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Abstract. We study the moment map associated to the cotangent bundle of
the space of representations of a quiver, determining when it is flat, and giving a
stratification of its Marsden-Weinstein reductions. In order to do this we determine
the possible dimension vectors of simple representations of deformed preprojective
algebras. In an appendix we use deformed preprojective algebras to give a simple
proof of much of Kac’s Theorem on representations of quivers in characteristic zero.
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1. Introduction

Let K be an algebraically closed field and let () be a quiver with vertex
set I. Representations of @ of dimension vector a € N are given by
elements of the space

Rep(Q7 Oé) = @Mat(ah(a) X () I()v
a€Q

where h(a) and t(a) are the head and tail vertices of an arrow a € Q);
isomorphism classes correspond to orbits of the group

G(o) = [ [[ GL(ai, K) | /K”
€]
acting by conjugation. Using the trace pairing there is an identification
of the cotangent bundle

T" Rep(Q, @) = Rep(Q, o),

where @ is the double of (), obtained by adjoining a reverse arrow
a* : j — ¢ for each arrow a : ¢ — j in Q). -
We consider the moment map p, : Rep(Q), ) — End(a)o defined

by
,uoz(x)i: Z Lqlog* — Z Ta*Tg,

a€Q ' a€Q '
h(a)=1t t(a)=t

'i“ © 2000 Kluwer Academic Publishers. Printed in the Netherlands.
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where

End(a)o ={(6:) | Y _ tr(6;) = 0} C End(a) = @ Mat(a;, K).
el el
If one uses the trace pairing to identify End(a)o with the dual of the
Lie algebra of G(a), then this is a moment map in the usual sense.
(Identifying Rep(Q, a) with its tangent space at any point, the natural
symplectic form on the cotangent bundle corresponds to the form

w(ac, y) = Z(tl’(%ya*) - tr(aca*ya))

a€Q

on Rep(Q, a). Now if § € End(a), and f : Rep(Q, ) — K is defined by
F() = 50, t1(Bipta (2),), then d £, (y) = w (8, ], ) for 2,y € Rep(@, a),
where [0, ] is defined by [0, 2], = Op(0)Ta — Taby(q) for any a € Q)

Now the elements of End(«)o which are invariant under G(a) acting
by conjugation are those whose components are scalar matrices. We
identify them with the A € K’ which have X - a = Y ier A equal
to zero. In this paper we study the fibres u;!(A) and the quotients
pzt () // G(a). These are Marsden-Weinstein reductions [15], except
that we work with schemes rather than manifolds.

This moment map has been considered before. Kronheimer [11]
constructed the Kleinian singularities and their deformations in this
way from the extended Dynkin quivers (see also [2, 5]). Later, Lusztig
[14, Section 12] used the nilpotent cone of u;'(0) in his geometric
construction of the negative part of the quantum group of type @,
for any quiver () without loops. Finally Nakajima [16, 17, 18] used
the moment map to define some quiver varieties and used these in a
geometric construction of integrable representations of Kac-Moody Lie
algebras. In the first of his papers he used hyper-Kahler quotients to
define a family 9, and this family includes p5t()) // G(a) with K = C
by [16, Theorem 3.1]. In his later papers he used geometric invariant
theory quotients, and p;1(0) // G(a) appears as the variety 9g(v,0)
in [18, §3].

Kac [7, 8] has shown that the dimension vectors of indecomposable
representations of () are exactly the positive roots for ¢J, and that the
number of parameters of indecomposable representations of dimension
« is given by the function

pla) =1+ Z Qf(a)Ap(a) — O O
a€Q

where a-av =3, ; a?. After some preliminaries in Sections 2 and 3, we
use Kac’s Theorem in Section 4 to compute the dimension of u;!(})
and then use his ‘canonical decomposition’ to prove the following result.
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THEOREM 1.1. If a € N! then the following are equivalent
(1) po is a flat morphism.
(2) 151 (0) has dimension - o — 1 + 2p(«).

(3) pla) > >4 p(BD) for any decomposition a = 31 ... 4 50
with the B positive roots.

(4) pl) > X, p(3) for any decomposition a = AV 4.4 50)

into nonzero 9 ¢ NI,

The deformed preprojective algebra introduced by M. P. Holland and
the author [5] (see also [3]) is the algebra defined for A € K7 by

= KQ/( la,a]= 3 N,

a€Q €]

where K(Q is the path algebra of @), the trivial path at vertex i is
denoted e;, and [a, a*] is the commutator aa* — a*a.

Clearly if A € K! and A-a = 0, then p3'()) is identified with
the space of representations of II' of dimension vector a. Now the
closed orbits of G(a) on Rep(Q, ) correspond to isomorphism classes
of semisimple representations of @ of dimension a. (For example take
¢ = 0 in [9, Proposition 3.2].) Thus the closed orbits of G(a) on uzt())
correspond to isomorphism classes of semisimple representations of I1*
of dimension «. Of these, the orbits on which G(«) acts freely are those
corresponding to a simple representation of IT*. Our main result is as
follows.

THEOREM 1.2. For A € K! and a € N! the following are equivalent
(1) There is a simple representation of 1" of dimension vector o.

(2) a is a positive root, A -a =0, and p(a) > S 1_, p(BY) for any
decomposition o = V) 4 -+ B0 with r > 2 and 1) a positive
root with A - () =0 for all t.

In this case pu;'(N) is a reduced and irreducible complete intersection
of dimension o+« — 14 2p(a), and the general element of u;*(A) is a
simple representation of 11"

The special case A = 0 answers some questions of Nakajima. In [17,
Problem 4.6], in the situation where ¢ has no loops, Nakajima asks
whether if @ is connected and non-Dynkin then II° has a simple rep-
resentation which is not one-dimensional. This is true, for in Theorem
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1.2 one can take o to be any minimal imaginary root. In [18, Question
after Lemma 4.9], he asks which elements of the fundamental region
are dimension vectors of simple representations of I1Y. The answer is
given by Theorems 1.2 and 8.1.

Henceforth we write Xy for the set of « satisfying the conditions in
part (2) of Theorem 1.2. In Section 5 we study the set Xy, and provide
another characterization of it. In Section 6 we use Kac’s Theorem again
to prove that u5!(A) is irreducible of dimension a -« — 1+ 2p(«) for
« € 3. We then use Schofield’s theory of general representations of
quivers to show that the general element of p;'()) is a simple repre-
sentation. This proves (2) = (1). The implication (1) = (2) is more
complicated and is proved in Sections 7 to 10.

If o € 3\, how many simple representations of dimension « are
there? The G(a)-orbit of a simple representation has dimension a-a—1.
Thus if « is a real root (so p(«) = 0), there is a unique simple represen-
tation up to isomorphism, while if « is an imaginary root (so p(«) > 0),
there are infinitely many non-isomorphic simple representations.

Now suppose that K has characteristic zero. In Section 11 we study
the affine quotient schemes p;'(A) // G(a). Recall that the points of
this quotient are in 1-1 correspondence with the closed orbits, so with
isomorphism classes of semisimple representations of IT" of dimension
a. Given a semisimple representation X, we can decompose it into its
simple components

where the X, are non-isomorphic simples. If () is the dimension vector
of Xy, we say that X has representation type

7= (k1, BV sk, U,

For 7 to occur as the representation type of a semisimple representation
of dimension e, clearly one must have a = ki) + -+ + £,6() and
1 e ¥, for all t. In addition, although the () need not be distinct,
any real root can occur as at most one of the 5.

THEOREM 1.3. If 7 is a representation type, then the set of semisim-
ple representations of type 7 is an irreducible locally closed subset of

pst(A) /) G() of dimension Y_, 2p(81).
This has the following consequence.

COROLLARY 1.4. If X € K and a € X then u;'(A) //G(a) is a

reduced and irreducible scheme of dimension 2p(«).
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Finally, in an appendix we show how deformed preprojective alge-
bras can be used to give a simple proof of much of Kac’s Theorem
in case the base field has characteristic zero. In particular, we give
an explicit construction of the indecomposable representations whose
dimension vector is a real root.

Preliminary versions of these results (with A = 0) were first an-
nounced at a conference on Geometry and Quivers in Hamburg in
November 1996. I should like to thank the organisers O. Riemenschnei-
der and P. Slodowy for inviting me to attend the meeting. I would also
like to thank M. P. Holland for some useful discussions.

Remarks added in April 2000 (after writing the paper [4]). We would
like to explain some additional applications of the results in this paper
to the study of Nakajima’s quiver varieties.

Let Qg be a quiver with vertex set I. In case (g has no oriented
cycles this is to correspond to an orientation §2 of a graph (I, ) as in
[18, Section 3.1]. For v,w € N’  let M (v, w) be the space

Rep(Qo, v) & @Mat(vk X wi, ) & @Mat(wk X Vi, K).
kel kel

There is a natural action of the group Gy = [],c; GL(vy, K) and a
moment map
p:M(v,w) — @Mat(vk, K)
kel

whose k-th component sends (B, ¢, j) to

Z B,Bx — Z B.«B, + Zlk]k
aEQO aEQO kel
h(a)=k t(a)=k

One of the spaces that Nakajima considers is

Mo (v, w) = u~"(0) // G-

Let ¢ be the quiver obtained from ()¢ by adjoining a new vertex oo
and wy arrows from oo to k for each k£ € I; let o be the dimension
vector for () whose restriction to I is equal to v and with a,, = 1. By
dividing the matrices in Mat(vy X wy, K) into their columns, and the
matrices in Mat(wy X vg, K) into their rows, one can identify

M(v,w) 2 Rep(Q, @), Gy = Gla).
Moreover p corresponds to the usual moment map p,, so we have

Mo (v, w) 22 7' (0) // G(a).
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Thus the set My® (v, w) of [18, §3.v] is non-empty if and only if o € 3.
The other space that Nakajima considers is the quiver variety

M(v, w) = p~1(0) //(Gv, x0) = 1151 (0) //(G(a), x)

in the notation of [9], where xo : Gy — K™ is the character defined
by xo(9) = Ilier det(gk_l)7 and y is the corresponding character of
G(a). This is a smooth variety. We say that a representation of 119 of
dimension [ is v-cogenerated (where v is a vertex with 8, = 1) if it
has no non-zero subrepresentation which is zero at v. This is dual to
the notion of ‘v-generated’ of [4, Section 2]. By [18, Lemma 3.8] the
points of M(v, w) are in 1-1 correspondence with isomorphism classes
of oo-cogenerated representations of I1° of dimension «.

Now assume that K is the field C of complex numbers. It is claimed
in [18, Theorem 6.2] that 9% (v, w) is connected, but this is retracted in
[19, Section 7.5]. Nakajima has, however, mentioned to the author that
connectivity can be recovered, and the following argument is perhaps
similar to what he had in mind.

Define A by A\, = —1 for k € [ and Aoy = >, c; Vi Thus A-a =0,
but A- 3 #0forall 0 < g < a. If ais a root then trivially o € 3y, so
Theorem 1.2 implies that p5!(A) // G(«) is non-empty and irreducible.
On the other hand, if « is not a root, then Theorem 1.2 implies that
there is no representation of I1* of dimension «, so that u;'(\) // G(«)
is empty. Now there is a bijection

pat (V) /) Gle) = 1z (0) //(Gla), x) = M(v, w).

which is continuous for the analytic topology. (See [16, §§3,4] and [4,
§3].) It follows that 9%(v, w) is either non-empty connected or empty,
according to whether « is a root for ) or not.

