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2whereEnd(�)0 = f(�i) jXi2I tr(�i) = 0g � End(�) =Mi2I Mat(�i; K):If one uses the trace pairing to identify End(�)0 with the dual of theLie algebra of G(�), then this is a moment map in the usual sense.(Identifying Rep(Q;�) with its tangent space at any point, the naturalsymplectic form on the cotangent bundle corresponds to the form!(x; y) =Xa2Q�tr(xaya�)� tr(xa�ya)�on Rep(Q;�). Now if � 2 End(�), and f : Rep(Q;�)! K is de�ned byf(x) =Pi tr(�i��(x)i), then dfx(y) = !([�; x]; y) for x; y 2 Rep(Q;�),where [�; x] is de�ned by [�; x]a = �h(a)xa � xa�t(a) for any a 2 Q.)Now the elements of End(�)0 which are invariant under G(�) actingby conjugation are those whose components are scalar matrices. Weidentify them with the � 2 KI which have � � � = Pi2I �i�i equalto zero. In this paper we study the �bres ��1� (�) and the quotients��1� (�) //G(�). These are Marsden-Weinstein reductions [15], exceptthat we work with schemes rather than manifolds.This moment map has been considered before. Kronheimer [11]constructed the Kleinian singularities and their deformations in thisway from the extended Dynkin quivers (see also [2, 5]). Later, Lusztig[14, Section 12] used the nilpotent cone of ��1� (0) in his geometricconstruction of the negative part of the quantum group of type Q,for any quiver Q without loops. Finally Nakajima [16, 17, 18] usedthe moment map to de�ne some quiver varieties and used these in ageometric construction of integrable representations of Kac-Moody Liealgebras. In the �rst of his papers he used hyper-K�ahler quotients tode�ne a familyM� , and this family includes ��1� (�) //G(�) withK = Cby [16, Theorem 3.1]. In his later papers he used geometric invarianttheory quotients, and ��1� (0) //G(�) appears as the variety M0(v; 0)in [18, x3].Kac [7, 8] has shown that the dimension vectors of indecomposablerepresentations of Q are exactly the positive roots for Q, and that thenumber of parameters of indecomposable representations of dimension� is given by the functionp(�) = 1 +Xa2Q�t(a)�h(a) � � � �;where � �� =Pi2I �2i . After some preliminaries in Sections 2 and 3, weuse Kac's Theorem in Section 4 to compute the dimension of ��1� (�)and then use his `canonical decomposition' to prove the following result.moment4.tex; 26/04/2000; 18:15; p.2



3THEOREM 1.1. If � 2 NI then the following are equivalent(1) �� is a at morphism.(2) ��1� (0) has dimension � � �� 1 + 2p(�).(3) p(�) �Prt=1 p(�(t)) for any decomposition � = �(1)+ � � �+�(r)with the �(t) positive roots.(4) p(�) �Prt=1 p(�(t)) for any decomposition � = �(1)+ � � �+�(r)into nonzero �(t) 2 NI.The deformed preprojective algebra introduced by M. P. Holland andthe author [5] (see also [3]) is the algebra de�ned for � 2 KI by�� = KQ=(Xa2Q[a; a�]�Xi2I �iei);where KQ is the path algebra of Q, the trivial path at vertex i isdenoted ei, and [a; a�] is the commutator aa� � a�a.Clearly if � 2 KI and � � � = 0, then ��1� (�) is identi�ed withthe space of representations of �� of dimension vector �. Now theclosed orbits of G(�) on Rep(Q;�) correspond to isomorphism classesof semisimple representations of Q of dimension �. (For example take� = 0 in [9, Proposition 3.2].) Thus the closed orbits of G(�) on ��1� (�)correspond to isomorphism classes of semisimple representations of ��of dimension �. Of these, the orbits on which G(�) acts freely are thosecorresponding to a simple representation of ��. Our main result is asfollows.THEOREM 1.2. For � 2 KI and � 2 NI the following are equivalent(1) There is a simple representation of �� of dimension vector �.(2) � is a positive root, � � � = 0, and p(�) >Prt=1 p(�(t)) for anydecomposition � = �(1) + � � �+ �(r) with r � 2 and �(t) a positiveroot with � � �(t) = 0 for all t.In this case ��1� (�) is a reduced and irreducible complete intersectionof dimension � � �� 1 + 2p(�), and the general element of ��1� (�) is asimple representation of ��.The special case � = 0 answers some questions of Nakajima. In [17,Problem 4.6], in the situation where Q has no loops, Nakajima askswhether if Q is connected and non-Dynkin then �0 has a simple rep-resentation which is not one-dimensional. This is true, for in Theoremmoment4.tex; 26/04/2000; 18:15; p.3



41.2 one can take � to be any minimal imaginary root. In [18, Questionafter Lemma 4.9], he asks which elements of the fundamental regionare dimension vectors of simple representations of �0. The answer isgiven by Theorems 1.2 and 8.1.Henceforth we write �� for the set of � satisfying the conditions inpart (2) of Theorem 1.2. In Section 5 we study the set ��, and provideanother characterization of it. In Section 6 we use Kac's Theorem againto prove that ��1� (�) is irreducible of dimension � � � � 1 + 2p(�) for� 2 ��. We then use Scho�eld's theory of general representations ofquivers to show that the general element of ��1� (�) is a simple repre-sentation. This proves (2) =) (1). The implication (1) =) (2) is morecomplicated and is proved in Sections 7 to 10.If � 2 ��, how many simple representations of dimension � arethere? The G(�)-orbit of a simple representation has dimension ����1.Thus if � is a real root (so p(�) = 0), there is a unique simple represen-tation up to isomorphism, while if � is an imaginary root (so p(�) > 0),there are in�nitely many non-isomorphic simple representations.Now suppose that K has characteristic zero. In Section 11 we studythe a�ne quotient schemes ��1� (�) //G(�). Recall that the points ofthis quotient are in 1-1 correspondence with the closed orbits, so withisomorphism classes of semisimple representations of �� of dimension�. Given a semisimple representation X , we can decompose it into itssimple components X = X�k11 � � � � �X�krrwhere theXt are non-isomorphic simples. If �(t) is the dimension vectorof Xt, we say that X has representation type� = (k1; �(1); : : : ; kr; �(r)):For � to occur as the representation type of a semisimple representationof dimension �, clearly one must have � = k1�(1) + � � �+ kr�(r) and�(t) 2 �� for all t. In addition, although the �(t) need not be distinct,any real root can occur as at most one of the �(t).THEOREM 1.3. If � is a representation type, then the set of semisim-ple representations of type � is an irreducible locally closed subset of��1� (�) //G(�) of dimension Prt=1 2p(�(t)).This has the following consequence.COROLLARY 1.4. If � 2 KI and � 2 �� then ��1� (�) //G(�) is areduced and irreducible scheme of dimension 2p(�).moment4.tex; 26/04/2000; 18:15; p.4



5Finally, in an appendix we show how deformed preprojective alge-bras can be used to give a simple proof of much of Kac's Theoremin case the base �eld has characteristic zero. In particular, we givean explicit construction of the indecomposable representations whosedimension vector is a real root.Preliminary versions of these results (with � = 0) were �rst an-nounced at a conference on Geometry and Quivers in Hamburg inNovember 1996. I should like to thank the organisers O. Riemenschnei-der and P. Slodowy for inviting me to attend the meeting. I would alsolike to thank M. P. Holland for some useful discussions.Remarks added in April 2000 (after writing the paper [4]).We wouldlike to explain some additional applications of the results in this paperto the study of Nakajima's quiver varieties.Let Q0 be a quiver with vertex set I . In case Q0 has no orientedcycles this is to correspond to an orientation 
 of a graph (I; E) as in[18, Section 3.1]. For v;w 2 NI , let M(v;w) be the spaceRep(Q0;v)�Mk2I Mat(vk �wk; K)�Mk2I Mat(wk � vk; K):There is a natural action of the group Gv = Qk2I GL(vk; K) and amoment map � :M(v;w)!Mk2I Mat(vk; K)whose k-th component sends (B; i; j) toXa2Q0h(a)=kBaBa� � Xa2Q0t(a)=kBa�Ba +Xk2I ikjk:One of the spaces that Nakajima considers isM0(v;w) = ��1(0) //Gv:Let Q be the quiver obtained from Q0 by adjoining a new vertex 1and wk arrows from 1 to k for each k 2 I ; let � be the dimensionvector for Q whose restriction to I is equal to v and with �1 = 1. Bydividing the matrices in Mat(vk �wk; K) into their columns, and thematrices in Mat(wk � vk; K) into their rows, one can identifyM(v;w)�= Rep(Q;�); Gv �= G(�):Moreover � corresponds to the usual moment map ��, so we haveM0(v;w)�= ��1� (0) //G(�):moment4.tex; 26/04/2000; 18:15; p.5



6Thus the setMreg0 (v;w) of [18, x3.v] is non-empty if and only if � 2 �0.The other space that Nakajima considers is the quiver varietyM(v;w) = ��1(0) //(Gv; �0) �= ��1� (0) //(G(�); �)in the notation of [9], where �0 : Gv ! K� is the character de�nedby �0(g) = Qk2I det(g�1k ), and � is the corresponding character ofG(�). This is a smooth variety. We say that a representation of �0 ofdimension � is v-cogenerated (where v is a vertex with �v = 1) if ithas no non-zero subrepresentation which is zero at v. This is dual tothe notion of `v-generated' of [4, Section 2]. By [18, Lemma 3.8] thepoints of M(v;w) are in 1-1 correspondence with isomorphism classesof 1-cogenerated representations of �0 of dimension �.Now assume that K is the �eld C of complex numbers. It is claimedin [18, Theorem 6.2] thatM(v;w) is connected, but this is retracted in[19, Section 7.5]. Nakajima has, however, mentioned to the author thatconnectivity can be recovered, and the following argument is perhapssimilar to what he had in mind.De�ne � by �k = �1 for k 2 I and �1 =Pk2I vk. Thus � � � = 0,but � � � 6= 0 for all 0 < � < �. If � is a root then trivially � 2 ��, soTheorem 1.2 implies that ��1� (�) //G(�) is non-empty and irreducible.On the other hand, if � is not a root, then Theorem 1.2 implies thatthere is no representation of �� of dimension �, so that ��1� (�) //G(�)is empty. Now there is a bijection��1� (�) //G(�)! ��1� (0) //(G(�); �) �=M(v;w):which is continuous for the analytic topology. (See [16, xx3,4] and [4,x3].) It follows that M(v;w) is either non-empty connected or empty,according to whether � is a root for Q or not.2. Notation and reection functorsLet Q be a quiver with vertex set I and let K be an algebraically closed�eld. In this section we introduce some standard notation, recall thereection functors, and determine the e�ect of reection functors onthe �bres ��1� (�).We call elements of ZI (or sometimes RI) vectors, and write �i forthe coordinate vector at a vertex i. We partially order ZI via � � � if�i � �i for all i, and we write � > � to mean that � � � and � 6= �.We say that � is sincere if �i > 0 for all i.The Ringel form on ZI is de�ned byh�; �i =Xi2I �i�i �Xa2Q�t(a)�h(a):moment4.tex; 26/04/2000; 18:15; p.6



