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Abstract
In persistent topology, q-tame modules appear as a natural

and large class of persistence modules indexed over the real line
for which a persistence diagram is definable. However, unlike
persistence modules indexed over a totally ordered finite set or
the natural numbers, such diagrams do not provide a complete
invariant of q-tame modules. The purpose of this paper is to
show that the category of persistence modules can be adjusted
to overcome this issue. We introduce the observable category
of persistence modules: a localization of the usual category, in
which the classical properties of q-tame modules still hold but
where the persistence diagram is a complete isomorphism invari-
ant and all q-tame modules admit an interval decomposition.

1. Introduction

1.1. Discrete persistence modules

Topological persistence [9, 17] may be introduced with the observation that a
nested sequence of topological spaces

X0
⊆ // X1

⊆ // · · · ⊆ // Xn

gives rise to a sequence of vector spaces and linear maps

H(X0) // H(X1) // · · · // H(Xn)

upon computing homology with coefficients in a field k . In general, a diagram of
vector spaces and linear maps

V0 // V1 // · · · // Vn

is called a persistence module indexed by {0, 1, . . . , n}. Any such diagram can be
expressed as a direct sum of certain indecomposable diagrams called interval mod-
ules [17], parametrized by intervals [p, q] ⊆ {0, 1, . . . , n}. The interval module V = kI
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associated to an interval I is defined by

Vi =

{
k if i ∈ I,

0 otherwise,

with the maps k → k set equal to 1 (all other maps being necessarily zero).

The number of direct summands mp,q of each type k[p,q] is independent of the
specific decomposition, by a suitable version of the Krull–Schmidt theorem or by
appeal to an explicit invariant formula such as

mp,q = dim

[
im(Vp → Vq) ∩ ker(Vq → Vq+1)

im(Vp−1 → Vq) ∩ ker(Vq → Vq+1)

]
.

As a result, the collection of numbers (mp,q | 0 ⩽ p ⩽ q ⩽ n) is a complete invariant of
the persistence module, and an invariant of the initial topological data. It is typically
expressed as a barcode or persistence diagram [9,17].

1.2. Persistence modules for the real line

The purpose of this short paper is to address some issues that arise when attempt-
ing to follow the same thought process for persistence modules indexed by the real
line. Here are the main points of divergence:

• Not every persistence module is decomposable into interval modules.

• Nonetheless, there are easily described classes of persistence module for which a
persistence diagram is definable. We favour the class of q-tame modules [4],
which are characterized by having finite-rank structure maps (Section 1.4).
Despite the existence of the persistence diagram, it turns out that not every
q-tame persistence module is decomposable into interval modules.

• The persistence diagram is not a complete invariant. Two non-isomorphic q-
tame persistence modules may have the same persistence diagram. This is true
even if we use a more refined invariant, the decorated persistence diagram [4].

To be fair, there are ways of working around these problems [4,13]. What we offer
here is the suggestion that the awkwardness dissipates completely if we make a small
adjustment to the category of persistence modules that we work in.

The adjustment is motivated by the following principle: whereas persistence mod-
ules carry information at many different scales simultaneously, what matters most is
how the information persists across scales (through the structure maps). Features that
exist over a short range are regarded as relatively unimportant. In topological data
analysis, such short-term information may arise from noisy sampling, for instance.
In the extreme case, we have the ephemeral features: non-zero features that are sup-
ported at exactly one index value. Standard practice is to regard these as statistically
meaningless.

Our proposal is to build this principle—of ignoring ephemeral information—direct-
ly into the category of modules. The mechanism for doing so is Serre localization.
The resulting observable category of persistence modules turns out to be beautifully
behaved. In this category, persistence modules k[p,q], k[p,q), k(p,q], k(p,q) associated to
different intervals with the same endpoints are isomorphic. Every q-tame module has
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an interval decomposition. The persistence diagram is a complete isomorphism invari-
ant for q-tame modules. Finally, there is a very clean description of the morphisms
in this category (something that is not always available for such constructions).

1.3. Basic definitions
Let (R,⩽) be a totally ordered set. The category Pers of persistence modules

over R (or ‘indexed by R’) is defined as follows. Here are the objects:

• A persistence module V is a functor from R, considered in the natural way as a
category, to the category of vector spaces. Thus it consists of vector spaces Vt
for t ∈ R and linear maps ρts : Vs → Vt for s ⩽ t called structure maps, which
satisfy ρts = ρtuρus for all s ⩽ u ⩽ t and ρtt = 1Vt for all t.

Here are the morphisms. We give two equivalent formulations:

• A morphism ϕ : V →W is a natural transformation between functors. Thus, it
is a collection of linear maps ϕt : Vt →Wt such that ϕtρts = σtsϕs for all s ⩽ t.
(The maps σts are the structure maps for W .)

• A morphism ϕ : V →W is a collection of linear maps ϕts : Vs →Wt defined for
s ⩽ t, such that ϕts = σtvϕvuρus whenever s ⩽ u ⩽ v ⩽ t.

The translation between the two formulations is given by ϕst = ϕtρts = σtsϕs in one
direction, and ϕt = ϕtt in the other. In what follows, we favour the second formulation.

Remark 1.1. A natural generalization is to replace the category of vector spaces with
some other category [1]. The interval decomposition results are specific to the the-
ory of vector spaces, but the localization results are valid somewhat more generally.
Another natural generalization is to allow the indexing set R to be some other poset.
For instance, Rn with its standard partial order is used in the theory of multidimen-
sional persistence [3]. For our purposes R will always be totally ordered.

By an interval in R we mean a non-empty subset I of R with the property that
s ⩽ u ⩽ t with s, t ∈ I implies u ∈ I. The corresponding interval module V = kI is
defined by setting Vt = k for t ∈ I, Vt = 0 for t /∈ I, and ρts = 1 for s, t ∈ I with s ⩽ t
(all other maps necessarily being zero).