2. Notation and reflection functors

Let ) be a quiver with vertex set I and let K be an algebraically closed
field. In this section we introduce some standard notation, recall the
reflection functors, and determine the effect of reflection functors on
the fibres u;1(M).

We call elements of Z! (or sometimes RY) vectors, and write ¢; for
the coordinate vector at a vertex i. We partially order Z! via a > 3 if
a; > f; for all ¢, and we write @ > 3 to mean that o > § and « # 3.
We say that « is sincere if «; > 0 for all ¢.

The Ringel form on Z! is defined by

(o, B) = Z%ﬂi - Z Ut (a)Bh(a)-

€] a€eQ
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Let (o, 8) = (a, B) + (3, @) be its symmetrization. The corresponding
quadratic form ¢(a) = (o, a) = £(a, a) is the Tits form, and we have
p(a) = 1 — q(a). The fundamental region is the set of 0 # a € N' with
connected support and with (o, ¢;) < 0 for every vertex .

If 7 is a loopfree vertex (so ¢(¢;) = 1), there is a reflection s; :
7! — 7! defined by s;(a) = @ — (e, ¢;)¢;. The real roots (respectively
imaginary roots) are the elements of Z/ which can be obtained from
the coordinate vector at a loopfree vertex (respectively + an element
of the fundamental region) by applying some sequence of reflections at
loopfree vertices.

There is a reflection r; : K' — K! which is dual to s;. Tt is defined
by ri(A); = A; — (&, €;) A 1t satisfies r;(A) - oo = X+ s3(ev) for all a.

We say that the reflection at a loopfree vertex i is admissible for
the pair (A, a) if A\; # 0. Let ~ be the smallest equivalence relation
on KT x Z! with (A, @) ~ (r;()), s;(«)) whenever the reflection at i is
admissible for (A, a).

If the reflection at ¢ is admissible for (X, «) then by [5, §5] there
is a reflection functor from representations of II* to representations of
11N which acts as as s; on dimension vectors. (In fact these reflection
functors were discovered earlier, by Rump [21].)

We briefly describe the construction. Assume for simplicity that no
arrow in () has tail at ¢, and let H = {a € Q | h(a) = ¢}. Suppose that
V is a representation of II", given by vector spaces V; for each vertex
J and linear maps V; : Vy,) = Vj(q) for each arrow a € Q. Define

V@ = @ ‘/t(a)v

a€H

and let piq 1 Viq) = Vi and mq 1 Vi = V() be the canonical inclusions
and projections. Define p: V; — Vg and 7 : Vg — V; by

0= Z,uaVa*, T = )\% ZVaﬂa.

a€H a€H

The relations for I1* ensure that 7u = 1y, so that ur is an idempotent
endomorphism of Vg. By definition the reflection functor sends V' to
the representation V' of I1"() given by vector spaces Vj’ =V;forj#
and V/ = Im(1 — px), and by linear maps V, =V, and V. =V for
a € ) with h(a) # 4, and

Vo= =il = pmpa s Viggy = Vi Ve = malyy s V= Vi,
fora e H.

We use the reflection functors to relate the schemes p;'(A) and

,us_%a)(ri()\)) (equipped with their scheme structure as fibres of the
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moment map). For our geometric arguments all schemes are quasipro-
jective over K, and all points are closed points.

LEMMA 2.1. If0 # v € K and m,n are non-negative integers, then
the projection from

S={(X, X" V,Y) | XX* = v],YY" = 11, X*X - YV = p1}
C Mat(n X (n 4 m), K) x Mat((n+ m) x n, K)x
Mat(m X (n+m), K) x Mat((n + m) x m, K)

to

X={(X,X") | XX"=vl}
C Mat(n X (n 4 m), K) X Mat((n 4+ m) x n, K)

is a principal GL(m, K)-bundle. Moreover the natural scheme struc-
tures on § and X given by the indicated relations are reduced.

Proof. By rescaling X and Y one can replace the equations by
XX*=1,YY*" =1, and X*X +Y*Y = 1, so the matrices define
inverse isomorphisms between K"t and K™ @ K™. The result is now
standard.

LEMMA 2.2. Suppose given a pair (A, o) with A - = 0. If ¢ is a
loopfree vertex with \; # 0 then there is a scheme T and morphisms

ut ) E TS st (V)

where the map f is a principal GL(s;(«);, K)-bundle and g is a principal
GL (o, K)-bundle. In particular u;' (X)) and ,us_%a)(ri()\)) have the same

number of irreducible components, and

dim ,u;}a)(ri()\)) — si(a) - si(a) =dim ut(N) — a - o

Proof. We suppose for simplicity that no arrow in ¢ has tail at q.
We can do this because the deformed preprojective algebra II* does
not depend on the orientation of @, see [5, Lemma 2.2]. (If a were an
arrow with tail at ¢ we could reverse it by sending x, to z,» and z,* to
—z, for * € Rep(Q, «).) Let H = {a € Q | h(a) = 1}.

Let Q' be the quiver obtained from ) by deleting all arrows in H,
and let R’ = Rep(Q’, ). Letting n = ; and

m = s;(a); = —a; + Z t(a)s

a€H
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one can combine the matrices for the arrows incident at ¢ into block
matrices, and identify

Rep(@, ) = R’ x Mat(n x (n +m), K) x Mat((n + m) x n, K),

so that if z € Rep(Q, @) corresponds to a triple (z/, X, X*) then

po () = Z Tolgr = XX,

a€H
Also one can identify
Rep(@, si(@)) 2 R x Mat(m x (n+ m), K) x Mat((n+ m) x m, K)

and if y corresponds to (2/,Y,Y™) then

:us,'(oz)(y)i - Z YalYog* = Yy

a€H

We now apply Lemma 2.1 with v = A; to obtain a principal GL(m, K)-
bundle

J'PR xS — R xX2{zeRep(Q,a) | pa(x); = M1},

where § and A" are as in Lemma 2.1. Exchanging the role of the X'’s
and Y'’s, we also obtain a principal GL(n, K)-bundle

g R xS = {y € Rep(Q, 5i(a)) | t15;(a) ()i = ri(A)1}.

To show that f’ and ¢’ restrict to give a scheme T and principal
bundles f and g, we need to show that for each vertex j # ¢ and each
z € R x § we have

pa(f'(2)); = ML=ty (9'(2)) 5 = ri(A);1
in Mat(ea;, K).

Now if # = f/(z) and y = ¢'(z) then the relation X*X —Y*Y = \;1
for & implies that zyxx, — yury, = A;1 for any a € H. Also z, = y, for
any arrow ¢ not incident at ¢, so that x,«x, — yu*y, = 0if ¢ € ) and
h(a) # i. Thus, if j is a vertex different from ¢, we have

Z Lo*lyg = Z ya*ya‘I'N)\ilv

a€qQ a€qQ
t(a)=7 t(a)=7

where N is the number of arrows from j to ¢. Clearly we also have

Z LogLg* = Z YalYa*

a€Q a€qQ
h(a)=3 h(a)=3
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since j # 1. It follows that
pal@)j = Hsi()(y)j = =NAL = (A = ri(A) )1,

as required.

3. Lifting representations from @ to II"

Let () be a quiver with vertex set I and let A € K!. In this section we
determine which representations of ) lift to representations of II*. That
is, for @ € N! we determine the image of the projection 7 : pot () —
Rep(Q, ). (For Dynkin quivers this problem has been studied by Rump
[21]. His methods are, however, quite different.) In addition, if U is a
constructible subset of Im(7) which is G(a)-stable (that is, a union
of G(a)-orbits), we relate the dimension of #71(U) to the number of
parameters of G(«) on U. Recall that if X is a scheme, G is an algebraic
group acting on X, and U is a constructible subset of X which is G-
stable, then the number of parameters (or modularity) of G' on U, is

defined by
dimg U = max (dim(U N Xy) +d—dim G)

where X is the locally closed subset of X consisting of those points
whose stabilizer has dimension d, so which have orbit of dimension

dim G — d.

LEMMA 3.1. If 2 = (24)acqg € Rep(Q,a), then there is an exact
sequence

0 — Ext!(z,2)* = Rep(Q?, @) 5 End(a) 5 End(2)* — 0

where ¢ sends (yq+) € Rep(Q, ) to Y, cplea, Yar| and t sends (8;) to
the linear map End(x) — K sending (¢;) to Y . tr(6;¢;).
Proof. This is just a fuller statement of [5, Lemma 4.2].

LEMMA 3.2. If A € K and x is a representation of QQ which lifts to
1Y, then Y, Aitr(6;) = 0 for any 6 € End(x).

Proof. Applying Lemma 3.1, since z lifts, one deduces that A is in
the image of ¢, so in the kernel of ¢.

THEOREM 3.3. If A € K! then a representation of Q lifts to a rep-
resentation of 11 if and only if the dimension vector 3 of any direct
summand satisfies X - 3 = 0. Moreover, if € Rep(Q, ) does lift, then
7~ Hz) = Ext! (2, 2)*
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Proof. If the representation lifts, and there is a direct summand of
dimension /3 then letting # be the projection onto this summand, we
have A -3 =0 by Lemma 3.2.

For the converse, it suffices to prove the liftability of any indecom-
posable z whose dimension vector « satisfies A - o = 0. Now any
endomorphism € of z is the sum of a nilpotent matrix and a scalar
matrix, so >, A;tr(6;) = 0. Thus, considering A as an element of
End(«), it is in the kernel of the map ¢ of Lemma 3.1. Thus A is in
the image of ¢, and this gives a lift to I1*.

LEMMA 3.4. If U is a G(a)-stable constructible subset of Rep(Q, «)

contained in the image of ©, then
dim 7~ H(U) = dimg) U + a - a - q(a).

If in addition U is a G(«)-orbit, then 7= (U) is irreducible of dimension
a-a—qla).

Proof. By partitioning U we may suppose that all representations
x € U have endomorphism ring of dimension e. Now if € U then
by Theorem 3.3 the fibre 7!() is isomorphic to Ext'(z,2)*, so has
dimension e—¢(a) by Lemma 3.1. Thus dim #=(U) = dim U +e—¢q(w)
On the other hand, each orbit of G(«) on U has dimension dim G(«) 4
1—e, 80 dimg(y) U = dim U —1+e—dim G(a). The dimension formula
follows.

Now suppose in addition that U = G(a)a. Since dimg(,) U = 0 the
inverse image 7! (/) has dimension a-a—q(«). It remains to prove that
it is irreducible. Observe that G(«) acts on p; ' (A) and 7 is equivariant.
Now if #71(U) is not irreducible one can find nonempty disjoint G(a)-
stable open subsets 71, Zy. But 7(Z;) = U,so 7~ (x)NZ; (i = 1,2) are
non-empty disjoint open subsets of 7#7!(z), which is impossible since
7~ (z) is irreducible.

4. Application of Kac’s Theorem

Let @ be a quiver with vertex set I. Kac’s Theorem [7, 8] asserts
that the dimension vectors of indecomposable representations of () are
exactly the positive roots for (. Moreover, if « is a positive real root
then there is a unique indecomposable representation of dimension «,
while if « is a positive imaginary root then dimg(,) I () = p(a) where
I(ar) C Rep(Q, o) is the set of indecomposable representations.