7Let (�; �) = h�; �i+ h�; �i be its symmetrization. The correspondingquadratic form q(�) = h�; �i = 12(�; �) is the Tits form, and we havep(�) = 1� q(�). The fundamental region is the set of 0 6= � 2 NI withconnected support and with (�; �i) � 0 for every vertex i.If i is a loopfree vertex (so q(�i) = 1), there is a reection si :ZI ! ZI de�ned by si(�) = � � (�; �i)�i. The real roots (respectivelyimaginary roots) are the elements of ZI which can be obtained fromthe coordinate vector at a loopfree vertex (respectively � an elementof the fundamental region) by applying some sequence of reections atloopfree vertices.There is a reection ri : KI ! KI which is dual to si. It is de�nedby ri(�)j = �j � (�i; �j)�i. It satis�es ri(�) � � = � � si(�) for all �.We say that the reection at a loopfree vertex i is admissible forthe pair (�; �) if �i 6= 0. Let � be the smallest equivalence relationon KI �ZI with (�; �) � (ri(�); si(�)) whenever the reection at i isadmissible for (�; �).If the reection at i is admissible for (�; �) then by [5, x5] thereis a reection functor from representations of �� to representations of�ri(�) which acts as as si on dimension vectors. (In fact these reectionfunctors were discovered earlier, by Rump [21].)We briey describe the construction. Assume for simplicity that noarrow in Q has tail at i, and let H = fa 2 Q j h(a) = ig. Suppose thatV is a representation of ��, given by vector spaces Vj for each vertexj and linear maps Va : Vt(a)! Vh(a) for each arrow a 2 Q. De�neV� =Ma2H Vt(a);and let �a : Vt(a)! V� and �a : V� ! Vt(a) be the canonical inclusionsand projections. De�ne � : Vi ! V� and � : V� ! Vi by� = Xa2H �aVa� ; � = 1�i Xa2H Va�a:The relations for �� ensure that �� = 1Vi, so that �� is an idempotentendomorphism of V�. By de�nition the reection functor sends V tothe representation V 0 of �ri(�) given by vector spaces V 0j = Vj for j 6= iand V 0i = Im(1 � ��), and by linear maps V 0a = Va and V 0a� = V 0a fora 2 Q with h(a) 6= i, andV 0a = ��i(1� ��)�a : V 0t(a)! V 0i ; V 0a� = �ajV 0i : V 0i ! V 0t(a)for a 2 H .We use the reection functors to relate the schemes ��1� (�) and��1si(�)(ri(�)) (equipped with their scheme structure as �bres of the
moment4.tex; 26/04/2000; 18:15; p.7



8moment map). For our geometric arguments all schemes are quasipro-jective over K, and all points are closed points.LEMMA 2.1. If 0 6= � 2 K and m;n are non-negative integers, thenthe projection fromS = f(X;X�; Y; Y �) j XX� = �1; Y Y � = ��1; X�X � Y �Y = �1g� Mat(n� (n+m); K)�Mat((n+m)� n;K)�Mat(m� (n+m); K)�Mat((n+m)�m;K)toX = f(X;X�) j XX� = �1g� Mat(n� (n+m); K)�Mat((n+m)� n;K)is a principal GL(m;K)-bundle. Moreover the natural scheme struc-tures on S and X given by the indicated relations are reduced.Proof. By rescaling X and Y one can replace the equations byXX� = 1, Y Y � = 1, and X�X + Y �Y = 1, so the matrices de�neinverse isomorphisms between Kn+m and Kn�Km. The result is nowstandard.LEMMA 2.2. Suppose given a pair (�; �) with � � � = 0. If i is aloopfree vertex with �i 6= 0 then there is a scheme T and morphisms��1� (�) f T g! ��1si(�)(ri(�))where the map f is a principal GL(si(�)i; K)-bundle and g is a principalGL(�i; K)-bundle. In particular ��1� (�) and ��1si(�)(ri(�)) have the samenumber of irreducible components, anddim��1si(�)(ri(�))� si(�) � si(�) = dim ��1� (�)� � � �:Proof. We suppose for simplicity that no arrow in Q has tail at i.We can do this because the deformed preprojective algebra �� doesnot depend on the orientation of Q, see [5, Lemma 2.2]. (If a were anarrow with tail at i we could reverse it by sending xa to xa� and xa� to�xa for x 2 Rep(Q;�).) Let H = fa 2 Q j h(a) = ig.Let Q0 be the quiver obtained from Q by deleting all arrows in H ,and let R0 = Rep(Q0; �). Letting n = �i andm = si(�)i = ��i +Xa2H �t(a);moment4.tex; 26/04/2000; 18:15; p.8



9one can combine the matrices for the arrows incident at i into blockmatrices, and identifyRep(Q;�) �= R0 �Mat(n� (n +m); K)�Mat((n+m)� n;K);so that if x 2 Rep(Q;�) corresponds to a triple (x0; X;X�) then��(x)i = Xa2H xaxa� = XX�:Also one can identifyRep(Q; si(�)) �= R0 �Mat(m� (n+m); K)�Mat((n+m)�m;K)and if y corresponds to (x0; Y; Y �) then�si(�)(y)i = Xa2H yaya� = Y Y �:We now apply Lemma 2.1 with � = �i to obtain a principal GL(m;K)-bundle f 0 : R0 � S ! R0 �X �= fx 2 Rep(Q;�) j ��(x)i = �i1g;where S and X are as in Lemma 2.1. Exchanging the role of the X 'sand Y 's, we also obtain a principal GL(n;K)-bundleg0 : R0 � S ! fy 2 Rep(Q; si(�)) j �si(�)(y)i = ri(�)i1g:To show that f 0 and g0 restrict to give a scheme T and principalbundles f and g, we need to show that for each vertex j 6= i and eachz 2 R0 � S we have��(f 0(z))j � �j1 = �si(�)(g0(z))j � ri(�)j1in Mat(�j ; K).Now if x = f 0(z) and y = g0(z) then the relation X�X � Y �Y = �i1for S implies that xa�xa� ya�ya = �i1 for any a 2 H . Also xa = ya forany arrow a not incident at i, so that xa�xa � ya�ya = 0 if a 2 Q andh(a) 6= i. Thus, if j is a vertex di�erent from i, we haveXa2Qt(a)=j xa�xa = Xa2Qt(a)=j ya�ya +N�i1;where N is the number of arrows from j to i. Clearly we also haveXa2Qh(a)=j xaxa� = Xa2Qh(a)=j yaya�moment4.tex; 26/04/2000; 18:15; p.9



10since j 6= i. It follows that��(x)j � �si(�)(y)j = �N�i1 = (�j � ri(�)j)1;as required. 3. Lifting representations from Q to ��Let Q be a quiver with vertex set I and let � 2 KI . In this section wedetermine which representations of Q lift to representations of ��. Thatis, for � 2 NI we determine the image of the projection � : ��1� (�)!Rep(Q;�). (For Dynkin quivers this problem has been studied by Rump[21]. His methods are, however, quite di�erent.) In addition, if U is aconstructible subset of Im(�) which is G(�)-stable (that is, a unionof G(�)-orbits), we relate the dimension of ��1(U) to the number ofparameters of G(�) on U . Recall that if X is a scheme, G is an algebraicgroup acting on X , and U is a constructible subset of X which is G-stable, then the number of parameters (or modularity) of G on U , isde�ned by dimG U = maxd (dim(U \Xd) + d� dimG)where Xd is the locally closed subset of X consisting of those pointswhose stabilizer has dimension d, so which have orbit of dimensiondimG� d.LEMMA 3.1. If x = (xa)a2Q 2 Rep(Q;�), then there is an exactsequence0! Ext1(x; x)�! Rep(Qop; �) c! End(�) t! End(x)�! 0where c sends (ya�) 2 Rep(Qop; �) to Pa2Q[xa; ya�] and t sends (�i) tothe linear map End(x)! K sending (�i) to Pi tr(�i�i).Proof. This is just a fuller statement of [5, Lemma 4.2].LEMMA 3.2. If � 2 KI and x is a representation of Q which lifts to��, then Pi �i tr(�i) = 0 for any � 2 End(x).Proof. Applying Lemma 3.1, since x lifts, one deduces that � is inthe image of c, so in the kernel of t.THEOREM 3.3. If � 2 KI then a representation of Q lifts to a rep-resentation of �� if and only if the dimension vector � of any directsummand satis�es � � � = 0. Moreover, if x 2 Rep(Q;�) does lift, then��1(x) �= Ext1(x; x)� moment4.tex; 26/04/2000; 18:15; p.10



11Proof. If the representation lifts, and there is a direct summand ofdimension � then letting � be the projection onto this summand, wehave � � � = 0 by Lemma 3.2.For the converse, it su�ces to prove the liftability of any indecom-posable x whose dimension vector � satis�es � � � = 0. Now anyendomorphism � of x is the sum of a nilpotent matrix and a scalarmatrix, so Pi �i tr(�i) = 0. Thus, considering � as an element ofEnd(�), it is in the kernel of the map t of Lemma 3.1. Thus � is inthe image of c, and this gives a lift to ��.LEMMA 3.4. If U is a G(�)-stable constructible subset of Rep(Q;�)contained in the image of �, thendim ��1(U) = dimG(�)U + � � �� q(�):If in addition U is a G(�)-orbit, then ��1(U) is irreducible of dimension� � �� q(�).Proof. By partitioning U we may suppose that all representationsx 2 U have endomorphism ring of dimension e. Now if x 2 U thenby Theorem 3.3 the �bre ��1(x) is isomorphic to Ext1(x; x)�, so hasdimension e�q(�) by Lemma 3.1. Thus dim ��1(U) = dimU+e�q(�)On the other hand, each orbit of G(�) on U has dimension dimG(�)+1�e, so dimG(�)U = dimU�1+e�dim G(�). The dimension formulafollows.Now suppose in addition that U = G(�)x. Since dimG(�)U = 0 theinverse image ��1(U) has dimension ����q(�). It remains to prove thatit is irreducible. Observe that G(�) acts on ��1� (�) and � is equivariant.Now if ��1(U) is not irreducible one can �nd nonempty disjoint G(�)-stable open subsets Z1; Z2. But �(Zi) = U , so ��1(x)\Zi (i = 1; 2) arenon-empty disjoint open subsets of ��1(x), which is impossible since��1(x) is irreducible.4. Application of Kac's TheoremLet Q be a quiver with vertex set I . Kac's Theorem [7, 8] assertsthat the dimension vectors of indecomposable representations of Q areexactly the positive roots for Q. Moreover, if � is a positive real rootthen there is a unique indecomposable representation of dimension �,while if � is a positive imaginary root then dimG(�) I(�) = p(�) whereI(�) � Rep(Q;�) is the set of indecomposable representations.We need some properties of dimG which are easy to prove usingChevalley's Theorems. moment4.tex; 26/04/2000; 18:15; p.11



