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These are the notes for eight lectures, continuing the series I gave last
term. I had several aims, and have only partially succeeded in achieving
any of them.

(1) My first aim was to cover some more basics of the representation theory
of quivers. In particular I wanted to cover the wild case, when the quiver
Q is not Dynkin or Euclidean.

First, I give a very quick treatment of Auslander-Reiten Theory, and in
particular determine the different types of connected components of the AR
quiver for a path algebra.

Second, I cover the theorems of Baer and Kerner on the asymptotic behaviour
of the translate in the wild case, and I prove that the components of the
dimension vector of T P(i)——>» as r—w. This assertion (due to Dlab and
Ringel) was used by Baer to prove her results, but we need her results to
prove this fact, so some care is needed.

Third, I cover some of the properties and constructions associated with
tilting modules and perpendicular categories (but no tilting theory). I
prove Hoshino’s bound on the quasi-length of a regular module without self
extensions, and Ringel’s characterization of the quivers with a regular
tilting module.

(2) My second aim was to cover some of the recent work of Kerner and his
student Lukas. In §5 I define the quasi-period of a regular component, and
cover some of the elementary properties of the quasi-period. This suffices
to put their results in context. Their proofs, however, often use tilted
algebras, and I have not developed enough machinery for this. I content
myself with stating their results.

(3) My third aim was to cover the recent work of Schofield. I have not
covered much of the geometry of representations of quivers, for example
Kac’s Theorem that the dimension vectors of indecomposable representations
are the roots of the Kac-Moody algebra, so I have had to content myself
with Schofield’s algorithm for computing the dimension vectors of
indecomposables without self extensions. I think that the statement given
here is a little neater than Schofield’s original.

William Crawley-Boevey,

Mathematical Institute, Oxford University
24-29 St. Giles, Oxford OX1 3LB, England
June 1992.



§1. Irreducible maps and Auslander-Reiten quivers

Throughout, k is.an algebraically closed field, A is a f.d. k-algebra, and
we consider f.d. left A-modules. In this section there is no further

restriction on A.

RECALL. If f:X—Y then

f is split mono (sm) if hf = 1, for some h:Y—X. Inclusion of a summand.

X
f is gplit epi (se) if fg = 1Y for some g:Y—X. Projection onto a summand.

DEFINITIONS.
If X is indecomposable, then f:X—>Y is irreducible if it is not sm, and it

satisfies (*) f = hg = g is sm or h is se. A source map for X is an

irreducible map f:X——E such that any map X—Z which is not sm factors

through f.

If Y is indecomposable, then f:X—Y is irreducible if it is not se, and it

satisfies (*). A sink map for Y is an irreducible map f:F—Y such that any

map Z—>Y which is not se factors through f.

REMARKS.

(1) If X,Y are both indecomposable the two notions of an irreducible map
X—>Y agree. I don’t define irreducible maps when X,Y both decompose.

(2) By definition, if Y is indecomposable, then 0—»Y is irreducible. If Y
is simple projective then this is even a sink map.

(3) Other people use the same notion of source and sink maps, but define
irreducible maps differently, so that 0—Y is not irreducible. They

have problems, since then a sink map need not be irreducible.

LEMMA.

(1) If X is indecomposable projective then X has unique maximal proper
submodule M and M<>X is sink.

(2) If X is indecomposable injective then X has unique simple submodule S

and X—»X/S is source.



PROOF (1) If X has maximal proper submodules MM’ then M+M’=X, so MeM’' —»X,
so X is summand of MeM’, a contradiction by Krull-Schmidt. If f:M——X

factors as hg then Im(h) = M or X, and then g is sm or h is se. If Z—X is

not se, then not epi, so image contained in M, so it factors through f.

THEOREM. There is a bijection
7: {non-projective indecomposables}——{non-injective indecomposables}
such that if X is non-projective indecomposable there is an exact sequence
£: 0—>TX—E-E5%— 30
with f a source map for TX and g a sink map for X. In case A is hereditary
we have T = DExtl(—,A). Such a sequence £ is called an Auslander-Reiten

sequence or an almost split sequence.

PROOF. We only prove this in case A is hereditary, using results from last
term. We know that the translation functor T induces a bijection, also
denoted T Define a linear map ¢:End(X)—k via ¢(rad End(X))=0, ¢(1 )=1.
Let EeExt (X, TX)=DEnd(X) correspond to ¢. Since £#0, it follows that g is

not se and f is not sm.

If h:Z2—X is not se, then it factors through g, for h gives a commutative

square
Extl(X,TX) N Extl(Z,tX)
DHom(X, X) -— DHom(X,Z)

and the bottom map sends ¢ to O since if aeHom(X,Z) then ¢(ha)=0. Thus the
pullback of & splits.

Now g is irreducible: suppose g factors as E—§aZ—E+X with s not sm and h

not se. Now h=gt with t:Z—FE and g=g(ts). We get a diagram

0 x £5E 8 x—o
l“’ [t |
0 —> X 5 E X — 0

Since s is not sm, the map ts is not an iso, so ¥ not iso. Thus wr=0, so
(ts)" factors through g, say (ts)r=ug for some u:X—E. Now gug = g, and
since g is epi we have gu = 1X’ a contradiction.

Thus g is a sink map. Similarly f is a source map.



COROLLARY. Any indecomposable X has a source and a sink map which are

unique up to isomorphism.

PROOF. Uniqueness means that if X—E and X—E’ are sources, then there is
an iso E—E’ making a commutative triangle. This follows from the
definitions. The existence of a sink follows from the lemma and theorem.
The existence of a source follows from the lemma and the theorem applied to

T_1X.

PROPERTIES OF IRREDUCIBLE MAPS.
(1) An irreducible map f:X——Y is mono or epi.

PROCF. Otherwise it factors through Im(f).
(2) (Exercise) The cokernel of an irreducible mono is indecomposable.