We need some properties of dimg which are easy to prove using
Chevalley’s Theorems.
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LEMMA 4.1. Let X be a scheme on which an algebraic group G acts.
Suppose that Z C'Y C X are constructible subsets, with Y being G-
stable and 7 being H-stable, where H is a closed subgroup of G. If
Y = GZ and the intersection of Z with any G-orbit in Y is a finite
union of H-orbits, then dimyg Z = dimg Y.

LEMMA 4.2. Suppose that algebraic groups G; act on schemes X;. If
Y; C X; are Gi-stable constructible subsets, then setting G = [, G; and
Y =1L Y:, we have dimg Y =) . dimg, Y;.

For arbitrary «, suppose that & = 3+ ..+ (") is a decomposition
of v as a sum of positive roots for Q, and let I(51), ..., 3(")) be the
subset of Rep(Q, «) consisting of the representations whose indecom-
posable summands have dimension 5(®). Clearly this is a G(a)-stable
constructible set.

LEMMA 4.3. If o= pW + ...+ 80 with the ) positive roots, then

dimay 18, ..., 87) =3 " p(8").
t=1

Proof. Let R = Rep(Q, 1)) x - x Rep(Q, ")), and consider it
as a subset of Rep(Q, ) using block-diagonal matrices. Let I’ be the
constructible subset of R’ consisting of the elements in which each rep-
resentation of dimension () is indecomposable. By the Krull-Schmidt
Theorem, Lemma 4.1 applies to the subsets

rcr(E,.... ") C Rep(Q, a)

with H the subgroup of G(a) corresponding to the product ], G(3").
Thus

dimg o) 1B, ..., 1) = dimy I' = dimg g0 1(81)

by Lemma 4.2, and this is th(ﬁ(t)) by Kac’s Theorem.

THEOREM 4.4. Given a pair (A, o) with A - o« = 0, we have
dim p3'(A) = - a — g(a) +m,

where m is the mazimum value of >, p(BD) where r > 1 and o =
AU 4o 4 B0 s a decomposition with each 3 a positive root and
A0 =0.
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Proof. Let w : u51(A) — Rep(@, ) be the projection. We decompose
Rep(Q), &) as a union of sets of the form I(51), ..., 3(")) and consider
the inverse images 7= (I(5(), ..., 30))). If some S() has X - 3() £ 0
then this inverse image is empty. Otherwise, by Lemmas 3.4 and 4.3
this inverse image has dimension 3_,_, p(3®)+a-a—q(a). The result
follows.

We now turn to the proof of Theorem 1.1. We use Kac’s ‘canonical
decomposition’. (See [8, Section 1.18].)

LEMMA 4.5. If o € N! has canonical decomposition o = (1) 4 ... 4
B with r > 2, then p(a) < 32, p(B1).

Proof. This holds since (3(*), 3()) > 0 for s # ¢ by [8, Proposition
1.20].

Proof. (of Theorem 1.1) Let d = o - a — 1 + 2p(«), the relative
dimension of p,.

(1) = (2) Since p,, is flat, its image U is an open subset of End («)o.
Now apply [6, Corollaire 6.1.4] to the map Rep(@,«) — U. Clearly
0 € U, so p;'(0) has dimension d.

(2) = (3) Follows from Theorem 4.4.

(3) = (4) If p(a) < 3, p(BY) for some decomposition a = (1) 4
-«-4 30 then Lemma 4.5 shows that the inequality remains true when
we replace each () by all the terms in its canonical decomposition. But
now the terms are positive roots.

(4) = (1) By Lemma 4.5 the canonical decomposition of a can
only have one term. It follows that « is a Schur root. (See [8, Section
1.18].) This means that there is a representation of ) of dimension «
whose endomorphism algebra is the base field K. If 2 € Rep(Q, o) is
such a representation, then the map ¢ of Lemma 3.1 has 1-dimensional
cokernel. Since Im(c) is clearly contained in End(«)o, it follows that
Im(¢) = End(a)g. It follows that any element of End(«)g is the image
under the moment map p, : Rep(@, @) — End(a)g of an element of
Rep(Q, «) whose restriction to @ is equal to z. In particular the moment
map is surjective. We consider its fibres u,'(¢) with ¢ € End(a)o. Let
71 uzt(6) — Rep(Q, @) be the projection. Now if U is a constructible
G(«)-stable subset of Rep(Q), «) then

dim 77 H(U) < dimg) U + a - a - q(a).

by the same argument as Lemma 3.4. It follows by Lemma 4.3 and the
hypothesis that u !(¢) has dimension at most d. Clearly, in fact, it is
equidimensional of dimension d. Now [6, Proposition 6.1.5] implies that
e is flat.
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5. Properties of the set X,

Throughout this section ) is a quiver with vertex set I. We prove some
combinatorial results about the set X, which are needed later. In the
course of this, we obtain another characterization of ¥y, Theorem 5.6.

We write R‘AI' for the set of positive roots a with A-a = 0. Thus X,
is the set of @ € RY with the property that p(a) > 3" p(8")) for any
decomposition a = V) 4+ ... + () with r > 2 and all () ¢ R‘AI'. We
write NRT for the set of sums of elements of R (including 0).

LEMMA 5.1. Given any pair (X, o) with o € NR‘AI', if © is a vertex with
Ai =0 and (o, €;) > 0, then v — ¢; € NR‘AI'.

Proof. Since (o, ¢;) > 0 there cannot be a loop at ¢, and therefore
there is a reflection at ¢, although it is not admissible. Now « is a
sum of positive roots > ;_, A0 If any v is equal to ¢ then we're
done. Otherwise all s;(7(")) are positive roots, so in RY. Thus s;(a) =
o — (a,¢)¢; € NRY. Now adding on a suitable number of copies of
€ € R'A", it follows that oo — ¢; € NR‘AI'.

LEMMA 5.2. If (A, a) ~ (X, a) then
(1) a € R‘AI' if and only if o/ € R‘AI',.
(2) o € NRT if and only if o/ € NRY,.
(3) a € Xy if and only if o/ € Xy,

Proof. 1t suffices to prove (1), for then the other parts follow. Con-
sider the admissible reflection at a loopfree vertex ¢ with A; # 0. Now
if a is a positive root, then so is s;(«), except when o = ¢;. However,
this case cannot occur since A - ¢; # 0, so that ¢; ¢ R‘AI'.

LEMMA 5.3. Given any pair (A, o) with o € NR‘AI', there is an equiv-
alent pair (X', o) with the property that (o/,¢;) < 0 whenever A # 0.

Proof. Amongst all equivalent pairs, choose (X', /) with o/ minimal.
This is possible since Lemma 5.2(2) ensures that o/ > 0. Now if AL # 0
and there is a loop at ¢ then (¢/,¢;) < 0 is automatic, while if X} # 0
and ¢ is loopfree then (¢, ¢;) <0, for otherwise the pair (r;(X'), s;(a))
is smaller.

LEMMA 5.4. Suppose that 0 # « € NR'A" and (a,¢;) < 0 for all
vertices 1 with A\; # 0. If (8, a— ) < —2 whenever 3,a— 3 are nonzero
and in NR‘AI', then « is either a coordinate vector or in the fundamental
region.
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Proof. Suppose that « is not a coordinate vector. We have (o, ¢;) <0
for all ¢, for if (a, €;) > 0 then we must have A; = 0. Now the inequality
(ev, €;) > 0 implies that ¢ is loopfree, so (e;,¢;) = 2. Thus

(v —e,6) = (v, €)) =2 > =2.

This contradicts the hypotheses, since v — ¢; € NR‘A" by Lemma 5.1.

Next, the support quiver of « is connected. By assumption « € NR'A",
so we can write a« = Y ;_4 ~() with the y() ¢ R'A". Now supposing that
the support of « is a disjoint union C'U D with no arrows connecting C'
to D, then each 'y(t) has support contained in either C' or D. Letting /3
be the sum of the 'y(t) with support contained in C gives (5, — ) =0,
contrary to the assumption.

Thus « is in the fundamental region.

LEMMA 5.5. If0# « € NRT and (8, — 3) < =2 whenever 3, a — 3
are nonzero and in NR'A", then o € R'A".

Proof. By Lemma 5.2 we may replace the pair (A, &) by any equiva-
lent pair. Thus by Lemma 5.3 we may suppose that (o, ¢;) < 0 whenever
A; # 0. Now by the previous lemma « is either a coordinate vector or
in the fundamental region. Thus it is in R‘AI'.

We now have another description of the set 3y.

THEOREM 5.6. If « € N! then o € 3, if and only if 0 # o € NRY
and (8,0 — B) < —2 whenever 3, — B are nonzero and in NRY.

Proof. Suppose first that « € X. Clearly we have 0 # « € NR‘AI'.
We prove that (3, — §) < —2 whenever 3, — [ are nonzero and in
NR'A". For a contradiction, suppose that (5, — ) > —1 with §,a —
nonzero and in NRY. It follows that p(a) < p(8) +p(a— 3). This gives
a decomposition of the form

a=Y p0 0+ 80 eNR}, pla) <> p(s")
t=1 t=1

with r = 2. Choose a decomposition of this type with r maximal.
Now each term B®) in this sum is nonzero, and belongs to NR‘AI'. By
maximality, if v, 8 —~ are nonzero and in NRY, then p(68Y) > p(y)+
p(BD —7), 50 (v, —4) < —1, and hence () € RT by Lemma 5.5.
Now this decomposition contradicts the fact that o € X.

For the converse, suppose that 0 # « € NR‘A" and (B,a—p) < =2
whenever 3, — 3 are nonzero and in NR‘AI'. By Lemma 5.5 we have

a € RY. Assuming that a ¢ ¥, there is a decomposition a = 3/_, ()
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with 3 € RT and with p(a) < Y_, p(3D). It follows that g(a) —
Yo a(BY) > 1= s0

r r

(Y a—p0)y =" (81, pW) = 2(q<a> — Zq(ﬂ“))) >2 -2,

t=1 t#£k t=1

This implies that (ﬁ(t),oe — ﬁ(t)) > —2 for some t, contrary to the
assumption.

Note in particular that NRS = N’  giving the following simple
description of Y.

COROLLARY 5.7. If o € N! then a € 3y if and only if o > 0 and
(3,00 — B) < =2 whenever B € NI and 0 < 3 < a.

Combining Lemmas 5.2, 5.3, 5.4 and Theorem 5.6, we have proved:

THEOREM 5.8. Ifa € Xy then there is an equivalent pair (X o') with
o' either the coordinate vector at a loopfree vertex or in the fundamental
region. The first case occurs if o is a real root; the second case if « is
an imaginary root.

6. Existence of simple representations

Let ) be a quiver with vertex set I. In this section we prove the
implication (2) = (1) of Theorem 1.2.

LEMMA 6.1. If X is an equidimensional scheme, Y is an irreducible
scheme and f : X — Y is a dominant morphism with all fibres irre-
ducible of constant dimension d, then X is irreducible.

Proof. If X is not irreducible, one can find disjoint irreducible open
subsets 7, Z’. Now the restriction of f to 7 is a map Z — f(Z) whose

fibres have dimension at most d, so d + dim f(Z) > dim Z = dim X =

d+ dimY, so m =Y, and for the general point y € Y the fibre
Z 0 f~Yy) has dimension d. Similarly, for the general point y € Y
the fibre 27’ N f~'(y) has dimension d. But f~'(y) is irreducible of
dimension d, so these two sets must intersect. A contradiction since
7. 7" are disjoint.