12LEMMA 4.1. Let X be a scheme on which an algebraic group G acts.Suppose that Z � Y � X are constructible subsets, with Y being G-stable and Z being H-stable, where H is a closed subgroup of G. IfY = GZ and the intersection of Z with any G-orbit in Y is a �niteunion of H-orbits, then dimH Z = dimG Y .LEMMA 4.2. Suppose that algebraic groups Gi act on schemes Xi. IfYi � Xi are Gi-stable constructible subsets, then setting G = QiGi andY = Qi Yi, we have dimG Y =Pi dimGi Yi.For arbitrary �, suppose that � = �(1)+ � � �+�(r) is a decompositionof � as a sum of positive roots for Q, and let I(�(1); : : : ; �(r)) be thesubset of Rep(Q;�) consisting of the representations whose indecom-posable summands have dimension �(t). Clearly this is a G(�)-stableconstructible set.LEMMA 4.3. If � = �(1) + � � �+ �(r) with the �(t) positive roots, thendimG(�) I(�(1); : : : ; �(r)) = rXt=1 p(�(t)):Proof. Let R0 = Rep(Q; �(1)) � � � � � Rep(Q; �(r)), and consider itas a subset of Rep(Q;�) using block-diagonal matrices. Let I 0 be theconstructible subset of R0 consisting of the elements in which each rep-resentation of dimension �(t) is indecomposable. By the Krull-SchmidtTheorem, Lemma 4.1 applies to the subsetsI 0 � I(�(1); : : : ; �(r)) � Rep(Q;�)with H the subgroup of G(�) corresponding to the product QtG(�(t)).Thus dimG(�) I(�(1); : : : ; �(r)) = dimH I 0 =Xt dimG(�(t)) I(�(t))by Lemma 4.2, and this is Pt p(�(t)) by Kac's Theorem.THEOREM 4.4. Given a pair (�; �) with � � � = 0, we havedim ��1� (�) = � � �� q(�) +m;where m is the maximum value of Prt=1 p(�(t)) where r � 1 and � =�(1) + � � �+ �(r) is a decomposition with each �(t) a positive root and� � �(t) = 0. moment4.tex; 26/04/2000; 18:15; p.12



13Proof. Let � : ��1� (�)! Rep(Q;�) be the projection. We decomposeRep(Q;�) as a union of sets of the form I(�(1); : : : ; �(r)), and considerthe inverse images ��1(I(�(1); : : : ; �(r))). If some �(t) has � � �(t) 6= 0then this inverse image is empty. Otherwise, by Lemmas 3.4 and 4.3this inverse image has dimension Prt=1 p(�(t))+� ���q(�). The resultfollows.We now turn to the proof of Theorem 1.1. We use Kac's `canonicaldecomposition'. (See [8, Section 1.18].)LEMMA 4.5. If � 2 NI has canonical decomposition � = �(1) + � � �+�(r) with r � 2, then p(�) <Pt p(�(t)).Proof. This holds since (�(s); �(t)) � 0 for s 6= t by [8, Proposition1.20].Proof. (of Theorem 1.1) Let d = � � � � 1 + 2p(�), the relativedimension of ��.(1) =) (2) Since �� is at, its image U is an open subset of End(�)0.Now apply [6, Corollaire 6.1.4] to the map Rep(Q;�) ! U . Clearly0 2 U , so ��1� (0) has dimension d.(2) =) (3) Follows from Theorem 4.4.(3) =) (4) If p(�) <Pt p(�(t)) for some decomposition � = �(1) +� � �+�(r), then Lemma 4.5 shows that the inequality remains true whenwe replace each �(t) by all the terms in its canonical decomposition. Butnow the terms are positive roots.(4) =) (1) By Lemma 4.5 the canonical decomposition of � canonly have one term. It follows that � is a Schur root. (See [8, Section1.18].) This means that there is a representation of Q of dimension �whose endomorphism algebra is the base �eld K. If x 2 Rep(Q;�) issuch a representation, then the map c of Lemma 3.1 has 1-dimensionalcokernel. Since Im(c) is clearly contained in End(�)0, it follows thatIm(c) = End(�)0. It follows that any element of End(�)0 is the imageunder the moment map �� : Rep(Q;�) ! End(�)0 of an element ofRep(Q;�) whose restriction toQ is equal to x. In particular the momentmap is surjective. We consider its �bres ��1� (�) with � 2 End(�)0. Let~� : ��1� (�)! Rep(Q;�) be the projection. Now if U is a constructibleG(�)-stable subset of Rep(Q;�) thendim ~��1(U) � dimG(�)U + � � �� q(�):by the same argument as Lemma 3.4. It follows by Lemma 4.3 and thehypothesis that ��1� (�) has dimension at most d. Clearly, in fact, it isequidimensional of dimension d. Now [6, Proposition 6.1.5] implies that�� is at. moment4.tex; 26/04/2000; 18:15; p.13



14 5. Properties of the set ��Throughout this section Q is a quiver with vertex set I . We prove somecombinatorial results about the set �� which are needed later. In thecourse of this, we obtain another characterization of ��, Theorem 5.6.We write R+� for the set of positive roots � with � � � = 0. Thus ��is the set of � 2 R+� with the property that p(�) > P p(�(t)) for anydecomposition � = �(1) + � � �+ �(r) with r � 2 and all �(t) 2 R+� . Wewrite NR+� for the set of sums of elements of R+� (including 0).LEMMA 5.1. Given any pair (�; �) with � 2 NR+� , if i is a vertex with�i = 0 and (�; �i) > 0, then � � �i 2 NR+� .Proof. Since (�; �i) > 0 there cannot be a loop at i, and thereforethere is a reection at i, although it is not admissible. Now � is asum of positive roots Prt=1 (t). If any (t) is equal to �i then we'redone. Otherwise all si((t)) are positive roots, so in R+� . Thus si(�) =� � (�; �i)�i 2 NR+� . Now adding on a suitable number of copies of�i 2 R+� , it follows that � � �i 2 NR+� .LEMMA 5.2. If (�; �)� (�0; �0) then(1) � 2 R+� if and only if �0 2 R+�0.(2) � 2 NR+� if and only if �0 2 NR+�0.(3) � 2 �� if and only if �0 2 ��0.Proof. It su�ces to prove (1), for then the other parts follow. Con-sider the admissible reection at a loopfree vertex i with �i 6= 0. Nowif � is a positive root, then so is si(�), except when � = �i. However,this case cannot occur since � � �i 6= 0, so that �i =2 R+� .LEMMA 5.3. Given any pair (�; �) with � 2 NR+� , there is an equiv-alent pair (�0; �0) with the property that (�0; �i) � 0 whenever �0i 6= 0.Proof. Amongst all equivalent pairs, choose (�0; �0) with �0 minimal.This is possible since Lemma 5.2(2) ensures that �0 � 0. Now if �0i 6= 0and there is a loop at i then (�0; �i) � 0 is automatic, while if �0i 6= 0and i is loopfree then (�0; �i) � 0, for otherwise the pair (ri(�0); si(�0))is smaller.LEMMA 5.4. Suppose that 0 6= � 2 NR+� and (�; �i) � 0 for allvertices i with �i 6= 0. If (�; ���) � �2 whenever �; ��� are nonzeroand in NR+� , then � is either a coordinate vector or in the fundamentalregion.
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15Proof. Suppose that � is not a coordinate vector. We have (�; �i) � 0for all i, for if (�; �i) > 0 then we must have �i = 0. Now the inequality(�; �i) > 0 implies that i is loopfree, so (�i; �i) = 2. Thus(�� �i; �i) = (�; �i)� 2 > �2:This contradicts the hypotheses, since � � �i 2 NR+� by Lemma 5.1.Next, the support quiver of � is connected. By assumption � 2 NR+� ,so we can write � =Prt=1 (t) with the (t) 2 R+� . Now supposing thatthe support of � is a disjoint union C[D with no arrows connecting Cto D, then each (t) has support contained in either C or D. Letting �be the sum of the (t) with support contained in C gives (�; ���) = 0,contrary to the assumption.Thus � is in the fundamental region.LEMMA 5.5. If 0 6= � 2 NR+� and (�; �� �) � �2 whenever �; �� �are nonzero and in NR+� , then � 2 R+� .Proof. By Lemma 5.2 we may replace the pair (�; �) by any equiva-lent pair. Thus by Lemma 5.3 we may suppose that (�; �i) � 0 whenever�i 6= 0. Now by the previous lemma � is either a coordinate vector orin the fundamental region. Thus it is in R+� .We now have another description of the set ��.THEOREM 5.6. If � 2 NI then � 2 �� if and only if 0 6= � 2 NR+�and (�; �� �) � �2 whenever �; �� � are nonzero and in NR+� .Proof. Suppose �rst that � 2 ��. Clearly we have 0 6= � 2 NR+� .We prove that (�; �� �) � �2 whenever �; �� � are nonzero and inNR+� . For a contradiction, suppose that (�; �� �) � �1 with �; �� �nonzero and in NR+� . It follows that p(�) � p(�)+ p(���). This givesa decomposition of the form� = rXt=1 �(t); 0 6= �(t) 2 NR+� ; p(�) � rXt=1 p(�(t))with r = 2. Choose a decomposition of this type with r maximal.Now each term �(t) in this sum is nonzero, and belongs to NR+� . Bymaximality, if ; �(t)� are nonzero and in NR+� , then p(�(t)) > p()+p(�(t) � ), so (; �(t)� ) < �1, and hence �(t) 2 R+� by Lemma 5.5.Now this decomposition contradicts the fact that � 2 ��.For the converse, suppose that 0 6= � 2 NR+� and (�; �� �) � �2whenever �; � � � are nonzero and in NR+� . By Lemma 5.5 we have� 2 R+� . Assuming that � =2 ��, there is a decomposition � =Prt=1 �(t)moment4.tex; 26/04/2000; 18:15; p.15