(3) Suppose X is indecomposable and X—E is a source. The irreducible maps
starting at X are the compositions X—E2S 5y,

PROOF. If X—Y is irreducible, it factors through source X—>E, and the
map E—Y must then be se. To show a composition is irreducible, show that
if [Z]:X——aY@U is irreducible then so is f:X-——Y. Namely, if f factors

through V then [g] factors through VeU.

(4) Suppose Y is indecomposable and F—Y is sink. The irreducible maps

ending at Y are the compositions X§E9F——9Y.

DEFINITION. If X,Y are indecomposable, set
rad(X,Y)
radz(X,Y)

{f:X—Y not an isomorphism}

{f:X—Y which factor as hg with g not sm and h not se}.
LEMMA. radz(X,Y) € rad(X,Y) and these are subspaces of Hom(X,Y).

PROOF. If hg is an iso then g is sm and h is se, so we get the inclusion.
We have rad(X,Y)=rad End(X) if X=Y, and otherwise rad(X, Y)=Hom(X,Y), so it
is always a subspace. Let fieradz(X,Y), so fi=h.1gi factors through a module
Z. with g. not sm and hi not se. Since X,Y are indecomposable it follows

that [8'|:X—Z ®Z. is not sm and (h, h.):Z
g2 1 2

> 1 @Zz——eY not se. Now the
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factorization
£.4f, = (h hz)[gl]
g2
shows that radz(X,Y) is a subspace.

DEFINITION. irr(X,Y) = rad(X,Y)/radz(X,Y).

THEOREM. Let X,Y be indecomposable. The following numbers are equal.
(1) dim irr(X,Y).

(2) The multiplicity of X as summand of F with F—5Y sink map.

(3) The multiplicity of Y as summand of E with X——E source map.

PROOF OF (1)=(2). Let (fO f fr):Z@XP——eY be a sink map, with Z having

e
no summand isomorphic to X. Clearly fierad(X,Y) for izl. We show that
f‘l,..,fr give a basis of irr(X,Y).

Span: say ¢:X——Y belongs to rad(X,Y). Now ¢ factors through sink map, so
can write ¢ =}, figi' For izl we have gieEnd(X), so there are Aiek with

gi—hilx € rad End(X). Modulo radz(X,Y) we have

¢ =L T8 = Liny 158 = Lixg T3(8 23100 + A3, = Loy 245
Independent: say Zi>1 Aifi € PadZ(X,Y) with not all Ai=0. The map X—sZeX"
sending x to (Aix) is split mono, so the composition with the sink map is

irreducible. Contradiction.

CONSEQUENCES. Let X,Y be indecomposable.
(1) Knowing sources and sinks we can compute all irr(X,Y). Conversely, if
we know all irr(X,Y) we recover sources and sinks. Namely, X has source and

sink maps
dim irr(X,?2) and ©
Z indec Z indec

dim irr(2Zz,X)

X—o, —X

(2) If X is non-projective, then dim irr(tX,Y) = dim irr(Y,X).

PROOF. Have source map TX—E and sink map E—X.

(3) If X,Y are non-projective, then dim irr(zX,tY) = dim irr(X,Y).



DEFINITION. The Auslander-Reiten quiver I' of A has vertices FO the set of
isoclasses [X] of indecomposable modules (possibly an infinite set), and

arrows Fl, with the number of arrows from [X] to [Y] being dim irr(X,Y).

A translation quiver is a quiver I' with subsets Fp,FiSF and a bijection

0]

'r:I‘O\I"p——e»I‘O\l"i with the property that if x,yeFO and xéFp then the number

of arrows TX—Yy = the number of arrows y—x.

The AR quiver becomes a translation quiver by defining

r
p

T,

1

T: T \[ —T
0'p

the set of vertices [X] with X projective

the set of vertices [X] with X injective
[*X]

O\I‘.1 given by t[X]
SOME PROPERTIES.

Only finitely many arrows start or stop at each vertex.

If x is non-projective, some arrow terminates at x.

There are no loops (since any irreducible map is mono or epi).

There are only finitely many projective or injective vertices.

EXAMPLES. See the next pages for some typical examples of AR quivers in the
special case when the algebra has finite representation type, so the AR

quiver is actually finite. Only the first one comes from a path algebra.
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§2. Preprojective, regular and preinjective modules

In this section A = kQ with Q a connected quiver without oriented cycles.
Last term we introduced the notions in the title in case Q is Euclidean.

This time we also cover the wild case.

DEFINITIONS.

X is prepro.jjective if t'X=0 for i>>0. If X is indecomposable, then

X=T_PP(j) for uniquely determined rz0, Jj.

X is preinjective if T—1X=O for i>>0. If X is indecomposable, then

X=tr1(j) for uniquely determined rz0, Jj.

X is regular if no preprojective or preinjective summand.

PROPERTIES.
(1) Let X,Y be indecomposable.
If Y is preprojective and X is not, then Hom(X,Y)=Ext1(Y,X)=0.
If Y is preinjective and X is not, then Hom(Y,X)=Ext1(X,Y)=0.
PROOF. As before.

(2) A submodule of a preprojective is preprojective.
A submodule of a regular has no preinjective summand.
A quotient of a preinjective is preinjective.

A quotient of a regular has no preprojective summand.

(3) If X,Y are indecomposable and X—Y is irreducible, then X,Y have the
same type.

PROOF. It suffices to prove that X preprojective ¢ Y preprojective. The
implication ¢« is easy. If X is preprojective, either Y projective, or there
is an irreducible map TY—X, so tY is preprojective. Either way Y is

prepro jective.
{(4) The category of regular modules is closed under images of maps and

extensions. The functors T and T act as inverse equivalences on this

category.
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LEMMA. If T "P(i) and T "P(j) # O, then

“m —r number of arrows j—i (if m=r)
dim irr(t "P(i),T "P(j)) = { number of arrows i—j (if r=m+1)
0 (else)

PROOF. P(j)=Aej has unique largest proper submodule with basis the
non-trivial paths starting at j, so this submodule is isomorphic to
® . . P(i). The inclusion is a sink map, so irr(P(i),P(Jj)) has dimension
p: J—o>t

the number of arrows from j to i in Q.

