra R is strictly wild if and

only if there is a finite extension field K of k and an
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R-K<x,y>-bimodule T which is f.g. projective over K<x,y> and such
that the tensor product functor Te K<x, y>-Mod —> R-Mod

is fully faithful.

K<x,y>

Proof. Suppose first that there exists such a bimodule. As in
(7.4), for any K-algebra S there is a fully faithful functor
M@S—:S—Mod4—+R—Mod with M an R-S-bimodule, f.g. projective over
S. Taking S to be strictly wild, and letting X and Y be the
images of a pair of S-modules which make S strictly wild, one
obtains a pair of f.d. R-modules whose Hom and Ext1 spaces
satisfy the requirements above. Because R is f.g. and X, Y are

finite dimensional, they are finitely presented. Thus R is

strictly wild.

To prove that a strictly wild algebra R has a fully faithful

tensor product functor K<x,y>-Mod — R-Mod, it suffices to deal
FM
0 E
and (dimFM)(dim ME) = 5. Namely, in general, if R is strictly

with algebras of the form R = with E, F division algebras
wild due to the existence of modules X, Y, then the algebra S
constructed in (8.1) has this special form, so by assumption
there is a suitable functor K<x,y>-Mod — S-Mod. The composition
of this functor with the functor S-Mod ——> R-Mod given by Lemma
(8.1) is a suitable tensor product functor K<x,y>-Mod — S-Mod.

FM

The proof that an algebra of the form R = [ E] has a suitable

0
functor K<x,y>-Mod —— R-Mod, follows part of the argument used

in the proof of [R1, Theorem 2], working by induction on
F} where K is the centre of the bimodule M

K
(which is also the centre of R). If d=1, then E=F=K and M=Kr with

d = max{dimKE,dim

r=3, and it is easy to find a suitable R-K<x, y>-bimodule, free of
rank two over K<x,y>. Suppose, therefore that d>1. As in [R1,
§5.3] one can find finite dimensional R-modules Al’ A2 with each
EndR(Ai) a ?iv1s1on ring, dlmKEndR(Al) < d, HomR(Ai’Aj) = 0 for
i#j and EXtR(Ai’Aj) # 0 for all i,j. Now let U be the full

subcategory of R-Mod on the modules which have a finite
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filtration in which the quotients are isomorphic to A, or A2. By

[R1, &1.2 Theorem] this is an exact abelian subcategoiy of R-Mod,
and since R is hereditary, the category U is hereditary. It
follows from this, and the fact that Ext;(Ai,AJ) # 0 for all i,Jj,
that one can find objects X, Y of U which are uniserial as

objects of ¥, and with composition series in U of the form

A2
A2 A2
X i A1 Y A1
A1
Now EndR(X) and E?dR(Y) embed in EndR(Ali’ HomR(X,Y) = HomR(Y,X)
= 0, dlmEnd(Y)EXtR(X’Y) = 3, and dim EXtR(X’Y)End(X) z 2, see

[R1, §5.4]. Let S be the algebra constructed from X and Y in
(8.1). By induction there is a functor K<x,y>~-Mod — S-Mod, and
its composition with the functor S-Mod —— R-Mod gives the

desired tensor product functor from K<x,y>-Mod to R-Mod.

8.3 If R is a connected f.d. hereditary algebra, there is a
bilinear form defined on the Grothendieck group KO(R) of f.d.

left modules modulo short exact sequences given by

o L 1
<M, N> = dlmkHomR(X,Y) dim ExtR(X,Y),

k

and this induces a quadratic form qR on KOIR)®ZD. The algebra R
is of finite representation type if dg is positive definite, it
is said to be tame hereditary if dg is positive semidefinite but
not positive definite, and wild hereditary if qR is indefinite.
Note that these notions are purely combinatorial, but in case the
base field k is algebraically closed they coincide with the
notions discussed in §7, except for the fact that a tame

hereditary algebra is necessarily of infinite representation

type.