16with �(t) 2 R+� and with p(�) � Prt=1 p(�(t)). It follows that q(�) �Prt=1 q(�(t)) � 1� r, sorXt=1(�(t); �� �(t)) =Xt6=k(�(t); �(k)) = 2�q(�)� rXt=1 q(�(t))� � 2� 2r:This implies that (�(t); � � �(t)) > �2 for some t, contrary to theassumption.Note in particular that NR+0 = NI, giving the following simpledescription of �0.COROLLARY 5.7. If � 2 NI then � 2 �0 if and only if � > 0 and(�; �� �) � �2 whenever � 2 NI and 0 < � < �.Combining Lemmas 5.2, 5.3, 5.4 and Theorem 5.6, we have proved:THEOREM 5.8. If � 2 �� then there is an equivalent pair (�0; �0) with�0 either the coordinate vector at a loopfree vertex or in the fundamentalregion. The �rst case occurs if � is a real root; the second case if � isan imaginary root.6. Existence of simple representationsLet Q be a quiver with vertex set I . In this section we prove theimplication (2) =) (1) of Theorem 1.2.LEMMA 6.1. If X is an equidimensional scheme, Y is an irreduciblescheme and f : X ! Y is a dominant morphism with all �bres irre-ducible of constant dimension d, then X is irreducible.Proof. If X is not irreducible, one can �nd disjoint irreducible opensubsets Z; Z0. Now the restriction of f to Z is a map Z ! f(Z) whose�bres have dimension at most d, so d+ dim f(Z) � dimZ = dimX =d + dim Y , so f(Z) = Y , and for the general point y 2 Y the �breZ \ f�1(y) has dimension d. Similarly, for the general point y 2 Ythe �bre Z0 \ f�1(y) has dimension d. But f�1(y) is irreducible ofdimension d, so these two sets must intersect. A contradiction sinceZ; Z0 are disjoint.Recall that a representation is said to be a brick if its endomorphismalgebra is the base �eld K. We denote by B(�) � Rep(Q;�) the set ofbricks for Q of dimension �.
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17If � is a dimension vector in the fundamental region and q(�) < 0then by Kac's Lemma 1 (see [8, Section 1.10]), the set B(�) is adense open subset of Rep(Q;�), we have dimG(�)B(�) = p(�), anddimG(�)(I(�) nB(�)) < p(�).On the other hand, if � is in the fundamental region but q(�) = 0,then there need not be any bricks. In this case the support quiver of �is extended Dynkin, � is a multiple of the minimal imaginary root �,and we have the following result.LEMMA 6.2. If Q is an extended Dynkin quiver with minimal imag-inary root � and � = m� with m � 1, then every indecomposablerepresentation of Q of dimension � has endomorphism algebra of di-mensionm, and I(�) is an irreducible locally closed subset of Rep(Q;�)with dimG(�) I(�) = 1.Proof. Of course the fact that dimG(�) I(�) = 1 is one of the thingsthat needs to be veri�ed during the proof of Kac's Theorem.The indecomposable representations of Q of dimension � are knownby the representation theory of extended Dynkin quivers. They allbelong to the tubular family T of [20, x3.6 (5), (6)]. Recall from [20,x3.1] that T is a serial abelian category. Its simple objects are calledsimple regular modules.We claim that an indecomposable in T , say in a tube of rank r, hasdimension � if and only if it has a composition series in T of lengthmr. Namely, suppose Q has no oriented cycles. (The case of an orientedcycle follows by [20, x3.6 (6)].) Inspecting the proof of [20, Theorem 3.4],we see that the tube contains a module W0(�) of length r and with acomposition series involving each simple regular module in the tube. Bythe proof of [20, x3.6 (5)], the module W0 corresponds to the maximalroot for the corresponding Dynkin quiver, so W0(�) has dimension �.The claim follows.It follows from this description that all indecomposables of dimen-sion � have endomorphism algebra of dimension m. Now I(�) is locallyclosed by [10, x2.5 Proposition]. It is a union of in�nitely many G(�)-orbits. We show that each orbit is contained in an irreducible opensubset of I(�) whose complement is a �nite union of orbits. This impliesthe irreducibility of I(�).If U is a �nite set of simple regular modules, the perpendicularcategory is the full subcategoryU? = fM j Hom(S;M) = Ext1(S;M) = 0 for all S 2 Ug:of the category of KQ-modules. Using the fact that the tubes arestandard, and the Auslander-Reiten formula [20, x2.4 (5)] we see thatan indecomposable of dimension � is in U? if and only if its regularsocle (in T ) is not in U . moment4.tex; 26/04/2000; 18:15; p.17



18 We consider the orbit corresponding to an be an indecomposablemodule X of dimension �. Choose a �nite collection U of simple regularmodules with the properties that (a) U does not contain the regularsocle of X ; (b) at most one simple regular module in each tube is notin U ; (c) if Q has no oriented cycles then there is a unique tube whichhas all its simple regular modules in U , if Q is an oriented cycle thenno tube has all its simple regular modules in U . As in [3, Lemma 11.1],there is a homomorphism� : KQ!Mat(N;K[x])(where N = Pi �i) such that restriction induces an equivalence fromthe category of Mat(N;K[x])-modules toU?. Thus there is aKQ-K[x]-bimodule L, free of rank N over K[x], such that the tensor productfunctor L
K[x]� is an equivalence fromK[x]-modules to U?. It followsthat as � 2 K varies, the modules L
K[x]K[x]=(x� �)m run throughall indecomposables in U? of dimension �. Choosing generators of L,this induces a morphism � : K ! Rep(Q;�) from the a�ne line, whoseimage meets all G(�)-orbits in I(�) in U?. Now consider the mapG(�)�K ! Rep(Q;�); (g; �) 7! g�(�):The image is contained in I(�), it contains the orbit for X , it is G(�)-stable, and it omits only �nitely many orbits, so it is open in I(�).Since G(�)�K is irreducible, so is the image.LEMMA 6.3. If (�; �) is a pair with � 2 �� then ��1� (�) is irreducibleof dimension d = � � � � 1 + 2p(�). In particular it is a completeintersection.Proof. By Theorem 5.8 and Lemma 2.2 we may reduce to the casewhere � is either a coordinate vector, or in the fundamental region. If� is a coordinate vector at a loopfree vertex, the result is trivial, so wesuppose that � is in the fundamental region.By Theorem 4.4 the space ��1� (�) has dimension d. Moreover, sinced is the relative dimension of ��, it is equidimensional of dimension d.It remains to prove that it is irreducible.Let � be the projection ��1� (�) ! Rep(Q;�). Thus the image of �is given by Theorem 3.3, and any nonempty �bre ��1(x) is isomorphicto Ext1(x; x)�, so is irreducible.As in Theorem 4.4 we write ��1� (�) as a union of sets of the form��1(I(�(1); : : : ; �(r))). All except ��1(I(�)) have dimension strictlysmaller than d.Suppose �rst that q(�) < 0. As mentioned before Lemma 6.2, theset B(�) of bricks is a dense open subset of Rep(Q;�). Now the setmoment4.tex; 26/04/2000; 18:15; p.18



19��1(I(�) n B(�)) has dimension less than d. Thus it su�ces to provethat ��1(B(�)) is irreducible. This space is open in ��1� (�), so itis equidimensional of dimension d. Moreover every �bre of the map��1(B(�)) ! B(�) is irreducible. Therefore ��1(B(�)) is irreducibleby Lemma 6.1.If q(�) = 0 and � is indivisible the same argument holds. The setB(�) of bricks is a dense open subset, and there are only �nitely manyother orbits of indecomposables.Finally suppose that q(�) = 0 and � is divisible. Thus the supportof � is extended Dynkin with minimal positive imaginary root �, and� = m� for some m � 2. Now � � � 6= 0, for the decomposition � =� + � � �+ � contradicts the fact that � 2 ��. However � � � = 0, so theonly possibility is that the �eld K has characteristic p > 0 and m isa multiple of p. Now in fact m = p, for otherwise the decomposition� = p� + � � �+ p� contradicts the fact that � 2 ��.Now the image of � is contained in the set of representations ofQ with no summand of dimension k� with k < p. Thus it consists ofI(�) and only �nitely many other orbits. Now ��1(I(�)) is obtainedfrom ��1� (�) by removing the inverse images of �nitely many orbits.These inverse images have dimension strictly less than d. It followsthat ��1(I(�)) is equidimensional of dimension d, and by the sameargument ��1(I(�)) is irreducible, hence so is ��1� (�).LEMMA 6.4. Given a pair (�; �) with � � � = 0, if � � � then the setof elements of ��1� (�) such that the corresponding representation of ��has a subrepresentation of dimension vector � is closed.Proof. If Gr(k; n) denotes the Grassmannian of k-dimensional sub-spaces of an n-dimensional space, then the set of pairs consisting of anelement of ��1� (�) and a subrepresentation of dimension � is a closedsubset of ��1� (�)�Yi2I Gr(�i; �i):Since Grassmannians are projective, its image under the projectiononto ��1� (�) is closed. (See [22, Lemma 3.1].)LEMMA 6.5. Given a pair (�; �) with � � � = 0, if x 2 ��1� (�)corresponds to a representation of �� which is a brick (that is, hasendomorphism algebra equal to the base �eld K) then ��1� (�) is smoothat x.Proof. It su�ces to prove that �� is smooth at x. Now this holdsby [3, Lemma 10.3]. Alternatively, note that x corresponds to a brickif and only if x has trivial stabilizer in G(�), and the claim is standarddi�erential geometry.
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20LEMMA 6.6. Let Q be an extended Dynkin quiver with minimal imag-inary root � and � = m� with m � 1. Let � 2 NI. If the general elementof I(�) has subrepresentations of dimension � and � � �, then � is amultiple of �.Proof. If Q has no oriented cycles then clearly � must have defectzero, so the subrepresentations of dimensions � and � � � must beregular. Now the general element of I(�) is in a homogeneous tube, soall regular subrepresentations have dimension a multiple of �. If Q is anoriented cycle then the same argument works, for the general elementof I(�) involves m copies of a simple representation of Q of dimension�.THEOREM 6.7. If (�; �) is a pair with � 2 �� then ��1� (�) is areduced and irreducible complete intersection of dimension � � �� 1 +2p(�), and the general element of ��1� (�) is a simple representationof ��.Proof. By Lemma 6.3, ��1� (�) is irreducible of the right dimension.ByLemma 6.4, the simple representations are an open subset of ��1� (�),so to show that the general element is simple it su�ces to prove theexistence of one simple representation of dimension �. Now because thereection functors of [5] are equivalences, we may assume as in Lemma6.3 that � is a coordinate vector or in the fundamental region. Clearlythere is a simple representation if � is a coordinate vector, so assumethat � is in the fundamental region.Assume for a contradiction that there is no simple representation.The irreducibility of ��1� (�) implies that there is some � such that thegeneral representation of �� of dimension � has a subrepresentation ofdimension �. Then by Lemma 6.4 this holds for every representationof �� of dimension �.First suppose that q(�) < 0 or � is indivisible. Then � is a Schurroot. Thus the general representation of Q of dimension � is inde-composable, so extends to a representation of ��, and hence has asubrepresentation of dimension �. Similarly, the general representa-tion of Qop of dimension � has a subrepresentation of dimension �.Considering duals, this implies that the general representation of Q ofdimension � has a subrepresentation of dimension � � �. Now by [22,Theorem 3.4] the general representation of dimension � decomposes asa direct sum of representations of dimension � and �� �, contrary tothe fact that � is a Schur root.Now suppose that q(�) = 0 and � is divisible. As in Lemma 6.3the support of � is extended Dynkin with minimal positive imaginaryroot � and � = p� where K has characteristic p > 0 and � � � 6= 0.Now any element of I(�) extends to a representation of ��, and hencemoment4.tex; 26/04/2000; 18:15; p.20