If r=0, for there to be non-zero map we must have m=0, so the assertion
holds in this case. If r20 then

-(r-1)

dim iPP(T—mP(i),T_rP(j)) = dim irr(t P(j),T_mP(i))

and the result follows by induction on r+m.

LEMMA. The following are equivalent
(1) Q is Dynkin.

(2) Some P(i) is preinjective.

(3) There is m with T"X=0 for all X.
(4) Every module is preprojective.

(5) Some indecomposable is both preprojective and preinjective.

PROOF .

(1)>(2) If T TP(i)#0 for all r=0, then these modules are non-isomorphic
indecomposables. But Q has finite representation type.

(2)=(3) If j—k is an arrow in Q then irr(P{(k),P(j))#0. Since P(i) is
preinjective and Q is connected, all projectives are preinjective. Thus
7 ™A=0 some m. Now V X we have rmXEHom(A,th)gHom(t_mA,X)=0.

(3)=>(1) Every indecomposable has the form T_PP(j) with O=r<m and 1=j=n.
Thus finite representation type.

(3)=>(4) empty.

(4)>(5) take an injective.

(§)5(2) If X is both, then T'X = P(i) and 7 °%=0, so = °'T)p(i)=0.
LEMMA. Suppose Q not Dynkin and X is indecomposable.

(1) dim T X—0 as r—x & X preinjective or (Q wild and X regular).

(2) dim T X—m as r—w & X preprojective or (Q wild and X regular).

11




PROOF. We know the behaviour for Q Euclidean, so suppose Q is wild. If X is
not preprojective and dim 7' X does not tend to o, then some dimension
vector must repeat, say

. r . r+s
imtT X=dim t X=oa=0.

[oF

s s . R . .
Now ¢ a = a. Thus B=at+coa+...+cC o is c-invariant, so Berad(q), so Q is

Euclidean by a lemma from last term.

THEOREM. Suppose Q is wild and X is indecomposable regular with sink map
f:E—X. If E is decomposable then it can be decomposed as E=E1@E2 with the
Ei indecomposable and dim E1 < dim X < dim Ez.

PROOF. There is an AR sequence &:0—TtX—E—X—0. Let E = o k

i=1Ei with

the Ei indecomposable.

(1) If k=2 then e:EleE —X is epi. Else mono, since irreducible. Now

2

2 dim X = 2.2 dim rEi + dim Ei < dim X + dim TX.

i=1
The first inequality follows from the fact that the modules Ei belong to AR
sequences of the form O——erEi—~9rX©Ci——eEi——eO; the second from fact that 6
and 10:TE,oTE.,—TX are mono since 7 is left exact. Thus dim X < dim X.

1 2
Since T6 mono the same argument shows dim rzx < dim X, etc. Contradiction.

(2) k=2. Suppose otherwise. Now E1@E2——»X is epi, so

dim E3 = dim X + dim X - dim E1®E2 < dim 7X%,

so 17X———>E3 is epi. Similarly ‘tX———)Ei is epi V i. Thus (tX)z——»X. Now TX has
sink map TE—X and TE is the sum of k=3 terms, so (TZX)Z——»TX, etc. Thus
for all rzl there is s with (rPX)S——»X. We can take s=dim X. Now apply the
right exact functor T_P, to get XS——»I_PX. Thus dim r_rX bounded,

contradicting the previous lemma.

(3) If k=2 then Ei——»X are not both mono. If so, then TX—E
tXC—eElﬁ—ex. Get T XCX Vr as T left exact. Impossible.

1 is mono, so

(4) If k=2 then Ei——ex are not both epi. Else tX—>»X. Get X—>t "X Vr.

Impossible.

12



COROLLARY. If Q is wild then a connected component of the AR quiver

consisting of regular modules has shape ZAm:

-

7 . % v
\}\/\/ N
\‘/ \/\_/ \\/ \‘./

PROOF. Let X be an indecomposable in the component whose sink map E——>X has
E indecomposable. For example one can take X of minimal dimension in the
component. Define [r]X via [1]1X=X and by letting [rlX be the unique
indecomposable with an irreducible epi [r]X—»[r-11X. We leave it as an

exercise to show that any indecomposable in the component has form ! [rlX.

DEFINITIONS. Let X be indecomposable regular.
X is quasi-simple if the sink map E—X has E indecomposable, ie X is in
the bottom row of the diagram.
If X is quasi-simple, then [i]X is the module constructed above, with a
sequence of irreducible epis [i]lX—»[i-1]1X—>»...—>[1]X=X.

The quasi-length of an indecomposable is the number of the row containing

the module, so [i]X has quasi-length i.
The quasi-top of an indecomposable is the quasi-simple reached after a

sequence of irreducible epis, so [i]X has quasi-top X.

REMARK. If Q is Euclidean then any regular component of the AR quiver is a
tube. If X is regular uniserial with regular socle S and maximal proper

regular submodule Y then Y<—>X and X—»X/S are clearly irreducible.

EXERCISES.

(1) Any connected component of the AR quiver has only finitely many
indecomposables of each dimension.

(2) If Q is not Dynkin then the AR quiver has infinitely many connected

components.

EXAMPLE. See the next pages.
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§3. Asymptotic behaviour of the translate.

In this section A = kQ with Q connected wild and without oriented cycles.

The first lemma should really be in a different section.

LEMMA. (Without assumption on Q). If Xl""’XP are non-isomorphic
indecomposables and Extl(Xi,Xj)=0 Vi, j, then the vectors ai=dim Xi are

independent over Z. In particular r=n.

PROOF. Otherwise we have Zriai = Zsioci with ri,sizo and not all Pi=si. Thus
@Xl;i and @X?i are non-isomorphic modules without self extensions and of the
same dimension vector. Impossible.

LEMMA. If X#0 is regular, there is a non-zero map IPX——eX for some r=0.
PROOF. We may suppose X indecomposable. The modules X,TZX,...,Tan are
non-isomorphic indecomposables, so Extl(TZIX,rZJX)to some i, j, so

Hom(t X, X)#0 where r=2j-2i-1.