Example 1.2. Let p, q ∈ R with p < q. We define closed, half-open and open intervals

[p, q] = {t ∈ R | p ⩽ t ⩽ q}, [p, q) = {t ∈ R | p ⩽ t < q},
(p, q] = {t ∈ R | p < t ⩽ q}, (p, q) = {t ∈ R | p < t < q},

with endpoints p, q. Not all intervals in R need be of this type (for example, when
R = Q there exist singleton intervals, unbounded intervals, and intervals with one or
two irrational endpoints).

Lemma 1.3. Interval modules are indecomposable: they cannot be expressed as a
nontrivial direct sum of submodules.

Proof. The endomorphism ring of an interval module is isomorphic to k . Indeed, for
any endomorphism ϕ = (ϕts) the non-trivial terms (those with s, t ∈ I) are scalars
and, indeed, must be equal to the same scalar. The projection maps in a direct-
sum decomposition would be idempotent endomorphisms, but k has no nontrivial
idempotents.
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With this in mind, the natural question is whether every persistence module over a
total order R decomposes as a direct sum of interval modules. The answer is yes when
R is finite or the natural numbers [16]; and also yes in the special case of modules
which are finite-dimensional at each index, assuming that R has a countable subset
which is dense in R in the order topology [7]. But in general there are persistence
modules which do not decompose into intervals, such as V̂ in Example 4.7, due to
Webb [16].

1.4. Tame persistence modules
Of particular importance are the q-tame persistence modules [4], defined by the

condition that rank(ρts) be finite whenever s < t. Here are some standard examples,
indexed by the real line:

• Let X be a locally compact polyhedron and let f : X → R be a proper contin-
uous map which is bounded below. Then (H∗(f

−1(−∞, t]))t∈R is q-tame. This
includes the case where f is the distance from a compact subset A ⊂ Rn in any
norm. The result is a slight variant of [4, Section 3.9].

• Let X be a totally bounded metric space. Then the Vietoris–Rips and intrinsic
Čech filtered complexes on X have q-tame persistent homology [5].

Many of these q-tame examples fail to be pointwise finite-dimensional : there are index
values where dim(Vt) is infinite. For an extreme case, Droz [8] has constructed a com-
pact metric space whose Vietoris–Rips homology is uncountably infinite-dimensional
at all values of t in an interval of positive length.

Our main results are summarized in the following theorem, which collates Corol-
laries 2.15 and 3.8, Theorem 3.9, Example 2.21 and Propositions 2.23, 4.2 and 4.3.
We state it here only for R = R, but some parts hold more generally.

Theorem 1.4. There is a quotient category Obs of the category of persistence mod-
ules over R, with the following properties:

(i) The property of a persistence module being q-tame, the undecorated diagram
of a persistence module, and the interleaving distance between two persistence
modules depend only on the image of the module or modules in Obs.

(ii) Any q-tame persistence module, on passing to its image in Obs, decomposes as
a direct sum of interval modules. The list of summands is essentially unique,
and is determined by the persistence diagram.

This theorem ‘explains’ the goodish behaviour of q-tame persistence modules and
their persistence diagrams in the usual framework: it is the pullback of their good
behaviour in the observable category.

1.5. Prerequisites
Much of this paper is self-contained. In particular the definition of the observable

category Obs is straightforward and requires no special technology. However, there
are certain ingredients that we need to import from elsewhere.

Serre localization
Familiarity with abelian categories [10, 12] is recommended but not strictly neces-
sary to understand most of this paper: we construct Obs and establish its status
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as a quotient category of Pers quite directly. That said, it’s worth keeping in mind
that our construction is an instance of a general procedure known as Serre local-
ization [11,15]. This is a way of forming the quotient of an abelian category A by
a full subcategory C whose objects are to be regarded as ‘small’. Subobjects and
quotient objects of a small object are required to be small, as are extensions of a
small object by a small object. For instance, if A = {abelian groups} then the full
subcategory C = {finite abelian groups} satisfies this condition. Localization renders
invertible every morphism whose kernel and cokernel are small, so in particular the
small objects become isomorphic to the zero object. In the present work, Obs is the
Serre localization of Pers with respect to the subcategory Eph of ephemeral modules
(Section 2.1).

Module decomposition
In order to show that q-tame persistence modules are interval-decomposable in Obs,
we provide in Section 3.1 an interval decomposition theorem in Pers valid for per-
sistence modules that satisfy certain conditions. The theorem is an adaptation of the
main result in [7]. Our presentation is not self-contained; the technical proof in that
section is intended to be read in conjunction with the original paper. We use the
notation from [7] without further explanation and give only the necessary changes.

Grothendieck categories
At the end of Section 3.2, we need to know that interval decompositions in Obs
are essentially unique. For this we use the fact that it is a Grothendieck category :
an abelian category which has a generator and which satisfies Grothendieck’s (AB5)
condition. These conditions enable the study of homological algebra for objects in
the category. The category of modules over a ring—and in particular the category
of vector spaces over a field k—is perhaps the simplest example of a Grothendieck
category. Since functor categories inherit this property from the codomain category
[10, Theorem 14.2], it follows that Pers is a Grothendieck category. In turn, its
localization Obs is a Grothendieck category. The Krull–Remak–Schmidt–Azumaya
theorem then gives the uniqueness that we seek.

The rest of the paper is organized as follows. In Section 2 we define and study the
‘observable’ categoryObs. In Section 3 we study interval decompositions. In Section 4
we apply our results to the motivating case of persistence modules over the real line.

2. The observable category

For this section we make the standing assumption that (R,⩽) is a total order that
is dense: for every s < t there exists an intermediate element s < u < t.

2.1. Ephemeral modules
Following [4], we say that a persistence module is ephemeral if ρts = 0 whenever

s < t. Let Eph denote the full subcategory of Pers whose objects are the ephemeral
modules.