Recall that a representation is said to be a brick if its endomorphism
algebra is the base field K. We denote by B(«) C Rep(Q, o) the set of
bricks for ¢ of dimension a.
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If « is a dimension vector in the fundamental region and ¢(a) <
then by Kac’s Lemma 1 (see [8, Section 1.10]), the set B(a) is
dense open subset of Rep(Q, @), we have dimg(,) B(a) = p(a), and
dimg(ay(7e) \ B(@)) < p(a).

On the other hand, if « is in the fundamental region but ¢(a) = 0,
then there need not be any bricks. In this case the support quiver of «
is extended Dynkin, « is a multiple of the minimal imaginary root &,
and we have the following result.

LEMMA 6.2. If Q is an extended Dynkin quiver with minimal imag-
inary root 6 and o« = md with m > 1, then every indecomposable
representation of @ of dimension « has endomorphism algebra of di-
mension m, and I () is an irreducible locally closed subset of Rep(Q, «)
with dimg(qy I () = 1.

Proof. Of course the fact that dimg,y /(@) = 1 is one of the things
that needs to be verified during the proof of Kac’s Theorem.

The indecomposable representations of () of dimension « are known
by the representation theory of extended Dynkin quivers. They all
belong to the tubular family 7" of [20, §3.6 (5), (6)]. Recall from [20,
§3.1] that 7" is a serial abelian category. Its simple objects are called
stmple regular modules.

We claim that an indecomposable in T, say in a tube of rank r, has
dimension « if and only if it has a composition series in T of length
mr. Namely, suppose ) has no oriented cycles. (The case of an oriented
cycle follows by [20, §3.6 (6)].) Inspecting the proof of [20, Theorem 3.4],
we see that the tube contains a module Wy(p) of length r and with a
composition series involving each simple regular module in the tube. By
the proof of [20, §3.6 (5)], the module Wy corresponds to the maximal
root, for the corresponding Dynkin quiver, so Wy(p) has dimension 4.
The claim follows.

It follows from this description that all indecomposables of dimen-
sion o have endomorphism algebra of dimension m. Now /(«) is locally
closed by [10, §2.5 Proposition]. It is a union of infinitely many G(«)-
orbits. We show that each orbit is contained in an irreducible open
subset of I(«) whose complement is a finite union of orbits. This implies
the irreducibility of I(«).

If U is a finite set of simple regular modules, the perpendicular
category is the full subcategory

L = {M | Hom(S, M) = Ext'(S, M) = 0 for all S € U}.
of the category of K(Q-modules. Using the fact that the tubes are
standard, and the Auslander-Reiten formula [20, §2.4 (5)] we see that

an indecomposable of dimension « is in U+ if and only if its regular
socle (in 7") is not in U.
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We consider the orbit corresponding to an be an indecomposable
module X of dimension a. Choose a finite collection U of simple regular
modules with the properties that (a) U does not contain the regular
socle of X; (b) at most one simple regular module in each tube is not
in U; (c) if @ has no oriented cycles then there is a unique tube which
has all its simple regular modules in U, if () is an oriented cycle then
no tube has all its simple regular modules in U. As in [3, Lemma 11.1],
there is a homomorphism

§: KQ — Mat(N, K[z])

(where N = ). 4;) such that restriction induces an equivalence from
the category of Mat(N, K[z])-modules to U+. Thus there is a KQ-K[z]-
bimodule L, free of rank N over KJz], such that the tensor product
functor L@, — is an equivalence from K[z]-modules to U+, It follows
that as A € K varies, the modules L @y K[z]/(z — A)™ run through
all indecomposables in U+ of dimension «. Choosing generators of L,
this induces a morphism ¢ : K — Rep(Q, «) from the affine line, whose
image meets all G(a)-orbits in () in UL. Now consider the map

G(a) x K = Rep(Q, @), (9. A) = go(A).

The image is contained in («), it contains the orbit for X, it is G(«)-
stable, and it omits only finitely many orbits, so it is open in I(«a).
Since G(a) X K is irreducible, so is the image.

LEMMA 6.3. If (A, «) is a pair with o € ¥ then p;* (X) is irreducible
of dimension d = a - o — 14 2p(«a). In particular it is a complete
intersection.

Proof. By Theorem 5.8 and Lemma 2.2 we may reduce to the case
where « is either a coordinate vector, or in the fundamental region. If
« is a coordinate vector at a loopfree vertex, the result is trivial, so we
suppose that « is in the fundamental region.

By Theorem 4.4 the space p_1()) has dimension d. Moreover, since
d is the relative dimension of p,, it is equidimensional of dimension d.
It remains to prove that it is irreducible.

Let 7 be the projection u;'(A\) — Rep(Q, ). Thus the image of =
is given by Theorem 3.3, and any nonempty fibre 7#=1(z) is isomorphic
to Ext!(z, 2)*, so is irreducible.

As in Theorem 4.4 we write p71 () as a union of sets of the form
= I(BW, ..., 30)). All except 7—'(I(a)) have dimension strictly
smaller than d.

Suppose first that ¢(a) < 0. As mentioned before Lemma 6.2, the
set B(a) of bricks is a dense open subset of Rep((), a). Now the set
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771(I(a) \ B(«)) has dimension less than d. Thus it suffices to prove
that #=1(B(«)) is irreducible. This space is open in p3;'(}), so it
is equidimensional of dimension d. Moreover every fibre of the map
7~ 1(B(a)) — B(a) is irreducible. Therefore #7!(B(a)) is irreducible
by Lemma 6.1.

If ¢(a) = 0 and « is indivisible the same argument holds. The set
B(a) of bricks is a dense open subset, and there are only finitely many
other orbits of indecomposables.

Finally suppose that ¢(a) = 0 and « is divisible. Thus the support
of « is extended Dynkin with minimal positive imaginary root 4, and
a = mé for some m > 2. Now A -4 # 0, for the decomposition o =
&+ ---+ 9 contradicts the fact that o € X\. However A -« = 0, so the
only possibility is that the field K has characteristic p > 0 and m is
a multiple of p. Now in fact m = p, for otherwise the decomposition
o = pd + - - -+ pd contradicts the fact that « € X

Now the image of 7 is contained in the set of representations of
() with no summand of dimension ké with & < p. Thus it consists of
I(c) and only finitely many other orbits. Now 771 (I(«)) is obtained
from p;'(X) by removing the inverse images of finitely many orbits.
These inverse images have dimension strictly less than d. It follows
that #=1(I(a)) is equidimensional of dimension d, and by the same
argument 7 (I(«)) is irreducible, hence so is u;!(A).

LEMMA 6.4. Given a pair (A, ) with A-a =0, if § < « then the set
of elements of u;1(\) such that the corresponding representation of m
has a subrepresentation of dimension vector 3 is closed.

Proof. If Gr(k,n) denotes the Grassmannian of k-dimensional sub-
spaces of an n-dimensional space, then the set of pairs consisting of an
element of ;1 (\) and a subrepresentation of dimension /3 is a closed

subset of
pat () x [T Gr(Bs, ).
el
Since Grassmannians are projective, its image under the projection
onto p 1 (A) is closed. (See [22, Lemma 3.1].)

LEMMA 6.5. Given a pair (A, ) with A -« = 0, if @ € p;'(N)
corresponds to a representation of I which is a brick (that is, has
endomorphism algebra equal to the base field K ) then u7'(\) is smooth
at x.

Proof. 1t suffices to prove that u, is smooth at z. Now this holds
by [3, Lemma 10.3]. Alternatively, note that & corresponds to a brick
if and only if z has trivial stabilizer in G(«), and the claim is standard
differential geometry.
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LEMMA 6.6. Let Q) be an extended Dynkin quiver with minimal imag-
inary root § and o = md with m > 1. Let # € NL. If the general element
of I(«) has subrepresentations of dimension 3 and oo — 3, then 3 is a
multiple of 6.

Proof. If () has no oriented cycles then clearly 4 must have defect
zero, so the subrepresentations of dimensions g and o — [ must be
regular. Now the general element of /(«) is in a homogeneous tube, so
all regular subrepresentations have dimension a multiple of §. If Q) is an
oriented cycle then the same argument works, for the general element
of I(«) involves m copies of a simple representation of () of dimension

J.

THEOREM 6.7. If (A\,«) is a pair with « € ¥ then pZt(A) is a
reduced and irreducible complete intersection of dimension ov- o — 1+
2p(a), and the general element of u;'(X\) is a simple representation
of 11",

Proof. By Lemma 6.3, 51 () is irreducible of the right dimension.By
Lemma 6.4, the simple representations are an open subset of u;1()),
so to show that the general element is simple it suffices to prove the
existence of one simple representation of dimension «. Now because the
reflection functors of [5] are equivalences, we may assume as in Lemma
6.3 that « is a coordinate vector or in the fundamental region. Clearly
there is a simple representation if « is a coordinate vector, so assume
that « is in the fundamental region.

Assume for a contradiction that there is no simple representation.
The irreducibility of g7 (A) implies that there is some 3 such that the
general representation of II* of dimension « has a subrepresentation of
dimension . Then by Lemma 6.4 this holds for every representation
of TI" of dimension .

First suppose that ¢(a) < 0 or « is indivisible. Then « is a Schur
root. Thus the general representation of ¢ of dimension « is inde-
composable, so extends to a representation of II*, and hence has a
subrepresentation of dimension 3. Similarly, the general representa-
tion of @Q°F of dimension « has a subrepresentation of dimension j3.
Considering duals, this implies that the general representation of @) of
dimension « has a subrepresentation of dimension o — 3. Now by [22,
Theorem 3.4] the general representation of dimension o decomposes as
a direct sum of representations of dimension § and « — 3, contrary to
the fact that « is a Schur root.

Now suppose that ¢(a) = 0 and « is divisible. As in Lemma 6.3
the support of « is extended Dynkin with minimal positive imaginary
root 6 and o = pd where K has characteristic p > 0 and A -4§ # 0.
Now any element of /() extends to a representation of II*, and hence
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has a subrepresentation of dimension 3. Similarly, by considering duals
and the opposite quiver, any element of [(«) has a subrepresentation of
dimension a — #. Now by Lemma 6.6 we have § = kd§ with 0 < k& < p.
But then A-3 # 0, contradicting the fact that there are representations
of 11" of dimension 3.

Finally, since the general element = of u5!(A) is a simple representa-
tion, it is a brick, and hence by Lemma 6.5 it is a smooth point. Thus
p;t(A) is generically reduced. Since it is also a complete intersection,
hence Cohen-Macaulay, it is reduced.

7. The set I

In this section @ is a quiver with vertex set I. If A € K, recall that R‘AI'
is the set of positive roots a with A-a = 0. We define F\ to be the set
of a € R‘AI' with the property that (a/,¢;) < 0 for any (X, ') ~ (X, @)
and any vertex ¢ with Al = 0. It is a sort of fundamental region with
respect to A. (Of course [ is precisely the fundamental region.) We
prove that if there is a simple representation of 11" of dimension «,
then either (A, «) is equivalent to a pair (A, o) with o/ the coordinate
vector of a loopfree vertex, or o € F.

By definition, if (A, @) ~ (N, &) then o € F) if and only if o/ € Fy.
Now Lemma 5.3 immediately implies the following result.