LEMMA. If X#O is regular, there is reZ and an exact sequence

0—sZ2—1' X >Y—0 with Y regular and Z having a non-zero prepro jective

summand. Moreover 1-12 — tP_IX for all iz0.
PROOF. By induction on dim X.

(1) Suppose there is an exact sequence 0——X’ —5X——X”— 50 with X’ and X"
non-zero regular. By induction there is an exact sequence
0—sZ—>t" X’ —Y—0. Now Z—>t' X' —1 X is mono and the cokernel is an

extension of Y and X” so regular. As required.

(2) Suppose there is no such exact sequence. Since dim T | X—» we may
assume that dim © "X > dim X V r>0 by replacing X with T 'X. There is
non-zero f:TSX——%X for some s#0. Now Im(f) is regular and there is an exact

sequence O—Ker (f)——t°X——Im(f)—0.
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If Ker(f)=0 and s<O then T°X<—X. A contradiction.

If Ker(£)=0 and s>0 then t° left exact, t°°X (> 75X, etc. Contradiction.

If Ker(f) regular then O——er—sKeP(f)——eX——et—sIm(f)——eO. Contradiction.
Thus Ker(f) has a nonzero preprojective summand. Finally, since Y is

regular we have 0 T 17 ¢ ,T_lY——eo exact.

LEMMA. If 1=i,s=n then dim [t_rP(j)]S is unbounded as r—o.

PROOF. We have AR sequence

-(r+1) —-(r+1)
T

0—5T TP(1) —> @ P(jJe o© T P(j) — T P(i)—0

p:i—j p: j—i
so if dim ['r_PP(i)]S is bounded, then so is dim [I_PP(j)]S for any j
connected to i. Since Q is connected dim [T_PA]S bounded. Now

dim (7 "A)_=dim Hom(P(s),7 "A)=dim Hom(z "A,1(s))=din t"I(s)— .
LEMMA. Almost all preprojectives indecomposables are sincere.

PROOF. The modules zero at vertex i correspond to kQ’-modules, where Q’ is
the quiver obtained by deleting i. Now any indecomposable kQ’-module has
support on a connected component Q” of Q’. It suffices to prove that only
finitely many indecomposable kQ”-modules are preprojective as kQ-modules.
Doing this for all Q”, only finitely many indecomposable kQ’-modules are
preprojective for kQ. Thus only finitely many indecomposable preprojectives

are zero at i. Now doing this for each i gives the assertion.

If Q” is Dynkin the assertion is clear, so suppose not Dynkin. We construct

a preprojective kQ”-module which is not preprojective as kQ-module.

Since Q is connected, some vertex J of Q” is connected by an arrow to i.
Choose an indecomposable preprojective kQ”-module X with dim Xj = 2. We can
regard X as a kQ-module, and it is still a brick without self extensions.
Also (ei,g;m X)=-2. Now (ei,glm X) = - dim Extl(S(i),X) - dim Extl(X,S(i)).
Choose a non-split extension Y of X and S(i), one way around or another.
Since S(i) and X are bricks, and Hom(S(i),X) = Hom(X,S(i)) = 0 it follows
that Y is a brick. Also

q(d_imY)=q(ei+gl_i_mX)=1+1+(ei,di_mX)S-O

so Y is not preprojective. Let Z = T;Q”X the inverse translate of X as a
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kQ”-module, so ExtiQ”(Z,X)¢O. Thus ExtiQ(Z,X)¢0. Also Hom(Z,S(i))=0, and it
1

follows from the long exact sequence that Ext (Z,Y)#0. Thus Z is not

preprojective for kQ. But Z is a preprojective kQ”-module.

Let W be an indecomposable kQ”-module, preprojective as a kQ-module. If

r;Qw=0 and ...-—»wz——ewl——ew0=w is a path in the AR quiver for kQ” then
Hom(wi+1,wi)¢0 S0 t;QWi=0. The path must therefore be finite and cannot

include 2. Thus W is preprojective for kQ” and there is no path Z—.. —5W.

There are only finitely many possible W with these properties.

TECHNICAL LEMMA. Let X#0 be regular. Define

D: ZxQy—N, D(r,J) = dim [er]j
and partially order ZxQO via

(r,j)=(r’,j’) e r<r’ or

r=r’ and Hom(P(j),P(j’))=0.

Let (t,m)erQO and M=D(t,m). Suppose that

a. (r,jlz(t,m) s D(r, j)=M.

b. (r,j)<(t,m) = D(r, j)>M (resp. D(r, j)>0).

If 0—Z— >t ' P(m)—Y——0 is exact with Z,Y#0, then <dim Y,dim Tt

Tx> <0

(resp. Y is not preprojective).

PROOF. Since Z#0 it has a summand T ~P(j). Now Hom(t °P(j),T "P(m))#0 so
(s,J)=(r,m) and this is strict since Y#0. Thus (s+t-r, j)<(t,m). Thus

D(s+t-r, j)>M (resp. >0) Now

t-r t-r
T

X> = <dim 7 "P(m),dim t° TX> - <dim Z,dim t° TX>
t—rX)

<dim Y,dim
. -r t-r .
= dim Hom(T "P(m),Tt  X) - dim Hom(Z, T
M - D(s+t-r, j) < O (resp. < M).

1A

If Y is preprojective it has summand r_uP(k) with (r,m)=(u,k), so
(t,m)=s(u+t-r,k), and so D(u+t-r,k)=M. Thus
<dim Y,dim ¥ %> = dim Hom(Y, 7" TX)
= dim Hom(t “P(k), 7" TX) = D(utt-r,k) = M.

Contradiction.

THEOREM (D.Baer). There is a projective P(m) such that any non-zero map

7 "P(m)—>P with P preprojective is mono.
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REMARK. m seems to play the role of an extending vertex in Fuclidean case.
We call P(m) a mono-orbit if it satisfies this condition, although Baer

used this term in a more restricted context.
PROOF. Choose a non-zero regular module X.