8.4 THeoreM. A f.d. wild hereditary algebra is strictly wild.

Proof. If R has two simple modules this is clear. Thus suppose
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that R has n > 2 simple modules. We follows the argument of [R5,
&1 Theorem] and use the terminology of that paper. Let A(R) be
the species of R. If R°P is strictly wild, then clearly so is R.
If S is obtained from R by reflection at a sink in A(R) and R is
strictly wild, then so is S, for by Lemma (8.2) there is a very
wide choice of modules X and Y giving the strict wildness, so we
may choose X and Y to be regular, and then they correspond to
S-modules. Now the argument in [R5] shows that, up to duality and
reflections, one of the three cases below occurs. We verify in

each one that R is strictly wild.

Case 1. R is a one-point extension of a connected hereditary
algebra S of infinite representation type, so R = [g g] where D
is a division algebra and M is a non-zero S-D-bimodule which is
projective as a S-module. Now if Y is an S-module regarded as an
R~-module, X is the simple R-module corresponding to D, and P is
the projective cover of X, then X has projective resolution
0—M—P—X—0, so Ext;(X,Y) = Hom (M,Y). This can be made
arbitrarily large with Y an indecomposable preprojective S-module

by [R5, §1 Lemma 1]. It follows that R is strictly wild.

Case 2. R has species

2 «—— 3 ¢« &—— I

/ AN

1 r+s

AN

with rz2, sz1, and not all arrows trivially valued. Let Y = P(1)

r+l ¢«—r+2 ¢«— ... —— r+s-1

and set X = P(r+s)/soc P(r+s). Note that the socle of P(r+s) is

the direct sum of a’+b’ copies of P(1) where

a’ = d12 d23 e dr—l,r dr,r+s’ and
' = ’ ’ ’
b dl,P+1 dr'+1,r'+2 e dr+s—1,r'+s'

Using the projective resolution 0—s(a’+b’)P(1)—P(r+s)—X—0

one sees that dim Ext;(X,Y) = a’+b’. Moreover EndR(X) =

End(Y)
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EndR(P(r+s)) so that dim EndR(Y)/dim EndR(X) = a/a’ = b/b’, where

Kk k
a and b are defined in the same way as a’ and b’ but using the
dij instead of the d;j. Thus the product p of (8.2) is equal to
(a’+b’)(a+b). Now a,a’,b,b’ =z 1, and by assumption not all are

equal to 1, so we have p = 6.

Case 3. R has species

(a,b)

1 2 ()

3.

with abcd =z 6. Let Y = P(1) and X = P(3)/soc P(3). Using the
projective resolution 0——bdP(1)——P(3)——X—0 one finds that
the product p of (8.2) is equal to abcd, so R is strictly wild.

CoroLLARY. If R is a f.d. hereditary algebra, then R is
generically trivial if and only if it has finite representation
type. Moreover R is either generically tame or generically wild

and not both.

Proof. We may assume that R is connected. If R is wild hereditary
then it is generically wild, but not generically tame as in
Corollary (7.4). If R is tame hereditary then Ringel [R3, §6] has
proved (with an unnecessary extra hypothesis) that R has a unique
generic module, and its endomorphism ring is a PI ring by [BGL,

6.121].

REMARK. In the tame hereditary case the generic module has a
rather interesting endomorphism ring E. For example, if R is the
generalized triangular matrix ring 2 ﬁ] with H the quaternion
division ring, then E is the field R(X,Y|X2+Y2+1=0). More
generally, if R is tame hereditary and R/rad R is separable over
Z(R) then the endomorphism ring of the generic module is a
division ring whose centre is a function field in one variable

over Z2(R) of genus zero. See [CB2] for more discussion.
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8.5 We also need to consider a class of non-noetherian rings
which generalizes the free associative algebras. In his study of
free ideal rings, Cohn has considered filtered rings

c < <
RO < R1 < R2 € ... €R,

defined a ’'weak algorithm’ for such rings, and given a
construction [C, §2.5] of all filtered rings which have a weak

algorithm. Supposing that R is generated by R1 this takes the

following form. Let D be a division ring, let

0 —pD-Sx-Isvy_ Lo (%)

be an exact sequence of D-D-bimodules, and set m = e(1}). Then R
is the ring X®2/(z-1), where X*®> =D o X @ Xo,X © ... is the
tensor ring. The terms in the filtration are the images of
X@D...®DX, so that R0 = D and R1 = X. In case D is a f.d.
division algebra and X and Y are f.d. bimodules we call X®D/(n—1]

a skew tensor algebra.