LEMMA 7.1. Ifa € F\ then there is an equivalent pair (X, o) ~ (X, «)
with o' in the fundamental region. In particular o is an imaginary root.

LEMMA 7.2. IfII" has a simple representation of dimension o and i
is a vertex, then either o = ¢€;, or \; # 0, or (o, ¢;) < 0.

Proof. For simplicity we may suppose that no arrow has tail at 7.
Suppose that A; = 0. Let V' be a simple representation of dimension
vector a, with vector space V; at each vertex j. Letting Vg = ©Vy(y),
where the sum is over all arrows in () with head at ¢, the linear maps
in V combine to give maps

4
Vi Vs
¢
with ¢f = 0.
Now if Ker(#) # 0 then V' has a nonzero subrepresentation W where
W; = Ker(#) and W; = 0 for all j # 1.
On the other hand if Im(¢) # V; then V has a proper subrepresen-
tation W with W; = Im(¢) and W; =V, for all j # ¢.
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Thus, assuming that V is simple and o # ¢;, we deduce that 6
is injective and ¢ is surjective. Since ¢ = 0 the map ¢ induces a
surjection Vg /Im(#) — V;, and hence dim Vi > 2dim V;. Thus (a, €;) =
2dim V; — dim Vz <0.

LEMMA 7.3. If there is a simple representation of II* of dimension a
then there is a pair (N, a') ~ (A, o) with &' a coordinate vector or in
the fundamental region. In particular o is a root.

Proof. 1If (X, a') ~ (A, a) then, because of the reflection functors,
there is a simple representation of I of dimension o'. In particular
o' > 0, so we can choose a pair (X, ') with o/ minimal. Now either o
is a coordinate vector, or in the fundamental region. Namely, supposing
that o' is not a coordinate vector, since there is a simple representation
of dimension o, it has connected support. Thus it suffices to prove that
(o, €;) <0 for any vertex ¢. This is true if there is a loop at ¢, so we
may suppose that ¢ is loopfree. If A; = 0 then (a/,¢;) < 0 by Lemma
7.2. If A\; #£ 0 then the reflection at ¢ is admissible, and (a/,¢;) < 0 by
the minimality of o'.

LEMMA 7.4. If there is a simple representation of Il of dimension a
then either (X, «) is equivalent to a pair (X', o) with o/ the coordinate
vector of a loopfree vertex, or a € F).

Proof. Supposing that there is no equivalent pair (A, o’) with o/ the
coordinate vector of a loopfree vertex, we show that a € F). Of course
a is a root by Lemma 7.3. If (M, o) ~ (A, «) then there is a simple
representation of II" of dimension o/. Now if 7 is a vertex with A=
then either there is a loop at ¢, in which case (o, ¢;) < 0 automatically,
or if there is no loop at 7, then (¢/,¢;) < 0 by Lemma 7.2.

8. Classification of F \ X

Let @@ be a quiver with vertex set I. It follows from Theorem 6.7 and
Lemma 7.4 that the set of imaginary roots in Xy is a subset of Fy. In
this section we show that this is quite close to being an equality. Not
only is this a good way of determining the elements of ¥y (especially
when A = 0, so there are no admissible reflections), it is also essential
for the proof of our characterization of the dimension vectors of simple
representations of I1*.

THEOREM 8.1. If (A, a) is a pair with o € F\ \ X, then after first
passing to an equivalent pair, and then passing to the support quiver of
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o and the corresponding restrictions of A and «, one of the following
cases holds:

(1) Q is extended Dynkin with minimal positive imaginary root §,
and either A -§ = 0 and o = md with m > 2 or, if the field K has
characteristic p >0, A -8 # 0 and o« = m'pd with m' > 2.

(II) I is a disjoint union J U K, with ), \ic; = 0, there is a
unique arrow with one end in J and the other in K, say connecting
vertices j € J and k € K, and o; = a, = 1.

(111) I is a disjoint union J UK, there is a unique arrow with one
end in J and the other in K, say connecting vertices j € J and
k€ K, aj =1, the restriction of () to K is extended Dynkin with
extending vertex k and minimal positive imaginary root §, A-6 = 0,
and the restriction of « to K is a multiple mé with m > 2.

(Recall that if @ is an extended Dynkin quiver and ¢ is its minimal
imaginary root, then an exztending vertez is a vertex ¢ with ¢; = 1.)

The proof of this theorem takes the rest of this section. Throughout,
we assume that o € F\. In particular « is a root, so if it is sincere then
Q is connected. We say that 8 € N’ is a (—1)-vector for the pair (), @) if
b,a—p € NR'A" and (8, a—p) = —1. We say that g is a divisor for (X, «)
if it is a (—1)-vector, (3, ¢;) < 0 for every vertex ¢, and (o — 3,¢;) <0
whenever (3,¢;) = 0. If § is a divisor for (X, «), then

—1=(f,a=p8) = (a=B)i(Be),
and all terms in this sum are < 0. Thus there is a vertex j, which we
call the critical vertex for 3, with (8,¢;) = —1 and (o — 3); = 1, and
for every other vertex i one has (8,¢) =0 or (v — 3); = 0.

LEMMA 8.2. If ¢(a) < 0 then (8, — 3) < 0 for any 3 with 3 and
o — 3 both nonzero and in NR'A".

Proof. Suppose that (5, — ) > 0 with §,a —  nonzero and in
NRY. By Lemma 7.1 there is an equivalent pair (X', o) with o’ in the
fundamental region. Applying the same sequence of reflections to 3
gives a vector 3’ with (4, o/ — ') > 0 and 5’ and o/ — ' both nonzero.
Now

q() = q(e/ = B") +q(B) + (', ¢ = ') > q(a = 3") + q()

so by [10, Lemma 2, p123] the support quiver of o’ is extended Dynkin
and o' is a multiple of the minimal imaginary root. But this implies
that ¢(a) = ¢(a’) = 0, a contradiction.
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LEMMA 8.3. Ifa € F\\ X\ and q(a) < 0 then there is a (—1)-vector

g for (A «).
Proof. Combine the Lemma 8.2 with Theorem 5.6.

LEMMA 8.4. Ifa € F\\ Xy, q(a) < 0 and 8 is a (—1)-vector for
(A, @), then there is an equivalent pair (N, o) ~ (A, «) which has a
divisor 3’ satisfying 3’ < f3.

Proof. Amongst all (—1)-vectors 3 for all pairs (X, o) equivalent to
(A, @), choose ' to be minimal with 3° < 3. Then choose an equivalent
pair (X ') with o/ minimal amongst those having 3" as a (—1)-vector.

We claim that (3',¢;) < 0 for every vertex . This is automatic if
there is a loop at 2, so we may suppose that 7 is loopfree, and for
a contradiction suppose that (5',¢;) > 0. We divide into two cases
according to whether or not \: = 0.

Suppose that AL # 0. This ensures that ¢; ¢ R‘AI',, S0 any positive
root in R‘AI', remains a positive root on applying the reflection s;. Thus
s;(f') and s;(a’ — f') are in NR:’@,(A,), and hence s;(f’) is a (—1)-vector
for (r;(X), si(a’)). Now since (', €;) > 0 it follows that s;(3’) is strictly
smaller than (', a contradiction.

Suppose on the other hand that A} = 0. The vector 3’ —¢; is in NRY,
by Lemma 5.1. It is also nonzero, for if 3’ = ¢; then

—1=(e,0 —¢)=(,6) =2,

which is impossible since (¢, ¢;) < 0 because a € Fy. Now ' — ¢; is a
(—1)-vector for (X, o), since

(B —e, o =3 + &)= (8,0 = 5") = (e, 6) — (o, &) +2(F, &)
>1-2-0+42=-1,

so (B — e, — '+ ¢) = —1 by Lemma 8.2. This contradicts the
minimality of #’. Thus the claim is proved.

Finally, suppose that i is a vertex with (', ¢) = 0. If X} = 0, then
(o — ', €¢) = (', €¢) < 0 since a € Fy. On the other hand, if Al # 0
then the reflection at ¢ is admissible for (M, a/), but s; has no effect
on ', so0if (o' — 3,€¢) > 0 then ' is a (—1)-vector for (r;(X'), (s;a')),
contradicting the minimality of /. Thus §’ is a divisor for (X, /).

LEMMA 8.5. Let 8 be a divisor for (A «), and let j be the critical
vertex for (. Suppose that € is a vector whose components are non-
negative real numbers, with support contained in the support of o — 3,
with & = 0, (§,¢;) = —1 and with (£, €;) non-negative and integer-
valued for every vertex i # j. Then there is at most one vertex i at
which (&, €;) is strictly positive, and at this vertex (€, ¢;) = 1.
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Proof. If ¢ is a vertex with & # 0 then ¢ # j and by assumption
(v — B)i # 0, s0 (8,€¢;) =0, and hence (a — 3, ¢) < 0. It follows that
(v — 3,€) < 0. Now since (o — 3); = 1 we have

(a=B. = (a—B)(&e)=—1+> (a—B)il&e)

i i#j

Now the terms in this last sum are non-negative integers, so at most
one term is nonzero. Now if (£, ¢) > 0 then certainly & # 0, so by
hypothesis (o — 3); # 0, and hence the corresponding term in the sum
is nonzero.

LEMMA 8.6. Let 8 be a divisor for (A «), and let j be the critical
vertex for (3. Suppose there are vertices v; (1 < i < n) and the only
arrows connected to the v; are of the following form (the orientation of
the arrows is irrelevant): either

J U1 U2 Up

with n > 1, or

. Un—1
J U1 Un—?/
\ .

with n > 3. Then (o — 3),; = 0 for some i.

Proof. Supposing otherwise, we obtain a contradiction using Lemma
8.5. In the first case take £ to be the vector with &, = ¢ for all 7, and
& zero at all other vertices. In the second case take £ to be the vector
with &, = tfori <n—-2,&, _, =&, = (n—1)/2, and £ zero at all
other vertices.

LEMMA 8.7. Suppose that 3 is a divisor for (X, a), and let j be the
critical vertex for 3. Let Q' be an extended Dynkin subquiver of @)
contained in the support of o — 3, and let § be its minimal positive
imaginary root. If for any vertex i € Q) we define

8; = j{: Bi(a) + 2{: Bhr(a)s

a€Q\Q' a€Q\Q'
h(a)=1 t(a)=t
then either j ¢ Q' and s; = 0 for all vertices i € Q', or j € Q' and
(S] = ZiEQI 5282
Proof. For any vertex ¢ in Q' we have (3, ¢;) = (8|qr, €i)gr — si- Thus
(8,6) = =>_, s;. Since (av— 3); # 0 for all 7in @', we have (3,¢;) =0
for any ¢ # j. The result follows.
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LEMMA 8.8. If Q' is an extended Dynkin quiver and r and s are
distinct extending vertices, then there is no vector v with integer com-
ponents, with (vy,€.) =1, and with (v,€¢) =0 for all i # r,s.

Proof. Adding a suitable multiple of the minimal positive imaginary
root 6 we may assume that v, = 0.

Suppose that Q' is of type A,,. Thus Q' has shape

(73] Up—1
T & » Up = Vg = S
(%) Vg—1

with p,¢ > 1. Now if 4, = = and 7,, = y then the hypotheses imply
that z + y = —1 and 7v,, = 2z and 7v,, = 2y for all «. Thus pz = ¢y,
so z and y have the same sign. But then the equality x +y = —1 is
impossible for x, y integers.