If Z#0 is preprojective then T 2 sincere for i1>>0. Thus T 'X sincere for

i>>0 by an earlier lemma. Pick s=0 such that T X sincere for r<s.

Let M be minimum of D restricted to {(r,j) | rzs, 1=<j=n}. Let (t,m) be
minimal realizing M. Now the hypotheses of the technical lemma hold. If
f:t-PP(m)——»P is non-zero and not mono, then there is a sequence

0—sKer (£f)—>t ' P(m)—Im(f)—0 which contradicts the technical lemma

since Im(f) is preprojective.

THEOREM.
(1) If X is not preinjective then dim [T_PX]i——em as r—om.

(2) If X is not preprojective then dim [IPX]i——ew as r—w.

PROOF (1) By a previous lemma we may suppose that X is indecomposable
preprojective. Let P(m) be a mono-orbit. We know almost all prepro jectives
sincere, so there is jo with [r—jX]m¢0 for jZJO. Given a number M, by the
unboundedness we have dim [T P(m)] =z M for some s. Now for r>s+jo we have

Hom(T P(m) v TX)#0 so ©_ SP(m) embeds in T X and so dim [T X] = M.
THEOREM (D.Baer). If X,Y#0 are regular then Hom(t 'X,Y)#0 for r>>0.
PROOF. We may assume that Y has no proper non-zero regular submodule.

Let M be minimal value of D(r,j) for X. Since only finitely many D(r, j)=M,
we can choose (t,m) minimal realizing M. Now hypotheses of technical lemma
hold.

For r>>0 we have dim T P(m) > dim Y and [T% Y] #O For such r, let
f:T P(m)——eY be a non-zero map. Now f is not mono by dimensions. Kernel Z.
Im(f) is regular by mono-orbit property. Thus f is epi by minimality of Y.

By the technical lemma <dim Y,dim Tt_rX> < 0, so Extl(Y,rt_rX)=O, SO
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Hom(t_(r+1_t)

X,Y)=0.

THEOREM (Kerner). If X,Y are regular then Hom(X,t_rY)=0 for r>>0.

PROOF (Lukas).

There is PO such that dim TPZ z dim Y for all PZPO and all non-zero regular
Z with dim Z = dim X. Namely, for any given Z there is Ty and this number
only depends on dim Z.

If f:X—>t 'Y then Im(f) is regular, dim Im(f) = dim X and T Im(f) <Y

since Im(f) <ot Y. Impossible if rzr, and f is non-zero.
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§4. Constructions with modules without self extensions

In this section A = kQ and Q has no oriented cycles. We consider f.d.
A-modules. Most of the results generalize to arbitrary f.d. algebras,
provided you work with module with no self extensions and projective

dimension = 1. We do not pursue this generalization here.

DEFINITIONS. Let X be a module (usually without self exts).
add(X) = direct sums of the indecomposable summands of X.
#X = number of non-isomorphic indecomposable summands of X. Eg #A = n.
Note that #X = n if X has no self extensions.
gen(X) = modules which are quotients of direct sums of copies of X, the
modules generated by X.
If M is a module then gxM = zbeHom(X,M) Im 6. This is clearly the unique

largest submodule of M in gen(X)

LEMMA. If X has no self extensions then gx(M/gxM)=0. Thus 8y defines a
torsion theory, with torsion class gen(X) and torsion-free class
?X={M|Hom(X,M)=0}.

PROOF. Have O—-eHom(X,gXM)—geHom(X,M)——aHom(X,M/gXM)——aExtl(X,gXM). Now f
is epi, and the last term is zero since Xr——»gXM and Extl(X,Xr)=0. Thus

Hom(X,M/gXM)=0.

LEMMA. If X has no self exts and 8X={N|Ext1(X,N)=O} then
add (X)={Megen(X) | Ext . (M, N)=0 VNES, } .
In particular, if gen(X)=8X then add(X) is the relative projectives of

gen(X).

PROOF. Clearly X € gen(X) and Extl(X,N)=0 for Nef. Suppose Megen(X) and
Extl(M,N)=0 VNe@X. Take a basis of Hom(X,M) and construct the corresponding
map XT—sM. This is epi, and if N is the kernel, then Extl(X,N)=0. Thus
Ext'(M,N)=0, so 0—N—X —sM—0 splits, so Meadd(X).
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LEMMA. If X has no self extensions, M is a module and r=dim Extl(X M),
XM———>X —0, w1th Ext . (X,u M)—O
(1) If N is a module with Ext (X N) =0 then Ext. (u M, N)”Ext (M,N).

(2) If M has no self exts and Ext (M X)=0 then X@u M has no self exts.

X
(3) If X is indecomposable then Hom(X,M) = Hom(X,uXM).

there is universal exact sequence 0—M—>u

PROOF. Let Ei,...,EP be a basis of Extl(X,M). Let E:O——eM——euXM——exr——eo

Ext (X, M)T. In the

IR

correspond to (Ei) under the isomorphism Extl(XP,M)
long exact sequence
r, f 1 1 1 r
—>Hom(X, X' )—Ext " (X, M) —Ext (X,uXM)—eExt (X,X )=0

the map f is epi. Now (1) and (2) are clear. (3) f is iso since X is brick.

THEOREM. If X has no self extensions, the following are equivalent
(1) #X =

(2) There is an exact sequence 0——>A——X’'—X”— 0 with X', X"eadd(X).
(3) gen(X)={N|Ext!(x,N)=0}.

In this case X is called a tilting module.

PROOF.
(1)=(2) X@uXA has no self exts so has =n summands. By assumption each one
already occurs as a summand of X, so u,A€add(X), and we can use the

X
universal exact sequence.

(2)=(3) Clearly gen(X) < {MIExtl(X,M)=0}. If Extl(X,M)=0 then
Hom(X,M/gXM)=O and Extl(X,M/gXM)=0. Apply Hom(—,M/gXM) to get
Hom(A,M/gXM)=0. Thus M = gXM € gen(X).