Definition 2.1. A morphism ϕ between persistence modules is called a weak isomor-
phism if Kerϕ and Cokerϕ are both ephemeral.
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In Section 2.2 we will construct a category Obs and show that it equivalent to the
Serre quotient category [11, 15] obtained from Pers by inverting all weak isomor-
phisms. The following lemma reassures us that this is a sensible thing to do.

Lemma 2.2. The full subcategory of ephemeral modules satisfies the condition of
Serre: given a short exact sequence of persistence modules

0 // V ′ ι // V
π // V ′′ // 0,

either statement

1. V is ephemeral

2. V ′ and V ′′ are both ephemeral

implies the other.

The Serre condition ensures that the class of weak isomorphisms is closed under
composition, thanks to the exact sequence

0 −→ Kerϕ −→ Kerψϕ −→ Kerψ −→ Cokerϕ −→ Cokerψϕ −→ Cokerψ −→ 0

for a composable pair of maps V
ϕ−→ V ′ ψ−→ V ′′.

Proof. If V is ephemeral, then clearly so are V ′ and V ′′. Conversely, suppose V ′

and V ′′ are ephemeral and s < t. Since the total order is dense, there exists u with
s < u < t. Now consider the following diagram:

V ′
t

ιt // Vt

0 // V ′
u

ιu //

ρ′tu=0

OO

Vu
πu //

ρtu

OO

V ′′
u

// 0

Vs
πs //

ρus

OO

α

__@
@
@
@

V ′′
s

ρ′′us=0

OO

Since πuρus = ρ′′usπs = 0 and the middle row is exact, there is a map α with ρus = ιuα.
Then ρts = ρtuρus = ρtuιuα = ιtρ

′
tuα = 0. Thus V is ephemeral.

Example 2.3. If the total order is not dense then the ephemeral subcategory is not
Serre. For s < t with no intermediate element, the sets {s}, {t} and {s, t} are intervals.
The short exact sequence of interval modules

0 // k{t} // k{s,t} // k{s} // 0

has ephemeral outer terms and a non-ephemeral middle term.

2.2. Observable morphisms
The quotient Pers

π→ Pers/Eph that we wish to construct is characterized by the
following universal property [11]: first, the functor π carries weak isomorphisms to
isomorphisms; second, any other functor Pers → C that carries weak isomorphisms
to isomorphisms factorizes uniquely through π.
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Our plan is to define a category Obs and a functor Pers
π→ Obs explicitly, and

then verify the universal property. In this way, Obs = Pers/Eph (where ‘=’ means
‘is a category equivalent to’).

Definition 2.4. An observable morphism (or obs-morphism) of persistence modules
ϕ◦ : V 99KW is a collection of maps ϕts : Vs →Wt defined for s < t (strictly less than),
such that ϕts = σtvϕvuρus whenever s ⩽ u < v ⩽ t. Composition of obs-morphisms is
defined as follows, using the fact that the index set R is a dense order. If ϕ◦ : V 99KW
and ψ◦ : W 99K X are obs-morphisms, then we define (ψ◦ϕ◦)ts = ψtuϕus for any u
with s < u < t. This is well-defined since if s < u < v < t then ψtvϕvs = ψtvσvuϕus =
ψtuϕus. Every persistence module V has an obs-identity 1◦V = (ρts | s < t) extracted
from its structure maps.

Definition 2.5. The category of persistence modules and obs-morphisms is called
the observable category of persistence modules, Obs. It comes with a functor Pers

π→
Obs which keeps the objects the same and maps each morphism ϕ = (ϕts | s ⩽ t) to
an obs-morphism π(ϕ) = ϕ◦ = (ϕts | s < t) by forgetting the terms ϕtt.

Example 2.6. Between every ordered pair among the four interval modules k(p,q),
k[p,q), k(p,q] and k[p,q] there is a nonzero obs-morphism defined by setting ϕts = 1
wherever domain and range both equal k . It follows that the four interval modules
are isomorphic in Obs. This contrasts with the situation in Pers where nonzero maps
exist only between certain pairs. The situation is summarized as follows:

k(p,q] oo //____
OO

���
�
�
� bb

""D
D

D
D

D
D

k(p,q)OO

���
�
�
�<<

||z
z
z
z
z
z

k[p,q] oo //____ k[p,q)

k(p,q] //

�� ""D
DD

DD
DD

DD
DD

D
k(p,q)

��
k[p,q] // k[p,q)

In general there is a nonzero obs-morphism kI 99K kJ if and only if inf(J) ⩽ inf(I) <
sup(J) ⩽ sup(I) (these limits being interpreted in the completion of R).

Example 2.7. For a non-singleton interval I, the obs-endomorphism ring of the inter-
val module kI is isomorphic to k . (The proof of Lemma 1.3 applies directly. The
‘non-singleton’ condition guarantees that there is at least one non-trivial ϕts.)

Example 2.8. If V is ephemeral then 1◦V = 0 and therefore every obs-morphism to or
from V is zero. Thus V is zero (that is, both initial and terminal) in Obs.

In the remainder of this subsection we show Obs is equivalent to the localized
categoryPers/Eph, by establishing thatPers

π→ Obs satisfies the universal property
described above. Here is the first part of the universal property:

Theorem 2.9. If ϕ : V →W is a weak isomorphism then ϕ◦ is invertible in Obs.

Proof. We construct an inverse ψ◦ = (ψst | s < t) as follows. Given s < t, select an
intermediate index u.

Since Cokerϕ is ephemeral, the composition of σus : Ws →Wu with the natural
map Wu → Cokerϕuu is zero. Thus σus factors as a map ωus : Ws → Imϕuu followed
by the inclusion of Imϕuu into Wu.
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Dually, since Kerϕ is ephemeral, the composition of the inclusion Kerϕuu → Vu
and ρtu : Vu → Vt is zero. Thus there is an induced morphism τtu : Imϕuu → Vt whose
composition with the natural map Vu → Imϕuu is ρtu.