LeMMAa. If R is a skew tensor algebra given by an exact sequence

() with dimDY z 2, then R is strictly wild.

Proof. We begin by showing that there are at least two

non-isomorphic R-modules S with dim.S = 1 (so that S is simple).

D
An R-module is determined by a left D-vector space V and a
D-module map w:X®DV——9V satisfying y(nev) = v. The modules we
being the module

Now the

want, correspond to the case V = D, say with Sw
determined by a map ¥ € HomD[X,D) with y(n) = 1.
algebraic group D" = D\{0} acts on the variety
W= {weHomD(X,D)Iw(n)=1} of such ¢ via (d.y)(x) = w(xd)d—l, and
the orbits correspond to the isomorphism classes of Sw. Since
dim(W) = dim Y = 2dim D = 2dim(D*), a dimension argument, or if k
is finite a counting argument, shows that there must be at least

two orbits, as required.
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Next we construct an exact sequence of R-R-bimodules of the form

m: 0 —> Re Yo R —h—>R®DR 25, R —s 0.

For m one takes the multiplication map. Let a be the map

®D ®D
X ®D X ®D X —> R ®D R,

UBX®V > UBX ® V — U ® XOV

where the bar denotes reduction by the ideal (m-1). It is easily
seen that « induces a map h as above. It remains to show that 7

is exact. Now Cohn has shown that if u,x .,xn is a left

D-basis for X, then the (images in R of ihe) monomials in the X;
form a left D-basis for R. Thus R®DR is a free left R-module with
basis the elements 1eq (g a monomial), and so the elements qeq’
(q,q’ monomials) form a left D-basis for R®DR. It follows that
Ker(m) has as left D-basis the elements of the form qxi®q’ -
q@xiq’ with q and q’ monomials and 1=i=n. These elements are the
images under h of the elements q@f(xi)®q’, and a similar argument

shows that these form a left D-basis for Re®_Y®

D DR, which proves

that n is exact.

Tensoring 1 with any R-module gives a projective presentation of
that module, so R is hereditary, which was already clear.
Moreover it follows that if S, and S. are non-isomorphic modules

1 2

with dimDSi = 1 then the Si are finitely presented and
Ext;(si,sj) # 0 for any choice of i,j. Now the argument of [R1,

8§5.4] together with (8.2) shows that R is strictly wild.

8.6 LevMa. Let R be a f.d. hereditary algebra or a skew tensor
algebra. If R has infinite representation type, then

(1) If k is infinite then R has infinitely many non-isomorphic
indecomposable modules of some fixed dimension.

(2) R has infinitely many non-isomorphic f.d. indecomposable
modules of some fixed endolength.

(3) There is an R-k(T)-bimodule, indecomposable over R, and
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finite dimensional over k(T).

Proof. If R is strictly wild, then this follows from Lemma (8.2).
If R is a skew tensor algebra corresponding to the exact sequence
() of (8.5) then we may assume that dimDY = 1 so that R is
actually a skew polynomial ring D[T;e,38] with € an automorphism
of D’k and & an (g,1)~-derivation of D/k. Now R is an hereditary
noetherian domain and a PI ring since it is f.g. as a module over
the (non-central) subring k[{T]. Therefore the centre Z of R is a
Dedekind domain and R is f.g. as a Z-module [MR, 13.9.16]. For
(1) one takes the simple modules R/(T-A) with Aek. For (2) one
takes the simple modules, since by the Nullstellensatz [MR,
13.10.3] there are infinitely many and they are f.d.. Let Q be
the simple artinian quotient ring of R. By Posner’s Theorem Q is
f.d. over its centre which is the quotient field K of 2. Now 2 is
f.g. over k by the Artin-Tate lemma [MR, 13.9.10], so K is a
finitely generated extension field of k of transcendence degree
1. Therefore K and Q are finite dimensional over k(T) for some T

€ K. Now for the bimodule in (3) one can take the simple

Q-module.