(3)3(1) Let X € ™ be the Z-linear combinations of the dimension vectors of
the summands of X. We have exact sequences 0——P(i)—>u P(1)——+X —>0. Now

Ext (X,u P(1)) =0 so uXP(1)egen(X) Also u P(1) is a relatlve pPOJect1ve of

gen(X), so uXP(l)eadd(X) by the lemma. Thus dim P(i)eX, so x=z" , and hence

#X=n.

COROLLARY. Any module X without self exts can be enlarged to a tilting
module X@uXA, called the Bongartz completion.

REMARK. We are not doing any tilting theory. That subject is too big.
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DEFINITION. Xl={M|Hom(X,M)=Ext1(X,M)=0} is the perpendicular category to X.

EXAMPLES.
P(i)" consists of the modules which are zero at i.
An arrow p:i—-j gives mono 6:P(j)—>P(i), and Coker(8)" consists of
representations M with Mp an iso. Equivalent to reps of quiver in which p

is shrunk.

LEMMA. Xl is closed under extensions, images, kernels, cokernels, so is an

abelian category. If NEM are in X'L and M is relative projective, so is N.
PROOF. Easy.

LEMMA. Suppose X has no self exts. The assignment sending M to
pXM = uXM/gX(uXM) induces a left adjoint to the inclusion of Xl in A-mod.
PROOF. It is easy to check that pXM e Xt There is a map f :MCou M——»pXM
and if NeX' it is easy to check that fM gives an iso Hom(pXM N)——Hom(M, N).
Now we can make Py into a functor by sending 8:M——M’ to the map in

Hom(pXM,pXM’) corresponding to f, 6008 in Hom(M,po’).

Ml
LEMMA. If X has no self exts and P is projective then dim pXP - dim P is a
Z-linear combination of the dimension vectors of the indecomposable
summands of X. If X is indecomposable, it is - <dim X,dim P> dim X.

PROOF. We have 0——eP——9uXP——aX —>0 and 0——agxuxP——euxP——apxP——eO If Ne@
then Ext (u P,N)=0, so Ext (gXuXP N)=0, and hence gXuXP € add(X) by the
lemma. For the last statement apply <dim X,-> and use the fact that

<dim X,dim X> = 1.

THEOREM. If X has no self exts there is an equivalence FX:kQX—mod——exl with
Q a qu1ver with no orlented cycles and n-#X vertices. Moreover F., induces

X
isos Ext X0 (M,N) = Ext! (F M,F N)
X

PROOF. pXA is a relative projective generator for Xl, so Xl is equivalent

to a module category End(pXA)—mod. Submodules of relative projectives are
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relative projective, so End(pXA) is hereditary.

Since k is algebraically closed we have an equivalence F :kQX—mod——e»Xl for

X
some quiver QX without oriented cycles (proof omitted). This functor

< . 1 . 1, .
induces isos on Ext™ since X is closed under extensions.

Let XSZ" be the Z-linear combinations of the dimension vectors of
indecomposable summands of X, so rk ¥=#X. Let ¥ be the Z-linear
combinations of dimension vectors of modules in Xl. Any such module has a
resolution by relative projectives of Xl, so rk Y is the number of vertices
of QX. If P is projective then dim pXP—gim P € X by the lemma, so

dim PeX+Y, so T+y=7". Thus rk X+rk Yzn. Also <X,¥>=0 and <-,-> induces a
non-degenerate bilinear form so rk X+rk ¥=n (extend to @ if it makes you

happier).

LEMMA. Let X,Y be indecomposables without self exts. Suppose that
Hom(X,Y)=Hom(Y,X)=Ext1(Y,X)=0, and r = dim Extl(X,Y).
There is an equivalence F:kQP—mod——ag(X,Y) where
I arrows
Qr =1 — 2.
and &(X,Y) is the category of modules with a filtration in which the
quotients are X and Y. This equivalence sends S(1) to X and S(2) to Y.

* *
Moreover F induces isos Extk r(M,N) = ExtA(FM,FN).

Q
IDEA OF PROOF. Any er—module M fits in an exact sequence
0——98(2)a——aM—~+S(1)b——90, while any module Ne&(X,Y) fits in an exact
sequence 0——+Ya——aN——9Xb—~90. These exact sequences are classified by the

same data. etc.
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§5. Quasi-period of regular modules

In this section A = kQ with Q wild connected and without oriented cycles.

DEFINITION. If X is a quasi-simple module, then quasi-period X is

qpX = min {meZ | rad(X,t"X) # O}
Note that rad(X,T"X) = Hom(X,t"X) if m#0. The theorems of Baer and Kerner
say that Hom(X,th) is non-zero for m>>0 and is zero for m<<0, so the
quasi-period is an integer. Also gqp X = qgp TPX, so we can talk about the

quasi-period of a regular AR component by choosing any quasi-simple.
LEMMA. If X is regular and r>0 there is no mono or epi £:X—1 'X.

PROOF. We have used this before. If f is epi then T  X—»t 2'X, etc, a

contradiction. If f is mono then rPXC—ex, rZPXC—etPX, etc.
LEMMA. If X is a quasi-simple brick, then Hom(X,t X)=0.

PROOF. Let O#f:X——t X. This is not mono or epi by the lemma. The algebra
is hereditary so the map Extl(Cok f,X)——aExtl(Cok f,Im f) is epi, and hence

we can fill in the module L in the diagram

00— X — L —> Cok f — O

€:0—Inf — T X —> Cok f —> O.

This gives a sequence 0 — X — Im f © L P, T X—> 0, which is not split

since Im f is not iso to X or v X. Thus p factors through the sink map

E—>t X. Say
0 X —>ImfelL _—s1TX—0

LI

0 — X — E —5 T X —0

Now X is a brick and h#0 since E—»t X is not se. Thus h is an

IR

automorphism, so E Im f ® L. But E is indecomposable.
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LEMMA. Suppose X is quasi-simple and [r]X is a brick.
(1) Extl([i]X,[j]X)=0 for 1=<i<r and 1=j=r.
(2) Hom([i]X,[jlX)=0 for 1s=i<j=r.