Next suppose that Q' is of type D, in which case there are two
possibilities for the location of r and s. The first possibility is

T t
:Ul Up:
S Uu

Now the hypotheses imply that v,, = —1, but also v,, = 2y, = 27,
and then v,, = Yup_y = 1= Yuy, SO Yy, IS even, a contradiction. The
second possibility is

r s
: (%) Up :
t U
in which case v,, = —1, but also v,, = 274, a contradiction.

Finally, suppose that Q' is of type E,. For type Fg, the components
of v on the arm containing r are successively 0, —1,—2 (so —2 at the
central vertex), but considering the arm not containing r or s, if the
component of v at the tip is 2, then the components on the arm are
x,2x,3x. Thus we need 3z = —2, which is impossible. For type Er, the
components of v on the arm containing r are successively 0, —1, =2, =3,
but considering the shortest arm, if the component of v at the tip is
x, then the component at the centre is 2z. Thus we need 2z = —3,
which is impossible. Note that Eg doesn’t occur since it has only one
extending vertex.

LEMMA 8.9. Suppose that 3 is a divisor for (X, «), that j is the critical
vertez for 3, and that § and a— 3 are both sincere. If ()’ is an extended
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Dynkin subquiver of @), then j is contained in @', and it is not an
extending vertex for Q.

Proof. If j is not in @' then by Lemma 8.7 we have s; = 0 for all 1.
Since ( is sincere this implies that any arrow with one vertex in Q' is
contained in @Q’. Since @ is connected we must have ¢ = @', but then
jisin @', a contradiction. Thus j is in Q.

Now suppose that j is an extending vertex for )’, that is, 6; = 1,
where § is the minimal positive imaginary root for @’. Thus by Lemma
8.7 there is a unique arrow a in @\ Q' with one end in )’, say at vertex
{. The other end cannot be in ()’, say it is at vertex k. Then also 3, = 1
and &, = 1. Now { = j, for otherwise by considering the restriction of
3 to Q' we obtain a contradiction by Lemma 8.8.

Now 0= (8, ¢;) < 208y — 3; —t =2 — [3; —t, where t is the sum of all
terms (3; with 7 a vertex not in )’ connected by an arrow to k. Thus
B;is 1 or 2.

If 3; =2 then t = 0, so there are no arrows, apart from a incident
at k. Thus there is a linear quiver of length 1 attached to j, contrary
to Lemma 8.6.

On the other hand, if 3; =1 then ¢ =1, so k must be connected to a
unique vertex uy not in @', and 3,, = 1. Now the condition (3, ¢,,) =0
implies that u; must be connected to a unique vertex ug # k and
By, = 1. Repeating in this way gives an infinite collection of distinct
vertices k, uy, uo,.... This is impossible.

Thus j cannot be an extending vertex for Q.

LEMMA 8.10. If 5 is a divisor for (A, «) and 3 and o — [ are both
sincere then @) is a star with three arms.

Proof. Since every vertex of the extended Dynkin quiver of type A,
is an extending vertex, by Lemma 8.9 the quiver ) must be a tree.

Suppose that Q' is a subquiver of ) which is extended Dynkin of
type D,,, and let § be the minimal positive imaginary root for @’. By
Lemma 8.9, j must be contained in )" and it is not an extending vertex.
Thus j is on the trunk of ¢’, and §; = 2. By Lemma 8.6, there must be
arrows in () connecting to vertices on both sides of 7, so by Lemma 8.7
there are two such arrows, they attach to extending vertices k, ¢ € @),
and we have s = sy = 1. Let m be the vertex in )’ connected to k,
and let p be the other extending vertex in @' connected to m (or in
case Q' is of type Dy, let p be one of the other extending vertices with
p # (). Since (B,¢,) = 0, we have 3, = 208,, so 3, is even. On the
other hand, since (3,¢€;) = 0 we have §,, + s = 20k, so G, is odd, a
contradiction.

Thus @ contains no subquiver of type D,,, and so it is a star with
three arms.
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LEMMA 8.11. If § is a divisor for (A, «) then 5 and oo— 3 cannot both
be sincere.

Proof. Supposing that f and o — 3 are both sincere, we derive a
contradiction. By Lemma 8.10, the quiver () is a star with three arms.
Moreover, 7 must be at the tip of one of the arms by Lemma 8.6. Note
that @ is not Dynkin or extended Dynkin since (3,8) =3, 8:(3, &) =
—3; < 0. On deleting the vertex j, however, the quiver must be Dynkin
by Lemma 8.9.

We say that @ has type (p,q,r) if the arm containing j involves p
arrows and the other two arms involve ¢ and r arrows respectively. Let
k and ¢ be the vertices at the tips of the second and third arms.

If @ has type (1,¢,7), let £ be the vector which is 0 at j and 1 at
every other vertex. This gives a contradiction by Lemma 8.5.

If @ has type (2,1,r) for some r, let £ be the vector which is 0 at
7, 1 at k and the vertex adjacent to j, and 2 at all other vertices. This
gives a contradiction by Lemma 8.5.

If @ has type (2,¢,r) with ¢,r > 2, then j is an extending vertex
for a subquiver of type Fg. This is impossible by Lemma 8.9.

Finally suppose that () has type (p,q,r) with p > 3. Now () must
contain an extended Dynkin subquiver Q’. By Lemma 8.9, ()’ must
contain j, but the condition p > 3 forces j to be an extending vertex
for )'. This is impossible.

LEMMA 8.12. Suppose (3 is a divisor for (X, a). Assume « is sincere
but 3 is not. Then 3; = 0, and decomposing I as a disjoint union
J UK where K is the support of 5 and J is the sel of vertices where 3
vanishes, there is a unique arrow connecting J to K. It connects j to
some vertex k € I with By = 1.

In addition there is a vertex { € K (possibly equal to k) with the property
that By = 1, (o — B,€) = —1, and (o — B,¢;) = 0 for all ¢ € K with
v #£ L.

Proof. Since () is connected, at least one arrow a connects J to K. If
its vertex in J is ¢, then clearly (5,¢;) < 0,s0 ¢ = j. Now (3,¢;) = —1,
so there can be no other arrows between j and K, and if k is the end
of @ in K, then g = 1.

Observe that (o — 8,¢;) < 0 for all ¢ # j, since this is part of the
definition of a divisor if (,¢;) = 0, while if (3,¢;) # 0 then we must

moment4.tex; 26/04/2000; 18:15; p.28



29

have (v — 3); = 0, and the assertion is clear. Now since 3; = 0 we have

_1— ﬁva_ Zﬁz ﬁv
i#]

and in this sum all terms are
corresponding to the vertex ¢
result follows.

0. Thus exactly one term is —1, say
£, and all other terms are zero. The

A

LEMMA 8.13. If Q' is a Dynkin quiver it is not possible to find vertices
r and s (possibly equal) and vectors 3 and ~ with integer components,
satisfying

Or=1, (8,€) (B,€) =0 fori#s
vs =1, (v, €) = (v,€) =0 fori#r.
Proof. First observe that r # s, for otherwise (g, 3) = 1, which is
impossible since (3, 3) = 2¢(3) is even.
Suppose there are vertices and arrows

1,
1,

v U2 Unp =T

with n > 2, no other arrows attached to the v; (i < n), and all v; # s.
Then the conditions (8, ¢€,,) = 0 imply by induction that §,, = i3,,.
This is impossible since (3, = 1. Similarly the configuration with r
and s interchanged cannot occur. Thus one of three cases occurs. We
eliminate each one in turn.

(1) Q" is of type A, and r and s are the opposite tips. Starting
at the vertex r, the components of 3 must be 1,2,3,...,n. But then
(B,65) =2n— (n—1) =n+1# 1, a contradiction.

(2) @' is a star with three arms, and r and s occur on the same
arms, with one of them at the tip. Without loss of generality, assume
that s is at the tip. Letting x = 3,, working inwards from the vertex s
the components of 8 must be 2,22 — 1,32 — 2,.... Now if there are p
arrows between r and s we have 1 = 8, = (p+ 1)z — p, so @ = 1. Thus
the component of § at the centre of the star is also 1, but considering
either of the other arms, this is impossible.

(3) Q' is a star with three arms, and r and s occur as tips of different
arms. Let the arm containing r contain p arrows, and let the arm
containing s contain ¢ arrows. Now, starting from r, the components of
[ on the arm containing r are 1,2, ..., p+ 1. If 2 = §, then the compo-
nents of 3 on the arm containing s are z,2z — 1,32 —2,...,(¢+ 1)z —q.
Thus p+ 1= (¢+ 1)z — ¢. Solving for 2 this implies that z > 2 (since
it is an integer), and then p+1=¢(z — 1)+ 2 > g+ 1. Thusp > ¢q. A
similar argument with » and s interchanged gives ¢ > p. Contradiction.
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LEMMA 8.14. If 5 is non-sincere divisor for (A, o), « is sincere and
a — [ is not sincere, then (A, o) is of type (II).

Proof. If 5 and a — 3 have disjoint support then it is easy to deduce
from Lemma 8.12 that (X, @) is of type (II). Thus, supposing that the
supports of # and a — 3 intersect, we need to derive a contradiction.

We decompose K as the disjoint union of L, the set of vertices in K
at which aw— 3 vanishes, and M, the intersection of K with the support
of o — 3.

Since (Q is connected there is at least one arrow b connecting £ to
M. If its vertex in L is ¢, then clearly (oo — 3,¢;) < 0, so ¢ is the vertex
¢ appearing in Lemma 8.12. Now (a — f3,¢;) = —1 so there can be no
other arrows between £ and M, and if m is the end of b in M then
(v = B), = 1. Thus @ decomposes as follows (except that possibly
k=m).

Let @' be the restriction of @ to M. Now any subquiver of )’ must
be connected by an arrow to a vertex at which 3 is nonzero, so Q'
cannot contain an extended Dynkin subquiver by Lemma 8.7. Thus @’
is Dynkin, and considering the restrictions of # and o — 3 to @', one
gets a contradiction by Lemma 8.13.

LEMMA 8.15. If B is non-sincere divisor for (A, a) and a — 3 is
sincere, then (X, «) is of type (111).

Proof. Let Q' be the restriction of @) to K. Since o — 3 is sincere, we
have (3,¢;) = 0 for all ¢ # j, and hence (3, ¢;)gr = 0 for all i € Q'. Now
() is connected, and hence so is ', and then since 3 has support @',
it follows from [10, Lemma 1, p123] that @’ is extended Dynkin and
(3 is a multiple of the minimal positive imaginary root § for ’. Now
Br = Be = 1,80 3 =206 and k and ( are extending vertices for @)'. By
Lemma 8.8 we have k = (. Let v be the restriction of @« — 3 to Q’. Then
(v,€6)g = 0forall ¢ € @', so v is a multiple of 6. The result follows.

Proof. (of Theorem 8.1) Suppose that o € F\ \ ¥). Since « is an
imaginary root, ¢(a) < 0. Suppose first that ¢g(a) = 0. By passing
to an equivalent pair, we may assume by Lemma 7.1 that o is in the
fundamental region. Since ¢(or) = 0, this implies by [10, Lemma 1,
p123] that the support of « is extended Dynkin and « is a multiple of
the minimal imaginary root 4, say « = md. If A -§ = 0 then clearly
m > 2, for otherwise o € 3. On the other hand, if A-§ # 0 then since
A-a = 0 the field K must have characteristic p > 0 and m is a multiple
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of p, say m = m/p. Now m’ > 2 for otherwise o € X\. Thus we are in
the situation of case (I).