We define ψts = τtuωus. It is straightforward to verify that this construction does
not depend on the choice of intermediate element u, and that it defines an obs-
morphism ψ◦ : W 99K V that is inverse to ϕ◦ : V 99KW .

Definition 2.10. Let V be a persistence module. Define a persistence module V by
setting

V t = colim(Vs | s < t)

at each index t. The structure maps ρ̄ts are defined using the universal property of
colimits. The universal property also generates the following maps:

• A morphism nV : V → V , induced by the maps (ρts | s < t).

• A morphism ϕ̄ : V →W for every obs-morphism ϕ◦ : V 99KW .

This last operation respects composition and identities, so ‘bar’ is a functor Obs →
Pers. One can show that this is a left adjoint for π.

Proposition 2.11. Each nV : V → V is a weak isomorphism.

Proof. For every s < t we have a commutative diagram:

V t
nV
t // Vt

V s //
nV
s

//

ρ̄ts

OO

Vs

ρts

OO__@@@@@@@@

From this we see that ρ̄ts carries Ker(nVs ) to zero, while ρts carries Vs to Im(nVt ) and
hence to zero in Coker(nVt ). Thus Ker(nV ) and Coker(nV ) are ephemeral.

Remark 2.12. Similarly, the functor π has a right adjoint defined on objects by V t =
lim(Vu | u > t), and there is a weak isomorphism uV : V → V .

Example 2.13. If V = k(p,q), k[p,q), k(p,q] or k[p,q] then V = k(p,q] and V = k[p,q). All
five morphisms in Example 2.6 are instances of nV or uV . They become invertible
in Obs.

Now we prove the second part of the universal property.

Theorem 2.14. If F : Pers → C is a functor that carries weak isomorphisms to
isomorphisms, then there is a unique functor G : Obs → C such that F = Gπ.

Proof. Since Obs has the same objects as Pers, it follows that G is uniquely defined
and satisfies F = Gπ on objects. It remains to consider morphisms.
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Let ϕ◦ : V 99KW be an obs-morphism. We have a mixed-category diagram (ii)

(i) V
ϕ̄ //

nV

��

W

nW

��
V

ϕ
// W

(ii) V
ϕ̄ //

nV

��

W

nW

��
V

ϕ◦
//____ W

(iii) V
π(ϕ̄) //____

π(nV )

���
�
�
� W

π(nW )

���
�
�
�

V
ϕ◦

//____ W

which commutes after applying π to the top three morphisms (iii). By assumption,
F (nV ) is invertible and we are forced to define

G(ϕ◦) = F (nW )F (ϕ̄)F (nV )
−1.

Since ψϕ = ψ̄ϕ̄ it follows that G, defined in this way, is indeed a functor.
Now suppose ϕ◦ = π(ϕ) for some morphism ϕ : V →W . Then we have a commu-

tative diagram (i) in Pers to which we apply F to get F (ϕ)F (nV ) = F (nW )F (ϕ̄).
Since F (nV ) is invertible we deduce

F (ϕ) = F (nW )F (ϕ̄)F (nV )
−1 = G(ϕ◦).

Hence F = Gπ on morphisms.

Theorems 2.9 and 2.14 together constitute the following result:

Corollary 2.15. Obs = Pers/Eph.

Remark 2.16. The results of Sections 2.1 and 2.2, including Corollary 2.15 in partic-
ular, remain valid when the category of vector spaces is replaced by any abelian cat-
egory with colimits. A verbatim reading of the two sections (omitting Examples 2.3,
2.6, 2.7, 2.13 and Remark 2.12) effects the generalization immediately.

2.3. Observable invariants
Because there are more isomorphisms in the observable category, there are fewer

isomorphism invariants. In this subsection we consider which quantities and construc-
tions ‘make sense’ in the observable category. A function on persistence modules is
a strict invariant if it is invariant under isomorphisms in Pers; it is an observable
invariant if it is invariant under obs-isomorphisms.

Example 2.17. Let t ∈ R. Then rkt(V ) = dim(Vt) is a strict invariant but not an
observable invariant of the persistence module V .

Example 2.18. Let s < t. Then rkst(V ) = rank(ρts : Vs → Vt) is a strict invariant but
not an observable invariant of the persistence module V .

Example 2.19. Let s < t. Then each of the four ‘limiting ranks’

rk[st](V ) = rank(V s → V t), rk[st)(V ) = rank(V s → V t),

rk(st](V ) = rank(V s → V t), rk(st)(V ) = rank(V s → V t)

is an observable invariant. We have rk[st] ⩽ {rkst, rk[st), rk(st]} ⩽ rk(st).
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Proof. The limiting ranks are observable because ‘bar’ and ‘underbar’ are functors
Obs → Pers. The factorization

V s −→ Vs −→ V s −→ V t −→ Vt −→ V t

implies the given inequalities.

Remark 2.20. For a q-tame persistence module we have the following formulæ:

rk[st](V ) = max (rkab(V ) | a < s < t < b) ,

rk(st)(V ) = min (rkab(V ) | s < a < b < t) .

Example 2.21. The property of being q-tame is observable.

Proof. Since rkab ⩽ rk[st] ⩽ rkst whenever a < s < t < b, it follows that V is q-tame
if and only if rk[st](V ) <∞ whenever s < t. This criterion is observable.

The order topology on R has basis given by the following basic open sets:

(s, t) = {x ∈ R : s < x < t}, (s,∞) = {x ∈ R : s < x},
(−∞, t) = {x ∈ R : x < t}, (−∞,∞) = R.