PROOF. (1) If r>1 then [r-1]X has no self exts, for if f:[r-1]X—st[r-11X
is non-zero, then so is the composition [r]lX—»[r-11X—tlr~11X<s[riX.
Thus [r-1]X is a brick. By induction [i]X has no self extensions (and is

brick) for i<r. Thus Extl([i]X,[J]X)=0 for j=<i<r since [ilX—>»[jlX.
We now show Extl([i]X,[j]X)=0 for i<j=r by induction on j-i.

Any non-zero map [jlX—[i+1]1X is epi. Namely,
if i+1=j then [Jj]lX is a brick,
if i+1<j then Extl([i+1]X,[j]X)=0 by induction, so any map [jlX—[i+11X

is mono or epi, so is epi by dimensions.

Now any non-zero map f:[jlX——>t[i]X composes with the mono T[ilX—[i+1]X
to give a non-zero map [jlX—[i+1]X which is not an epi. Contradiction.
Thus Ext’([1]X, [j]X)=0.

(2) There is an epi [jlX—»[1]1X whose composition with a non-zero map

[1]1X—[Jj]X is a non-zero non-iso [jlX—[jlX. But [jlX is a brick.

THEOREM (Kerner). Let X be quasi-simple and rz1. Then
[r]X is a brick ¢ qp X = r.

[r]X no self exts & qp X > r.

PROOF. We show first that if X is quasi-simple then X is a brick e qp X=1.

It suffices to show that if X a brick then Hom(X,t_rX)=0 for r>0. We use

induction on r. The case r=1 is a lemma, so suppose r>1. By hypothesis
Ext!(z7X,X) = DHom(x,7 (" Vx) = o

R

-r, . . . .
SO0 a non-zero map f:X—-—t "X is mono or epi. Both are impossible.

Now for rzl1 we show the following are equivalent
(1) [r+11X is a brick.
(2) [r]X has no self extensions.

{(3) gp X > r.
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(1)=>(2) is lemma.

(2)>(3) By the lemma [i]X has no self exts for 1si=r. Now [i]X—»X and
Ti_lxc—eli]X so TiXC—er[i]X. Since Hom([il]X,T[i]lX)=0 we must have
Hom(X,riX)=O. Also rad(X,X)=0 since no self exts, and Hom(X,r_jX)=O by the

first part of the proof.

(3)=(1) By induction on r we know [r]X is a brick. We have a non-split
exact sequence E:0——%TPX——9[P+1]X——%[P]X——%O. Now [r]X has a filtration
with quotients X,tX,...,tr_IX so there are no non-zero maps between tPX and

[r]X. It follows that [r+1]1X is brick.
THEOREM (Hoshino). Every quasi-simple has qp = n-1.

PROOF. Suppose gp X = p>1. Now Y=[1]Xe...e[p-11X has no self exts and
Y o= kQY—mod contains [plX which has self extensions. Thus QY has =2

vertices, so n - (p-1) = 2.

THEOREM (Ringel). Suppose Q is a connected non-Dynkin quiver. There is a

regular tilting module & Q wild with n=3 vertices.

PROOF (Partly D.Baer).
If Q is Euclidean then the dimension vectors a of the regular modules
satisfy <a,8>=0, so we cannot find n linearly independent ones. If Q wild

and n=2 then Hoshino’s Theorem implies no regulars without self exts.

Suppose Q wild and nz3. There is vertex i such that after deleting i you
get a connected quiver which is not Dynkin. To see this, you need a

case-by-case analysis.

Now there is a regular module X without self exts: delete the vertex i and
look at the preprojectives for that subquiver. Only finitely many are

preprojective or preinjective for Q.

Replacing X by a translate, we may assume T'X sincere for all i=z0. Now
X@uXA is a tilting module and 0——+A——euxA——+XP——eO so the summands are
preprojective or regular. No preprojective summand since
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Ext'(X,7 'P(J)) & DHom(t 'P(j),7X) = DHom(P(j), < *1x) = o.
REMARK. Some theorems of Kerner and Lukas are as follows.
Theorem (K&L). There are quasi-simples with gp arbitrarily highly negative.
Theorem (K&L). Almost all non-sincere quasi-simples have qgp=2.

Conjecture (Unger). If X quasi-simple and rPX sincere Vr then qp X=2.

Proved by K&L in case eg Q has a multiple arrow.

Theorem (K). There are only finitely many AR components in which the

quasi-simples X have the property that with rad(X,t X)#0 and rad(X,rl+1X)=0
for some i, called exceptional components.

Theorem (K). As X varies over the quasi-simples, the function

m-1y)=0}

is bounded (since, apart from the exceptional components, the quasi-rank is

quasi-rank X = min{molrad(X,th)#O VmZmO} = max{meZ|rad(X, T

the same as the quasi-period, which is bounded by Hoshino).
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§6. An algorithm for computing real Schur roots

In this section A = kQ with Q having no oriented cycles. A real Schur root

is the dimension vector of an indecomposable module without self
extensions. For «a a real Schur root there is a unique such module, denoted

by G{a). We describe work of Schofield in this section.

I arrows
EXAMPLE. For the quiver Qr‘ =1 —— 2.
If r=1 then the real Schur roots are (1,0) (0,1) and (1,1).
If r=2 then get preprojectives and preinjectives, so (m,m*1).
If r>2 then get preprojectives and preinjectives by Hoshino.
We can easily compute all real Schur roots. If a=(c,d) is a sincere real
Schur root then the unique predecessor of G(a) in the AR quiver has

dimension vector (rc-d,c).

LEMMA. Let X have no self exts and let S be a simple object of X'L which is
not injective as an A-module. If P is a relative projective of (t—S)l and

Hom(P,X)=0, then P is projective.