Thus suppose that ¢(a) < 0. We replace (A, &) by an equivalent pair
to ensure that o has support as small as possible. Then we pass to the
support quiver ' of o and the restrictions (X, @’) of A and «a. Clearly
o' € Fy\ Xy. Observe that if we replace (X, /) by any equivalent pair
(A", &), then o is sincere (that is, has support '), and (A", &’') can
equally well be obtained from (A, @) by applying the reflections first,
and then passing to the support quiver.

Now by Lemma 8.3 there is a (—1)-vector 3, for (A, a/), and hence
a divisor ' for some equivalent pair (A", «”) by Lemma 8.4. Now 3’
and o' — ' cannot both be sincere by Lemma 8.11. Thus either 3 is
a non-sincere divisor, or we obtain a non-sincere divisor for some pair
equivalent to (A, &’’) on applying Lemma 8.4 to the (—1)-vector o' — 3’
for (X", a"). Thus case (II) or (III) holds by Lemmas 8.14 and 8.15.

9. Nonexistence of certain simple representations

In this section we prove the following result. This is used in the next
section to complete the proof of Theorem 1.2.

THEOREM 9.1. Let Q' be an extended Dynkin quiver, let k be an
extending vertex for Q)', and let Q be the quiver obtained from Q' by
adjoining one vertex 7 and one arrow b: j — k. Let I be the vertex set
of Q, let § € K be the minimal positive imaginary root for Q', and let
o = ¢; + m8, where m > 2. If X € K' satisfies \; = 0 and X -§ = 0,
then there is no simple representation of 1 of dimension vector .

Throughout this section we assume that Q',Q, 1, j,k,b,8, «, m and
A are as in the theorem.

LEMMA 9.2. If o = M 4 .. 4 80 with 3 € NI\ {0} for each t,
then >, p(ﬁ(t)) < pler), with equality exactly when all but one of the
B are equal to §.

Proof. Reordering, we may suppose that ﬁ](l) =1 and ﬁ](t) = 0 for

t # 1. Letting v = g1 — €;, we have

> p(BY) = yk —qly)+ > p(BY)

t#1

Using the fact that the restriction of ¢ to Q' is positive semidefinite
with radical Z§, one can easily see that p(5(*) < ﬁ,(:) for t # 1, with
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equality only possible if ﬁ,(:) =0 or $) = 4. Thus

Y p(BY) < —g(y) = m—q(y) < m=p(a).

Now to have equality we must have ¢(y) = 0 and each B (¢t # 1)
either equal to §, or vanishing at k. But the condition ¢(v) = 0 implies
that 4 is a multiple of &, and hence Zt;ﬂ B is also a multiple of 4.
This is impossible unless each of the terms is equal to §.

Let 0 : Rep(Q, o) — Rep(Q’, md) be the projection. If U is a G(md)-
stable subset of Rep(Q’,md), then clearly o=}(U) is a G(a)-stable
subset of Rep(Q, ).

LEMMA 9.3. If U is a non-empty open subset of Rep(Q’, md) which
is G(md)-stable, then dimg,)(Rep(Q, o)\ o7 (U)) < p(a).

Proof. For a dimension vector v, we write B(vy) C Rep(Q, ) for the
set of bricks, and I(y) for the set of indecomposable representations.
We claim that for s > 0 the vector v = ¢; 4+ sd is a Schur root, and

dimg ) (I(7) \ B(v)) < p(7)-

If s =0 this is trivial. If s > 2 then v is in the fundamental region, and
the assertion follows from Kac [8, §1.10, Lemma 1]. Finally, if s = 1
then « is obtained from the dimension vector § by a reflection functor,
see for example [8, §1.7], and the assertion follows from the fact (which
we also need later) that ¢ is a Schur root, and

dimg5)(1(8) \ B(9)) < p(3).

Indeed, 1(8) \ B(d) contains only finitely many orbits.
Now we decompose Rep(Q), «) into sets I(ﬁ(l)7 .. .,ﬁ(r)) as in Section
4. We need to prove that

dimG(a) (I(ﬁ(l)v SERR) ﬁ(r)) \ U_l(U)) < p(a).

By Lemmas 9.2 and 4.3 we only need to consider the sets I(e; +
$6,6,...,0) for 0 < s < m (where there are m — s copies of §). Now
by the claim above and the argument of Lemma 4.3 it suffices to prove
that

dim o) (Bs \ o~ (1)) < pla),
where B(3(), ..., 30)) denotes the subset of I(€;4s0,9,...,0) in which

the indecomposable summands are bricks.
Let R = Rep(Q, €;455) XxRep(Q), 8) X - -xRep(Q), §), considered as a
subset of Rep(Q, &) using block-diagonal matrices. Let B be the open
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subset of R/ consisting of the elements in which each representation
is a brick. Let H the subgroup of G(«) corresponding to the product
G(e; + 56) x G(d) x -+ x G(8). By Lemma 4.1 we need to prove that
dimg (B, \ e71(U)) < p(a). Since H acts freely on B! this reduces to
a question of dimension, and since BY is irreducible of dimension

dim Rep(Q, €; + s6) + (m — s) dim Rep(Q, 9)
=dim H + p(¢; + s6) + (m — s)p(6) = dim H + p(«),

and o~ (U) is an open subset, it suffices to prove that B, meets o~ (U).
In other words we need that o(B,) meets U.

Now the canonical decomposition for dimension vector md is of the
form § 4+ ---+ 4, so U contains a representation which is a direct sum
of bricks of dimension ¢, and then since U is G(md)-stable, it meets
P =Rep(Q’, s6) x Rep(Q’, ) X --- x Rep(Q’, §). Also the map B, — P
consists of an open inclusion followed by the projection, so the image
o(B.) is open in P. Since P is irreducible, the two non-empty open
subsets o(B!) and U N P must intersect. Thus o(B.) meets U, as
required.

Let m: u;1(A) — Rep(Q, @) be the projection.

LEMMA 9.4. Under the map or, any irreducible component of u;*())
dominates Rep(Q’, md).

Proof. Let V be an irreducible component of p7!(A). Clearly V is
G(a)-stable, so on(V) is G(md)-stable. Let U be the complement of
the closure of om(V), and for a contradiction suppose that U is non-
empty. By Lemma 9.3 we have dimg,)(Rep(Q, @) \ o 1)) < p(a).
Now V C #~}(Rep(Q, a) \ 0= }(U)), so by Lemma 3.4 we have

dim V < p(a) + @ - o — q(a) = dim Rep(Q, ) — dim End(«)o.

This is impossible since p;'(\) is a fibre of the moment map, so
every irreducible component has dimension at least dim Rep(Q), o) —

dim End(a)g.

Recall that a ring epimorphism A — B is said to be pseudoflat if
Tor{ (B, B) = 0. This is relevant because of [3, Theorem 0.7].

LEMMA 9.5. If N = > .0; then there is a pseudoflat epimorphism
6 : KQ' — Mat(N, K[z]) such that the general representation of Q' of
dimension mé is the restriction of a Mat(N, K[xz])-module,

Proof. This is standard. See [3, Lemma 11.1].
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LEMMA 9.6. If A — B is a pseudoflat epimorphism of K-algebras,
and M is a left A-module, then the map

AMY _(BBaaM
0 K 0 K

is a pseudoflat epimorphism.
Proof. By [1, Proposition 5.2] it suffices to observe that the diagram

A0 B 0
0 K 0 K
A M B B@aM
G x) — ("%
is a pushout in the category of rings.

LEMMA 9.7. Suppose that f and g are endomorphisms of a vector
space V' of dimension m > 2. If the commutator [f, g] has rank at most
one, then 'V has a non-trivial proper subspace invariant under [ and g.

Proof. Replacing f by f — &1 for some eigenvalue £ of f, we may
suppose that f is singular. Also we may suppose that f # 0, for other-
wise one can take an invariant subspace for ¢g. Let vy, ..., v, be a basis
of Im(f), and extend it to a basis vy,...,v, of V. Let wy, ..., w, be a
basis of Ker(f), and extend it to a basis wy, ..., w,, of V. With respect
to these bases, we compute the matrices of f and g. With the rows and
columns indexed by the v;, let ¢ take the block form

XY
(5
and with the rows and columns indexed by the w;, let ¢ take the block
form
P Q
(1 %)

Now with the rows indexed by by the v; and the columns indexed by
the w;, the map f takes block form

(o)

with C invertible, and then [f, g] takes the form

CR CS—-XC
0 —-ZC '
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Now the rank one hypothesis implies that C'R = 0 or ZC = 0, so that
R =0o0r Z = 0. In the first case Ker(f) is an invariant subspace; in
the second case Im(f) is invariant.

Proof. (of Theorem 9.1) Choose a pseudoflat epimorphism 6 as in
Lemma 9.5. By Lemma 9.6 it induces a pseudoflat epimorphism

6 KQ = (KOQ/ K?{’ek> . (Mat(NO, K[z]) Mat(N, g[ﬂ)@@g) ‘

Denote the right hand algebra by R. Now the fact that §; = 1 implies
that Mat(N, K[z])8(ex) is an indecomposable projective Mat(N, K[z])-
module. Thus R is Morita equivalent to

(KO[x] Iﬂ}?]) ~ [Q)",

where Q" is the quiver with two vertices j, k and arrows b : j — k and
a:k— k.

Identify A € K! with the corresponding element of K @z Ko(KQ),
and then identify II* with the algebra II"(KQ) as in [3, Theorem 0.2].
Now ¢ induces a map ¢y : [I" — H(‘S*(A)(R)7 and by [3, Theorem 0.7]
the diagram

KQ —%4% R

! !

IR ___?3__} II¢*(A)(}%)

is a pushout in the category of rings.

Now suppose that there is a simple representation of II* of dimen-
sion vector a. Since the simple representations form an open subset of
pot(A), it follows by Lemma 9.4 that the set of simple representations
dominates Rep(Q)’, md). Thus there is a simple representation S whose
restriction to @' is the restriction by 6 of a Mat(N, K[z])-module. Thus
the restriction of S to @) is the restriction by ¢ of an R-module. Now
since the diagram above is a pushout, it follows that S is naturally a
H(b*(A)(R)—module7 and clearly it must be simple. We show that this is
impossible.

By [3, Corollary 5.5] the ring I?*(M(R) is Morita equivalent to
H#(Q"), where p; = pp = 0 by [3, Lemma 11.2]. Moreover S corre-
sponds to a simple representation 7" of I1#(Q") of dimension vector v
with v; =1 and 73, = m. Now the arrows a and a* are endomorphisms
of the vector space T}, with commutator equal to 6*b. Since dim7; =1
it follows that this commutator has rank at most one, so by Lemma
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9.7, Ty has a non-trivial proper subspace invariant under a and a*.
Now this subspace and its image under b* are a non-trivial proper
subrepresentation of T'. This is a contradiction.