If R is a f.d. hereditary algebra then we may assume that it is
tame hereditary. Now (1) is contained in [DR, Theorem E], and (3)
in [R2, Theorem 5.7] and [BGL, Corollary 6.12]. One knows, see
for example [CB2], that there is a ring-theoretic epimorphism
R—S where S is a classical hereditary order, finitely generated
as a k-algebra. Now S has infinitely many simple modules, and
each one restricts to a f.d. indecomposable R-module of

endolength bounded by the PI degree of S, proving (2).

9 LIFT CATEGORIES

In this section we prove Theorem (7.3). We use the method of
matrix reductions, which enables an inductive proof, reducing to

the hereditary case which we have solved in the previous section.
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The proof of Drozd’s Tame and Wild Theorem also uses matrix
reductions, in the form of bocses, but these cannot be used with
general artin algebras. Instead, we have introduced in [CB4] the
notion of a "lift category" and used it to study artinian rings

of finite representation type.

A lift pair (R,&) consists of a ring R and an exact sequence
£:0—5>M-—5E R—0

of R-R-bimodules, and the corresponding lift category €(R) has as
objects the pairs (P,e) where P is a projective left R-module and

e is a section for map mel:Ee_P—P, and as morphisms from (P,e)

R
to (P’,e’) the R-module maps 68:P——P’ which intertwine e and e’.

p <, EegP

o |00

pr—% EepP’

Let C be a commutative artinian local ring with maximal ideal m
and residue field k. We now consider C-algebras, and C is
supposed to act centrally on all bimodules. We say that a 1lift
pair (R,€) is C-algebraic provided that R is an artin C-algebra

and E is f.g. as a C-module.

Let (R,€) be a C-algebraic lift pair and let J = rad R. Let us
say that an object X = (P,e) in £(R) is sincere if P/JP is a
sincere R-module, so involves all simple R-modules. We define the
length of X (over C) to be length.(P/JP). If Ry = EndE(R)(X)OP,
then P is naturally an R—RX—bimodule, and we define the
endolength, endolen(X), of X to be the length of P/JP as an
Rx—module. One might have defined the last two notions without
reducing modulo JP, but the definitions given provide the useful

numbers, and since R is artinian the finiteness of the length or

endolength is independent of the definition. We say that X is
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generic if it is indecomposable, of finite endolength, but of

infinite length.

A lift pair (R,£) is said to be of finite representation type if
there are only finitely many isomorphism classes of
indecomposable objects in £(R) and they all have finite length.

In addition we consider the following conditions

(C1) €(R) has infinitely many non-isomorphic indecomposable
objects of some fixed length.

(C2) €(R) has infinitely many non-isomorphic finite length
objects of some fixed endolength.

(C3) €(R) has an indecomposable object X = (P,e) with a
C-algebra map C[T]mC[T]——ARX, such that P/JP has finite
length over C[T]

mC[T]"
(C4) €(R) has a generic object.

Note that C[T]mC[T]
k(T) and that (C3) = (C4). Also (C1) = (C2), but (C1) is never

is an artinian local ring with residue field

possible if k is finite. We adopt the convention that when we

talk of (C1)-(C4) below, we exclude (Cl1) in case k is finite.

9.1 Lemma. If (R,£) is a C-algebraic 1ift pair, R is semisimple,
and the first term M of § is a simple bimodule or zero, then
(C1)-(C4) are equivalent to (R,£) being of infinite

representation type.

Proof. Since R is semisimple, mR = 0, so that R is a k-algebra.
By [CB4, 2.1] the category £(R) is equivalent to A-Mod where

A= (E*)gR/(n—l), and this equivalence preserves endolength.
Moreover by [CB4, 2.2] (or at least its proof) this algebra is
either a f.d. hereditary algebra, or the product of a semisimple
artihian ring and a matrix ring over a skew tensor algebra. The
result thus follows from Lemma (8.6). Note that since C[T]

mC[T]
is a local ring with residue field k(T), any k(T)-module is
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naturally a CI[T] -module.

mC[T]
9.2 Let (R,£) be a C-algebraic lift pair with exact sequence
£€:0—>M-—E- R —o0.