An open interval in R is an interval which is open in the order topology. Note that
any basic open set is an open interval, provided it is non-empty, but there may be
others, such as Q ∩ (0,

√
2) for R = Q. The interior of any subset X of R is the union

of all basic open sets contained in X.
The reader may easily verify the following lemma.

Lemma 2.22. In a dense total order, an interval has empty interior if and only if
it is a singleton. If two intervals I, J have the same non-empty interior, then that
interior includes all basic open sets whose endpoints lie in I ∪ J .
Proposition 2.23. In a dense total order, interval modules kI , kJ are obs-isomorphic
if and only if the intervals I, J have the same interior.

Proof. If the interiors of the intervals differ, then there is a basic open set (s, t)
contained in one of I, J but not the other. Then rk(st)(kI) ̸= rk(st)(kJ) so the interval
modules are not obs-isomorphic.

Conversely, suppose I, J have the same interior N . If N is empty then kI , kJ
are ephemeral and therefore obs-isomorphic. Otherwise, define an obs-morphism
ϕ◦ : kI 99K kJ by setting ϕts = 1 whenever s ∈ I and t ∈ J (and zero otherwise, by
necessity). To verify that this is an obs-morphism, we must show that

ϕts = ρJtvϕvuρ
I
us

whenever s ⩽ u < v ⩽ t. This risks failure only when s ∈ I, t ∈ J (otherwise both
sides are automatically zero), and in that case Lemma 2.22 implies

u ∈ {s} ∪ (s, t) ⊆ {s} ∪N ⊆ I,

v ∈ {t} ∪ (s, t) ⊆ {t} ∪N ⊆ J,

so ρJtvϕvuρ
I
us = 1 = ϕts as required. Define ψ◦ : kJ 99K kI symmetrically. To verify that

ψ◦ϕ◦ is the obs-identity on kI , we must show that

ρIts = ψtuϕus

whenever s < u < t. This risks failure only when s, t ∈ I (otherwise both sides are
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automatically zero), and in that case u ∈ (s, t) ⊆ N ⊆ J so ψtuϕus = 1 = ρIts as
required. Symmetrically, ϕ◦ψ◦ is the obs-identity on kJ . Thus kI , kJ are obs-iso-
morphic.

3. Interval decomposition

In this section (R,⩽) is a total order. Recall that R is said to be a dense order if
for every s < t there is an intermediate element s < u < t. We say that an interval I
in R is left separable if it has a countable subset S ⊆ I such that for all t ∈ I there
is s ∈ S with s ⩽ t. (It is equivalent that I equipped with the left order topology
is a separable topological space.) Clearly R is dense and any interval I in R is left
separable, so all the results in this section apply for the real line.

3.1. Decomposition of persistence modules with chain conditions
In this subsection we prove a mild generalization of the main result of [7]. In the

next subsection we apply it to q-tame persistence modules.

Definition 3.1. Let V be a persistence module over a total order R.
(i) One says that V has the descending chain condition on images provided that

for all t, s1, s2, · · · ∈ R with t ⩾ s1 > s2 > · · · , the chain

Vt ⊇ Im(ρts1) ⊇ Im(ρts2) ⊇ · · ·

stabilizes [7].
(ii) Given s, t ∈ R with s ⩽ t, we say that Vs has the descending chain condition

on t-bounded kernels provided that for all r1, r2, · · · ∈ R with t < · · · < r2 < r1, the
chain

Vs ⊇ Ker(ρr1s) ⊇ Ker(ρr2s) ⊇ · · ·

stabilizes. Applying ρts, it is equivalent that the chain

Im(ρts) ⊇ Im(ρts) ∩Ker(ρr1t) ⊇ Im(ρts) ∩Ker(ρr2t) ⊇ · · ·

stabilizes.
(iii) We say that V has the descending chain condition on sufficient bounded kernels

provided that for all t ∈ R and 0 ̸= v ∈ Vt, there exists s ⩽ t such that v ∈ Im(ρts)
and Vs has the descending chain condition on t-bounded kernels.

Note that condition (iii) holds if V has the descending chain condition on kernels, as
considered in [7], since one can then take s = t. The following theorem thus generalizes
[7, Theorem 1.2].

Theorem 3.2. Suppose that R is a total order with the property that any interval in
R is left separable. Then any persistence module with the descending chain condition
on images and on sufficient bounded kernels is a direct sum of interval modules.

For the proof we freely use the notation and results of [7]. The hypothesis in that
paper that R have a countable subset which is dense in the order topology was only
used in [7, Lemma 3.2], but it is stronger than is required (for example consider R2

with the lexicographic ordering), so we have replaced it here with the left separability
hypothesis on intervals.
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Suppose that V has the descending chain condition on images. Of the results in
[7], Lemmas 2.1(a) and 2.2 hold, all results in Sections 3–6 hold, and Lemma 7.1(a)
holds. What fails is Lemma 2.1(b). Then in Lemma 7.1(b) the set is disjoint, but
needn’t strongly cover Vt. The following is a partial replacement for Lemma 2.1(b).

Lemma 3.3. Let s ⩽ t and suppose that Vs has the descending chain condition on
t-bounded kernels. Suppose that c is a cut with t ∈ c− and c+ ̸= ∅. Then Im(ρts) ∩
Ker+ct = Im(ρts) ∩Ker(ρrt) for some r ∈ c+.

Proof. Suppose that Im(ρts) ∩Ker+ct ̸= Im(ρts) ∩Ker(ρrt) for all r ∈ c+. Since c+ is
non-empty, we can choose r1 ∈ c+. Since Im(ρts) ∩Ker+ct ̸= Im(ρts) ∩Ker(ρr1t) there
must be some r2 with Im(ρts) ∩Ker(ρr2t) strictly contained in Im(ρts) ∩Ker(ρr1t).
Similarly, since Im(ρts) ∩Ker+ct ̸= Im(ρts) ∩Ker(ρr2t), there must be some r3 with
Im(ρts) ∩Ker(ρr3t) strictly contained in Im(ρts) ∩Ker(ρr2t), and so on. But then the
chain

Im(ρts) ∩Ker(ρr1t) ⊃ Im(ρts) ∩Ker(ρr2t) ⊃ Im(ρts) ∩Ker(ρr3t) ⊃ · · ·

does not stabilize.