PROOF. Set Y=T S#0 since S is not injective. We have XeYl since SeXl. We
may assume that P is indecomposable, so a summand of pYA. As Y is
indecomposable and non-projective, Hom(Y,uYA)gHom(Y,A)=O, and hence
pYAEuYA. Applying 7 to the universal exact sequence we get
0——91A——ar(uYA)——»SP, and so TP<5S . Now TP € X', since
Hom(X, TP) = DExtl(P,X) = 0 since P,XEYl and P is relative projective.
Ext'(X,7P) = DHom(tP,7X) = DHom(t 7P,X) = O since Hom(P, X)=0.
Now TP embeds in the semisimple object st of Xl. If TP#0 then TP=S, so

PEYéYl, nonsense. Thus P is projective.

THEOREM. If X is indecomposable, without self exts, and not simple then
there are indecomposables C,D without self exts, with
Hom(C,D)=Hom(D,C)=Ext1(D,C)=O, r = dim Extl(C,D) > 0, and an exact sequence
O——eDd-—+X——eCC——90 with (c¢,d) a sincere real Schur root for Qr'

PROOF. Suppose X is supported at s vertices, so s22. If s=2 we can use the

corresponding simples for C and D. The number of arrows connecting the two
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vertices is r>0, and dim X is a real Schur root for Qr'

Suppose s>2. Now n-s of the indecomposable injectives lie in Xl. Therefore
at most n-s out of n-1 relative simples of Xl can be injective. Thus at

least s-1 relative simples are not injective. Pick one, say S.

Now X belongs to (T_S)l. There are n-s indecomposable projectives with no
non-zero map to X. By the lemma, at most n-s indecomposable relative
projectives have no non-zero map to X. Thus at least s-1 indecomposable
relative projectives have a non-zero map to X. Thus X is supported at =2
points as a module for er_S' Now use induction on n.
DEFINITION. An r-decomposition of aeN” is an expression a = cy+dd with

7 and 8 real Schur roots.

G(7)€G(8)*, Hom(G(¥),G(8))=0, r = dim Ext}(G(y),G(3)) > o.

(c,d) a sincere real Schur root for Qr'

COROLLARY. If aemr then a is a real Schur root e a=ei or a has an

r-decomposition (some r).

PROOF. If a*e, is a real Schur root then G(a) is not simple so the theorem

gives a decomposition.

Conversely suppose « has an r-decomposition a=cy+dd. Now &(G(y),G(8)) is
equivalent to er—mod. The indecomposable er—module without self exts and
dimension vector (c,d) gives an indecomposable A-module without self exts

of dimension «a.
NEXT we need a numerical criterion for the existence of a decomposition.
LEMMA. If M is module and aeN" then {xeRep(a) | Hom(M,RX)=0} is open.

PROOF. A homomorphism M-—aRX is given by linear maps Oi satisfying certain
commutativity conditions. Thus, given any set of linear maps ei, the set Ve
of points xeRep(a) such that (91) is a homomorphism is closed. Our set is

V) (Rep(a)\Ve) so is open.

(01)#0
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REMARK. More generally the function
f : Rep(a)xRep(B)—N, (x,y) +— dim Hom(RX,Ry)

is upper semicontinuous, ie the set {(x,y)|f(x,y)<r} is open Vr.

THEOREM. If aeN" then o = cy+dd is an r-decomposition e
¥ and 8 are real Schur roots
<¥,8> = -r <0
7 is a sum of dimension vectors of simple objects of G(s)*r.

(c,d) is a sincere real Schur root for Qr'

PROOF. Suppose these conditions hold. There is a semisimple object M of
G(8)' with dimension vector 7. Thus the set of xeRep(y) with Hom(G(6),RX)=O
is non-empty. Now this set and OG(W) are non-empty open, so they intersect.
Thus Hom(G(8),G(7))=0. Also
<8,7> = dim Hom(G(8),M) - dim Ext1(G(3),M) = 0,

so Extl(G(a),G(V))=0, so hence G(y)eG(a)l. Since <y,8> < O we have
Extl(G(y),G(a))¢0. Now any nonzero map G(y)—G(8) is mono or epi, and

if 3 epi there is a non-zero composition G(y)—»G(8)—tG(y).

if 3 mono there is a non-zero composition T G(8)—G(¥) <=G(3).
Both are impossible, so Hom(G(y),G(8))=0.

NEXT we need to know the dimension vectors of simples of G(a)l.
It suffices to know the relative projectives.

By induction we know all decompositions of «.

THEOREM. If « is a real Schur root, the indecomposable relative projectives

. L . .
in G(a)” have dimension vectors

(1) dim P(i) - <a,dim P(i)> « with i a vertex with ai=0.
(2) (re-d)y + c8 with « = cy+dd an r-decomposition.
PROOF.

(1) are dimension vectors of indecomposable relative projectives in G(a)l:

this is the dimension vector of pG(“)P(i). Now <dim P(i),«> = 0, and it
<di X . . _ sy s

follows that <dim pG(a)P(l),dlm pG(a)P(1)> 1, so pG(a)P(l) is

indecomposable.
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(2) are dimension vectors of indecomposable relative projectives in Gla)?t
there is an equivalence F:kQP—mod——eg(G(v),G(S)). Now G(a) = F(U) with
dim U = (c,d), and U has predecessor V with dimension (rc-d,c). Now VeU'
and V<-U". Thus F(V)eG(o)' and F(V) <G(a)". This implies that F(V) is a

relative projective of Gla)®t.

(3) These give enough relative projectives. Suppose «a has support s
vertices. If s=1 then construction (1) gives enough. If s=2 then (1) and
(2) applied to the decomposition by simples give enough. Suppose s>2 and 2
is an indecomposable relative projective of Gla)t. Now G(a)' contains at
least two relative simples which are not injective. One of these, say S,

has Hom(Z, S)=0.

Now Z and G(a) belong to ('L'_S)l and Z is relative projective of G(oc)l
computed in (t_S)l. By induction dim Z comes from a decomposition or from
an indecomposable relative projective P of (t S)* with Hom(P,G(a))=0. But

then P is actually projective. Thus dim Z arises from (1) or (2).
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