Let N & M be a maximal sub-bimodule, and let J = rad R. One can

form lift pairs (R,EN) and (R/J,ENJ) with

EN : 0 —> M E R——0

where M = M/N and E = E/N, and

T

gNJ . 0 —> M/[MN(EJ+JE)] — E/(EJ+JE) NMri o

and there are functors

N P

E(R) —— EN(R) — ENJ(R/J)
defined as follows. If X = (P,e) belongs to £(R), then oN(X) =
(P,e) where e is the composition P—EeE®RP——9E®RP, and if
8: (P,e)—>(P’,e’) is a morphism then GN(B) is the same R-module
map, considered now as a morphism from (P,e) to (P’,e’). If 2 =

(P,f) € EN(R) then pJ(Z) = (R/Je_P,f) where T is the composition

R

R/J@RP —lgfe R/J@RE®RP _P, E/(EJ+JE)®RP

with p the natural projection, and if 6:(P,f)—(P’,f’) is a
morphism then pJ(G) = 1@0. It is shown in [CB4, 3.1 and 4.1] that
o, and pj are both dense and reflect isomorphisms, and that Py is

N
full, so that it is a representation equivalence.

One can apply (9.1) to the lift pair (R/J,ENJ), and in the next

two paragraphs we investigate the consequences for (R,£).

9.3 In this paragraph we treat the case when (R/J,ENJ) is of

infinite representation type. We begin with some lemmas.
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LEMMA a. Let R be an artin C-algebra and S a C-algebra such that
S/mS is a separably generated extension field of k. If N is an

R®CS-modu1e which is projective as an R-module, then it is

projective as an R@CS—module.

Proof. Let J = rad R and let L be the image of J@cS in R@cS.

Since R is artinian, m annihilates R/J, so that

IR

(R@cS)/L (R/J)@CS = (R/J)@k(S/mS),

and by the assumption on S/mS, this is semisimple. Since also L

is nilpotent, it is the radical of R®CS. Now R®CS is a

semiprimary ring, so the module N has a projective cover, a map
a:P—>»N with P projective and Ker(«) superfluous in P, and
moreover a submodule of any R@CS—module M is superfluous if and
only if it is contained in LM. Thus Ker(a) € LP = JP, and since R
is semiprimary it follows that Ker(a) is superfluous as an
R-submodule of P. However « splits as an R-module map, so

Ker(a) = 0, and hence N is a projective R@CS—module.

LEMMA b. Let R be an artin C-algebra and let S be a C-algebra
which is projective over C, and with S/mS a separably generated

extension field of k. If N is an R@CS—module, then its projective

cover as an R@CS—module is a projective cover as an R-module. In

particular this assertion holds for S = C[T]mC[T]'

Proof. As in Lemma a, the ring Re_ S is semiprimary with rad(R@CS)

C

the image of J®.S, and if «:P—»N is a projective cover then

C
Ker(a) is superfluous as an R-submodule of P. Since S is
projective as a C-module, P is a projective R-module, and hence «

is an R-module projective cover. For S = C[T] note that

mC{T]
S/mS = k(T) is separably generated over k, and that S is flat

over C, and hence projective since C is artinian.

LEMMA c¢. Let A be an artin C-algebra. If k is a perfect field
then A has a C-subalgebra S with S + rad A= A, Snrad A=rad S
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and rad S = mS.

Proof. Since S = A satisfies the first two inequalities, one can
choose S to be a C-subalgebra of A, with lengthC(S) minimal,
amongst those subalgebras satisfying the first two equalities.
Since mS is nilpotent it is contained in rad S, and for a
contradiction we may suppose that S/mS is not semisimple. Now
S/mS is a finite dimensional k-algebra, so split over its radical
by the Wedderburn-Malcev Theorem. Taking a splitting T/mS, one
obtains a strictly smaller subalgebra T with T + rad S = S,
Tnrad S=mS and rad T € mS, so that T also satisfies the first

two inequalities. A contradiction.