Proof of Theorem 3.2. Suppose that V has the descending chain condition on images
and on sufficient bounded kernels. As in [7, §5], one obtains submodules WI of V for
each interval I.

For t ∈ R, as in the proof of [7, Theorem 1.2] there are sections (F−
It , F

+
It) for I an

interval which contains t, where

F±
It = Im−

ℓt+Ker±ut ∩ Im+
ℓt,

satisfying

F+
It =WIt ⊕ F−

It . (∗)

These sections no longer need to cover Vt, but they are still disjoint, so by the argu-
ment in [7, Lemma 6.1] the sum of the WIt is a direct sum.

Thus we obtain a submodule
⊕

IWI of V . By [7, Lemma 5.3] this submodule is
a direct sum of interval modules. We need to show it is equal to V . Assume for a
contradiction that there is t ∈ R and an element v ∈ Vt not in

⊕
IWIt. By assumption

there is s ⩽ t such that v ∈ Im(ρts) and Vs has the descending chain condition on t-
bounded kernels.

Let X = (
⊕

IWIt) ∩ Im(ρts). Since v ∈ Im(ρts) but v /∈ X, we have Im(ρts) ̸⊆ X.
Thus by [7, Lemma 7.1(a)] there is a cut ℓ with t ∈ ℓ+ and

X + Im−
ℓt ∩ Im(ρts) ̸= X + Im+

ℓt ∩ Im(ρts).

This inequality can only happen if Im(ρts) ̸⊆ Im−
ℓt, so s /∈ ℓ−, and hence s ∈ ℓ+. Thus

Im+
ℓt ⊆ Im(ρts). Thus the inequality simplifies to

X + Im−
ℓt ̸= X + Im+

ℓt .

Let Y = X + Im−
ℓt. Clearly Im+

ℓt ̸⊆ Y . Define

u− = {r ∈ R : r < t or r ⩾ t and Ker(ρrt) ∩ Im+
ℓt ⊆ Y }, and

u+ = {r ∈ R : r ⩾ t and Ker(ρrt) ∩ Im+
ℓt ̸⊆ Y }.

Then u is a cut and t ∈ u−.
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Now Ker−ut ∩ Im+
ℓt ⊆ Y since

Ker−ut ∩ Im+
ℓt =

∪
r∈u−

t⩽r

Ker(ρrt) ∩ Im+
ℓt

and by the definition of u−, each term in the union is contained in Y . We show that
Ker+ut ∩ Im+

ℓt ̸⊆ Y . This is clear if u+ is empty, for then Ker+ut = Vt. Thus suppose that
u+ is non-empty. Since Vs has the descending chain condition on t-bounded kernels,
by Lemma 3.3 there is some r ∈ u+ such that Ker+ut ∩ Im(ρts) = Ker(ρrt) ∩ Im(ρts).
By taking the intersection with Im+

ℓt ⊆ Im(ρts), we obtain

Ker+ut ∩ Im+
ℓt = Ker(ρrt) ∩ Im+

ℓt

and by the definition of u+ we have Ker(ρrt) ∩ Im+
ℓt ̸⊆ Y .

Now since t ∈ u− and t ∈ ℓ+, the cuts u and ℓ define an interval I which contains t.
As already observed (∗), we have

WIt ⊕ (Im−
ℓt+Ker−ut ∩ Im+

ℓt) = Im−
ℓt+Ker+ut ∩ Im+

ℓt .

It follows that WIt ⊆ Im+
ℓt ⊆ Im(ρts), so WIt ⊆ X. Then

Y = Y +Ker−ut ∩ Im+
ℓt

= X + Im−
ℓt+Ker−ut ∩ Im+

ℓt

= X +WIt + Im−
ℓt+Ker−ut ∩ Im+

ℓt

= X + Im−
ℓt+Ker+ut ∩ Im+

ℓt

= Y +Ker+ut ∩ Im+
ℓt,

a contradiction. Thus V =
⊕

IWI .

3.2. Decomposition of q-tame modules
In this section we prove an interval decomposition theorem for q-tame persistence

modules in the observable category for a total order which is dense and has the
property that all intervals are left separable.

Definition 3.4. The radical of a persistence module V is the submodule radV of V
defined by

(radV )t =
∑
s<t

Im(ρts).

By construction, it is the smallest submodule of V such that (V/ radV ) is ephemeral.
We say that V is radical if V = radV .

Observe that if V is a q-tame persistence module, then V has the descending chain
condition on images and Vs has the descending chain condition on t-bounded kernels
for all s < t. If in addition V is radical, it follows that V has the descending chain
condition on sufficient bounded kernels. Thus Theorem 3.2 gives:

Corollary 3.5. If every interval in R is left separable, then any radical q-tame per-
sistence module is a direct sum of interval modules.

Now suppose that R is a dense order. In this case rad radV = radV for any V , so
radV is a radical persistence module. Clearly any submodule of a q-tame persistence
module is again q-tame. Thus we obtain:
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Corollary 3.6. Suppose R is dense and every interval in R is left separable. If V is
a q-tame persistence module, then radV is a direct sum of interval modules.

Example 3.7. If R is the set of real numbers, the product of the interval modules
associated to the intervals [−1/n, 1/n] with n ⩾ 1 is q-tame, and its radical is the
direct sum of the interval modules for the intervals (−1/n, 1/n]. Neither of these
modules satisfies the hypothesis for the decomposition theorem of [7] (specifically,
they fail the descending chain condition on kernels).