10. Dimension vectors of simple representations

Let 2 be a quiver with vertex set I. In this section we complete the
proof of Theorem 1.2. All that remains is to prove the implication
(1) = (2), that is, if a is the dimension vector of a simple representa-
tion of IT" then a € 3. Thus suppose there is a simple representation
of TI" of dimension «, and for a contradiction assume that o ¢ 3.
Observe that there cannot be an equivalent pair (A,a) with o/ a
coordinate vector, for then clearly o/ € Y/, a contradiction by Lemma
5.2. Thus by Lemma 7.4 we have o € F), and so Theorem 8.1 applies.
Thus we may assume that we are in a situation as in (I), (II) or (I1I),
and to obtain a contradiction it suffices to show that in each case there
is no simple representation.

Case (I). By [3] there is a Conze embedding
m — Mat(N, K{z,y | 2y — yz = X-9))

where N = 3. 8;. If \-§ = 0 this embedding shows that [1* satisfies the
identities of N x N matrices, so any simple representation has dimension
at most N. Thus II" cannot have a simple representation of dimension
vector mé with m > 2. If A-é # 0 and K has characteristic p > 0 then
K{z,y|zy —yz = X\-6) embeds in Mat(p, K[z?,y]). Thus II* satisfies
the identities of pN X pN matrices, so any simple representation has
dimension at most pN. Thus II" cannot have a simple representation
of dimension vector m'pd with m’ > 2.

Case (II). Since up to isomorphism 1" does not depend on the
orientation of (), we may assume that the arrow connecting 7 and k is
b:j — k. Suppose that V is a representation of II" of dimension «.
Let V; be the vector space corresponding to vertex 7 and let V,, be the
linear map corresponding to an arrow a. Now at any vertex ¢ we have

Y VaVae = D VeV = Ay,

h(a)=1 t(a)=t

Taking traces and summing over all vertices ¢ € K, almost all terms
cancel, and one obtains tr(V;V«) = 0. Now since a; = a = 1 this
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implies that V, = 0 or Vpx = 0. In the first case @;c7V; is a subrepre-
sentation of V; in the second case @;cxV; is a subrepresentation of V.
Thus V is not simple, as required.

Case (III). Suppose that V' is a representation of 1" of dimension
«. As in case (II) we may assume that the arrow connecting j and k&
is b:j — k, and furthermore tr(V;,Vs») = 0. Thus tr(V,=V3) = 0, and
since a; = 1 this implies that Vi<V, = 0.

Let Q" be the quiver obtained from @ by deleting all vertices in
J except j, and all arrows with head and tail in J. Let o” be the
restriction of a to K'U {j}, and let A" be the vector with A7 = 0 and
A= X; for i € K. In view of the observation above, the restriction V"
of V to Q" is a representation of the deformed preprojective algebra
1" for the quiver Q”, of dimension vector o’’. Now by Theorem 9.1,
the representation V"' cannot be simple, so it has a non-trivial proper
subrepresentation W. Now V; is one-dimensional, so either W; = 0 or
W; = V;. In the first case W can be extended to a subrepresentation
of V by defining W; = 0 for all i € J \ {j}; in the second case W can
be extended to a subrepresentation of V' by defining W, = V; for all
i€ J\{j}. Thus V is not simple, as required.

11. Quotient schemes

In this section K is an algebraically closed field of characteristic zero,
and @) is a quiver with vertex set I.

Proof. (of Theorem 1.3) By [12, Theorem 2] the quotient scheme
Rep(Q, «) // G(a) is a disjoint union of locally closed strata accord-
ing to the representation type of the semisimple representations. Now
the quotient p;'(A)// G(a) can be identified with a closed subset of
Rep(Q, «) // G(a), so the semisimple representations of a given type 7
form a locally closed subset S(7). Suppose that 7 is the type

= (ky, 8% 5k, BU)).
and consider the subset Z of
Hg(ll) (A) X -+ % Hg(lr) (A)

consisting of those tuples (z1,...,2,) with the a4 corresponding to
pairwise non-isomorphic simple representations. Clearly Z is an open
subset and S(7) is the image of the map

I+ Z =zt (V) /) Glo)
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sending (21, ..., %,) to the direct sum of the z; with multiplicities. Thus
S(r) is irreducible. Now the group H = G(BM) x - x G(B(")) acts
freely on Z, and any fibre of f is a finite union of H-orbits. Thus

dim S(r) = dim Z — dim H = Z 2p(81),

t=1

as required.

Proof. (of Corollary 1.4) Since pu7;!(A) is reduced and irreducible, so
is the quotient p;'(A) // G(a). Now the stratum of simple representa-
tions has dimension 2p(«), and all other strata have strictly smaller
dimension.

Remark 11.1. If (A, «) is a pair with A -« = 0 but XA -3 # 0 for all
0 < B < a, then clearly o € 3y if and only if it is a positive root.
If it is a positive root then every element of u5!(A\) must be a simple
representation of I1* by [5, Lemma 4.1]. Thus p;'()\) is smooth by
Lemma 6.5, and the map

pat(A) = pt (V) /) Gla)

is a principal étale fibre space for the group G(a) by Luna’s slice theo-
rem [13, §111.1, Corollaire 1]. It follows in this case that u51(\) // G(«)
is smooth. It would be interesting to know about the singularities of

prt(A) and p;t(N) // G(a) for general A and a.

Appendix. Application to Kac’s Theorem

In this appendix we show how the lifting results of section 3 can be
used to give a simple proof of part of Kac’s Theorem assuming that
the base field K has characteristic zero. Recall [8, Section 1.10] that
the proof of Kac’s Theorem uses two key lemmas

KAC’S LEMMA 1. If a is in the fundamental region and q(a) < 0
then the set B(a) of bricks (representations with endomorphism algebra
equal to K ) is a dense open subset of Rep(Q, @) (so dimg(,) B(a) =
p(a)) and dimegy(Ia)\ B(a)) < pla).

KAC’S LEMMA 2. The number of indecomposable representations of

dimension o (if it is finite) and dimg,) () are independent of the
orientation of ().
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Kac’s proof of Lemma 1 is quite natural and straightforward. On the
other hand, his proof of Lemma 2 is roundabout, and involves reducing
to finite fields and then using counting arguments. It would be nice to
avoid Lemma 2, or find a direct proof of it.

PROPOSITION A.1. If o € Z! then a is a positive root if and only if
for the general element of {\ € K1 | X-a =0} there is an indecompos-
able representation of 11" of dimension «.

Proof. Let S(«) be the statement that for the general element of
{A € K| A-a =0} there is an indecomposable representation of I1*
of dimension «a.

Since K has characteristic zero, if ¢ is a loopfree vertex and « is
not a multiple of ¢;, then the general element of the set {A € K |
A-a =0} has A\; # 0. For such A there is a a reflection functor relating
representations of II* of dimension o and representations of II"*(") of
dimension s;(«). It follows that S(«) holds if and only if S(s;(«)) holds.

Note also that if ¢ is a loopfree vertex and « is not a multiple of ¢;,
then « is a positive root if and only if s;(«) is a positive root.

Now, by applying a sequence of reflections to reduce a, it suffices to
prove the theorem in the following three cases.

(1) v is a multiple of the coordinate vector at a loopfree vertex, say
o = ke;. In this case « is a positive root if and only if £ = 1, and also
clearly S(«) holds if and only if k = 1.

(2) v is in the fundamental region. In this case « is a positive root.
Also, by Kac’s Lemma 1 and the theory of extended Dynkin quivers,
there is an indecomposable representation of () of dimension «, and by
Theorem 3.3 this lifts to a representation of II* for any A with A-a = 0.
Thus S(«) holds.

(3) o has disconnected support, or a strictly negative component.
In this case « is not a positive root, and S(«) is false.

COROLLARY A.2. If there is an indecomposable representation of )
of dimension « then « is a positive root.

Proof. By Theorem 3.3 this representation lifts to an indecomposable
representation of II* for any A with A+« = 0. Thus S(a) holds.

Remark A.3. Suppose that K = C and () has no oriented cycles. In
this case Schofield [23] has used Euler characteristics to construct the
positive part of the Kac-Moody Lie algebra associated to (). In the
course of his proof he shows that if « is a positive root then there is
an indecomposable representation of () of dimension «. This result and
Corollary A.2 give a proof of Kac’s characterization which completely
avoids finite fields.
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If @ is a positive real root, then the unique indecomposable repre-
sentation of @) of dimension o may be constructed as follows. Choose
a sequence of reflections

with i a loopfree vertex, alt) = sit(a(t_l)) for t > 1, and a¥ not a
coordinate vector for t > 1. Let A(®) € K be the vector with )\EO) =0

and )\go) =1 for all j # 4, and define A(Y) = rit()\(t_l)) fort > 1.

PROPOSITION A.4. With the hypotheses above, the reflection at iy
is admissible for ()\(t), oe(t)) for all t. Moreover, there is a unique inde-
composable representation of Q) of dimension «, and it may be obtained
from the trivial representation of 10 of dimension ¢; by applying suc-
cessively the reflection functors at the vertices i;, and then restricting
the resulting representation of "™ to Q.

Proof. Since K has characteristic zero, A©) . 3 # 0 for any root
which is not equal to +e; (for some component 3; with j # 7 must
be nonzero, and all components have the same sign). It follows that
2B .3 # 0 for any root 8 which is not equal to +ao). In particular
A ¢ £ 0 for t > 1. Thus the reflections are admissible.

Now the reflection functors give an equivalence between representa-
tions of T of dimension ¢;, of which there is only one, and represen-
tations of TN of dimension «. Thus there is a unique representations
of TI""™ of dimension o, up to isomorphism.

Now the restriction of this representation to () is indecomposable,
for if it had an indecomposable direct summand of dimension 3, then
by Theorem 3.3 one has A(™) . 3 = 0. But this is impossible since 3 is
a root, not equal to +a.

Finally, for uniqueness, observe that any indecomposable represen-
tation of @ of dimension « lifts to a representation of "™ since
Al™) o = 0. Since there is only one representation of HA(m)7 it follows
that there is only one indecomposable representation of ).

Finally we turn to Kac’s Lemma 2. We have an elementary proof of
it for indivisible dimension vectors, that is, vectors whose components
have no common divisor.

PROPOSITION A.5. If a € N is indivisible then the number of iso-
morphism classes of indecomposable representations of dimension o (if
finite), and the number of parameters dimg ) (), are independent of
the orientation of Q.
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Proof. Since « is indivisible, the general element of {\ € K! | X -
o =0} has A- 3 # 0 forall 3 € N/ with 0 < 8 < «. Choose A
with this property. Clearly a representation # € Rep(Q, ) lifts to a
representation of IT* if and only if it is indecomposable. Thus by Lemma
3.4 we have

dim p;t(\) = dimgy) I (@) + a-a - q(a).

Moreover, if there are only m isomorphism classes of indecomposables,
then p1(\) is a disjoint union of m irreducible locally closed subsets of
dimension a-a— ¢(«), so it has m irreducible components (the closures
of these subsets). Finally it suffices to note that up to isomorphism the
scheme 71 () does not depend on the orientation of ) (see for example
[5, Lemma 2.2]).

Remark A.6. Clearly the proposition holds for general « if one in-
stead uses the set F(a) of representations of dimension « with the
property that any direct summand has dimension proportional to «. In
fact, using these methods it is possible to prove all of Kac’s Theorem
without using Kac’s Lemma 2, except the existence (and number of
parameters) of indecomposable representations of dimension o with «
a divisible positive root with ¢(a) = 0.
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