21has a subrepresentation of dimension �. Similarly, by considering dualsand the opposite quiver, any element of I(�) has a subrepresentation ofdimension � � �. Now by Lemma 6.6 we have � = k� with 0 < k < p.But then � �� 6= 0, contradicting the fact that there are representationsof �� of dimension �.Finally, since the general element x of ��1� (�) is a simple representa-tion, it is a brick, and hence by Lemma 6.5 it is a smooth point. Thus��1� (�) is generically reduced. Since it is also a complete intersection,hence Cohen-Macaulay, it is reduced.7. The set F�In this section Q is a quiver with vertex set I . If � 2 KI , recall that R+�is the set of positive roots � with � �� = 0. We de�ne F� to be the setof � 2 R+� with the property that (�0; �i) � 0 for any (�0; �0) � (�; �)and any vertex i with �0i = 0. It is a sort of fundamental region withrespect to �. (Of course F0 is precisely the fundamental region.) Weprove that if there is a simple representation of �� of dimension �,then either (�; �) is equivalent to a pair (�0; �0) with �0 the coordinatevector of a loopfree vertex, or � 2 F�.By de�nition, if (�; �) � (�0; �0) then � 2 F� if and only if �0 2 F�0 .Now Lemma 5.3 immediately implies the following result.LEMMA 7.1. If � 2 F� then there is an equivalent pair (�0; �0) � (�; �)with �0 in the fundamental region. In particular � is an imaginary root.LEMMA 7.2. If �� has a simple representation of dimension � and iis a vertex, then either � = �i, or �i 6= 0, or (�; �i) � 0.Proof. For simplicity we may suppose that no arrow has tail at i.Suppose that �i = 0. Let V be a simple representation of dimensionvector �, with vector space Vj at each vertex j. Letting V� = �Vt(a),where the sum is over all arrows in Q with head at i, the linear mapsin V combine to give maps Vi ��! �� V�with �� = 0.Now if Ker(�) 6= 0 then V has a nonzero subrepresentation W whereWi = Ker(�) and Wj = 0 for all j 6= i.On the other hand if Im(�) 6= Vi then V has a proper subrepresen-tation W with Wi = Im(�) and Wj = Vj for all j 6= i.moment4.tex; 26/04/2000; 18:15; p.21



22 Thus, assuming that V is simple and � 6= �i, we deduce that �is injective and � is surjective. Since �� = 0 the map � induces asurjection V�= Im(�)! Vi, and hence dimV� � 2 dimVi. Thus (�; �i) =2 dimVi � dimV� � 0.LEMMA 7.3. If there is a simple representation of �� of dimension �then there is a pair (�0; �0) � (�; �) with �0 a coordinate vector or inthe fundamental region. In particular � is a root.Proof. If (�0; �0) � (�; �) then, because of the reection functors,there is a simple representation of ��0 of dimension �0. In particular�0 > 0, so we can choose a pair (�0; �0) with �0 minimal. Now either �0is a coordinate vector, or in the fundamental region. Namely, supposingthat �0 is not a coordinate vector, since there is a simple representationof dimension �0, it has connected support. Thus it su�ces to prove that(�0; �i) � 0 for any vertex i. This is true if there is a loop at i, so wemay suppose that i is loopfree. If �i = 0 then (�0; �i) � 0 by Lemma7.2. If �i 6= 0 then the reection at i is admissible, and (�0; �i) � 0 bythe minimality of �0.LEMMA 7.4. If there is a simple representation of �� of dimension �then either (�; �) is equivalent to a pair (�0; �0) with �0 the coordinatevector of a loopfree vertex, or � 2 F�.Proof. Supposing that there is no equivalent pair (�0; �0) with �0 thecoordinate vector of a loopfree vertex, we show that � 2 F�. Of course� is a root by Lemma 7.3. If (�0; �0) � (�; �) then there is a simplerepresentation of ��0 of dimension �0. Now if i is a vertex with �0i = 0then either there is a loop at i, in which case (�0; �i) � 0 automatically,or if there is no loop at i, then (�0; �i) � 0 by Lemma 7.2.8. Classi�cation of F� n ��Let Q be a quiver with vertex set I . It follows from Theorem 6.7 andLemma 7.4 that the set of imaginary roots in �� is a subset of F�. Inthis section we show that this is quite close to being an equality. Notonly is this a good way of determining the elements of �� (especiallywhen � = 0, so there are no admissible reections), it is also essentialfor the proof of our characterization of the dimension vectors of simplerepresentations of ��.THEOREM 8.1. If (�; �) is a pair with � 2 F� n ��, then after �rstpassing to an equivalent pair, and then passing to the support quiver of
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23� and the corresponding restrictions of � and �, one of the followingcases holds:(I) Q is extended Dynkin with minimal positive imaginary root �,and either � � � = 0 and � = m� with m � 2 or, if the �eld K hascharacteristic p > 0, � � � 6= 0 and � = m0p� with m0 � 2.(II) I is a disjoint union J [ K, with Pi2K �i�i = 0, there is aunique arrow with one end in J and the other in K, say connectingvertices j 2 J and k 2 K, and �j = �k = 1.(III) I is a disjoint union J [ K, there is a unique arrow with oneend in J and the other in K, say connecting vertices j 2 J andk 2 K, �j = 1, the restriction of Q to K is extended Dynkin withextending vertex k and minimal positive imaginary root �, ��� = 0,and the restriction of � to K is a multiple m� with m � 2.(Recall that if Q is an extended Dynkin quiver and � is its minimalimaginary root, then an extending vertex is a vertex i with �i = 1.)The proof of this theorem takes the rest of this section. Throughout,we assume that � 2 F�. In particular � is a root, so if it is sincere thenQ is connected. We say that � 2 NI is a (�1)-vector for the pair (�; �) if�; ��� 2 NR+� and (�; ���) = �1. We say that � is a divisor for (�; �)if it is a (�1)-vector, (�; �i) � 0 for every vertex i, and (� � �; �i) � 0whenever (�; �i) = 0. If � is a divisor for (�; �), then�1 = (�; �� �) =Xi (�� �)i(�; �i);and all terms in this sum are � 0. Thus there is a vertex j, which wecall the critical vertex for �, with (�; �j) = �1 and (�� �)j = 1, andfor every other vertex i one has (�; �i) = 0 or (�� �)i = 0.LEMMA 8.2. If q(�) < 0 then (�; � � �) < 0 for any � with � and�� � both nonzero and in NR+� .Proof. Suppose that (�; � � �) � 0 with �; � � � nonzero and inNR+� . By Lemma 7.1 there is an equivalent pair (�0; �0) with �0 in thefundamental region. Applying the same sequence of reections to �gives a vector �0 with (�0; �0��0) � 0 and �0 and �0��0 both nonzero.Now q(�0) = q(�0 � �0) + q(�0) + (�0; �0 � �0) � q(�0 � �0) + q(�0)so by [10, Lemma 2, p123] the support quiver of �0 is extended Dynkinand �0 is a multiple of the minimal imaginary root. But this impliesthat q(�) = q(�0) = 0, a contradiction.
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24LEMMA 8.3. If � 2 F� n�� and q(�) < 0 then there is a (�1)-vector� for (�; �).Proof. Combine the Lemma 8.2 with Theorem 5.6.LEMMA 8.4. If � 2 F� n ��, q(�) < 0 and � is a (�1)-vector for(�; �), then there is an equivalent pair (�0; �0) � (�; �) which has adivisor �0 satisfying �0 � �.Proof. Amongst all (�1)-vectors �0 for all pairs (�0; �0) equivalent to(�; �), choose �0 to be minimal with �0 � �. Then choose an equivalentpair (�0; �0) with �0 minimal amongst those having �0 as a (�1)-vector.We claim that (�0; �i) � 0 for every vertex i. This is automatic ifthere is a loop at i, so we may suppose that i is loopfree, and fora contradiction suppose that (�0; �i) > 0. We divide into two casesaccording to whether or not �0i = 0.Suppose that �0i 6= 0. This ensures that �i =2 R+�0, so any positiveroot in R+�0 remains a positive root on applying the reection si. Thussi(�0) and si(�0� �0) are in NR+ri(�0), and hence si(�0) is a (�1)-vectorfor (ri(�0); si(�0)). Now since (�0; �i) > 0 it follows that si(�0) is strictlysmaller than �0, a contradiction.Suppose on the other hand that �0i = 0. The vector �0��i is in NR+�0by Lemma 5.1. It is also nonzero, for if �0 = �i then�1 = (�i; �0 � �i) = (�0; �i)� 2;which is impossible since (�0; �i) � 0 because � 2 F�. Now �0 � �i is a(�1)-vector for (�0; �0), since(�0 � �i; �0 � �0 + �i) = (�0; �0 � �0)� (�i; �i)� (�0; �i) + 2(�0; �i)� �1� 2� 0 + 2 = �1;so (�0 � �i; �0 � �0 + �i) = �1 by Lemma 8.2. This contradicts theminimality of �0. Thus the claim is proved.Finally, suppose that i is a vertex with (�0; �i) = 0. If �0i = 0, then(�0 � �0; �i) = (�0; �i) � 0 since � 2 F�. On the other hand, if �0i 6= 0then the reection at i is admissible for (�0; �0), but si has no e�ecton �0, so if (�0 � �0; �i) > 0 then �0 is a (�1)-vector for (ri(�0); (si�0)),contradicting the minimality of �0. Thus �0 is a divisor for (�0; �0).LEMMA 8.5. Let � be a divisor for (�; �), and let j be the criticalvertex for �. Suppose that � is a vector whose components are non-negative real numbers, with support contained in the support of � � �,with �j = 0, (�; �j) = �1 and with (�; �i) non-negative and integer-valued for every vertex i 6= j. Then there is at most one vertex i atwhich (�; �i) is strictly positive, and at this vertex (�; �i) = 1.moment4.tex; 26/04/2000; 18:15; p.24



25Proof. If i is a vertex with �i 6= 0 then i 6= j and by assumption(� � �)i 6= 0, so (�; �i) = 0, and hence (� � �; �i) � 0. It follows that(�� �; �) � 0. Now since (�� �)j = 1 we have(� � �; �) =Xi (�� �)i(�; �i) = �1 +Xi6=j (�� �)i(�; �i)Now the terms in this last sum are non-negative integers, so at mostone term is nonzero. Now if (�; �i) > 0 then certainly �i 6= 0, so byhypothesis (�� �)i 6= 0, and hence the corresponding term in the sumis nonzero.LEMMA 8.6. Let � be a divisor for (�; �), and let j be the criticalvertex for �. Suppose there are vertices vi (1 � i � n) and the onlyarrows connected to the vi are of the following form (the orientation ofthe arrows is irrelevant): eitherrj rv1 rv2 : : : rvnwith n � 1, or rj rv1 : : : rvn�2��r vn�1@@r vnwith n � 3. Then (�� �)vi = 0 for some i.Proof. Supposing otherwise, we obtain a contradiction using Lemma8.5. In the �rst case take � to be the vector with �vi = i for all i, and� zero at all other vertices. In the second case take � to be the vectorwith �vi = i for i � n � 2, �vn�1 = �vn = (n � 1)=2, and � zero at allother vertices.LEMMA 8.7. Suppose that � is a divisor for (�; �), and let j be thecritical vertex for �. Let Q0 be an extended Dynkin subquiver of Qcontained in the support of � � �, and let � be its minimal positiveimaginary root. If for any vertex i 2 Q0 we de�nesi = Xa2QnQ0h(a)=i �t(a)+ Xa2QnQ0t(a)=i �h(a);then either j =2 Q0 and si = 0 for all vertices i 2 Q0, or j 2 Q0 and�j =Pi2Q0 �isi.Proof. For any vertex i in Q0 we have (�; �i) = (�jQ0; �i)Q0�si. Thus(�; �) = �Pi �isi. Since (���)i 6= 0 for all i in Q0, we have (�; �i) = 0for any i 6= j. The result follows.
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26LEMMA 8.8. If Q0 is an extended Dynkin quiver and r and s aredistinct extending vertices, then there is no vector  with integer com-ponents, with (; �r) = 1, and with (; �i) = 0 for all i 6= r; s.Proof. Adding a suitable multiple of the minimal positive imaginaryroot � we may assume that r = 0.Suppose that Q0 is of type ~An. Thus Q0 has shaper rr rr r��@@ @@��: : :: : :u1 up�1v1 vq�1r up = vq = swith p; q � 1. Now if u1 = x and v1 = y then the hypotheses implythat x + y = �1 and ui = ix and vi = iy for all i. Thus px = qy,so x and y have the same sign. But then the equality x + y = �1 isimpossible for x; y integers.Next suppose that Q0 is of type ~Dn, in which case there are twopossibilities for the location of r and s. The �rst possibility isrr r r rr@@�� ��@@: : :v1 vprs tuNow the hypotheses imply that v1 = �1, but also vp = 2t = 2u,and then vp = vp�1 = � � � = v1 , so v1 is even, a contradiction. Thesecond possibility is rr r r rr@@�� ��@@: : :v1 vprt suin which case v1 = �1, but also v1 = 2t, a contradiction.Finally, suppose that Q0 is of type ~En. For type ~E6, the componentsof  on the arm containing r are successively 0;�1;�2 (so �2 at thecentral vertex), but considering the arm not containing r or s, if thecomponent of  at the tip is x, then the components on the arm arex; 2x; 3x. Thus we need 3x = �2, which is impossible. For type ~E7, thecomponents of  on the arm containing r are successively 0;�1;�2;�3,but considering the shortest arm, if the component of  at the tip isx, then the component at the centre is 2x. Thus we need 2x = �3,which is impossible. Note that ~E8 doesn't occur since it has only oneextending vertex.LEMMA 8.9. Suppose that � is a divisor for (�; �), that j is the criticalvertex for �, and that � and ��� are both sincere. If Q0 is an extendedmoment4.tex; 26/04/2000; 18:15; p.26