Suppose again that R is a dense order. Since the observable category Obs is
identified with the quotient category Pers/Eph, and the functor π : Pers → Obs
has a right adjoint, it follows that Eph is a localizing subcategory in the sense of
[12, p. 372]. Therefore, Obs is a Grothendieck category by [12, Proposition 9, p. 378]
and π commutes with direct sums. Thus direct sums exist in Obs, and are given in
the same way as in Pers: by taking the direct sum of the vector spaces for each point
of R.

For any persistence module V , the inclusion radV → V is a weak isomorphism.
(In fact, radV is the image of the weak isomorphism nV : V → V from Section 2.2).
Thus we reach our main goal:

Corollary 3.8. Suppose R is dense and every interval in R is left separable. If V is
a q-tame persistence module, then V is isomorphic in Obs to a direct sum of interval
modules.

This decomposition is in fact essentially unique. There is a version of the Krull–
Remak–Schmidt–Azumaya Theorem for Grothendieck categories, see [2, §6.7] or [14,
§4.8]. It says that if an object is written as a direct sum of objects in two different
ways, and if each summand has local endomorphism ring, then the terms in the two
sums can be paired off in such a way that corresponding summands are isomorphic. In
particular, since by Example 2.7 interval modules (for non-singleton intervals) have
obs-endomorphism ring equal to k , which is a local ring, the Krull–Remak–Schmidt–
Azumaya Theorem and Proposition 2.23 give the following result.

Theorem 3.9. Over a dense total order, if a persistence module is isomorphic in
Obs to a direct sum of interval modules in two different ways, then the non-singleton
intervals in each sum can be paired off in such a way that corresponding intervals
have the same interior.

4. Real-parameter persistence modules

We return to the motivating case of persistence modules indexed by R.

4.1. Interleavings and diagrams
Persistence modules over the real line are codified and studied using their persis-

tence diagrams. The principal results are the stability theorem [4,6] and Lesnick’s
isometry theorem [4,13]. We review these results now.

Two persistence modules V , W are compared by finding interleavings between
them. An ϵ-interleaving is specified by collections of maps ϕts : Vs →Wt and
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ψts : Ws → Vt, defined for t ⩾ s+ ϵ, such that the equations

ϕts = σtvϕvuρus, ψts = ρtvψvuσus,

ρts = ψtuϕus, σts = ϕtuψus

are satisfied whenever they are defined. It is immediate that

• an isomorphism is the same thing as a 0-interleaving;

• an obs-isomorphism restricts to ϵ-interleavings for all ϵ > 0.

The interleaving distance between two persistence modules is defined thus:

di(V,W ) = inf (ϵ | there exists an ϵ-interleaving between V , W ) .

It is an extended pseudometric, taking values in [0,∞]. The triangle inequality results
from the fact that interleavings can be composed (adding the respective ϵ-values). If
V , W are obs-isomorphic then di(V,W ) = 0, so the ‘pseudo’ is necessary.

Associated to a persistence module V is its persistence measure [4]. This is a
function defined on rectangles [a, b]× [c, d] by the formula

µV ([a, b]× [c, d])

= multiplicity of
(
0 −→ k −→ k −→ 0

)
in

(
Va −→ Vb −→ Vc −→ Vd

)
.

We require −∞ ⩽ a < b ⩽ c < d ⩽ +∞, so the rectangle lies in the extended closed
half-plane

H = {(p, q) | −∞ ⩽ p ⩽ q ⩽ +∞} .

We set V−∞ = V+∞ = 0 to interpret the extreme cases. The measure is additive with
respect to splitting a rectangle into a finite number of smaller rectangles, and therefore
(being nonnegative) it is monotone with respect to inclusions of rectangles.

The undecorated diagram dgm(V ) of a persistence module V is a multiset in the
extended open half-plane

H = {(p, q) | −∞ ⩽ p < q ⩽ +∞} .

The diagram is defined, following [4], by its multiplicity function1

mV (p, q) = min (µV ([a, b]× [c, d]) | a < p < b < c < q < d) .

We temporarily allow −∞ < −∞ and +∞ < +∞ when selecting a and d. Because of
monotonicity, the minimum can be interpreted as a limit over a decreasing sequence
of rectangles that contain (p, q) in their interior. The set of values (p, q) of finite
multiplicity is an open subset FV ⊆ H, called the finite interior of V . Within the
finite interior, the undecorated diagram is locally finite. These facts are known:

• If V is q-tame then FV = H.

• If V is q-tame and decomposable into intervals, then the undecorated diagram
records exactly the endpoints of the intervals in the decomposition.2

There is also a ‘decorated diagram’ which discriminates between open, closed and
half-open intervals.

1In other words, mV (p, q) specifies the multiplicity of the element (p, q) in the multiset dgm(V ).
2Thus in this case mV (p, q) is exactly analogous to mp,q of Section 1.1.



262 FRÉDÉRIC CHAZAL, WILLIAM CRAWLEY-BOEVEY and VIN DE SILVA

Two diagrams dgm(V ), dgm(W ) may be compared using the bottleneck distance.
Let ∼ denote a partial matching between the points of dgm(V ) and dgm(W ) in the
respective finite interiors. The cost of the partial matching is

cost(∼) = sup


d∞(v, w) matched pairs v ∼ w,

d∞(v,H− FW ) unmatched v,

d∞(w,H− FV ) unmatched w,

d∞haus(H− FV ,H− FW ),

where d∞ is the extended metric d∞((p1, q1), (p2, q2)) = max(|p1 − p2|, |q1 − q2|) and
d∞haus is the corresponding Hausdorff distance between subsets. The bottleneck dis-
tance between diagrams is defined

db(dgm(V ), dgm(W )) = inf(cost(∼) | ∼ is a partial matching).