ProposiTION. Under the hypotheses of (9.2), if (R/J,&NJ) is of
infinite representation type, then (C1)-(C4) hold for (R,£).

Proof. By (9.1) the conditions (C1)-(C4) hold for (R/J,ENJ). We
deduce them for (R,£). Note first that (C1) holds because any
object in ENJ(R/J) lifts to one in £(R) of the same length, and
(C4) follows from (C3), so we only need to prove (C2) and (C3).
The problem is to 1ift the objects in ENJ(R/J) to objects in &(R)
of the same endolength. The approach for both of these is
similar, but differs because in the case of (C3) we also need a

homomorphism from C[T] to the endomorphism ring of the

mC[T]

lifted object. This is compensated for by the fact that C[T]mC[T]

is projective over C.

(C2) In view of the implication (C1)=(C2) we only need to prove
this when k is finite, and hence a perfect field. Let X = (Q,g)
be an indecomposable object in €NJ(R/J) of finite length and with
endomorphism ring F. Let a:P——=Q be the projective cover of Q as

an R-module and let
A={6 € EndR(P) | 6(Ker(a)) € Ker(a) and 6 € F}

where 6 is the endomorphism of Q induced by © under the
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assumption that 6(Ker(«a)) < Ker(a). The assignment 6+—0 is a
homomorphism A—F and the induced map A/rad A—F/rad F is an
isomorphism since a is a projective cover. Let S be the
subalgebra of A chosen by lLemma c¢. Now P can be regarded as an
R@CS-module and it is projective over R@CS by Lemma a, since S
has the property that S/mS = F/rad F is a finite extension field

of k, hence separable. Now in the diagram

P —* 5 Q
f% g
E@RP —_ E/(EJ+JE)®RQ

with p the projection, the modules all have natural structures as
R®CS—modu1es, and the maps are all R@CS—module maps. Since pea is
epi, there is a map f making the diagram commute. Also, the map
n@l:E@RP——ep has a section eO as an R®CS-modu1e map, and if

e:P——eE@RP is defined by

e=1f + eoo(l ~ (m®l)ef)

then Y = (P,e) is an object in £(R), and it has image X in
ENJ(R/J). Moreover the fact that e is an Re
i i d
that S is contained in En £(R)
S/rad S—sA/rad A—>F/rad F shows that X and Y have the same

CS-module map means

(Y). Now the isomorphism

endolength. Finally (C2) follows by using the infinite family of

objects X of the same endolength.

(C3) Since ENJ[R/J] satisfies (C3) it has an indecomposable
object X = (Q,g), a map C[T] —>End(X), and with Q of finite
length over C[T]
an R®CC[T]mC[T]
as in the verification of (C2) one can lift the
R@CC[T]mC[T]fmodule map P—Q—E/(EJ+JE)eQ to a map f:P——EeP,
and this can then be adjusted to give an object Y = (P,e) in
£€(R). Since e is an R@CC[T]

map C[T]

mC[T]

wC[T]" By Lemma b the projective cover P of Q as

-module is a projective cover as an R-module. Now,

mC[T]—module map, there is a natural

—End (Y). Now P/JP = Q has finite length over

mC[T] £€(R)
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C[T]mC[T]’ and Y has image X in ENJ(R/J) so it is indecomposable.

Thus (C3) holds.

9.4 Continuing with the hypotheses of (9.2) suppose now that the
lift pair (R/J,ENJ) has finite representation type. Let X = (P,e)
be an object in EN(R) of finite length, and which is the direct

sum of exactly n non-isomorphic indecomposable objects. Let

= End (X)Op
Ry £, (R)

and let EX be defined via the pullback of RX-RX—bimodules

EX : 0 —> MX — EX > RX — 0
o| 7|
0 — HomR(P,N®RP) — HomR(P,E®RP) — HomR(P,E/N®RP) — 0

where B is the map sending 1 to e. Thus (RX,EX) is a lift pair.
Let tX:EX(RX)——eg(R) be the functor defined as follows. If
Y = (Q,g) belongs to EX(RX) then TX(Y) = (P@RXQ,h), where h is