27Dynkin subquiver of Q, then j is contained in Q0, and it is not anextending vertex for Q0.Proof. If j is not in Q0 then by Lemma 8.7 we have si = 0 for all i.Since � is sincere this implies that any arrow with one vertex in Q0 iscontained in Q0. Since Q is connected we must have Q = Q0, but thenj is in Q0, a contradiction. Thus j is in Q0.Now suppose that j is an extending vertex for Q0, that is, �j = 1,where � is the minimal positive imaginary root for Q0. Thus by Lemma8.7 there is a unique arrow a in QnQ0 with one end in Q0, say at vertex`. The other end cannot be in Q0, say it is at vertex k. Then also �k = 1and �` = 1. Now ` = j, for otherwise by considering the restriction of� to Q0 we obtain a contradiction by Lemma 8.8.Now 0 = (�; �k) � 2�k��j� t = 2��j� t, where t is the sum of allterms �i with i a vertex not in Q0 connected by an arrow to k. Thus�j is 1 or 2.If �j = 2 then t = 0, so there are no arrows, apart from a incidentat k. Thus there is a linear quiver of length 1 attached to j, contraryto Lemma 8.6.On the other hand, if �j = 1 then t = 1, so k must be connected to aunique vertex u1 not in Q0, and �u1 = 1. Now the condition (�; �u1) = 0implies that u1 must be connected to a unique vertex u2 6= k and�u2 = 1. Repeating in this way gives an in�nite collection of distinctvertices k; u1; u2; : : : . This is impossible.Thus j cannot be an extending vertex for Q0.LEMMA 8.10. If � is a divisor for (�; �) and � and � � � are bothsincere then Q is a star with three arms.Proof. Since every vertex of the extended Dynkin quiver of type ~Anis an extending vertex, by Lemma 8.9 the quiver Q must be a tree.Suppose that Q0 is a subquiver of Q which is extended Dynkin oftype ~Dn, and let � be the minimal positive imaginary root for Q0. ByLemma 8.9, j must be contained in Q0 and it is not an extending vertex.Thus j is on the trunk of Q0, and �j = 2. By Lemma 8.6, there must bearrows in Q connecting to vertices on both sides of j, so by Lemma 8.7there are two such arrows, they attach to extending vertices k; ` 2 Q0,and we have sk = s` = 1. Let m be the vertex in Q0 connected to k,and let p be the other extending vertex in Q0 connected to m (or incase Q0 is of type ~D4, let p be one of the other extending vertices withp 6= `). Since (�; �p) = 0, we have �m = 2�p, so �m is even. On theother hand, since (�; �k) = 0 we have �m + sk = 2�k, so �m is odd, acontradiction.Thus Q contains no subquiver of type ~Dn, and so it is a star withthree arms.
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28LEMMA 8.11. If � is a divisor for (�; �) then � and ��� cannot bothbe sincere.Proof. Supposing that � and � � � are both sincere, we derive acontradiction. By Lemma 8.10, the quiver Q is a star with three arms.Moreover, j must be at the tip of one of the arms by Lemma 8.6. Notethat Q is not Dynkin or extended Dynkin since (�; �) =Pi �i(�; �i) =��j < 0. On deleting the vertex j, however, the quiver must be Dynkinby Lemma 8.9.We say that Q has type (p; q; r) if the arm containing j involves parrows and the other two arms involve q and r arrows respectively. Letk and ` be the vertices at the tips of the second and third arms.If Q has type (1; q; r), let � be the vector which is 0 at j and 1 atevery other vertex. This gives a contradiction by Lemma 8.5.If Q has type (2; 1; r) for some r, let � be the vector which is 0 atj, 1 at k and the vertex adjacent to j, and 2 at all other vertices. Thisgives a contradiction by Lemma 8.5.If Q has type (2; q; r) with q; r � 2, then j is an extending vertexfor a subquiver of type ~E6. This is impossible by Lemma 8.9.Finally suppose that Q has type (p; q; r) with p � 3. Now Q mustcontain an extended Dynkin subquiver Q0. By Lemma 8.9, Q0 mustcontain j, but the condition p � 3 forces j to be an extending vertexfor Q0. This is impossible.LEMMA 8.12. Suppose � is a divisor for (�; �). Assume � is sincerebut � is not. Then �j = 0, and decomposing I as a disjoint unionJ [K where K is the support of � and J is the set of vertices where �vanishes, there is a unique arrow connecting J to K. It connects j tosome vertex k 2 K with �k = 1.&%'$&%'$r rj kJ KIn addition there is a vertex ` 2 K (possibly equal to k) with the propertythat �` = 1, (� � �; �`) = �1, and (� � �; �i) = 0 for all i 2 K withi 6= `.Proof. Since Q is connected, at least one arrow a connects J to K. Ifits vertex in J is i, then clearly (�; �i) < 0, so i = j. Now (�; �j) = �1,so there can be no other arrows between j and K, and if k is the endof a in K, then �k = 1.Observe that (� � �; �i) � 0 for all i 6= j, since this is part of thede�nition of a divisor if (�; �i) = 0, while if (�; �i) 6= 0 then we mustmoment4.tex; 26/04/2000; 18:15; p.28



29have (���)i = 0, and the assertion is clear. Now since �j = 0 we have�1 = (�; �� �) =Xi6=j �i(�� �; �i)and in this sum all terms are � 0. Thus exactly one term is �1, saycorresponding to the vertex i = `, and all other terms are zero. Theresult follows.LEMMA 8.13. If Q0 is a Dynkin quiver it is not possible to �nd verticesr and s (possibly equal) and vectors � and  with integer components,satisfying �r = 1; (�; �s) = 1; (�; �i) = 0 for i 6= ss = 1; (; �r) = 1; (; �i) = 0 for i 6= r.Proof. First observe that r 6= s, for otherwise (�; �) = 1, which isimpossible since (�; �) = 2q(�) is even.Suppose there are vertices and arrowsrv1 rv2 : : : rvn = rwith n � 2, no other arrows attached to the vi (i < n), and all vi 6= s.Then the conditions (�; �vi) = 0 imply by induction that �vi = i�v1 .This is impossible since �r = 1. Similarly the con�guration with rand s interchanged cannot occur. Thus one of three cases occurs. Weeliminate each one in turn.(1) Q0 is of type An and r and s are the opposite tips. Startingat the vertex r, the components of � must be 1; 2; 3; : : : ; n. But then(�; �s) = 2n� (n� 1) = n+ 1 6= 1, a contradiction.(2) Q0 is a star with three arms, and r and s occur on the samearms, with one of them at the tip. Without loss of generality, assumethat s is at the tip. Letting x = �s, working inwards from the vertex sthe components of � must be x; 2x� 1; 3x� 2; : : : . Now if there are parrows between r and s we have 1 = �r = (p+ 1)x� p, so x = 1. Thusthe component of � at the centre of the star is also 1, but consideringeither of the other arms, this is impossible.(3) Q0 is a star with three arms, and r and s occur as tips of di�erentarms. Let the arm containing r contain p arrows, and let the armcontaining s contain q arrows. Now, starting from r, the components of� on the arm containing r are 1; 2; : : : ; p+1. If x = �s then the compo-nents of � on the arm containing s are x; 2x�1; 3x�2; : : : ; (q+1)x�q.Thus p+ 1 = (q + 1)x� q. Solving for x this implies that x � 2 (sinceit is an integer), and then p+ 1 = q(x� 1) + x > q + 1. Thus p > q. Asimilar argument with r and s interchanged gives q > p. Contradiction.
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30LEMMA 8.14. If � is non-sincere divisor for (�; �), � is sincere and�� � is not sincere, then (�; �) is of type (II).Proof. If � and ��� have disjoint support then it is easy to deducefrom Lemma 8.12 that (�; �) is of type (II). Thus, supposing that thesupports of � and � � � intersect, we need to derive a contradiction.We decompose K as the disjoint union of L, the set of vertices in Kat which ��� vanishes, andM, the intersection of K with the supportof �� �.Since Q is connected there is at least one arrow b connecting L toM. If its vertex in L is i, then clearly (�� �; �i) < 0, so i is the vertex` appearing in Lemma 8.12. Now (� � �; �i) = �1 so there can be noother arrows between ` and M, and if m is the end of b in M then(� � �)m = 1. Thus Q decomposes as follows (except that possiblyk = m). &%'$&%'$&%'$r r r rj k m `J M LLet Q0 be the restriction of Q toM. Now any subquiver of Q0 mustbe connected by an arrow to a vertex at which � is nonzero, so Q0cannot contain an extended Dynkin subquiver by Lemma 8.7. Thus Q0is Dynkin, and considering the restrictions of � and � � � to Q0, onegets a contradiction by Lemma 8.13.LEMMA 8.15. If � is non-sincere divisor for (�; �) and � � � issincere, then (�; �) is of type (III).Proof. Let Q0 be the restriction of Q to K. Since ��� is sincere, wehave (�; �i) = 0 for all i 6= j, and hence (�; �i)Q0 = 0 for all i 2 Q0. NowQ is connected, and hence so is Q0, and then since � has support Q0,it follows from [10, Lemma 1, p123] that Q0 is extended Dynkin and� is a multiple of the minimal positive imaginary root � for Q0. Now�k = �` = 1, so � = � and k and ` are extending vertices for Q0. ByLemma 8.8 we have k = `. Let  be the restriction of ��� to Q0. Then(; �i)Q0 = 0 for all i 2 Q0, so  is a multiple of �. The result follows.Proof. (of Theorem 8.1) Suppose that � 2 F� n ��. Since � is animaginary root, q(�) � 0. Suppose �rst that q(�) = 0. By passingto an equivalent pair, we may assume by Lemma 7.1 that � is in thefundamental region. Since q(�) = 0, this implies by [10, Lemma 1,p123] that the support of � is extended Dynkin and � is a multiple ofthe minimal imaginary root �, say � = m�. If � � � = 0 then clearlym � 2, for otherwise � 2 ��. On the other hand, if � � � 6= 0 then since� �� = 0 the �eld K must have characteristic p > 0 and m is a multiplemoment4.tex; 26/04/2000; 18:15; p.30