One can show that the infimum is attained using a compactness argument.3

Theorem 4.1 (Stability and isometry [4,6,13]). For arbitrary persistence modules
V , W over the real line, we have

db(dgm(V ), dgm(W )) ⩽ di(V,W ).

If V , W are q-tame then equality holds.

4.2. Results in the observable category
We now transport our discussion to the observable category.

Proposition 4.2. The interleaving distance is observable.

Proof. We know that di(V, V
′) = 0 whenever V, V ′ are obs-isomorphic. If also W,W ′

are obs-isomorphic, then di(V
′,W ′) = di(V,W ) by the triangle inequality.

Proposition 4.3. The undecorated persistence diagram is observable.

Proof. Let ϕ◦ : V 99KW be an obs-isomorphism with inverse ψ◦ : W 99K V . We will
show that mV (p, q) = mW (p, q) for all points (p, q). Let a, b, c, d be values attaining
the minimum in the definition of mV (p, q), and select a′, b′, c′, d′ such that

a < a′ < p < b′ < b < c < c′ < q < d′ < d.

Thus (p, q) lies in the interior of [a′, b′]× [c′, d′] which lies in the interior of [a, b]×
[c, d]. From the commutative diagram

Va
ρba //

ϕa′a !!C
CC

CC
CC

C Vb
ρcb // Vc

ρdc //

ϕc′c !!C
CC

CC
CC

C Vd

Wa′ σb′a′
// Wb′ σc′b′

//
ψbb′

==||||||||
Wc′ σd′c′

// Wd′

ψdd′

=={{{{{{{{

it follows by applying monotonicity (to the eight-term chain of vector spaces) that

3A sequence of partial matchings with cost converging to δ can be refined to a subsequence which
stabilizes for any particular point v or w, thanks to the local finiteness of the diagrams, and therefore
to a subsequence which stabilizes for each of the countably many points of dgm(V ) and dgm(W ).
The limit is a well-defined partial matching with cost at most δ. Compare [4, Theorem 4.10].
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µW ([a′, b′]× [c′, d′]) ⩽ µV ([a, b]× [c, d]), therefore mW (p, q) ⩽ mV (p, q). The reverse
inequality follows symmetrically.

Corollary 4.4. The stability and isometry theorem for persistence modules over the
real line is meaningful and true in the observable category.

There is a particularly clean structure theory for q-tame modules in Obs.

Theorem 4.5. Let V , W be q-tame persistence modules over the real line. The fol-
lowing statements are equivalent:

(a) V and W are obs-isomorphic.

(b) The interleaving distance between V and W is zero.

(c) The undecorated persistence diagrams of V and W are equal.

Proof. We have seen (a)⇒ (b).
(b)⇒ (c): The stability theorem implies that the bottleneck distance between the

diagrams is zero. Since q-tame persistence modules have locally finite diagrams, it
follows that the diagrams are equal.

(c)⇒ (a): Being q-tame, the modules V , W are obs-isomorphic to direct sums of
interval modules. We may assume that the intervals are open and nonempty; then
the intervals are determined by the persistence diagrams, so the two direct sums are
isomorphic.

We finish by showing what happens when we drop q-tameness.

Example 4.6. We construct a pair of persistence modules V , W whose interleaving
distance is zero but which are not obs-isomorphic. Let K be a compact subset of the
half-plane with no isolated points, and let X, Y be countable dense subsets of K. If
X ̸= Y then

V =
⊕

(p,q)∈X

k(p,q) and W =
⊕

(p,q)∈Y

k(p,q)

are not obs-isomorphic, by Theorem 3.9. Now let ϵ > 0. Select a bijection f : X → Y
that moves points by at most ϵ. Each matched pair of summands k(p,q), kf(p,q) is
ϵ-interleaved, so V , W are ϵ-interleaved. Thus the interleaving distance between V
and W is zero.

Example 4.7. We construct a persistence module V indexed by R which is not obs-
isomorphic to a direct sum of interval modules. Let V̂ be a persistence module indexed
by Z that is not isomorphic to a direct sum of interval modules. For instance, we can
set

V̂n = {sequences (x1, x2, . . . ) in k}, for n ⩾ 0,

V̂n = {sequences (x1, x2, . . . ) in k with x1 = x2 = · · · = x|n| = 0}, for n ⩽ 0,

and set each ρ̂nm to be the canonical inclusion map, following Webb [16].
Define V by setting Vt = V̂⌊t⌋ and ρts = ρ̂⌊t⌋⌊s⌋. Certainly V cannot decompose

into interval modules because that would induce an interval decomposition of V̂ . We
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show that the same is true for any module W obs-isomorphic to V . To show this, let
Ŵ be the module indexed by Z defined by

Ŵn = Im(Wn+(1/5) →Wn+(3/5)),

with structure maps induced by those of W . Then any direct-sum decomposition
ofW induces a direct sum decomposition of Ŵ , and interval module summands ofW
become interval module summands of Ŵ . Meanwhile, thanks to the obs-isomorphism
between V , W we have a commutative diagram:

Vn //

##H
HH

HH
HH

HH
H Vn+(2/5)

//

∗n

%%LL
LLL

LLL
LL

Vn+(4/5)

Wn+(1/5)
//

99rrrrrrrrrr
Wn+(3/5)

99rrrrrrrrrr

The top row is just V̂n = V̂n = V̂n, and it follows that the map labelled ∗n induces an
isomorphism between V̂n and Ŵn. From the diagram

Vm+(2/5)
//

∗m

&&LL
LLL

LLL
LL

Vn+(2/5)

∗n

%%LL
LLL

LLL
LL

Wm+(3/5)
// Wn+(3/5)

we see that the structure maps agree under these isomorphisms. We conclude that
V̂ , Ŵ are isomorphic. An interval decomposition of W would induce an interval
decomposition of V̂ which, by assumption, does not exist.
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