the composition

Po. O %8, pg E e q 12%®1, o Hom_ (P, Eo P)e

—
Ry Ry X By Ry
evel . re Pe_ Q,

Rt R

and ev is the evaluation map, and if 6:(Q,g)—(Q’,g’) is a

Q

Rx

morphism then TX(G) = 1e0. It is shown in [(CB4, 4.2] that Ty is

fully faithful, and that it induces an equivalence from EX(RX) to
the full subcategory of £(R) on those objects whose image under
GN is a summand of a direct sum of copies of X. Now the
representation equivalence e, shows that EN(R) has only finitely
many non-isomorphic indecomposable objects, and if X is the

direct sum of all of them, then T, is an equivalence (since there

X
is a direct sum preserving representation equivalence from EN(R)
to the category of modules for an algebra of finite

representation type, so that every object is a direct sum of
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indecomposables).

Lemia. If Y = (Q,g) is an object in EX(RX) then
endolen(Y) = endolen(TX(Y)) < lengthC(X).endolen(Y).

If in addition Y is sincere, then either endolen(Y) is less than
endolen(tX(Y)), or lengthC(MX) < lengthC(M).

Proof. Since T, is fully faithful,

X

endolen(t_,(Y)) = length(P/JPe_ Q.) where
X RX F
F = End (v)°P,

£y (Ry)
If S is a simple right Rx—module, then S is a summand of RX/JX,

where JX = rad RX, so that

length(Se_ Q_.) = length(R,/J, @ Q ) = endolen(Y).

RX F X X RX

Taking a composition series of P/JP as a right RX—module one

obtains

1A

endolen(TX(Y)) length(P/JPR ).endolen(Y)
X

lengthC(X).endolen(Y),

A

which is the second inequality. Now P/JP is a sincere right
Rx—module since P is falthful so sincere as a r1ght Rx-module
but for each r, Jpsatt P is a quotient of (I g )@R/JP/JP,
which is a summand of a direct sum of copies of P/JP. On the
other hand, since the indecomposable summands of X are
non-isomorphic, RX is basic, that is, RX/JX is isomorphic as a
right Rx—module to the direct sum of one copy of each simple. It

follows that

length(RX/J = length(P/JP

ry %

which is the first inequality.

Q) (+)

Rx
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Now suppose that Y is sincere, so that Q/JXQ is a sincere
Rx—module, and hence S ®Rx Q # 0O for any simple right Rx~module
S. If the inequality (%) is not strict, then P/JP must have
length exactly n as an RX-module, that is, endolength(X) = n. Now
the functor pJ:EN(R)——%éNJ(R/J) is a representation equivalence,
and by [CB4, 2.1] there is an equivalence ENJ(R/J)——eA—Mod, where

%
@R/J/

A = ([E/(EJ+JE)] ) (m, -1)

NJ

is a f.d. hereditary k-algebra of finite representation type.
Both of these functors preserve endolength, so the image X’ of X
in A-Mod has endolength n. Recall that X is a direct sum of
exactly n non-isomorphic indecomposable summands, so there is a
decomposition X’ = Ul@...@Un into non-isomorphic indecomposable
summands. Now the endolength of the direct sum is the sum of the
endolengths by Lemma (4.5), so all U.1 must have endolength 1, and
therefore be simple. This means that P/JP is a direct sum of

distinct simples, and hence P is a summand of R. Since

MX = HomR(P,N®RP) this implies that
1engthC(MX) = 1engthC(N) < lengthC(M),

as required.

9.5 TueoreM. (C1)-(C4) are equivalent for C-algebraic lift

pairs.

Proof. Let (R,€) be such a lift pair. We assume that (C2) or (C4)
holds, and wish to prove that the rest hold. Thus for some d
there is either a generic object G of endolength d, or an
infinite family (N,) of finite length indecomposable objects

ATAeA
of endolength d. We use induction on d and lengthC(M).

If M = 0, then £€(R) = R-Proj has finite representation type,
which is impossible under our assumption. Thus one can pick a

maximal sub-bimodule N € M and make the constructions of (9.2).
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If ENJ(R/J) has infinite type the conclusions are given by
Proposition (9.3), so suppose that ENJ(R/J) has finite type.