31of p, say m = m0p. Now m0 � 2 for otherwise � 2 ��. Thus we are inthe situation of case (I).Thus suppose that q(�) < 0. We replace (�; �) by an equivalent pairto ensure that � has support as small as possible. Then we pass to thesupport quiver Q0 of � and the restrictions (�0; �0) of � and �. Clearly�0 2 F�0 n��0. Observe that if we replace (�0; �0) by any equivalent pair(�00; �00), then �00 is sincere (that is, has support Q0), and (�00; �00) canequally well be obtained from (�; �) by applying the reections �rst,and then passing to the support quiver.Now by Lemma 8.3 there is a (�1)-vector �, for (�0; �0), and hencea divisor �0 for some equivalent pair (�00; �00) by Lemma 8.4. Now �0and �00 � �0 cannot both be sincere by Lemma 8.11. Thus either �0 isa non-sincere divisor, or we obtain a non-sincere divisor for some pairequivalent to (�00; �00) on applying Lemma 8.4 to the (�1)-vector �00��0for (�00; �00). Thus case (II) or (III) holds by Lemmas 8.14 and 8.15.9. Nonexistence of certain simple representationsIn this section we prove the following result. This is used in the nextsection to complete the proof of Theorem 1.2.THEOREM 9.1. Let Q0 be an extended Dynkin quiver, let k be anextending vertex for Q0, and let Q be the quiver obtained from Q0 byadjoining one vertex j and one arrow b : j ! k. Let I be the vertex setof Q, let � 2 KI be the minimal positive imaginary root for Q0, and let� = �j +m�, where m � 2. If � 2 KI satis�es �j = 0 and � � � = 0,then there is no simple representation of �� of dimension vector �.Throughout this section we assume that Q0; Q; I; j; k; b; �; �;m and� are as in the theorem.LEMMA 9.2. If � = �(1) + � � �+ �(r) with �(t) 2 NI n f0g for each t,then Prt=1 p(�(t)) � p(�), with equality exactly when all but one of the�(t) are equal to �.Proof. Reordering, we may suppose that �(1)j = 1 and �(t)j = 0 fort 6= 1. Letting  = �(1) � �j , we haveXt p(�(t)) = k � q() +Xt6=1 p(�(t))Using the fact that the restriction of q to Q0 is positive semide�nitewith radical Z�, one can easily see that p(�(t)) � �(t)k for t 6= 1, withmoment4.tex; 26/04/2000; 18:15; p.31



32equality only possible if �(t)k = 0 or �(t) = �. ThusXt p(�(t)) � �k � q() = m� q() � m = p(�):Now to have equality we must have q() = 0 and each �(t) (t 6= 1)either equal to �, or vanishing at k. But the condition q() = 0 impliesthat  is a multiple of �, and hence Pt6=1 �(t) is also a multiple of �.This is impossible unless each of the terms is equal to �.Let � : Rep(Q;�)! Rep(Q0; m�) be the projection. If U is a G(m�)-stable subset of Rep(Q0; m�), then clearly ��1(U) is a G(�)-stablesubset of Rep(Q;�).LEMMA 9.3. If U is a non-empty open subset of Rep(Q0; m�) whichis G(m�)-stable, then dimG(�)(Rep(Q;�) n ��1(U)) < p(�).Proof. For a dimension vector , we write B() � Rep(Q; ) for theset of bricks, and I() for the set of indecomposable representations.We claim that for s � 0 the vector  = �j + s� is a Schur root, anddimG()(I() nB())< p():If s = 0 this is trivial. If s � 2 then  is in the fundamental region, andthe assertion follows from Kac [8, x1.10, Lemma 1]. Finally, if s = 1then  is obtained from the dimension vector � by a reection functor,see for example [8, x1.7], and the assertion follows from the fact (whichwe also need later) that � is a Schur root, anddimG(�)(I(�) nB(�)) < p(�):Indeed, I(�) nB(�) contains only �nitely many orbits.Now we decompose Rep(Q;�) into sets I(�(1); : : : ; �(r)) as in Section4. We need to prove thatdimG(�)(I(�(1); : : : ; �(r)) n ��1(U)) < p(�):By Lemmas 9.2 and 4.3 we only need to consider the sets I(�j +s�; �; : : : ; �) for 0 � s � m (where there are m � s copies of �). Nowby the claim above and the argument of Lemma 4.3 it su�ces to provethat dimG(�)(Bs n ��1(U)) < p(�);where B(�(1); : : : ; �(r)) denotes the subset of I(�j+s�; �; : : : ; �) in whichthe indecomposable summands are bricks.Let R0s = Rep(Q; �j+s�)�Rep(Q; �)�� � ��Rep(Q; �), considered as asubset of Rep(Q;�) using block-diagonal matrices. Let B0s be the openmoment4.tex; 26/04/2000; 18:15; p.32



33subset of R0s consisting of the elements in which each representationis a brick. Let H the subgroup of G(�) corresponding to the productG(�j + s�)� G(�)� � � � � G(�). By Lemma 4.1 we need to prove thatdimH(B0s n ��1(U)) < p(�). Since H acts freely on B0s this reduces toa question of dimension, and since B0s is irreducible of dimensiondimRep(Q; �j + s�) + (m� s) dimRep(Q; �)= dimH + p(�j + s�) + (m� s)p(�) = dimH + p(�);and ��1(U) is an open subset, it su�ces to prove thatB0s meets ��1(U).In other words we need that �(B0s) meets U .Now the canonical decomposition for dimension vector m� is of theform � + � � �+ �, so U contains a representation which is a direct sumof bricks of dimension �, and then since U is G(m�)-stable, it meetsP = Rep(Q0; s�)�Rep(Q0; �)�� � ��Rep(Q0; �). Also the map B0s ! Pconsists of an open inclusion followed by the projection, so the image�(B0s) is open in P . Since P is irreducible, the two non-empty opensubsets �(B0s) and U \ P must intersect. Thus �(B0s) meets U , asrequired.Let � : ��1� (�)! Rep(Q;�) be the projection.LEMMA 9.4. Under the map ��, any irreducible component of ��1� (�)dominates Rep(Q0; m�).Proof. Let V be an irreducible component of ��1� (�). Clearly V isG(�)-stable, so ��(V ) is G(m�)-stable. Let U be the complement ofthe closure of ��(V ), and for a contradiction suppose that U is non-empty. By Lemma 9.3 we have dimG(�)(Rep(Q;�) n ��1(U)) < p(�).Now V � ��1(Rep(Q;�) n ��1(U)), so by Lemma 3.4 we havedim V < p(�) + � � �� q(�) = dimRep(Q;�)� dim End(�)0:This is impossible since ��1� (�) is a �bre of the moment map, soevery irreducible component has dimension at least dimRep(Q;�) �dimEnd(�)0.Recall that a ring epimorphism A ! B is said to be pseudoat ifTorA1 (B;B) = 0. This is relevant because of [3, Theorem 0.7].LEMMA 9.5. If N = Pi �i then there is a pseudoat epimorphism� : KQ0 ! Mat(N;K[x]) such that the general representation of Q0 ofdimension m� is the restriction of a Mat(N;K[x])-module,Proof. This is standard. See [3, Lemma 11.1].
moment4.tex; 26/04/2000; 18:15; p.33



34LEMMA 9.6. If A ! B is a pseudoat epimorphism of K-algebras,and M is a left A-module, then the map�A M0 K� �! �B B 
A M0 K �is a pseudoat epimorphism.Proof. By [1, Proposition 5.2] it su�ces to observe that the diagram�A 00 K� ����! �B 00 K�??y ??y�A M0 K� ����! �B B 
A M0 K �is a pushout in the category of rings.LEMMA 9.7. Suppose that f and g are endomorphisms of a vectorspace V of dimension m � 2. If the commutator [f; g] has rank at mostone, then V has a non-trivial proper subspace invariant under f and g.Proof. Replacing f by f � �1 for some eigenvalue � of f , we maysuppose that f is singular. Also we may suppose that f 6= 0, for other-wise one can take an invariant subspace for g. Let v1; : : : ; vr be a basisof Im(f), and extend it to a basis v1; : : : ; vm of V . Let w1; : : : ; ws be abasis of Ker(f), and extend it to a basis w1; : : : ; wm of V . With respectto these bases, we compute the matrices of f and g. With the rows andcolumns indexed by the vi, let g take the block form�X YZ W� ;and with the rows and columns indexed by the wi, let g take the blockform �P QR S� :Now with the rows indexed by by the vi and the columns indexed bythe wi, the map f takes block form�0 C0 0�with C invertible, and then [f; g] takes the form�CR CS �XC0 �ZC � :
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35Now the rank one hypothesis implies that CR = 0 or ZC = 0, so thatR = 0 or Z = 0. In the �rst case Ker(f) is an invariant subspace; inthe second case Im(f) is invariant.Proof. (of Theorem 9.1) Choose a pseudoat epimorphism � as inLemma 9.5. By Lemma 9.6 it induces a pseudoat epimorphism� : KQ = �KQ0 KQ0ek0 K � �! �Mat(N;K[x]) Mat(N;K[x])�(ek)0 K � :Denote the right hand algebra by R. Now the fact that �k = 1 impliesthat Mat(N;K[x])�(ek) is an indecomposable projective Mat(N;K[x])-module. Thus R is Morita equivalent to�K[x] K[x]0 K � �= KQ00;where Q00 is the quiver with two vertices j; k and arrows b : j ! k anda : k! k.Identify � 2 KI with the corresponding element of K 
ZK0(KQ),and then identify �� with the algebra ��(KQ) as in [3, Theorem 0.2].Now � induces a map �� : �� ! ���(�)(R), and by [3, Theorem 0.7]the diagram KQ �����! R??y ??y�� ������! ���(�)(R)is a pushout in the category of rings.Now suppose that there is a simple representation of �� of dimen-sion vector �. Since the simple representations form an open subset of��1� (�), it follows by Lemma 9.4 that the set of simple representationsdominates Rep(Q0; m�). Thus there is a simple representation S whoserestriction to Q0 is the restriction by � of a Mat(N;K[x])-module. Thusthe restriction of S to Q is the restriction by � of an R-module. Nowsince the diagram above is a pushout, it follows that S is naturally a���(�)(R)-module, and clearly it must be simple. We show that this isimpossible.By [3, Corollary 5.5] the ring ���(�)(R) is Morita equivalent to��(Q00), where �j = �k = 0 by [3, Lemma 11.2]. Moreover S corre-sponds to a simple representation T of ��(Q00) of dimension vector with j = 1 and k = m. Now the arrows a and a� are endomorphismsof the vector space Tk with commutator equal to b�b. Since dimTj = 1it follows that this commutator has rank at most one, so by Lemmamoment4.tex; 26/04/2000; 18:15; p.35