For X as in (9.4) the functor tX:EX(RX)——eg(R) is fully faithful,
and in case X is the direct sum of all indecomposables this is an
equivalence. By choosing X carefully we can ensure that either G
) are the images under TX of sincere
objects in EX(RX]. Now by Lemma (9.4) the 1ift pair (RX,EX)
either satisfies the hypotheses for some d’ < d, or for d but
with lengthC(MX) < 1engthC(M). By the induction, the 1lift pair
(RX,EX) satisfies (C1)-(C4), and then the second inequali?y in

Lemma (9.4) ensures that (R,&) satisfies (C1)-(C4).

or infinitely many of the N

8.6 Let A be an artin C-algebra with radical L, and let (R,€&) be

the 1ift pair with R = Eg i], and
0L AL AO

£:0 [O O] [O A] [O A] 0.
Clearly (R,€&) is C-algebraic. By [CB4, 1.7] there is an
equivalence between £(R) and the category PI(A) of triples
(P/,P”,a) with P’ and P” projective A-modules and «:P’'—P” a map
with Im(a) € LP”. If P2(A) denotes the subcategory of Pl(A) on
the triples with Ker(a) € LP’, then every object in Pl(A) is the
direct sum of an object in PZ(A) and a triple of the form
(P’/,0,0), and the functor PZ(A)——%A—MOd sending (P’,P”,a) to

Coker(a) is a representation equivalence.

LEmMA. Let X = (P,e) € &(R) correspond to an object in P2(A) with
image N € A-Mod under the cokernel functor. If S is a

C-subalgebra of End (X)Op, and J = rad R, then

€(R)
length(NS) < length(AA).length(P/JPS) and

1ength(P/JPS) < (length(AA) + 1).1ength(NS).

Moreover endolen(X) = (length(AA) + 1).endolen(N).
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Proof. Let X correspond to the triple (P’,P”,a) in P2(A), ={e}

there is an exact sequence

PP %P — 53N — 0 (+)

of A-S-bimodules. Now R = Lg 2] and P = [P”], so that

length(P/JPS) = length(P’/LP’S) + length(P”/LP”S).

If T is a simple right A-module, then 1ength(T®AP”S) =

length(P”/LP”S), so a composition series of A, gives

A

length(P”S) = length(AA).length(P”/LP”S) (=)

and the first inequality follows. Now X corresponds to an object
in PZ(A), so the exact sequence (%) is a minimal projective
presentation, and thus P“/LP” & N/LN and P’'/LP’ & Im(a)/L Im(a),

a subquotient of P”. Therefore

1A

length(P”/LP”S) length(NS)

and then (%) implies that

1A

length(P’/LP’S) length(AA).length(NS),

giving the second inequality. Finally, taking S = Endg(R)(X)OP,
the fact that the cokernel functor is full means that

endolen(N) = length(NS).

THEOREM. Let A be an artin C-algebra. Consider the following
statements.

(1) For some delN there are infinitely many non-isomorphic
indecomposable A-modules of length d over C.

(2) For some deN there are infinitely many non-isomorphic
indecomposable A-modules which are of endolength d, and have
finite length over C.

(3) There is an A—C[T]mC[T]
and of finite length over C[T]

~bimodule, indecomposable over A,

mC[T]"
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(4) A has a generic module.
Then (2)-(4) are equivalent. If in additiion the field k is

infinite, then they are also equivalent to (1).

Proof. If A satisfies one of (1)-(4), then it satisfies (2) or
(4), and by the lemma, the lift pair (R,€) satisfies (C2) or
(C4). By Theorem (9.5) the lift pair satisfies (C1)-(C4). Now
there are only finitely many indecomposable objects in Pl(A)
which do not belong to PZ(A), and they all correspond to objects
in €(R) of finite length over C. Thus the lemma enables one to
deduce (1)-(4).

REMARK. Theorem (7.3) follows on reducing to the case when the
artin algebra R is connected, and then setting C = Z(R). If the
simple R-modules have infinite underlying sets, then k is
infinite. Note that a family of R-modules has bounded length if
and only if it has bounded length over C.
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