369.7, Tk has a non-trivial proper subspace invariant under a and a�.Now this subspace and its image under b� are a non-trivial propersubrepresentation of T . This is a contradiction.10. Dimension vectors of simple representationsLet Q be a quiver with vertex set I . In this section we complete theproof of Theorem 1.2. All that remains is to prove the implication(1) =) (2), that is, if � is the dimension vector of a simple representa-tion of �� then � 2 ��. Thus suppose there is a simple representationof �� of dimension �, and for a contradiction assume that � =2 ��.Observe that there cannot be an equivalent pair (�0; �0) with �0 acoordinate vector, for then clearly �0 2 ��0, a contradiction by Lemma5.2. Thus by Lemma 7.4 we have � 2 F�, and so Theorem 8.1 applies.Thus we may assume that we are in a situation as in (I), (II) or (III),and to obtain a contradiction it su�ces to show that in each case thereis no simple representation.Case (I). By [3] there is a Conze embedding�� !Mat(N;Khx; y j xy � yx = � � �i)where N =Pi �i. If � �� = 0 this embedding shows that �� satis�es theidentities ofN�N matrices, so any simple representation has dimensionat most N . Thus �� cannot have a simple representation of dimensionvector m� with m � 2. If � � � 6= 0 and K has characteristic p > 0 thenKhx; y j xy � yx = � � �i embeds in Mat(p;K[xp; y]). Thus �� satis�esthe identities of pN � pN matrices, so any simple representation hasdimension at most pN . Thus �� cannot have a simple representationof dimension vector m0p� with m0 � 2.Case (II). Since up to isomorphism �� does not depend on theorientation of Q, we may assume that the arrow connecting j and k isb : j ! k. Suppose that V is a representation of �� of dimension �.Let Vi be the vector space corresponding to vertex i and let Va be thelinear map corresponding to an arrow a. Now at any vertex i we haveXh(a)=iVaVa� � Xt(a)=iVa�Va = �i1Vi :Taking traces and summing over all vertices i 2 K, almost all termscancel, and one obtains tr(VbVb�) = 0. Now since �j = �k = 1 thismoment4.tex; 26/04/2000; 18:15; p.36



37implies that Vb = 0 or Vb� = 0. In the �rst case �i2JVi is a subrepre-sentation of V ; in the second case �i2KVi is a subrepresentation of V .Thus V is not simple, as required.Case (III). Suppose that V is a representation of �� of dimension�. As in case (II) we may assume that the arrow connecting j and kis b : j ! k, and furthermore tr(VbVb�) = 0. Thus tr(Vb�Vb) = 0, andsince �j = 1 this implies that Vb�Vb = 0.Let Q00 be the quiver obtained from Q by deleting all vertices inJ except j, and all arrows with head and tail in J . Let �00 be therestriction of � to K [ fjg, and let �00 be the vector with �00j = 0 and�00i = �i for i 2 K. In view of the observation above, the restriction V 00of V to Q00 is a representation of the deformed preprojective algebra��00 for the quiver Q00, of dimension vector �00. Now by Theorem 9.1,the representation V 00 cannot be simple, so it has a non-trivial propersubrepresentation W . Now Vj is one-dimensional, so either Wj = 0 orWj = Vj . In the �rst case W can be extended to a subrepresentationof V by de�ning Wi = 0 for all i 2 J n fjg; in the second case W canbe extended to a subrepresentation of V by de�ning Wi = Vi for alli 2 J n fjg. Thus V is not simple, as required.11. Quotient schemesIn this section K is an algebraically closed �eld of characteristic zero,and Q is a quiver with vertex set I .Proof. (of Theorem 1.3) By [12, Theorem 2] the quotient schemeRep(Q;�) //G(�) is a disjoint union of locally closed strata accord-ing to the representation type of the semisimple representations. Nowthe quotient ��1� (�) //G(�) can be identi�ed with a closed subset ofRep(Q;�) //G(�), so the semisimple representations of a given type �form a locally closed subset S(�). Suppose that � is the type� = (k1; �(1); : : : ; kr; �(r)):and consider the subset Z of��1�(1)(�)� � � � � ��1�(r)(�)consisting of those tuples (x1; : : : ; xr) with the xt corresponding topairwise non-isomorphic simple representations. Clearly Z is an opensubset and S(�) is the image of the mapf : Z ! ��1� (�) //G(�)moment4.tex; 26/04/2000; 18:15; p.37



38sending (x1; : : : ; xr) to the direct sum of the xt with multiplicities. ThusS(�) is irreducible. Now the group H = G(�(1)) � � � � � G(�(r)) actsfreely on Z, and any �bre of f is a �nite union of H-orbits. ThusdimS(�) = dimZ � dimH = rXt=1 2p(�(t));as required.Proof. (of Corollary 1.4) Since ��1� (�) is reduced and irreducible, sois the quotient ��1� (�) //G(�). Now the stratum of simple representa-tions has dimension 2p(�), and all other strata have strictly smallerdimension.Remark 11.1. If (�; �) is a pair with � � � = 0 but � � � 6= 0 for all0 < � < �, then clearly � 2 �� if and only if it is a positive root.If it is a positive root then every element of ��1� (�) must be a simplerepresentation of �� by [5, Lemma 4.1]. Thus ��1� (�) is smooth byLemma 6.5, and the map��1� (�)! ��1� (�) //G(�)is a principal �etale �bre space for the group G(�) by Luna's slice theo-rem [13, xIII.1, Corollaire 1]. It follows in this case that ��1� (�) //G(�)is smooth. It would be interesting to know about the singularities of��1� (�) and ��1� (�) //G(�) for general � and �.Appendix. Application to Kac's TheoremIn this appendix we show how the lifting results of section 3 can beused to give a simple proof of part of Kac's Theorem assuming thatthe base �eld K has characteristic zero. Recall [8, Section 1.10] thatthe proof of Kac's Theorem uses two key lemmasKAC'S LEMMA 1. If � is in the fundamental region and q(�) < 0then the set B(�) of bricks (representations with endomorphism algebraequal to K) is a dense open subset of Rep(Q;�) (so dimG(�)B(�) =p(�)) and dimG(�)(I(�) nB(�)) < p(�).KAC'S LEMMA 2. The number of indecomposable representations ofdimension � (if it is �nite) and dimG(�) I(�) are independent of theorientation of Q.
moment4.tex; 26/04/2000; 18:15; p.38



39Kac's proof of Lemma 1 is quite natural and straightforward. On theother hand, his proof of Lemma 2 is roundabout, and involves reducingto �nite �elds and then using counting arguments. It would be nice toavoid Lemma 2, or �nd a direct proof of it.PROPOSITION A.1. If � 2ZI then � is a positive root if and only iffor the general element of f� 2 KI j � �� = 0g there is an indecompos-able representation of �� of dimension �.Proof. Let S(�) be the statement that for the general element off� 2 KI j � � � = 0g there is an indecomposable representation of ��of dimension �.Since K has characteristic zero, if i is a loopfree vertex and � isnot a multiple of �i, then the general element of the set f� 2 KI j� �� = 0g has �i 6= 0. For such � there is a a reection functor relatingrepresentations of �� of dimension � and representations of �ri(�) ofdimension si(�). It follows that S(�) holds if and only if S(si(�)) holds.Note also that if i is a loopfree vertex and � is not a multiple of �i,then � is a positive root if and only if si(�) is a positive root.Now, by applying a sequence of reections to reduce �, it su�ces toprove the theorem in the following three cases.(1) � is a multiple of the coordinate vector at a loopfree vertex, say� = k�i. In this case � is a positive root if and only if k = 1, and alsoclearly S(�) holds if and only if k = 1.(2) � is in the fundamental region. In this case � is a positive root.Also, by Kac's Lemma 1 and the theory of extended Dynkin quivers,there is an indecomposable representation of Q of dimension �, and byTheorem 3.3 this lifts to a representation of �� for any � with � �� = 0.Thus S(�) holds.(3) � has disconnected support, or a strictly negative component.In this case � is not a positive root, and S(�) is false.COROLLARY A.2. If there is an indecomposable representation of Qof dimension � then � is a positive root.Proof. By Theorem 3.3 this representation lifts to an indecomposablerepresentation of �� for any � with � � � = 0. Thus S(�) holds.Remark A.3. Suppose that K = C and Q has no oriented cycles. Inthis case Scho�eld [23] has used Euler characteristics to construct thepositive part of the Kac-Moody Lie algebra associated to Q. In thecourse of his proof he shows that if � is a positive root then there isan indecomposable representation of Q of dimension �. This result andCorollary A.2 give a proof of Kac's characterization which completelyavoids �nite �elds. moment4.tex; 26/04/2000; 18:15; p.39



40 If � is a positive real root, then the unique indecomposable repre-sentation of Q of dimension � may be constructed as follows. Choosea sequence of reections�i = �(0); �(1); : : : ; �(m) = �with i a loopfree vertex, �(t) = sit(�(t�1)) for t � 1, and �(t) not acoordinate vector for t � 1. Let �(0) 2 KI be the vector with �(0)i = 0and �(0)j = 1 for all j 6= i, and de�ne �(t) = rit(�(t�1)) for t � 1.PROPOSITION A.4. With the hypotheses above, the reection at itis admissible for (�(t); �(t)) for all t. Moreover, there is a unique inde-composable representation of Q of dimension �, and it may be obtainedfrom the trivial representation of ��(0) of dimension �i by applying suc-cessively the reection functors at the vertices it, and then restrictingthe resulting representation of ��(m) to Q.Proof. Since K has characteristic zero, �(0) � � 6= 0 for any root �which is not equal to ��i (for some component �j with j 6= i mustbe nonzero, and all components have the same sign). It follows that�(t) � � 6= 0 for any root � which is not equal to ��(t). In particular�(t) � �it 6= 0 for t � 1. Thus the reections are admissible.Now the reection functors give an equivalence between representa-tions of ��(0) of dimension �i, of which there is only one, and represen-tations of ��(m) of dimension �. Thus there is a unique representationsof ��(m) of dimension �, up to isomorphism.Now the restriction of this representation to Q is indecomposable,for if it had an indecomposable direct summand of dimension �, thenby Theorem 3.3 one has �(m) � � = 0. But this is impossible since � isa root, not equal to ��.Finally, for uniqueness, observe that any indecomposable represen-tation of Q of dimension � lifts to a representation of ��(m) since�(m) � � = 0. Since there is only one representation of ��(m) , it followsthat there is only one indecomposable representation of Q.Finally we turn to Kac's Lemma 2. We have an elementary proof ofit for indivisible dimension vectors, that is, vectors whose componentshave no common divisor.PROPOSITION A.5. If � 2 NI is indivisible then the number of iso-morphism classes of indecomposable representations of dimension � (if�nite), and the number of parameters dimG(�) I(�), are independent ofthe orientation of Q. moment4.tex; 26/04/2000; 18:15; p.40
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